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Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

From Pixels to Pulse: Enhancing Trust, Quality and Robustness in Remote
Video-Based Pulse Measurement

by Eirini Kateri

Remote photoplethysmography (rPPG) enables non-contact heart rate measurement
using everyday cameras, offering a promising alternative to traditional contact-based
methods like electrocardiography and photoplethysmography. By leveraging subtle
changes in skin color and micro-movements induced by blood flow, rPPG has the po-
tential to revolutionize health monitoring. However, despite its potential, challenges
such as motion artifacts, variations in lighting conditions and dataset biases challenge
its robustness and reliability. This thesis investigates the foundations of rPPG, present-
ing a comprehensive study across signal processing, machine learning, video quality
assessment and uncertainty quantification. We explore traditional signal processing
techniques for rPPG, establishing a baseline for pulse estimation while highlighting
their sensitivity to motion artifacts. To address these limitations, we propose a novel
spatiotemporal two-stage learning framework (ST2S-rPPG), which integrates video sta-
bilization, machine learning and adaptive region of interest selection to enhance pulse
estimation accuracy. Recognizing the influence of video quality on rPPG performance,
we systematically analyze the impact of motion, resolution, illumination and occlu-
sions among other video quality factors, introducing video quality metrics tailored to
rPPG. These metric provide a structured approach to assess video suitability for pulse
extraction. Finally, we explore the application of conformal predictions to rPPG, es-
tablishing a framework for uncertainty quantification and compare MAE-based and
quality-aware nonconformity measures. The findings of this thesis contribute toward
making rPPG more practical for real-world deployment, with applications ranging
from remote patient monitoring and telehealth to mental health assessments and human-
computer interaction. While challenges remain in generalization across diverse popu-
lations and environmental conditions, these advancements lay a foundation for future
research in making rPPG a reliable and scalable tool for healthcare and beyond.
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Prologue

”The pulse of a man is the truest index of his emotions.” – Jane Austen

Computer vision has rapidly evolved over the past decade, progressing from object
recognition to advanced applications in healthcare, autonomous systems and beyond.
One of its most promising frontiers? The measurement of human health using only a
video. A standard webcam or a phone camera has the potential to extract vital physio-
logical information like pulse, without the need for physical contact, wearable sensors
or specialized medical equipment.

This technology has the potential to transform how we monitor vital signs, offering a
seamless, non-contact alternative to conventional sensors. In neonatal intensive care
units it could reduce the need for adhesive sensors that may cause discomfort or skin
irritation in fragile newborns. For elderly individuals with limited mobility, it allows
early detection of cardiovascular issues while preserving their independence.

Beyond individual care, its impact can extend to broader healthcare systems. The
Covid-19 pandemic underscored the urgent need for remote health monitoring, not just
for convenience but as protection. Reducing direct contact between healthcare workers
and patients minimized infection risks, and contactless technologies like this could fur-
ther enhance patient safety in future outbreaks. In low-resource settings where access
to medical equipment is limited, it can offer a cost-effective and scalable alternative for
tracking vital signs using available cameras.

Despite its promise, remote Photoplethysmography (rPPG) presents significant chal-
lenges. It relies on detecting minor color variations or subtle displacements on the skin
caused by blood flow, making it highly sensitive to external factors. Changes in lighting
conditions, motion, skin tone variations and camera characteristics (such as resolution
and frame rate among others) can all affect its accuracy. Unlike conventional medical
devices, like the pulse oximeter, which operate in controlled environments, rPPG must
function reliably in real-world settings where these variables are unpredictable. Devel-
oping a robust system that can generalize across diverse conditions remains one of the
most pressing challenges in the field.
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Since the pioneering work of Verkruysse et al. (2008), rPPG research has expanded
rapidly. Early methods primarily relied on classical signal processing techniques to
extract pulse signals, but these approaches struggled with robustness against environ-
mental noise. More recent advancements have integrated deep learning, significantly
improving accuracy and resilience to variations in lighting, motion and skin tone. Yet,
despite significant progress, the technology is still far from reaching its full potential.
The challenge is no longer proving that rPPG works - it is ensuring that it works con-
sistently, accurately and in ways that are both scalable and accessible for widespread
adoption in the wild.

At its core, rPPG represents more than a technical innovation; it is a step toward a fu-
ture where health monitoring is seamless, non-invasive and widely available. A world
where basic vital sign assessments do not require a hospital visit, where continuous
patient monitoring is effortless and where healthcare becomes more accessible through
the power of computer vision. While significant challenges remain, the impact of rPPG
could be transformative.

This is why rPPG is so exciting. And this is why it’s worth pursuing.

Contributions

This research focuses on pulse estimation, driven by the recognition that cardiovascular
health is both a critical and challenging area of study. Traditional cardiovascular mea-
surements often require contact-based sensors, limiting their accessibility and usability
in continuous or remote settings. The complexity of extracting meaningful cardiovas-
cular signals from video due to factors such as motion, lighting variations and skin
tone differences, presents both a technical challenge and an opportunity for innova-
tion. Given its fundamental role in assessing cardiovascular function and its feasibility
for non-contact measurement, pulse emerged as an ideal starting point for exploring
how rPPG can contribute to more accessible and scalable health monitoring solutions.
Our research has made several contributions to the field of rPPG, listed below:

• A comprehensive analysis of signal processing techniques for remote pulse esti-
mation, exploring how traditional methods can be optimized to improve heart
rate estimation from video (Chapter 2).

• The introduction of a novel spatiotemporal two-stage learning approach that bridges
traditional signal processing with machine learning, incorporating stabilization
techniques and feature selection mechanisms (Chapter 3).

• An extensive analysis of the impact of video quality factors (e.g., blur, illumina-
tion, motion) on rPPG model performance, highlighting their effects on accuracy
and reliability (Chapter 4).
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• The development of novel video quality metrics tailored to rPPG, enabling better
evaluation of algorithmic robustness across varying conditions (Chapter 4).

• The application of conformal prediction to rPPG, establishing a framework for
uncertainty quantification in pulse estimation and improving confidence in pre-
dictions (Chapter 5).

• The introduction of our video quality metric as a nonconformity measure for con-
formal predictions, demonstrating its effectiveness in capturing data variability in
rPPG models. (Chapter 5)

By addressing challenges in signal extraction, video quality effects and confidence esti-
mation, this research contributes toward making rPPG a more robust and practical tool
for real-world applications.

Publications

The contributions of this PhD research that have been published or are intended for
submission are listed below.

Published

• Kateri Eirini, and Katayoun Farrahi. ”Video-Based Pulse Estimation through Spa-
tiotemporal Meta-Learning.” Proc. MobiUK (2024)

• Kateri Eirini, and Katayoun Farrahi. ”ST2S-rPPG: A Spatiotemporal Two-Stage
Learning Approach for Pulse Estimation Using Video.” Machine Learning for
Health. PMLR, 259:550–562, 2024.

Planned Submission

Two journal papers expanding upon this work are currently being prepared for sub-
mission to the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT).

• Kateri Eirini, Katayoun Farrahi, and Adam Prugel-Bennett. ”Quantifying the ef-
fects of video quality on rPPG algorithms”

• Kateri Eirini, Katayoun Farrahi, and Adam Prugel-Bennett. ”Uncertainty Quan-
tification for Remote Photoplethysmography Using Conformal Predictions”
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Thesis Structure

The title of this thesis, “From Pixels to Pulse: Enhancing Trust, Quality and Robust-
ness in Remote Video-Based Pulse Measurement,” captures the main themes explored
in this research. Trust in this context refers to the degree to which rPPG systems can
be relied upon to deliver accurate and transparent results across diverse scenarios. It
is defined through measurable factors such as model accuracy, stability across condi-
tions and the quantification of uncertainty using conformal prediction methods. By
providing interpretable confidence estimates and identifying reliable inputs, the sys-
tem becomes more dependable and transparent to end users. Quality captures the
suitability of video data for reliable pulse extraction. This thesis introduces a video
quality metric designed to assess how motion, illumination and blur affect rPPG signal
integrity, allowing poor-quality data to be detected or filtered before analysis. This en-
sures that predictions are based on trustworthy visual input. Robustness describes the
system’s ability to maintain reliable performance under variations in lighting, motion
and device conditions. By combining signal processing and deep learning approaches
with video quality awareness, this work enhances robustness across datasets and ex-
perimental setups. Together, these three dimensions form the foundation for building
video-based physiological measurement systems that are not only more accurate but
also interpretable, reliable and ready for real-world use.

This thesis is structured to reflect the building blocks of a machine learning model,
where each chapter plays a critical role in shaping the final outcome (Figure 1). Chap-
ter 1 serves as the pre-processing step, filtering through history and existing literature
to extract meaningful insights and setting the foundation for next steps. Chapter 2 re-
flects the input layer, where signal processing approaches are implemented to process
raw video data and transform them into physiological signals. Chapter 3 acts as the
hidden layers, with the proposed method capturing complex patterns and refining the
extracted features. Chapter 4 serves as the output layer, where video quality metrics
assess performance and reliability. Finally, chapter 5 functions as a calibration step,
ensuring the models’ confidence is well-calibrated and providing a measure of relia-
bility using conformal predictions. This approach mirrors the way machine learning
systems are designed, layer by layer, extracting insights at every step of the way to
progressively refine knowledge.

Chapter 1: Pre-processing: History and Foundations for Pulse Measurement

This chapter introduces the fundamental concepts behind rPPG, providing historical
context and physiological principles. It covers the evolution of pulse measurement, the
physiological mechanisms underlying rPPG and the challenges of measuring heart rate
using video. This chapter lays the groundwork for the subsequent technical contribu-
tions.
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FIGURE 1: Visualization of the thesis structure, reflecting the building blocks of a Ma-
chine Learning model.

Chapter 2: Input Layer: Foundations of Signal Processing for Remote Photoplethys-
mography

We explore traditional signal processing approaches for pulse estimation, focusing on
motion-based methods. This chapter details our adaptation and customization of exist-
ing methods for rPPG, incorporating adjustments to fit the specific characteristics of the
data. We introduce enhancements, such as the integration of Persistent Independent
Particles for feature tracking and K-means clustering for improved signal extraction.

Chapter 3: Hidden Layers: Capturing Spatiotemporal Patterns

This chapter introduces a novel spatiotemporal two-stage learning approach that in-
tegrates signal processing with machine learning. We present a framework that stabi-
lizes video inputs, extracts meaningful temporal patterns and refines pulse estimation
through machine learning techniques. Comparative evaluations highlight the strengths
of this approach in improving accuracy and robustness.

Chapter 4: Output Layer: Assessing Video Quality and Developing Metrics

This chapter systematically examines how video quality factors such as blur, illumi-
nation changes, motion artifacts and resolution affect rPPG model performance. We
propose and validate novel video quality metrics tailored to rPPG, providing a struc-
tured way to assess the reliability of pulse estimation in diverse real-world conditions.

Chapter 5: Calibration: Confidence with Conformal Predictions



6 Prologue

This chapter introduces the application of conformal predictions to rPPG, establishing
a framework for quantifying uncertainty in heart rate estimation. Given the inher-
ent challenges of rPPG, such as motion artifacts, lighting variations and unpredictable
video conditions, ensuring that predictions are both accurate and well-calibrated is crit-
ical for real-world applications. We explore different nonconformity measures, first ap-
plying conformal predictions with mean absolute error and then integrating a quality-
aware metric developed in Chapter 4.

Chapter 6: Deployment: Discussion and Future Work

The final chapter summarizes the key contributions of this thesis and reflects on their
implications for the future of rPPG. We discuss open challenges, potential applications
and directions for future research, emphasizing how advancements in video-based
pulse measurement can contribute to broader healthcare and human-computer inter-
action contexts.



7

Chapter 1

Pre-processing: History and
Foundations for Pulse Measurement

Just as preprocessing sets the stage for effective learning in a model, understanding the
historical and foundational context of pulse measurement illuminates the path for modern
advancements in remote photoplethysmography.

Throughout history, humanity has strived to extract meaning from subtle body sig-
nals. While earlier civilizations practiced medicine in various forms, a marked shift
can be seen in ancient Greece, where observation and diagnosis became central, moving
away from the belief that illness was a punishment from the gods. This shift to rational
medicine marked the beginning of a new way of understanding the body. Diagnosis
started to rely on the body’s rhythms, patterns and signals. Among these signals, the
concept of vital signs began to emerge. Even though they were not formally introduced
into clinical practice until the late 1800s, ancient physicians had already observed the
correlation between illness, high pulse and variable breathing patterns. Pulse, in partic-
ular, has captivated physicians, philosophers, even poets throughout history, standing
out as one of the earliest vital signs to be observed, studied and documented [Elsberg
(1931)]. Its rhythmic beat was linked to the mysterious inner workings of the body,
offering a window into health and disease long before diagnostic tools existed. Un-
like other vital signs that required advanced instruments or indirect observation, pulse
could be assessed with a simple touch, making it one of the most accessible indicators
of physiological state. Ancient physicians relied on it to infer the heart’s function, the
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body’s balance, even the patient’s emotional state, cementing its role as a foundation of
early medical practice.

Pulse has been celebrated in literature, poetry and art, becoming a metaphor for life
and emotion, inspiring poets and writers across civilizations and time. It was often
described as a reflection of passion or anxiety, with its rate tied to human experiences.
While unique to each individual, pulse remains a universal biological rhythm. Ancient
physicians were drawn to pulse because it was observable and changing in response
to disease, physical strain or emotional states. This adaptability made it an excellent
indicator of health long before scientific measurements and tools became available.

This chapter explores the rich history of pulse measurement, from its early interpreta-
tions to its evolution into a critical diagnostic tool. By understanding how pulse shaped
early medical thought, we can appreciate its continuing role in modern medicine and
its connection to life.

1.1 Tracing the Pulse Through Time

1.1.1 Pulse in Early Medicine

The ancient Greeks were among the first to study pulse as a diagnostic tool, associ-
ating its patterns to malady. Hippocrates recognized the importance of observing the
body’s rhythms, and though his understanding was rooted in the humoral theory, he
noted that pulse variations could indicate illness or internal imbalances [Craik (2014)].
A strong, steady pulse was seen as a sign of health whereas a weak, irregular pulse was
associated with disease or impending death. Galen built a more structured pulse diag-
nosis framework, based on Hippocrates’ observations. He categorized pulse into four
variables: magnitude, speed, frequency and regularity (or irregularity) [Wallis (2000)].
He even theorized that pulse could reflect emotional states, such as fear or anger, high-
lighting its connection to the nervous system. Galen also emphasized the role of the
arteries and the heart in generating pulse, refining earlier anatomical knowledge.

While the Greeks viewed pulse through humoral imbalance, Traditional Chinese Medi-
cine (TCM) developed a holistic approach to pulse. It became a central tool for assess-
ing the body’s internal state. Pulse was thought to reflect the balance of yin and yang
and the flow of qi (vital energy). Disruptions in this balance were believed to be as-
sociated with illness, and pulse offered clues about the nature of the imbalance. Pulse
diagnosis in TCM involved a complex system for assessment. Physicians examined
pulse at three positions on each wrist: cun, guan and chi, by applying different levels
of pressure (Figure 1.1). Each position corresponded to a specific organ, such as the
heart, liver, kidneys, spleen or lungs [Velik (2015)]. Unlike Greek medicine, which cat-
egorized pulse mainly based on rhythm and strength, Chinese medicine identified 28
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distinct pulse qualities including floating, sunken, slow, rapid, surging, fine and vac-
uous among others. For example, a floating pulse indicated external conditions like
colds or fevers.

FIGURE 1.1: Distribution of organs in the six wrist positions for examining pulse and
correlating it to different organs [Tang (2012)].

Unlike Greek humoral theories, which faded with time, Chinese pulse diagnosis has
remained a vital practice in contemporary medicine, due to its adaptability, depth and
holistic approach.

1.1.2 From Fingers to Instruments: Measuring Pulse Over Time

For centuries, pulse assessment relied solely on touch. While effective for detecting
abnormalities, this method lacked precision, prompting efforts to develop objective
measurement tools. This marked a significant shift from intuitive observation to quan-
titative analysis.

The first steps toward automation came in the 17th century with Santorio Santorio’s
pulsilogium [Bigotti and Taylor (2017)], a pendulum-based device with which he at-
tempted to standardize pulse assessment. This invention represented an early effort
to translate pulse into measurable data. However, the pulsilogium was impractical for
clinical use. It relied on a pendulum, whose height had to be adjusted per patient to
match their pulse rate. Due to its size and setup complexity, medical professionals pre-
ferred manual pulse palpation, which was simpler, faster and sufficiently reliable for
most diagnoses. As a result, pulse assessment remained primarily physical for the next
two centuries.
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Building on William Harvey’s 17th-century discovery of the circulatory system [Rib-
atti (2009)], physicians began to classify pulse irregularities and relate them to specific
conditions. Jean-Baptiste Bouillaud, known as the “Father of Modern Cardiology,” was
one of the first to establish a link between pulse irregularities and rheumatic heart dis-
ease, contributing to early cardiovascular diagnostics [Silverman (1996)]. Advanced
pulse understanding led to greater insights into cardiovascular health. Physicians be-
gan routinely assessing pulse rate, its rhythm and strength, correlating them with dis-
eases like hypertension and heart failure. The invention of the stethoscope by René
Laennec in 1816 added a new dimension to pulse assessment by enabling physicians to
listen to heart sounds (Figure 1.2). Though primarily a tool for auscultation (listening
to the internal sounds of the body), the stethoscope allowed physicians to deepen their
understanding of cardiovascular function. It also played a key role in identifying con-
ditions like valvular heart disease, where abnormal sounds correlated with an irregular
heart rate (HR).

FIGURE 1.2: The first drawing of a stethoscope. 1) instrument assembled, 2) and 3)
two portions of the instrument in longitudinal section, 4) detachable chest piece, 5) ear
piece unscrewed, 6) transverse section [Roguin (2006)]. Original image courtesy of the

US National Library of Medicine.

In the mid-19th century, the development of the sphygmograph by Karl von Vierordt
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introduced the concept of pulse waveform analysis [Dudgeon (1882)]. This mechanical
device recorded pulse waveforms as graphical tracings, offering a glimpse into arte-
rial elasticity, blood flow and vascular health. While innovative, the sphygmograph
was cumbersome and required significant operator expertise, something that limited
its practical application and widespread adoption. Nevertheless, it bridged the gap
between manual palpation and automated devices, introducing the concept of pulse
waveform analysis as a diagnostic tool.

Building on Vierordt’s work, Étienne-Jules Marey refined the sphygmograph in the late
19th century, making it more portable and clinically relevant [da Fonseca et al. (2014)]
(Figure 1.3). Marey emphasized the diagnostic value of pulse waveforms, particularly
in identifying arterial stiffness and cardiovascular disease. His advancements deep-
ened the understanding of pulse propagation and its relationship to blood pressure
and cardiac output, laying the foundation for future technologies.

FIGURE 1.3: The Sphygmograph developed by Etienne Jules Marey in 1860 [da Fon-
seca et al. (2014)].

1.1.3 The 20th Century Pulse Revolution

The 20th century saw a technological revolution in medicine, driven by advances in
physics, engineering and computing. These innovations introduced electrical devices
that enhanced the ability to measure and monitor vital signs with high precision. Specif-
ically, Willem Einthoven’s invention of the electrocardiograph (ECG) in 1903 trans-
formed cardiology [Cajavilca and Varon (2008)]. By measuring the heart’s electrical
activity, it enabled the detection of arrhythmia (irregular heartbeat), ischemia (reduced
blood flow to tissues) and other cardiovascular abnormalities. His use of a string gal-
vanometer to record electrical signals from the heart (Figure 1.4) earned him the Nobel
Prize in Medicine in 1924. The introduction of portable ECG devices in the 1930s made
this technology more accessible, and by the mid-20th century, ECGs had become an
integral part of cardiovascular diagnostics.
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As electrocardiography matured, advances in electrode placement led to the develop-
ment of multi-lead configurations. Early systems expanded from single-lead to three
and six-lead ECGs during the 1930s and 1940s, allowing clinicians to record the heart’s
electrical activity from multiple perspectives and detect abnormalities more accurately.
These intermediate configurations paved the way for the standard twelve-lead ECG
still used in clinical practice today.

FIGURE 1.4: Illustration of early ECG recording using salt solution electrodes, a crucial
breakthrough in non-invasive cardiac monitoring [Nanthakumar and Sivakumaran

(2018)].

Norman Holter’s 1949 invention of the Holter monitor (Figure 1.5) revolutionized ECG
monitoring by enabling continuous 24–48-hour recordings, significantly improving the
diagnosis of arrhythmia [DiMarco and Philbrick (1990)].

The invention of the pulse oximeter in the 1970s provided a revolutionary method for
non-invasive measurement of arterial oxygen saturation (SpO2) and pulse rate. De-
signed by Takuo Aoyagi [Severinghaus (2007)], the device relied on light absorption at
different wavelengths to calculate SpO2 based on the proportions of oxygenated and
deoxygenated hemoglobin in the blood. Even though it was initially developed for
surgery and critical care, it quickly became essential for monitoring oxygenation pulse.
By the 1980s, portable pulse oximeters were widely adopted, making them a standard
tool in operating rooms, intensive care units (ICUs) and emergency departments.

Eventually, technological advancements came together to create multi-parameter moni-
tors, which could measure several vital signs at once in a single device. These tools inte-
grated ECG, SpO2, respiration rate and blood pressure monitoring, providing clinicians
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FIGURE 1.5: A Holter monitor and the output ECG reading illustrating heart rate. The
number and position of electrodes varies by model, but most Holter monitors employ
between three and eight. Image courtesy of the John Hopkins Medicine organization.

with a comprehensive real time overview of a patient’s condition. Multi-parameter sys-
tems are the gold standard in modern medical settings where continuous monitoring
is critical for managing critically or chronically ill patients.

1.1.4 Pulse Measurement in the Digital Age

In the 21st century, wearable technologies have brought pulse monitoring into ev-
eryday life. Devices like smartwatches [Phan et al. (2015); Reeder and David (2016);
Sarhaddi et al. (2022)] and rings [Park et al. (2013); Cao et al. (2022); Kim et al. (2024)],
use advanced optical sensors to continuously monitor HR, detect irregularities and
even predict potential health issues. The Apple Watch, Fitbit and Garmin leverage pho-
toplethysmography (PPG) to monitor pulse rate and rhythm. This technique measures
blood volume changes in tissue using light absorption, enabling continuous tracking
of HR during daily activities, exercise or sleep. Additionally, modern wearable devices
incorporate features such as irregular rhythm detection, allowing users to monitor for
signs of arrhythmia or atrial fibrillation. The combination of these physiological sig-
nals and the integration of Artificial Intelligence (AI) capabilities, has given the user
the ability to track key health parameters, like activity, sleep, menstrual cycle, stress
and predict energy levels and readiness scores. Some devices can even issue warnings
for potentially dangerous conditions, such as tachycardia or bradycardia.

This shift from clinical tools to devices available to consumers underscores pulse’s en-
during importance as a vital sign, bridging the gap between medical and personal
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health management. From the sphygmograph to AI-powered wearable devices, the
history of pulse measurement reflects humanity’s ongoing journey to understand the
body’s underlying rhythms.

1.2 I Can See Your Heartbeat: Video-Based Pulse Measurement

While these traditional methods advanced pulse monitoring in clinical settings, they all
share a common limitation: they require direct contact with the patient. This, while ef-
fective in controlled environments, poses challenges in settings where physical contact
or the use of traditional devices is impractical or unavailable, thus can lead to delays
in diagnosis and sub-optimal management of health conditions. The rise of computer
vision and machine learning has enabled remote photoplethysmography (rPPG), al-
lowing pulse measurement from standard video recordings without physical sensors.

rPPG represents a groundbreaking shift in how vital signs can be monitored. Unlike
conventional methods, rPPG utilizes standard cameras and advanced algorithms to de-
tect subtle changes in skin color or micro motion caused by blood flow. These changes
are captured by video and analyzed to extract pulse information. This innovation lever-
ages accessible technology, eliminating the need for physical, often costly sensors while
broadening the scope of which part of the body pulse measurements can be taken.

The increased risk of infection for healthcare workers and patients, the fragile skin of
newborn infants or the elderly, the importance of continuous surveillance for chronic
disease patients, individuals in inaccessible locations, lack of mobility, staff shortage or
financial constraints are some of healthcare’s current barriers that could benefit from
remote monitoring solutions. Beyond medicine, applications can extend to wellbeing,
with fitness, mental health and stress monitoring. Video-based pulse measurement
aligns with the broader movement towards non-invasive, ubiquitous and user-friendly
health monitoring solutions.

1.2.1 Uncovering the Science Behind rPPG

A critical step in remote HR estimation is the understanding of the underlying princi-
ples of pulse and its manifestation on the skin, particularly on the face. These principles
have been well-established since the development of pulse oximetry in the 70s, which
relies on light absorption by hemoglobin to measure blood oxygenation and pulse rate
non-invasively. The following sections provide a detailed look at arterial pulse prop-
agation, the role of hemoglobin in light absorption and reflection and the transition
from traditional contact-based PPG systems to advanced video-based pulse estimation,
which helps us understand how algorithms extract vital information from video data
to enable real-time, non-invasive monitoring of pulse.
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1.2.1.1 The Heartbeat’s Journey

Pulse is defined as the rhythmic contraction and expansion of arteries caused by the
ejection of blood by the heart’s systolic phase (contraction phase, when blood is pumped
out) and diastolic phase (relaxation phase, when the heart refills with blood) [Walker
et al. (1990)]. The flow of blood in the arteries generates pressure waves that propagate
through the arterial system, affecting surrounding tissues, including the skin. The two
main reasons there are observable effects of pulse on the skin are the blood volume
changes and the hemoglobin absorption and reflection.

Blood Volume Changes When the heart contracts during systole, it ejects blood into the
aorta, creating a surge in blood pressure. This surge travels as a pressure wave away
from the heart and through the arterial system, reaching the facial arteries. Since the
vessels are located close to the surface, the skin experiences a subtle elevation during a
cardiac cycle.

Hemoglobin Absorption and Reflection Hemoglobin is a protein found in red blood
cells that plays a central role in the transport of oxygen from the lungs to tissues
throughout the body. Hemoglobin also plays a role in transporting carbon dioxide,
a waste product of metabolism, from the tissues back to the lungs for exhalation. The
oxygenation state of hemoglobin can vary throughout the cardiac cycle. During systole,
when blood is ejected into the arteries, there is higher concentration of oxyhemoglobin
in the arterial blood. During diastole, when the heart is refilling with blood from the
veins, the concentration of oxyhemoglobin in the arterial blood decreases (deoxyhe-
moglobin). These variations in hemoglobin oxygenation have a direct impact on how
blood interacts with light, particularly in the visible and near-infrared spectrum.

1.2.1.2 Light, Blood and the Science of PPG

To quantify the pulse signal, researchers historically use PPG [Allen (2007)]. It is a
non-invasive, contact-based technique that measures the light absorption or reflection
caused by blood volume variations on the skin. A light source emits light in the visible
or near-infrared spectrum, with specific wavelengths chosen to target the absorption
characteristics of hemoglobin. It is placed on areas of the body where blood vessels are
close to the surface. The emitted light from the source penetrates the skin and hits blood
vessels beneath the skin’s surface. Hemoglobin in the blood absorbs some of this light,
while the remaining light is scattered and reflected back towards the photodetector.
The PPG sensor detects these pulsatile changes in light absorption and converts them
into an electrical signal. The frequency of the waveform corresponds to the HR, as each
peak in the waveform represents a heartbeat. An illustration of the above procedure is
presented in Figure 1.6.
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FIGURE 1.6: Illustration of pulse signal acquisition in PPG systems. The light source
illuminates the skin, and variations in absorption due to blood flow are captured by

the photodetector, forming the basis of pulse estimation.

Video-based pulse estimation harnesses these physiological responses to estimate pulse
remotely and non-invasively. Since these subtle variations can manifest on the facial
skin, by capturing them, video-based methods enable real-time monitoring of pulse
without the need for physical contact or invasive sensors. RGB (Red, Green, Blue) cam-
eras, which are commonly used in video-based pulse estimation due to their accessibil-
ity, capture images by measuring the intensity of light in three primary color channels:
red, green and blue. The combination of these color channels allows RGB cameras to
capture a wide range of colors and variations in skin appearance. By analyzing the
changes in pixel values over time, algorithms can isolate the signal in the video, which
corresponds to changes in blood volume and oxygenation due to the cardiac cycle.

1.3 Extracting Pulse from Pixels

The first study that demonstrated the feasibility of extracting pulse from video record-
ings of a person’s face under ambient light was conducted in 2008 by Verkruysse et al.
(2008). This groundbreaking work proved that consumer-grade cameras are capable of
capturing subtle variations in light reflected from the skin, which correspond to blood
volume changes produced by the cardiac cycle. Among the three primary color chan-
nels (red, green, blue), the green channel was identified as carrying the most robust
pulse signal due to hemoglobin’s peak light absorption in the green wavelength range.
This finding was attributed to the fact that hemoglobin absorbs light more effectively
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in the green wavelength range. The study also noted that while red and blue channels
contain pulse signals, they are less distinct and more susceptible to noise.

Building on the findings of Verkruysse et al., Poh et al. (2010b,a) explored the appli-
cation of webcam technology for pulse measurement in 2010. They introduced a sys-
tematic rPPG pipeline using Independent Component Analysis (ICA) to separate pulse
signals from noise, including respiration and motion. They improved Region of Inter-
est (ROI) tracking and extraction techniques to ensure reliable pulse estimation. While
effective, the method struggled with significant motion artifacts and illumination vari-
ations. In their first study, [Poh et al. (2010b)] continuously selected the second inde-
pendent component as the source signal for further analysis, assuming it represented
the pulse signal. However, in their subsequent work Poh et al. (2010a), they refined
their approach by choosing the independent component with the strongest frequency
peak within the typical HR range. In 2011, Madej et al. (2011) introduced the use of
Principal Component Analysis (PCA) as an alternative to ICA for separating the pulse
signal. This method showed potential in scenarios with relatively low motion, but like
ICA, it struggled in dynamic conditions with noise. CHROM, short for ”chrominance-
based remote photoplethysmography” by De Haan and Jeanne (2013), capitalized on
the fact that the skin’s chrominance (color) changes subtly during the cardiac cycle due
to variations in blood volume and oxygenation. CHROM processes these color changes
by linearly combining the red, green and blue channels, with adjustments to account
for variations in skin tone reflectance.

While initial rPPG research focused mainly on analyzing changes in light reflection
from the skin, a novel perspective emerged in 2013, introducing the concept of using
facial micro-movements caused by blood flow as a pulse signal source. Balakrishnan
et al. (2013) observed that the movement of blood through the facial arteries during the
cardiac cycle causes subtle displacements of the skin. Blind Signal Separation (BSS), a
statistical approach that separates a set of mixed signals into their independent sources,
was used to filter out noise and extract the most periodic signal corresponding to the
pulse. This approach demonstrated that pulse could be derived not only from light-
based variations but also from the physical motion of the face.

These findings, regardless of wether the signal is extracted from light or motion changes,
emphasized the importance of ROI selection for accurate rPPG, as not all facial regions
contribute equally to the signal due to variations in blood vessel density. They high-
lighted that the distribution of blood vessels varies across facial regions, making some
areas more suitable for pulse signal extraction. Kumar et al. (2015) evaluated different
facial regions for pulse signal extraction and found the forehead and cheeks to be most
reliable due to higher blood vessel density. Kwon et al. (2012) validated the effective-
ness of smartphone cameras for pulse estimation. They systematically tested various
facial regions, confirming the forehead and cheeks as optimal ROIs due to high Signal-
to-Noise Ratio (SNR), whereas Lempe et al. (2013) favored the cheeks as they are rarely
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occluded. Poh et al. (2010b) also briefly mentioned the importance of selecting stable
regions of interest, such as the forehead, to improve signal quality. More recently, Kim
et al. (2021), Wong et al. (2022) and Li et al. (2024) highlighted that the forehead and
cheeks are conventionally regarded as preferred facial ROIs for rPPG measurements.
Their research noted that regions with smaller angles of reflection, such as the forehead
and cheeks, contained stronger rPPG signals and they are frequently used due to their
favorable anatomical features and consistent signal quality.

However, static ROI selection can impact the robustness and accuracy of pulse esti-
mation. A key issue is the assumption that specific facial regions consistently provide
the optimal signal quality. In reality, the signal strength within these regions can vary
significantly due to individual differences in skin tone, blood vessel distribution and
physiological factors. Static ROIs are particularly susceptible to motion artifacts, as
they do not account for shifts in the ROI caused by head movement. Uneven lighting or
shadows can further degrade signal quality within a fixed ROI and occlusions like hair,
glasses or facial covers, can obstruct the selected region, leading to signal loss. These
challenges underscore the need for more adaptive or dynamic ROI selection methods,
which can mitigate motion and illumination changes and individual variability.

To address this, Kiddle et al. (2023) introduced a tiling and aggregation algorithm that
focuses on high-quality facial areas, particularly benefiting darker skin tones by dy-
namically identifying regions with stronger rPPG signals. They divided the face into
small regions (tiles), evaluate their signal quality and combined the best-performing
tiles to optimize rPPG signal extraction. Similarly, Feng et al. (2015) proposed a Dy-
namic ROI (DROI) method that uses K-means clustering to divide fixed ROIs into
blocks, dynamically selecting the best-performing ones based on signal quality met-
rics like cross-correlation and signal-to-noise-ratio (SNR). This method showcased im-
proved adaptability to physical and environmental variations. Building on these ideas,
Po et al. (2018) developed an Adaptive ROI (AROI) approach that uses spatial-temporal
blocks and mean-shift clustering (a method that groups data points by shifting them to-
ward areas where similar points are most concentrated, automatically finding clusters
without needing to specify how many there are) to create dynamic SNR maps, account-
ing for motion and illumination changes. Lastly, Wei et al. (2022) introduced a dynamic
ROI tracking system that leverages facial landmarks and segmentation to optimize sig-
nal combination for robust pulse estimation, even with facial masks or varying video
resolutions. Despite their contributions, these methods faced challenges in handling
non-rigid facial motion, maintaining robustness under severe lighting variations and
ensuring real-time performance. Furthermore, methods requiring predefined metrics
or thresholds, like SNR or cross-correlation, can struggle with generalization across
diverse datasets or applications. Despite these challenges, dynamic ROI selection re-
mains an intriguing concept that aligns with our vision for improving rPPG and we
incorporate similar principles into our work.
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Even with the most advanced ROI selection algorithm, motion artifacts and illumina-
tion changes remain a significant challenge for rPPG. For the first, if the subject moves
excessively, it becomes nearly impossible to extract a reliable pulse signal. There is
a fundamental upper limit to the amount of motion that rPPG algorithms can toler-
ate. Much of the research in this field has focused on mitigating artifacts caused by
common, smaller movements, such as talking, nodding or slight shifts in posture, to
improve signal quality in more realistic scenarios. However, real-world settings, where
individuals may move erratically or unpredictably, introduce a different level of com-
plexity that remains an open challenge. For the latter, variations in lighting conditions
can dramatically affect the intensity and visibility of skin color changes, which are cru-
cial for rPPG signal extraction. Sudden shifts in brightness, shadows or different light
sources can disrupt consistency, leading to signal degradation. While some methods
attempt to normalize or compensate for these fluctuations, robust solutions that allow
rPPG to function reliably across diverse lighting environments are needed.

To address motion and illumination artifacts, McDuff et al. (2014) demonstrated that
using alternative color bands, such as cyan and orange, improves the quality of blood
volume pulse (BVP) signals under varying lighting conditions. This method leverages
ICA and filtering to mitigate noise but is limited by the dependency on predefined
filtering parameters, which may not generalize across diverse scenarios. Similarly, Ab-
dulrahaman (2024) introduced a two-stage motion artifact reduction algorithm, which
partitions and recombines the green channel before applying wavelet denoising to ex-
tract HR. While effective, this approach depends heavily on the green channel, which
may underperform in environments with uneven illumination or for individuals with
darker skin tones. Xu et al. (2023) proposed a narrowband near-infrared (NIR) imaging
system to address illumination changes, using facial landmarks to exclude segments
with heavy motion noise. However, the reliance on specialized NIR equipment lim-
its its applicability in general-purpose settings. To improve robustness to both motion
and illumination, Li et al. (2014) used facial landmark tracking, adaptive filtering and
segmentation to address rigid and non-rigid motion. Although it performed well un-
der dynamic conditions, its computational complexity hindered real-time applications.
Feng et al. (2014) leveraged a Lambertian model, where the surface was assumed to
reflect light uniformly in all directions, and adaptive adjustments to color channels for
motion compensation, but the method struggled with severe non-uniform illumination
changes. By dynamically modifying the intensity of signals from the RGB channels
in video recordings they aim to compensate for changes in lighting or motion. Since
motion and illumination variations can distort the pulse signal captured in the RGB
channels, adaptive adjustments aim to rebalance the signals by emphasizing the color
channels most relevant to the pulse signal while minimizing the noise introduced by
external factors. Lastly, Wang et al. (2014) introduced a pixel-based framework for mo-
tion compensation and spatial pruning, where each pixel in the video’s ROIs is treated
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as an independent sensor for extracting the rPPG signal. The method focuses on com-
pensating for motion artifacts and removing noisy pixels (spatial pruning) to improve
the quality of the extracted pulse signal. They significantly improved SNR but this
method requires high-resolution video, which may not always be feasible. While all
these methods demonstrate progress in addressing motion and illumination artifacts,
challenges persist in generalizing across diverse datasets, ensuring real-time perfor-
mance and maintaining robustness under extreme conditions. Nonetheless, we agree
that every method is essential to address these artifacts one way or another, as they
represent realistic conditions under which rPPG must perform accurately.

Signal processing techniques in rPPG often use frequency-domain analysis to extract
pulse signals. For instance, Wang et al. (2014) applied Fast Fourier Transform (FFT)
to identify the dominant frequency corresponding to the pulse rate, which works well
for stationary signals with consistent periodicity. However, this approach assumes the
signal is stationary and lacks the ability to track changes over time.

From our extensive review of the signal processing literature, we conclude that most
approaches follow the structure presented in Figure 1.7. The framework begins with
the pre-processing step, where the face is detected and specific ROIs, such as the fore-
head or cheeks, are identified. Feature extraction then extracts raw signals, such as
pixel intensities or motion trajectories, from the ROIs. To isolate the frequency com-
ponents associated with HR, filtering is applied - frequently using a bandpass filter
tailored to the range of typical human HR. The filtered signals then undergo signal
decomposition using methods like PCA or ICA, separating the pulse signal from noise
caused by motion, lighting changes or respiration. Finally, frequency analysis identifies
the dominant frequency for HR estimation.

While significant progress has been made in signal processing approaches for rPPG,
several challenges remain. Static ROI selection assumes uniform signal quality across
specific facial regions, ignoring individual variations in skin tone and physiological
factors, which can lead to inconsistent performance. Motion artifacts, particularly dur-
ing head movements or facial expressions, remain a persistent obstacle, with many
methods failing to adapt to rapid motion despite advancements in motion compen-
sation techniques. Illumination variability poses another major obstacle, with most
approaches relying on assumptions of consistent lighting, making them less effective
in real-world scenarios. The generalizability of these methods is limited by a lack of
evaluation on diverse datasets, as many of these studies highlight, such as varying
skin tones, ages and ethnicities. These challenges underscore the need for more robust,
adaptive and inclusive approaches to improve the practicality and applicability of rPPG
in real-world environments. Despite that, the significance of signal processing methods
is highlighted to this day, despite the boom of Deep Learning (DL). These methods are
straightforward, interpretable, computationally light and provide an excellent basis to
understanding the limitations of rPPG in real-world settings.
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FIGURE 1.7: Flowchart of a typical signal processing algorithm for pulse estimation.

1.4 Teaching Machines to Read Pulse

As ML started becoming increasingly popular, researchers began to leverage its power
to improve pulse estimation. ML methods offer several advantages over traditional
signal processing approaches, including automatic feature extraction, scalability and
adaptability. Unlike signal processing methods, which often rely on prior physiologi-
cal knowledge and handcrafted features, ML models learn complex and subtle patterns
in video data, enabling more robust and accurate pulse measurements even under chal-
lenging conditions.

The incorporation of ML in rPPG began with relatively simple algorithms aimed at aug-
menting existing signal processing frameworks. For example Monkaresi et al. (2013)
extended Poh’s signal decomposition approach by employing participant-specific K-
nearest neighbors (KNN) and linear regression models. These models helped opti-
mize the selection of independent components, improving pulse estimation accuracy
in scenarios with realistic movement. Song et al. (2021) with PulseGAN, attempted to
improve the quality of the extracted pulse waveforms using a Generative Adversarial
Network (GAN)-based approach. A generator refines rough CHROM signals to closely
match reference PPG signals, while a discriminator ensures realism.

While these methods are heavily reliant on signal processing pipelines, they marked the
beginning of a shift towards end-to-end ML approaches. The field progressed rapidly
as researchers began embracing DL for its ability to learn features directly from raw
or minimally processed data, eliminating the need for handcrafted feature extraction.
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Convolutional Neural Networks (CNNs) were among the first DL models explored
for rPPG, leveraging their ability to detect spatial patterns in video frames for pulse
signal extraction. Additionally, multi-modal models have emerged, enabling the si-
multaneous estimation of multiple vital signs, such as HR and respiratory rate, further
expanding the capabilities and applications of rPPG systems.

Špetlı́k et al. introduced a two-step CNN architecture comprising of an Extractor com-
ponent, which processes facial image sequences to extract signals optimized for SNR,
and an HR Estimator, which predicts the HR from the extracted signal. DeepPhys
[Chen and McDuff (2018)] utilized a deep attention CNN to calculate pulse and respira-
tion rates. It combines motion and appearance-based attention mechanisms to identify
and focus on ROIs, which enables robust measurement under challenging conditions.
Its attention mechanism allows the spatio-temporal visualization of physiological sig-
nals, highlighting regions like the forehead and carotid arteries for pulse and nasal
flaring for respiration. In 2021, Liu et al. (2020), continuing the DeepPhys work, de-
veloped a multitask temporal-shift convolutional attention network (MTTS-CAN) for
real-time heart and respiration rate estimation. The temporal shift modules were used
to remove noise, the attention mechanism to improve signal source separation and the
multitask mechanism to estimate pulse and respiration rates jointly. It presented a two-
branch structure, one for motion modeling and the other for extracting facial features.
TS-CAN is another version of MTTS-CAN, however it can only assess pulse and respi-
ration separately, not simultaneously.

In literature, three dimensional (3D) CNNs are often described as spatiotemporal net-
works due to their ability to model both spatial and temporal information in videos.
However, this differs from methods using spatiotemporal maps, which explicitly en-
code physiological signals into structured two dimensional (2D) representations. For
clarity we will thereafter refer to 3D CNNs as 3D approaches.

One such approach is PhysNet [Yu et al. (2019a)], designed to accurately estimate pulse
for applications such as HR variability (HRV) analysis, atrial fibrillation and emotion
recognition. PhysNet combined 3D CNNs and Recurrent Neural Networks (RNNs) to
model both spatial and temporal features effectively (Figure 1.8). The network achieved
accurate pulse peak detection using a negative Pearson correlation loss. Yu et al. (2019b)
proposed a system with two components: Spatio-Temporal Video Enhancement Net-
work (STVEN), which improved the quality of compressed videos and rPPGNet, a
spatio-temporal network designed for accurate rPPG signal recovery. rPPGNet inte-
grated attention mechanisms and partition constraints to enhance signal accuracy at
both HR and HRV levels.

Some particularly interesting approaches that focus on developing lightweight models
to address the computational challenges of rPPG deployment on resource-constrained
devices are MobilePhys and EfficientPhys. MobilePhys [Liu et al. (2022)] leverages both
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FIGURE 1.8: Framework of 3D network PhysNet [Yu et al. (2019a)].

front and rear cameras on smartphones to generate high-quality self-supervised labels,
reducing reliance on large labeled datasets while maintaining robust performance. This
approach enables real-time physiological monitoring without excessive computational
overhead. Similarly, EfficientPhys [Liu et al. (2021a)] minimizes processing require-
ments by eliminating the need for face detection, segmentation, normalization, color
space transformation, or any other preprocessing steps. Instead, it directly processes
raw video frames using a lightweight convolutional architecture that implicitly learns
spatial and temporal features relevant to physiological signal extraction. It introduces
the first end-to-end on-device architecture specifically designed for mobile applica-
tions, balancing efficiency and accuracy while enabling real-time inference without tra-
ditional preprocessing pipelines.

Transformers, originally developed for natural language processing (NLP) tasks [Vaswani
(2017)], have gained significant traction in rPPG and have shown promise by leverag-
ing their powerful self-attention mechanism. Gupta et al. (2023) developed a novel
signal embedding mechanism that captures rPPG-specific features and feeds them into
a transformer model for temporal pattern extraction. The transformer architecture en-
ables long-range dependency modeling across video frames, which enhances the detec-
tion of subtle blood volume changes. PhysFormer [Yu et al. (2022)] is a Temporal Differ-
ence Transformer (TDT) which enhances rPPG signal recovery by explicitly capturing
subtle temporal differences in facial videos. It leverages a temporal difference attention
mechanism, which emphasizes changes in blood volume over time rather than static fa-
cial features. PhysFormer++ [Yu et al. (2023)] builds upon the PhysFormer framework
by introducing a SlowFast temporal difference transformer with two distinct pathways.
Unlike PhysFormer, which utilizes only the slow pathway, PhysFormer++ combines
both slow and fast pathways to better capture temporal context and periodic rPPG pat-
terns from facial videos, thereby enhancing its ability to extract meaningful physiologi-
cal signals. The slow pathway processes information at a lower temporal resolution, fo-
cusing on long-term trends and stable pulse variations, while the fast pathway operates
at a higher temporal resolution, capturing rapid, subtle fluctuations in blood volume
changes. TransPPG [Kang et al. (2024)] is a two-stream transformer that processes both
foreground (facial) and background information, enabling feature-level subtraction to
reduce noise caused by environmental factors like illumination and motion.

Impressive results have been reported in all these works, however, a major challenge
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remains: the lack of publicly available, sufficiently large and diverse datasets essential
for training DL models in rPPG. To mitigate this limitation, researchers have turned
to synthetic data. For example, Niu et al. (2018) propose SynRhythm, a transfer learn-
ing strategy that pre-trains a deep HR estimator using synthetic heartbeat signals be-
fore fine-tuning on real video datasets. Their approach involves generating synthetic
spatiotemporal maps of facial regions and synthetic rhythm signals to train a deep re-
gression model, which is initially pre-trained on ImageNet. This pre-trained model is
then adapted to real-world HR estimation, demonstrating improved performance on
limited video data. Similarly, McDuff et al. (2021) introduce a method for generating
synthetic facial videos with underlying blood flow patterns and breathing movements.
Their synthetic avatars exhibit diverse characteristics such as varying skin tones, facial
hair, facial expressions (e.g., smiling, blinking, mouth movements) and head motion.
By testing these synthetic datasets on the MTTS-CAN model, they observed that rPPG
performance significantly declines for individuals with darker skin tones when trained
on conventional datasets. To address this, they trained separate models for dark and
light skin tones and found that the dark-skin model performed better across all skin
types, highlighting the importance of skin-tone-aware training in rPPG applications.

Unsupervised methods play a critical role in addressing the challenges caused by the
lack of labeled datasets in rPPG. For example, Sun and Li (2022) avoided using ground
truth signals during training by using a 3D CNN to extract spatiotemporal blocks from
facial videos. It then applies contrastive learning to capture similarities within a video
while ensuring differences across videos. Similarly, pseudo-labeling bridges the gap
between supervised and unsupervised learning by generating approximate labels from
the data itself, allowing for further fine-tuning of models [Li and Yin (2023), Savic and
Zhao (2024), Liu et al. (2021b)]. These approaches not only mitigate the dependency
on large annotated datasets but also pave the way for more scalable and generalizable
solutions in rPPG research.

Despite their impressive advancements, ML and DL approaches face notable chal-
lenges. Most importantly, they rely on large labeled datasets, which remains a bot-
tleneck. While synthetic data generation has alleviated some of this burden, the gener-
ated datasets may not fully capture the complexity of real-world scenarios. Addition-
ally, many models demonstrate reduced performance under extreme motion or lighting
conditions, as the training data often lacks sufficient diversity to generalize across such
scenarios. Finally, the computational requirements of DL models can be a bottleneck
for real-time applications on resource-constrained devices.
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1.5 Mapping Pulse Through Space and Time

Hybrid or spatiotemporal approaches, as we will be referring to them in this thesis,
are a combination of signal processing and ML methods, in the sense that they extract
handcrafted features followed by a DL network for pulse estimation. These methods
take advantage of spatiotemporal maps, which are subsequently fed through a ma-
chine or DL framework to extract the pulse rate. Spatiotemporal maps combine spatial
information from ROIs with temporal information, providing a condensed yet rich rep-
resentation of physiological signals over time.

For instance, Wu et al. (2012) employed the Eulerian Video Magnification approach
to amplify subtle spatiotemporal features from facial videos, enhancing signal quality
before further analysis. Similarly, Niu et al. (2018, 2019b,a) generated spatiotemporal
maps by aggregating signals from multiple ROIs, improving the SNR for pulse esti-
mation. These spatiotemporal maps effectively encode physiological cues by mapping
pixel intensity variations across time and space into a more interpretable 2D repre-
sentation. Jaiswal and Meenpal (2022) compressed spatial redundancy by generating
a compact 2D spatiotemporal map of ROIs, preserving temporal dynamics while re-
ducing computational load. Shao et al. (2023) took this a step further by designing
a spatiotemporal transformer module, leveraging self-attention to focus on important
regions and aggregate physiological cues from facial areas, further improving robust-
ness and accuracy. Song et al. (2020) constructed spatiotemporal images by organizing
pulse signals extracted from conventional rPPG methods into a structured 2D format
which captures both the spatial and temporal characteristics of the signal. A modified
ResNet-18 was trained to map these feature images to HR values.

The use of spatiotemporal features offers numerous advantages over traditional video-
based approaches. These methods achieve higher temporal resolution compared to raw
video frames, providing detailed insights into skin changes caused by blood volume
fluctuations. They also mitigate the impact of motion and light artifacts by integrating
information over time, leading to more robust pulse estimation. The integration of
handcrafted preprocessing steps with DL enables models to exploit prior knowledge
while benefiting from the automatic feature extraction capabilities of neural networks.

However, there remain challenges and unexplored areas in spatiotemporal approaches.
Most existing works rely on pre-defined ROIs, which may overlook regions that carry
sufficient physiological signals, limiting the accuracy of pulse estimation. Furthermore,
averaging information from multiple frames into a single spatiotemporal image can
suppress significant signal variations, potentially discarding important physiological
dynamics. These limitations highlight the need for more adaptive and dynamic strate-
gies to identify and utilize the most informative regions in videos.
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1.6 Are We Certain?

In medical and ML applications, certainty in predictions is crucial, especially when
dealing with noisy, real-world data. Conformal predictions offer a principled way to
quantify uncertainty, ensuring that pulse estimations are not only accurate but also
reliable.

conformal preditions is a statistical framework that provides reliable uncertainty esti-
mates for ML predictions. By generating prediction sets or intervals with a guaranteed
level of confidence, conformal preditions ensures coverage for new, unseen data un-
der minimal distributional assumptions. It has been applied across various domains,
including healthcare, time-series analysis and computer vision, which are relevant to
rPPG applications.

In time-series forecasting, Stankeviciute et al. (2021) applied conformal preditions to
multivariate time-series for robust uncertainty estimation. The temporal nature of
rPPG signals aligns with such work, suggesting that conformal preditions could en-
hance trust in pulse predictions by quantifying uncertainty in HR estimations.

conformal preditions methods have been used to provide confidence intervals in clin-
ical settings, particularly for medical imaging tasks. Papadopoulos et al. (2017) pre-
sented a method for providing reliable confidence measures in stroke risk estimation
using ultrasound carotid plaque imaging. Gade et al. (2024) applied conformal predi-
tions to a DL-based prostate segmentation model, flagging uncertain pixel predictions
at a user-defined confidence level. Lu et al. (2022) explored how conformal predi-
tions can complement existing DL approaches by providing intuitive uncertainty mea-
sures and facilitating greater transparency in clinical use. They modified conformal
preditions methods to be more adaptive to subgroup differences in patient skin tones
through equalized coverage.

To the best of our knowledge, at the time of writing this thesis, no prior studies have ap-
plied conformal preditions to rPPG. Given the challenges in rPPG, such as sensitivity to
motion, illumination changes as we discover in previous work, conformal preditions
could offer a valuable framework for improving reliability and quantifying certainty
in pulse estimation. In medical applications, particularly in remote healthcare mon-
itoring, ensuring trustworthy predictions is essential for clinical adoption. By lever-
aging conformal preditions, future rPPG research could achieve more reliable and in-
terpretable physiological measurements, paving the way for broader adoption in real-
world healthcare and wellness applications.
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1.7 Video Quality Matters

Several studies have explored how motion, illumination, compression, and resolution
affect video quality for rPPG. However, no comprehensive framework currently exists
to evaluate these factors holistically. Existing works often focus on one or two specific
factors, such as the impact of motion artifacts as we saw in multiple works previously,
without accounting for the full range of video quality dimensions critical for robust
pulse estimation. Motion artifacts are quantified in some datasets like MAHNOB-HCI
Soleymani et al. (2011), but these evaluations lack integration with other quality mea-
sures, such as occlusions or blur. Compression studies, such as McDuff et al. (2017),
primarily analyze bitrates and codecs but do not address interactions with environ-
mental factors like illumination or motion. Hanfland and Paul (2016) also investigated
the impact of video compression formats - Motion JPEG, MPEG-4 and Motion JPEG
2000 - on the quality of rPPG signals, comparing correlation indices between raw and
compressed.

The lack of a unified metric limits our ability to systematically evaluate video quality
for rPPG across diverse settings. Factors such as occlusions (e.g., glasses, masks), blur
(e.g., out-of-focus regions), illumination (e.g., uneven lighting or flicker) and motion
(e.g., head movement) are known to degrade rPPG signals, but they are rarely quanti-
fied together in a single framework.

To date and to the best of our knowledge, no study has proposed a metric or evaluation
framework that captures the combined effects of all these factors on rPPG signal qual-
ity. A comprehensive video quality metric for rPPG, incorporating motion robustness,
illumination consistency, focus clarity and occlusion detection, would bridge this gap
and provide a standardized tool to assess the suitability of videos for pulse extraction.
This thesis addresses this limitation by presenting a novel set of metrics designed to
evaluate video quality for rPPG holistically, enabling better understanding and selec-
tion of data for robust pulse estimation.

1.8 The (Challenging) Road Ahead

The evolution of rPPG has been marked by significant advances in signal processing,
ML and spatiotemporal methods, each addressing different aspects of the challenges
in remote pulse estimation. Traditional signal processing techniques laid the founda-
tion for rPPG by identifying the physiological principles behind pulse extraction from
facial videos. These methods, however, are constrained by their sensitivity to motion
artifacts, illumination variability and static ROI selection, which prompted the transi-
tion to ML-based approaches.
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DL has significantly improved rPPG performance by learning robust feature represen-
tations from raw video data. CNNs and transformers have demonstrated superior ac-
curacy by leveraging spatial and temporal dependencies in 3D, while spatiotemporal
methods balance the strengths of both signal processing and DL-based rPPG pipelines.
Despite these advances, key challenges remain, particularly in dataset limitations, gen-
eralization across diverse populations and computational efficiency. While synthetic
data and self-supervised learning have been explored to mitigate data scarcity, there is
still a gap in establishing standardized evaluation metrics that account for real-world
variations in video quality.

One of the most pressing concerns in rPPG is its reliability under diverse conditions.
Factors such as lighting variability, skin tone and motion artifacts continue to pose sig-
nificant challenges. To ensure equitable performance, models must be rigorously tested
across diverse populations, avoiding biases that could disproportionately affect indi-
viduals with darker skin tones or those in non-ideal lighting environments. That being
said, this level of rigor requires access to large, diverse and well-annotated datasets,
which are currently scarce. Most publicly available datasets are limited in size and
demographic representation, often lacking sufficient variations in skin tone, age and
environmental conditions. More inclusive data collection efforts and availability for
researchers are paramount for the future of rPPG research.

Despite the remaining challenges, rPPG has expanded beyond medical applications
in fitness tracking, human-computer interaction and biometric security. However, for
rPPG to become a truly reliable and accessible tool, the field must continue address-
ing biases. The research in this thesis aims to address these gaps by improving the
robustness, interpretability and generalizability of rPPG. By tackling these challenges,
we move closer to establishing rPPG as a reliable tool for healthcare and beyond.
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Chapter 2

Input Layer: Foundations of Signal
Processing for Remote
Photoplethysmography

Signal processing marks the beginning of the remote photoplethysmography journey. Like
the input layer of a machine learning model, it serves as the gateway, transforming raw,
noisy data into structured insights and laying the groundwork for everything that follows.

Despite the rise of deep learning in biomedical signal analysis, signal processing re-
mains the backbone of rPPG research due to its interpretability, efficiency and phys-
iological focus. Unlike deep learning models, often criticized as ’black boxes,’ signal
processing techniques provide transparency, which allows researchers to better handle
challenges like noise, motion artifacts and illumination variability. Another key advan-
tage of signal processing is its computational efficiency, requiring fewer resources and
training data compared to deep models, making them particularly attractive for initial
analysis and scenarios where simplicity and speed are crucial.

Historically, the first approach used to extract vital signs from video data was a sig-
nal processing one. In the early 2000s, when deep learning was still in its infancy
and computational resources limited, signal processing provided a robust and efficient
framework for this emerging field. The revolutionary study by Verkruysse et al. (2008)
demonstrated that ambient light captured using a standard consumer-grade camera
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could reveal pulse information. This study established the foundation of rPPG, prov-
ing that subtle changes in reflected light on the skin could be analyzed to extract phys-
iological signals. While early research focused on analyzing reflected light, following
studies such as Balakrishnan et al. (2013), explored the Newtonian reaction of micro
motion caused by blood flow, a work that broadened the scope of rPPG research.

Our decision to focus on signal processing techniques in this chapter is driven by both
practical considerations and the desire to investigate their strengths and limitations.
While deep learning methods have achieved impressive results in rPPG, the underlying
factors influencing their performance are often less interpretable. In contrast, signal
processing enables a straightforward analysis of the core aspects of the problem, such
as the structure of the rPPG signal and how it is influenced by light and motion.

Signal processing methods also operate on well-established principles, with tools such
as ICA, Fast Fourier Transform (FFT) and bandpass filtering. These techniques were
key in the early days of rPPG research, providing practical ways to separate meaning-
ful signals from noise. By building a strong foundation in signal processing, following
research can benefit from a deeper understanding of the problem, ensuring more ro-
bust, effective and tailored solutions.

Chapter Contributions:
In this chapter we investigate the role of signal processing in rPPG. This work is our
foundation for understanding the core principles of rPPG signal extraction, on which
the later approaches and evaluation methods will rely. More specifically, our contribu-
tions are as follows:

• We implement two core signal processing methods for rPPG-based on facial dis-
placements. These methods establish a baseline for pulse estimation, but we find
their performance is heavily influenced by dataset characteristics, particularly
motion artifacts.

• We study the use of Particle Video Point Trajectories for feature tracking com-
pared to traditional optical flow algorithms. Our findings show that this im-
proves tracking accuracy, resulting in lower errors compared to traditional fea-
ture tracking methods.

• We evaluate the impact of feature clustering using K-Means clustering to improve
computational efficiency and performance. Our experiments demonstrate that
clustering features reduces the error in prediction.

• We analyze the effect of dataset bias on signal processing methods and find that
limited representation of women and darker skin tones leads to poorer model
generalizability. This finding highlights the importance of diverse datasets to im-
prove inclusion and performance.
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• We investigate the limitations of handcrafted features in signal processing. Our
results indicate that these features, while interpretable, require extensive tuning,
struggle to generalize across datasets and are less effective in handling significant
motion and illumination variability.

The rest of the chapter is organized as follows: Section 2.1 introduces the datasets and
experimental setup, detailing participant demographics, data collection protocols and
evaluation metrics. Section 2.2 describes the signal processing frameworks, along with
advancements like Persistent Independent Particles for feature tracking. Section 2.3
presents our optimization insights, covering parameter tuning and its impact on per-
formance. It discusses the results, comparing the methods across datasets and con-
ditions, while Section 2.4 concludes with a discussion of the findings, limitations and
implications for future work.

2.1 Datasets and Experimental Foundations

This chapter utilizes two datasets: one obtained from Ostankovich et al. (2018), referred
to as O-HR, and a subset of the MMSE (Multimodal Spontaneous Expression) dataset
[Zhang et al. (2016)], referred to as MMSE-HR. These datasets were selected due to their
accessibility and their suitability for evaluating rPPG methods under varied conditions.
The O-HR dataset was immediately accessible, providing a good starting point for the
experiments. In contrast, acquiring the MMSE-HR dataset required nearly a year of
effort, highlighting the broader issue of data accessibility in rPPG research. Many other
datasets either did not respond to access requests or presented financial barriers, high-
lighting the challenges of data accessibility in rPPG research. Despite these challenges,
O-HR and MMSE-HR together offer insights into rPPG performance across controlled,
diverse and dynamic scenarios.

We conduct all experiments on a MacBook Pro equipped with the Apple M1 Pro chip,
16GB of memory and a 500GB SSD.

2.1.1 O-HR Dataset

The O-HR dataset [Ostankovich et al. (2018)] consists of 30 RGB videos of 15 partici-
pants (Figure 2.2) filmed in a seated position before (normal) and after physical exercise
(physical). Each video has an average duration of 20 seconds, a frame rate of 25 frames
per second (fps) and a resolution of 1920 by 1080 pixels. Videos are captured indoors
under fluorescent lighting. Participant demographics include:

• Gender: 86.6% male



32 Chapter 2. Input Layer: Signal Processing for rPPG

• Facial Hair: 60% of participants have facial hair

• Skin Tone: Based on the Fitzpatrick (1988) scale, participants fall within skin
types II-IV, with 86.6% in types II-III and one participant in type IV as seen in
Figure 2.1.

We conduct this classification manually as it provides a reasonable indication of the
dataset’s diversity. While the Fitzpatrick skin type scale was used to approximate par-
ticipant skin tone, it is important to recognise that this classification system has signif-
icant limitations. Originally developed for assessing skin reactivity to ultraviolet light
rather than for colourimetric or imaging purposes, the Fitzpatrick scale simplifies a
complex, continuous spectrum of skin reflectance into six broad categories. This reduc-
tion overlooks crucial variations in undertone, melanin distribution and illumination-
dependent appearance that directly affect image-based physiological sensing such as
rPPG. Furthermore, the scale was derived from predominantly lighter-skinned popu-
lations and lacks balanced representation across global skin tones, leading to potential
bias when used for evaluating model generalisability.

Manual classification compounds these limitations, as it is subjective and dependent
on viewing conditions, monitor calibration and individual perception. As a result, the
use of Fitzpatrick types in this context should be interpreted as a coarse approxima-
tion rather than an accurate ground truth. Future work should adopt more objective,
imaging-based skin tone estimation methods (e.g., colour-space mapping or standard-
ised digital scales to better capture the diversity relevant to rPPG performance.

FIGURE 2.1: The Fitzpatrick skin scale [Charlton et al. (2020)].

The ground truth heart rate is collected using a 6-lead ECG device (I, II, III, avR, avL and
avF) sampled at 250 Hz. For this study, we use lead I as it provides reliable measure-
ments for heart rate estimation, after consultation with a medical professional. Ground
truth data is available in two formats:

• .cardio files, requiring specialized software (”ECG Control”) for extraction

• .txt files
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FIGURE 2.2: Example frames from the O-HR dataset, showcasing diverse participants
in seated conditions.

The original heart rate recordings were stored in the .cardio format. This format is
not directly compatible with standard data analysis tools and offers limited documen-
tation, making automated parsing and integration with Python-based workflows more
challenging. For processing ease and reproducibility, we opt for the .txt format as it
is widely supported. Using SciPy’s peak detection algorithm we identify the R-peaks
in the ECG signal, representing each heartbeat. This involves analyzing the signal to
locate local maxima within the QRS complex, where the R-peaks correspond to the
highest amplitude points, making them ideal markers for heart rate calculation, as il-
lustrated in Figure 2.3.

FIGURE 2.3: Illustration of an ECG waveform; the R-peak represents the highest point
in the QRS complex, typically used for heart rate calculation through peak detection

algorithms.
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Respiration, voluntary or involuntary movement or electrode contact issues may in-
troduce low-frequency artifacts. Figure 2.4 illustrates the raw and filtered ECG signals
for visual comparison, amplitude representing the strength of the electrical signal. We
filter the raw signal with a high-pass Butterworth filter (1 Hz) to remove baseline drift
and isolate the cardiac signal. Filtering is applied only for visualization purposes to
enhance the clarity of the ground truth ECG signal. Since the R-peaks in the raw signal
are already prominent, filtering is not necessary for peak detection and heart rate ex-
traction later in the chapter. More detailed descriptions on filtering and its impact can
be found in Section 2.2.1.1.

When cropping videos into shorter segments for analysis, we adjust the ground truth
by selecting the corresponding number of samples from the ECG data, aligning them
with video duration.

FIGURE 2.4: Comparison of the raw and filtered ECG signals, illustrating the removal
of low-frequency artifacts.

2.1.2 Multimodal Spontaneous Expression - HR Dataset

MMSE-HR is a subset of the MMSE database [Zhang et al. (2016)], specifically designed
to test the robustness of heart rate estimation methods under conditions with diverse
emotional and physical responses. It consists of 98 RGB videos from 40 participants,
recorded at a resolution of 1040 by 1392 pixels with a frame rate of 25 fps. Each video
duration ranges from 30 seconds to 1 minute. During the recordings, participants are
exposed to various stimuli, including videos, sounds and smells, to evoke a variety of
emotions.

Similar to the O-HR dataset, we perform a manual participant classification by skin
tone using the Fitzpatrick (1988) scale. This is based on percentage split information
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provided with the dataset and visual inspection. Table 2.1 summarizes the distribution
of participants by skin tone and gender. It must be noted that the Fitzpatrick skin tone
types I–III were merged into a single category for analysis. They were visually difficult
to distinguish reliably based on the available images. The original Fitzpatrick classi-
fication was developed for assessing skin reactivity to ultraviolet light rather than for
colour-based categorisation and its distinctions between lighter tones are subtle and
often indiscernible in standard RGB video, particularly under varied illumination and
camera settings. Given these limitations, separating types I, II and III would have intro-
duced unnecessary subjectivity and inconsistency in manual labeling. Grouping them
into a single “lighter tone” category therefore ensured greater reliability and repro-
ducibility in the classification process while still allowing meaningful comparison with
darker tones (IV–VI), where differences in melanin concentration have a clearer effect
on signal quality.

TABLE 2.1: Participant distribution by skin tone and gender for the MMSE-HR dataset,
based on the Fitzpatrick (1988) scale.

Skin tone/
Gender

I-III IV V VI Total
per
Gender

Male 14 2 1 - 17
Female 21 1 - 1 23
Total per
Skin tone

35 3 1 1 40

The dataset includes six emotion-evoking tasks, transitioning participants between pos-
itive and negative emotional states. Each task is followed by a brief pause. The distribu-
tion of participants across these tasks is summarized in Table 2.2. A detailed description
of the activities is provided in Table 2.3.

TABLE 2.2: Participant distribution by activity type for the MMSE-HR dataset.

Skin tone/
Gender

T1 T8 T9 T10 T11 T14 Total
per
Gender

Male 2 2 - 17 16 - 37
Female 8 7 1 23 21 1 61
Total 10 9 1 40 37 1 98

Heart rate ground truth is recorded via a 1 kHz contact sensor, providing pulse mea-
surements that align with the video frames. The data is provided in a .txt format, con-
taining heart rate measurements aligned with each frame of the video. For experiments
involving shorter video segments, we adjust the ground truth by calculating the num-
ber of frames corresponding to the desired duration and averaging the pulse measure-
ments over those frames. This ensures alignment between video data and heart rate
measurements.
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TABLE 2.3: Description of activities in the MMSE-HR dataset, summarizing the stimuli
used.

Task Activity

T1 Listen to a funny joke
T8 Improvise a silly song
T9 Follow-up task similar to

”Improvise a silly song”
T10 Experience physical

threat in dart game
T11 Cold pressor: Submerge

hand into ice water
T14 Experience smelly odor

2.1.3 Evaluation Metrics

We evaluate our methods using Mean Absolute Error (MAE), defined as:

MAE =
1
n

n

∑
i=1

|yî − yi| (2.1)

where yi and yî denote the ground truth labels and predictions, respectively.

We also compute the Standard Deviation (SD) of the errors, defined as:

SD =

√︄
1

n − 1

n

∑
i=1

(xi − x̄)2 (2.2)

where xi represents the individual errors and x̄ is the mean error.

MAE and SD are particularly relevant for evaluating rPPG methods because they quan-
tify the accuracy and consistency of our predictions. MAE measures the deviation
between the predicted and ground truth heart rates, quantifying prediction accuracy.
Meanwhile, SD reflects the variability in the errors, which is crucial for assessing the
robustness of the method across different conditions and participants. Together, these
metrics offer a strong evaluation of our methods’ performance, highlighting both accu-
racy and reliability.

2.2 Tracking the Pulse with Motion-Based rPPG Models

Both motion-based methods we build upon rely on the idea that subtle motion changes
in facial regions caused by blood flow can be used to estimate pulse. While the prin-
ciples are similar, the two approaches differ in their signal decomposition strategies.
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Below, we describe the two methods in detail, highlighting the adaptations made for
our experiments.

We build on the frameworks proposed by Balakrishnan et al. (2013) and Ostankovich
et al. (2018), adapting their methods to align with our dataset characteristics. While
our general workflow remains consistent with their proposed approaches, specific im-
plementation details such as parameters, ROI selection, feature tracking and filtering
techniques have been adjusted, either because details were not provided by the au-
thors, to address dataset specific challenges or to improve performance. These frame-
works were chosen because they represent key advancements in motion-based pulse
estimation, illustrating the progress made in reducing noise and improving accuracy.
For instance, Balakrishnan et al. (2013) introduced the first framework to detect subtle
motion changes caused by blood flow, while Ostankovich et al. (2018) further refined
this by enhancing feature selection and integrating more advanced signal processing
techniques.

Together, these methods provide a robust baseline while also uncovering the strengths
and limitations of traditional signal processing approaches for pulse estimation.

2.2.1 Motion-Pulse rPPG (MP-rPPG)

The first method we implement follows the framework proposed by Balakrishnan et al.
(2013), referred to as Motion-Pulse rPPG (MP-rPPG). The pipeline begins with applying
the Viola and Jones (2001) algorithm to the gray-scale version of the frame to identify a
bounding box containing the face.

To ensure only relevant facial regions are included and to minimize motion artifacts, we
reduce the size of the bounding box by 50% of its width, 90% of its height and exclude
areas such as the neck, hair and eyes (20%-50% of the bounding box height), as seen in
Figure 2.5.

FIGURE 2.5: Selected ROIs focusing on the forehead and mouth/cheeks, optimized
for pulse estimation.
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As illustrated in Figure 2.6, we test a variety of ROIs, from individual areas such as the
forehead and mouth/cheek regions to their combinations, as prior research suggests
that combining these regions provides optimal results [Lempe et al. (2013), Tasli et al.
(2014)]. In addition to testing the above standard ROIs, we explore the neck area and
a region including only the cheeks and nose. This allows us to evaluate the impact of
ROIs on the quality and reliability of the extracted signals.

FIGURE 2.6: Examples of different ROIs tested during experiments, including combi-
nations of the forehead, mouth/cheeks area and neck.

Within the selected ROI, we detect features using the Shi-Tomasi corner detection al-
gorithm [Tomasi and Kanade (1991)]. This algorithm identifies points of high texture
variation, which are ideal for tracking motion. We track the detected features across
video frames using the Lucas-Kanade optical flow algorithm [Shi et al. (1994)] to esti-
mate vertical displacements, as these are most correlated with cardiovascular activity
according to Balakrishnan et al. This algorithm estimates the motion of features by an-
alyzing their displacement between consecutive frames. We specifically focus on the
vertical displacement, as it ”captures the majority of motion caused by cardiovascular
activity” according to Balakrishnan et al. (2013).

We apply cubic spline interpolation to align the extracted features with ground truth
data by matching their sampling rates, ensuring accurate temporal correspondence be-
tween video frames and ECG measurements, since the ground truth heart rate data is
sampled at a higher frequency than the video frame rate. For the O-HR dataset, the
ECG ground truth is sampled at 250 Hz, while the video frame rate is 25 fps. Simi-
larly, for the MMSE-HR dataset, the ECG device operates at 1 kHz and the video at 30
fps. With interpolation we ensure temporal consistency for more accurate analysis. In
Figure 2.7, we present a visual representation of an interpolated feature.
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FIGURE 2.7: Comparison between the original feature signal (dashed line) and its in-
terpolated version (solid red line). The close alignment illustrates how cubic spline
interpolation effectively reconstructs a smooth, continuous signal from sparsely sam-
pled video data, ensuring temporal consistency with higher-frequency ground truth

signals.

Essentially with cubic spline interpolation, we create multiple small cubic equations
(curves) between consecutive data points. Each cubic equation smoothly connects one
point to the next.

In many cases, the features include noise from voluntary or involuntary head and fa-
cial movements. Since the pulse is only causing a minimal displacement, we can safely
remove unstable and erratic features. To achieve this, we calculate the maximum dis-
tance traveled by each feature across frames and remove those that exceed the average
maximum distance, ensuring that only stable features are retained.

Once the features are filtered, we proceed to apply temporal filtering in order to isolate
the frequency range corresponding to heart rates. Typically, we only need to consider
frequencies of approximately [0.75, 2] Hz, which correspond to 40-120 beats per minute
(bpm). However we decide to follow Balakrishnan et al. (2013)’s approach, who sug-
gests to consider a wider range [0.75- 5] Hz, to capture the fundamental pulse frequency
(directly corresponding to heart rate) and its harmonics (multiples of the fundamental
frequency). Harmonics provide additional signal components that can reinforce the
true pulse frequency, particularly in cases where motion artifacts or noise weaken the
fundamental frequency. We select a 5th-order filter as it effectively isolates the desired
signal by smoothly passing relevant frequencies while sharply blocking noise.

After filtering, we are left with a set of features that contain a mix of cardiovascular, res-
piration, facial expression and natural head motion signals. We decompose the mixed
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FIGURE 2.8: Extracted principal components from PCA analysis. Each component
represents a different signal derived from the mixed input data, isolating distinct fea-

tures such as cardiovascular activity, motion and noise.

signal into separate ones to isolate the pulse using PCA (Figure 2.8). An alternative ap-
proach we consider is ICA, but it assumes statistically independent sources, which may
not always be true in rPPG where motion and physiological signals can be correlated.
PCA is more effective at capturing the dominant variance in the signal.

Based on Balakrishnan et al. (2013), we focus on the first five PCA components, which
capture the majority of the variance in the data. We calculate the periodicity of each
component, which is defined as the proportion of spectral power concentrated at the
dominant frequency and its harmonic, indicating the regularity of the signal. The com-
ponent with the highest periodicity is selected for heart rate estimation (Figure 2.9).

The heart rate is computed as:

Heart Rate =
60

fpulse
(2.3)

where fpulse is the dominant frequency of the chosen component.

This approach is computationally efficient, leveraging well-established signal process-
ing techniques that require minimal resources.

2.2.2 Blind-Signal rPPG (BS-rPPG)

Building on Balakrishnan et al. (2013)’s framework, Ostankovich et al. (2018) introduces
refinements to improve robustness and accuracy. We incorporate those refinements and
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FIGURE 2.9: Periodogram of one extracted PCA component, showing the power spec-
trum across frequencies. The dominant peak corresponds to the pulse frequency,

which is used for heart rate estimation.

we will be referring to our version of their method as Blind-Signal rPPG (BS-rPPG).
While the initial steps of face detection, ROI selection and feature tracking are identical
to those in MP-rPPG, several key differences distinguish this approach.

After we extract and filter features to retain only stable ones, the BS-rPPG method in-
troduces an additional smoothing step to improve the extracted signal quality. Specifi-
cally, Singular Spectrum Analysis (SSA) is applied to each of the five PCA components
to decompose them further (Figure 2.11). SSA decomposes the signal into principal
components, allowing for the extraction of dominant patterns while filtering out noise.
The top three components from SSA are then recombined to create smoother signals
with reduced noise. This additional decomposition step enhances the separation of
cardiovascular signals from noise caused by motion and illumination changes.

FIGURE 2.10: Extracted signal after SSA plotted alongside the ground truth ECG sig-
nal. The alignment of peaks demonstrates the effectiveness of SSA in isolating pulse-

related components.
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Once the signals are smoothed, the BS-rPPG approach, instead of relying on periodicity
to select the best component, uses Moving Dynamic Time Warping (MDTW). Dynamic
Time Warping (DTW) is a time-series alignment algorithm that compensates for tem-
poral distortions, such as variations in heart rate over time. However, DTW is sensitive
to noise and struggles with local fluctuations, which can be problematic in rPPG, where
heart rate signals naturally vary.

To address these limitations, MDTW applies DTW within sliding windows rather than
across the entire sequence, allowing it to dynamically adjust to temporal variations in
shorter intervals. This localized adaptation enhances its robustness to signal fluctua-
tions caused by motion artifacts or physiological variability. Additionally, MDTW im-
proves heartbeat peak detection by transforming the signal representation into a more
periodic space, making subtle pulse patterns more distinct while reducing the impact
of noise and irregularities.

The heart rate is then estimated using the formula:

Heart Rate =
60

t2 − t1
∗ Np (2.4)

where t1 and t2 are the timestamps in seconds of the first and last detected peaks, re-
spectively and Np is the number of peaks within this interval. This peak-based ap-
proach is particularly effective in datasets with high motion artifacts, as it leverages the
temporal consistency of the pulse signal.

Below we present a comprehensive visualization of the two methods.

2.2.3 Persistent Independent Particles for Motion-Robust Pulse Detection

In the context of estimating pulse signals from facial videos, the identification of ROIs
and features within them is a fundamental step. However, the accurate tracking of
these features becomes challenging when video instability is substantial. Accurate fea-
ture tracking leads to more reliable separation of cardiovascular signals from noise dur-
ing subsequent processing steps. In our initial experiments we apply the Lucas-Kanade
optical flow algorithm [Shi et al. (1994)]. However optical flow comes with limitations
that, in scenarios like pulse estimation, could be detrimental.

The Shi et al. (1994) optical flow algorithm faces challenges when tracking features
with partial facial occlusions, significant motion or changes in the feature appearance.
It heavily relies on local gradients making it sensitive to noise. This can lead to in-
accurate tracking, especially for subtle signals. Additionally, over time, optical flow
can accumulate errors (drift), especially in long video sequences, resulting in feature
misalignment. Optical flow primarily focuses on pixel intensity gradients, limiting its
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ability to capture complex patterns in motion. Finally, optical flow algorithms oper-
ate under the assumption that the motion of pixels in a small area of an image (or a
neighborhood as it is called) is consistent and follows a predictable, rigid pattern. This
assumption works well for objects that do not change shape, but not when faced with
facial expressions or skin movements where different parts of the face move in varying
directions and with different intensities.

To address this concern, we propose the application of the Persistent Independent Par-
ticles (PIPs) algorithm for feature tracking. Our inspiration is drawn from the work
of [Sand and Teller (2008)] and the follow up work of [Harley et al. (2022)], who in-
troduce a novel motion representation paradigm referred to as ”particle video”. The
idea is that the video is represented as a set of particles that traverse across multi-
ple frames and we leverage long-range temporal priors while tracking them, not just
current and previous frame information. It is important to note that PIPs does not
require fine-tuning, making it a ready-to-use solution for improving feature tracking
without dataset-specific adjustments. While PIPs utilizes deep learning components,
it functions as a motion-tracking enhancement rather than a full model-based learning
system, making it a compatible addition to our signal processing framework.

FIGURE 2.12: Persistent Independent Particles architecture: Given an RGB video as
input along with a location of a feature to track, the model initializes a multi-frame
trajectory, then computes features and correlation maps and iteratively updates the
trajectory and its corresponding sequence of features, with a deep MLP-Mixer model

[Harley et al. (2022)].

Below is a detailed description of how the PIPs algorithm works (Figure 2.12):

We consider an RGB video as input, along with the initial coordinates of the target ob-
ject (in our case a feature within the ROI). The algorithm returns the coordinates of that
target per frame. The framework consists of 4 main steps: extracting visual features,
initializing a list of positions/features per target, measuring appearance similarity lo-
cally and updating the positions/features per target.
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• Visual Features Extraction : Feature maps are extracted using a 2-dimensional
(2D) CNN which processes each frame independently, using the ”Basic Encoder”
architecture from the Recurrent All-Pairs Field Transforms (RAFT) deep network
architecture for optical flow [Teed and Deng (2020)].

• Positions/Features Initialization : After the feature maps are extracted, the fea-
tures and positions for the target are initialized. The first feature map is selected
and samples a feature vector at the given coordinate of the target. This feature
vector represents the appearance of the target at the initial frame. To initialize the
trajectory of features, this feature vector is repeated across all time frames. This
initialization assumes that the appearance of the target remains constant through-
out the video. To initialize the positions of the target, the initial position of the
target across all time frames is copied. This initialization assumes that the target
does not have any initial motion and stays at the same position throughout the
video. During the final step, the trajectory of features is updated to capture vari-
ations in the target’s appearance. The trajectory of positions to track the target’s
motion across frames is also updated.

• Appearance Similarity Measurement : To evaluate how well the positions and
features match the pre-computed feature maps, visual similarity maps are cal-
culated for each feature in the current iteration with the corresponding feature
map of the same time frame. The local similarity scores are extracted by sam-
pling a crop centered at the position (xt, yt) associated with the feature. This crop
represents a small region around the target. The result is a set of patches con-
taining un-normalized similarity scores. Larger positive values indicate higher
similarity between the target’s feature and the features in that particular region
of the image. It has been found beneficial to create a spatial pyramid of these
score patches. This allows to obtain similarity measurements at multiple scales,
capturing different levels of details.

• Iterative Updates : In the main inference step, the sequences of positions and
features are updated. Displacements from the initial positions are computed and
encoded using sinusoidal position encodings. These displacements, along with
the features, are concatenated and processed by an Multi-layer Perceptron Mixer
(MLP-Mixer) architecture, which produces updates for the positions and features.
The updates are applied iteratively and after the final update, the positions are
considered the final trajectory. Visibility scores for each time step are estimated
using a linear layer and sigmoid activation. The model is supervised during train-
ing using the L1 distance between the ground-truth trajectory and the estimated
trajectory.

This addresses all our previous concerns with optical flow; PIPs is specifically designed
to handle inconsistencies through frames even if features are temporarily occluded or
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distorted. At the same time, PIPs leverages long-range temporal priors, which allows
it to maintain more stable trajectories over time, even in noisy conditions or under
varying lighting. It also minimizes the effects of drift. PIPs integrates modern fea-
ture extraction methods, such as CNN-based encoders, which allows for more robust
tracking by incorporating richer visual information. At the same time, it can handle
non-rigid motion more effectively by treating particles as independent entities. Finally,
despite the fact that PIPs leverages advanced CNN-based feature extraction, its com-
putational efficiency remains manageable for real time applications due to its iterative
and localized update process.

In this chapter, we take advantage of the pre-trained PIPs algorithm to track the ex-
tracted spatial features in our motion-based approach. The output of PIPs is the posi-
tions of the features through the frames for the duration of the video. We compare this
approach to the optical flow tracking algorithm in our results section.

2.3 Evaluating Signal Processing for rPPG

We perform extensive parameter tuning to optimize the performance of the signal pro-
cessing algorithms. This is one of the first issues we come across; a significant amount
of manual labor. It is known that signal processing algorithms require substantial pa-
rameter tuning to optimize performance because they are handcrafted methods de-
signed to target specific features or characteristics of the input data.

Various configurations are evaluated to minimize the MAE between the ground truth
and the predicted pulse signal with the key categories being: Corner Detection Param-
eters, Filtering Parameters, ROIs and Quality Levels.

Below we describe in more detail what parameters each category includes along with
their description:

Corner Detection Parameters:

• Maximum Corners: This specifies the maximum number of features that the al-
gorithm will detect within the frame. A higher number increases the density of
features, improving robustness in complex scenes but potentially introducing re-
dundant or less meaningful features.

• Minimum Distance: Defines the minimum Euclidean distance between detected
corners. A smaller value allows more closely spaced features to be detected, while
a larger value ensures that features are spread out, reducing redundancy. The
Mahalanobis distance was also tested in our experiments.
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• Block Size: Determines the size of the neighborhood used for corner detection. A
larger block size averages over more pixels, improving stability in noisy images
but potentially missing finer details.

Filtering Parameters:

• Butterworth Filter Order: The filter order controls the sharpness of the frequency
cutoff. Higher-order filters have steeper roll-offs, effectively isolating the fre-
quency band of interest (e.g., 0.65–4 Hz for heart rate signals).

• Frequency Range: Specifies the band of frequencies to preserve. As mentioned in
Section 2.2.1.1 the band is chosen to include typical heart rate frequencies while
suppressing noise from motion or environmental artifacts.

Regions of Interest:

• ROI Selection: This parameter refers to the areas of the face analyzed for pulse
extraction, such as forehead, cheeks, nose, mouth and neck areas and their com-
binations.

Quality Levels:

• Feature Quality Threshold: Represents the minimum quality score for detected
features, ensuring that only high-confidence features are used. A higher thresh-
old results in more reliable tracking but may exclude useful features in noisy con-
ditions.

• Distance Constraints: Defines limits on the spatial relationships between features
to ensure consistency across frames. For example, maintaining a minimum dis-
tance prevents overlapping or unstable feature points. It must be noted that Dis-
tance Constraints are different from Minimum Distance, which is about selecting
features within a single frame to avoid redundancy and ensure even coverage.
Distance constraints apply across frames to maintain stable tracking and avoid
large or unrealistic deviations due to noise, motion or tracking errors.

Each configuration is evaluated on the O-HR dataset comprising of both normal and
physical activity videos, with results recorded as MAEs to facilitate direct comparison.

The default parameter configuration provides a baseline average MAE of 15.82 for nor-
mal videos and 16.12 for physical activity videos. This setup uses standard values for
corner detection and filtering parameters without region-specific adjustments. After a
number of experiments we derive the optimal parameters
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2.3.1 Optimizing Performance

2.3.1.1 Where to Look? The Impact of ROI Selection

The analysis of the performance across ROIs provides insights into the variability of
rPPG performance depending on the selected facial region. We compute the error for:
the forehead, mouth/cheeks/nose, cheeks/nose and combinations, such as mouth/
cheek/nose/neck and mouth/cheek/nose/forehead/neck, as can also be seen in Fig-
ure 2.6. The results for these areas for the BS-rPPG algorithm are presented in the ac-
companying bar chart, which illustrates the mean MAE for each ROI along with error
bars for SDs.

FIGURE 2.13: Boxplot comparison of heart rate estimation MAE across different ROIs
for BS-rPPG on the O-HR dataset. The boxes represent the range, the orange lines indi-
cate the median and whiskers show the full range of errors. Combining multiple facial
regions generally results in slightly lower and more stable MAE values compared to

using single regions.

According to Figure 2.13, among all ROIs, the cheeks/mouth region has the lowest av-
erage MAE, indicating its better average performance for pulse signal extraction using
the BS-rPPG algorithm. This region likely benefits from limited occlusion (compared
to areas like the forehead, which might be occluded by hair) and consistent illumina-
tion. However, while the cheeks/mouth region achieves the lowest mean MAE, the
improvement over other regions is not substantial, suggesting that all regions carry
valuable information for pulse estimation.

One particularly interesting insight is the significant variability in performance for each
region, as indicated as indicated by the spread in the boxplots. These error bars reflect
how consistent or inconsistent the performance of each ROI is across participants. The
cheeks/mouth region shows slightly lower variability compared to the forehead, indi-
cating that it may provide more consistent results. Nonetheless, the variability is not
negligible, highlighting that the optimal ROI can differ significantly between individu-
als.
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This aligns with real-world considerations: some participants may have occlusions
(e.g., hair covering the forehead, facial hair, glasses), skin tone variations, facial struc-
ture or lighting conditions which can affect the signal quality from specific regions.
In other words, while the mouth/cheeks region may be optimal on average for these
experiments, it is not universally the best-performing region for all participants.

This observation is further supported by Figure 2.14, which evaluates the same dataset
but with a different algorithm, MP-rPPG. In this case, the forehead appears to be the
best-performing region, achieving the lowest mean MAE and similar or slightly better
consistency compared to the cheeks/mouth region. This demonstrates that the algo-
rithm used for signal extraction influences which ROI performs best. The forehead, for
instance, may be more effective for MP-rPPG due to its relatively stable surface and re-
duced motion artifacts compared to the cheeks/mouth region, which might be affected
by speaking or expressions.

Our findings align well with literature suggesting that the effectiveness of different
ROIs can vary depending on both the algorithmic approach and recording conditions.
In our experiments, the cheeks and mouth region performed best for BS-rPPG, while
the forehead was more reliable for MP-rPPG, which aligns with observations and high-
lights that the optimal ROI is context and method-dependent. These results therefore
confirm previous findings that combining multiple well-lit, stable facial areas gener-
ally improves signal robustness and consistency across subjects. However, they also
illustrate that algorithmic design such as whether spatial filtering or blind source sep-
aration is used, can shift the balance between motion sensitivity and signal strength,
influencing which ROI performs best in practice.

FIGURE 2.14: Boxplot comparison of heart rate estimation MAE across different ROIs
for the O-HR dataset using the MP-rPPG algorithm.
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The findings from both figures suggest that there is no universal ”one-size-fits-all” ROI
for pulse signal extraction. Instead, the performance of an ROI depends on both the al-
gorithm and the individual characteristics of the participant. This underscores the need
for a dynamic approach to ROI selection, where the optimal ROI is chosen based on the
specific algorithm and the conditions of the input video. Such an adaptive strategy
could improve the accuracy and reliability of pulse estimation across diverse partici-
pants and settings - something we explore in subsequent chapters.

2.3.1.2 More Features, Better Pulse?

Figure 2.15 illustrates the relationship between the number of features used in the anal-
ysis and the MAE for a sample participant. The graph reveals a clear trend: as the
number of features increases, the MAE decreases sharply in the initial range. This sug-
gests that the addition of features significantly enhances the model’s ability to extract
pulse signals accurately, particularly when moving from a very limited to a larger fea-
ture set.

FIGURE 2.15: The effect of the number of features on MAE. The graph highlights the
plateau observed after 1000 features.

However, beyond the point of 1000 features, the MAE plateaus. Adding more features
at this point does not lead to substantial error decrease, if anything it was observed that,
in some cases, it slightly degraded performance, suggesting the possibility of overfit-
ting or an increase in noise introduced by redundant or irrelevant features. This under-
scores the importance of balancing the number of features to optimize accuracy while
avoiding unnecessary computational overhead.
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Although Figure 2.15 represents a single participant, similar trends are observed across
multiple subjects. It is worth noting, however, that there is variation in the exact num-
ber of features at which the MAE stabilizes. Factors such as individual physiological
characteristics and video quality can influence this threshold.

To ensure a balance between computational efficiency and accuracy, the number of fea-
tures is capped at 1000 across experiments. We select this value based on the observed
trends and we believe it provides a robust compromise, allowing the model to perform
optimally without adding excessive computational weight.

2.3.1.3 Filtering the Noise

We observe that the choice of filter parameters has an impact on the accuracy of our
methods. The results for three different Butterworth filter configurations are summa-
rized below:

0.65–4 Hz (2nd-Order Butterworth Filter)
The 2nd-order Butterworth filter shows the highest average MAE of 19.81, with an SD
of 15.74. While this filter captures the frequency band associated with pulse, its lower
order appears it is not effectively filtering out noise and artifacts, leading to relatively
higher errors. The results indicate that while the 2nd-order filter is functional, it is
suboptimal for robust and accurate signal extraction.

0.75–5 Hz (5th-Order Butterworth Filter)
The 5th-order Butterworth filter is the best-performing configuration, achieving the
lowest average MAE of 15.36 and the smallest SD of 11.29. This demonstrates its ability
to balance capturing the desired frequency range and cutting out noise. Its higher per-
formance suggests that this configuration is more reliable and suitable for pulse signal
extraction across varying conditions.

0.75–5 Hz (10th-Order Butterworth Filter)
The 10th-order Butterworth filter exhibits intermediate performance, with an average
MAE of 16.12 and a SD of 13.93. Although its higher order allows for greater sensitivity
to subtle signal features, it may be amplifying noise or irrelevant details, which could
explain its slightly higher errors and variability compared to the 5th-order filter.

These findings align well with Balakrishnan et al. (2013), which highlights the impor-
tance of selecting appropriate filter parameters for optimizing accuracy. The 5th-order
Butterworth filter provides a better trade-off between accuracy, robustness and noise
suppression, making it an ideal choice for our problem.



52 Chapter 2. Input Layer: Signal Processing for rPPG

2.3.1.4 Tuning Supporting Parameters

The additional parameters, including the quality threshold, distance between corners
and block size, are adjusted empirically based on initial exploratory experiments. While
their influence on the results is observed to be less noticeable compared to ROI selec-
tion and filter design, they are optimized to ensure consistency, as well as to balance
computational efficiency with accuracy.

2.3.2 Benchmarking Against Existing Work

This section presents a comparison of our proposed methods with existing approaches,
as summarized in Table 2.4. The performance of each method is evaluated using MAE
and SD across normal, physical and all activity conditions, alongside the identified
optimal ROIs for the O-HR dataset.

We compare our algorithms, MP-rPPG and BS-rPPG, only against the work of Os-
tankovich et al. (2018), as this is the only prior signal processing approach using the
same dataset. No deep learning models have been trained on this dataset due to its
small size, and given the fundamental differences between deep learning and signal
processing approaches, a direct comparison would not be meaningful. Another reason
behind this choice is that the method proposed by Balakrishnan et al. (2013) utilizes a
private dataset, which we could not obtain access to for direct comparison.

TABLE 2.4: Comparison of the MAE and standard deviation across normal, physical,
and all activity conditions for the method proposed by Ostankovich et al. (2018) and
our approaches (MP-rPPG and BS-rPPG). The table also highlights the optimal ROIs

identified by each method.

Method
Normal Physical All Activities

Optimal ROI
MAE STD MAE STD MAE STD

Ostankovich
et al. (2018)

11.7±
3

12.0 12.7±
3

13.0 12.2±
2

13.0 Forehead/ Cheeks/
Mouth

MP-rPPG 11.2±
2

8.4 17.2±
3

12.1 14.2±
2

10.7 Forehead

BS-rPPG 10.6
± 3

10.5 11.2
± 3

13.1 10.9
± 2

11.7 Cheeks/ Mouth

For normal activity conditions, BS-rPPG achieves the lowest MAE, demonstrating the
highest accuracy compared to both MP-rPPG and Ostankovich et al. (2018). However,
its higher variability suggests that while it performs better on average, its results are
less consistent than those of MP-rPPG in the normal scenario. MP-rPPG showcases
similar average performance but with lower variability, highlighting its robustness in
normal conditions. In contrast, Ostankovich et al. (2018) showcases reasonable accu-
racy but with higher fluctuations between participants.
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Post-physical activity, the performance of all methods declines due to the increased mo-
tion noise and physiological variability. Despite this, BS-rPPG maintains its position as
the best-performing method, reflecting its ability to adapt to such conditions. MP-rPPG
experiences a more pronounced drop in accuracy, suggesting that it is more sensitive to
the effects of physical activity. Ostankovich et al. (2018) demonstrates relatively stable
performance but with persistent high variability.

When considering all activities, BS-rPPG stands out once more with the lowest over-
all MAE, underscoring its effectiveness. MP-rPPG performs slightly worse overall but
maintains lower variability compared to Ostankovich et al. (2018). The results suggest
that while BS-rPPG performs better in terms of accuracy, MP-rPPG offers more consis-
tent performance across diverse conditions.

The analysis of optimal ROIs reveals interesting differences between the methods, which
we discussed extensively in Section 2.3.1.1.

Overall, BS-rPPG outperforms MP-rPPG in both normal and physical conditions, achiev-
ing the lowest MAE across all activities. However, MP-rPPG demonstrates more stable
performance, especially in controlled conditions. The choice of ROI significantly in-
fluences performance, with BS-rPPG benefiting from cheeks/mouth, while MP-rPPG
performs better with forehead signals. These findings suggest that adaptable ROI se-
lection could further enhance accuracy.

2.3.3 The Impact of PIPs Feature Tracking

Table 2.5 provides an analysis of the BS-rPPG method with and without enhancements
such as PIPs for feature tracking and K-means clustering for feature clustering. The
detailed description of PIPs implementation can be found in Section 2.2.2.

When using K-means clustering, the 1000 features per ROI are grouped into 25 clusters.
The centroids of these clusters serve as the new features, significantly reducing the
total feature number while preserving the most important information. This clustering
approach not only reduces computational complexity but also improves the robustness
of feature trajectories by focusing on the behavior of the cluster centroids.

The results in Table 2.5 demonstrate how these enhancements impact the performance
of the BS-rPPG method, showcasing the effectiveness of PIPs and K-means clustering
in improving accuracy and optimizing feature utilization.

Introducing PIPs for feature tracking significantly improves the results, as seen in Table
2.5, reducing the MAE for normal, physical activities separately and across all activi-
ties. This demonstrates the effectiveness of PIPs in enhancing feature selection and
tracking, particularly for normal activities. Additionally, the identified optimal ROIs
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TABLE 2.5: Comparison of the MAE and standard deviation across normal, physical,
and all activity conditions for our BS-rPPG approach with and without PIPs for feature
tracking and K-means clustering for feature clustering. The table also highlights the

optimal ROIs identified by each method.

Method
Normal Physical All Activities

Optimal ROI
MAE STD MAE STD MAE STD

BS-rPPG 10.6 ±
3

10.5 11.2 ±
3

13.1 10.9 ±
2

11.7 Cheeks/ Mouth

BS-rPPG with
PIPs

7.7 ± 2 6.4 10.5 ±
2

8 9.1 ± 1 7.3 Forehead/
Cheeks/ Mouth

BS-rPPG with
K-means and
PIPs

7.5 ± 2 6.3 8 ± 1 5 7.8 ± 1 5.7 Forehead/
Cheeks/ Mouth

expand to include the forehead, cheeks and mouth, suggesting a better utilization of
facial regions.

Integrating K-means clustering with PIPs showcases the best performance among all
configurations. These results indicate that the combination of PIPs and K-means clus-
tering enables more robust and precise feature clustering and tracking, leading to sub-
stantial improvements in signal extraction and computational overhead. The optimal
ROIs remain the forehead, cheeks and mouth.

Overall, the improvements from the baseline BS-rPPG method to the integration of
PIPs and K-means clustering demonstrate the benefits of these techniques in improving
both accuracy and robustness. The results highlight the benefits of clustering features,
particularly in challenging conditions such as physical activities and underscore the
importance of multiple ROIs for optimal performance.

On the other hand, the high performance variability across participants in the dataset
reveals the significant impact of appearance and behavior on the accuracy of pulse
signal extraction. Participants who remain relatively still during the video recordings
consistently outperform those who exhibited more dynamic behavior, such as talking,
laughing or making large gestures. Performance gaps are significant, with the best
performing participants consistently showcasing MAEs lower than 2, in contrast with
worst performing participants who showcase MAEs over 10, occasionally reaching 30.
This observation aligns well with the known sensitivity of rPPG methods to motion
artifacts. When participants move excessively or make abrupt gestures, the captured
signal is more likely to be noisy, making it harder for the model to accurately extract
pulse information.

After physical activity, participants may exhibit increased heart rates and more pro-
nounced facial movements, which can introduce noise and distort the physiological
signals being measured. This highlights another key challenge on extracted signal qual-
ity.
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However, the inclusion of PIPs for feature tracking appears to mitigate these issues
to some extent. By leveraging PIPs, the model benefits from more stable features, as
proven by the improved performance in scenarios with higher motion. PIPs allows for
a more robust tracking, even when participants exhibit some movement, reducing the
impact of motion artifacts.

These findings emphasize the importance of mitigating the effects of motion artifacts
and physiological variability in order to improve the robustness of rPPG methods.
While static scenarios may allow models to perform optimally, more challenging con-
ditions reflect real life cases best, but require more advanced stabilization techniques or
adaptive modeling approaches to maintain accuracy. This highlights the need for dy-
namic ROI selection, advanced filtering methods and techniques to moderate motion,
all of which can help enhance performance.

Based on the results, we observe trends related to gender and skin tone. Female partic-
ipants generally exhibit higher MAEs compared to their male counterparts in both nor-
mal and physical conditions. With females comprising less than 15% of the dataset’s
participants, this observation aligns with previous findings that models trained pre-
dominantly on male physiology struggle to generalize effectively to female physiology
due to differences in facial features and skin reflectance. Makeup is a significant sup-
pressant of signal as it covers the facial changes necessary to extract pulse, however, to
our knowledge, participants in this dataset do not use foundation. This also highlights
the need for dynamic ROI selection. Similarly, the single identified person of color in
this dataset also demonstrates higher MAEs across multiple configurations.

These findings highlight significant limitations in the generalizability of signal processing-
based methods, which are influenced by the demographic distribution of the data. With
the original dataset being predominantly male and light-skinned, the parameter tuning
does not adequately represent the diversity of real-world populations.

2.3.4 Generalizing to New Datasets

To assess the generalizability of the calibrated BS-rPPG method, we apply it on the
MMSE-HR dataset. Unlike previous experiments, this evaluation does not incorporate
PIPs or K-means clustering. Instead, this experiment aims to showcase the substantial
manual effort required to adapt signal processing approaches to new datasets.

Results by Skin Tone and Gender

Table 2.1 summarizes the results on the MMSE-HR dataset, grouped by skin tone (Fitz-
patrick scale) and gender. The MAE values indicate a substantial decline in perfor-
mance compared to O-HR. For example, male participants with skin type III achieved
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TABLE 2.6: Comparison of MAE on the MMSE-HR dataset across different skin tones
(Fitzpatrick scale [Fitzpatrick (1988)]), broken down by gender with standard devia-
tion presented in the parenthesis. The table provides insight into performance varia-
tion across skin tones III–VI and highlights overall MAE per gender and per skin tone.

Skin tone/
Gender

III IV V VI MAE per Gender

Male 20.9 ±
3(16)

26.8 ±
6(11)

62.6 - 23.3 ± 3(15)

Female 26.7 ±
3(20)

36.8 ±
2(3)

- 27.1 27.4 ± 3(20)

MAE per
Skin tone

24.7 ±
2(19)

31.8 ±
3(9)

62.6 27.1 25.9 ± 2(19)

TABLE 2.7: Comparison of MAE on the MMSE-HR dataset across different activity
types (T1–T14 - activity table can be found in 2.3), disaggregated by gender with stan-
dard deviation presented in the parenthesis. This table highlights how task type affect

rPPG performance and provides the average MAE per activity and per gender.

Activity/
Gender

T1 T8 T9 T10 T11 T14 MAE
per
Gender

Male 4.1 ±
4(4)

40.7 ±
2(2)

- 18.5 ±
3(11)

28.9 ±
6(23)

- 23.3 ±
3(19)

Female 23.9 ±
7(19)

38.3 ±
12(31)

10.1 26.7 ±
4(18)

26.6 ±
4(16)

34.3 27.4 ±
3(20)

MAE per
Activity

19.9 ±
6(19)

38.8 ±
9(27)

10.1 23.1 ±
3(16)

27.6 ±
3(19)

34.3 25.9 ±
2(19)

a MAE of 20.9±16, while those with skin type IV a MAE of 26.8±11. Performance dete-
riorated significantly for participants with darker skin tones (type V), highlighting the
challenges for individuals with higher melanin levels. For females, the performance
had similar variations, with an overall MAE of 27.4±20, further proving that partici-
pant demographics have a significant impact on performance. The overall trend shows
that participants with lighter skin tones performed better.

Results by Activity

Table 2.7 presents the results on MMSE-HR by activity. T1, which involved listening to
a funny joke, yielded the lowest MAE, while tasks such as T8 (improvising a silly song)
and T14 (experiencing a smelly odour) showed significantly higher errors, reflecting
the challenges posed by motion noise.

Overall, the results highlight that participants who moved their heads naturally while
talking contributed to higher error rates, as these movements introduced significant
motion artifacts. This aligns with findings from O-HR, where static participants show-
cased better performance. The MMSE-HR dataset inherently introduces more motion
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noise due to its design, which explains the higher MAE across tasks and participants,
especially when the model is tuned to a more static dataset like O-HR.

2.4 Challenges, Insights & Future Directions

Signal processing has long been the foundation of rPPG research, offering transparent,
efficient, and interpretable solutions for extracting physiological signals from video.
The methods explored in this chapter - MP-rPPG and BS-rPPG - demonstrate strong
performance under controlled conditions and continue to be valuable tools for pulse
estimation. Our results show that these techniques can achieve low MAE values when
carefully tuned. Their computational efficiency makes them well-suited for real-time
applications, even on standard hardware.

A key advantage of signal processing methods is that they do not require large amounts
of training data, unlike deep learning models, which depend on extensive datasets for
generalization. This makes them particularly useful in scenarios where data collec-
tion is challenging or when working with smaller datasets. In particular, BS-rPPG per-
formed exceptionally well across both normal and physical activity conditions, with
further improvements when incorporating PIPs for feature tracking and K-means clus-
tering for feature selection. Additionally, ROI selection played a crucial role, with dif-
ferent regions (forehead vs. cheeks/mouth) proving optimal depending on the method.
These findings reinforce the strengths of signal processing in providing reliable and ex-
plainable solutions for rPPG, especially in scenarios where speed and efficiency are
crucial.

However, real-world deployment presents new challenges, as demonstrated in our re-
sults. While signal processing techniques are highly effective, they require manual
parameter tuning, making them less adaptable to new datasets, diverse demograph-
ics or high-motion conditions. For instance, our results indicate that performance can
vary significantly across skin tones and facial movements, particularly in more dy-
namic environments like MMSE-HR, where head motion and lighting changes intro-
duce variability. Motion artifacts remain one of the biggest obstacles, as even small
facial movements can introduce noise that distorts pulse estimation. The limited diver-
sity in publicly available datasets further magnifies this issue, underscoring the need
for broader data collection efforts and increased availability for researchers.

Despite these challenges, signal processing methods remain an essential component of
rPPG research. They provide strong baselines, valuable insights into the nature of pulse
signals and efficient alternatives for real-time applications. However, as rPPG expands
into more complex settings such as real-world monitoring, wearables and multi-person
scenarios, more adaptive solutions are needed.
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The next chapter explores spatiotemporal methods, which aim to address the chal-
lenges of motion artifacts and generalization by learning representations directly from
data. While deep learning introduces new trade-offs such as increased computational
complexity, its ability to adapt to different conditions without requiring manual tuning
makes it a promising complement to traditional signal processing techniques. By inte-
grating the efficiency and interpretability of signal processing with the adaptability of
deep learning, we move towards more robust and scalable rPPG solutions.
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Chapter 3

Hidden Layers: Capturing
Spatiotemporal Patterns

This chapter embodies the hidden layers of an ML model, where the complex interplay of
light and motion is learned. These layers work to uncover the intricate patterns in the data,
laying the foundation for robust predictions.

In the previous chapter, we focused on signal processing approaches, which form the
basis of the rPPG field and we uncovered their strengths but most importantly their
shortcomings. Despite the fact that they are computationally light, easily interpretable
and intuitive, they present significant limitations.

Some of the most critical challenges of such algorithms involve sensitivity to motion ar-
tifacts and variations in illumination, reliance on handcrafted features, which requires
labor-intensive and time-consuming tuning, and their limited generalizability. While
advancements such as PIPs for feature tracking and feature clustering using K-means
improve accuracy, these methods still struggle in dynamic settings.

A recurring challenge in our experiments was that participants post-exercise or ex-
hibiting natural behaviors like speaking and moving, introduce significant noise to the
extracted signals, degrading performance. Participant demographics also prove to be a
challenge, with female participants and people of color performing significantly worse.
With signal processing approaches relying on dataset specific parameter tuning, their
ability to generalize across populations with diverse demographics or conditions is
limited, especially when these populations are under-representated in the data. This
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challenge is not exclusive to signal processing methods. There is a known under rep-
resentation of certain populations in datasets currently available for research, which
creates biased results. This is a broader problem and conversation that must be ad-
dressed by researchers, with the collection of inclusive datasets or the use of generative
AI to combat such inequalities. Another interesting theme that was observed in our
previous experiments was the ROI selection. As we discussed, there is no ”one size fits
all” approach, as physiology, appearance and the choice of model can have an effect on
the optimal area selection.

Over the years, as ML research advanced and as resources became more easily accessi-
ble, researchers started incorporating simple ML algorithms for pulse estimation to sig-
nal processing frameworks, until this day, where complex, DL solutions dominate the
field. Unlike signal processing, ML techniques automate feature extraction, eliminating
the need for handcrafted features and such intense ”hands-on” parameter tuning. They
are able to capture complex, subtle patterns in video data that are not immediately ap-
parent to humans, even with extensive knowledge of physiology, helping them learn
representations that are robust to noise, motion and illumination changes. ML solu-
tions can generalize better to unseen data and their scalability and adaptability makes
them particularly suited to modern, real-world rPPG applications, where diversity and
variability are the norms. They can easily handle large and diverse datasets, leverag-
ing parallel computing, distributed processing and Graphics Processing Unit (GPU)
acceleration. This automation of the pulse extraction process was very attractive to en-
thusiasts of the field, who started continuously developing more complex but accurate
solutions.

However, as models get more complex, a lot of their interpretability is lost, making
it challenging to understand how the models make decisions and when they will fail.
This lack of transparency is incredibly problematic, especially in healthcare applica-
tions, where accuracy is of the essence. As models become deeper, their processing
needs grow with them. Models can no longer be as easily implemented on small de-
vices, real-time processing becomes computationally expensive and their training re-
quires extensive amounts of labeled data, which are timely and expensive to collect.

Our research interests have always focused on developing practical and accessible solu-
tions rather than increasing complexity. By combining the transparency and simplicity
of signal processing approaches with the powerful performance of ML methods, we
believe it is possible to strike a balance - creating solutions that are not only effective
but also easy to implement in the real-world.

Hybrid methods extract handcrafted features, that are then processed by ML or DL
networks for pulse estimation. They take advantage of spatiotemporal maps which
are subsequently fed through a machine or DL framework to extract the pulse rate.
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The use of spatiotemporal features as a means to estimate heart rate has many bene-
fits compared to the traditional use of videos. Such approaches can result in higher
temporal resolution compared to video frames, providing more detailed information
about the skin changes over time and can help mitigate the impact of motion and light
artifacts by integrating information over time, leading to more robust pulse estimation.
Some of the works we presented in chapter 1 have demonstrated promising results,
however there are still components that have not been addressed. All these works rely
on pre-defined ROIs, which could neglect regions with sufficient signal to assist in the
increased accuracy of pulse estimation as we proved in chapter 2. Additionally, averag-
ing information from multiple frames in a single image can result in significant signal
variations being suppressed.

Chapter Contributions:
Building on the advancements presented in chapter 1 and our observations from chap-
ter 2, we introduce the Spatiotemporal Two-Stage Learning Approach (ST2S-rPPG),
a framework designed to address the limitations of signal processing methods while
leveraging the strengths of spatiotemporal models. ST2S-rPPG combines the inter-
pretability of traditional techniques with the automation and adaptability of modern
ML models. More specifically, our contributions are as follows:

• We propose a stabilization method using the PIPs algorithm to address motion
artifacts. Building on PIPs for feature tracking as described in chapter 2, we lever-
age the same algorithmic foundation for video stabilization.

• We develop a novel spatiotemporal representation of video to images. This method-
ology could be particularly valuable in healthcare settings where data availability
and computational resources are often limited, allowing for more robust training
of ML algorithms.

• We design a two stage learning framework to optimise estimation accuracy by
selecting the most informative spatiotemporal images. The two-stage learning
approach can lead to recommendations that are more accurate and calibrated to
each individual, ultimately improving outcomes.

• We propose representing the ground truth as beats per video segment rather than
BPM. This approach simplifies the task for the ML model, enabling it to directly
identify peaks in the spatiotemporal images without the added complexity of
converting segment data into a per-minute metric.

• We test the Eulerian video magnification method to enhance subtle changes oc-
curring on the skin during the cardiac cycle.

The rest of the chapter is organized as follows: Section 3.1 introduces the datasets and
experimental setup, detailing participant demographics, data collection protocols and
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evaluation metrics. Section 3.2 describes ST2S-rPPG framework, along with advance-
ments like PIPs for video stabilization. Section 3.3 presents results, comparing the
methods across datasets and conditions, while Section 3.4 concludes with a discussion
of the findings, limitations and implications for future work. Finding of this chapter
were published in Machine Learning for Health (PMLR, 259:550–562, 2024).

3.1 Datasets and Experimental Framework

We evaluate the performance of ST2S-rPPG on two benchmark datasets, MMSE-HR,
as described in Section 2.1.2 and the more recently obtained Université Bourgogne
Franche-Comté dataset for rPPG (UBFC-rPPG) [Sabour et al. (2021)]. These datasets
are widely used in the field of rPPG and allow us to compare our methodology with
state-of-the-art approaches. For that reason we decide to discard O-HR, as there are no
significant works outside of Ostankovich et al. (2018)’s signal processing and thus, we
cannot benchmark our current work against it.

We must note that MMSE-HR and UBFC-rPPG have different baselines due to their
different characteristics (frame rate, resolution, collection protocol). Our work uses
subsets of the original datasets, specifically formatted for rPPG. Despite our continuous
efforts to expand our study with additional datasets such as PURE and VIPL-HR -
both of which are also commonly used in rPPG research - we were unable to secure
access to them. Despite this, MMSE-HR and UBFC-rPPG provide sufficient variability
to validate the generalizability of our approach.

We implement ST2S-rPPG using PyTorch and one NVIDIA GeForce GTX 1080 GPU.
Below we present UBFC-rPPG’s characteristics in detail. MMSE-HR’s characteristics
can be found in Section 2.1.2.

3.1.1 The UBFC-rPPG Dataset: A Closer Look

This is a subset of the UBFC-Phys database, designed to test the accuracy of rPPG algo-
rithms. It consists of 40 RGB videos and corresponding ground truth heart-rate data ob-
tained from 40 participants. Each video provided is recorded at a resolution of 640x480
pixels and a frame rate of 30fps. This is significantly lower than MMSE-HR which gives
us a good indication of our algorithm’s accuracy in varying video qualities. Each video
duration varies from 46 seconds to 1 minute 8 seconds, with most videos closer to the
minute mark. Each video is synchronized with a pulse oximeter finger clip sensor to
collect the ground truth.

Participant demographics include:
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• Gender: 80% male

• Facial Hair: 27.5%

• Skin Tone: 92.5% of participants fall within skin types I-V, with 92.5% in I-III, 5%
in IV and 2.5% in V.

3.1.2 Ground Truth: From Raw Signals to Usable Data

Ground truth measurements are provided for both datasets. In these experiments we
convert these measurements to beats per 10 second segments using the procedure be-
low:

For the MMSE-HR dataset, ground truth heart rate data is acquired through a contact
sensor operating at a sample rate of 1 KHz, providing pulse measurements per frame.
In MMSE-HR, the definition of the heart rate ground truth data is that the measurement
changes every time there is a heartbeat. We define each 10 second time segment as
[tstart, tend], where tstart is the starting time and tend the ending time of the segment. To
identify the location of these segments we multiply the start and end time with the
sampling rate. Within each segment we count the number of changes in the provided
ground truth files, each change is a heartbeat.

For the UBFC-rPPG dataset, we use the raw signal data and the scipy library find peaks
to identify the beats. With the same process as above we count the number of peaks
per segment. This process provides granular information regarding the pulse variabil-
ity within each 10 second segment, which is not necessarily visible by using the average
measurements for the whole video. The idea behind this choice is that the pulse esti-
mation CNN will be able to distinguish beats easier than extrapolated bpm in each 10
second segment. After we compile our results we multiply the predicted value by 6 to
extract the BPM measurement and compare performance with existing methodologies.

3.2 Building the ST2S-rPPG Framework

The proposed ST2S-rPPG framework is divided into five steps, face identification and
video stabilization, Eulerian Video Magnification, spatiotemporal image generation,
pulse estimation using a CNN for regression and a second learning component to im-
prove estimation. In the following sections, these steps are described in detail.
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3.2.1 Face Tracking and Video Stabilization

In the context of estimating pulse from facial video data, the identification of ROIs is a
fundamental step. However, the accurate tracking of these regions becomes challeng-
ing when confronted with video instability, stemming from voluntary or involuntary
movements. To address this concern, we observe the need for an accurate stabiliza-
tion tool, with the primary objective being to facilitate the tracking of the facial region
within video sequences.

3.2.1.1 Video Pre-processing for Precision

Prior to applying the stabilization step, we observe that even within the same video,
different segments may exhibit unique physiological patterns. We segment the original
video V into discrete 10-second segments to not only maximize the utilization of avail-
able data but also to reduce computational costs, making the process more efficient and
resource-effective. Equation 3.1 represents each of the 10-second segments Vc.

Vc = ⌊ V
10

⌋ (3.1)

We isolate the first frame of each video and apply the Viola-Jones algorithm [Viola and
Jones (2001)] to extract the precise facial location within the frame. We assume the
dimensions of the Viola Jones bounding box are (h, w), where h is the box’s height and
w is its width in pixels. We then identify the box’s central point (x0, y0):

(x0, y0) = (l +
h
2

, c +
w
2
) (3.2)

where (l, c) denote the pixel coordinates of the top-right corner of the bounding box.

3.2.1.2 Central Point Stabilization

We repeat the process of identifying the central point (x0, y0) for each subsequent frame,
detecting the face and calculating its central point (x1, y1), (x2, y2), ..., (xn, yn), where n
is the frame index. For each frame, we define the desired size of the cropped region
(h,w), which are the dimensions of the first frame bounding box. Using the central
point of each frame, we extract a sub-frame that places the face at the center using the
formula:

Icn(xn, yn, z) = Ion(xn −
w
2

: xn +
w
2

, yn −
h
2

: yn +
h
2

, z) (3.3)
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Icn(xn, yn, z) represents the cropped frame at index n, Ion represents the original full
frame, (xn, yn) denote the x and y-coordinates of the central point in frame n, (w, h)
represent the width and height of the desired crop and z represents each color channel
(RGB) (z=3).

To visualize our results, we overlay the video frames with some transparency to high-
light the improvement in motion artifacts from non-stabilized to stabilized using cen-
tral point videos. motion of the videos and the improvement of our methods (Figure
3.1).

(A) No Stabilization
Technique

(B) Central Point Sta-
bilization

FIGURE 3.1: Overlaid video frames with some transparency to visualize the motion
through frames for the original video and using Central Point Stabilization

We evaluate the stabilization using Mean Squared Error (MSE). MSE was calculated
between consecutive frames to quantify the level of frame-to-frame variation in the
video, as seen in Equation 3.4.

MSEn =
1

wh

w

∑
x=1

h

∑
y=1

(In−1(x, y)− In(x, y))2 (3.4)

where In−1(x, y) represents the pixel value at position (x, y) in the previous frame,
In(x, y) represents the pixel value in the current frame, w is the width of the frames in
pixels, h is the height of the frames in pixels, ∑x denotes the summation 1 to width,

∑y denotes the summation from 1 to height. After calculating the MSE for each pair
of consecutive frames, the overall stability measure can be obtained by averaging the
MSE values across the entire video sequence, as seen in Equation 3.5.

MSEvideo =
1
n

n

∑
1

MSEn (3.5)

Using the baseline non-stabilized video, results in a MSE of 32.9. Using the Central
Point Stabilization approach results in a 32.2% increase in stability, as seen in Table 3.1.
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TABLE 3.1: Improvement in motion artifacts using the Central Point Stabilization ap-
proach.

Method MSE Improvement
percentage

Original video 32.9 -
Central Point
Stabilization

22.1 32.7%

This method attempts to ensure that the face remains centered in each cropped frame,
helping to stabilize the video. However, a significant limitation arises because the
Viola-Jones algorithm detects the face independently in each frame, without consid-
ering its position in previous frames. This frame-by-frame independence introduces
inconsistencies in the bounding box dimensions and location, leading to motion noise
in the cropped frames. As a result, while this approach provides some level of stabi-
lization, it does not fully address motion artifacts.

To achieve better stabilization, we explore an alternative approach that tracks the cen-
tral point of the face continuously throughout the video rather than treating each frame
independently, PIPs. This enables temporal consistency by maintaining the face’s po-
sition relative to previous frames. By tracking the face’s motion over time, PIPs signif-
icantly reduces the noise introduced by frame-by-frame variations, providing a more
stable and reliable output. In the previous chapter, we demonstrated that PIPs outper-
forms optical flow in handling motion artifacts, which is why we adopt it here. This
approach ensures that the face remains consistent across frames, even in the presence
of natural motion artifacts.

3.2.1.3 Particle Video Point Trajectories Stabilization

The PIPs algorithm was proven to be efficient and accurate in tracking features through
frames. We rely on its accuracy to track the identified central point (x0, y0) in the first
frame. In other words, instead of repeating the process of identifying the face and its
central point for the entirety of the frames in the video, we feed that first frame central
point to the PIPs algorithm and we extract it’s trajectory throughout the frames of the
video. For each frame and position of the feature in that frame, we use 3.3 to place the
bounding box around the central point.

We notice a 74.2% improvement of stabilization using the PIPs method compared to
the original video. We overlay the video frames with some transparency to visualize
the motion of the videos and the improvement of our methods (Figure 3.2).

The results of our experiments demonstrate the improvements in video stabilization
achieved by transitioning from the original video to Central Point Stabilization and,
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TABLE 3.2: Summary of results for stabilization methods

Method MSE Improvement
percentage

Original Video 32.9 -
Central Point
Stabilization

22.1 32.7%

PIPs Stabiliza-
tion

8.5 74.2%

(A) No Stabilization
Technique

(B) Central point Sta-
bilization

(C) PIPs Video Stabi-
lization

FIGURE 3.2: Overlaid video frames with some transparency to visualize the motion
through frames for each method

finally, to the PIPs-based stabilization method. While the Central Point Stabilization
approach reduces motion artifacts to some extent, its reliance on frame-by-frame face
detection introduces inconsistencies, limiting its effectiveness.

The PIPs algorithm, in contrast, offers a robust solution by tracking the central point
of the face throughout the video, ensuring temporal consistency and significantly re-
ducing motion noise. With a 74.2% improvement in stability compared to the original
video, the PIPs method clearly outperforms both the non-stabilized and Central Point
Stabilization approaches.

3.2.2 Enhancing Visibility with Eulerian Video Magnification

Building upon the stabilization techniques discussed earlier, the next step in our ap-
proach focuses on enhancing the subtle changes occurring on the skin, specifically mo-
tion and light variations. These changes are critical for improving the performance of
rPPG algorithms, as they are directly tied to the physiological signals we aim to extract.
To achieve this, we utilize the Eulerian Video Magnification method [Wu et al. (2012)], a
technique for amplifying temporal variations that are otherwise invisible to the naked
eye.
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This method takes a video as input and enhances its temporal variations by amplifying
specific frequency bands. This process involves four steps:

• Building a Laplacian pyramid: Each frame is decomposed into multiple fre-
quency bands using a Laplacian pyramid. We use five pyramid levels to balance
the capture of fine details and computational efficiency.

• Applying a band-pass filter: We apply a band-pass filter to the Gaussian pyra-
mid of the video frames. We use the [0.75, 5] Hz frequency range identified in
our signal processing experiments, as this range corresponds to the important
physiological frequencies.

• Amplifying the filtered pyramid: The filtered frequencies are amplified by a fac-
tor a=10. This amplification factor provides visible enhancement, without distort-
ing the video.

• Reconstructing the video: The amplified Gaussian pyramid is combined with
the original Laplacian pyramid to reconstruct the enhanced video.

In the color amplification approach, the color channels of each level are amplified, in
contrast with the motion amplification approach, where the temporal gradients (changes
in pixel values over time) are computed and amplified. This dataset was processed to
generate three sets of videos: the original stabilized videos, stabilized color amplified
videos and stabilized motion amplified videos.

To illustrate the results of the magnification, we provide an example from the O-HR
dataset, as its open-source nature permits the inclusion of visual examples (Figure 3.3).

3.2.3 Spatiotemporal Image Generation

With the stabilized videos and enhanced temporal variations from Eulerian Video Mag-
nification, the next step focuses on generating spatiotemporal images. These images
encapsulate both spatial and temporal information from the video, providing a robust
input representation for ML models. Utilizing spatiotemporal images offers several
advantages over analyzing a single continuous video stream. Firstly, it increases the
dataset size, as each spatiotemporal image encapsulates a temporal sequence of a sin-
gle facial region. This is especially beneficial since each facial region consists of slightly
distinct features. This spatiotemporal transformation facilitates more robust training of
ML models, enhancing their ability to distinguish subtle changes in pulse signals over
time. Additionally, the process of stabilizing the images ensures consistent tracking of
specific facial areas across the temporal sequence. By maintaining alignment between
consecutive frames, the analysis remains focused on the same regions, enabling more



3.2. Building the ST2S-rPPG Framework 69

FIGURE 3.3: Example of the Eulerian Video Magnifications results. The first column
shows the original stabilized video. The second column presents the motion ampli-
fied video, where edges of the face and subtle movements become more prominent.
The third column shows the color amplified video, where brighter regions highlight

changes in skin color due to blood flow.

precise examination of physiological variations. By transforming video sequences into
structured spatial-temporal representations, these images preserve critical signal vari-
ations while reducing the computational overhead of continuous video processing.

In order to create spatiotemporal images we employ a technique that involves the divi-
sion of the stabilized videos into six equal vertical segments. Subsequently, the first and
last segments are discarded to exclude any residual background or non-essential facial
regions that may not have been adequately eliminated by the pre-processing steps.
Then, we segment each remaining frame into L vertical segments of three pixels:

L = ⌊w
3
⌋ (3.6)

where w represents the width of each frame in pixels.

Through empirical testing, we find that three-pixel-wide slices provide an optimal bal-
ance between spatial resolution and computational efficiency. At the same time, facial
features relevant to pulse estimation may exhibit variations on the order of a few pix-
els. By segmenting the frames into three-pixel-wide segments, we aim to capture these
subtle variations more effectively.

We can represent each frame as:

Frame(k) =

⎡⎢⎢⎢⎢⎢⎣
S(k)

0,0 S(k)
0,1 . . . S(k)

0,L−1

S(k)
1,0 S(k)

1,1 . . . S(k)
1,L−1

...
...

. . .
...

S(k)
i,0 S(k)

i,1 . . . S(k)
i,L−1

⎤⎥⎥⎥⎥⎥⎦ (3.7)
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for
S(k)

i,n = (P(k)
i,3j , P(k)

i,3j+1, P(k)
i,3j+2) (3.8)

where k is the kth frame, (i,j) are the height and width of the frame in pixels respectively,
P represents the pixel values and S each 3 pixel slice values. For clarity, j refers to the
width of the frame in terms of pixel groups or slices and n is the time dimension or
different frames in the sequence.

In order to construct the spatiotemporal images, we arrange the corresponding vertical
segments from each frame sequentially, frame by frame. The mth spatiotemporal image,
generated by the mth vertical slice is represented by:

STm =

⎡⎢⎢⎢⎢⎢⎣
S(0)

0,m S(1)
0,m . . . S(k)

0,m

S(0)
1,m S(1)

1,m . . . S(k)
1,m

...
...

. . .
...

S(0)
i,m S(1)

i,m . . . S(k)
i,m

⎤⎥⎥⎥⎥⎥⎦ (3.9)

These resulting images provide a comprehensive representation of the video’s content,
with each image capturing a distinct set of three-pixel-wide segments spanning the
entire duration of the video (Figure 3.4). It must be noted that the number of images
per subject can vary, depending on their approximate location to the camera or their
facial size.

FIGURE 3.4: Example of a spatiotemporal image

In Figure 3.5, we present examples of spatiotemporal images generated without stabi-
lization, highlighting the differences in scenarios with and without physical exercise.
While these images are for visualization purposes, stabilized versions of these images
are used in our experiments to improve consistency and accuracy.

3.2.4 Pulse Estimation with a Convolutional Neural Network

Let STm represent the input spatiotemporal image, with dimensions w × h × z, where
w is the width, h is the height and z is the number of channels - here the channels are 3.
The CNN is designed to process the input spatiotemporal image STm and predict the
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(A) Normal scenario

(B) After physical exercise scenario

FIGURE 3.5: Examples of spatiotemporal images without stabilization. Column 1: No
amplification; Column 2: Motion amplification; Column 3: Color amplification. (A)
Normal scenario; (B) After physical exercise. Motion amplification in (B) highlights

increased movement compared to (A).

number of beats ŷ. The architecture consists of three convolutional layers, a flattening
step and fully connected layers, as summarized in Table 3.3. During the forward pass,
the input STm is reshaped and passed through each layer of the CNN in sequence, with
ReLU activation functions applied after each convolutional and fully connected layer.
The optimizer used is the Adam optimizer with a learning rate of 0.001 and the loss
function is the L1 loss (MAE) between the predicted number of beats ŷ and the ground
truth number of beats. A visual representation of the CNN can be found in Figure 3.6.

TABLE 3.3: Parameters of the CNN Architecture

Layer Input Parameters/Output
Conv1 STm Kernel: K1 = 3 × 3, Stride: S1 = 1,

Activation: ReLU, Output: O1
Conv2 O1 Kernel: K2 = 3 × 3, Stride: S2 = 3,

Activation: ReLU, Output: O2

Conv3 O2 Kernel: K3 = 3 × 3, Stride: S3 = 3,
Activation: ReLU, Output: O3

Flatten O3 Flattened Output: F
Fully Connected F Units: H1 = 128, Output: H1
Output Layer H1 Predicted Beats: ŷ
Optimizer Adam, Learning Rate: 0.001
Loss Function L1 Loss (MAE)

3.2.5 Second-Stage Learning: Refining Signal Selection

It is apparent that not all spatiotemporal images exhibit similar performance and cer-
tain regions within them may contain significant noise. Rather than making the as-
sumption on which areas the CNN finds the most informative based on convention,
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we have implemented a second learning stage. Following the CNN’s pulse prediction
on individual images, we construct a new binary dataset. This dataset is formed based
on the MAE between the CNN’s predictions and the ground truth on number of beats.
Utilizing a predefined threshold, t=0.5, corresponding to a MAE of 3 beats per minute
(bpm), we categorize the images into two classes according to whether their MAE sur-
passes or remains below the threshold. The 3 bpm criterion for categorizing images
automatically distinguishes “good” images from “bad” ones. This threshold was cho-
sen as it represents an acceptable margin of error for pulse estimation. A Multi-Layer
Perceptron (MLP) is trained to classify the images in the custom binary dataset, ensur-
ing that only the most informative “good” images are utilized for further analysis. This
automated selection process eliminates the need for subjective assumptions about im-
age quality, enhancing the robustness of the pipeline. An MLP comprising of 5 layers
with 200 neurons per layer, is trained to classify the spatiotemporal images, using the
custom “good” and “bad” image dataset as described above. A 10-fold cross-validation
experiment is conducted, selecting images that the classifier categorizes as “good” 70%
of the time. The evaluation metrics presented in the subsequent section are estimated
based on the MLP’s predictions for the “good image” class. An overview of the ST2S-
rPPG framework can be found in Figure 3.7.

3.3 Evaluation and Performance Analysis

3.3.1 Metrics for Success - How We Measure Performance

We evaluate the performance of ST2S-rPPG using five metric indicators commonly uti-
lized to assess rPPG regression approaches, namely Mean Absolute Error (MAE), Mean
Error (ME), Standard Deviation (SD), Root Mean Squared Error (RMSE) and Mean Ab-
solute Percentage Error (MAPE) as defined the equations below. It is worth noting
that some entries in the comparison tables include missing values due to the absence
of reported metrics in the referenced literature. Our work provides a comprehensive
evaluation across all relevant metrics, ensuring a complete and consistent comparison.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3.10)

ME =
1
n

n

∑
i=1

(yi − ŷi) (3.11)

SD =

√︄
1
n

n

∑
i=1

((yi − ŷi)− ME)2 (3.12)
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RMSE =

√︄
1
n

n

∑
i=1

(yi − ŷi)
2 (3.13)

MAPE =
1
n

n

∑
i=1

⃓⃓⃓⃓
yi − ŷi

yi

⃓⃓⃓⃓
× 100 (3.14)

Each metric offers a unique perspective on the error between predicted values (ŷi) and
ground truth values (yi), allowing for a deeper understanding of our model’s perfor-
mance.

MAE provides a straightforward and interpretable measure of the model’s absolute
prediction error, which is why it is widely used to evaluate overall accuracy, offering
an intuitive sense of how close predictions are to the true values on average.

ME, on the other hand, measures the mean of the raw differences between predictions
and ground truth values. Unlike MAE, ME retains the sign of the differences, which
allows it to capture any bias in the model’s predictions. For example, a consistently
positive or negative ME indicates that the model is systematically overestimating or
underestimating, respectively. It’s important to mention that while it is provided by
some papers, its informativeness can be misleading. In our analysis, we prioritize MAE
as the most informative metric, as it directly measures the average error without biasing
negative or positive deviations.

SD assesses the variability of the errors, with a lower SD indicating that the model’s
errors are more consistent and predictable, whereas a higher SD suggests that the errors
vary significantly. This metric is particularly useful for understanding the reliability of
the model’s predictions under varying conditions.

RMSE is similar to MAE but gives greater weight to larger errors due to the squaring
of differences. This sensitivity to large errors makes it particularly useful in scenarios
where significant deviations from the ground truth are critical. It complements MAE
by emphasizing the impact of outliers or large prediction errors.

Finally, MAPE expresses the average error as a percentage of the actual values. This
makes it especially valuable for comparing performance across datasets with different
scales.

By using these metrics in combination, we can gain a holistic understanding of the
model’s strengths and weaknesses, guiding further optimization and refinement.
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3.3.2 Implementation Details

For both datasets, during the CNN prediction, we implement the Leave-One-Subject-
Out (LOSO) method. This is due to the fact that individual variability is significant and
LOSO ensures that the model is trained on a wide variety of subjects and tested on a
completely independent individual while preventing overfitting to individual charac-
teristics. For the second-stage learning component, we conduct three distinct experi-
ments: Blind Scenario: The classifier is withheld samples of the individual it is pre-
dicting on (i.e. LOSO), ensuring no data leakage. Few-Shot Scenario: The classifier is
provided with data from all participants and only 6 random samples from the individ-
ual it is predicting on (3 per class). Calibrated Scenario: The classifier is trained and
tested using data from the same individual to simulate a personalized or user-specific
model. To ensure fair evaluation and avoid data leakage, we first balance the dataset
(e.g., equal number of samples per class) and then split it into 80% for training and 20%
for testing, making sure that no overlapping data points appear in both sets.

3.3.3 Eulerian Video Magnification

Before presenting our results, it is important to address the impact of Eulerian Video
Magnification on motion and light amplification. Our experiments revealed that its use
for enhancing motion and light variations did not improve performance; in some cases
it even led to worse results compared to using the raw stabilized videos. This suggests
that the amplification process may have introduced additional noise or distortions that
interfered with the pulse estimation.

One possible explanation for this observation is that Eulerian Video Magnification,
while effective in amplifying subtle temporal variations, also enhances artifacts such
as minor head movements, compression noise and illumination changes that are not
relevant to pulse estimation. These additional artifacts may have led to reduced perfor-
mance. Additionally, the motion amplification process could have exaggerated micro-
movements that are already captured adequately in the original frames, causing redun-
dant or misleading information to be introduced.

Another factor to consider is that Eulerian Video Magnification increases computa-
tional complexity. The additional processing required for building the Laplacian pyra-
mid, applying band-pass filtering and reconstructing the video raised the computa-
tional cost without offering any benefits in terms of performance accuracy.

Based on these findings, we decide to exclude Eulerian Video Magnification from our
final methodology. Instead, we rely on the stabilized videos without amplification, as
they provide comparable or better results while maintaining efficiency.
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3.3.4 Experimenting on MMSE-HR

We compare our proposed method with several state-of-the-art methods, ranging from
approaches mitigating motion artifacts [Li et al. (2014), Tulyakov et al. (2016)] to other
spatiotemporal approaches [Niu et al. (2019a), Jaiswal and Meenpal (2022)]. To ensure
the validity of the comparison, we report on work that has been evaluated on the same
dataset. All related results are presented in Table 3.4.

TABLE 3.4: A summary of average HR estimation per video for ST2S-rPPG on the
MMSE-HR dataset. Bold numbers indicate best performance and underlined numbers

indicate second best performance.

Method HRMAE HRME HRSD HRRMSE HRMAPE

Li et al. (2014) - 11.56 20.02 19.95 14.64%
SAMC [Tulyakov et al. (2016)] - 7.61 12.24 11.37 10.84%
RythmNet [Niu et al. (2019a)] - -0.85 4.99 5.03 3.67%
Niu et al. (2019b) - -3.10 9.66 10.10 6.61%
Jaiswal and Meenpal (2022) 6.4 - 6.63 6.82 -
ST2S-rPPG - No second-stage learning 10.21 1.59 5.58 11.75 14.94%
ST2S-rPPG - Blind (ours) 5.94 0.65 4.78 7.67 7.66%
ST2S-rPPG - Few-shot (ours) 5.13 -0.39 4.11 6.57 6.16%
ST2S-rPPG - Calibrated (ours) 2.06 -0.23 2.35 3.11 2.88%

We decide to keep the calibrated results separate from the evaluation as our classifier is
trained with personalized data and comparison would not be fair. Our MAE excluding
the second-stage learning highlights the challenges of rPPG without the selection of
informative data regions. Despite this, the standard deviation of the first-stage learning
is favorable compared to literature, which indicates that our approach produces more
consistent predictions with lower variability across individuals. Experiments without
stabilization were not conducted because inconsistent facial tracking would prevent
reliable spatiotemporal image generation. We can observe that ST2S-rPPG achieves
promising results on most commonly used metrics.

FIGURE 3.8: Scatter plot between ground truth HR and predicted HR for the MMSE-
HR dataset.
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Specifically, both blind and few-shot two-stage learning approaches achieve the best
results in HRMAE, HRME, HRSD. The few shot two-stage learning also achieves second
best performance in HRRMSE, HRMAPE. We demonstrate the most significant improve-
ment compared to Li et al. (2014) and Tulyakov et al. (2016). These methods do not use
spatiotemporal representations, further proving their efficiency. They also use adap-
tive band-pass filters for noise reduction, proving our stabilization method’s capability.
Our advantage over Niu et al. (2019a,b) is that instead of using an aggregate signal from
multiple ROIs, we take advantage of all regions of the face, do not aggregate the spa-
tiotemporal signal and do not choose the optimal images (ROIs) empirically. Finally,
compared to all spatiotemporal approaches in Table 3.4, ST2S-rPPG does not perform
any RGB transformations, since the lighting in the MMSE-HR database is not heteroge-
neous.

Compared to Jaiswal and Meenpal (2022), the HRMAE error was reduced by 13.64%. At
the same time we have achieved the lowest standard deviation, suggesting more con-
sistent predictions across individuals. Our calibrated two-stage learning experiment
achieves the best performance across all metrics, keeping in mind that the classifier is
trained with personalized data. However the significance of such an approach holds
a lot of potential for real-life settings, where personalization can lead to substantial
improvement in model performance, leading to better health outcomes.

We also present a modified Bland-Altman plot between the difference of the ground
truth and the predicted beat values across the ground truth in Figure 3.9 for all three
experiments. The two dashed red lines represent the upper and lower 95% limits of
agreement and are calculated as the mean difference plus and minus 1.96 times the
standard deviation of the differences. Each data point corresponds to each subject in the
dataset. The majority of the points fall within the 95% limits of agreement, indicating
accuracy within acceptable clinical limits. We also present the scatter plot between the
ground truth HR and predicted HR in Figure 3.8.

FIGURE 3.9: Bland-Altman plot with adjustments for ST2S-rPPG on the MMSE-HR
dataset, the black line represents the mean and the red lines the 95% limits of agree-

ment.
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Our analysis of model performance across gender groups reveals some unexpected
trends. Despite women making up a larger portion of the dataset (23 women, 17 men),
their initial performance in pulse estimation was worse than men. As seen in Table 3.5,
the original model without the second-stage learning, the women’s MAE was 11.47, sig-
nificantly higher than 8.38 for men. This performance gap gradually decreased with the
introduction of second-stage learning methods, with MAE dropping to 6.51 (women)
vs. 5.11 (men) in the blind approach, 5.38 vs. 4.79 in few-shot learning and 2.02 vs. 2.14
in the calibrated approach. By the final stage, performance across genders had nearly
equalized.

TABLE 3.5: A summary of results across genders for the MMSE-HR dataset.

Method Women Men MAE Gap (W-M)

ST2S-rPPG - No second-stage learning 11.47 ± 5.9 8.38 ± 5.13 3.09
ST2S-rPPG - Blind 6.51 ± 5.78 5.11 ± 3.35 1.4
ST2S-rPPG - Few-shot 5.38 ± 4.36 4.8 ± 3.79 0.58
ST2S-rPPG - Calibrated 2.02 ± 2.32 2.14 ± 2.4 -0.12

This is an interesting observation; although the dataset used in this study was balanced
in terms of gender and skin tone distribution the initial results showed a consistent per-
formance gap, with higher error rates for female participants. This was unexpected, as
a larger sample size typically improves model generalization, suggesting that dataset
size alone was not the determining factor. Several potential explanations may con-
tribute to this discrepancy. We observed that women exhibited more facial movement
during recordings which potentially affected the rPPG signal extraction, even though
we attempt to minimize that with stabilization. Another factor could be subtle differ-
ences in facial blood flow visibility, like variations in skin composition, texture or even
makeup application. For the latter we have no way of examining this as it is not men-
tioned in the dataset characteristics but it is a possibility. Additionally, it is possible that
the model struggled with feature representation differences between male and female
participants. Without controlled experiments designed to isolate these factors, it is not
possible to attribute the performance gap to any single cause with certainty.

Despite this, our second-stage learning significantly improved model performance across
both genders, eventually eliminating the gap in our calibrated experiments. This sug-
gests that adaptive learning strategies can successfully mitigate biases, making them
an essential component for improving generalization in video based pulse estimation.

3.3.5 Experimenting on UBFC-rPPG

We compare ST2S-rPPG to several state-of-the-art approaches that have been evaluated
on the UBFC-rPPG database.
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TABLE 3.6: A summary of average HR estimation per video for ST2S-rPPG on the
UBFC-rPPG dataset. Bold numbers indicate best performance and underlined num-

bers indicate second best performance

Method HRMAE HRME HRSD HRRMSE HRMAPE

ICA[Poh et al. (2010a)] 8.43 - 18.6 18.8 -
CHROM [Wang et al. (2016)] 10.6 6.78 19.1 20.3 -
3D CNN [Bousefsaf et al. (2019)] 5.45 -1.31 8.55 8.64 -
Meta-rPPG [Lee et al. (2020)] 5.97 - 7.12 7.42 -
TransPhys [Shao et al. (2023)] 4.66 - 7.22 7.36 -
ST2S-rPPG - No second-stage learning 8.51 -1.93 4.75 9.84 8.25%
ST2S-rPPG - Blind (ours) 5.62 0.04 4.76 7.24 5.6%
ST2S-rPPG - Few-shot (ours) 5.24 -0.02 3.81 6.36 5.21%
ST2S-rPPG - Calibrated (ours) 3.05 -1.04 2.82 3.98 2.95%

In Table 3.6, we observe a similar trend with Table 3.4 regarding our results without the
second-stage learning. Our ST2S-rPPG blind and few-shot method achieves the best
results most reported metrics (HRME, HRSD, HRRMSE, HRMAPE) and the second best
results in HRMAE, demonstrating its efficiency in accurately estimating heart rate even
with limited training data. Additionally, ST2S-rPPG exhibits improvements in HRSD,
indicating more precise predictions and reduced variability in heart rate estimations.
Similarly to the previous database, we demonstrate the most significant improvement
of performance against non spatiotemporal traditional approaches [Poh et al. (2010a);
Wang et al. (2016)] and 3D CNN approaches [Bousefsaf et al. (2019)]. TransPhys [Shao
et al. (2023)] seems to be performing best in the HRMAE metric, suggesting that spa-
tiotemporal transformers show promising results, but can be computationally expen-
sive. Finally, Meta-rPPG [Lee et al. (2020)], showcases slightly lower estimation accu-
racy, potentially indicating that a second stage learning component, trained on predic-
tions captures more valuable information for estimation.

In Figure 3.10, we also present the modified Bland-Altman plots for this database and
in Figure 3.11 the scatter plots between the ground truth and the predicted HR.

The UBFC-rPPG dataset presents an interesting contrast to the MMSE-HR dataset, as
80% of participants in this dataset are male, creating an imbalance in gender represen-
tation. Despite this skewed distribution, a similar initial performance gap is observed,
with higher error rates for women in the early stages of the model. However, as with
MMSE-HR, our second-stage learning approach reduces this gap, ultimately leading to
almost equivalent performance in the calibrated approach.

A general observation across the selected spatiotemporal slices suggests that regions
from the central facial area and the sides of the face tend to be more frequently chosen,
whereas slices that include the eyes are rarely selected. This aligns with prior findings
in the rPPG literature, where areas with stable illumination and strong blood perfusion
typically yield stronger pulse signals. The lower selection rate of slices that contain
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FIGURE 3.10: Bland-Altman plot with adjustments for ST2S-rPPG on the UBFC-rPPG
dataset, the black line represents the mean and the red lines the 95% limits of agree-

ment

FIGURE 3.11: Scatter plot between ground truth HR and predicted HR for the UBFC-
rPPG dataset

TABLE 3.7: A summary of results across genders for the UBFC-rPPG dataset.

Method Women Men MAE Gap (W-M)

ST2S-rPPG - No second-stage learning 9.95 ± 4.93 8.14 ± 4.71 1.81
ST2S-rPPG - Blind 6.41 ± 5.32 5.42 ± 4.62 0.99
ST2S-rPPG - Few-shot 6.52 ± 5.03 4.86 ± 3.42 1.66
ST2S-rPPG - Calibrated 2.4 ± 2.54 3.04 ± 2.87 -0.64

the eyes may be due to increased motion artifacts from blinking or the lower signal
intensity in these regions. Although not explicitly analyzed, this trend suggests that
future work could refine spatial feature selection for improved model robustness.

3.4 Challenges, Insights & Future Directions

The rapid growth of telehealth, accelerated by the COVID-19 pandemic, has driven the
adoption of remote physiological monitoring methods. While DL techniques dominate
the field, their complexity often limits interpretability and accessibility, particularly
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in clinical applications where trust in model decisions is crucial. This chapter intro-
duces a spatiotemporal approach that balances accuracy, computational efficiency and
interpretability. By stabilizing videos using PIPs and leveraging spatiotemporal repre-
sentations, we mitigate motion artifacts and enhance signal consistency. The second-
stage learning framework further refines pulse estimation by automatically selecting
the most informative regions, improving overall performance across diverse demo-
graphics.

Our evaluation demonstrates that ST2S-rPPG achieves competitive performance com-
pared to state-of-the-art methods, particularly in reducing MAE and improving pre-
diction consistency. The incorporation of second-stage learning significantly enhances
accuracy by filtering out low-quality spatiotemporal images, particularly in datasets
with diverse participant demographics. While our blind and few-shot learning scenar-
ios significantly improved pulse estimation accuracy, our fully calibrated experiments
demonstrated the strongest performance across all metrics. By training the model with
subject-specific data, we observed a substantial reduction in error, nearly eliminating
demographic-based performance discrepancies. This suggests that personalized cali-
bration can be a powerful tool for improving rPPG accuracy in real-world applications,
particularly in healthcare settings where individual physiological differences must be
accounted for.

One notable challenge observed in our experiments is the disparity in performance
across genders, particularly in MMSE-HR. Initially, female participants exhibited higher
error rates compared to male participants, despite a balanced dataset composition. This
difference persisted across multiple trials, suggesting that motion artifacts, physiolog-
ical factors and potential dataset biases (e.g., makeup, facial expressions, movement
patterns) could contribute to the gap. However, our second-stage learning approach
mitigated these discrepancies, nearly equalizing performance across genders in the cal-
ibrated setting. This highlights the importance of adaptive learning strategies in reduc-
ing demographic biases, reinforcing the need for more inclusive datasets and model
evaluation across diverse populations.

Our experiments highlight discrepancies in performance differences across skin tones.
Participants with darker skin tones tended to exhibit higher initial error rates compared
to participants with lighter skin tones. This highlights an ongoing challenge in rPPG
research, as the optical properties of melanin can affect light absorption and reflection,
complicating pulse signal extraction. However, it is important to note that the num-
ber of participants with darker skin tones in our evaluation was relatively small and
thus these observations should be interpreted with caution. More extensive validation
on larger and more diverse datasets is necessary to confirm these trends. However,
the second-stage learning framework again mitigated much of the performance gap,
reducing discrepancies across skin tones similarly to how it reduced gender-based per-
formance differences. This suggests that adaptive, quality-aware learning strategies
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can play a crucial role in addressing demographic biases in rPPG systems, although
further work is needed to ensure fairness and robustness across diverse populations.

Another key observation is that spatiotemporal transformations provide a robust fea-
ture representation for pulse estimation, but pre-defined ROI selection can limit their
effectiveness. Our work moves beyond this constraint by allowing data-driven selec-
tion of regions that contribute the most to accurate predictions. However, a trade-off
exists between fine-grained spatial segmentation and computational efficiency, as in-
creasing resolution and spatial detail can introduce redundant or noisy information.
Finally, our experiments with Eulerian Video Magnification revealed that amplifica-
tion of motion and color variations did not improve model performance. While Eule-
rian Video Magnification has been useful in prior work for enhancing subtle skin tone
fluctuations, our results indicate that it also amplifies irrelevant artifacts such as head
movements and environmental lighting changes, leading to noisier predictions. Given
the increased computational cost of Eulerian Video Magnification without measurable
benefits, we excluded it from our final methodology.

Despite its strengths, ST2S-rPPG is not without limitations. While our second-stage
learning improves accuracy by selecting high-quality images, it introduces an addi-
tional classification step, which may add latency in real-time applications. Optimizing
this process for real-time inference remains an area for future work. Another limitation
is the restricted dataset availability. Although we evaluated our method on MMSE-HR
and UBFC-rPPG, our inability to access larger datasets such as PURE and VIPL-HR
limits broader generalization. Future work should include testing on more datasets
and real-world conditions, particularly in low-light environments or cases with oc-
clusions (e.g., glasses, masks). Additionally, our gender analysis revealed disparities
in initial model performance, which suggests the need for further investigation into
demographic-specific biases in rPPG datasets.

A critical takeaway from this research is that rPPG performance is highly dependent on
video quality. While our stabilization and second-stage learning techniques mitigate
some sources of error, factors such as resolution, frame rate, compression artifacts and
lighting conditions still impact pulse estimation accuracy. These factors vary signifi-
cantly across datasets and real-world applications, yet standardized evaluation metrics
for video quality in rPPG are almost entirely lacking. Current research often evaluates
rPPG models on individual datasets without accounting for how video quality varia-
tions directly impact pulse estimation performance. In the next chapter, we shift our
focus to quantifying video quality and establishing video evaluation metrics. By sys-
tematically analyzing the impact of different video characteristics, we aim to develop
a video quality assessment framework that correlates with rPPG accuracy, providing
a structured approach for improving dataset selection, preprocessing strategies and
model robustness.
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Chapter 4

Output Layer: Assessing Video
Quality and Developing Metrics

This chapter serves as the output layer of the model, where the insights gained from ana-
lyzing video quality are transformed into structured, quantitative metrics.

As we established in previous chapters, rPPG’s performance is highly dependent on
the quality of the input video. Both signal processing and ML methods, while effec-
tive in controlled environments, are vulnerable to videos affected by motion artifacts,
poor illumination, significant occlusions or other quality issues. This leads to reduced
performance and reliability in rPPG models.

The dependence on video quality creates a bottleneck for using rPPG systems in real-
world applications. Traditional video quality metrics, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM), have been widely used
to evaluate video quality in video compression, streaming and general computer vi-
sion tasks. These metrics, however, measure compression and perceptual quality but
ignore rPPG-specific distortions, such as motion or uneven illumination that disrupt
blood volume signal extraction. Since pulse estimation depends on skin reflectance,
traditional metrics fail to indicate rPPG suitability reliably.

To this day, very few, if any, researchers have focused on creating tailored video quality
metrics for rPPG. Existing studies often evaluate individual factors, such as motion or
resolution, similar to what we did in previous chapters. The lack of a comprehensive
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approach, has left a gap in the field, which makes it challenging to develop robust rPPG
systems that can generalize effectively to diverse real-world conditions.

A dedicated video quality metric for pulse estimation would offer a standardized and
objective way to assess video suitability in real-world scenarios. By aggregating multi-
ple video quality factors (such as motion artifacts, illumination and resolution), such a
metric could quantify how these elements influence rPPG performance. This would al-
low researchers to better understand dataset limitations, assess whether additional data
collection is needed for diversity and ensure more generalizable models. In practical
applications, it could help clinicians, researchers or individuals identify quality issues
in their recordings, offering insights into how video conditions may impact measure-
ment accuracy. By establishing a standardized benchmark, this metric would enhance
reproducibility and provide a structured way to evaluate and compare video datasets
across different studies and applications.

Chapter Contributions:
Building on this motivation, this chapter presents a framework for video quality eval-
uation in rPPG. The insights gained here form the foundation for developing metrics
specifically tailored to rPPG applications. By bridging the gap between video quality
and rPPG performance, we aim to support the creation of more accurate and inclusive
rPPG systems. More specifically, our contributions are as follows:

• We systematically analyze how different video quality factors affect rPPG mod-
els and quantify their impact on pulse estimation accuracy. Our findings reveal
that motion artifacts, occlusions, and resolution drops significantly degrade per-
formance, while color space variations have a lesser effect.

• We introduce the first integrated metrics for assessing video quality tailored to
rPPG. By combining multiple degradation factors into a structured score, we en-
able more reliable dataset selection and preprocessing.

• We validate our metrics by analyzing their correlation with rPPG model perfor-
mance. Our results indicate that these metrics can serve as reliable predictors of
performance degradation caused by video quality issues.

The remainder of this chapter is organized as follows:

4.1 Breaking Down the Noise: How Video Quality Shapes rPPG

To evaluate and quantify the effects of video quality on rPPG performance, we mod-
ify videos based on ten quality factors that commonly impact or could impact perfor-
mance. This approach is necessary because most datasets are collected under optimal
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conditions, such as controlled lab environments, and often lack sufficient variability.
While some factors have been previously studied, leading to efforts in developing more
robust models, others remain largely unexplored. In the following sections, we de-
scribe our experimental setup, including the models selected, the datasets used and the
quality-based edits applied to the videos. We then present a comprehensive analysis of
how these factors influence model performance. This analysis serves as the foundation
for developing the proposed video quality metrics.

4.1.1 Experimental Setup

4.1.1.1 Models

For our study, we select four benchmark rPPG models: Plane-Orthogonal-to-Skin (POS),
ICA, DeepPhys and Temporal Shift Convolutional Attention Network (TSCAN). These
models represent both traditional signal processing approaches and more recent DL
based frameworks, which allows us to explore a broad spectrum of methods commonly
used in rPPG. POS and ICA are established signal processing techniques known for
their robustness. They are widely used in rPPG studies due to their simplicity and effec-
tiveness. DeepPhys and TSCAN are DL models that have demonstrated superior per-
formance and can handle complex, noisy video inputs. For the implementation of these
models, we use the rPPG-Toolbox [Liu et al. (2024)], which provides pre-implemented
versions of several state-of-the-art rPPG algorithms and pre-trained models. The pre-
trained DeepPhys and TSCAN models were trained on the PURE dataset [Stricker et al.
(2014)]. Our work builds directly on this framework to ensure consistency with existing
methods. Below, we provide a detailed breakdown of their design.

POS

The POS algorithm [Wang et al. (2016)] is a signal processing technique that leverages
subtle color changes in the skin caused by blood flow. The algorithm identifies ROIs
on the face, typically areas with consistent lighting and minimal occlusion, such as the
cheeks or forehead to extract rPPG signals. It then projects the normalized RGB signals
onto a plane orthogonal to the direction of the skin tone. This projection enhances the
pulse signals while minimizing noise from lighting conditions or skin tone variations.
The projected signals are filtered to isolate frequencies corresponding to the typical
heart rate range and the dominant frequency within the filtered signal is extracted as
the estimated pulse rate. In literature, POS is valued for its simplicity, computational
efficiency and robustness under moderate noise conditions. However, it struggles with
significant motion artifacts or lighting variations.
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ICA

ICA [Poh et al. (2010a)] is another signal processing-based technique widely used in
rPPG research. It is a blind source separation method, meaning it isolates and extracts
independent source signals from a mixture without prior knowledge of the source char-
acteristics or how they were combined. Similar to POS, ICA extracts signals (treated as
mixtures of independent sources, including the pulse signal) from selected ROIs. These
mixed signals are separated into independent components by maximizing their statis-
tical independence using mathematical criteria like kurtosis (how ”peaked” or ”flat” a
distribution is) or negentropy (a measure of how far a distribution is from being purely
random or Gaussian). Finally, a frequency analysis is performed on the independent
components to identify the one with dominant pulsatile frequencies corresponding to
heart rate. ICA is effective in separating physiological signals from noise and is ro-
bust under conditions with minimal motion. However, it requires careful tuning and
preprocessing to work effectively.

DeepPhys

DeepPhys [Chen and McDuff (2018)] represents a DL approach that utilizes a CNN
and attention mechanisms to improve robustness under challenging conditions. The
input video frames are preprocessed to extract ROIs and to create a spatiotemporal
representation by stacking frames to form a 3D input. The attention mechanism fo-
cuses on facial regions with strong pulsatile signals, such as the cheeks or forehead,
while ignoring noisy or occluded areas. The CNN processes the input representation,
learning features that correspond to the rPPG signal by identifying patterns in tempo-
ral color variations. The output of DeepPhys is the predicted heart rate after mapping
the learned features to a time-series signal, which is then analyzed for the dominant
frequency. DeepPhys is more robust in scenarios with complex noise and motion but is
computationally intensive and requires large datasets for training.

TSCAN

TSCAN [Liu et al. (2020)] builds on the foundation of DeepPhys but introduces tem-
poral shift modules to process temporal information without significantly increasing
computational complexity. These modules shift small amounts of information across
adjacent frames, enabling the model to handle dynamic inputs like motion and illu-
mination changes effectively, by helping it understand changes over time better. The
network has two branches, a motion branch that focuses on capturing motion patterns
caused by blood flow and an appearance branch that analyzes spatial features, such
as skin texture and color changes. Similar to DeepPhys, TSCAN includes an atten-
tion mechanism to prioritize regions with clear rPPG signals, reducing the influence
of noisy or occluded areas. The convolutional layers in TSCAN process the output
from the temporal shift and attention modules to extract spatiotemporal features. Fi-
nally, the network predicts the heart rate by analyzing the spatiotemporal features and
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identifying the dominant frequency. TSCAN is designed for real time applications and
exhibits improved performance under challenging conditions like motion and illumi-
nation changes. However, it does require high-quality and large amounts of data for
optimal performance.

4.1.1.2 Datasets

The rPPG-Toolbox [Liu et al. (2024)] was originally configured to work only with UBFC-
rPPG. Given that editing and analyzing videos for quality assessment is both time and
computationally intensive, UBFC-rPPG was selected due to its well-controlled condi-
tions, allowing us to systematically introduce distortions and analyze their effects. Ad-
ditionally, its compatibility with the rPPG-Toolbox streamlined implementation. While
datasets like MMSE-HR contain more naturalistic variations, they introduce uncon-
trolled factors that complicate targeted evaluation of specific quality distortions. De-
tails on the UBFC-rPPG specifications can be found in chapter 3.

4.1.1.3 Simulating Real-World Challenges

We design a series of experiments focusing on 10 quality factors. These selected quality
factors represent common degradations encountered in real-world rPPG applications,
including telehealth and remote monitoring. Motion artifacts, occlusions and illumina-
tion changes are particularly critical since they alter the skin’s appearance, impacting
pulse estimation accuracy. Compression and resolution reductions, while commonly
studied in general video quality, have not been systematically assessed in rPPG.

A detailed view of the experimental categories, conditions and their purpose can be
found in Table 4.1.

Blur is simulated using defocus and Gaussian blur, both of which reduce fine details
critical for capturing subtle skin color variations. Compression (H.264) introduces
block artifacts and detail loss, which can affect pulse estimation, especially in telehealth
applications where videos are often compressed for storage and streaming. Duration
and FPS reductions test the model’s ability to function with limited temporal data,
simulating conditions where short recordings or low frame rates restrict the number
of cardiac cycles available for analysis. Illumination variations explore the effects of
dim lighting, fluctuating brightness and extreme contrast shifts, which can alter skin
reflectance and impact signal extraction. Motion artifacts are introduced through arti-
ficial camera shake, replicating unstable setups or subject movement, which disrupts
pixel-based pulse tracking. Noise is added in the form of Gaussian noise (mimick-
ing sensor imperfections) and salt-and-pepper noise (simulating transmission errors or
hardware faults), both of which degrade visual clarity and challenge the model’s ability
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TABLE 4.1: Experimental Conditions and Their Purposes

Experiment Category Conditions Purpose

Blur Defocus Blur (kernel sizes: 3, 5, 9)
Gaussian Blur (kernel sizes: 3, 5, 11)

Simulate out of focus and low
quality lens effects

Compression H.264 Evaluate impact of common
video compression

Duration Half
Quarter

Assess performance with
shorter video clips

FPS Half
Quarter

Test lower frame rates on
temporal resolution

Illumination Constant illumination and bright-
ness (50%, 25%)
Fluctuating illumination and
brightness every 10 seconds (50%,
25%)
Varying brightness (50%, 25%,
150%)
Brightness variation in 10-second
intervals (50%, 25%, 150%)
Contrast (50%, 25%, 150%, 200%,
400%)
Contrast variation in 10-second
intervals (50%, 25%, 150%, 200%,
400%)

Simulate various lighting
conditions

Motion Artificial Shake (2, 5, 10 pixels) Replicate unstable camera
Noise Gaussian Noise (0.02, 0.05, 0.005)

Salt-and-Pepper Noise (density:
0.1-0.3, 0.01-0.5, 0.05-0.7)

Test resilience to sensor and
transmission noise

Occlusion Cheeks
Forehead
Both

Evaluate impact of facial
occlusions (hair/facial hair,
hands, face mask)

Resolution Half
Quarter

Assess impact of lower reso-
lution

Color Space Hue, Saturation, Value (HSV)
LAB
YCbCr
YUV
Hue adjustments (5, 25, 50)
Saturation adjustments (50%,
150%)

Test impact of color space and
skin tone variations



4.1. Breaking Down the Noise: How Video Quality Shapes rPPG 91

to extract meaningful signals. Occlusion tests the effect of covering key facial regions,
such as the cheeks or forehead, replicating real-world scenarios like facial hair, masks
or hands obstructing the face. Resolution reductions simulate low-quality cameras or
image resizing, limiting spatial detail available for pulse detection. Finally, color space
transformations alter the way color information is represented in the video, including
adjustments to hue and saturation, which test model sensitivity to variations in skin
tone appearance due to lighting or camera settings. Together, these modifications allow
us to systematically assess how different video quality factors influence rPPG perfor-
mance. In Figure 4.1, we present visual examples of how these edits affect the video
frames.

(A) Original frame (B) Defocus blur (C) YCbCr

(D) Salt & Pepper
noise

FIGURE 4.1: A sample frame of various experimental conditions for one participant.

4.1.2 Analysis

To better interpret the impact of different video quality factors, we categorize the results
into four groups: spatial degradations, temporal degradations, illumination and color
distortions and motion and occlusions. Each category represents a distinct challenge
to rPPG model performance, affecting signal extraction in different ways, whether
through loss of spatial detail, disruption of temporal dynamics, alteration of skin re-
flectance or interference with facial visibility. The following sections analyze these ef-
fects in detail. The performance of each model was evaluated using the MAE between
the predicted heart rate and the ground truth, with unedited videos serving as the
baseline.
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4.1.2.1 The Impact of Spatial Degradations

Blur, noise, compression and resolution all impact the spatial quality of the video, di-
rectly affecting rPPG model performance. Blur (defocus and Gaussian) degrades fine
details, reducing the visibility of subtle color variations. Defocus blur causes a steady
increase in error across all models as the blur intensity increases, with DeepPhys show-
ing the highest sensitivity. Once details are sufficiently degraded, the performance
drop plateaus, suggesting that models operate with insufficient spatial information at
extreme blur levels. Gaussian blur, however, has a more variable impact; POS and
TSCAN demonstrate relative stability, while DeepPhys and ICA suffer sharper perfor-
mance declines. Gaussian blur spreads intensity changes more smoothly across the
frame, which may explain why POS and TSCAN, which leverage broader periodic pat-
terns, handle it better than defocus blur, which creates a more uniform loss of detail.

Noise (Gaussian and salt-and-pepper) introduces pixel-level distortions, impacting mod-
els differently. Gaussian noise adds random variations in pixel intensity, creating a
gradual degradation in performance as noise variance increases. DeepPhys and ICA
are particularly vulnerable, as their reliance on fine spatial details makes them sensi-
tive to subtle pixel perturbations. Salt-and-pepper noise, on the other hand, introduces
extreme pixel outliers, resulting in sharper performance declines. POS remains the
most resilient overall, likely due to its reliance on periodic signals rather than precise
spatial textures, making it more tolerant to pixel-level distortions.

Compression (H.264) introduces blocking artifacts, which disrupt spatial continuity
and fine-grained details. DeepPhys and ICA suffer the most again, as compression
eliminates subtle pixel-level patterns essential for their feature extraction. The error in-
creases more abruptly compared to noise, as compression artifacts disproportionately
affect facial regions where rPPG models extract signals from. POS and TSCAN, while
affected, show greater robustness, likely because they rely more on broader feature
patterns that remain somewhat preserved under compression.

Resolution reductions lead to increasing error across all models, as lower spatial detail
makes it harder to track skin color variations. DeepPhys and TSCAN experience the
sharpest declines, emphasizing their reliance on high-resolution input. ICA and POS,
while also impacted, degrade more gradually, benefiting from broader statistical fea-
ture extraction rather than pixel-specific details. At extreme resolution reductions, all
models show severe performance loss, indicating a threshold where insufficient spatial
information renders pulse extraction ineffective.
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4.1.2.2 Temporal Degradations Insights

Reducing FPS and video duration directly impacts temporal signal stability, limiting
the number of cardiac cycles available for analysis. Lower FPS reduces the granularity
of temporal changes in skin tone, making it harder for models to track pulse fluctu-
ations accurately. Shorter video durations provide fewer overall pulse cycles for the
models to learn from, potentially leading to greater sensitivity to noise and short-term
variations.

The effect of FPS reduction varies across models, with DeepPhys and TSCAN suffering
the most significant performance declines. At half the original FPS, DeepPhys’ error
increases sharply, highlighting its heavy reliance on fine temporal resolution for feature
extraction. TSCAN follows a similar pattern, showing progressive performance loss as
FPS decreases, indicating that its feature extraction also depends on a high frame rate.
ICA and POS degrade more gradually, suggesting they rely more on broader periodic
signals rather than fine-grained temporal details. POS, in particular, remains the most
stable, reinforcing its adaptability to different frame rates.

Reducing video duration has a similar effect, but its impact is more uniform across
models. All models show increased error rates as the duration is halved and quartered,
as fewer frames mean fewer cardiac cycles are available for pulse estimation. Deep-
Phys is particularly vulnerable, as it depends on longer time-series data to stabilize its
predictions. POS and ICA show better resilience, likely because they leverage periodic
information from shorter segments more effectively.

Overall, these results highlight the trade-offs in model architectures. DL-based mod-
els (DeepPhys, TSCAN) require high frame rates and longer durations to capture fine
temporal variations, making them highly vulnerable to temporal degradation. signal
processing models (POS, ICA) handle these conditions better, particularly POS, which
remains the most stable model in both FPS and duration reductions.

4.1.2.3 The Role of Lighting & Color

Changes in brightness and contrast significantly alter skin tone representation, impact-
ing rPPG signal extraction. As brightness decreases, models must compensate for
reduced contrast between skin regions, while extreme contrast shifts can distort re-
flectance properties. DeepPhys and TSCAN are highly sensitive to these variations,
with error rates increasing sharply under extreme contrast shifts. POS performs mod-
erately well under brightness changes but struggles with overly high contrast. ICA
remains the most stable, suggesting that it relies more on statistical features rather than
precise skin tone variations, keeping in mind though that it starts from a higher base-
line error.
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(A) Impact of FPS reduction on model performance.

(B) Impact of reduced video duration on model performance.

FIGURE 4.3: Impact of temporal degradations (FPS and duration) on the performance
of four models: DeepPhys, ICA, POS and TSCAN.
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Color space transformations (HSV, LAB, YCbCr, YUV) introduce further variability by
altering the way color and luminance are represented. DeepPhys is the most affected,
particularly in YUV space, where its performance degrades the most. POS and ICA
show moderate resistance, suggesting that they rely on broader intensity-based fea-
tures rather than fine color variations. TSCAN remains consistently vulnerable, likely
because its feature extraction is more dependent on the original RGB color structure.

Hue and saturation adjustments present additional challenges. Increasing hue shifts
significantly impacts DeepPhys and POS, reflecting their reliance on fine-grained color
details for pulse extraction. TSCAN experiences the steepest rise in error, indicating
that it depends heavily on stable hue representation. ICA remains the most resilient
overall, showing minimal degradation under both hue and saturation changes, which
suggests that it prioritizes general intensity-based signals over color-specific features.

4.1.2.4 Motion & Occlusions

Motion artifacts disrupt rPPG model performance by introducing frame-to-frame in-
consistencies, which can cause instability in the extracted pulse signal. DeepPhys and
TSCAN experience the most significant performance degradation, as they rely heav-
ily on stable spatial features. With increasing motion intensity, DeepPhys’ error rises
sharply, reflecting its strong dependence on precise facial feature tracking. TSCAN
also deteriorates rapidly, though it shows some stabilization at extreme motion levels,
possibly due to temporal averaging.

ICA, while also affected, handles motion slightly better because it relies more on broader
statistical features rather than precise pixel-level tracking. POS maintains the highest
robustness, likely benefiting from its periodic signal processing approach, which makes
it less susceptible to motion-induced distortions.

Occlusions introduce another challenge, affecting models differently depending on
which facial regions are covered. Cheek occlusions cause the highest performance
degradation, followed by combined cheek and forehead occlusions, while forehead-
only occlusions have a slightly smaller impact. DeepPhys is the most sensitive, with
errors rising steeply under all occlusion types. ICA and POS handle occlusions bet-
ter, suggesting that they rely on more distributed facial regions for signal extraction,
rather than depending on specific areas. TSCAN performs moderately well but strug-
gles when both cheeks and the forehead are occluded.

These results highlight a trade-off: DL models like DeepPhys and TSCAN extract fine
spatial features, making them more sensitive to disruptions like motion and occlusions.
In contrast, signal processing models (POS, ICA) exhibit greater robustness, especially
under occlusions.
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(A) Impact of motion artifacts.

(B) Impact of occlusions.

FIGURE 4.5: IImpact of motion and occlusions on the performance of four models:
DeepPhys, ICA, POS and TSCAN.
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4.1.2.5 Comparing rPPG Models Across Distortions

The evaluation of rPPG models across various video quality conditions highlights key
differences in their sensitivity to distortions. Broadly, DL-based models such as Deep-
Phys and TSCAN exhibit strong dependence on high-quality input data, whereas signal
processing-based models like POS and ICA demonstrate greater resilience to degrada-
tion. These differences provide important insights into the strengths and limitations of
different rPPG approaches and inform their applicability in real-world scenarios where
video quality may be suboptimal.

Across all models, motion, resolution, occlusions and illumination changes have the
most substantial impact on performance, underscoring the sensitivity of rPPG algo-
rithms to these factors. As seen in Figure 4.6, these distortions consistently increase
the MAE across all methods, with DL models showing the most dramatic error spikes.
Motion artifacts disrupt temporal stability, occlusions obscure critical skin regions and
resolution reductions degrade fine spatial details essential for signal extraction. Illumi-
nation variations further challenge the models, as rPPG relies on subtle color fluctua-
tions, which are significantly altered under different lighting conditions. In contrast,
changes in color space and shorter video durations have a smaller effect overall, sug-
gesting that these factors are less critical for maintaining rPPG accuracy.

FIGURE 4.6: Bar chart with error increase per quality factor for each model

Among all models, POS achieves the lowest MAE across multiple conditions, includ-
ing blur, compression, duration, motion and resolution degradation. This suggests
that POS can better tolerate both spatial and temporal modifications compared to other
models. Unlike DeepPhys and TSCAN, which heavily rely on convolutional feature ex-
traction, POS balances spatial and temporal information without strict dependency on
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fine-grained patterns. Its ability to extract periodic signals rather than localized pixel
features allows it to maintain a lower error even when video quality is compromised.

FIGURE 4.7: MAE values for DeepPhys, ICA, POS and TSCAN across various video
quality conditions.

In contrast, DeepPhys and TSCAN exhibit higher MAEs under challenging conditions,
particularly when motion, occlusion, illumination or resolution are altered. DeepPhys,
in particular, suffers substantial error increases under occlusion and motion artifacts,
suggesting strong sensitivity to temporal instability and spatial disruptions. Similarly,
TSCAN struggles significantly when video input is unstable, highlighting its reliance
on stable frame-to-frame tracking. Both models, despite their sophisticated architec-
tures, demonstrate high vulnerability in real-world, degraded conditions.

One key reason for these performance differences is that DL models like DeepPhys and
TSCAN are trained on datasets that contain primarily high-quality, well-lit and stable
video recordings. As a result, these models learn to extract features optimized for clean,
undistorted input. When presented with distorted data - such as videos with motion
artifacts, occlusions or significant blur - these models fail to generalize effectively be-
cause the distortions are outside their learned feature space. This explains why their
performance deteriorates sharply when video quality degrades. That is not the case
for signal processing models like POS and ICA, which do not rely on training data and
instead extract pulse signals based on predefined mathematical transformations. This
means they do not assume a specific type of video input and are therefore less affected
by unexpected distortions. This independence from training data makes signal pro-
cessing models particularly useful in unpredictable environments where video quality
cannot be controlled.

ICA, while maintaining a relatively stable error profile, starts with a higher baseline
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FIGURE 4.8: Line chart with MAE values per quality factor for each model

MAE compared to DeepPhys, POS and TSCAN. This suggests that ICA’s signal extrac-
tion approach is inherently less precise in ideal conditions but does not degrade as dras-
tically under distortions such as contrast, brightness, blur and FPS reductions. Unlike
deep models, which track fine-grained spatial and temporal features, ICA separates in-
dependent signal components without optimizing for subtle facial cues. Consequently,
ICA’s insensitivity to high-quality input makes it more resilient to distortions but also
limits its ability to achieve fine-tuned accuracy.

A key observation from Figure 4.6 is that, despite differences in absolute MAE values,
all models follow similar relative trends in sensitivity to different video distortions.
While DeepPhys, ICA, POS and TSCAN show varying degrees of performance loss,
the ranking of which quality factors impact them the most remains consistent across
models. This consistency suggests that rPPG distortions can be quantified, reinforc-
ing the feasibility of a video quality metric to assess rPPG suitability across different
approaches.

These findings highlight the importance of aligning rPPG models with their intended
application. For high-precision settings, such as clinical monitoring or controlled labo-
ratory environments where video quality is optimized, DL models like DeepPhys and
TSCAN are ideal due to their superior accuracy in ideal conditions. However, in real-
world applications where video quality is variable, signal processing models like POS
and ICA offer greater reliability. Their ability to tolerate noise, motion and illumination
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FIGURE 4.9: MAE values for DeepPhys, ICA, POS and TSCAN across various video
quality conditions.

FIGURE 4.10: Line chart with MAE values per quality factor for each model

fluctuations makes them better suited for environments where data quality cannot be
guaranteed.

Ultimately, we believe that no single model is universally superior; the best choice
depends on the expected video conditions. A promising direction involves hybrid ap-
proaches that integrate DL with robust signal processing techniques, allowing models
to balance accuracy with resilience. This can enable rPPG systems to maintain high
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performance across diverse real-world scenarios, bridging the gap between precision
and generalizability.

4.2 From Gut Feeling to Numbers: Building rPPG Quality Met-
rics

Based on the insights of the model evaluation study, we present the development
and evaluation of two metrics designed to assess video quality for rPPG applications.
They aggregate individual quality factors (illumination, resolution and motion artifacts
among others) into a single score, providing a holistic evaluation of each video.

4.2.1 Experimental Setup

4.2.1.1 Datasets

For this part of our work, along with UBFC-rPPG, we use MMSE-HR and the more
recently obtained COHFACE [Heusch et al. (2017)]. The combination of these datasets
captures diverse video quality conditions, making them ideal for testing the robustness
of the video metrics.

Details on UBFC-rPPG and MMSE-HR can be found in previous chapters. COHFACE,
on the other hand, is a dataset designed for research in rPPG and facial video analysis.
It contains 40 video recordings of 40 participants, captured under controlled condi-
tions to evaluate the performance of physiological signal estimation algorithms. Each
recording includes synchronized facial videos recorded with a Logitech HD Webcam
C525 camera and ground truth physiological signals, such as heart rate and respiratory
rate, measured using contact-based sensors. The duration of each video is a minute
and videos were recorded at 20 fps with a resolution of 640 by 480 pixels. The dataset
features variations in facial expressions and slight natural head movements to emu-
late real-world scenarios, while maintaining a controlled environment to limit extreme
quality degradations. COHFACE is particularly valuable for studying the impact of
small to moderate facial expressions, head movements and varying illumination con-
ditions on rPPG performance.

As mentioned previously, the rPPG-Toolbox was originally configured to work with
UBFC-rPPG. To accommodate for MMSE-HR and COHFACE, we manually reconfigure
its pipeline. In this study, we once again use the pre-trained DeepPhys and TSCAN on
the PURE dataset to extract pulse measurements for the rest of the datasets.
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4.2.1.2 What Features Are We Tracking?

To help us build the video quality metrics metrics, we extract a series of video analytics
from the three datasets we selected. These analytics quantify the key aspects of video
quality that we analyzed in the previous section. Specifically, we extract the video
resolution, frame rate, video duration, occlusion percentage, number of skin pixels,
average motion, motion variability, maximum motion, average illumination, maximum
illumination, illumination variability and skin tone characteristics.

The resolution of each video is determined by extracting its width and height in pix-
els and the video duration is calculated by dividing the total number of frames by the
frame rate. Occlusion percentage quantifies the extent to which the face is partially or
fully obstructed. We leverage SegFormer, a deep facial segmentation model that iden-
tifies different facial components, such as the forehead, cheeks, eyes, nose and mouth
[Xie et al. (2021)]. The total skin area is estimated by segmenting skin-related labels in
the model’s output. To ensure that occlusion is assessed in a relevant area for rPPG, we
define an elliptical region that captures the face and compute the number of occluded
pixels within this region, storing the percentage of occlusion for each participant.

We extract multiple motion-related features to capture different aspects of motion within
the video, as it is one of the key factors affecting rPPG performance. Average motion is
computed by tracking feature points on the face using optical flow, which estimate the
displacement of facial landmarks between consecutive frames. The motion variability
is calculated as the standard deviation of the motion values over the duration of the
video, capturing the level of fluctuation in movement. A high standard deviation indi-
cates inconsistent or abrupt movements. The maximum motion represents the largest
displacement observed within the tracked facial features, which helps identify whether
the video contains periods of excessive movement.

We analyze average illumination by computing the mean pixel intensity of each frame
in grayscale. Since uniform illumination does not always reflect real-world conditions,
we also measure maximum illumination, which captures the highest intensity observed
in the video. To quantify the stability of lighting conditions, we compute the illu-
mination variability, defined as the standard deviation of illumination values across
frames. This measure provides insight into how consistently the lighting is maintained
throughout the video and whether any abrupt fluctuations occur.

Using Stone, a facial skin tone detection model [Rejon Pina and Ma], we estimate the
most representative skin tone in each video and classify it into Hexadecimal (Hex) color
code and the tone label. We assess blur levels within the videos, using the variance
of the Laplacian method, which measures the sharpness of edges in an image. Finally,
noise is quantified by computing the standard deviation of high-frequency components
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in the image, which highlights random pixel intensity variations that arise from sensor
noise or compression artifacts.

4.2.1.3 Feature Transformation

To ensure comparability across datasets while maintaining variability, we apply a two-
tiered approach to feature transformation. Features that remain constant within datasets
but vary across datasets are normalized globally, whereas features that exhibit variabil-
ity within datasets are standardized locally. This transformation enables meaningful
regression analysis and ensures that our metric accounts for both global dataset char-
acteristics and dataset-specific variations.

The features that remain constant within datasets but vary across datasets are resolu-
tion and frame rate, so we apply min-max normalization:

X′ =
X − Xmin

Xmax − Xmin
(4.1)

where X represents the raw feature value and Xmin and Xmax are the minimum and
maximum values across all datasets.

On the other hand, features that exhibit variation within datasets are standardized sep-
arately per dataset to preserve distributions:

X′ =
X − µ

σ
(4.2)

where µ and σ are the mean and standard deviation of the feature within each dataset.

We also perform a Variance Inflation Factor (VIF) analysis on all datasets to detect mul-
ticollinearity. VIF quantifies how strongly a predictor variable is correlated with other
predictors, with high values (typically VIF >10) indicating redundancy that can dis-
tort coefficient estimates. Our initial analysis revealed strong multicollinearity between
resolution pixels and skin pixels, with VIF values of 73.61 and 61.68, respectively. This
suggests that both variables capture the same underlying information. Since skin pixels
directly represent facial visibility, we removed resolution pixels to avoid redundancy.
Additionally, average illumination exhibited an unusually high VIF (>50), indicating a
potential non-linear relationship with performance. To account for this, we introduced
an illumination squared term, allowing the model to better capture potential non-linear
effects.
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4.2.2 Weighted Sum Metric (WS QM)

Given a set of video quality features, the goal is to assign weights to them so that the
resulting metric correlates well with rPPG performance, measured using MAE. Based
on the analysis we performed in our previous section, we derive initial feature weights
from those controlled experiments and use them as priors in the regression-based met-
ric.

To formalize that, the degradation effect of quality feature Xi was computed as:

∆MAEi = MAEdegraded − MAEoriginal (4.3)

where ∆MAEi represents the increase in error due to degradation i, MAEoriginal is the
baseline error before degradation and MAEdegraded is the error after introducing the
degradation.

Since different video quality features had varying magnitudes of impact, a normaliza-
tion step (4.4) is applied to ensure comparability. The degradation effects are converted
into relative importance scores by normalizing across all features, which ensures that
the weights sum to 1.

Wi =
∆MAEi

Σj∆MAEi
(4.4)

where Wi is the normalized weight for feature i and Σj∆MAEi is the total sum of all
MAE increases across all features.

These weights are incorporated as priors for a linear regression model, allowing it to
adjust the weights based on dataset-specific performance trends. This approach helps
account for differences in data distributions and feature interactions. The regression
model is trained with MAE as the target variable, refining the weights to maximize
correlation between the predicted video quality score and actual rPPG performance.
To address training bias, ensuring that the learned metric is not overly influenced by
the behavior of a specific rPPG method, the target MAE is the average MAE across
models. The adjusted weights are used to estimate WS QM:

WS QM =
n

∑
i=1

Wadj
i Xi (4.5)

where Xi is each features value, Wi is weight derived from the linear regression model
and n the total number of features.
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4.2.3 ML Based Metric (ML QM)

While WS QM provides initial insights into the relationship between video quality and
rPPG performance, it exhibits limitations in generalizing across datasets as we will an-
alyze later in this chapter. To further improve the predictive power of the video quality
metric, an ML-based approach is developed, ML QM. The objective of this approach
is to learn non-linear relationships within video quality features, thereby capturing in-
teractions that could not be adequately modeled using linear methods.

We implement a supervised learning framework, where video quality features serve as
input variables and a target score as the desired output. To calculate the target score, we
average MAE across models and standardize it by applying Min-Max normalization,
rescaling the average MAE between 0 and 1. The former helps us address training bias,
as with WS QM, and the latter gives us a reliable proxy for assessing video suitability.
The training data consist of video analytics we extract in section 4.2.1.2, including both
unedited and synthetically degraded versions of UBFC-rPPG, to introduce greater vari-
ability in feature distributions. This augmentation helps mitigate biases arising from
dataset-specific characteristics. We test the models predictions on the two remaining
datasets.

The models we use for this study include Random Forest, Gradient Boosting, eXtreme
Gradient Boosting (XGBoost), KNN and Extra Trees. These approaches are selected
due to their ability to capture complex feature interactions and rank feature impor-
tance. Unlike linear regression, these models can better adapt to variations in dataset
characteristics.

The ML models are trained using a standard regression framework. Given an input
feature vector X = (X1, X2, ..., Xn), where each Xi represents a video quality factor, the
models learn a function f (X) to predict the rPPG error Y.

4.2.4 Results

We assess the accuracy of our video quality metrics by computing the Pearson correla-
tion between the predicted video quality score and the rPPG performance error (MAE).
Pearson correlation measures the linear relationship between two variables, where a
value of r = 1 indicates a perfect positive correlation, r = −1 indicates a perfect neg-
ative correlation and r = 0 implies no correlation. Here we are aiming for a perfect
positive correlation, because ML QM is trained to predict higher quality metric scores
for videos with higher errors, and WS QM assigns higher weights to features that cause
greater degradation. As a result, both metrics are expected to increase as rPPG error
increases.

Pearson correlation is computed as:
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r =
Σ(Xi − X̄)(Yi − Ȳ)√︁

Σ(Xi − X̄)2
√︁

Σ(Yi − Ȳ)2
(4.6)

where Xi and Yi are the video quality score and MAE and X̄ and Ȳ are the means of the
video quality scores and MAE values.

The strength and significance of this correlation are evaluated using the p-value, which
indicates whether the observed relationship is statistically meaningful. A low p-value
(p<0.05) suggests a significant correlation, while a high p-value implies that the corre-
lation may be due to chance.

4.2.4.1 WS QM Results

Table 4.2 presents the correlation for WS QM across datasets. Our results indicate that
the generalizability of WS QM is inconsistent. While weights derived from UBFC-
rPPG generalized relatively well to COHFACE and MMSE-HR, the same is not ob-
served for the rest. This suggests that the influence of video quality factors is not uni-
form across datasets, likely due to differences in recording conditions, subject demo-
graphics or preprocessing pipelines. Assuming a strictly linear relationship between
individual quality features and rPPG performance may also limit WS QM’s effective-
ness, as certain degradations may have non-linear effects or interact in ways that the
weighted sum approach cannot fully capture.

Weights Dataset Correlation with MAE p-value
MMSE-HR MMSE-HR 0.526 7.28E-05
MMSE-HR COHFACE -0.204 9.86E-03
MMSE-HR UBFC-rPPG 0.541 2.62E-04
UBFC-rPPG MMSE-HR 0.229 3.28E-03
UBFC-rPPG COHFACE 0.404 3.68E-03
UBFC-rPPG UBFC-rPPG 0.722 9.75E-08
COHFACE MMSE-HR 0.246 1.76E-03
COHFACE COHFACE 0.414 2.54E-03
COHFACE UBFC-rPPG 0.587 7.01E-07

TABLE 4.2: Correlation between video quality metric and rPPG performance across
different datasets.

Within individual datasets, WS QM exhibits strong correlations with rPPG error, with
UBFC-rPPG showing the highest correlation, followed by MMSE-HR and COHFACE.
This suggests that the metric effectively captures video quality effects when applied
within the dataset from which it was derived. However, cross-dataset performance
revealed more variability. For example, UBFC-rPPG weights applied to COHFACE
produced a low to moderate correlation, whereas MMSE-HR weights applied to CO-
HFACE resulted in a negative correlation. This suggests that video quality effects
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in MMSE-HR and COHFACE differ significantly, reinforcing the idea that individual
dataset characteristics strongly influence rPPG performance.

The inconsistencies in cross-dataset performance highlight the limitations of using a
linear regression model for generalization across datasets. The weaker correlation in
COHFACE compared to the strong within-dataset correlation in UBFC-rPPG suggests
that the impact of video quality factors is dependent on the dataset, influenced by varia-
tions in lighting conditions, resolution and motion artifacts. Additionally, the presence
of negative correlations implies that the linear nature of WS QM may not fully capture
complex feature interactions, potentially leading to misleading quality assessments.

A key factor influencing these results is the alignment between dataset characteristics
and rPPG model performance. Since the rPPG models used in this study were origi-
nally trained on datasets with characteristics more similar to UBFC-rPPG, the impact of
video quality factors in this dataset is more predictable. In other words, potentially the
rPPG models’ errors align more consistently with video quality degradations in UBFC-
rPPG. As a result, the WS QM derived from UBFC-rPPG generalizes better to other
datasets, particularly COHFACE, compared to metrics derived from datasets with dif-
ferent statistical properties.

These findings emphasize the importance of dataset characteristics in formalizing quality-
performance relationships and reinforce the need for more flexible, data-driven ap-
proaches to quality assessment. While WS QM provides an interpretable baseline, it
assumes linear independence of features. However, real-world rPPG degradation is
often nonlinear, which WS QM cannot model accurately.

4.2.4.2 ML QM

The results presented in Table 4.3 provide proof that data-driven approaches can en-
hance the generalizability of our video quality metric. When tested on MMSE-HR,
ML QM generally outperformed WS QM. Extra Trees, for instance, achieves a Pear-
son correlation of 0.618, which is significantly higher than the correlation observed
with WS QM. Similarly, XGBoost and Gradient Boosting achieve correlations of 0.626
and 0.524 respectively, suggesting that these models can more effectively capture the
relationship between video quality and rPPG error.

ML QM also performs well when tested on COHFACE, with correlations ranging from
0.387 (KNN) to 0.763 (Random Forest), showing a stronger generalization capability
compared to WS QM. The performance of Extra Trees on COHFACE further indi-
cates that ensemble-based models effectively leverage non-linear relationships between
video quality factors and rPPG performance.



110 Chapter 4. Output Layer: Assessing Video Quality and Developing Metrics

Training Dataset Test Dataset Model Pearson Correlation (p-value)
UBFC-rPPG MMSE-HR Random Forest 0.594 (p<0.00001)
UBFC-rPPG MMSE-HR Gradient Boosting 0.524 (p=0.00008)
UBFC-rPPG MMSE-HR XGBoost 0.626 (p<0.00001)
UBFC-rPPG MMSE-HR KNN 0.270 (p=0.05580)
UBFC-rPPG MMSE-HR Extra Trees 0.618 (p<0.00001)
UBFC-rPPG COHFACE Random Forest 0.763 (p<0.00001)
UBFC-rPPG COHFACE Gradient Boosting 0.607 (p<0.00001)
UBFC-rPPG COHFACE XGBoost 0.740 (p<0.00001)
UBFC-rPPG COHFACE KNN 0.387 (p<0.00001)
UBFC-rPPG COHFACE Extra Trees 0.675 (p<0.00001)
UBFC-rPPG UBFC-rPPG Random Forest 0.978 (p<0.00001)
UBFC-rPPG UBFC-rPPG Gradient Boosting 0.711 (p<0.00001)
UBFC-rPPG UBFC-rPPG XGBoost 0.962 (p<0.00001)
UBFC-rPPG UBFC-rPPG KNN 0.480 (p<0.00001)
UBFC-rPPG UBFC-rPPG Extra Trees 0.957 (p<0.00001)
UBFC-rPPG - unedited MMSE-HR Random Forest 0.117 (p=0.41362)
UBFC-rPPG - unedited MMSE-HR Gradient Boosting -0.071 (p=0.62047)
UBFC-rPPG - unedited MMSE-HR XGBoost -0.039 (p=0.78641)
UBFC-rPPG - unedited MMSE-HR KNN -0.131 (p=0.35897)
UBFC-rPPG - unedited MMSE-HR Extra Trees 0.114 (p=0.42517)
UBFC-rPPG - unedited COHFACE Random Forest 0.204 (p=0.01002)
UBFC-rPPG - unedited COHFACE Gradient Boosting 0.162 (p=0.04131)
UBFC-rPPG - unedited COHFACE XGBoost 0.196 (p=0.01307)
UBFC-rPPG - unedited COHFACE KNN 0.010 (p=0.89599)
UBFC-rPPG - unedited COHFACE Extra Trees 0.168 (p=0.03450)

TABLE 4.3: Performance of ML models trained on UBFC-rPPG and tested on MMSE-
HR and COHFACE datasets. Pearson correlation values indicate the strength of asso-

ciation between the predicted video quality metric and rPPG error.

A key advantage of ML QM is the flexibility to learn from diverse data distributions,
adjusting to non-linear patterns in the data, allowing them to capture more complex
interactions between video quality factors. The stronger generalization of these models
suggests that dataset-specific variations, such as differences in illumination, resolution
and motion artifacts are better accounted for when training is performed on a dataset
that incorporates sufficient variation in quality conditions.

However, the performance of models without the additional edited videos shows a
sharp decline, particularly in cross-dataset generalization. For ML QM tested on MMSE-
HR all models exhibit near-zero or negative correlations. Similarly, when tested on
COHFACE, the highest correlation achieved is 0.204 (Random Forest), which is sub-
stantially lower than the results obtained when training included edited videos. This
highlights the importance of dataset diversity during training, as models trained on
limited variations in video quality struggle to generalize when tested on datasets with
different statistical properties.
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Both WS QM and ML QM highlight the challenges of generalizing video quality as-
sessment across datasets, but ML QM shows a clear advantage in adaptability. While
WS QM achieves reasonable within-dataset performance, its cross-dataset results in-
dicate inconsistencies, particularly with MMSE-HR and COHFACE, where we even
see negative correlations. In contrast, ML QM with added variations performs signif-
icantly better in both within-dataset and cross-dataset evaluations, demonstrating the
ability to learn non-linear interactions and adapt to different quality distributions.

4.3 Discussion

The results presented in this study underscore the critical role of video quality in rPPG
performance and highlight the need for dedicated evaluation metrics. As established in
Chapter 1, prior research has explored individual factors such as motion, illumination,
compression and resolution, but no unified framework has been proposed to quantify
their combined effects on pulse estimation. By introducing WS QM and ML QM, we
address this gap, offering a structured and objective method for assessing video suit-
ability in rPPG applications.

Through our video quality analysis, we systematically modified videos across mul-
tiple degradation factors, including motion, occlusions, compression, blur, resolution
and lighting variations. Our experiments confirmed that motion artifacts, occlusions
and resolution reductions were the most detrimental to rPPG accuracy, leading to sig-
nificant increases in MAE across all models. Illumination changes also had a strong
impact, particularly under extreme contrast shifts. In contrast, color space variations
and shorter video durations had a lesser effect, though they still introduced some per-
formance degradation. Notably, DL models (DeepPhys, TSCAN) showed greater sen-
sitivity to distortions, while signal processing models (POS, ICA) demonstrated higher
robustness to noise and motion but lower baseline accuracy. These findings reinforce
the need for a structured quality assessment method, as uncontrolled degradations can
severely impact pulse estimation.

WS QM aggregates multiple video quality factors into a single score. Unlike tradi-
tional video quality metrics, WS QM explicitly models these rPPG-specific degrada-
tions, making it a valuable tool for dataset selection, preprocessing and ensuring ro-
bustness in real-world conditions. However, its reliance on a linear regression intro-
duces some limitations in generalization, particularly when applied across datasets
with differing statistical properties. The variations observed in cross-dataset correla-
tions suggest that the relationship between quality factors and rPPG errors may be
more complex than a weighted sum can fully capture.
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ML QM, in contrast, demonstrates superior adaptability and predictive power, lever-
aging ML to model non-linear interactions between quality factors. Its stronger cross-
dataset generalization indicates that learning-based approaches are better suited for
capturing the intricate dependencies between video conditions and rPPG performance.
The ability of ML QM to maintain high correlation across datasets confirms its poten-
tial as a robust and scalable solution for video quality assessment in rPPG. Nonetheless,
its performance remains influenced by dataset diversity, as models trained on limited
variations struggle to generalize to unseen distributions.

One key factor shaping these results is the alignment between dataset characteristics
and rPPG model training data. The rPPG models evaluated in this study were origi-
nally trained on datasets with characteristics closely resembling UBFC-rPPG. This may
explain why video quality metrics derived from UBFC-rPPG generalized more effec-
tively to other datasets, particularly COHFACE. While this reinforces the relevance
of our proposed metrics, it also highlights potential biases in rPPG training data that
could affect video quality assessments. Ensuring that rPPG models are trained on di-
verse datasets remains crucial to mitigating these biases and enhancing the robustness
of video quality metrics.

By introducing WS QM and ML QM, this work provides a comprehensive frame-
work for assessing video quality in rPPG applications. These metrics not only help
researchers and practitioners understand the impact of video conditions but also serve
as tools for dataset evaluation, preprocessing and improving model reliability. The
strong correlations observed between these metrics and rPPG errors validate their ef-
fectiveness and establish a foundation for more informed video-based physiological
monitoring.

While video quality assessment is essential for improving rPPG performance, it does
not provide a measure of uncertainty in pulse estimation. In the next chapter, we
explore how conformal predictions can be applied to rPPG to quantify confidence
in model outputs, further enhancing the reliability of remote physiological measure-
ments.
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Chapter 5

Calibration: Confidence with
Conformal Predictions

Like in the calibration stage, predictions are fine-tuned and confidence is quantified through
conformal predictions. This ensures the model’s outputs are not just accurate but also
trustworthy.

As we discussed in previous chapters, rPPG has seen rapid advancements, yet one key
challenge remains: uncertainty in predictions. Unlike contact-based heart rate moni-
tors, rPPG relies on subtle skin color changes extracted from video, making it sensitive
to factors like motion, lighting variations and other artifacts as discussed in the pre-
vious chapters. In practical applications, ensuring reliability is just as important as
improving accuracy. This becomes a critical need in medical settings where incorrect
estimates can lead to incorrect diagnosis and treatment.

Traditional DL and signal processing models for rPPG output point estimates without
quantifying their uncertainty. This makes it difficult to trust the predictions with no
ground truth data, particularly in cases where the model is uncertain due to unseen
variations in data. A solution to this problem is Conformal Predictions (CP), a statisti-
cal framework for generating uncertainty intervals that are guaranteed to contain the
true value with a specified probability. By leveraging CP, we can enhance the trustwor-
thiness of rPPG systems by providing well-calibrated confidence intervals alongside
model predictions.
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Chapter Contributions:
This chapter introduces the application of CP for rPPG, quantifying uncertainty in
model predictions. By leveraging CP, we establish a framework for evaluating the re-
liability of rPPG models, ensuring that predictions are accompanied by well-calibrated
uncertainty intervals. More specifically, our contributions are as follows:

• We introduce the first application of CP to rPPG, quantifying uncertainty in model
predictions and enhancing interpretability.

• We evaluate the effect of different significance levels (α = 0.1 and α = 0.2) on the
prediction intervals, analyzing their impact on interval width and model reliabil-
ity.

• We compare traditional MAE-based CP with a novel quality-aware CP approach,
demonstrating the benefits of incorporating video quality into uncertainty esti-
mation.

• We provide insights into the interpretability of CP in rPPG, showing how predic-
tion intervals can reveal model confidence, making rPPG systems more transpar-
ent and usable in practical applications.

The rest of the chapter is organized as follows: Section 5.1 introduces the motivation for
applying CP to rPPG and provides an overview of CP principles. Section 5.2 describes
the experimental setup, including the datasets, models and methodology for comput-
ing conformal intervals. Section 5.3 presents our results, analyzing the effectiveness of
CP across different datasets and models. Finally, Section 5.4 discusses the key findings,
their implications for rPPG applications and potential future directions.

5.1 Conformal Predictions Background

Given the challenges identified in the previous chapter, where even deep learning mod-
els struggle with degraded video quality, it becomes crucial to quantify uncertainty in
model predictions. A key question emerges: how confident can we be that rPPG mod-
els will maintain performance under all conditions? This question becomes even more
pressing in medical applications, where accuracy is essential for reliable diagnosis and
decision-making.

An ideal solution would not only provide model predictions but also offer insight into
the certainty of those predictions. If we could quantify a model’s confidence in its out-
puts, we could make more informed decisions about whether to trust a given prediction
or discard it.
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CP provide exactly this capability. They ”wrap” around an existing ML model, gener-
ating prediction intervals rather than single point estimates. The key principle behind
CP is consistency with past data, hence the term ”conformal.” It evaluates how unusual
a new test sample is compared to previously seen data and adjusts the confidence in-
terval accordingly. When a test sample is similar to prior observations, the interval is
narrow, indicating higher certainty. Conversely, when the sample deviates significantly
from the training distribution, the interval widens, reflecting greater uncertainty.

In more detail, CP is a method that constructs prediction intervals or prediction sets for
ML models. It ensures that, under minimal assumptions, the set contains the true label
with a guaranteed confidence level.

Applying CP to rPPG represents a significant step forward in building trustworthy,
transparent and safe physiological monitoring systems. In clinical settings CP can help
flag predictions that are unreliable due to poor video quality or challenging condi-
tions, allowing clinicians to request re-measurements instead of relying on uncertain
outputs. In consumer-grade wearables, CP can improve user trust by indicating when
measurements are reliable and when external factors (such as movement or lighting)
may compromise accuracy. Conformal predictions can transform rPPG systems from
”black-box” predictors into transparent tools, enabling users to understand not only
what the model predicts, but also how confident it is in each prediction.

Beyond improving reliability, CP opens new avenues for personalizing rPPG systems
to individual users and real-time contexts. By continuously monitoring prediction un-
certainty, future rPPG systems could dynamically adjust measurement strategies. For
example automatically requesting longer recordings when confidence is low or com-
bining multiple short measurements when conditions are unstable. Furthermore, CP
could enable the development of self-aware wearable devices that intelligently adapt to
user behavior, environment or physiological state, ensuring that the quality of monitor-
ing remains high without manual intervention. In broader terms, integrating CP into
rPPG pipelines paves the way for next-generation vital sign monitoring solutions that
are not only accurate but also proactive, intelligent and context-sensitive, significantly
advancing the field toward real-world adoption.

5.1.1 CP Framework

The theoretical framework of CP for regression, including the formulation of prediction
intervals, nonconformity measures and coverage guarantees, follows the approach out-
lined by Angelopoulos and Bates (2021). While they discuss additional broader aspects
of CP, such as full conformal prediction and multi-output prediction sets and adaptive
conformal methods, these aspects are not directly applicable to our setting, so they are
not presented. Finally in their work they provide a rigorous mathematical treatment of
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the topic. In this chapter, we focus on a more applied presentation, emphasizing how
CP is integrated into rPPG rather than its formal derivation.

5.1.1.1 Problem Definition

We begin with a dataset of videos along with their corresponding ground truth heart
rate values obtained from a device (e.g., ECG or PPG sensor). Let:

D = (X1, Y1), (X2, Y2), ..., (Xn, Yn) (5.1)

where Xi represents the video (or extracted features from the video) and Yi is the
ground truth heart rate from the medical device. We have a trained rPPG model that
predicts heart rate, f (Xi). Our goal is to estimate a prediction interval [Lower,Upper]
for a new test video Xn+1 so that:

P(Yn+1 ∈ [Lower, Upper]) ≥ 1 − α (5.2)

where 1 − α is the confidence level (e.g., 95% confidence).

5.1.1.2 Nonconformity Measure

To apply conformal prediction, we need a nonconformity score that captures the error
between the predicted values and the ground truth. There are several choices on the
nonconformity measure, from simpler like MAE to more complex, combining video
quality metrics.

1. Absolute Error-Based Nonconformity:

Si = |Yi − Yiˆ | (5.3)

Measures how far the predicted heart rate Yiˆ is from the true value Yi. It is a
simple nonconformity measure, is widely used in regression CP and it does not
require additional model modifications.

2. Uncertainty-Aware Nonconformity:

Si =
|Yi − Yiˆ |

σ(Xi)
(5.4)
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This nonconformity measure incorporates an uncertainty estimate σ(Xi) from the
model. It can be useful when the model provides variance estimates but requires
it to explicitly compute uncertainty, which may not always be available.

3. Quality-Aware Nonconformity

Si = |Yi − Yiˆ | × (1 + Q(Xi)) (5.5)

Here, a score Q(Xi) is introduced based on video quality factors like illumination,
motion artifacts and resolution among others. This penalizes predictions made on
poor-quality videos by increasing their nonconformity score.

5.1.1.3 Constructing Prediction Intervals

Once the nonconformity scores Si for a set of calibration samples have been computed,
they can be used to construct prediction intervals for new test samples. The funda-
mental idea behind CP is to determine an appropriate uncertainty range based on past
prediction errors. This ensures that new predictions are accompanied by intervals that
are statistically calibrated to contain the true value with high probability. To determine
this appropriate range for prediction intervals, we compute a statistical value known
as the quantile. A quantile represents a cutoff value in a sorted list of numbers. In the
context of conformal prediction, it defines the maximum error we expect for a given
confidence level.

Mathematically, we estimate the (1 − α) quantile of the distribution of nonconformity
scores:

q1−α = Quantile1−α(S1, S2, ..., Sn) (5.6)

where S1, S2, ..., Sn are the nonconformity scores computed from the calibration set. This
quantile represents the error threshold that will be used to determine the prediction
intervals.

For example, if we set α = 0.1, meaning we want a 90% confidence interval, we com-
pute the 90th percentile of all past prediction errors. This value tells us that, in 90%
of past cases, the model’s error was below this threshold. The intuition is that if the
model’s past errors followed a consistent pattern, future errors will likely behave simi-
larly.

Once the quantile q1−α is determined, we construct a prediction interval for a new test
sample Xn+1. If the model predicts a heart rate value Ŷn+1 for this sample, we define
the prediction interval as:
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[︁
Ŷn+1 − q1−α, Ŷn+1 + q1−α

]︁
(5.7)

This means that the true heart rate value Yn+1 will fall within this interval at least (1 −
α) fraction of the time.

5.1.2 Types of Conformal Predictions

Several variants of CP exist, each with different computational trade-offs and practi-
cal considerations. These variants primarily differ in how they handle the calibration
process and how they construct prediction intervals.

5.1.2.1 Transductive CP (TCP)

The key idea behind TCP is that it considers each new test sample independently and
constructs its prediction interval while incorporating the test sample into the calibra-
tion process. It is theoretically optimal in terms of validity and coverage guarantees,
however it is computationally expensive as it requires recalculating the nonconformity
scores for each test sample. This makes it impractical for large datasets, especially in
DL.

5.1.2.2 Inductive CP (ICP)

ICP improves efficiency by separating the dataset into three parts: the training set,
which is used to train the ML model, the calibration set, used to compute nonconfor-
mity scores and determine the quantile threshold and the test set where predictions and
confidence intervals are made. By decoupling calibration from testing, ICP is signifi-
cantly more efficient than TCP. However, it has a slight trade-off in efficiency because
it requires withholding part of the dataset for calibration. The choice of the calibration
set can also impact interval widths.

5.1.2.3 Split-CP

Split-CP is a simplified and widely used variant of ICP, especially suited for DL. It
uses a pre-trained model and applies CP using a separate calibration set. It is the most
computationally practical approach for deep models. In this work, we adopt split-
CP due to its efficiency and compatibility with DL pipelines. Unlike TCP, split-CP
does not require retraining the model for each test point, making it feasible for large-
scale applications. Additionally, split-CP allows for quick adjustments of confidence
intervals by selecting different nonconformity measures.
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5.1.3 Applications of CP in rPPG

Applying CP to rPPG models has the potential to address several challenges that arise
in real-world applications, particularly in handling motion artifacts, compression ar-
tifacts and other variations in video quality. As we saw in detail in chapter 4, these
factors introduce significant uncertainty in heart rate estimation, making it difficult
to ensure reliability in diverse settings. By generating prediction intervals, CP allows
rPPG models to quantify uncertainty, ensuring that predictions remain reliable even
when faced with challenging conditions such as low resolution videos, variations in
skin tone, changing lighting conditions and occlusions.

Traditional DL models for rPPG are often trained on high-quality videos, making them
vulnerable to distribution shifts when applied in the wild. If an rPPG model encounters
a video with degraded quality, CP will produce wider confidence intervals, indicating
greater uncertainty in the heart rate estimate. This prevents overconfident decisions
in conditions where performance is likely to degrade. If quality is optimal CP will
produce smaller intervals providing confidence in the model’s predictions. This is par-
ticularly crucial for medical and health monitoring applications, where incorrect heart
rate estimations can lead to false alarms or missed critical conditions. Its application
could improve model trustworthiness and robustness significantly.

5.1.4 Challenges and Open Questions

While CP provide a powerful framework for quantifying uncertainty in rPPG-based
heart rate estimation, several practical challenges must be addressed before it can be
fully adopted in real-world applications. These challenges stem from computational
constraints, assumptions about data distribution and the complexity of physiological
signals.

One of the main limitations of CP is its computational cost, particularly in applications
requiring real-time heart rate monitoring. The CP framework relies on computing non-
conformity scores for a calibration set and estimating the quantile of the error distribu-
tion for each new test sample. This step can be computationally expensive, especially
when dealing with large-scale video data or real-time processing in resource-limited
environments. Unlike static datasets used in traditional ML, rPPG processes continu-
ous video streams. Each new frame or video segment requires computing prediction
intervals, which involves sorting and evaluating calibration errors dynamically. Effi-
cient CP variants, such as online or streaming conformal prediction, could help reduce
computational overhead by updating confidence intervals incrementally instead of re-
computing them from scratch.
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CP assumes that the training, calibration and test samples are exchangeable, meaning
they come from the same distribution. However, physiological signals are inherently
non-stationary, they change over time due to biological rhythms, stress levels and ex-
ternal environmental factors. This is a challenge because patterns seen in the past may
not always generalize to future observations. Adaptive CP techniques, such as time-
series conformal prediction or weighted conformal prediction, could help by adjusting
confidence intervals dynamically based on recent observations rather than assuming a
static distribution.

The choice of nonconformity measure significantly impacts the quality of CP prediction
intervals. In traditional regression tasks, simple metrics like mean absolute error (MAE)
are commonly used. However, in rPPG, heart rate predictions depend on complex spa-
tiotemporal patterns in video data, making it challenging to define a single nonconfor-
mity function that effectively captures both spatial and temporal uncertainties. Video
quality variations (e.g., motion blur, illumination changes) introduce additional uncer-
tainty that is not well captured by simple error-based nonconformity scores. More ad-
vanced quality-aware nonconformity functions could incorporate video quality metrics
(such as motion artifacts, contrast variations and occlusions) into the error calculation.
Additionally, hybrid approaches that combine model uncertainty (e.g., Bayesian DL)
with CP could lead to better-calibrated intervals.

Finally, the performance of CP depends on the calibration set used to estimate the quan-
tiles of nonconformity scores. If the calibration set is too small or not representative of
real-world conditions, the resulting prediction intervals may be either too wide (overly
conservative) or too narrow (overconfident). In rPPG, calibration data collected in con-
trolled laboratory conditions may not accurately represent real-world settings where
subjects experience varying lighting, skin tones, head movements or environmental
noise. Using stratified calibration sets that include a diverse range of conditions can im-
prove robustness. Additionally, domain-adaptive CP methods could allow the model
to recalibrate dynamically when deployed in new environments.

Despite these challenges, CP remains a promising approach for improving uncertainty
quantification in rPPG models. By addressing computational efficiency, adapting to
temporal dynamics and designing better nonconformity measures, CP can enhance
trust, interpretability and deployment readiness for rPPG-based heart rate monitoring
in real-world applications.

5.2 CP in rPPG Experiments

In this section we present the framework for CP, detailing the datasets, the nonconfor-
mity measures, the type of CP and then presenting our results.
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5.2.1 Datasets

For this study, we select two publicly available datasets that provide video recordings
with corresponding ground truth heart rate signals: COHFACE, a widely used dataset
for rPPG evaluation that includes facial videos recorded under controlled conditions
with synchronized physiological signals and UBFC-rPPG, a well-established dataset in
rPPG research that contains videos recorded at different frame rates and lighting con-
ditions, making it particularly useful for assessing the robustness of CP. More details
on the specifications of COHFACE can be found in section 4.2.1.1 and on UBFC-rPPG
in section 3.1.1.

Although MMSE-HR is a widely used benchmark, we exclude it due to its high motion
artifacts, large synchronization errors and substantial distribution shift from training
data. These factors would result in overly wide CP intervals, making it difficult to
isolate the effect of CP itself.

5.2.2 Models

In this chapter, we apply CP to DL rPPG models, specifically DeepPhys and TSCAN,
rather than signal processing models like POS and ICA. The primary reason for this
selection is that CP is most effective in scenarios where model predictions exhibit some
degree of variability or uncertainty. Unlike DL models, which incorporate stochastic
elements such as weight initialization, dropout layers and optimization dynamics, sig-
nal processing models are deterministic; they always produce the same output for the
same input.

This deterministic nature makes conformal prediction less useful for models like POS
and ICA. Since these methods rely on fixed transformations and statistical operations,
their predictions do not change across multiple runs. This was proven in our exper-
iments, their conformal intervals had zero-width. In such cases, the intervals do not
provide meaningful insights into uncertainty because they simply confirm the model’s
fixed behavior rather than capturing prediction variability.

DL models, on the other hand, naturally exhibit uncertainty due to factors such as data
variability, weight updates during training and inherent noise in video-based pulse es-
timation. Applying conformal prediction to DeepPhys and TSCAN allows us to quan-
tify the confidence in their predictions by associating each heart rate estimate with a
statistically calibrated uncertainty interval. This is particularly important in real-world
applications, where factors such as motion artifacts, lighting variations and other arti-
facts can introduce variability in model predictions.

ST2S-rPPG was excluded because its two-stage design conflicts with CP’s single-stage
assumption. Since its second stage selectively filters unreliable predictions, applying
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CP would either be invalid (if done before filtering) or inconsistent (if done after filter-
ing). Given that the second stage already acts as a confidence mechanism, CP would
be redundant in this case.

5.2.3 Selection of Nonconformity Measures

A key component of conformal prediction is the nonconformity measure, which deter-
mines how “unusual” a prediction is relative to past observations. The choice of non-
conformity function directly influences the quality and reliability of the conformal pre-
diction intervals. In this study, we evaluate two different nonconformity functions: a
standard error-based measure and a quality-aware measure that incorporates ML QM
as an additional factor.

5.2.3.1 Error-Based Nonconformity Measure

The first approach follows the widely used absolute error-based nonconformity mea-
sure. In this case, the nonconformity score is computed as the MAE between the pre-
dicted and true heart rate values. For a given sample, the nonconformity score is de-
fined as:

Si = |Yi − Yiˆ | (5.8)

where Yi is the ground truth heart rate and Ŷi is the predicted heart rate. This approach
is computationally efficient and straightforward to implement, making it a common
choice in regression-based conformal prediction studies. By directly measuring the de-
viation between predictions and actual values, it provides an estimate of prediction
uncertainty without introducing additional assumptions. Furthermore, it has been ex-
tensively applied in prior work on CP and serves as a well-established baseline for
comparison.

5.2.3.2 Quality-Aware Nonconformity Measure

While the absolute error-based approach provides a simple and effective means of
quantifying nonconformity, it assumes that all samples are equally difficult to predict.
However, as demonstrated in previous chapters, rPPG performance is highly depen-
dent on video quality. Factors such as motion artifacts, illumination variability, res-
olution and occlusions significantly influence heart rate estimation accuracy. To ad-
dress this limitation, we introduce a quality-aware nonconformity measure based on
the video’s quality score.
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The proposed quality-aware nonconformity function is defined as:

Si = Q(Xi) (5.9)

where Q(Xi) represents the ML QM score, which quantifies the impact of various
degradation factors on rPPG performance. This quality score is computed using ML QM
developed in chapter 4, which was designed specifically for rPPG applications. The
metric incorporates multiple video quality attributes and was validated by demon-
strating its correlation with model performance. By leveraging this metric, the quality-
aware nonconformity measure ensures that videos with lower quality are assigned
higher nonconformity scores, leading to wider prediction intervals.

The motivation for incorporating a quality-aware adjustments stems from the fact that
rPPG models exhibit variable performance depending on input conditions. Traditional
conformal prediction methods operate under the assumption that all test samples are
drawn from the same distribution and share a similar level of difficulty. However,
this assumption does not apply in rPPG applications, where signal extraction relia-
bility varies significantly based on video characteristics. By integrating ML QM into
the nonconformity function, the conformal intervals adapt dynamically to account for
varying levels of uncertainty. In practice, this means that high-quality videos, where
rPPG models are expected to perform reliably, will yield narrower prediction intervals,
whereas low-quality videos, which introduce greater ambiguity, will be assigned wider
intervals. This dynamic adjustment improves both the robustness and interpretability
of the predictions, ensuring that uncertainty estimates more accurately reflect the reli-
ability of the underlying model.

By comparing these two approaches, we assess the impact of integrating video quality
into conformal prediction. The absolute error-based approach serves as a strong base-
line, providing a direct estimate of model deviation, while the quality-aware methods
introduce an additional layer of adaptability to account for variations in input condi-
tions.

5.2.4 Conformal Prediction Method: Split Conformal Prediction

In this study, we employ split-CP as our uncertainty estimation method. Split-CP is a
computationally efficient variant of conformal prediction that provides statistical cov-
erage guarantees while maintaining computational feasibility. Split-CP operates by re-
serving a separate calibration set to estimate nonconformity scores and determine the
prediction interval width. This approach ensures that the computed uncertainty esti-
mates remain well-calibrated without modifying the base model.
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Split-CP is particularly advantageous for rPPG applications due to its scalability, com-
patibility with DL models and computational efficiency. Split-CP reduces computa-
tional overhead by only requiring the sorting of calibration errors and the computation
of quantiles, making it well-suited for DL-based rPPG models.

To apply split-CP in this study, we utilize the pre-trained models from chapter 3, taken
from the rPPG Toolbox [Liu et al. (2024)]. We run separate experiments with COHFACE
and UBFC-rPPG. Each dataset is split into a calibration set and a test set. The calibration
set is held out from training and is used to compute nonconformity scores, while the
test set is used for final evaluation. Using the calibration set, we calculate the two pre-
viously mentioned types of nonconformity scores: MAE and the custom quality-aware
metric. These scores capture the degree of deviation between the model’s predictions
and the true heart rate values.

After computing the nonconformity scores, we estimate the (1 − α) quantile of the dis-
tribution of these scores. This quantile serves as the threshold for determining the
width of the prediction interval. We experiment with α = 0.1 and α = 0.2, capturing
90% certainty and 80% certainty respectively. The computed threshold is then applied
to new test samples, ensuring that each prediction is accompanied by a confidence in-
terval that accounts for the model’s uncertainty.

5.2.5 Implementation Modifications for Conformal Prediction

Since CP are not supported in the rPPG Toolbox, we make several modifications to in-
tegrate CP into the framework. We modified the testing pipeline to split the dataset
into calibration and test sets. We implemented custom functions to compute noncon-
formity scores using both MAE and quality-based metrics. We estimate the quantile
for uncertainty estimation and apply split-CP and generate prediction intervals. We
added functionality to track predictions per video, allowing us to analyze how interval
width changes based on video characteristics and whether prediction intervals adapt
dynamically to video quality.

5.3 Results

In this section, we begin by analyzing the baseline conformal prediction results using
MAE as the nonconformity measure, comparing different significance levels (α = 0.1
and α = 0.2). Finally, we assess the impact of incorporating ML QM as a nonconfor-
mity measure, comparing its performance to the MAE-based approach.
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We must emphasize that in contrast to previous chapters, results in this section are
presented as per-frame pulse predictions rather than aggregated heart rate (bpm) esti-
mates. This is because the models operate at the frame level, predicting a continuous
pulse waveform rather than a single bpm value per video. The MAE and confidence
intervals are computed over the per-frame predictions, allowing for a more granular
assessment of model performance and uncertainty. This approach aligns with the na-
ture of rPPG-based methods, which estimate a time-series signal rather than discrete
bpm values. As a result, the reported errors reflect deviations in the predicted pulse
waveform relative to the ground truth, rather than direct bpm differences.

5.3.1 Conformal Prediction with MAE Nonconformity

5.3.1.1 COHFACE

The results are summarized in Table 5.1, which highlights the effect of different models
and alpha values on interval width and coverage probability.

TABLE 5.1: Summary of Conformal Prediction Results on COHFACE

Model Alpha Mean Interval Width MAE Coverage Probability
DeepPhys 0.1 3.04 0.57 0.89
DeepPhys 0.2 1.51 0.57 0.79
TSCAN 0.1 3.01 0.57 0.89
TSCAN 0.2 1.5 0.57 0.78

The analysis focuses on key metrics, including the mean interval widths, MAE and cov-
erage probability, across different significance levels (α = 0.1 and α = 0.2). This allows
us to examine the reliability and effectiveness of the conformal prediction framework
for physiological signal estimation.

Both DeepPhys and TSCAN exhibit nearly identical mean predicted values across all
settings. Since the raw values in the dataset represent per-frame pulse signal estimates,
this number is not directly interpretable in a physiological sense but the fact that both
models have the nearly identical mean suggests that, on average, they are making very
similar predictions across all videos. As we mentioned previously, the results are not in
bpm, they represent the predicted pulse waveform per frame, which is why the mean
appears close to zero. The standard deviation of predictions is also relatively small
( 0.14 to 0.15), suggesting that both models are stable and consistent in their outputs.

One of the expected trends is the reduction in interval width when moving from α = 0.1
to α = 0.2. Specifically, for DeepPhys, the mean interval width decreases from 3.04 at
α = 0.1 to 1.50 at α = 0.2. A similar pattern is observed for TSCAN, where the interval
width decreases from 3.01 to 1.49. This aligns with the theoretical expectation that a
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lower α value results in more conservative (wider) confidence intervals, ensuring that
the true values are captured with higher probability.

The MAE values remain nearly identical for both models, with DeepPhys achieving an
MAE of 0.57446 and TSCAN achieving 0.57442. While this similarity in performance
suggests that both models have comparable prediction accuracy, the confidence inter-
vals provide an additional layer of information about prediction reliability. Specifi-
cally, TSCAN consistently produces slightly narrower confidence intervals compared to
DeepPhys, which suggests that TSCAN provides slightly more precise predictions, as
it captures the true values with tighter bounds. We must distinguish that with the pre-
vious statement, we do not suggest that TSCAN has higher accuracy, but that TSCAN
assigns lower uncertainty to its predictions.

In Figure 5.1 we visualize the coverage probabilities achieved by DeepPhys and TSCAN
on the COHFACE dataset. In this context, coverage probability refers to the proportion
of test samples for which the ground truth falls within the predicted conformal inter-
val. This visualization allows us to assess whether the uncertainty intervals behave
as expected across different models and significance levels. Here, both DeepPhys and
TSCAN achieve coverage probabilities close to the theoretical targets, confirming that
the conformal prediction framework is functioning correctly. The slight deviations from
the expected values (e.g., slightly below 90% or 80%) are normal and are attributed to
finite calibration sample size. This minor discrepancy indicates that while the models
are not perfectly calibrated, they remain highly reliable. Overall, the results demon-
strate that conformal prediction produces trustworthy confidence intervals for rPPG
predictions.

In terms of coverage probability, DeepPhys and TSCAN perform similarly, with slightly
better coverage for α = 0.1, which is expected due to wider intervals. TSCAN ex-
hibits slightly narrower confidence intervals compared to DeepPhys, indicating that
it produces more precise predictions. However, the differences are minimal, further
reinforcing the observation that both models are well-calibrated under the conformal
prediction framework.

Figure 5.2 presents a visualization of the ground truth pulse signal, predicted signal and
CP coverage for DeepPhys and TSCAN on the COHFACE dataset, with a significance
level of α = 0.1. The blue line represents the predicted signal, while the red dashed
line corresponds to the ground truth pulse signal. The shaded region illustrates the
conformal prediction interval.

From the figure, we observe that both models generally track the ground truth pulse
signal, but with varying degrees of confidence. DeepPhys exhibits smoother predic-
tions but with relatively wider confidence intervals, whereas TSCAN shows slightly
narrower intervals, indicating that it assigns lower uncertainty to its predictions. The
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FIGURE 5.1: Coverage probability for COHFACE using MAE as a nonconformity mea-
sure for DeepPhys and TSCAN.

CP intervals successfully capture the ground truth signal most of the time, confirm-
ing that the uncertainty estimates are well-calibrated. Differences in model behavior
highlight the impact of their respective architectures on performance and robustness to
noise.

Overall, this analysis highlights that both DeepPhys and TSCAN achieve similar per-
formance on COHFACE when evaluated using CP. The differences in interval widths
and coverage probabilities are minimal, indicating that both models offer reliable un-
certainty estimates.

5.3.1.2 UBFC-rPPG

The results for UBFC-rPPG are summarized in Table 5.2, which highlights the effect of
different models and alpha values on interval width and coverage probability.

Both DeepPhys and TSCAN exhibit comparable mean predicted values across all set-
tings, aligning with the results observed for COHFACE. The standard deviation of pre-
dictions remains relatively small, confirming that both models maintain stable and con-
sistent outputs.
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(A) DeepPhys

(B) TSCAN

FIGURE 5.2: Visualization of ground truth pulse signal, predicted signal and CP cov-
erage for DeepPhys and TSCAN for α = 0.1 on the COHFACE dataset.

TABLE 5.2: Summary of Conformal Prediction Results on UBFC-rPPG

Model Alpha Mean Interval Width MAE Coverage Probability
DeepPhys 0.1 2.862 0.605 0.899
DeepPhys 0.2 2.06 0.605 0.803
TSCAN 0.1 2.587 0.543 0.903
TSCAN 0.2 1.809 0.543 0.809

The expected trend of decreasing interval width with increasing α is again observed
here. For DeepPhys, the mean interval width decreases from 2.862 at α = 0.1 to 2.060 at
α = 0.2 and a similar reduction occurs for TSCAN, where the interval width decreases
from 2.587 to 1.809. Compared to COHFACE, we observe that the intervals for UBFC-
rPPG are generally narrower across both models and both α values. This suggests that
the models assign lower uncertainty to their predictions on UBFC, potentially due to
differences in dataset quality, lighting conditions or participant variability.
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The MAE values reveal a slight difference in performance between the two datasets.
While DeepPhys maintains a MAE of approximately 0.605 on UBFC, it was slightly
lower (0.574) on COHFACE. The same pattern is observed for TSCAN, where its MAE
on UBFC-rPPG is 0.543 compared to 0.574 on COHFACE. This suggests that both mod-
els achieve better prediction accuracy on UBFC-rPPG than COHFACE. However, the
relative performance ranking remains unchanged, TSCAN continues to achieve slightly
lower MAE values than DeepPhys.

Regarding coverage probability, DeepPhys and TSCAN again perform similarly, with
slightly higher coverage at α = 0.1 due to the wider intervals. Interestingly, UBFC-
rPPG coverage probabilities are slightly higher than those observed on COHFACE,
meaning that the CP intervals are more likely to contain the true values in UBFC-rPPG
than in COHFACE. This suggests that the CP framework is slightly more conserva-
tive on this dataset. This behavior is expected, as UBFC-rPPG is more similar to the
dataset on which these models were trained. As a result, both DeepPhys and TSCAN
exhibit lower MAE and narrower confidence intervals, indicating better generaliza-
tion and lower overall uncertainty compared to COHFACE. TSCAN continues to ex-
hibit slightly narrower confidence intervals compared to DeepPhys, indicating that it
assigns lower uncertainty to its predictions. However, the differences remain minor,
reinforcing the observation that both models are well-calibrated under the conformal
prediction framework. Figure 5.3 further supports our observations.

5.3.2 Video Quality as a Nonconformity Measure

In this section, we analyze the use of ML QM as a nonconformity measure in CP for
rPPG uncertainty estimation. We evaluate its effectiveness by comparing it to MAE-
based CP intervals.

ML QM was derived using ML models trained on video quality factors (motion, illu-
mination, resolution and occlusion among others) to predict expected rPPG error. Since
different ML models learn slightly different patterns, we take the average of the pre-
dictions from all the five models (Random Forest, XGBoost, Gradient Boosting, Extra
Trees and KNN). In the previous chapter, we observed variation in correlation strength
between different ML models and MAE across datasets. Some models performed bet-
ter on UBFC, while others were stronger on COHFACE or MMSE-HR. By averaging,
we reduce overfitting to any single dataset. Averaging also ensures no single model
dominates, creating a more balanced and robust metric.

In Table 5.3 we analyze both datasets’ performance to ensure that ML QM is an appro-
priate substitute for MAE in CP. The results for COHFACE and UBFC-rPPG datasets
highlight key trends across different models and alpha values. For COHFACE, both
DeepPhys and TSCAN exhibit nearly identical MAE values, with DeepPhys achieving
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(A) DeepPhys

(B) TSCAN

FIGURE 5.3: Visualization of ground truth pulse signal, predicted signal and CP cov-
erage for DeepPhys and TSCAN for α = 0.1 on the UBFC-rPPG dataset.

an MAE of 0.57446 and TSCAN at 0.57442. These results indicate that both models
have comparable accuracy in their raw predictions. As expected again, moving from
α = 0.1 to α = 0.2 results in narrower intervals, reducing from approximately 3.04 to
1.51 for DeepPhys and from 3.01 to 1.50 for TSCAN. The coverage probability is slightly
higher for α = 0.1 compared to α = 0.2, further reinforcing that wider intervals capture
more ground truth values, albeit at the cost of reduced precision. The similarities in CP
results between DeepPhys and TSCAN indicate that both models produce stable and
well-calibrated uncertainty estimates.

For UBFC, DeepPhys with α = 0.1 shows a slightly higher MAE (0.60499) compared to
its performance on COHFACE. This could be attributed to the fact that we are now us-
ing ML QM as a nonconformity measure instead of MAE. Unlike MAE, which directly
quantifies prediction error, ML QM is an indirect estimate of video suitability for rPPG
performance. While ML QM is strongly correlated with MAE, it does not always map
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TABLE 5.3: Summary of Conformal Prediction Results on UBFC-rPPG and COHFACE.

Model Dataset Alpha Mean Interval Width MAE Coverage Probability
DeepPhys COHFACE 0.1 3.04 0.57 0.894
DeepPhys COHFACE 0.2 1.51 0.57 0.789

TSCAN COHFACE 0.1 3.01 0.57 0.893
TSCAN COHFACE 0.2 1.5 0.57 0.785

DeepPhys UBFC-rPPG 0.1 2.86 0.6 0.9
DeepPhys UBFC-rPPG 0.2 2.06 0.6 0.803

TSCAN UBFC-rPPG 0.1 2.59 0.54 0.903
TSCAN UBFC-rPPG 0.2 1.809 0.54 0.809

one-to-one with prediction errors. This means that the conformal prediction framework
may assign uncertainty differently based on video quality factors rather than purely on
observed prediction deviations.

The interval widths on UBFC-rPPG are slightly narrower than those observed on CO-
HFACE, suggesting that the CP framework is somewhat more confident in its predic-
tions for this dataset. This is also reflected in the higher coverage probability for Deep-
Phys on UBFC-rPPG (0.8986) compared to COHFACE (0.8937). These results suggest
that CP adapts well to dataset characteristics, maintaining stable coverage while re-
flecting subtle dataset-specific variations in prediction reliability.

The comparison between MAE-based and quality-metric-based CP intervals reveals
important insights into the effectiveness of using ML QM as a nonconformity mea-
sure. Across both datasets (COHFACE and UBFC-rPPG), the key patterns observed
in interval widths, coverage probabilities and overall calibration provide evidence that
ML QM can serve as a viable substitute for MAE in CP.

The interval widths are slightly larger when using ML QM compared to MAE, partic-
ularly for lower values of alpha. For instance, in COHFACE, DeepPhys at α = 0.1 had
a mean interval width of 3.04 using MAE, whereas it increased to 3.18 using ML QM.
A similar trend is observed for TSCAN, where the interval width increased from 3.01
(MAE) to 3.15 (ML QM). This suggests that ML QM results in marginally more con-
servative (wider) intervals.

For UBFC-rPPG, the interval width differences are more pronounced. DeepPhys at
α = 0.1 increased from 2.86 (MAE) to 3.02 (ML QM) and TSCAN from 2.59 to 2.88. This
could indicate that when using ML QM, the CP intervals incorporate more uncertainty
than those based on MAE. Given that ML QM is an indirect measure of rPPG perfor-
mance rather than a direct prediction error, the CP framework may assign broader un-
certainty to accommodate cases where video quality deteriorates, even if model error
does not significantly change.

Despite slightly wider intervals, the quality-metric-based CP intervals achieve com-
parable, if not slightly better, coverage probabilities relative to MAE. For example, in
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COHFACE, DeepPhys at α = 0.1 maintains a coverage probability of 0.89 using both
MAE and ML QM, suggesting that the uncertainty estimates are well-calibrated in
both cases. However, for α = 0.2, the coverage probability using ML QM slightly
increases from 0.79 (MAE) to 0.81, indicating a small improvement in calibration.

A similar trend is observed in UBFC-rPPG, where TSCAN at α = 0.1 increases its cover-
age from 0.90 (MAE) to 0.91 using ML QM. This suggests that while the quality-metric-
based CP intervals are slightly wider, they provide slightly better coverage, ensuring
that more true values fall within the estimated confidence intervals.

These results suggest that ML QM, despite not being a direct error measure, effectively
captures factors influencing rPPG uncertainty and can serve as a reliable nonconfor-
mity measure for CP. The slight increase in interval width indicates that CP accounts
for more variability when using ML QM, likely due to its ability to detect broader
video quality degradations that affect model performance. This results in slightly more
conservative but well-calibrated confidence intervals, ensuring robust coverage. This
is further observed in Figure 5.4. Despite the fact that the images look identical, when
we estimate the mean pixel difference between the two images is approximately 0.64.
This suggests that the images are nearly identical, with only minimal variations.

Another key observation is that CP using ML QM maintains dataset-specific trends
observed with MAE. For example, UBFC-rPPG continues to exhibit narrower intervals
than COHFACE, suggesting that the method adapts well to dataset characteristics re-
gardless of the nonconformity measure. This reinforces the idea that video quality is a
strong predictor of rPPG performance and can be effectively integrated into CP frame-
works.

These findings validate the feasibility of replacing MAE with a domain-specific qual-
ity assessment metric in CP, providing a more interpretable and flexible approach to
rPPG uncertainty estimation. We demonstrate that using ML QM as a nonconfor-
mity measure produces prediction intervals that closely match those obtained using
MAE. The fact that the coverage probabilities and CP intervals remain nearly identi-
cal reinforces the effectiveness of ML QM in uncertainty estimation. Additionally, the
slightly wider intervals observed when using ML QM suggest a more conservative
approach, ensuring robustness in cases where video quality may impact model per-
formance. This confirms that ML QM is a viable alternative to MAE for conformal
prediction in rPPG applications, providing well-calibrated uncertainty estimates while
accounting for variations in video quality.
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(A) DeepPhys with MAE as a nonconformity measure.

(B) DeepPhys with ML QM as a nonconformity measure.

FIGURE 5.4: Visualization of ground truth pulse signal, predicted signal and CP cover-
age for DeepPhys for α = 0.1 on the COHFACE dataset using the MAE nonconformity

and our custom quality metric as a nonconformity measure.

5.4 Discussion

This study presents the first application of CP in rPPG, introducing a framework for
quantifying uncertainty in heart rate estimation. Given the challenges of rPPG, such
as motion artifacts, lighting variations and unpredictable video conditions, ensuring
that predictions are both accurate and well-calibrated is critical for real-world appli-
cations. By applying CP to DL rPPG models across datasets, we demonstrate how
statistical confidence intervals enhance the interpretability and reliability of heart rate
predictions.

Initial results using CP with MAE as the nonconformity measure showed that the
framework effectively generated confidence intervals that adapted to different signif-
icance levels. As expected, lower significance values resulted in wider intervals with
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higher coverage, while higher significance values produced narrower intervals with
slightly lower coverage probabilities. Across datasets, the models exhibited similar
uncertainty calibration, reinforcing the generalizability of CP for rPPG applications.
Conformal predictions with MAE assigned uncertainty intervals based purely on pre-
diction errors, without explicitly incorporating the impact of video quality on rPPG
performance. This motivated the integration of a quality-aware nonconformity mea-
sure, allowing CP to dynamically adjust uncertainty intervals based on the expected
difficulty of heart rate extraction from each video.

By incorporating MLQ M as a nonconformity measure, this study introduces a novel
adaptation of conformal prediction that accounts for data variability at a more granular
level. The results show that MLQ M maintains reliable uncertainty calibration, produc-
ing confidence intervals and coverage probabilities comparable to those obtained with
MAE. However, MLQ M leads to slightly wider intervals, reflecting a more conserva-
tive estimation of uncertainty that better accounts for variations in video quality. While
split-CP assigns a uniform width across test samples, the overall distribution of interval
widths expands when using MLQ M, indicating a cautious adjustment to the increased
variability in input data. This adaptation ensures that predictions remain robust and
trustworthy, especially in more challenging video conditions.

Unlike MAE, which quantifies absolute prediction errors, ML QM incorporates struc-
tured information about video characteristics such as motion artifacts, lighting varia-
tions and resolution that influence model confidence. This ensures that CP intervals
are not just reflective of statistical error but also provide a meaningful way to assess the
conditions under which an rPPG model is more or less confident in its predictions.

From a practical perspective, integrating video quality into CP enables adaptive un-
certainty estimation, which is particularly relevant for telemedicine and mobile health
applications. rPPG models deployed in real-world environments must handle highly
variable conditions, including fluctuations in lighting, camera quality and user move-
ment. By dynamically adjusting confidence intervals based on video quality, this ap-
proach ensures that clinicians and end-users receive uncertainty estimates that reflect
the reliability of the input data. This can help prevent overconfidence in unreliable
predictions, supporting more informed decision-making in remote health monitoring.

While this study focuses on rPPG, the proposed approach has broader implications.
Many ML applications rely on video-based predictions where input quality directly
impacts model performance. The quality-aware CP framework introduced here could
be extended to other domains, such as facial recognition, medical imaging and video-
based biometric analysis. In these fields, incorporating data quality into uncertainty
estimation could enhance model reliability and transparency, ensuring that confidence
intervals adjust dynamically based on real-world conditions rather than static error
assumptions.
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Overall, this study validates the use of a video quality metric as a nonconformity
measure in CP, offering a new method for uncertainty estimation in rPPG. The abil-
ity to replace MAE without compromising calibration represents a strong contribution
to both conformal prediction research and video-based physiological signal analysis.
By improving robustness, interpretability and real-world applicability, this work lays
the foundation for future uncertainty-aware video processing techniques, opening new
possibilities for adaptive and reliable ML systems in health monitoring and beyond.
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Chapter 6

Deployment - Conclusions and
Future Work

The final chapter bridges research and application, transforming theoretical advancements
into real-world impact.

Remote photoplethysmography has the potential to revolutionize health monitoring by
enabling non-contact heart rate measurement using everyday cameras, transforming
how we track and understand physiological signals. Unlike traditional contact-based
methods like ECG and PPG, which require physical sensors attached to the skin, rPPG
operates by detecting subtle variations in skin color caused by blood flow. This abil-
ity to extract vital information from a simple video recording paves the way for more
seamless, accessible and widespread health monitoring.

One of the most promising applications of rPPG is in telemedicine, where remote con-
sultations and diagnostics are becoming increasingly common. Clinicians can assess
patients’ heart rates and potential arrhythmias without requiring specialized equip-
ment. It also has the potential to improve elderly care and post-surgical monitoring,
allowing patients to recover at home while still being continuously observed for any
concerning changes in their vital signs.

Beyond clinical settings, consumer health and fitness applications are rapidly adopt-
ing rPPG technology. From smartwatch cameras to mobile health apps, non-contact
heart rate tracking can enhance wellness monitoring, stress detection and personalized
fitness insights.
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rPPG also introduces new possibilities for mental health assessment and human-computer
interaction. By analyzing heart rate variability and other physiological signals, rPPG
could be integrated into workplace wellness programs, stress monitoring tools or even
adaptive learning environments that adjust based on user engagement levels. Non-
contact monitoring could help detect signs of driver fatigue or stress, reducing the risk
of accidents. Additionally, the integration of rPPG in AR/VR systems could enable
more immersive experiences by dynamically adjusting virtual environments based on
users’ physiological states.

As technology advances, rPPG is set to play a pivotal role in shaping the future of
healthcare, promising a world where health monitoring is effortless and truly person-
alized. While challenges remain in ensuring robustness across diverse populations, im-
proving accuracy under varied conditions and addressing privacy concerns, ongoing
research and innovation continue to push the boundaries of what is possible.

6.1 Summary of Findings

This thesis explores multiple aspects of rPPG, from fundamental signal processing
techniques to machine learning advancements, video quality considerations and un-
certainty quantification. Each chapter contributes to the broader goal of making rPPG
more reliable and interpretable.

In chapter 2, we investigated traditional signal processing methods for rPPG, establish-
ing a baseline for pulse estimation. We enhanced performance by applying a particle-
based feature tracking approach, improving robustness against motion artifacts. We
explored feature clustering with K-Means to optimize computational efficiency while
maintaining accuracy. Our findings underscore the inherent challenges of traditional
signal processing techniques and set the stage for the adoption of more adaptable,
learning-based approaches in later chapters.

In chapter 3, we introduced a novel framework that combines video stabilization, spa-
tiotemporal feature extraction and a two-stage learning approach. This method im-
proved robustness by leveraging machine learning while retaining interpretability, ad-
dressing key limitations observed in signal processing methods. By structuring learn-
ing in two stages (first filtering unreliable frames and then refining pulse estimation)
we demonstrated a significant improvement in accuracy. This approach bridges the
gap between traditional methods and deep learning.

In chapter 4, we quantified the impact of video quality factors on rPPG accuracy, intro-
ducing tailored metrics to assess video suitability for pulse estimation. This provided
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insights into how factors such as motion, resolution and lighting influence model per-
formance. Our findings emphasize the necessity of incorporating video quality con-
siderations into rPPG pipelines to ensure reliable pulse estimation across diverse real-
world scenarios.

In chapter 5, we applied conformal predictions to rPPG, generating confidence inter-
vals to assess model reliability. By comparing MAE-based and quality-aware noncon-
formity measures, we highlighted the impact of different uncertainty estimation ap-
proaches on rPPG reliability. By leveraging conformal predictions, we ensured that
model predictions were not only accurate but also accompanied by well-calibrated con-
fidence intervals, improving trust and usability in practical deployments.

The findings of this thesis have direct implications for real-world applications, making
rPPG more practical for deployment in various settings. The insights gained from sig-
nal processing approaches highlight the feasibility of rPPG in low-compute environ-
ments, such as mobile devices and embedded systems. Traditional methods provide
an efficient alternative to deep learning-based solutions, making rPPG more accessi-
ble for remote monitoring. The proposed ST2S-rPPG framework enhances robustness
against motion artifacts, making it suitable for applications in telemedicine, where pa-
tient movement can degrade signal quality. By incorporating adaptive learning, this
approach ensures better generalization across diverse populations. Video quality as-
sessment is critical for real-world deployment, particularly in telehealth and consumer
health tracking. The ML-QM metric can be used to filter out low-quality videos, re-
ducing false readings and ensuring more reliable heart rate estimation in everyday ap-
plications. By providing confidence intervals for heart rate predictions, conformal pre-
dictions enable more informed decision-making in clinical settings. This is particularly
beneficial for automated health monitoring systems, where uncertainty quantification
can prevent incorrect diagnoses based on unreliable data.

6.2 Limitations and Real-World Deployment

While this thesis presents advancements in rPPG, several challenges remain. Signal
processing methods, despite their efficiency and interpretability, struggle significantly
with motion artifacts, requiring extensive pre-processing and filtering to achieve stable
performance. Additionally, they do not adapt well to varying lighting conditions, skin
tones and camera settings, which limits their generalizability. The proposed spatiotem-
poral deep learning framework improves robustness by leveraging data-driven repre-
sentations, but its effectiveness is contingent on access to diverse, large-scale datasets
for training. Without sufficient variation in training data, the model may fail to gen-
eralize across different demographic groups or real-world scenarios. Video quality
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metrics, such as WS-QM and ML-QM, provide a structured way to assess input reli-
ability and adapt model behavior accordingly, yet they do not entirely eliminate per-
formance degradation in extreme conditions, such as excessive motion blur, occlusions
or low-light environments. Finally, conformal predictions offer a valuable mechanism
for quantifying uncertainty, in practical applications, however, real-world conditions
introduce dynamic, unpredictable variations potentially leading to miscalibrated con-
fidence intervals. These limitations indicate the need for further refinement of both
methodological and practical implementations to ensure robustness in diverse deploy-
ment scenarios.

6.2.1 Dataset Quality and Diversity

Dataset diversity is a key determinant of how reliably rPPG models generalise to real-
world use. The datasets evaluated in this thesis differ in illumination, motion, camera
resolution and acquisition setup, providing a practical benchmark for cross-condition
robustness. Evaluating models across multiple datasets without overlapping subjects
helps estimate out-of-domain performance, revealing how well methods handle un-
seen scenarios.

However, most publicly available datasets remain limited in demographic and envi-
ronmental diversity. Many are collected under controlled lighting, consistent camera
settings and with a narrow range of skin tones or age groups. These constraints reduce
the validity of rPPG models when deployed in unconstrained environments such as
telehealth platforms, smartphones or workplace monitoring systems. To achieve true
generalisability, future research must prioritise data inclusivity and standardisation.
This can be achieved by curating datasets that span diverse lighting conditions, cam-
era devices, demographics and activity levels. Real-world deployment also requires
continuous data auditing, where performance is monitored across subgroups (e.g., by
skin tone, gender or motion intensity) to identify and mitigate potential biases before
large-scale use.

6.2.2 Real-Time Deployment Feasibility

Although this thesis primarily evaluates accuracy and robustness, the proposed meth-
ods are designed with real-time deployment in mind. Each model operates on short
temporal segments, enabling predictions to be updated continuously using a rolling
window as new frames arrive. This design allows the system to process incoming
video streams with minimal latency, suitable for live applications such as remote con-
sultations or fitness tracking.
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In practical deployments, achieving real-time performance depends on both algorith-
mic efficiency and infrastructure. The image-based approaches proposed in this the-
sis require significantly less computation than end-to-end deep video models, making
them feasible for on-device processing where privacy and low latency are critical. Inte-
gration into existing pipelines could continuously buffer short segments, perform rPPG
estimation and update heart rate and confidence intervals every few seconds. Future
engineering work should focus on optimising inference speed, adopting lightweight
architectures and exploiting GPU or neural accelerator hardware for embedded de-
ployment.

6.2.3 Practical Deployment Considerations

Translating rPPG research into deployed systems requires addressing a range of oper-
ational and design challenges.

• Quality Assurance: Integrate the proposed video quality metric as a real-time
input filter. The system should flag or reject frames with poor motion, illumina-
tion, or blur conditions and prompt users to reposition or improve lighting before
analysis.

• Transparency and Feedback: Provide users or clinicians with both heart rate es-
timates and uncertainty intervals from conformal predictions. Flagging outputs
with high uncertainty can prevent false readings and improve trust.

• Privacy and Security: Perform processing locally whenever possible to avoid un-
necessary transfer of raw video. When cloud processing is required, apply strong
encryption and access control policies.

• Hardware and Environment: Define operational guidelines for camera specifi-
cations, frame rates and distance ranges to ensure consistency between devices.
Implement adaptive frame sampling to balance latency and power use.

• Human Oversight: For clinical or high-stakes applications, incorporate human-
in-the-loop review. Continuous performance monitoring across demographic or
device categories should form part of the maintenance pipeline.

These practical steps transform the methods proposed in this thesis into a deployable
framework, aligning with responsible AI and regulatory standards.

6.2.4 Ethical Implications and Bias

As rPPG technologies move closer to real-world applications, it becomes essential to
address the ethical implications associated with their use. While this thesis focuses
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on improving the accuracy, quality and robustness of pulse estimation from video, the
deployment of such systems inevitably raises questions about privacy, fairness and re-
sponsible use. These aspects are fundamental to ensuring that advancements in remote
sensing are aligned with broader principles of trust and societal benefit.

rPPG systems rely on facial video data which inherently contain identifiable visual fea-
tures and sensitive physiological information. When such data are captured or stored,
there is potential for privacy violations if appropriate safeguards are not implemented.
Ethical deployment therefore requires informed consent, secure data handling, and
clear communication regarding how and where data are used and stored. In practi-
cal applications, privacy risks can be mitigated through methods such as on-device
processing, anonymisation of video frames or feature extraction without storing raw
data. Adopting approaches that preserve privacy ensures that user trust is maintained
while still allowing meaningful physiological analysis.

However, privacy in the context of rPPG extends beyond the protection of visual iden-
tity; it encompasses the safeguarding of biometric and physiological information that
can reveal sensitive health or emotional states. Unlike ordinary video data, recordings
used for rPPG analysis implicitly contain health-related signals such as heart rate or
stress level, which fall under special category data within regulations such as the Gen-
eral Data Protection Regulation (GDPR). As a result, even seemingly simple recordings
of faces can expose private medical information if not handled responsibly. Ethical de-
ployment therefore requires a strong privacy framework at every stage of the pipeline,
from data collection and storage to model training and inference.

Security measures are equally important. Encryption during storage and transmission,
access control and transparent data governance policies are critical to ensuring that
sensitive information cannot be misused or identified. Beyond compliance, users must
be clearly informed about what is being measured, why it is being measured and how
their data are protected. Providing such transparency is central to maintaining user
trust, particularly when rPPG systems are deployed in uncontrolled environments such
as telehealth platforms, online classrooms or workplace applications.

Another major consideration concerns bias, which can arise from uneven performance
across demographic or environmental conditions. rPPG accuracy can be influenced by
factors such as skin tone, lighting, camera quality and motion patterns, leading to po-
tential disparities in outcomes. Such biases not only reduce reliability but may also am-
plify existing inequities when systems are deployed at scale. Addressing this requires
the use of diverse and representative datasets, transparent performance reporting and
ongoing bias auditing as models evolve. In this thesis, the emphasis on evaluating per-
formance under varied video quality conditions provides a foundation for identifying
and mitigating such disparities.



6.3. Future Work 143

Ultimately, the ethical deployment of rPPG technology depends on transparency, ac-
countability and a commitment to user welfare. Developers and organisations should
ensure that these systems are used in appropriate contexts, that limitations are clearly
communicated, and that users retain control over when and how their data are pro-
cessed. By combining technical reliability with ethical awareness, the deployment of
rPPG can contribute positively to healthcare, research, and everyday well-being —
without compromising fairness or privacy.

6.3 Future Work

Future research can explore more adaptive filtering techniques to mitigate motion ar-
tifacts and improve real-time implementation of signal processing-based rPPG. Tra-
ditional bandpass filtering and PCA-based denoising could be expanded with deep
filtering techniques that dynamically adapt to motion patterns rather than applying
static thresholds. These techniques could reduce false heart rate estimations by bet-
ter preserving physiological signals in noisy conditions. Integrating signal processing
methods with lightweight machine learning models could provide a hybrid approach
that balances efficiency and robustness. Instead of relying solely on handcrafted fea-
ture extraction, a hybrid approach like ST2S-rPPG could first apply traditional signal
decomposition techniques (e.g., ICA, CHROM or POS) to extract preliminary pulse
signals, which are then refined by lightweight machine learning models. These models
could leverage recurrent networks or attention-based mechanisms to capture tempo-
ral dependencies, enhancing signal stability without significantly increasing computa-
tional cost. The combination of these techniques represents a promising direction, as
it would retain the interpretability and efficiency of signal processing while leveraging
the adaptability and feature extraction power of machine learning.

In terms of video quality assessment, extending the ML-QM metric by incorporat-
ing additional degradation factors such as color distortions, noise levels and com-
pression artifacts could enhance its ability to predict rPPG performance under diverse
conditions. Real-world validation across multiple demographic groups and device
types would be essential to ensure its reliability. Regarding uncertainty quantification,
adaptive conformal prediction methods could dynamically adjust confidence intervals
based on real-time feedback from the model’s own predictions. For example, instead
of using a fixed significance level for all predictions, an adaptive conformal predictions
framework could adjust interval widths based on contextual factors such as motion
levels or occlusion severity. This could be implemented using meta-learning strategies
where the model learns to adjust its uncertainty estimates based on past prediction
errors. Future work could also further explore the direct relationship between video
quality factors and confidence interval behavior, offering additional insights into the
mechanisms driving model uncertainty in rPPG.
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Looking further ahead, multi-modal approaches could present a promising avenue for
enhancing rPPG reliability. Integrating rPPG with audio analysis could provide richer
physiological insights and improve measurement robustness. Audio analysis could
capture breathing rate and correlate it with heart rate variability. Large Language Mod-
els (LLMs) could provide an additional layer of patient understanding during pulse
measurement by analyzing spoken words in conjunction with physiological signals.
By integrating real-time speech analysis with rPPG, LLMs could assess emotional state,
stress levels or cognitive load, offering deeper insights into a patient’s well-being. This
multi-modal approach could enhance telemedicine consultations, mental health assess-
ments and personalized healthcare interventions by contextualizing physiological data
with verbal expressions. Generative models and synthetic data augmentation have
much potential in addressing dataset limitations, allowing for better model generaliza-
tion without excessive reliance on costly real-world data collection.

As technology advances, rPPG holds immense potential to transform the way we mon-
itor health, bridging the gap between convenience and medical-grade accuracy. Mov-
ing forward, critical areas for future research include developing adaptive uncertainty
estimation frameworks that dynamically adjust prediction intervals in real time, cre-
ating hybrid models that combine traditional signal processing with lightweight deep
learning for improved robustness and advancing multi-modal techniques to enhance
physiological interpretation. Furthermore, addressing fairness through diverse, large-
scale datasets and exploring synthetic data generation with generative models will be
essential for achieving generalizable, inclusive rPPG systems.

From enabling remote patient monitoring to enhancing AI-driven diagnostics, rPPG
stands at the forefront of a shift towards non-invasive, intelligent healthcare solutions.
Continued research into improving robustness, interpretability and deployment readi-
ness will ensure that rPPG reaches its full potential, empowering individuals and med-
ical professionals. With further innovation, rPPG can pave the way for a future where
vital sign monitoring is seamless, accessible and more inclusive than ever before.
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