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Abstract

We discuss the impact of flavour coupling on the predictions of low energy
neutrino parameters from SO(10)-inspired leptogenesis (SO10INLEP). The right-
handed (RH) neutrino mass spectrum is strongly hierarchical and successful lepto-
genesis relies on generating the asymmetry from next-to-lightest RH neutrino de-
cays (N2-leptogenesis) and circumventing the lightest RH neutrino washout. These
two conditions yield distinctive predictions such as a lower bound on the lightest
neutrino mass m1 ≳ 1meV. We first review the status of SO10INLEP, noticing
how cosmological observations are now testing a particular neutrino mass window,
m1 ≃ (10–30)meV, where only the first octant is allowed and a large range of val-
ues for the Dirac phase is excluded. Including flavour coupling, we find that the
lower bound relaxes to m1 ≳ 0.65meV. Moreover, new muon-dominated solutions
appear slightly relaxing the upper bound on the atmospheric mixing angle. We also
study the impact on strong thermal SO10INLEP (ST-SO10INLEP) scenario where,
in addition to successful leptogenesis, one can washout a large pre-existing asym-
metry. Contrarily to naive expectations, for which flavour coupling could jeopardise
the scenario, allowing a large pre-existing asymmetry to survive unconditionally, we
show, and explain analytically, that ST-SO10INLEP is still viable within almost the
same allowed region of parameters. There is even a slight relaxation of the m1 viable
window from (9–30)meV to (4–40)meV for a 10−3 pre-existing asymmetry. The new
results from atmospheric neutrinos, mildly favouring normal ordering and first oc-
tant, are now in nice agreement with the predictions of ST-SO10INLEP. Intriguingly,
the predicted 0νββ signal is starting to be within the reach of KamLAND-Zen.
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1 Introduction

We are entering an important stage for the prospect of testing high scale thermal lepto-
genesis [1] within minimal type I seesaw models [2], the minimal scenario of leptogenesis
[3]. Colliders have found no evidence of new physics at the TeV scale and below so far,
placing strong constraints (and doubts) on low scale leptogenesis scenarios. At the same
time, low energy neutrino experiments continue to progress steadily and in the next years
they will be able to provide information on the neutrino mixing unknowns and to test the
absolute neutrino mass scale in regions of the parameter space that are quite important
for high scale leptogenesis scenarios. Moreover, the discovery of gravitational waves [4] is
stimulating many new ideas on how to test high scale leptogenesis [5, 6, 7, 8]. For these
reasons, the often proclaimed statement for which high scale leptogenesis scenarios are
untestable is today outdated.

An example of well motivated, testable, high scale leptogenesis scenario is SO10INLEP.
This relies on quite minimal assumptions on the Dirac neutrino mass matrix, so-called
SO(10)-inspired conditions [9]. They are typically realised within various grandunified
models, in particular within SO(10) models. With these assumptions, and barring the
highly fine-tuned compact spectrum case [10, 11, 12], the emerging spectrum of RH neu-
trinos is strongly hierarchical. In particular the lightest RH neutrino, N1, has, typically, a
mass M1 ∼ (105–106)GeV, well below the lower bound for successful leptogenesis [13, 14].
On the other hand, the next-to-lightest RH neutrino, N2, turns out to have a mass with
just the correct order-of-magnitude, M2 ∼ 1011GeV, to produce an asymmetry able to
explain the observed value, realising successful N2-leptogenesis [15]. In order for the CP

asymmetries of N2 to be sufficiently large, the existence of a third heavier RH neutrino
species, N3, is necessary to produce the needed interference in N2 decays. This nicely fits
within the properties of SO(10)-models that indeed, notoriously, predict the existence of
three RH neutrino species, one for each of the three family SO(10) fermionic sixteenth-
plet representations. When SO(10)-inspired conditions are imposed, typically one obtains
M3 ∼ (1014–1016)GeV. However, notice that for successful thermal leptogenesis it is suf-
ficient that the reheat temperature TRH ≳ M2 ∼ 1011GeV, since only the N2’s need to
thermalise, while N3 plays a role at the virtual level only, in the interfering loop diagrams
for N2-decays. Still this is a crucial role, since this interference is the source of the N2-CP
asymmetries and, ultimately, of the observed baryon asymmetry. For this reason, when
N3 decouples, in the limit M3 ≫ 1016GeV, all flavoured CP asymmetries of N2 tend to
vanish. This yields an upper bound on M3 and, consequently, from the seesaw formula, a
lower bound on the lightest neutrino mass [16]. Although one can have a sizeable asym-
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metry generated from N2-decays at very high temperatures, T ∼ M2, for long time such a
strongly hierarchical RH neutrino spectrum has been regarded as an obstacle to reproduce
the correct observed baryon asymmetry within SO10INLEP. The reason is that, within
an unflavoured description of SO10INLEP, the washout from N1 at T ∼ M1 is necessarily
strong and a successful N2-leptogenesis scenario cannot be realised for such a strongly hi-
erarchical spectrum. However, when flavour effects are included [17, 18], the calculation of
the B−L asymmetry splits into three different contributions, one for each charged lepton
flavour [19]. The strong washout from N1 also splits into three weaker components. In
this way an allowed region in the space of low energy neutrino parameters opens up and
successful SO10INLEP can be attained [16, 20]. The asymmetry is dominantly produced
in the tauon flavour. Subdominant muon-dominated flavour solutions also exist, while
electron-dominated solutions just fall short of reproducing the observed asymmetry.1

It is interesting that successful SO10INLEP is realised only within a region of the
entire low energy neutrino parameter space. This yields constraints, and predictions, to
be confronted with the experimental results [20]. A first important feature of SO10INLEP
predictions is that the allowed region for inverted ordered neutrino masses (IO) is marginal
[20, 12], since it necessarily requires the atmospheric neutrino mixing angle to be in the
second octant and a lower bound on the lightest neutrino mass. For θ23 ≲ 50◦, as suggested
by latest neutrino oscillation data global analyses at 3σ [23], one has a lower bound on
the lightest neutrino mass m1 ≳ 20meV, corresponding to

∑
i mi ≳ 130meV. This is

in tension with the cosmological upper bound on the sum of neutrino masses obtained
combining CMB anisotropy, baryon acoustic oscillation observations and supernovae data
[24, 25, 26, 27] ∑

i

mi < 120meV (95%C.L.) . (1)

For this reason, at 3σ, SO10INLEP is viable only for normal ordering (NO) and this is in
nice agreement with the latest results from atmospheric neutrino oscillation experiments,
that tend to favour NO [28]. This is also confirmed by the most recent global analyses
disfavouring IO at ∼ 2.5σ [23]. Therefore, in the following we will focus exclusively on
NO and we will always refer to the cosmological upper bound on the lightest neutrino
mass

m1 < 30meV (95%C.L.) , (2)
1They appear marginally in a supersymmetric version [21]. We should also mention that there is a

second way to circumvent the N1 washout, even when this is strong in all three flavours [21]. If one the
ligthest Dirac neutrino mass is at least two orders of magnitude lower than the up quark mass, then M1

gets lower than the sphaleron freeze-out temperature T off
sph ≃ 132GeV [22]. In this case the washout acts

only on the lepton asymmetry but not on the observed baryon asymmetry.
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derived from Eq. (1) in the case of NO.2

As mentioned, the most interesting constraint from successful SO10INLEP is the ex-
istence of the lower bound on the lightest neutrino mass [16, 20]. This depends in a
non-trivial way on the CP -violating Dirac phase δ and the atmospheric mixing angle θ23

[29]. There is a large region of the plane δ versus θ23 that is already incompatible with
SO10INLEP at 95% C.L. since the cosmological upper bound on neutrino masses Eq. (1)
is violated. In the semi-hierarchical regime, for 10meV ≲ m1 ≲ 30meV, most stringent
constraints hold within SO10INLEP. In particular, SO10INLEP is incompatible with the
atmospheric mixing angle in the second octant. On the other hand, this is also a very inter-
esting neutrino mass regime, since only for m1 in the (10–30)meV range ST-SO10INLEP
can be realised [30]. This is a special scenario where, in addition to the condition of
successful leptogenesis, one can also wash out a pre-existing asymmetry as large as 10−1

[31]. For a hierarchical RH neutrino spectrum, without even imposing SO(10)-inspired
conditions, successful strong thermal leptogenesis can only be realised for quite special
conditions: a tauon-dominated N2-leptogenesis scenario [31] and for m1 ≳ 10meV [32].
It is then quite non trivial that within successful SO10INLEP, one can also satisfy the
conditions for strong thermal leptogenesis for a subset of the solutions. In particular, they
can only be satisfied for m1 ≲ 30meV, just coinciding with the current cosmological upper
bound Eq. (2). This is another important point showing how we are now just entering a
crucial stage in testing SO10INLEP and its strong thermal case ST-SO10INLEP.

For this reason, it is of great importance to understand how solid and accurate these
theoretical predictions are. The constraints on the low energy neutrino parameters have
been derived in various papers and with independent codes. They have also been derived
analytically, expressing the RH neutrino mass spectrum and mixing matrix in terms of the
low energy neutrino parameters [12, 33]. In this way one obtains an analytical expression
of the final baryon asymmetry in terms of the low energy neutrino parameters. However,
the calculation of the asymmetry has been done within a set of approximations that
neglects different effects. Three of them are at the level of field theory description:

• Flavour coupling effects from spectator processes [34, 35, 36].

• Running of parameters from radiative corrections.

• Partial equilibration of spectator processes [37].
2In the IO case the upper bound Eq. (1) would imply an even more stringent upper bound on the

lightest neutrino mass, m3 < 16meV (95% C.L.). The significant difference between the upper bound
on the lightest neutrino mass in the NO and IO cases, shows that the upper bound Eq. (1) is essentially
ruling out quasi-degenerate neutrinos at 95% C.L. .
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Two additional ones concern the kinetic theory description. The asymmetry has been so
far calculated solving simple momentum integrated rate equations in the fully flavoured
regime, neglecting:

• Momentum dependence (requiring solution of the full Boltzmann equations) [38].

• Decoherence (requiring solution of density matrix equation) [34, 17].

In this paper, encouraged by the current agreement of (ST-)SO10INLEP predictions with
neutrino oscillation experiment results and by the fact that absolute neutrino mass scale
experiments are starting to test a crucial regime, as discussed above, we start implement-
ing these effects, studying the impact of flavour coupling effects on (ST-)SO10INLEP.
This is certainly the most urgent extension of the calculation of the asymmetry within
(ST-)SO10INLEP to be considered. In particular, in the case of ST-SO10INLEP one
can even legitimately suspect that flavour coupling could jeopardise the whole scenario.
This is because a contribution from a large pre-existing asymmetry might survive until
the present, leaking from one flavour to another, thus escaping both N2 and N1 washout.
As we will discuss in detail, and anticipated in the abstract, this does not happen and,
ultimately, even in the ST-SO10INLEP case, acount of flavour coupling yields just some
slight corrections that, however, might prove to be important when atmospheric neutrino
mixing angle and Dirac phase will be measured with errors ∼ 1◦ and ∼ 10◦, respectively,
by DUNE+T2HK [39]. At the same time we will highlight some new important aspects
of (ST-)SO10INLEP predictions. When these are confronted with the latest results from
global analyses on neutrino mixing parameters, we show how the current best fit for NO
and first octant, nicely agrees with (ST-)SO10INLEP predictions, removing the tension
that was existing with previous results [40] favouring second octant for θ23. Moreover, as
we mentioned, even without imposing strong thermal leptogenesis, for m1 ∼ (10–30)meV

the second octant is not compatible with SO10INLEP constraints. In addition, there are
large ranges of δ that are excluded even for m1 ≲ 10meV. Therefore, during next years,
neutrino oscillation experiments will either be able to increase the statistical significance
of the agreement or of course, will be able to rule out SO10INLEP. It is then important,
not to draw incorrect conclusions, to start a systematic study of theoretical uncertainties
to reduce them at the level of the expected experimental errors.

This is the main aim of the paper, that is structured in the following way. In Section
2 we review SO10INLEP, discussing the assumptions and the equations to calculate the
asymmetry, describing the results that we obtained ignoring flavour coupling (we have
re-derived then once more confirming previous analyses and updating the experimental
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constraints in the plots) and comparing the predictions to the latest experimental con-
straints. In Section 3 we discuss flavour coupling and how this modifies the calculation of
the final asymmetry. We show the results for some benchmark points and compare them
to the case when flavour coupling is ignored. We also point out how the calculation of the
asymmetry becomes much more CPU time consuming. For that reason, the derivation of
the hyper-surface in the space of parameters, giving the allowed region, becomes much
more challenging to derive. This is indeed so convoluted to require at least one million of
points for a precise determination. The use of the analytical expressions for the RH neu-
trino masses and mixing matrix [12, 33] greatly help in this respect. We show the results
of the scatter plots giving both the three-dimensional projection of the hypersurface in
the space (δ, θ23,m1), as previously done in [29] neglecting flavour coupling, and different
two-dimensional projections. We also highlight the different flavour dominance for each
point, confirming that, even including flavour coupling effects, the bulk of the solutions,
approximately 90%, are tauonic solutions, while muonic solutions represent a subdomi-
nant 10% contribution. However, when flavour coupling is included, we show that a very
small 0.1% contribution of electronic solutions appear and also new muonic solutions.
These new muonic solutions fall in a region of the parameter space that would otherwise
be excluded.3 In Section 4 we discuss ST-SO10INLEP, showing how the calculation of the
evolution of a large pre-existing asymmetry, and its relic value, is modified by the account
of flavour coupling. Here, we show how the allowed region not only survives but even,
for some values of δ, allows slightly larger values of θ23. Moerover, the allowed range of
m1 values also slightly englarges. Finally, in Section 5, we draw some final remarks on
the importance of (ST-)SO10INLEP and of our results within the current quest for new
physics.

2 SO(10)-inspired leptogenesis

In this section we review general features of SO10INLEP without the inclusion of flavour
coupling. We briefly discuss the set of assumptions that define SO10INLEP and then
we show how the requirement of successful SO10INLEP produces constraints on the low
energy neutrino parameters that we compare with the latest neutrino oscillation experi-
mental results. In this way we can discuss the status of SO10INLEP showing that there
is currently a non-trivial compatibility between SO10INLEP predictions and low energy

3A special subset of the muonic solutions that we obtain were also found within a specific Pati-Salam
grandunified model with discrete flavour symmetries [41]. However, this special subset is now excluded
by the latest neutrino oscillation experimental results since they require θ23 ≃ 54◦.
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neutrino experimental data. We also show how with the new cosmological upper bound
on neutrino masses, we are starting to test a very interesting neutrino mass range for
SO10INLEP.

2.1 Seesaw mechanism and low energy neutrino data

Inspired by SO(10) models, we extend the SM introducing three RH neutrinos NR1, NR2

and NR3 with Yukawa couplings h and a Majorana mass term M . In the flavour ba-
sis, where both charged lepton mass matrices mℓ and M are diagonal, one can write
the leptonic mass terms generated after spontaneous symmetry breaking by the Higgs
expectation value v = 174GeV as (α = e, µ, τ and I = 1, 2, 3)

−Lm
ℓ+ν = αL Dmℓ

αR + ναL mDαI NRI +
1

2
N c

RI DM NRI + h.c. , (3)

where Dmℓ
≡ diag(me,mµ,mτ ) is the diagonal charged lepton mass matrix, DM ≡

diag(M1,M2,M3) is the diagonal Majorana mass matrix and mD = hv is the neu-
trino Dirac mass matrix. In the seesaw limit, for M ≫ mD, the mass spectrum splits
into two sets of Majorana neutrino eigenstates, a light set, ν1, ν2 and ν3, with masses
m1 ≤ m2 ≤ m3, given by the seesaw formula [2]

Dm = U †mD
1

DM

mT
D U⋆ , (4)

with Dm = diag(m1,m2,m3), and a heavy set, N1, N2 and N3, with masses almost
coinciding with the three MI in DM . The matrix U , diagonalising the light neutrino mass
matrix mν = −mD M−1mT

D in the weak basis, can be identified with the PMNS lepton
mixing matrix. This can be parameterised in terms of the usual three mixing angles θij,
the Dirac phase δ and the Majorana phases ρ and σ, as

U =

 c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13

 diag
(
ei ρ, 1, ei σ

)
,

(5)
where sij ≡ sin θij and cij ≡ cos θij. As we said, successful SO10INLEP cannot be
realised within IO, compatibly with the latest upper bounds on neutrino masses and
atmospheric neutrino mixing angle. For this reason we only consider NO. In this case
latest global analyses of neutrino oscillation experiment results, including atmospheric
neutrino data from Super-Kamiokande and IceCube collaborations, find for the mixing
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angles and leptonic Dirac phase δ the following best fit values, 1σ errors and 3σ intervals
[23]:

θ13 = 8.56◦ ± 0.11◦ ∈ [8.19◦, 8.89◦] , (6)

θ12 = 33.68◦+0.73◦

−0.70◦ ∈ [31.63◦, 35.95◦] ,

θ23 = 43.3◦+1.0◦

−0.8◦ ∈ [41.3◦, 49.9◦] ,

δ = −148◦+26◦

−41◦ ∈ [−236◦, 4◦] .

As one can notice, there is a 3σ exclusion interval , δ ∋ [4◦, 134◦], for the Dirac phase
that disfavours sin δ > 0. Neutrino oscillation experiments are also sensitive to squared
neutrino mass differences, finding for the solar neutrino mass scale

msol ≡
√

m 2
2 −m 2

1 = (8.65± 0.11)meV , (7)

and for the atmospheric neutrino mass scale

matm ≡
√

m 2
3 −m 2

1 = (50.1± 0.2)meV . (8)

The sum of the two scales yields a lower bound on the sum of the neutrino masses:∑
i

mi ≥ msol +matm = (58.75± 0.25)meV ≥ 58.25meV (95%C.L.) . (9)

No neutrinoless double beta (0νββ) decay signal has been detected so far. This implies
that there are no experimental constraints on the Majorana phases and that experiments
can only place an upper bound on the effective 0νββ neutrino mass mee ≡ |mνee|. The
most stringent one has been set by the KamLAND-Zen collaboration, that found [42]

mee ≤ (28–122)meV (90%C.L.) , (10)

where the range accounts for nuclear matrix element uncertainties. This translates into
an upper bound on the lightest neutrino mass m1 ≤ (84–353)meV (90% C.L.). When
this is compared with the upper bound Eq. (2) from cosmological observations (assuming
ΛCDM), one can clearly see how the latter is much more stringent.4 However, a future
0νββ positive signal with a measurement of mee would not just provide information on the
absolute neutrino mass scale but also some partial information on the Majorana phases.

Finally, the KATRIN experiment has recently placed the upper bound

mνe ≲ 0.45 eV (90%C.L.) (11)

on the effective electron neutrino mass [43]. Since this falls in the quasi-degenerate limit,
it translates into an equal upper bound on m1.

4It is even more stringent than it looks like, considering that the cosmological upper bound is at 95%
C.L. and the upper bound from 0νββ at 90% C.L. .
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2.2 Combining seesaw and SO(10)-inspired conditions

Let us now briefly review seesaw models when SO(10)-inspired conditions [9] are imposed
on the neutrino Dirac mass matrix. This can be diagonalised with the so-called singular
value decomposition (sometimes also referred to as bi-unitary parameterisation) as

mD = V †
L DmD

UR , (12)

where DmD
≡ diag(mD1,mD2,mD3) and VL and UR are two unitary matrices acting respec-

tively on the left-handed (LH) and RH neutrino fields and operating the transformation
from the weak basis (where mℓ is diagonal) to the Yukawa basis (where mD is diagonal).

Parameterising the neutrino Dirac masses mDi in terms of the up quark masses,5

mD1 = α1mup , mD2 = α2mcharm , mD3 = α3mtop , (13)

we impose SO(10)-inspired conditions [9, 10, 16] defined as

(i) αi = O(1) ; (ii) I ≤ VL ≲ VCKM . (14)

With the latter we imply that using for the matrix VL the same parameterisation as
for the leptonic mixing matrix U , the three mixing angles θL12, θL23 and θL13 do not have
values much larger than the three mixing angles in the CKM matrix and in particular
θL12 ≲ θc ≃ 13◦, where θc is the Cabibbo angle.

Let us now define M ≡ U⋆
R DM U †

R and m̃ν ≡ VL mν V
T
L . These are, respectively,

the Majorana mass matrix and the light neutrino mass matrix in the Yukawa basis. In
this way from the seesaw formula Eq. (4), using the singular value decomposed form
Eq. (12) for mD, we obtain an expression for the inverse Majorana mass matrix in terms
of low energy neutrino parameters and theory parameters constrained by SO(10)-inspired
conditions:

M−1 ≡ UR DM UT
R = −D−1

mD
m̃ν D

−1
mD

. (15)

From this, diagonalising the matrix on the RH side of Eq. (15), one can derive expressions
for the three RH neutrino masses and the RH neutrino mixing matrix UR in terms of mν ,
VL and the three αi’s.

From the analytical procedure discussed in [10, 12, 33], one finds simple expressions
for the three RH neutrino masses,

M1 ≃
α2
1 m

2
up

|(m̃ν)11|
, M2 ≃

α2
2 m

2
charm

m1m2m3

|(m̃ν)11|
|(m̃−1

ν )33|
, M3 ≃ α2

3 m
2
top |(m̃−1

ν )33| , (16)

5For the values of the up-quark masses at the scale of leptogenesis (∼ 1011 GeV), we adopt
(mup,mcharm,mtop) = (1MeV, 400MeV, 100GeV) [44].
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and for the RH neutrino mixing matrix

UR ≃


1 −mD1

mD2

m̃⋆
ν12

m̃⋆
ν11

mD1

mD3

(m̃−1
ν )⋆13

(m̃−1
ν )⋆33

mD1

mD2

m̃ν12

m̃ν11
1 mD2

mD3

(m̃−1
ν )⋆23

(m̃−1
ν )⋆33

mD1

mD3

m̃ν13

m̃ν11
−mD2

mD3

(m̃−1
ν )23

(m̃−1
ν )33

1

 DΦ , (17)

with the three phases in Dϕ ≡ diag(e−i
Φ1
2 , e−i

Φ2
2 , e−i

Φ3
2 ) given by [33]

Φ1 = Arg[−m̃⋆
ν11] , (18)

Φ2 = Arg

[
m̃ν11

(m̃−1
ν )33

]
− 2 (ρ+ σ)− 2 (ρL + σL) , (19)

Φ3 = Arg[−(m̃−1
ν )33] . (20)

One can also derive an expression for the orthogonal matrix. Starting from its definition
Ω = D

− 1
2

m U † mD D
− 1

2
M [45] that, using Eq. (12), becomes [16]

Ω = D
− 1

2
m U † V †

L DmD
UR D

− 1
2

M (21)

or, in terms of its matrix elements (α = e, µ, τ ; i = 1, 2, 3; I = 1, 2, 3),6

ΩiJ ≃ 1√
mi MJ

3∑
l=1

mDl U
⋆
αi V

⋆
L lα UR lJ , (22)

one finds [33]

Ω ≃


i (m̃ν W ⋆)11√

m1 m̃ν11

√
m2 m3 (m̃

−1
ν )33

m̃ν11

(
W ⋆

21 −W ⋆
31

(m̃−1
ν )23

(m̃−1
ν )33

)
W ⋆

31√
m1 (m̃

−1
ν )33

i (m̃ν W ⋆)12√
m2 m̃ν11

√
m1 m3 (m̃

−1
ν )33

m̃ν11

(
W ⋆

22 −W ⋆
32

(m̃−1
ν )23

(m̃−1
ν )33

)
W ⋆

32√
m2 (m̃

−1
ν )33

i (m̃ν W ⋆)13√
m3 m̃ν11

√
m1 m2 (m̃

−1
ν )33

m̃ν11

(
W ⋆

23 −W ⋆
33

(m̃−1
ν )23

(m̃−1
ν )33

)
W ⋆

33√
m3 (m̃

−1
ν )33

 , (23)

where we defined W ≡ VL U . The validity of these expressions clearly breaks down in the
close vicinity of the two level crossings where either (m̃−1

ν )33, or m̃ν11, or both, vanish.
However, as discussed in [12, 33], the first two cases cannot yield successful leptogenesis.
The compact spectrum scenario discussed in the introduction correspond to a situation
close to the third case. In all three cases the orthogonal matrix entries diverge, a clear
indication of the fine tuning that is needed in the the seesaw formula to satisfy neutrino
oscillation experimental data.

6The different labels denote the three different sets of lepton flavours. While the charged lepton
neutrino flavours and the neutrino mass eigenstates form two orthonormal bases, the heavy neutrino
lepton flavours cannot in order for the CP asymmetries not to all vanish and have successful leptogenesis.
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2.3 SO(10)-inspired leptogenesis

Let us now discuss how the matter-antimatter asymmetry of the universe can be calculated
within SO(10)-inspired leptogenesis. This can be expressed in terms of the baryon-to-
photon number ratio, whose measured value from Planck data (including lensing) com-
bined with external data sets [24], is found

ηexpB = (6.13± 0.04) × 10−10 . (24)

In general, the final asymmetry is given by the sum of two terms,7

N f
B−L = Np,f

B−L +N lep,f
B−L . (25)

The first term is the relic value of a possible pre-existing asymmetry and the second is
the asymmetry generated from the decays of the seesaw neutrinos. The baryon-to-photon
number ratio is then also, in general, the sum of two contributions, ηpB and ηlepB , respec-
tively. Typically, one assumes that the initial pre-existing asymmetry, generated after
or during inflation and prior to leptogenesis, is negligible. In this way, one finds solu-
tions respecting just successful leptogenesis, i.e., for which N lep,f

B−L reproduces the observed
asymmetry.

However, some external mechanism might have generated a large value of the initial
pre-existing asymmetry, Np,i

B−L, between the end of inflation and the onset of leptogenesis.
In the absence of any washout, this would translate into a sizeable value of ηpB comparable
or greater than ηexpB . In this case, then one should also add a strong thermal leptogenesis
condition, requiring that the initial pre-existing asymmetry is efficiently washed out by
seesaw neutrino inverse processes. In Section 4 we discuss how a subset of the solutions
satisfying successful SO10INLEP can also simultaneously satisfy this strong thermal lep-
togenesis condition realising ST-SO10INLEP [30]. We also show how this subset is not
disrupted by the inclusion of flavour coupling but just slightly modified. For the time be-
ing, we will simply assume that the initial pre-existing asymmetry contribution is absent
or in any case negligible.

7Strictly speaking one should also include a third term, the asymmetry generated after all RH neutrino
have decayed, for example by electroweak baryogenesis. However, such a contribution would be controlled
by completely independent new physics so one can only assume that a post-leptogenesis production is
absent or in any case negligible. From this point of view, in line with what we we wrote in the introduction,
the lack of new physics at colliders supports a solution of the matter-antimatter asymmetry puzzle at
high scale. Of course, one could consider a situation where two baryogenesis mechanisms both contribute
to the final asymmetry but such a situation would be quite fine-tuned and not particularly attractive.
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The contribution to ηB from leptogenesis, can be calculated as [46]

ηlepB = asph
N lep,f

B−L

N rec
γ

≃ 0.96× 10−2N lep,f
B−L . (26)

This expression accounts for sphaleron conversion [47, 48, 49, 50] and photon dilution. The
second numerical expression holds when the abundances NX are normalised in a portion
of comoving volume such that the ultra-relativistic thermal equilibrium abundance of a
RH neutrino N eq

Ni
(T ≫ Mi) = 1. Successful leptogenesis requires ηlepB = ηexpB , where ηexpB

is the measured value given in Eq. (24).
The final B − L asymmetry from leptogenesis can be calculated, neglecting flavour

coupling, as the sum of the three contributions, one from each (charged lepton) flavour,
explicitly [19, 51, 36, 52]:

N lep,f
B−L ≃

[
K2e

K2τ⊥2

ε2τ⊥2 κ(K2τ⊥2
) +

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8

K1e +

+

[
K2µ

K2τ⊥2

ε2τ⊥2 κ(K2τ⊥2
) +

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8

K1µ +

+ ε2τ κ(K2τ ) e
− 3π

8
K1τ . (27)

In this expression the (six) KIα are the flavoured decay parameters, defined as

KIα ≡ ΓIα + ΓIα

H(T = MI)
=

|mDαI |2

MI m⋆

, (28)

where ΓIα = Γ(NI → ϕ† lα) and Γ̄Iα = Γ(NI → ϕ l̄α) are the zero temperature limit of
the flavoured decay rates into α leptons and anti-leptons in the three-flavoured regime,
m⋆ ≡ 16π5/2√g⋆/(3

√
5) (v2/MPl) ≃ 1.08meV is the equilibrium neutrino mass, H(T ) =√

gSM⋆ 8π3/90T 2/MP is the expansion rate and gSM⋆ = 106.75 is the number of ultra-
relativistic degrees of freedom in the standard model. The quantities

ε2α ≡ −(Γ2α − Γ2α)/(Γ2 + Γ2) (29)

are the N2-flavoured CP asymmetries, with Γ2 ≡
∑

α Γ2α and Γ2 ≡
∑

α Γ2α. Finally, we
defined K2τ⊥2

≡ K2e +K2µ and ε2τ⊥2 ≡ ε2e + ε2µ.
Using the bi-unitary parameterisation Eq. (12) for mD, the flavoured decay parameters
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can be expressed as8

KIα =

∑
k,l mDk mDl VLkα V

⋆
Llα U

⋆
RkI URlI

MI m⋆

. (31)

The flavoured CP asymmetries can be calculated using [53]

ε2α ≃ ε(M2)

{
Iα
23 ξ(M

2
3/M

2
2 ) + J α

23

2

3(1−M2
2/M

2
3 )

}
, (32)

where

ε(M2) ≡
3

16π

M2matm

v2
, ξ(x) =

2

3
x

[
(1 + x) ln

(
1 + x

x

)
− 2− x

1− x

]
, (33)

Iα
23 ≡

Im
[
m⋆

Dα2mDα3(m
†
D mD)23

]
M2M3 m̃2matm

and J α
23 ≡

Im
[
m⋆

Dα2mDα3(m
†
D mD)32

]
M2M3 m̃2matm

M2

M3

,

(34)
with m̃2 ≡ (m†

D mD)22/M2. However, the first term is important only when RH neutrino
masses are quasi-degenerate, close to crossing level solutions. In our case such solutions
are falling in region of parameter spaces that are now excluded by experiments9 and one
can reliably use the approximate expression [33]

ε2α ≃ 3

16π

M2

M3

Im
[
m⋆

Dα2mDα3(m
†
D mD)23

]
v2 (m†

D mD)22
. (35)

Again, using the bi-unitary parameterisation, one obtains:

ε2α ≃ 3

16π v2
|(m̃ν)11|
m1m2m3

∑
k,l mDk mDl Im[VLkα V

⋆
Llα U

⋆
Rk2 URl3 U

⋆
R32 UR33]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
. (36)

Notice that in general the asymmetry within minimal leptogenesis with three RH neutrinos
would depend on 18 quantities: εIα, KIα (I = 1, 2, 3 and α = e, µ, τ). However, from

8One can also express the decay parameters in terms of the orthogonal matrix:

KIα =

∣∣∣∣∣∣
∑
j

√
mj

m⋆
Uαj ΩjI

∣∣∣∣∣∣
2

, and KI =
∑
I

mj

m⋆
|ΩjI |2 . (30)

However, in SO10INLEP, the bi-unitary parameterisation clearly provides the primary way to calculate
all leptogenesis parameters, the KIα’s and the ε2α’s, since, as one can see from Eqs. (16) and (17), one
gets directly RH neutrino masses MI and RH neutrino mixing matrix UR in terms of low energy neutrino
parameters in mν , neutrino Dirac masses mDi and parameters in VL.

9For example, a crossing level solution where m̃ν
−1
33 = 0 appears at m1 ≃ 0.1 eV for the range of values

of θ23 we are considering. In any case, in the code we use the full expression for ε2α, also including the
contribution from the self-energy diagram to the CP asymmetries.
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Eq. (27) one can see that in SO10INLEP, since it realises a N2-leptogenesis scenario, the
asymmetry depends only on nine quantities, ε2α K2α, K1α (α = e, µ, τ), while there is no
dependence on ε1α, ε3α, K3α(α = e, µ, τ). These nine quantities can be expressed in terms
of the seesaw parameters. As we have seen, using the bi-unitary parameterisation and the
seesaw formula, one obtains Eqs. (16) and (17) for the three Majorana masses and the RH
neutrino mixing matrix UR in terms of the six parameters in VL, the nine parameters in
the low energy neutrino matrix mν and the three Dirac neutrino masses mDi. Therefore,
in this way, the three RH neutrino masses and the six parameters in UR are traded off with
the 9 low energy neutrino parameters. Moreover, the ε2α’s depend, approximately, only
on mD2 and the flavoured decay parameters do not depend on the Dirac neutrino masses
mD1,mD2 and mD3. In this way, ultimately, one obtains for the final baryon-to-photon
number ratio an expression of the form

ηlepB ≃ ηlepB (msol,matm, θ12, θ13; θ23, δ,m1; ρ, σ;VL, α2) . (37)

Notice that we have grouped the parameters in the following way:

• The first four low energy neutrino parameters are those measured accurately and
precisely enough that one has can assume small Gaussian errors. In the scatter
plots, these parameters have been Gaussianly randomly generated. However the
errors are so small that just fixing them at the best fit values would practically
produce the same results;

• We have then the three neutrino unknowns θ23, δ and m1. Here we have been
very conservative not to contaminate the predictions from SO10INLEP with the
partial experimental information we have. We have uniformly randomly gener-
ated the atmospheric neutrino mixing angle in the range θ23 = [38◦, 52◦] and the
neutrino oscillation CP violating phase in the full range δ = [−π, π]. Finally we
have uniformly logarithmically generated the lightest neutrinos mass in the range
log(m1/eV) = [−4, 0].

• The Majorana phases have been simply randomly uniformly generated in the full
range [0, 2π].

• The 6 parameters in VL have been uniformly randomly generated. The three mix-
ing angles have been capped to the CKM matrix values, following SO(10)-inspired
conditions, explicitly we adopted: θL12 ≤ 13◦ ≃ θCKM

12 ≡ θc, θL23 ≤ 2.4◦ ≃ θCKM
23 ,

θL13 ≤ 0.2◦ ≃ θCKM
13 . In any case the results do not depend on a precise choices of

these upper bounds [30]. Finally, for the parameter α2, we have used throughout
the paper a kind of maximum standard value, α2 ≤ 5.
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Figure 1: Scatter plot of the solutions obtained imposing successful SO10INLEP neglect-
ing flavour coupling (left panel) and accounting for flavour coupling (right panel). The
three grey areas correspond to the excluded regions by the three upper bounds on the
absolute neutrino mass scale: Eq. (2) from cosmological observations, Eq. (10) from 0νββ

and Eq. (11) from tritium beta decay. The three planes in light blue simply help under-
standing the 3-dim shape. Colour code: tauonic, muonic and strong thermal solutions
are, respectively, yellow, green and blue points.

2.4 Successful leptogenesis condition and solutions

The successful leptogenesis condition

ηlepB (msol,matm, θ12, θ13; θ23, δ,m1; ρ, σ;VL, α2) = ηexpB (38)

identifies an allowed region in the space of the nine low energy neutrino parameters. In
the approximation VL = I this would correspond to an eight-dimensional hypersurface.
Turning on the three angles and three phases in VL, this hypersurface turns into a layer
with some thickness. It is important that it does not fill the whole parameter space and
this yields constraints and predictions. In order to visualise this region, we show in Fig. 1
the three-dimensional projection, on the 3-dim space (δ, θ23,m1) of the three unknown
neutrino parameters [29], of a scatter plot obtained for α2 = 5 in the 15-dim space of the
parameters in U and VL by generating about 2×106 solutions satisfying successful SO(10)-
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inspired leptogenesis and all low energy neutrino experimental constraints in Eq. (6).10

One can immediately notice how solutions are found only for m1 ≳ 1meV, so that there
is a clear lower bound on the absolute neutrino mass scale. The three dark grey regions
indicate the upper bounds on neutrino masses Eq. (2) from cosmological observations,
Eq. (10) from 0νββ and Eq. (11) from tritium beta decay.

Each point in the scatter plots is generated imposing the following two conditions:

• χ2(msol,matm, θ12, θ13) ≡
(
matm−m̄atm

δmatm

)2
+
(
msol−m̄sol

δmsol

)2
+
(
θ12−θ̄12
δθ12

)2
+
(
θ13−θ̄13
δθ13

)2
< χ2

max;

• ηB > η̄expB − 3δηexpB = 6.01× 10−10 .

We have conservatively used χ2
max = 25. However, the obtained allowed regions are

not sensitive to a precise value of χ2
max. For example, a more stringent value χ2

max =

16 yields basically the same regions. This is because the errors on the four measured
neutrino oscillation parameters are sufficiently small that fluctuations around the mean
value produce a very small change of the asymmetry. We have also tried to combine the
two conditions including ηB in the calculation of the χ2. This just simply slows down the
search of the solutions without any change, as expected. The reason is quite simple: for
any point were the predicted asymmetry is higher than the experimental value, one can
always change the values of the other parameters, those not involved in the projection,
to lower the value of the asymmetry. Therefore, these two conditions provide the most
efficient (and sensible) way to produce the allowed regions.

2.4.1 Three types of solutions

There are three types of solutions in SO10INLEP [20]. These correspond to three different
regions in the parameter space that can be partly distinguished in the three dimensional
projection scatter plot in Fig. 1. The different colours indicate the flavour giving the main
contribution to the final asymmetry, specifically:

• The yellow points indicate tauon-flavour dominated solutions characterised by K1τ ≲

1. One can distinguish two distinct types of tauonic solutions: τA and τB solutions:

- The τA solutions are characterised by strong washout at the production (K2τ ≳

10). Moreover, one has K1µ ≫ 1, so that the muon contribution is many orders
of magnitude below the observed value. For current allowed experimental val-
ues of θ23 as in Eq. (6), they can only be realised for 0.9meV ≲ m1 ≲ 30meV.
The blue points indicate the subset of tauon flavour dominated solutions that

10The success rate is approximately 0.01% for the parameter ranges we have adopted in the scan.
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realise ST-SOINLEP and that we will discuss in Section 5. The τA solutions
can realise ST-SOINLEP while the τB cannot.

- The τB solutions are characterised by a mild washout at the production with
2 ≲ K2τ ≲ 10. In this case one can also have simultaneously K1µ ≲ 1 and in
any case K1µ ≲ 10. However K2τ⊥2

≫ 10. The muonic contribution is now only
2-3 orders of magnitudes smaller than the observed value. They can only be
realised for m1 ≃ (20–60)meV.

• The green points indicate solutions with a sizeable muon-flavour component of the
asymmetry. The bulk of these solutions is characterised by a dominant muonic
contribution. There are some rare solutions where the tauonic contribution can be
sizeable though sub-dominant, as large as 10%. In general, we will refer to them
as muonic solutions. They are characterised by K1µ ≲ 1 and K2τ⊥2

≲ 10. Like for
τB solutions, one can have simultaneously K1µ, K1τ ≲ 1 and in any case K1τ ≲ 10.
Therefore, the difference between τB and muonic solutions is mainly given by the
value of K2τ⊥2

.

One can notice how the cosmological upper bound on neutrino masses is now excluding
almost completely muon-dominated and τB solutions. However, the τA solutions represent
the bulk of the solutions, about 90% of the total.

It is also interesting to notice that for all SO(10)-inspired solutions one has K2e ≪
K2µ ≃ K2τ⊥2

. This means that the electronic component of the leptons produced from
N2-decays is negligible. Essentially, all leptons produced from N2 decays have a flavour
composition that lies quite precisely on the muon-tauon plane. The reason can be easily
understood analytically. Indeed from Eq. (31) and Eq, (17) one easily derives K2e/K2µ ≲

|VL21|2 ∼ θ2c ∼ 0.05. One can see from Eq. (27) that this result, combined with the fact
that also ε2e ≪ ε2µ, implies that phantom terms are always negligible.

In Fig. 2 we plot RH neutrino masses, decay parameters and asymmetries versus m1

for three benchmark points in the parameter space and for (α1, α2, α3) = (1, 5, 1) (the
values of α1 and α3 only affect M1 and M3). For all of them one has ηlepB ≥ ηexpB within
some range of m1 values. Therefore, successful SO10INLEP is realised for some special
values of m1 where ηlepB = ηexpB . Each of these three benchmark points provides an example
of solution belonging to one of the three types: τA (left panels), τB (central panels) and
µ (right panels). At this stage of the discussion, one should focus only on the the dashed
lines, corresponding to neglect flavour coupling. The values of the different parameters
for each solution are given in Table 1. The muonic solution has been selected among
those with a sizeable sub-dominant tauonic contribution to the asymmetry. This can be
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Figure 2: Relevant quantities for three benchmark solutions, one for each of the three
types discussed in the main text: τA solution (left panels), τB solution (central panels), µ
solution (right panel). The values of the parameters are shown in Table 1.

clearly seen in the bottom right panel (yellow dashed-line), the tauonic contribution to
the total asymmetry is ∼ 6%. However, it requires a value m1 = 45meV in tension with
the current cosmological upper bound. Indeed, as we mentioned and one can see from
Fig. 1, the current cosmological upper bound Eq. (2) tends to rule out τB and µ solutions,
so that only the bulk of τA solutions is still fully allowed.

2.4.2 Lower bound on m1

The major feature that can be noticed in the three-dimensional scatter plot in Fig. 1 is
the existence of a lower bound on m1. It is also clear that this lower bound depends
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θ12 θ13 θ23 δ ρ/π σ/π θL12 θL13 θL23 ρL/π σL/π δL/π

τA 33.44◦ 8.61◦ 43.12◦ −62.4◦ 0.31 0.92 9.46◦ 0.16◦ 0.0445◦ 0.35 0.49 1.59
τB 30.9◦ 8.2◦ 41.5◦ −34.59◦ 0.952 0.920 9.90◦ 0.035◦ 0.86◦ 0.66 0.99 1.99
µ 33.03◦ 8.41◦ 42.81◦ 103.4◦ 0.016 0.54 3.23◦ 0.12◦ 2.29◦ 1.01 1.10 1.91

Table 1: Values of the six low energy neutrino parameters in U and six parameters in
the unitary matrix VL for the three benchmark solutions in Fig. 2, as indicated. Best
fit values of msol and matm are assumed. For each solution, the observed asymmetry is
reproduced for two values of m1. These three benchmark points are indicated with black
stars in all scatter plots, where we choose m1 = 2.6meV, 39meV and 45meV for τA, τB
and µ solutions, respectively.

Figure 3: Values of the lower bound on m1 in the θ23 − δ plane (isocontour lines) without
flavour coupling (left panel) and with flavour coupling. The white dashed lines are the
1σ, 2σand 3σ experimental constraints from [23]. The orange area is the area excluded by
the cosmological upper bound (2). The green area is the portion of the plane that opens
up thanks to the muonic solutions from flavour coupling effects.

both on θ23 and even more strongly on δ. In the light of an accurate measurement of
these two neutrino mixing unknowns at DUNE+T2HK, it is then important to derive
the value of the lower bound on m1 for each point in the plane θ23-δ In Fig. 3 we show
iso-contour lines of the lower bound on m1 in the plane δ versus θ23. We also superimpose
the two-dimensional experimental constraints from latest global analyses [23]. It can
be seen how at 3σ the global lower bound is m1 ≳ 0.9meV. An interesting feature is
that there is a large region of the plane θ23-δ, in red colour, that is incompatible with
the cosmological upper bound Eq. (1) and that the 1σ experimental regions fall almost
entirely just within this region. This clearly shows how SO10INLEP is being strongly
tested by low energy neutrino experimental results. Therefore, it is very important to
have a clear understanding of theoretical uncertainties to draw firm conclusions from a
comparison between theoretical calculations and experimental constraints. As we will see
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Figure 4: Two-dimensional projection on the plane m1-θ23 of the scatter plot of the
solutions obtained imposing successful SO10INLEP, neglecting flavour coupling effects
(left panel) and accounting for flavour coupling effects (right panel).

in the next section, flavour coupling plays an important role in this respect.

2.4.3 Upper bound on θ23

We can further project these solutions from the 3-dim scatter plot on two-dimensional
planes, to show better the constraints on the different parameters. In the left panel of
Fig 4 we show the projection on the m1 − θ23 plane. The most interesting feature is
that, in the range m1 ∼ (10–30)meV, the second octant is not allowed. This is another
important clear test for SO10INLEP and notice that it is independent of the value of δ.

2.4.4 Excluded regions for δ

In the left panel of Fig 5 we also show the projection on the m1− δ plane. One can notice
how the lower bound on m1 is much more stringent in the half δ = 180◦ ± 90◦ compared
to the other half range δ ∼ 0 ± 90◦. In particular, the current 1σ experimental range of
values for δ falls in the first half that is allowed only for m1 ≳ 10meV. It is also curious
how there is a kind of hole for δ ∼ 30◦ − 120◦ and m1 ∼ (5–15)meV This shows again
how a future precise determination of δ will represent a crucial test for SO10INLEP.
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Figure 5: Two-dimensional projection on the plane m1-θ23 of the scatter plot of the
solutions obtained imposing successful SO10INLEP, neglecting flavour coupling effects
(left panel) and accounting for flavour coupling effects (right panel). As in Fig. 1, the
vertical grey areas denote the excluded regions by the three upper bounds on m1: Eq. (2)
from cosmological observations, Eq. (10) from 0νββ and Eq. (11) from tritium beta decay.
The horizontal grey area is the 3σ excluded θ23 range of values from Eq. (6).

2.4.5 Majorana phases

In the left panel of Fig 6 we show the projection of the scatter plot solutions on the σ− ρ

plane. One can notice how large part of the plane is excluded. This is because, as well
understood analytically [12, 33], the Majorana phases need to be within certain ranges in
order for either K1τ ≲ 1 or K1µ ≲ 1 (or both). Notice how in this plane the muon solution
allowed regions (green points) are well disconnected by the tauon solution allowed region
(yellow points) and lay around the points (σ, ρ) = ((2n + 1)π/2,mπ), with m,n ∈ Z.
These are indeed the values that make possible to have K1µ ≲ 1 [33].

In Fig. 7 we also shown the projection on the plane m1 − σ. It can be clearly seen
how the values of σ for the muon solutions are different from those for the τ solutions.

2.4.6 0νββ effective neutrino mass

The observation of a 0νββ signal would be a crucial discovery supporting, in general,
leptogenesis since it would be a clear sign that lepton number is violated at tree level.
Specifically, for SO10INLEP, it would provide the measurement of an additional low
energy neutrino observable depending on all nine low energy neutrino parameters. This
would represent another important experimental testing experimental constraint. In Fig. 8
we show the allowed region in the traditional plane m1-mee. The vertical grey area is the
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Figure 6: Two-dimensional projection on the plane σ-ρ of the scatter plot of the solutions
obtained imposing successful SO10INLEP, neglecting flavour coupling effects (left panel)
and accounting for flavour coupling effects (right panel).

conservative excluded region from KamLAND-Zen upper bound given in Eq. (10), while
the dashed line indicates the most stringent upper bound also given in Eq. (10). The
thin black lines indicate the general allowed region compatible with the experimental
constraints (6) (i.e., no successful SO10INLEP condition is imposed). One can see how
SO10INLEP strongly restricts this region. Therefore, the simultaneous experimental de-
termination of m1 and mee would provide a very strong test of SO10INLEP.

3 Including flavour coupling

The expression in Eq. (27) for the final B−L asymmetry assumes that the evolution of the
three flavoured asymmetries ∆α ≡ B/3− Lα (α = e, µ, τ), where the Lα’s are the lepton
asymmetries in lepton doublets, proceeds independently of each other, in an uncoupled
way. Sphaleron process conserve the ∆α’s and the total B − L asymmetry is the sum of
the three. In this way one can solve the set of uncoupled differential equations for the
∆α’s and at the end N f

B−L =
∑

αN
f
∆α

and the result is the expression in Eq. (27) [19, 51,
36, 52]. The assumption of uncoupled evolution of the flavoured asymmetries relies on a
simple picture where: N2-decays source initially the asymmetry in the flavour direction
ℓ2; decoherence of leptons states results into an independent washout from N2-inverse
processes for the two flavoured asymmetries ∆τ and ∆e + ∆µ at T ∼ M2 (two flavour
regime) and into an independent washout from N1-inverse processes for all three ∆α at
T ∼ M1; finally, it assumes that the washout is just depending on each ∆α separately.
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Figure 7: Two-dimensional projection on the plane m1-θ23 of the scatter plot of the
solutions obtained imposing successful SO10INLEP, neglecting flavour coupling effects
(left panel) and accounting for flavour coupling effects (right panel).

Within this simple picture, though decoherence splits the evolution of the asymmetry
first in two and then in three flavoured asymmetries, these still develop independently of
each other because the the washout in a certain flavour is always depending, linearly in
very good approximation, just on the asymmetry in that flavour. However, this picture is
incomplete because it neglects spectator processes of different nature [34, 35, 17, 51]: (i)
the generation of an asymmetry from N2-decays into lepton doublets is also accompanied
by the generation of a hypercharge asymmetry into the Higgs bosons and (ii) by a baryonic
asymmetry into squarks via sphaleron processes; (iii) the lepton asymmetry from lepton
doublets is also redistributed to RH charged particles. In this way the washout of a ∆α

asymmetry also depends on the asymmetries stored into the Higgs doublets (this is the
primary source of flavour coupling) and into quarks (this a secondary source of flavour
coupling). To be more clear, since the Higgs doublet asymmetry is flavour blind, if a
∆α asymmetry has been generated in a certain flavour, necessarily at the washout the
asymmetry into the Higgs doublets will induce the generation of a ∆β ̸=α asymmetry in
the other flavour(s) β: therefore, inverse processes do in this case generate a flavoured
asymmetry rather than wash it out. This means that the washout strictly speaking refers
to the Higgs asymmetry and the N2-decay produced ∆α asymmetry but not to ∆β ̸=α.
This is the primary source of flavour coupling. Secondarily, the redistribution of the
asymmetries into quarks and RH charged particles also couples the ∆α asymmetries.
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Figure 8: Projection in the plane m1 −mee of the scatter plot of the solutions obtained
imposing successful SO10INLEP, neglecting flavour coupling effects (left panel) and ac-
counting for flavour coupling effects (right panel).

3.1 A more tangled expression for the final asymmetry

Solving the system of coupled differential equations at the production, for T ∼ M2, and
at the N1-washout, for T ∼ M1, leads to the following analytical expression for each final
∆α asymmetry [36]:

N f
∆α

=
∑
α′′

V −1
αα′′

[
NT∼TL

α′′ e−
3π
8

K1α′′
]
, (39)

where the three NT∼TL

α′′ (α′′ = e′′, µ′′, τ ′′) are the asymmetries produced by N2-decays at
T = TL ∼ M2 in the (rotated) flavours α′′ and are given by

NT∼TL

α′′ =
∑

β=e,µ,τ

Vα′′β N
T∼TL
∆β

. (40)

Before explaining in detail the meaning and definition of all involved quantities in this
general expression, notice that now the final B − L asymmetry, though still given by
N f

B−L =
∑

α=e,µ,τ N
f
∆α

, is the sum of 27 terms instead of just 3. The matrix

V ≡

 Ve′′e Ve′′µ Ve′′τ

Vµ′′e Vµ′′µ Vµ′′τ

Vτ ′′e Vτ ′′µ Vτ ′′τ

 (41)
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is the matrix that diagonalizes P 0
1 , i.e. V P 0

1 V
−1 = P 0

1′′ ≡ diag(P 0
1e′′ , P

0
1µ′′ , P 0

1τ ′′), where
the matrix P 0

1 is defined as

P 0
1 ≡

 P 0
1eC

(3)
ee P 0

1eC
(3)
eµ P 0

1eC
(3)
eτ

P 0
1µC

(3)
µe P 0

1µC
(3)
µµ P 0

1µC
(3)
µτ

P 0
1τ C

(3)
τe P 0

1τ C
(3)
τµ P 0

1τ C
(3)
ττ

 , (42)

and the three-flavour coupling matrix is given by [54]

C(3) ≡

 C
(3)
ee C

(3)
eµ C

(3)
eτ

C
(3)
µe C

(3)
µµ C

(3)
µτ

C
(3)
τe C

(3)
τµ C

(3)
ττ

 =

 188/179 32/179 32/179

49/358 500/537 142/537

49/358 142/537 500/537

 , (43)

and we defined P 0
1α ≡ K1α/K1. The rotated flavoured decay parameters are defined as

K1α′′ ≡ P 0
1α′′ K1.

The three flavour asymmetries NT∼TL
∆β

in the standard flavours β = e, µ, τ , at the
production, are given by

NT∼TL
∆τ

= U−1

ττ⊥
′

2

[
Uτ⊥

′
2 τ⊥2

ε2τ⊥2 + Uτ⊥
′

2 τ ε2τ

]
κ(K2τ⊥2

) + U−1
ττ ′

[
Uτ ′τ⊥2

ε2τ⊥2 + Uτ ′τ ε2τ

]
κ(K2τ ) ,

NT∼TL
∆e

=

[
K2e

K2τ⊥2

NT∼TL
∆

τ⊥
2

+

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
,

NT∼TL
∆µ

=

[
K2µ

K2τ⊥2

NT∼TL
∆

τ⊥
2

+

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
, (44)

where

NT∼TL
∆

τ⊥
2

= U−1

τ⊥2 τ⊥
′

2

[
Uτ⊥

′
2 τ⊥2

ε2τ⊥2 + Uτ⊥
′

2 τ ε2τ

]
κ(K2τ⊥2

) + U−1
τ⊥2 τ ′

[
Uτ ′τ⊥2

ε2τ⊥2 + Uτ ′τ ε2τ

]
κ(K2τ ) .

The matrix

U ≡

(
Uτ⊥

′
2 τ⊥2

Uτ⊥
′

2 τ

Uτ ′τ⊥2
Uτ ′τ

)
(45)

is the analogous of V , accounting for flavour coupling in the two-flavour regime. It is
defined as the matrix that diagonalises

P 0
2 ≡

(
P 0
2τ⊥ C

(2)

τ⊥2 τ⊥2
P 0
2τ⊥2

C
(2)

τ⊥2 τ

P 0
2τ C

(2)

ττ⊥2
P 0
2τ C

(2)
ττ

)
, (46)

i.e. U P 0
2 U

−1 = diag(P 0
2τ⊥

′
2

, P 0
2τ ′), where the two-flavour coupling matrix is given by [54]

C(2) ≡

(
C

(2)

τ⊥2 τ⊥2
C

(2)

τ⊥2 τ

C
(2)

ττ⊥2
C

(2)
ττ

)
=

(
581/589 104/589

194/589 614/589

)
(47)
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and we defined P 0
2α ≡ K2α/K2. We have now fully defined all quantities entering the

expression for the flavoured asymmetries in Eq. (39). As we said, the final B − L asym-
metry is still obtained as the sum of the three flavoured asymmetries and it can be checked
that, for U = V = I, one recovers the expression Eq. (27) valid when flavour coupling is
neglected. We can also unpack the first sum in Eq. (39) and write explicitly:

N f
∆α

= V −1
αe′′

[∑
β

Ve′′β N
T∼TL
∆β

]
e−

3π
8

K1e′′ (48)

+ V −1
αµ′′

[∑
β

Vµ′′β N
T∼TL
∆β

]
e−

3π
8

K1µ′′

+ V −1
ατ ′′

[∑
β

Vτ ′′β N
T∼TL
∆β

]
e−

3π
8

K1τ ′′ .

This expression shows how now each flavoured asymmetry N f
∆α

is not simply given by one
term containing a N1 washout exponential suppression term described by e−3πK1α/8 but
it also contains terms that are washed out by exponentials e−3πK1δ′′/8 with δ ̸= α. In this
way, even though K1α ≫ 1, there can still be unsuppressed contributions to N f

∆α
from

terms with K1δ ≪ 1. Even though these terms are weighted by factors V −1
αδ , containing

off-diagonal terms of the C(3) matrix that are O(0.1), they can be dominant in some cases
and therefore, in general, they have to be accounted for.

3.2 Successful leptogenesis solutions

Despite the much higher intricacy of the expression Eq. (39), accounting for flavour cou-
pling, compared to Eq. (27), neglecting flavour coupling, the discussion we made in 2.3 on
the parameter dependence and the consequent successful leptogenesis condition Eq. (38)
still holds. Flavour coupling does not introduce any new parameter. It only introduces
many new terms in the expression for the final asymmetry that are proportional to the
off-diagonal terms in the flavour coupling matrix. These are usually sub-dominant and
give a small correction but for particular values of the parameters they can yield new so-
lutions in regions of parameter space that would otherwise be unaccessible when flavour
coupling is neglected.

The search of these solutions is the main objective of including flavour coupling. The
result is shown in the right panel of Fig. 1. Here we show again the three-dimensional
projection of a scatter plot of a about 2× 106 solutions obtained for α2 = 5 and scanning
over the 15 parameters in U and VL, respecting the experimental constraints in Eq. (6).
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θ12 θ13 θ23 δ ρ/π σ/π θL12 θL13 θL23 ρL/π σL/π δL/π

τ → µ 35.18◦ 9.11◦ 46.73◦ 9.97◦ 1.033 1.064 2.172◦ 0.109◦ 0.842◦ 1.05 1.13 0.23
τ → e 30.04◦ 8.325◦ 48.24◦ 16.56◦ 1.47 1.021 4.859◦ 0.155◦ 1.238◦ 1.72 1.25 0.31

Table 2: Values of the six low energy neutrino parameters in U and six parameters in the
unitary matrix VL for the two benchmark solutions shown in Fig. 9. Best fit values of msol

and matm are assumed. For each solution, the observed asymmetry is reproduced for two
values of m1. For m1 = 42meV (left) and m1 = 2meV (right) one has a muon-dominated
and electron-dominated solution, respectively. These two solution are indicated with
triangles in the scatter plots.

The solutions have been again obtained imposing χ2 < χ2
max = 25 and ηB > 6.01× 10−10.

The first thing one can notice is that the main structure of the allowed region is not
changed by flavour coupling and, in particular, one still has a lower bound on m1. On the
other hand, it can be noticed how there are new muonic solution appearing in a region
that was before excluded, at values of m1 ∼ 10meV. Moreover, electronic solutions,
indicated by red points, now appear in the region of τA solutions.

3.2.1 Two new types of solutions

Let us have a closer look a these new solutions. As we did in the last section for the
three types of old solutions, in Fig. 9 we plot different quantities (MI , εα, K1α, K2τ , K2τ⊥2

)
versus m1 for two benchmark new solutions, one muonic and one electronic, with values
of the parameters given in Table 2. As one can see, successful leptogenesis is satisfied
for m1 = 42meV and m1 = 2.1meV for the muon-dominated and the electron-dominated
solution, respectively. One can also see how the dominant CP asymmetry is the tauonic
CP asymmetry while both the muonic and the electronic ones would be too small, in
the absence of flavour coupling, to yield the observed baryon asymmetry. Therefore, the
existence of these two new types of solutions crucially relies on the account of flavour cou-
pling (without flavour coupling the muon and electron asymmetries, respectively, would
be orders of magnitude below the observed value). We should add, however, that these
new electronic solutions are very marginal ones. This can be somehow understood by
the fact that the peak of the asymmetry in the shown benchmark case is just above the
observed value. In the 2×106 point scatter plot we generated, we obtained only less than
200 electronic solution (i.e., less than 0.1%). The new muonic solutions are less special
and we obtained about 2k of them (i.e., ∼ 1%).
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Figure 9: Relevant quantities for two benchmark new type of solutions: one new µ-solution
(left panels), one new e-solution (right panels). The values of the parameters for these
solutions are shown in Table 2.

3.2.2 Lower bound on m1

In the right panel of Fig. 3 we again show the isocontour lines for the m1 lower bound in
the δ versus θ23 plane. One can see that they are just slightly modified by the inclusion
of flavour coupling and, for example, the absolute minimum value gets slightly relaxed
from m1 ≥ 0.89meV to m1 ≥ 65meV. The most remarkable difference is that now the
excluded region by the cosmological upper bound Eq. (2), in red in Fig. 3, gets reduced
and first octant values of θ23 are now possible also for values δ ∼ π. For these values of
δ, one has that values of the atmospheric mixing angle θ23 ≳ 47◦ are still excluded even
when flavour coupling is included. In particular, one can see how the best fit point falls
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now in the green region that is the one opened by the muonic solutions induced by the
account of flavour coupling.

3.2.3 Upper bound on θ23

In the right panel of Fig. 4, we show how flavour coupling affects the upper bound on θ23

versus m1. One can see that the new muonic solutions tend to cover, very marginally, the
region for m1 ≃ 15meV and θ23 ≃ 44◦–45◦ that would be excluded without an account
of flavour coupling. However, all second octant values of θ23 still remain excluded for
m1 = (10–30)meV.

3.2.4 Excluded regions for δ

In the right panel of Fig. 5 we show the constraints in the plane δ versus m1. One can see
how the new muonic solutions tend to fill some existing gaps for m1 ≃ 10meV and δ in
the range between π/2 and 3π/2. However, the hole at δ ≃ π/2, though shrinking, still
survives. For m1 much below 10 meV the constraints are practically unchanged.

3.2.5 Majorana phases

In the right panel of Fig. 6 we show the constraints in the plane ρ versus σ. This plot
is quite interesting because it clearly shows how the new solutions, both muonic and
electronic, stem from the tauonic CP asymmetry. The regions they fill are completely
disconnected from the primary muonic solutions that are present also in the absence of
flavour coupling and for which the asymmetry is proportional to the muon CP asymmetry.
One can also notice how the new solutions extend to higher values of σ for ρ ∼ π. The
same conclusions can be also drawn looking at the right panel of Fig. 7 where we show
the constraints in the plane σ versus m1.

3.2.6 0νββ effective neutrino mass

Finally, one can see from the right panel of Fig. 8 that flavour coupling does not really
change the constraints in the plane mee versus m1. The new solutions are confined within
the region that was anyway accessible also without accounting for flavour coupling.
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4 Strong thermal SO(10)-inspired leptogenesis

In this section, we finally discuss ST-SO10INLEP [30]. It is intriguing that the rather
special conditions that are needed to realise strong thermal leptogenesis [31, 32], are
naturally satisfied by a subset of the solutions realising successful SO10INLEP. In this
Section we first re-derive, and update, the predictions on low energy neutrino parameters
from ST-SO10INLEP neglecting flavour coupling, and then we discuss the impact of
flavour coupling.

4.1 Neglecting flavour coupling

Let us assume that some external mechanism has created an initial pre-existing B-L
asymmetry Np,i

B−L prior to leptogenesis and prior to any washout from RH neutrinos.
We also assume that the N3 mass is larger than the reheat temperature, so that the
N3-washout is absent.11 Because of the RH neutrino inverse processes, the pre-existing
asymmetry will undergo a dynamical evolution that has to take into account also the
different flavour regimes. Finally, the relic value of the pre-existing asymmetry can be
also expressed as the sum of three contributions from each flavour i.e., Np,f

B−L =
∑

α Np,f
∆α

.
Neglecting flavour coupling, the expressions for the Np,f

∆α
are given by [30, 40]

Np,f
∆τ

= (p0pτ +∆ppτ ) e
− 3π

8
(K1τ+K2τ ) Np,i

B−L , (49)

Np,f
∆µ

=
{
(1− p0pτ )

[
p0µτ⊥2

p0pτ⊥2
e−

3π
8

(K2e+K2µ) + (1− p0µτ⊥2
) (1− p0pτ⊥2

)
]
+∆ppµ

}
e−

3π
8

K1µ Np,i
B−L,

Np,f
∆e

=
{
(1− p0pτ )

[
p0eτ⊥2

p0pτ⊥2
e−

3π
8

(K2e+K2µ) + (1− p0eτ⊥2
) (1− p0pτ⊥2

)
]
+∆ppe

}
e−

3π
8

K1e Np,i
B−L .

In this expression the quantities p0pτ and p0
pτ⊥2

denote the fractions of the initial pre-existing
asymmetry in the tauon flavour and in the flavour τ⊥2 , where, as already defined, τ⊥2 is
the electron and muon flavour superposition component in the leptons produced by N2-
decays (or equivalently the flavour component that is washed-out in the inverse processes
producing N2).12 We also introduced the two quantities p0

ατ⊥2
≡ K2α/(K2e + K2µ) (α =

e, µ). These give the fractions of the α flavour in the τ⊥2 component of the lepton state |ℓ2⟩
produced by N2-decays. The terms ∆ppτ ,∆ppe and ∆ppµ are the so-called phantom terms
and such that ∆ppe + ∆ppµ + ∆ppτ = 0. They are phantom terms taking into account
the possibility that the mechanism that created the pre-existing asymmetry produced

11This assumption is conservative but ultimately it is irrelevant whether N3-washout is included or
not, the predictions on the low energy neutrino parameters change just slightly [30].

12Notice that in general p0pτ + p0
pτ⊥

2
̸= 1 since in general the projection of the pre-existing asymmetry

flavour direction on the τ⊥ plane, is not parallel to τ⊥2 .
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lepton states that are not exactly the CP conjugated of the anti-lepton states. It can be
crossed-checked that in Eq. (49), if one switches-off the washout terms, then the sum of
the three final flavoured pre-existing asymmetries is equal to the total initial pre-existing
asymmetry, as it should be.

The strong thermal leptogenesis condition requires that the relic value of the pre-
existing asymmetry is negligible with respect to the final value of the asymmetry produced
by N2-decays. For definitiness, we will impose a condition Np,f

B−L < 0.1N lep,f
B−L.

The only possibility to have successful strong thermal leptogenesis is just the N2

tauon-dominated leptogenesis scenario [31] that is also representing the bulk of solutions
in SO10INLEP, as we discussed. This is quite an intriguing coincidence. The reason why
only tauon-dominates solutions can realise strong thermal leptogenesis can be understood
directly from Eq. (49). One can indeed have in this case K2τ , K1µ, K1e ≫ 1 and K1τ ≲ 1

in a way to wash out at T ∼ M2 the tauonic component of the pre-existing asymmetry
and at T ∼ M1 also the electronic and muonic components. At the same time, having
K1τ ≲ 1, the tauonic asymmetry produced from leptogenesis is the only that survives the
N1-washout.

There is only a very special caveat [40]. If one imposes (1−p0
µτ⊥2

) = K2e/(K2e+K2µ) ≲

0.1N lep,f
B−L/N

p,i
B−L ≪ 1 and K1µ ≲ 1, instead of K1µ ≫ 1, one can have a strong thermal

muon-dominated solution. We noticed that K2e/(K2e +K2µ) ∼ θ2c ∼ 0.05 is indeed small
but in this case, for a meaningfully large value of pre-existing asymmetry ∼ 10−3, as we
will assume, one needs this ratio at least four orders of magnitude smaller. These are
incredibly special solutions, unless they can be justified within a particular model. In [40]
these solutions were found with a tiny ∼ 10−9 rate. They have to be considered then
more like oddities rather than real ST-SO10INLEP solutions.

By imposing a strong thermal leptogenesis condition in addition to successful SO10INLEP,
one singles out a special subset of solutions within those we obtained just imposing suc-
cessful SO10INLEP. We have assumed as benchmark value Np,i

B−L = 10−3. In the scatter
plots, in Fig. 1 and Figs. 3–9, these solutions are denoted by blue points. The success
rate for these solutions in our scan is 10−6. The results fully confirm previous results
[30, 12, 33, 40]. It is still useful to notice some important aspects:

• As one can see they are all tauon-dominated solutions obtained with a 10−6 success
rate, except for a couple of special muon-dominated solutions (success rate 10−9)
we mentioned.

• From Fig. 6 one can see how one the requested values of the Majorana phases for
ST-SO10INLEP become so constrained that ST-SO10INLEP would be a way to
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Figure 10: ST-SO10INLEP allowed region in the plane δ versus θ23. The red line delimits
the region when flavour coupling is neglected, the coloured region is the result in the
case when flavour coupling is included. The colour code denotes point density: lighter
blue means higher density of solutions. The thin dashed lines are the 1σ, 2σ and 3σ

experimental constraints from [23].

determine their values.

• The absolute neutrino mass scale range is very restricted. For the benchmark value
we assumed, Np,i

B−L = 10−3, one has that successful ST-SO10INLEP requires m1 =

(10–30)meV and, from Fig. 8, one can see a corresponding similar range for mee.
It is interesting that both cosmological observations and 0νββ experiments are now
starting to test this range.

• The bulk of solutions realising ST-SO10INLEP are of τA type. The τB type solutions
have the problem that K1µ tends to be too small to washout the muonic component
of the pre-existing asymmetry. For example for VL = I one finds K1µ ≲ 4 [12]
and in this case they would be absolutely unable to yield strong thermal solutions.
However, turning on angles in VL values as large as K1µ ∼ 10 are possible and for
this reason some τB strong thermal solutions do exist, though they are only ∼ 1%

of the τB solutions.

Finally, we have focused on an accurate determination of the allowed region in the plane
δ versus θ23 for strong thermal leptogenesis. The results is shown with a red line in
Fig. 10. This well reproduces the result in [40]. The small differences can be ascribed
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Figure 11: Plots of the final value of ηlepB versus m1 for different values of θ23, for fixed
δ = −50◦ and for values of the other parameters maximising the asymmetry shown in
Table 3. The right (left) panel is for the case with (no) flavour coupling.

θ12 θ13 θ23 δ ρ/π σ/π θL12 θL13 θL23 ρL/π σL/π δL/π

No F.C. 33.62◦ 9.09◦ See Figure −49◦ 0.312 0.834 4.11◦ 0.183◦ 2.41◦ 1.92 1.24 0.18
With F.C. 33.62◦ 9.09◦ See Figure −49◦ 0.312 0.834 4.11◦ 0.183◦ 2.41◦ 1.92 1.24 0.18

Table 3: Values of the low energy neutrino parameters in U (except θ23 given in Fig. 11)
and six parameters in the unitary matrix VL for the plots shown in Fig. 11.

to the updated experimental ranges for neutrino oscillation parameters in Eq. (6) we are
adopting. The thin dashed lines are the the 1σ, 2σ and 3σ experimental constraints from
[23]. One can see how ST-SO10INLEP is in nice agreement with crrent experimental
results within 1σ. The fact that currently the best fit is in the first octant releases the
tension that was found with old experimental data in [40]. The best fit δ value is actually
too low but this is very sensitive to the employed data sets in the analysis, mainly because
of an existing tension between T2K and NOVA data. In the left panel of Fig. 11 we show
plots of ηlepB versus m1 for the indicated values of θ23 and for fixed δ = −50◦, corresponding
to the value allowing the maximum value of θ23. All other parameters are fixed to values
that maximise the asymmetry and are given in Table 3. One can see how for increasing
values of θ23 the peak value of ηlepB decreases. This is well understood since the asymmetry
is approximately ∝ 1/ sin4 θ23 [12, 33]. One can see how the maximum value of θ23 we
obtain is 46◦. This is consistent with the value obtained in [40] and it clearly shows how
second octant is incompatible with ST-SO10INLEP.

4.2 Including flavour coupling

We have now finally to discuss the impact of flavour coupling on ST-SO10INLEP. This
is one of the main motivations of the paper. A naive, but legitimate, expectation is that
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flavour coupling might completely disrupt ST-SO10INLEP. The reason is that a large
pre-existing asymmetry, thanks to flavour coupling, can find its way to survive into the
tauon flavour where the washout is weak. As we are going to explain, this expectation is
incorrect.

We have first of all to generalise the expression (49) for the relic value of the pre-
existing asymmetry. If we start with an initial pre-existing asymmetry Np,i

B−L, that we
assume to be generated at some temperature above ∼ 1012GeV, below 1012GeV the
tauon component of lepton states is measured by tauon charged lepton interactions and
the pre-existing asymmetry will be the sum of a tauon component, given by p0pτ N

p,i
B−L, and

a component along a flavour direction given by the projection of the flavour composition
of pre-existing leptons on the e-µ flavour plane given by (1 − p0pτ )N

p,i
B−L. In addition, in

general, there should be also the phantom terms that however we neglect just to shorten
the notation (in any case again results are not sensitive to them). Similarly to the solution
for the asymmetry generated by leptogenesis, at T ∼ M2 the N2-washout, in the presence
of flavour coupling, uncouples in a rotated flavour basis τ ′ and τ⊥

′
2 . The difference is

that now there is no source term and, therefore, at the end of the washout processes the
washout is described by exponential factors and, rotating back to the standard flavour
basis, one finds

Np,T≲TL

∆τ
= U−1

ττ⊥
′

2

[
Uτ⊥

′
2 τ⊥2

(1− p0pτ ) + Uτ⊥
′

2 τ p
0
pτ

]
Np,i

B−L e
− 3π

8
(K2e+K2µ)

+U−1
ττ ′

[
Uτ ′τ⊥2

(1− p0pτ ) + Uτ ′τ p
0
pτ

]
Np,i

B−L e
− 3π

8
K2τ ,

Np,T≲TL

∆
τ⊥
2

= U−1

τ⊥2 τ⊥
′

2

[
Uτ⊥

′
2 τ⊥2

(1− p0pτ ) + Uτ⊥
′

2 τ p
0
pτ

]
Np,i

B−L e
− 3π

8
(K2e+K2µ) (50)

+U−1
τ⊥2 τ ′

[
Uτ ′τ⊥2

(1− p0pτ ) + Uτ ′τ p
0
pτ

]
Np,i

B−L e
− 3π

8
K2τ

Np,T≲TL

∆
τ⊥
2⊥

= (1− p0pτ ) (1− p0pτ⊥2
)Np,i

B−L . (51)

where the matrix U is the same we introduced in Eq. (45) when we introduced flavour
coupling for the asymmetry produced by N2-decays. It can be noticed that, for U = I, one
recovers the result in the absence of flavour coupling and N1-washout in Eq. (49). Also
notice that the component of the pre-existing asymmetry along the flavour τ⊥

2⊥ , orthogonal
to τ and τ⊥2 , escapes the washout at T ∼ M2 [34, 55].

We have now still to evolve the asymmetry down to temperatures below M1. First of
all, at temperatures T ∼ 109GeV also RH muon interactions become effective and break
the coherence of τ⊥-flavour leptons. The asymmetries in the electron and muon flavour,
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prior to N1-washout, can then be written as

Np,T≳M1

∆e
= p0eτ⊥2

Np,T≲TL

∆
τ⊥
2

+ (1− p0eτ⊥2
)Np,T≲TL

∆
τ⊥
2⊥

, (52)

Np,T≳M1

∆µ
= p0µτ⊥2

Np,T≲TL

∆
τ⊥
2

+ (1− p0µτ⊥2
)Np,T≲TL

∆
τ⊥
2⊥

. (53)

Finally, the N1-washout stage can be taken into account exactly as for the asymmetry
produced from leptogenesis, using an equation similar to Eq. (39) and Eq. (40), obtaining

Np,f
∆α

=
∑
α′′

V −1
αα′′

[ ∑
β=e,µ,τ

Vα′′β N
p,T≳M1

∆β
e−

3π
8

K1α′′

]
. (54)

Using now this much more intricate expression, we have obtained ST-SO10INLEP
solutions shown, again with blue points, in the right panels of Fig. 1 and Figs. 2–8. The
first thing to notice is that the region survives and in fact it even slightly increases. In
particular, the most noticeable change is that the lower bound on m1 gets relaxed and
from m1 ≳ 8meV, obtained neglecting flavour coupling, we have now found m1 ≳ 3meV.
One can also see from Fig. 8 that, corresponding, the lower bound on mee gets relaxed from
mee ≳ 9meV to mee ≳ 4meV. One can also see from Fig. 6 that the two disconnected
subregions now get linked by the appearance of the new solutions.

This implies, that in fact the washout of a pre-existing asymmetry, gets even easier
when flavour coupling is taken into account, contrarily to naive expectations. The reasons
why that happens were already partially envisaged in [33]. Even though flavour coupling
induces part of the pre-existing asymmetry to be transferred in the tauon flavour where the
washout is absent (K1τ ≪ 1) to let the asymmetry produced from leptogenesis to survive,
the off-diagonal term that is responsible for the coupling is proportional to K1τ itself and so
intrinsically small. That means that the same conditions that are necessary to have strong
thermal leptogenesis are also sufficient to protect it from the potential disruptive effect
of flavour coupling. In addition flavour coupling makes in a way that the flavoured decay
parameters responsible for the washout of the pre-existing electron and muon asymmetries
are not the standard K1e and K1µ but these are replaced by K ′′

1e and K ′′
1µ. The origin

of the lower bound on m1 was studied in detail in [32, 12] and it was due to the fact
that K1e ≃ mee/m⋆ ≃ 0.8m1/mee. For an initial electronic pre-existing asymmetry
∼ 10−4, the strong thermal conditions implies K1e ≳ 8 that translates immediately into
mee ≳ 8meV and m1 ≳ 9meV. However, when flavour coupling is included the washout
of the electron asymmetry is described by K ′′

1e that is a linear combination primarily of
K1e but with a small contribution from K1µ ≃ (msols

2
12 + matms13c23)

2/m⋆msols
2
12 ≃ 25.

This contamination from a large K1µ makes possible to have smaller values of K1e and,
therefore, of mee and m1.
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5 Final remarks

We could benefit of the analytical description of SO10INLEP given in [33] to re-derive the
allowed region in the space of low energy neutrino parameters including flavour coupling.
The results confirm the broad picture already discussed in previous papers but we noticed
how we are currently entering a new stage for the prospect of testing SO10INLEP. There
are also interesting new aspects introduced by flavour coupling. Let us briefly summarise
our results.

• The cosmological upper bound Eq. (2) definitively rules out quasi-degenerate neu-
trinos and the latest upper bounds from 0νββ and tritium decay experiments con-
firm this so far. Absolute neutrino mass scale experiments are then starting to
test the most interesting absolute neutrino mass range for the opportunities to test
SO10INLEP, since for 10meV ≲ m1 ≲ 30meV there is a stringent upper bound on
the atmospheric mixing angle that excludes second octant.

• An interesting new feature introduced by flavour coupling is that new muon-dominated
solutions appear in a portion of the space of parameters that would be otherwise ex-
cluded if flavour coupling is not taken into account. There are also some completely
new electron-dominated solutions appearing (in already allowed region of parameter
space) but these are quite marginal and do not seem to have a particular interest.

• We have confirmed the existence of ST-SO10INLEP solutions even when flavour
coupling is taken into account. The allowed region gets even larger and, importantly,
the lower bound on the absolute neutrino mass scale gets more relaxed. The washout
of a large initial pre-existing asymmetry Np,i

B−L ∼ 10−3 requires mee(m1) ≳ 4(3)meV.
This is still large enough that future generation 0νββ experiments will be able to
test it. The fact that ST-SO10INLEP is protected by flavour coupling is somehow
a built-in feature: since K1τ ≲ 1, this necessarily limits the possibility to have a
too large leak of the pre-existing asymmetry from the e and µ flavours into the τ

flavour so that the pre-existing asymmetry can be still efficiently washed-out for a
subset of the SO10INLEP solutions. This is an important result of our paper since
it shows that the ST-SO10INLEP scenario is stable under perturbations introduced
by a more sofisticate calculation of the asymmetry.

• Our procedure, providing an approach toward a map of SO(10)-inspired models,
can also be useful within the quest for a realistic grandunified model since it gives
a complementary analytical insight and a global picture of the solutions. Indeed
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it has provided quite a useful insight in connection with a recent identification of
a realistic fit of fermion parameters within a minimal SO(10) scenario that is also
able to reproduce the observed baryon asymmetry with N2-leptogenesis [56]. This
falls within the category of SO1OINLEP scenarios but extended to allow for a large,
in fact maximal, value of θL23.13

In conclusion, our results represent the first step toward a systematic understanding of the-
oretical uncertainties within SO10INLEP that is particularly important in view of future
experimental expected progress both in long baseline neutrino oscillation experiments and
absolute neutrino mass scale experiments. It is a very exciting time for the possibility of
testing SO10INLEP. Both long baseline and absolute neutrino mass scale experiments will
gradually test its predictions and constraints. In particular, 0νββ experiments are finally
entering the mass range that is predicted by the strong thermal version of SO10INLEP.
An account of flavour coupling has confirmed and even strengthened the picture, making
the predictions more robust. At the same time, it also provides useful information for
the optimization of successful strategy toward the identification of a grandunified realistic
model.
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