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Abstract: We use a holographic model to survey the space of strongly coupled SU(Nc) gauge

dynamics with QCD-like chiral symmetry breaking pattern for quarks in the fundamental repre-

sentation. We systematically identify the light degrees of freedom (ρ, σ and π mesons) that would

make up the dark sector as a function of Nf ,Nc and a common quark mass scale. We identify seven

distinct effective theories that are of interest to explore and make a first summary of the expected

dark matter phenomenology. Amongst our results we conclude that QCD-like models where the

low energy theory is described purely in terms of pions struggle to generate a large enough Mπ/fπ
value so these theories will need extra relic density generation mechanisms to be viable. The largest

space of models (with an intermediate quark mass) have both the σ and ρ lying below 2Mπ and

are largely unexplored in the literature so far. Regions with just one of ρ or σ light are possible

in constrained parameter regions. These states aid the pion relic density generation as needed for

valid theories. The σ always lies above the π mass becoming degenerate with the π in the extreme

walking limit.
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1 Introduction

An interesting possibility is that dark matter is the pseudo-Nambu Goldstone bosons (pNGB) (or

pions) of a dark sector strongly coupled gauge theory. Such theories provide a new relic density

mechanism by means of the 3π → 2π Weiss-Zumino-Witten process. They also generate a large

enough self-interaction cross-section that might explain the core versus cusp problem in astrophys-

ical data. These theories are collectively known as strongly-interacting massive particle (SIMP)

theories [1].

The original SIMP models have a spectrum where all bound states (ρ, σ etc) are heavier than

twice the π mass and so decay in the strongly coupled sector leaving purely a theory of pions in

the infra-red (IR). These models though need a large value of Mπ/fπ to reconcile relic density by

3π → 2π processes and self-interaction cross-section constraints. Depending on the theory details,

the SIMP models may also feature additional relic density mechanisms, where heavier states such

as ρ or σ play an important role [2–6]. These extra annihilation channels alleviate the tensions

between relic density and self-interaction limits in the basic SIMP model. In this paper we seek to

more systematically analyse the space of possible infra-red effective models. We will concentrate
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here on SU(Nc) gauge theories with mass-degenerate fermions in the fundamental representation

and a chiral symmetry breaking pattern SU(Nf)L× SU(Nf)R → SU(Nf)V . Throughout this paper
we will use the mass of the ρ meson, Mρ, at mQ = 0 as a measure of the strong coupling scale - we

denote it M0
ρ . Our analysis concentrates on the π which are light as pNGB of the chiral symmetry

breaking, the scalar singlet σ since it potentially becomes light as a pNGB of conformal symmetry

breaking in theories with a walking gauge coupling, and the ρ as the lightest vector state which

can be phenomenologically relevant. Our aim is here is to establish the properties of light states

that will be important for possible dark matter scenarios, rather than carrying out full cosmological

analyses or attempting strongly-interacting dark matter model building.

The main obstruction to simply enumerating SIMP scenarios is their inherent non-perturbative

nature. The low energy properties of the theory, which emerge from the strongly coupled theories,

such as the pion masses and decay constants can not be directly calculated using any known

perturbative methods. This means, the low energy parameters of the theory, although controlled

by high energy inputs, need to be determined using methods beyond ordinary perturbation theory.

Ideally one would use lattice gauge theory, a first principle approach, but the computational time and

expense is huge. Even in the presence of lattice data, practical computation of all phenomenological

implications needs to be done using low energy effective field theories, which need to be constructed.

There is current work on determining the form of the effective theories particularly at large number

of flavours (Nf ) to colours (Nc) ratio, taking the theory in the walking regime [7, 8].

We will make use of a holographic model to explore these theories [9, 10]. The model works

well for the lightest meson sector of QCD (at the 20% level quantitatively [11]) and incorporates

the dynamics through an input running coupling for a theory as a function of Nc,Nf . For a fixed

number of colours (Nc), the model incorporates the approach to the conformal window at some N c
f

critical value of the number of flavours. The model displays a light σ “dilaton” in the walking regime

- the more conformal symmetry is restored near the chiral symmetry breaking scale the lower the σ

mass is [12]. The model has simple Nf ,Nc scalings for the decay constants of the theory compatible

with the UV theory. The model also includes arbitrary quark masses (mQ). Whilst the model

is not a first principles computation it does allow us to explore possible behaviours in the space

of Nf ,Nc,mQ and identify possible low energy effective theories and estimate the tuning needed

to achieve them. The holographic model can also be used to describe quarks in higher dimension

representations [10, 13–15] but here we concentrate on the fundamental representation - the main

change resulting from using higher dimension representations would be that the decay constants

grow with the dimension of the representation which would not aid raising Mπ/fπ.
In total we identify seven different possible IR regimes which are summarized in fig. 1 (left

panel). In fig. 1 (right panel) we show the results of the holographic model revealing where in

the Nf /Nf
c versus M2

π plane each phase is likely to be found. As we will see this is largely Nc

independent. Note that M2
π is a measure of the quark mass, at least at small mQ.

We will begin by presenting the holographic model (sec. 2) that can describe the strongly

coupled phases (Regions 1-6,9 in fig. 1 (left panel)). In sec. 3 we will determine and present fits

for the σ,π and ρ masses and decay constants across the Nf ,M
2
π plane at Nc = 3. We will discuss

the simple Nc scaling the model holds to allow extrapolation of these results to higher Nc. These

results then lead to the phase space depicted in fig. 1(right panel). Regions 1–6 have an IR sector

made from some or all of the fields π, ρ, σ. The regions 7 and 8 in fig. 1 can not be realised since

we know of no mechanism to parametrically lower the ρ mass. Region 9 is expected to describe the

meson sector of gauge theories where mQ lies near or above the strong coupling scale of the theory.

If the quark mass is very large one expects the gauge dynamics to be weakly coupled at the mass

scale. The meson masses will lie close to 2mQ. However, we also expect at these large mQ that the

gauge dynamics will survive below mQ going on to become strong in the deeper IR. It will generate

light glueballs so these are not pionic dark matter models - we do not study such glueball dark
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Figure 1. Left panel: The regions of parameter space denoted by their low energy spectrum. Right panel:

the classification of the Nc = 3 theory, using the colours from the left in the NF /N
c
F versus mQ plane. The

horizontal lines are for integer NF where we compute. Regions 1-5 are present at these Mπ (in units of

M0
ρ ). Regions 6 and 9 lie to the right of the right panel where the gauge theories are transiting to weak

coupling and holography is less reliable.

matter models here. Region 9 is therefore intended as the transition regime where the pions are

light but the glueballs are also playing a role in the IR dynamics.

Having obtained these results for the spectrum we will then return to discuss the phenomenology

of the different types of IR theory in sec. 5. We stress here that in this work, we are only introducing

this space of theories and our observations are initial and do not include relic density calculations

which we hope to perform in the future led by this survey.

The highlights of these analyses include the following. First, consider QCD-like models in which

the low-energy spectrum contains only pions, while all other states lie above the 2Mπ threshold

and can therefore spontaneously decay within the strong-sector. These models struggle to generate

a large enough Mπ/fπ value to be viable and need extra pion relic density generation modes such

as through mediators with the Standard Model (SM). Our results suggest higher values of this

ratio may be possible in very walking models. The largest space of models we find are those with

an intermediate quark mass and they have both the σ and the ρ lying below 2Mπ. These states

may aid the pion depletion rate in the cosmological evolution as needed for valid theories. They

are largely unexplored in the literature so far and we plan to return to them to determine relic

abundances. Regions with just one of the ρ or σ light are possible in constrained parameter regions

(obtaining a model with only a light ρ is quite tuned in the holographic model). The σ always lies

above the π mass becoming degenerate with the π in the extreme walking limit.

Finally in sec. 6, to be complete in our survey, we briefly address other possible strongly coupled

dark matter sectors. This includes the high mass scenario discussed above that leaves glueball dark

matter [16–21]. If mesonic matter is unstable then dark baryons are possibly stable, see [22, 23]

for associated reviews. For models truly in the chirally symmetric conformal window the lightest

matter is an unparticle plasma [24, 25]. Finally we present some models that remove the pions from

the spectrum leaving a dark matter σ although in absence of additional symmetries it likely decays

too fast due to dimension 5 operators to be a sensible dark matter candidate.
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2 The Holographic Model

The holographic model we use for the chiral symmetry breaking dynamics is presented in [9]. It

is similar in spirit to the Anti-deSitter (AdS)/QCD models of [26, 27] but in addition includes the

explicit running of the gauge theory and the chiral symmetry breaking is dynamically determined

rather than input and fitted. A comparison of the model to SM QCD can be found in [11] - it is

good at describing the broad features of the light mesonic spectrum but quantitatively can differ at

the 20% level. Our goal is to use its qualitative power to elucidate what phases one can expect to

find in such gauge theories as a function of Nc,Nf and a common quark mass mQ. It is also useful

to see how the various low energy parameters depend on Nc,Nf . We will briefly present the action

and equations of motion which will be used to calculate meson masses and decay constants.

The gravity action includes the bulk fields: the scalar X, which is dual to the operator q̄q; its

phase, which is dual to q̄γ5q; and the flavour gauge field VM (appearing in FMN ), which is dual to

the vector current q̄γµq. The action takes the form

Sboson = ∫ d5x ϱ3 ( 1

r2
(DMX)†(DMX) +

M2
X

ϱ2
∣X ∣2 + 1

2g25
FMNF

MN) . (2.1)

The five-dimensional coupling only enters into quantities that explicitly compare different terms

in the action - here for us this will just be the computation of fπ as we describe below. The fit to

QCD in [11] suggested g25 = 76 and we will use that value here1.

The model has a five-dimensional asymptotically AdS spacetime, the metric for which is

ds2R = r2dx2(1,3) +
dr2

r2
, (2.2)

where r2 = ϱ2 + ∣X ∣2 – ϱ is the holographic radial direction corresponding to the energy scale, and

with the AdS radius set to one. The X vacuum expectation value is included as a back-reaction in

the metric.

The dynamics of the particular gauge theory choices of Nc,Nf , with quark contributions to

any running coupling, are included through M2
X in eqn. (2.1). We use the perturbative result for

the running of the anomalous dimension of the quark mass, γ and expand the usual holographic

relation between the mass of a scalar M in AdS5 and the operator dimension ∆ – M2 = ∆(∆ − 4)
for a dimensionless scalar [28] – at small γ giving

M2
X = −2γ. (2.3)

Since the true running of γ is not known non-perturbatively, we extend the perturbative results

as a function of the renormalization group (RG) scale µ to the non-perturbative regime. We then

directly set the field theory RG scale µ equal to the holographic RG scale r =
√
ϱ2 + ∣X ∣2. The

model breaks chiral symmetry when γ passes 1/2, as the Breitenlohmer-Freedman (BF) bound [29]

is then violated.

The two-loop result for the running coupling, α(µ) is

µ
dα(µ)
dµ

= −b0α(µ)2 − b1α(µ)3 , (2.4)

with
b0 = 1

6π
(11CA − 4TRNf) ,

b1 = 1
24π2 (34C2

A − (20CA + 12CF )TRNf) .
(2.5)

1We take g5 to be scale, Nf , and Nc independent by ansatz here.
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where TR is half the Dynkin index, CF = (Nc
2 − 1)/2Nc the quadratic Casimir for the adjoint

representation and CA = Nc.

With our definition, the running coupling has IR poles at lowNf , IR fixed points at intermediate

Nf and describes the lower edge of the conformal window near Nf = 4Nc (it follows the choices in

[30]). The true value of Nf = N c
f corresponding to the position of the edge of the conformal window

is still being investigated and lattice, functional renormalization group studies suggest it is lower

than this e.g., below N c
f = 10 for Nc = 3 [31, 32]. Our eventual phase structure diagram fig. 1(right

panel) though is shown in Nf /N c
f and we expect it to be broadly similar if the edge is lower. For

Nf > N c
f the theory enters the conformal window and describes unparticles, which we briefly return

to in sec. 6.

For the results to come, one must numerically set α at some scale – we set α = 0.65 at µ = 1.
We are careful though to rewrite all our results in units of the ρ mass in the theory with mQ = 0 to

remove this arbitrary choice. We will denote this ρ mass as M0
ρ throughout this work.

Although our running coupling is computed at two loop, we use the one-loop anomalous mass

dimension (γ),

γ(µ) = 3CF

2π
α(µ). (2.6)

We use the one loop definition of γ since it is already a guess non-perturbatively and no additional

qualitative features are added beyond.

To find the vacuum of the theory, we set all fields to zero except for ∣X ∣ = L(ϱ). For M2
X a

constant, the equation of motion we obtain from eqn. (2.1) is

∂ϱ(ϱ3∂ϱL(ϱ)) − ϱ M2
XL(ϱ) = 0 . (2.7)

At large ϱ, in the UV, the asymptotic solution is L(ϱ) = mQ + c/ϱ2, with c = ⟨q̄q⟩, the fermion

condensate of dimension three, and mQ, the mass of dimension one. We numerically solve eqn. (2.7)

with our input M2
X for the function L(ϱ).

We use IR boundary conditions where the fermions go on mass-shell

L(ϱ)∣ϱ=ϱIR = ϱIR , ∂ϱL(ϱ)∣ϱ=ϱIR = 0 . (2.8)

The value of ϱIR is determined in each theory. We numerically vary ϱIR until the value of L at the

boundary is the desired fermion mass mQ. We refer to the vacuum solutions as L0(ϱ).
The mesons of the theory are linearized fluctuations of this vacuum configuration that satisfy

the appropriate boundary conditions, matching those of the vacuum in the IR and consisting of just

fluctuations of operators in the UV. The resulting Sturm-Liouville problems fix the meson masses.

The vector-mesons are fluctuations of the gauge field and satisfy the equation of motion (here

r2 = ϱ2 +L0(ϱ)2)

∂ϱ(ϱ3∂ϱV (ϱ)) +M2
ρ

ϱ3

r4
V (ϱ) = 0. (2.9)

To obtain a canonically normalized kinetic term for the vector meson we must impose (note this is

Nc,Nf independent)

∫ dϱ
ϱ3

g25r
4
V (ϱ)2 = 1. (2.10)

The fluctuations of L(ϱ) give rise to the scalar σ meson [12]. The equation of motion for the

fluctuation reads

∂ϱ(ϱ3∂ϱS(ϱ)) − ϱ(M2
X)S(ϱ) − ϱL0(ϱ)S(ϱ)

∂M2
X

∂L
∣L0 +M2

σ

ϱ3

r4
S(ϱ) = 0. (2.11)
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The equation of motion for the phase of X describes the pion field

∂ϱ (ϱ3 L2
0 ∂ϱπ) +M2

π

ϱ3 L2
0

r4
π = 0 . (2.12)

To compute decay constants, we must couple the meson to an external source and we include

an axial vector field AM in analogy to VM . In addition, since X carries axial charge, there is an

interaction term via the covariant derivative. Writing A(ϱ) as the ϱ dependent piece of AM , it has

equation of motion (note this is where g25 enters although the results for fπ are very insensitive to

it’s value).

∂ϱ(ϱ3∂ϱA(ϱ)) − g25
ϱ3L2

0

r2
A(ϱ) − ϱ

3q2

r4
A(ϱ) = 0 . (2.13)

The sources are described as fluctuations with a non-normalizable UV asymptotic form. We fix

the coefficient of these solutions by matching to the gauge theory in the UV. In the UV we expect

L0(ϱ) ∼ 0 and we can solve the equations of motion for the scalar, L =KS(ϱ), vector V µ = ϵµKV (ϱ),
and axial Aµ = ϵµKA(ϱ) fields. Each satisfies the same UV asymptotic equation

∂ϱ[ϱ3∂ϱK] −
q2

ϱ
K = 0 . (2.14)

The solution is

Ki = Ni (1 +
q2

4ϱ2
ln(q2/ϱ2)) , (i = S,V,A), (2.15)

where Ni are normalization constants that are not fixed by the linearized equation of motion.

Substituting these solutions back into the action gives the vector correlator ΠV V and axial vector

correlator ΠAA. Performing the usual matching to the UV gauge theory requires us to set [9, 26]

N2
V = N2

A =
g25 d(R) Nf(R)

24π2
, N2

S =
d(R) Nf(R)

24π2
. (2.16)

where d(R) is the dimension of the representation (Nc for the fundamental representation matter.)

The vector meson decay constant is then given by the overlap term between the meson and the

external source

F 2
V = ∫ dϱ

1

g25
∂ϱ [−ϱ3∂ϱV ]KV (q2 = 0) . (2.17)

Note the normalizations of the normalizable and non-normalizable fields combine to remove any

g25 dependence. F 2
V scales as

√
NcNf . The process and scalings are similar for the scalar decay

constant Fσ for decays to an external scalar source (note this is not the coupling to an external

spin two source considered as the dilaton decay constant [8]).

The pion decay constant can be extracted from the expectation that ΠAA = f2π here in the QCD

conventions i.e. fπ = 93MeV.

f2π = ∫ dϱ
1

g25
∂ϱ [ϱ3∂ϱKA(q2 = 0)]KA(q2 = 0) . (2.18)

Explicit g25 dependence again cancels against the normalization but g25 enters through the solution

for KA. The scaling is f2π ∼ NcNf now since two non-normalizable solutions enter.

We numerically solve the equations of the holographic model using NDSolve in Mathematica

for the results below.

3 Mass spectrum

We now present results and fits to the data from the holographic model. We begin with the SU(3)

gauge theory where the results for the light meson spectrum and decay constants along with their

fits are shown in fig. 2 – 8 and tab. 1 – 2. Finally, we show the Nf dependence of our fits in fig. 9.

– 6 –



3.1 Nc = 3 results
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Figure 2. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 2. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.
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Figure 3. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 3. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.

The left hand plots in fig. 2 – 8 show the ρ, σ and π masses as a function of M2
π in the unit of

M0
ρ . At low quark mass M2

π ∼ mQ making M2
π serve as an observable proxy for the quark mass.

The red π mass curve is, of course, trivial against M2
π but included for comparison to the other

states.

We normalize the mass scales of the spectrum by setting the ρ mass at Mπ = mQ = 0 to be

unity in each case. Thus Mρ(mQ = 0) = M0
ρ = 1 is the measure of the strong coupling scale when

one compares theories. The ρ mass is well fitted as a function a + bMπ + cM2
π at all Nf and are

shown in tab. 1. As shown in fig. 9 (left panel), the fits we obtain are a function of Nf , although

we do not attempt to fit this dependence. The Nf dependence of the ρ mass becomes stronger as
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Figure 4. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 5. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.
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Figure 5. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 6. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.

Nf Mρ/M0
ρ Mσ/M0

ρ

2 1 − 0.161Mπ + 0.463M2
π 1.25 + 0.604Mπ − 1.88M2

π + 1.19M3
π

3 1 − 0.15Mπ + 0.472M2
π 1.22 + 0.431Mπ − 1.56M2

π + 1.06M3
π

5 1 − 0.097Mπ + 0.478M2
π 1.11 − 0.0313Mπ − 0.501M2

π + 0.569M3
π

6 1 − 0.063Mπ + 0.495M2
π 0.988 − 0.002Mπ − 0.488M2

π + 0.664M3
π

7 1 + 0.00931Mπ + 0.48M2
π 0.814 − 0.175Mπ + 0.482M2

π + 0.0219M3
π

9 1 + 0.309Mπ + 0.409M2
π 0.384 + 0.201Mπ + 0.846M2

π − 0.309M3
π

11 1 + 1.09Mπ + 0.363M2
π 0.0736 + 0.715Mπ + 0.431M2

π − 0.188M3
π

Table 1. Fits for Mρ,Mσ in units of M0
ρ as a function of Nf for Nc = 3 derived within our holographic

model.
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Figure 6. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 7. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.
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Figure 7. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 9. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.

Nf fπ/M0
ρ Fρ/M0

ρ Fσ/M0
ρ

2 0.07 + 0.070Mπ + 0.143M2
π 0.418 − 0.075Mπ + 0.176M2

π 0.71 + 0.186Mπ − 0.69M2
π + 0.49M3

π

3 0.086 + 0.094Mπ + 0.164M2
π 0.465 − 0.086Mπ + 0.208M2

π 0.82 + 0.04Mπ − 0.42M2
π + 0.37M3

π

5 0.119 + 0.114Mπ + 0.211M2
π 0.535 − 0.03Mπ + 0.231M2

π 0.97 − 0.17Mπ + 0.19M2
π + 0.06M3

π

6 0.133 + 0.093Mπ + 0.265M2
π 0.546 − 0.035Mπ + 0.248M2

π 1.05 − 0.13Mπ + 0.27M2
π + 0.018M3

π

7 0.149 + 0.11Mπ + 0.266M2
π 0.564 + 0.012Mπ + 0.25M2

π 1.20 − 0.04Mπ + 0.34M2
π − 0.06M3

π

9 0.229 + 0.3M2
π 0.63 + 0.31M2

π 2.76 − 1.27Mπ + 1.24M2
π − 0.25M3

π

11 0.072 + 0.078M2
π 0.788 + 0.735M2

π 8.33 + 2.07M2
π

Table 2. Fits for decay constants fπ, Fρ, Fσ in units of M0
ρ as a function of Nf for Nc = 3 obtained using

our holographic model.
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Figure 8. Mass spectrum (left) and decay constants (right) in units of M0
ρ for Nf = 11. The gray shaded

areas correspond to the different regions of parameter space presented in fig. 1.

one approaches the lower edge of the conformal window at Nf ∼ 11 (formally the edge lies at 11.9).

The Mπ term in the fits makes the largest difference near the edge of the conformal window. These

results clearly demonstrate the importance of establishing Nf dependence of heavier resonance

properties by means of lattice simulations.

We have concentrated on the regimeM2
π < 1.5(M0

ρ )2 – in the holographic model above this scale

there is a transition to a linear regime where all M,F ∝Mπ ∼mQ but in all but the most walking

theories the gauge theory becomes perturbative here and holography isn’t the correct description.

Also in these high mQ cases the glue dynamics separates from the quark dynamics below the quark

mass scale. These theories will include glueballs that are lighter than the mesons so the models are

no longer pion based dark matter models. We have not attempted to describe the glueball sector

here but we note that at intermediatemQ there will be theories with glueballs as well as light ρ, σ, π.

Without being quantitative about the intermediate mQ region, in fig. 1 (left panel) we show this as

region 9 which corresponds to intermediate quarks where glueballs will be a relevant light degrees

of freedom. This region lies at higher M2
π in fig. 1 (right panel).

The σ meson mass is much more Nf dependent than the ρ (see fig. 9, right panel), at least in

this holographic model. The key term is the third term in eqn. (2.11) which depends on the rate

of change of the running mass M2
X . Without this term the equation becomes degenerate with the

pion eqn. (2.12) (using eqn. (2.7)). Thus at the edge of the conformal window where the IR running

of the coupling is negligible the σ becomes degenerate with the π. On the other hand in the low

Nf theories the running is fast and the resulting σ is much heavier (heavier than the ρ for Nf < 5).
We have used the fits to determine where the IR theory lies in the space of theories described

in fig. 1 (left panel) and this then determines the regions shown in fig. 1 (right panel). We will

discuss fig. 1 (right panel) in detail below.

Finally, in fig. 2 – 8 (right panels) we also show the corresponding decay constants for the

ρ, σ, π. They all grow with Mπ. The main Nf scaling is that discussed in section 2 – f2π ∼ Nf and

F 2
ρ,σ ∼

√
Nf . In addition there is Nf dependence through the holographic wave functions of the

particles involved. Here the biggest effect is in Fσ which grows sharply with Nf as one approaches

the edge of the conformal window.
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Figure 9. Nf dependence of the ρ and σ masses using the fits presented in table 1.

3.2 Nc Dependence

At large Nc, i.e. the Veneziano limit [33], the β function ansatz we use to input the dynamics of

the theory is simply a function of Nf /Nc at leading order. As is frequently argued Nc = 3 lies close

to large Nc so it is interesting to test how good an approximation this scaling is.

A natural set of theories to compare are SU(3) with Nf = 3, SU(4) with Nf = 4 and SU(5)

with Nf = 5. We show a selection of computations at various quark mass of the meson and decay

constants in fig. 10. To compare the decay constants we remove the explicit
√
NcNf factors in

fπ and F 2
ρ , F

2
σ . Certainly within any errors the holographic models contain, this scaling is clearly

present. We have also cross checked SU(3) with Nf = 9, SU(4) with Nf = 12 and SU(5) with Nf = 15
where again within 10% the degeneracy is accurate. We will therefore not present further results
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Nf = 5 (Red) Left: data for the σ and ρ meson masses Right: the decay constants fπ, Fρ, Fσ corrected by

the rude Nf ,Nc scaling discussed in the text.
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Figure 11. Left: Comparison of the holographic predictions (blue) for QCD compared to the lattice

results in [34] (red) for Mπ/Mρ vs M2
π/M

0 2
ρ in units of the ρ mass at mQ = 0. Right: a comparison of the

holographic results (blue) for Fρ/Mρ vs M2
π in units of the ρ mass (note not at mQ = 0) and the lattice

results from [35] (red).

at higher Nc since they can be extrapolated from Nc = 3 and the corresponding Nf variations.

Similarly fig. 1 (right panel) although valid for Nc = 3 is in fact a good description of all Nc

theories.

4 Comparison to Lattice Data

It is worth making some comparisons of the holographic predictions to known lattice calculations.

Several lattice investigations for SU(Nc) gauge group are available. Most notably, ref. [36–38]

provide a comprehensive study of meson properties for large-Nc theories in the quenched approx-

imation. We choose here data from [35] for our comparisons as it is presented in the most useful

fashion for our purposes.

The mass spectrum is the most important component of our analysis. In fig. 11 we show a

comparison to QCD functional methods analysis from [34, 39] (here we take Nc = Nf = 3 in the

holographic model to represent the light states in the 2+1 quark theory). The quantity Mπ/Mρ is

plotted as a function of M2
π in units of M0

ρ . At low M2
π this is a plot against the quark mass. The

comparison is good. There is a modest deviation at largerM2
π , which likely stems from the fact that

in holographic models the conformal, weakly coupled UV of QCD is replaced by a strongly coupled

conformal UV theory. Introducing a mass scale in the UV adds additional strong interactions so

heavy quarks are poorly described. The holographic description of the ρ seems very good up to

(Mπ/M0
ρ )2 = 0.5 and even above there is decent agreement to draw qualitative conclusions. The

transitions between regions in fig. 1 (right panel) lie below this value.

The dimensionful Fρ rises linearly withM2
π . In the lattice review [35] they call what we call F 2

ρ ,

M2
V FV . We fit their data and use our conventions. In fig. 11 we plot the dimensionless Fρ/Mρ in

the holographic model against the lattice data taken from [35]. The holographic model prediction

is a little lower but the weak mass dependence is reasonably consistent.

The holographic model’s prediction for fπ is more troubling. We can see in the Nf = Nc = 3
case in fig. 3 – 4 that fπ approximately quadruples across the M2

π range. If one looks at the

equivalent plot in [35] fπ does not even double across this range. We believe this is again a result
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Figure 12. The ratio Mπ/fπ in the holographic model as a function of Mπ for Nc = 3, and various Nf

together with the lattice data (black line) from [35].

of the UV artifice of the holographic model. As the quark mass rises above the strong coupling

scale Λ in QCD fπ is expected to scale as
√
mQΛ reflecting the role of the strong coupling scale

still in the bound state dynamics. On the other hand in holography there is strong coupling at the

scale mQ and one sees fπ ∼ mQ. The physics in the holographic model is wrong and this shows

up at lower quark mass with fπ rising more sharply to attain its larger UV quark mass behaviour.

We nevertheless present the fπ predictions because they include interesting Nf dependence that we

believe is qualitatively correct and has lessons for the QCD-like theories.

Let us immediately turn to the quantityMπ/fπ which plays an important role in SIMP models.

In fig. 12 we plot this quantity against M2
π/M2

ρ - note here that it is Mρ in the denominator, not

M0
ρ - the ultra heavy quark limit is at M2

π/M2
ρ = 1. We plot the lattice results fitted from [35] and

our holographic results for a number of choices of Nf .

Here one should immediately compare the Nf = 2 + 1 holographic theory (we use the Nc = 3

running but Nf = 2 in the decay constant calculation) and the lattice results. Until Mπ/Mρ ∼ 0.5
one could live with the holographic model but above this mass value the spurious UV behaviour of

fπ kicks in and takes the holographic model away from the true lattice data.

The lattice data shows that for Nc = 3,Nf = 2 + 1 reaching a value of Mπ/fπ greater than 5-6

seems very hard [35]. The original SIMP phenomenology wanted this ratio to be 12. The higher Nf

holography curves are lower reflecting the
√
NcNf factor one expects in fπ. Raising Nc or Nf will

only make things worse (Mπ/fπ lower). This observation motivates our search for more complex

models with additional dark matter relic density mechanisms present.

The only outlier is the Nf = 11 curve which does reach higher values of the ratio. This theory

is very walking and lives in Region 3 which we discuss below. The effect of walking (for which

the idea was invented in [40]) is to raise the quark condensate relative to fπ. This rise in the

holographic model infects all other masses and decay constants and hence Mπ/fπ can be larger.

In the holographic model the ratio rises indefinitely as one tunes to Nf
c. This conclusion is likely

to map across from the holographic model with poor UV behaviour to true walking SIMP models

which therefore might have an important role to play in the SIMP paradigm.
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5 Phenomenology

A strongly coupled dark matter sector, such as the SU(Nc) gauge theories we have considered here,

in principle feature an infinite tower of states. The expectation is that for most of the parameter

space the IR is well described by an effective theory of a few light meson states that all other

states decay to. Our main goal here has been to determine the likely states in those IR theories for

SU(Nc) dynamics as a function of Nc,Nf and a common quark mass. As we have seen the spectrum

is largely Nc independent at fixed Nf /Nc although the decay constants grow with Nc. We have

identified 7 viable low energy theories shown in fig. 1. We have displayed the phase space in the

Nf vs mQ plane where each occurs in fig. 1 (right panel). Here one can interpret the area in the

plane as indicative of how tuned the parameter space for each region is. Of course the reliability

of those conclusions depends on one’s trust of the holographic model. The ρ mass seems perfectly

reasonably modelled (see fig. 11). The σ meson seems more model dependent. The holographic

model places it heavier than the ρ at low Nf and low mQ (the identification of the σ meson among

the f0 states in QCD is still uncertain) before becoming lighter for larger Nf as it moves towards

a dilaton behaviour in the walking regime. Whilst this behaviour seems reasonable it is not a first

principles result. At worst we view the holographic model as a guide to the types of phases that

may exist.

It is worth noting the trajectory of the theories through the regions as Nf and mQ change for

a fixed Nc:

1. Massless theories (mQ = 0): In the chiral limit, as Nf increases one moves from theories

containing only light πs (region 1) → light π,σ (region 2) → walking dilaton σ (region 3)

before entering the regime of unparticles [24] in the conformal window.

2. Increasing mass (mQ > 0), small Nf : Low Nf theories move from only light πs (region 1) →
light π, ρ (region 4) → light π, ρ, σ (region 5) → light glueballs (region 9), although region 4 is

rather a tuned part of the parameter space.

3. Increasing mass (mQ > 0), large Nf : For higher Nf one sees light πs (region 1) → light π,σ

(region 2) → light π, ρ, σ → light glueballs (region 9) or walking dilaton σ (region 3) → light

ρ, σ (region 6) → light glueballs (region 9) at the edge of the conformal window.

4. No Regions 7,8: there is no mechanism we know to make the ρ anomalously light relative to

the σ and π (whereas for those we can use chiral symmetry breaking or conformal symmetry

breaking to make them light).

We will now turn to discuss the phenomenology, as currently known, for these seven regions

featuring different mass hierarchies although we do not aim to rigorously analyse this phenomenol-

ogy here. We also stress that we do not consider dark matter – SM thermalization aspects, for

which an external mediator between the strong-sector and the SM is often introduced. Our aim

here is to analyse the strong sector in isolation and consider potential impact of higher dimensional

effective couplings between the SM and strong sector which must arise at least at the Planck scale.

5.1 Region 1: only light π

Region 1 describes QCD-like theories with a strongly running coupling and light quark mass relative

to the strong coupling scale. The spectrum including the σ and ρ lie above twice the pion mass at

the strong coupling scale and so will decay quickly to pions. The pions are light because of their

pseudo-Goldstone nature associated with the spontaneous breaking of chiral symmetry. Thus the

only relevant IR dynamical degree of freedom in the system are pions which are described by a

chiral Lagrangian for dark matter calculations. One expects effective dark pion - SM couplings.
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The lowest dimension examples are the UV dimension-7 operator Q̄γ5Qq̄γ5qh (h is the Higgs, Q

are dark quarks and q SM quarks) and the UV dimension-8 operator h2(Q̄γ5Q)2. These are highly

suppressed by the ultraviolet scale and pion annihilations to the SM will thus be negligible allowing

strong-sector only interactions to dominate.

The relic abundance in the pion model has been computed in [1]. Famously, the presence of a

Wess-Zumino-Witten term of the form

LWZ ∝
1

fπ
5
ϵµνρσTr[π∂µπ∂νπ∂ρπ∂σπ] (5.1)

generates 3→ 2 processes that deplete the pions and lead to lower dark matter masses than in other

models. The authors traded the strong coupling scale and mQ for Mπ and the ratio Mπ/fπ. The

pion mass is predicted to lie in the ten-few hundred MeV for Mπ/fπ up to 12 (Here again we stress

we use the convention where fπ = 93MeV)2.

Equally though the model contains four point self interactions of the pions (coming from the

Tr[M †U] type terms in the chiral Lagrangian (U = exp(π/fπ)) in low energy limit where one

neglects derivative interactions). The cross-section behaves as

σscatter ∝ (
Mπ

fπ
)
4 1

M2
π

(5.2)

so that at fixed Mπ/fπ one needs a sufficiently large pion mass for the self interaction to explain

but not violate the bound from the bullet cluster observations [41–43].

The conclusion was that the dark pion mass should lie in the few 100s MeV with largeMπ/fπ ∼
12+. This value lies close to the naive perturbativity bound of the chiral Lagrangian and implies a

rather large quark mass whilst maintaining the chiral Lagrangian structure [2, 44, 45]. We have seen

in fig. 12 above that neither lattice data nor our holographic models suggest it is easy to achieve such

a large value. This suggests the other regions we discuss below may be of more phenomenological

interest. Apart from the conventional 3 → 2 mechanism discussed above, dark pion relic density

can be generated through multiple mechanisms: via bound states of two pions, as demonstrated

in [46], via interactions among stable and transient pions in the presence of t-channel mediators

and residual flavor symmetries, as in [47] or via the misalignment mechanism [48] if the dark pions

are very light. Finally, dark pion - SM couplings may also be generated via non-trivial topological

structures [49, 50] and may help generate the right relic density.

5.2 Region 2: light π,σ

Region 2 is a substantial part of the parameter space in fig. 1 (right panel) at larger Nf values and

intermediate quark masses. In these models the running of the coupling at the scale of the chiral

condensate is weaker than in QCD (either because of the larger Nf or the quark mass scale). The

holographic model then predicts a light σ meson below twice the pion mass.

The σs therefore can not decay directly to two pions and naively will form part of the final

dark matter mix. However one can expect couplings between the quantum number free σ and the

SM from the UV completion of the theory. For example, a cσhhσ∣h∣2 Lagrangian term where cσhh
is the coupling to the SM Higgs. The dark matter quark anti-quark operator that forms the σ is

dimension 3. Thus cσhh will be given by the ratio of the dark sectors strong coupling scale squared

to the scale at which the dark sector and SM interact. This coupling between the σ and h will

induce a mixing between these particles leading to the decay of σ into two fermions. The partial

widths are of the form

Γ(σ → ff̄) ≃ 1

8πm2
σ

Y 2
f (

cσhh
λv
)
2

(m2
σ − 4m2

f)3/2 (5.3)

2Note that we use a definition of fπ that differs by 2 relative to [1] – this figure is with our definition.
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with Yf the usual Yukawa couplings,λ the usual Higgs quartic coupling and v the Higgs vacuum

expectation value. Due to the strong hierarchy in the Yukawa sector, the decay into the heaviest

fermion kinematically allowed will determine the order of its life-time. We assume here mσ ≪mh.

Assuming the UV completion is at the Planck scale the width is approximately Y 2
f m

5
σ/v2Λ2

Pl ∼
Y 2
f (1GeV)5/(246GeV)2/(1019GeV)2 ∼ Y 2

f 10−42GeV. Note, the age of the Universe is ∼ 1041GeV−1.

For a light dark σ of order 1 GeV the decay can only proceed to lighter fermions than the top and

the Yukawa suppression (e.g. for decays to the strange quark Y 2
f ∼ 10−7) will make the σ effectively

stable and hence a dark matter candidate. Some avenues for dilaton dark matter have been explored

in [51–54].

In any model where the UV completion provides thermalization to the SM sector the UV scale

is likely much lower than the Planck mass and the σ is unlikely to be stable and in fact can be

expected to decay quickly. In such cases the σ can still play a significant role in the evolution of the

π. Strong interactions will allow the process (2π → 2σ) during the regime where the kinetic energy

of the π is sufficiently large. The ππσ coupling together with σ decaying to the SM effectively allow

ππ → ff̄ with a rate that depends on the UV completion scale. Overall this may provide a depletion

mechanism for the π. This has been analysed in [6]. It will further be interesting to understand the

Nf dependence of this annihilation channel for which holography may provide qualitative guidance,

but lattice computations are necessary for more quantitative estimates. The σ meson may also alter

the pion-interaction strength, therefore impacting the phenomenologically viable regions [55].

5.3 Region 3: walking dilaton sigma

Region 3 is the extreme walking limit of Region 2 where the running is so slow that the σ meson

becomes essentially degenerate with the pions. The holographic model suggests this occurs when

Nf is within approximately 10% of Nf
c. This is when the new decay channel of Region 2 (2π → 2σ)

becomes maximally strong.

Furthermore as we saw in fig. 12 it is possible to realise much largeMπ/fπ values in this region.

The effect of walking (for which the idea was invented in [40]) is to raise the quark condensate

relative to fπ. This rise in the holographic model infects all other masses and decay constants and

hence Mπ/fπ can be larger.

Together, these effects should facilitate obtaining the observed relic density compared to the

pure pion model, as long as the σ decays sufficiently rapidly.

5.4 Region 4: light π, ρ

Phenomenologically, region 4 has been assumed to be a dominant region in parameter space of

strong-sector theory. Our results in fig. 1 show that region 4 is in fact only a small part of the

parameter space. At small Nf the σ is heavy due to the strong running. As the pion mass rises

it reaches half the ρ mass first, however σ quickly becomes light enough to be phenomenologically

significant.

Within region 4, the ρ can be created for example by 3π → πρ processes, but cannot quickly

decay back to pions. If ρ decays to the SM are rapid enough, this channel can be used to deplete

the pion abundance efficiently as it destroys two pions per annihilation. This mechanism also allows

one to lower the requiredMπ/fπ to reconcile the relic density and self-scattering cross-section. This

scenario has been studied in [4]. In addition to 3π → πρ processes ππ → ρρ processes are also

a possible relic density mechanism, given that ρ decays are rapid. A possible model is presented

in [3]. Additionally the ρ may also take part in the 3→ 2 number changing processes modifying the

phenomenologically viable region [5].
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5.5 Region 5: light ρ, σ

Region 5 is the largest region in fig. 1 (right panel). It occurs at all Nf and when the quark mass

is sufficiently large that the π mass is more than about 0.4M0
ρ . Here the π is essentially heavy

enough to bring the ρ and σ below 2Mπ. Both the ρ and σ can now provide additional annihilation

channels to reduce the pion abundance. This scenario is likely to be even more successful at making

a working model with low Mπ/fπ. Note that here and in the next two regions other higher mass

bound states such as the axial vector mesons may begin to become stable against decay to lighter

states however that is beyond the scope of this work.

We have not found discussion of this case in the literature. Several competing processes such

as 3π → πσ,3π → πρ, 3π → ρσ, 2π → 2ρ and 2π → 2σ may be present in this region. Depending

on the model construction, this offers a rich signature space not only for relic density generation

mechanisms but also for experimental analyses 3. We do not perform the relic density calculations

or signature space analysis here but one of our key findings is that this scenario is a very likely one.

It would be very interesting to study it in more detail.

We also note that low Nc, Nf = 1 theories are also essentially region 5 theories. for these

theories, the strong effect of the axial anomaly makes the pNGB heavy (as the η′ is in QCD). It is

therefore likely that the η′, ρ and σ will all be close in mass [56].

5.6 Region 6: dilaton σ, light ρ

Region 6 is simply a walking variant of Region 5 where the σ is degenerate with the π and the ρ is

light. It doesn’t appear in fig. 1 (right panel) because it lies on the right hand end of the Nf = 11
(at Nc = 3) green line above Mπ = 2M0

ρ .

5.7 Region 9: light glueballs

Region 9 occurs in all theories when the quark mass rises to of order the strong coupling scale.

The IR theory will consist of π, ρ, σ and scalar glueballs. The scalar glueballs look like extra σs

and again it would be interesting to study a combined model of all these particles. This candidate

is connected to the SM through operators of at least UV dimension 6 (such as TrF 2h2) and so

can have lifetimes longer than the age of the Universe. The glueballs could form part of the final

dark matter mix with π. Again this mixture and its interactions remain to be explored and could

provide interesting models.

6 Other Strongly Coupled Possibilities

In this final section we note some other lightest states in strongly coupled theories which could serve

as dark matter scenarios simply for completeness. We have sought to identify the lightest hadronic

states in theories. Were these unstable in some model then it is possible that baryons could remain

stable as the dark matter relic - see for example [22, 23, 57].

6.1 Glueball Dark Matter in Pure Yang-Mills or Heavy Quark Theories

At very large quark mass the dominant scale for meson physics is mQ and all meson masses are

approximately 2mQ. The holographic model shows this behaviour at large quark masses but we

do not show these results because the holographic approach assumes the gauge dynamics to be

strongly coupled whereas the gauge theories become weakly coupled at the quark mass scale. Below

the quark mass the gauge dynamics becomes a pure Yang-Mills theory. At large quark mass the

glueball sector will be lightest part of the spectrum and these theories are not pionic dark matter

theories. Glueball dark matter is discussed in e.g. [16–21].

3For a review of collider searches for strong-sector theories see [34].
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6.2 Unparticles

Theories with Nf > N c
f and massless quarks live in the conformal window. The IR theory is a

conformal plasma known as unparticles [24]. Since the unparticle plasma is massless it can’t be

dark matter. As soon as a mass is introduced one enters our region 5 (if the fixed point is strongly

coupled) or region 9 if more weakly coupled. A first study of these later models can be found in

[25]. We note here that although the mass hierarchy in these scenarios resembles one of the regions

in fig. 1 (left panel), their low energy effective theory may be considerably different.

6.3 σ Dark Matter

An interesting question that emerges from the above theory space scan is whether it is ever possible

within the Nf ,Nc space we consider to have a theory in which the σ meson is the lightest particle

and hence a dark matter candidate. In the theories so far discussed the σ is always heavier than

the π moving to degenerate in the extreme walking case. We now briefly describe two models that

could possibly achieve this goal though.

As we have discussed above a σ is not a natural dark matter candidate because naively one

would expect the presence of UV dimension five operators such as Q̄Q∣h∣2 that become σ∣h∣2 in the

IR. These likely lead to the σ being unstable relative to the lifetime of the Universe unless both the

σ is light and the UV completion scale is very high as discussed above. It is possible though that

some Z2 symmetry might eliminate these terms in a more UV complete model (this is also true in

the cases with a light σ already discussed). We therefore include this discussion for completeness.

6.3.1 Nf = 1 +NX Theories

One possible way to achieve the σ as the lightest particle is to consider SU(Nc) theories with Nf = 1.
Here the chiral symmetry is anomalous and the single “pion” associated with the quark condensate

will be heavy due to that anomaly [56]. Our holographic model does not include the anomaly since

it is based on dualities at large Nc where the anomaly vanishes. The problem in this theory though

is that Nf = 1 theories are not walking and the σ would be heavy. This could be repaired by

including NX additional massive fermions with masses below but close to the dark sector strong

coupling scale. All bound states containing the X fermions would lie near the strong coupling or

X mass scale. The Nf = 1 sector would experience the running dynamics of the Nf = 1 +NX so in

the (anomalous) U(1) sector a light σ would likely emerge made from the massless quark.

6.3.2 Chirally Gauged Nf = 2 +NX Theories

An alternative possibility is to remove the Nambu-Goldstone bosons from the light spectrum by

having them eaten by a set of gauge bosons. Inspired by technicolour/the SM one could for example

use Nf = 2 and gauge the SU(2)LD
symmetry of the massless dark matter quarks (note this is not

the SU(2)L of the SM). The matter content is shown in tab. 3 or as a moose diagram [58] in Fig.

13. The massless pions will be eaten by the SU(2)LD
gauge fields and become part of a massive

multiplet of gauge bosons with mass g2fπ. Note the case where one gauges an SU(2)LD
sub-group,

rather than some SU(Nf ) subgroup, is unique in that it has real representations and is anomaly

free. That this dark matter sector mimics the SM structure is amusing!

Again the problem is that the models with Nf = 2 do not have walking dynamics to make the

σ light. As in the previous model we could solve this by including extra fermions with masses near

the strong coupling scale to force a walking behaviour at the the chiral symmetry breaking scale.

In fig. 13 we call these fermions ψX , they are a singlet of the SU(2)LD
gauge symmetry. It is likely

a σ made from the massless fermions will be the lightest state.
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SU(Nc) SU(2)LD
SU(2)RD

SU(NX)V

qL = (
uL
dL
) ◻ ◻ 1 1

qCR = (
uCR
dCR
) ◻ 1 ◻ 1

ψX,L ◻ 1 1 ◻
ψX,R ◻ 1 1 ◻

Table 3. Matter representation for a possible σ dark matter model.

2 2

Figure 13. Matter content of the Nf = 2 +NX model as a moose diagram [58].

7 Conclusions

Strongly-coupled theories provide interesting dark matter candidates in the form of pions, which

produce relic density through number changing interactions within the strong-sector. Together

with their ability to generate large self-interaction cross-section, they form a viable class of theories

resulting in new phenomenology across cosmology and experimental searches. Due to their inherent

non-perturbative nature these theories demand careful attention, especially to understand possible

new relic density mechanisms beyond the well known ones. In this work, we embarked on such a

survey using a holography model. Our aim was to demonstrate the lightest degrees of freedom in a

large part of theory parameter space and elucidate associated potential dark matter phenomenology.

In this context, working within a SU(Nc = 3) gauge groups with Nf fermions in the funda-

mental representation, we sketched out seven distinct regions where qualitatively different dark

matter phenomenology may appear. Regions where pions are the only relevant degrees of freedom

are restricted and do not generate large enough Mπ/fπ to obtain phenomenologically consistent

theory space. This points to analysis of additional relic density mechanisms adhering to the theory

constraints. From this point of view, the next lightest species may play an important role. An ob-

vious example is ρ, π only theories but they appear viable only in a very small region of parameter

space within our investigations. A heavier quark mass or larger number of flavours, immediately

leads to a light σ which may have interesting consequences for dark matter phenomenology. Such

ρ, π, σ admixed regions have not yet been analysed in the literature to the best of our knowledge.

This region is in fact the most dominant region in the parameter space we study. Complementary

to these we also find regions where π,σ can be simultaneously light, as one nears the conformal

window.

Comparison of our results with non-perturbative calculations such as the lattice demonstrates

that our mass spectrum is in good agreement with first principles calculations. Our values of decay

constant are less precise due to limitations of the holographic model itself, where large quark masses

reveal strong coupling in the conformal UV that is nor present in the true gauge theories. Never-

the-less, the qualitative understanding is correct. Variation with respect to Nc for fixed Nf /Nc is

almost trivial, wherein no change in the spectrum is observed. This leads us to conclude that we
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can generalise our results across large regions of parameter space.

Finally we commented on other possible dark matter candidates such as the glueballs or un-

particles with mass gap. We also briefly sketch confining theories where a light σ can be obtained,

keeping it as the only relevant degree of freedom in the theory. We argue that to stablise σ against

potential decays to the Standard Model, additional symmetry mechanisms may be necessary.

Our investigation underlines the necessity of coupling non-perturbative understanding of strongly-

interacting theories with dark matter phenomenology. Lattice studies while the best course of action

for such an analysis, may not be computationally feasible. Therefore, use of holography techniques

can serve as a first guiding principle in identifying interesting regions of parameter space as well

as setting qualitative understanding of underlying parameters for dark matter. This understand-

ing, followed by dark matter analysis will lead to useful feedback for the lattice community where

targeted analyses may be carried out. We intend to embark on such a program in our follow up

studies.
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