
Optimal network pricing with oblivious users:

a new model and algorithm

Yixuan Li, Andersen Ang, Sebastian Stein
School of Electronics and Computer Science

University of Southampton
United Kingdom

October 10, 2025

Abstract

Traffic modeling is important in modern society. In this work we propose a new model on the optimal
network pricing (Onp) with the assumption of oblivious users, in which the users remain oblivious to real-time
traffic conditions and others’ behavior. Inspired by works on transportation research and network pricing for
selfish traffic, we mathematically derive and prove a new formulation of Onp with decision-dependent modeling
that relax certain existing modeling constraints in the literature. Then, we express the Onp formulation as a
constrained nonconvex stochastic quadratic program with uncertainty, and we propose an efficient algorithm
to solve the problem, utilizing graph theory, sparse linear algebra and stochastic approximation. Lastly, we
showcase the effectiveness of the proposed algorithm and the usefulness of the new Onp formulation. The
proposed algorithm achieves a 5x speedup by exploiting the sparsity structure of the model.

Keywords: Traffic modeling, Optimal network pricing, Decision-dependent modeling, Stochastic optimization,
Optimization algorithm, Sparsity, Graph theory

Contents

1 Introduction 2

2 Derivation and theory of Onp 3

3 Monte Carlo, Gradient and Hessian 6
3.1 Deriving the Monte Carlo approximation. 6
3.2 Gradient derivation and computation . 7
3.3 Hessian of fN and cN . 9

4 Nonconvexity and Convexity 9
4.1 fN is nonconvex . 10
4.2 Condition for local convexity . 10
4.3 fN is convex almost surely for some λ . 11
4.4 Convexity of the constraint set cN (p) ≤ 0 . 11

5 TR-SQP algorithm 12

6 Experiment 13
6.1 Verification on a toy problem . 13
6.2 Speedup via exploiting sparsity . 14

7 Conclusion and future direction 14

1

ar
X

iv
:2

51
0.

07
15

7v
2

 [
m

at
h.

N
A

]
 9

 O
ct

 2
02

5

https://arxiv.org/abs/2510.07157v2

1 Introduction

Traffic modeling is important in modern society [22]. Motivated by the need to manage congestion and design
efficient pricing policies, we propose a new model for optimal network pricing (Onp). As real-world users often
lack timely access to traffic information or follow habitual, pre-planned decision rules, we adopt the oblivious-user
assumption [8], where users plan their routes in advance, relying on fixed criteria like shortest distance and pricing
signals, and remain oblivious to real-time traffic conditions and others’ behavior. We mathematically derive a
new formulation of Onp with decision-dependent modeling and prove its properties. After establishing the new
formulation, we express it as a quadratic program (QP) with uncertainty, and propose an efficient algorithm to
solve it. We showcase the effectiveness of the proposed algorithm and the usefulness of the new Onp model.

Behavioral modeling of network users. In classical models of network user behavior, travelers are assumed
to be fully aware of others’ actions and to interact strategically, yielding congestion games under a fixed total
flow [24, 18]. Dynamic Traffic Assignment extends this picture by modeling the time-evolution of flows and
travelers’ adjustments of routes and departure times under dynamic equilibrium conditions [3]. However, because
many users lack timely traffic information, several works instead consider oblivious users who do not react to
instantaneous network states; e.g., the price of anarchy at the equilibrium in networks with oblivious users was
studied in [8]. Overall, the literature emphasizes equilibrium characterization rather than the design of platform
pricing or tolling mechanisms to influence user decisions.

Network Pricing. Prior research has studied pricing algorithm design to steer outcomes toward the social
optimum. From an algorithmic game-theory viewpoint, works model user interactions as games, e.g. Stackelberg
models [2, 16]. In [7], a congestion-pricing framework for networks is developed with variable traffic flow in which
users’ preferences are captured by a disutility function. It studied system-optimal outcomes from a social-welfare
(non-profit planner) perspective and derives pricing characterizations for networks composed of parallel links, with
the disutility representation to analyze tolling that minimizes aggregate social cost. Other research [6, 19] studied
network pricing in specific settings.

Decision-dependent optimization. In performative prediction, the optimality conditions such as Performative
Optimality (PO) [15, Eq.2.1] and Performative Stability (PS) [15, Def.2.3] are proposed:

θPO := argmin
θ

E
Z∼D(θ)

ℓ(Z; θ)︸ ︷︷ ︸
PO

, θPS := argmin
θ

E
Z∼D(θPS)

ℓ(Z; θ)︸ ︷︷ ︸
PS

. (1)

The work [5] investigated the performance of stochastic algorithms in solving a problem (subsuming PS, PO) with
decision-dependent distributions. The work [11] studied the greedy and lazy deployment scheme of stochastic
optimization to solve PS with the consideration of a small performative risk (PO). The work [10] relaxed the
assumption on the convexity of function ℓ used in [5] by defining an optimality condition δ-stationary performative
stable solution and analyze the greedy deployment scheme. Based on the performative prediction framework, [13]
introduced decision-dependent games where players account for the performative effect of users when making
predictions. They applied this framework to competing ride-share markets and analyze pricing strategies when
each platform aims to maximize its own revenue.

Contribution & paper organization. We propose a new model:

argmin
p

E
x∼D(p)

[
λ

2
∥p∥22 +

1

2
⟨Qx, x⟩ − ⟨s, x⟩

]
quadratic cost

s.t.

{
x ∈ [0, xpltfu], p ∈ [pl, pu] flow bound, price bound

Kx ≥ l commodity

D(p) = Π[xusr
l ,xusr

u](Bp+ ζ) decision-dependent elasticity

ζ ∼ N (µ,Σ) uncertainty

(Onp)

Here is the overview of our model. (Onp) aims to decide the optimal price of each route the users have to pay,
as well as to reduce the total traffic congestion. (Onp) considers a 2-player game between platform and users,
where platform refers to a pricing system that determines the price p of each route of the traffic network (a
graph), and users refers to the entities that use the network. The network congestion cost is described by a
quadratic function on traffic flow variable x and p under parameters λ,Q, s. The price and the flow are related

2

by a truncated model D(p) = Π[xusr
l ,xusr

u](Bp + ζ) = x, where B ∈ R|R|×|R| is price elasticity in the network

with |R| routes. The model D contains uncertainty, represented by the random variable ζ ∈ R|R|, which follows
a base distribution, assumed to be Gaussian for simplicity. The symbol Π[xusr

l ,xusr
u] means project a vector onto

the box [xusrl , xusru]. Lastly pl, pu, x
pltf
u , xusrl , xusru ,K, l are constants. Notation. ⟨a, b⟩ is inner product, ∥ · ∥2 is

ℓ2-norm, E is expectation. max,≥ are applied element-wise, [0, xu] is box constraint. [x]j is the jth entry of x.
See Table 1 for other symbols.

Remark. Our proposed methodology naturally extends to models with more general D(p) (e.g., alternative
distributions for ζ) and more complex projection operators Π; such extensions require only problem-specific
adaptations to the implementation and analysis.

Assumption 1. We assume the solution set of (Onp) is nonempty and xusrl = 0, xusru = xpltfu = xu, i.e., users’
lower and upper bounds coincide with the platform’s capacity bounds 1.
The contribution of this work is 3-fold:

1. (Modeling & Theory)

• The new elasticity model D(p) is inspired by Bp+ ζ = x in [13, Sec7.2], where we introduce Π[0,xu] to reflect
practical considerations in traffic modeling.

• Previous works [24, 18] use a quadratic congestion cost without analyzing the structure of the quadratic
coefficient matrix Q, we derive Q and (Onp), see section 2.

• Previous works [7, 8] assume parallel link model, meaning an edge in the network cannot be shared across
different routes, which mathematically simplifies the matrixQ. In contrast, we relax the parallel link assumption
by considering general Q, making our model more general and mathematically more challenging, see [8] and
section 2 and section 5 for details.

2. (Methodology) We design a highly efficient algorithm to solve nonconvex (Onp) efficiently using sparsity,
statistics and optimization theory, see section 5. We achieve a speedup ranged from 5x to 100x, depending
to problem setting. In terms of the optimality condition, our approach can approximately achieve PO, while
previous works can only achieve an ineffective PS for our problem, see section 2. In terms of optimization
complexity, our model is nonconvex, nonlinear and nonsmooth, thus being nontrivial to solve. For example,
the introduction of Π[0,xu] lead to nonconvexity of the problem. See more in section 3, section 4.

3. (Application) We apply the model and algorithm on traffic modeling, see section 6. The proposed algorithm
achieves a 5x speedup by exploiting the sparsity structure of the model on a real-world transportation network
with 3000 routes.

2 Derivation and theory of Onp

Now we derive and analyze (Onp).

Graph. A traffic network is a simple strongly-connected digraph2 G(V, E ,R) with vertex set V and edge set
E = {e1, e2, . . .}. The route set R ⊆ PowerSet(E) contains route r. The assignment between R, E is denoted
by the matrix A

A =
[
a1, . . . , a|R|

]⊤
∈ {0, 1}|R|×|E|. (R− E assignment)

Flow. x = [x1, . . . , x|R|]
⊤ ∈ R|R|

+ is the amount of traffic passing each route3. We have x ∈ [0, xu] with

xu ∈ R|R|
+ is the maximum amount of flow allowed in each route.

1This is a standard practical assumption; any violation can be handled by adding constraints and it will not change the subsequent
analysis.

2We mean no loop, no multi-edge, and between any pair of nodes there is a path.
3E.g., x3 is the number of users in route r3.

3

symbol Definition / Meaning

A, ar R-E assignment matrix, an assignment vector r
B |R| × |R| price elasticity matrix
cos, ccoe offset and coefficient of cost function on each edge
C helper matrix (Definition 1)
D(p) distribution under parameter p
E , e edge set of graph G, an edge in E
G simple connected digraph with vertex V
K, k,K commodity: set, index in [1, |K|], assignment matrix
l lower bound of traffic needed for commodity

p price on each route, a vector in R|R|

Π orthogonal projection
Q |R| × |R| quadratic coefficient matrix in (Onp)
R, r Route set and a particular route (a set of edges)

s linear coefficient in R|R| in (Onp)

x traffic flow, a vector in R|R|

ζ random noise, we assume ζ ∼ N (µ,Σ)
λ price regularization parameter, λ ∈ R+

Table 1: Notation

Price for traffic control. p ∈ R|R|
+ is the price on each route. p is used to influence the congestion level. We

have p ∈ [pl, pu].

Multi-commodity. We let the commodity set K := {(s1, t1), . . .} contain source-sink pairs (sk, tk) that each
traffic flow has to transport between. For each commodity k, we let Rk ⊂ R be the set of r ∈ R such that
(sk, tk) is the source-sink of r. Set K is represented by a matrix K ∈ {0, 1}|K|×|R|, and Kx =

∑
r∈Rk

xr is
the sum of traffic in each route r with respect to commodity k. The constraint Kx ≥ l enforces element-wise

minimum-flow requirements, where l ∈ R|K|
+ is the lower bound of traffic required, which means that the total

flow on routes connecting the source sk to the sink tk must be at least lk.

Congestion cost on an edge. Let coste be the congestion cost on an edge e ∈ E . To model coste, we use a
linear cost model following the literature on congestion games [12, 9] and traffic flow control [23]. Here coste is

defined by constants cos, ccoe ∈ R|E|
+ , where cos is the constant congestion costs on e and ccoe is the rate of cost

on e. Scaled by the flow xr on route r, we have

coste = ccoee

∑
r∋e

xr + cose , (2)

where
∑
r∋e

means we sum xr across routes that include edge e.

Congestion cost on the graph. We define costG as the sum of costr (the costs across route r), where costr is
the sum of its constituent coste.

costG =
∑
r∈R

costr =
∑
r∈R

∑
e∈r

coste
(2)
=
∑
r∈R

∑
e∈r

(
ccoee

∑
r∋e

xr + cose

)
.

The expression costG can be simplified using the route-edge assignment A (telling which e is in which r), and a
helper matrix:

Definition 1. (Helper matrix) Let C ∈ R|R|×|E|
+ as Cr,e = ccoee if e ∈ r and Cr,e = 0 otherwise.

Theorem 1. Using assignment A, the vector ccoe, Hadamard product ⊙ and tensor product ⊗, then

CA⊤ =
(
[ccoe ⊗ 1|R|]

⊤ ⊙A
)
A⊤ = ADiag(ccoe)A⊤. (3)

4

Proof. By definition, C,A are |R| × |E| matrices that

Cr,e =

{
ccoee e ∈ r,

0 else.
Ar,e =

{
1 e ∈ r,

0 else.

Next, [ccoe ⊗ 1|R|]
⊤ = 1|R|(c

coe)⊤ ∈ R|R|×|E|. By the structure of C and A.

Remark. The matrix CA⊤ is symmetric by ADiag(ccoe)A⊤ in (3).

Total congestion cost from traffic flow. We define costr under the flow amount x as costr(x) = ⟨Car, x⟩+
⟨ar, cos⟩, where ar is the rth column of A. Then xrcostr(x) is costr(x) scaled by xr, representing the total
congestion cost on route r. Thus, the congestion cost on the whole graph is the sum over all r ∈ R as

costtotal =
∑
r∈R

xrcostr(x) = ⟨AC⊤x+Acos, x⟩ = 1

2
⟨Qx, x⟩ − ⟨s, x⟩,

where Q ∈ R|R|×|R| and s ∈ R|R| are defined as

Q = 2AC⊤ Theorem 1
= 2ADiag(ccoe)A⊤, s = −Acos. (4)

Note that Q is only for analysis and is never computed, see section 3.

Quadratic objective. In (Onp), we propose the cost as the sum of costtotal and the platform price λ
2∥p∥

2
2 with

λ ≥ 0.

Toy example. A 3-node graph with edge E =
{
(0, 1), (2, 0), (2, 1)

}
and route R =

{
[0, 1], [2, 0], [2, 0, 1], [2, 1]

}
is drawn.

0 1

2

x

x x
A =


1 0 0
0 1 0
1 1 0
0 0 1

 , CA⊤ =


1 0 1 0
0 1 1 0
1 1 2 0
0 0 0 1

 ⊁
⊀ 0.

Thus, the matrix Q is indefinite.

Oblivious user assumption. In the modeling above, we assume that users (e.g. drivers) do not know that a
congestion game exists, so the traffic flow x on each route r ∈ R is completely characterized by the price signals
p. This contrasts with classical congestion games [24, 18], where the total flow amount

∑
r xr is held constant

and users interact within the network. Our oblivious-user assumption implies that alternative transportation
options are available for model (Onp), allowing the traffic flow within the network to shift to other networks, and
vice versa. E.g., in network pricing for freight transport,alternative transportation may include sea or air shipping
as substitutes for road freight.

Optimization with decision-dependent distributions. In (Onp) both x, p are optimization variables and
Ex∼D(p) is known as decision-dependent, meaning the optimality of solutions is affected by the relationship
x ∼ D(p). As our formulation lies within the framework of optimization with decision-dependent distributions,
the optimality conditions of PO and PS seem to be relevant. However, the current research primarily aims to
solve PS in (1), e.g. [5, Def.3.2]; and achieving this may result in a substantial gap from PO in (1). Note that
the algorithms in [5] are not applicable to

min
x

E
z∼D(x)

ℓ1(z) + λℓ2(x).

Using the update xt+1 = Sxt(xt) from [5, Sec4.1] reduces the problem to minimizing λℓ2(x), which satisfies PS
in (1) but can result in a large gap from PO in (1).

Distribution. D(p) = Π[0,xu](Bp+ ζ) is a projected distribution, the jth component of a vector y = Bp+ ζ is

Π[0,xu](yj) =


0 if yj ≤ 0,

yj if 0 < yj < [xu]j ,

[xu]j if yj ≥ [xu]j .

(5)

Price elasticity. The matrix B ∈ R|R|×|R| is called elasticity [13, Sect.7.2]. We adopt the case that B is negative
semi-definite in section 6.

5

3 Monte Carlo, Gradient and Hessian

We propose an algorithm to solve (Onp). In this section, we first explain why we need efficient algorithm. Then
we reformulate (Onp), eliminate the variable x, followed by Monte Carlo approximation. In the remaining part we
focus entirely on deriving the expression of gradient and Hessian, and discuss sparsity-aware efficient computation.
We present the algorithm in section 5.

Source of complexity. As R ⊂ PowerSet(E) and |R| ≤ 2|E|, the number of routes can grow exponentially,
causing high dimensionality in vectors x, p ∈ R|R| and matrices B,Q ∈ R|R|×|R|.

Reformulation. We eliminate the variable x. Replacing x in (Onp) by x(p, ζ) = Π[0,xu](Bp + ζ) gives the
following stochastic problem

argmin
p∈[pl,pu]

λ

2
∥p∥22 + E

ζ∼N (µ,Σ)

〈1
2
Qx(p, ζ)− s, x(p, ζ)

〉
s.t. K Eζ∼N (µ,Σ)[x(p, ζ)] ≥ l.

(Onp-x)

We note that, for the reformulation, x(p, ζ) = Π[0,xu](Bp+ ζ) eliminates the flow bound constraint x ∈ [0, xu]
inside (Onp) in (Onp-x) by Assumption 1. Also x(p, ζ) is Lipschitz continuous in p.

Lemma 1. x(p, ζ) is ∥B∥2−continuous in p, independent of ζ.

Proof. We have that

∥x(p1, ζ)− x(p2, ζ)∥2 = ∥Π(Bp1 + ζ)−Π(Bp2 + ζ)∥2
≤ ∥(Bp1 + ζ)− (Bp2 + ζ)∥2
≤ ∥B∥2∥p1 − p2∥2,

where the first inequality is by Π is 1-Lipschitz [1].

3.1 Deriving the Monte Carlo approximation.

We solve (Onp-x) by Monte Carlo (MC) approximation. We draw N i.i.d. samples Ξ = [ζ(1), . . . , ζ(N)] (called
scenarios in stochastic program [20]) from N (µ,Σ). Let 1N ∈ RN be vector-of-1, we define the vector y(i) and
the matrix Y = [y(1), y(2) . . .] as

y
(i)
p = Bp+ ζ(i),
Yp = Bp1⊤N + Ξ.

(6)

We let x(i) as projected y(i), and being contained in a matrix X

x
(i)
p = Π[0,xu]

(
y(i)p

)
,

Xp = Π[0,xu1⊤
N](Yp).

(7)

We emphasize that the relationship between X,Y (and x(i), yi) is nonlinear. Now, the objective of the MC
reformulation is

fN (p) :=
λ

2
∥p∥22 +

1

N

N∑
i=1

[
1

2

〈
Qx(i)p , x(i)p

〉
−
〈
s, x(i)p

〉]
, (8)

and the constraint function in the MC reformulation is

cN (p) = l −K
1

N

N∑
i=1

x(i)p . (9)

We approximate (Onp-x) by a constrained nonlinear least-squares:

argmin
p∈[pl,pu]

fN (p) s.t. cN (p) ≤ 0. (Onp-x-MC)

The convexity of fN and cN is a non-trivial issue, see section 4.

Consistency of large-N approximation. MC replaces the expectation in (Onp-x) with an empirical average in
(Onp-x-MC). We now show this approach works, which is nontrivial due to the presence of Π[0,xu] and fN (p) is
nonconvex in p.

6

Lemma 2. fN (p) and cN (p) are continuous in p.

Proof. h(i) is quadratic in x(p, ζ). By Lemma 1, h(i) are continuous in p, so fN is continuous. The result for
cN (p) is similar.

Theorem 2. For N sufficiently large, fN approximates f(p) well:

sup
p∈[pl,pu]

∣∣fN (p)− f(p)
∣∣ a.s.−→ 0, sup

p∈[pl,pu]

∣∣cN (p)− c(p)
∣∣ a.s.−→ 0.

where a.s. denotes almost surely4.

Proof. By the bounded constraint [pl, pu], continuity lemma 2 and strong law of large number [20, Ch.7].

Why MC? We consider MC to solve the stochastic problem (Onp-x) due to simplicity: (Onp-x) involves
multivariate CDFs and high-dimensional integrals, which are mathematically and computationally complicated.
MC gives a simpler treatment. Also, recall section 1, MC can potentially handle more complicated Π where
a simple closed-form expression for E is unavailable, such as Π is not defined coordinate-wise: e.g., projection

onto a linear inequality constraint as ∃G ⊆ R : l ≤
∑
r∈G

xr ≤ u.

3.2 Gradient derivation and computation

We now compute the gradient ∇pfN (p). By chain rule,

∇pfN (p)
(8)
= λp+

1

N

N∑
i=1

[
∇px

(i)
p

]⊤(
Qx(i)p − s

)
. (10)

Consider three Jacobian ∇px
(i)
p , ∇py

(i)
p , ∇

y
(i)
p
x
(i)
p under chain rule:

∇px
(i)
p

chain rule
= ∇

y
(i)
p
x
(i)
p ∇py

(i)
p

(6),(7)
=

{
∇

y
(i)
p

(
Π[0,xu](y

(i)
p)
)}

B. (11)

By (5), the Jacobian

J(i) := ∇
y
(i)
p
x(i)p

(7)
= ∇

y
(i)
p

(
Π[0,xu](y

(i)
p)
)

(12)

has nonsmooth corners (at the boundary {0, xu}). As Π is 1-Lipschitz, so the entry [J(i)]j,j in terms of Clarke
subdifferential [4, 17] is

[J(i)]j,j = ∂Π[0,xu](y
(i)
j)︸ ︷︷ ︸

subdifferential

=


{0} y

(i)
j /∈

[
0, [xu]j

]
,

{1} y
(i)
j ∈

(
0, [xu]j

)
,

[0, 1] y
(i)
j ∈

{
0, [xu]j

}
.

(13)

Simplification by statistics. The event [y
(i)
p]j ∈ {0, [xu]j} in (13) for ζ ∼ N (µ,Σ) has a probability zero thus

we drop the boundary case of J(i). Let ω
(i)

0<y
(i)
p <xu

be the characteristic vector for each i and the matrix Ω storing

ω(i) [
ω
(i)

0<y
(i)
p <xu

]
j
=

{
1 if 0 <

[
y
(i)
p

]
j
< [xu]j ,

0 else.
(14a)

[Ω]j,i =

{
1 if 0 < [Yp]j,i < [xu]j ,

0 else.
(14b)

Using (14a), we have the following almost surely equivalence

J(i)
a.s.
= Diag

(
ω
(i)

0<y
(i)
p <xu

)
(13),(14b)

= Diag
(
[Ω]:,i

)
. (15)

4It means we have probability 1.

7

Let ⊙ be Hadamard product, put (11),(15) into (10) gives

∇pfN (p)
a.s.
= λp+B⊤ 1

N

N∑
i=1

Diag
(
[Ω]:,i

)(
Qx(i)p − s

)
(14b),(7)

= λp+B⊤ 1

N

(
Ω⊙

(
QXp − s1⊤N

))
1N . (16)

The matrix form is cleaner mathematically and more efficient computationally, as it avoids the loop over samples
and exploitation of the sparsity pattern with active sets.

Sparsity-aware computation. As N , the number of samples in (Onp-x-MC), can be huge for a tight approxi-
mation of (Onp-x), it is important to exploit sparsity for computational efficiency. The gradient computation in
(16) requires evaluating the term QXp. Computing QXp naively costs O(N |R|2), which is prohibitive for large
N and |R|. However, we can exploit sparsity: by (4) and the fact that the route–edge assignment matrix A (Sec-
tion 2) is sparse, the matrix Q = 2AA⊤ is sparse5 and Xp is sparse by the projection. Below is a sparsity-aware
implementation of the sum in (16):

• Given A, B, s = −Acos and the already computed Xp,Ω

• Initialize M = zeros(|R|, N) (to store Ω⊙ (QXp − s1⊤N))

• For each sample i = 1, . . . , N in parallel:

– Si = {j : [Ω]j,i = 1} (active set for sample i)

– ASi = A(Si, :) (rows of A indexed by Si)

– Ji = {j : ∃k ∈ Si s.t. Ak,j ̸= 0} (unique column indices in ASi)

– uJi = (ASi(:, Ji))
⊤[Xp(Si, i)]

– wSi = ASi(:, Ji)uJi

– rSi = wSi − s(Si) (residual on active set)

– M(Si, i) = rSi (store result)

• Compute ∇pfN (p) = λp+ 1
NB⊤(M1N)

Computing Ω⊙ (QXp − s1⊤N) now has a total cost of

O

(
N∑
i=1

[2 · nnz(ASi(:, Ji)) + |Si|]

)
≪ O(N |R|2),

where
N∑
i=1

nnz(ASi(:, Ji)) ≤ N ·min
{
nnz(A),max

i
|Si| ·max

i
|Ji|
}
.

Gradient of cN (p). We have ∇pcN (p) ∈ R|K|×|R| as

∇pcN (p)
(9)
= −K 1

N

N∑
i=1

∇px
(i)
p

(11),(13)
= −K

(1

N

N∑
i=1

J(i)
)
B. (17)

Let d = Ω1N ∈ R|R| be the vector counting active samples per route, then

N∑
i=1

J(i)
(15)
=

N∑
i=1

Diag
(
[Ω]:,i

)
= Diag (Ω1N) = Diag(d),

so in compact matrix notation, (17) becomes

∇pcN (p)
a.s.
= −K 1

N
Diag (d)B,

d := Ω1N .
(18)

Sparsity-aware computation. ∇pcN in (18) requires evaluating KDiag(Ω1N)B. As K ∈ {0, 1}|K|×|R| is sparse
and Diag(Ω1N) is diagonal, we exploit sparsity for efficient implementation:

5Where A has been pre-scaled as A← ADiag(
√
ccoe).

8

• Store K, B, precompute d = Ω1N with cost O(N |R|)

• Compute ∇pcN (p) = − 1
NK(B⊤Diag(d))⊤

• Exploit sparsity of K: for each nonzero Kk,j :

– Multiply column B:,j by dj and accumulate into row k of gradient

Computing KDiag(d)B has cost O(nnz(K)|R|), which is efficient for sparse K.

3.3 Hessian of fN and cN

∇2
pfN is obtained by applying derivative on (16): for each sample i, the linearity of ∇p gives:

∇p

[
Diag

(
[Ω]:,i

)(
Qx

(i)
p − s

)]
= ∇pDiag

(
[Ω]:,i

)
·
(
Qx

(i)
p − s

)
+Diag

(
[Ω]:,i

)
Q∇px

(i)
p .

For the first term, we can drop it by the following lemma:

Lemma 3. ∇pDiag
(
[Ω]:,i

)
= 0 almost everywhere for p ∈ R|R|.

Proof. ω(i) changes only when y
(i)
p hits the boundary {0, xu}, which occurs with probability zero.

For the second term, ∇px
(i)
p = Diag

(
[Ω]:,i

)
B by (11) and (15). Thus

∇2
pfN (p)

a.s.
= λI +

1

N
B⊤

(
N∑
i=1

Diag
(
[Ω]:,i

)
QDiag

(
[Ω]:,i

))
B. (19)

While the gradient had a clean matrix form using Ω, the Hessian requires a sum over samples that cannot be
directly expressed as a simple matrix operation with Ω.

Sparsity-aware computation for. Computing (19) requires evaluating the sum
∑N

i=1Diag
(
[Ω]:,i

)
QDiag

(
[Ω]:,i

)
.

AsQ = 2AA⊤ is sparse andΩ indicates active routes, we can exploit sparsity. Note thatDiag
(
[Ω]:,i

)
QDiag

(
[Ω]:,i

)
is simply the submatrix QSi,Si , where Si = {j : [Ω]j,i = 1} is the active set for sample i.

• Store A, B, and given Ω (already computed)

• Initialize Hinner = zeros(|R|, |R|) (to accumulate the inner sum)

• For each sample i = 1, . . . , N in parallel:

– Si = {j : [Ω]j,i = 1} (active set for sample i)

– ASi = A(Si, :) (rows of A indexed by Si)

– Compute QSi = ASiA
⊤
Si

(local Q on active set)

– Accumulate: Hinner(Si, Si) += QSi

• Compute ∇2
pfN (p) = λI + 1

NB⊤HinnerB

Computing the Hessian now has a total cost of:

O

(
N∑
i=1

|Si|2 + |R|3
)
≤ O

(
N
(
max

i
|Si|
)2

+ |R|3
)
≪ O

(
N |R|2 + |R|3

)
.

Lastly, for cN , by (3) we have
∇2

pcN (p)
a.s.
= 0.

4 Nonconvexity and Convexity

We now discuss the convexity of fN , which affects our model optimality condition as well as algorithm design.
First we give an example to show that fN is nonconvex in general. Then we give a lemma on the definiteness of
∇2

pfN . And then, we use statistics to argue that we can ignore the points p ∈ [pl, pu] where fN is nonconvex,
and thus treating fN (p) practically convex in the algorithm. Lastly, we discuss the nonconvexity of cN .

9

4.1 fN is nonconvex

Given the indefiniteness of Q (see the toy example in section 2), by (19), it is easy to see that ∇2
pfN (p) can be

indefinite, and fN : R|R| → R in (Onp-x-MC) is nonconvex in p due to the presence of the piecewise projection
Π. Here is a scalar example, take ζ(i) = Q = 0, p = s = 1, xu = 0.5, B = −1, then x(p) = Π[0,0.5](p) =
min{0.5,max{0, p}} and

fN (p) =
λ

2
p2 −min

{
0.5, max{0,−p}

}
, (20)

which is generally nonconvex for λ > 0, see Fig. 1.

−1 −0.5 0.5−0.5

0.5
1

1.5
2

λ = 0

λ = 1

λ = 5

p

fN(p)

Figure 1: The plot of (20) for three different values of λ. The function is nonconvex globally because of the kink
at p = 0.

4.2 Condition for local convexity

If p is elementwise nonnegative (p ≥ 0), by the nonnegativity of J(i) and Q, we have that

〈[
∇2

pfN (p)
]
p, p
〉

= λ∥p∥22 +

〈(
1

N

N∑
i=1

J(i)QJ(i)
)
Bp, Bp

〉
≥ 0,

thus the objective function of (Onp-x-MC) is locally convex wrt p when p ≥ 0. This can also be observed in
Fig. 1, where the parts of the curve fN for p ≥ 0 are convex for the three chosen λ.
Now for general p we discuss a related issue for the convexity of fN , which is the definiteness of ∇2

pfN . Using

the compact notation J(i) in (15), now for all p, we require

∇2
pfN (p) ≻ 0

(19)⇐⇒

〈(
λI +B⊤

(1

N

N∑
i=1

J(i)QJ(i)
)
B
)
p, p

〉
> 0

⇐⇒ λ∥p∥22 > −

〈
B⊤
(1

N

N∑
i=1

J(i)QJ(i)
)
Bp, p

〉
.

As J(i) changes with p, thus it is inefficient to compute λ for all the p, thus we consider the extreme case for λ
that ∇2

pfN (p) ≻ 0.

Lemma 4. Let λmin(Q) be the smallest eigenvalue of Q. The smallest eigenvalue of the matrix

B⊤
(

1

N

N∑
i=1

J(i)QJ(i)
)
B

over all possible J(i), is λmin(Q)(λmin(B))2.

Proof. Let Ã =
1

N

N∑
i=1

J(i)QJ(i). First note that Q, J(i) are symmetric (By section 2 for Q and J is diagonal by

(15)), thus B⊤ÃB is symmetric and its smallest eigenvalue is

min
x̸=0

x⊤(B⊤ÃB)x

∥x∥2
y=Bx
= min

x̸=0

y⊤Ãy

∥x∥2
.

10

Now we bound y⊤Ãy.

y⊤Ãy =
1

N

N∑
i=1

y⊤J(i)QJ(i)y =
1

N

N∑
i=1

(J(i)y)⊤Q(J(i)y).

As Q is symmetric, so (J(i)y)⊤Q(J(i)y) ≥ λmin(Q)∥J(i)y∥2, thus

y⊤Ãy ≥ λmin(Q)
1

N

N∑
i=1

∥J(i)y∥2.

As J(i)
a.s.
= Diag

(
ω
(i)

0<y
(i)
p <xu

)
is 0-1 diagonal, by sparsity index Si =

{
j : 0 < [y(i)(p)]j < [xu]j

}
we have

∥J(i)y∥2 =
∑
j∈Si

y2j ,

1

N

N∑
i=1

∥J(i)y∥2 =
∑
j

 1

N

∑
i:j∈Si

1

 y2j =
∑
j

fjy
2
j

where fj =
1

N

∑
i:j∈Si

1 ≤ 1. Thus:

y⊤Ãy ≥ λmin(Q)
∑
j

fjy
2
j .

The lower bound is maximized when fj = 1 for all j where yj ̸= 0, i.e.
∑
j

fjy
2
j = ∥y∥2. This is achieved if

J(i)y = y for all i, i.e., J(i) has 1s on the support of y. Now, at minimum,

min
x̸=0

y⊤Ãy

∥x∥2
= min

x̸=0

λmin(Q)∥y∥2

∥x∥2
y=Bx
= λmin(Q)min

x̸=0

x⊤B⊤Bx

∥x∥2
,

the minimum is achieved at (λmin(B
⊤B)) = σ2

min(B), where σmin is the smallest singular value.

The Lemma 4 tells the condition on λ that when will ∇2fN be positive definite. λ is a problem input of (Onp),
and as a result, in general λ may not satisfy the condition of Lemma 4.

• In case λ satisfies the condition, then ∇2fN being positive definite, and then fN is convex wrt p locally.
These useful properties will be beneficial for the algorithm.

• In case λ does not satisfy the condition and leading to fN being noncvonex, we will implement a method
to deal with the nonconvexity, see section 5

4.3 fN is convex almost surely for some λ

Now we apply the same statistical argument used when deriving (15) to argue that fN is convex wrt p almost

surely. Recall from section 3.2, the event [y
(i)
p]j ∈ {0, [xu]j} in (13) for the random variable ζ ∼ N (µ,Σ) has

a probability zero, meaning that we always have the strict inequality 0 < [y
(i)
p]j < [xu]j almost surely. Thus, in

terms of optimization algorithm, the iterate pk such that the strict inequality 0 < [y
(i)
p]j < [xu]j holds for for

all i has a probability one. As a result, we can treat the function fN is convex wrt p within the feasible region
[pl, pu]. This result will lead to the fact that, at the global optimum, the PO optimality in (1) is achieved almost
surely.

4.4 Convexity of the constraint set cN(p) ≤ 0

The function cN in (Onp-x-MC) defines the feasible set {p : cN (p) ≤ 0} of the problem. The feasible set is
nonconvex in general, because

∑N
i=1Π[0,xu](Bp + ζ(i)) is generally nonconvex in p. Although the projection

Π[0,xu](·) is convex in its argument, the composition p 7→ Π[0,xu](Bp + ζ(i)) is piecewise and nonconvex when
B has mixed signs or the active set changes with p. See Fig. 2 for an example in R2.

11

Figure 2: Left: the surface of a cN in R2. Right: the contour plot of cN . The feasible region is a nonconvex
polygon with the green boundary.

5 TR-SQP algorithm

Following the discussion in section 4, (Onp-x-MC) is a constrained problem with nonconvex feasible set and
nonconvex objective function. Such double nonconvexity limited our choice of optimization algorithms, leading
us to use a specialized method. Among all the available methods, we use Trust-Region Sequential Quadratic
Program (TR-SQP) to solve (Onp-x-MC). Here are reasons why we choose TR-SQP.

• The problem class (21) in TR-SQP subsumes our reformulation problem (Onp-x-MC).

• The SQP problem (22) for finding a direction d can utilize the sparsity structure of ∇fp,∇cp, ∇2fp and

also ∇2cN
a.s.
= 0, the computation is efficient.

• As discussed in section 4, the functions fN , cN in (Onp-x-MC) are nonconvex. The nonconvexity is handled
by TR to ensure global optimality.

• TR-SQP is numerically stable, useful for our purpose.

We briefly review TR-SQP. It is a method for solving nonlinear constrained optimization problems of the form:

argmin
p∈Rn

f(p)

s.t. cj(p) ≥ 0, j ∈ {1, 2, . . .},
(21)

where we remark that cj here refers to general constraint, including cN (p) ≤ 0 and p ∈ [pl, pu] in (Onp-x-MC).
SQP iteratively solves a quadratic approximation of the Lagrangian:

argmin
d

1

2

〈
Bkd, d

〉
+
〈
∇f(pk), d

〉
s.t.

〈
∇c(pk), d

〉
+ c(pk) = 0

(22)

for obtaining the direction d. In (22), the term Bk approximates the Hessian of the Lagrangian:

Bk ≈ ∇2L(pk, γk), where L(pk, γk) = f(p) +
〈
γ, c(p)

〉
.

TR-SQP augments SQP by imposing a trust-region constraint on the direction d as ∥d∥ ≤ ∆k, where ∆k is the
trust-region radius. This ensures stability and global convergence, particularly when the quadratic model poorly
approximates the true objective or constraints, and for a nonconvex objective in our case. The step is accepted or
rejected based on the ratio of actual to predicted reduction in a merit function. TR-SQP thus combines the fast
local convergence of SQP with the global reliability of trust-region strategies. We refer to [14] for the details.
Algorithm 9 shows the pseudocode of TR-SQP.

12

Algorithm 1: TR-SQP

Input: Initial p0, initial TR radius ∆0, tolerance ϵ
1 for k = 1, 2, . . . if ∥∇L(pk, γk)∥ > ϵ do
2 Form the quadratic model of the Lagrangian:

mk(d) =
1

2

〈
Bkd, d

〉
+
〈
∇f(pk), d

〉
.

Solve TR subproblem:

min
d

mk(d) s.t.
〈
∇c(pk), d

〉
+ c(pk) = 0, ∥d∥ ≤ ∆k

Compute the TR ratio ρk =
f(pk)− f(pk + dk)

mk(0)−mk(dk)
3 if ρk is sufficiently large then
4 pk+1 ← pk + dk accept the step;
5 else
6 pk+1 ← pk reject the step;

7 Update ∆k+1 based on ρk;
8 Update Lagrange multipliers γk+1 and Bk+1;

9 return pk

6 Experiment

In this section we report the experimental results, focusing entirely on computational efficiency. First we verify the
TR-SQP approach works for solving (Onp-x-MC) on a toy problem. Then we showcase the TR-SQP algorithm,
exploiting sparsity to achieve speedup. Lastly we show the result on a real-world dataset. All the experiments
were conducted in MATLAB R2024b6.

6.1 Verification on a toy problem

We consider a simple strongly-connected digraph G(V, E ,R) in Fig.3 with |V| = 4 nodes, |E| = 6 edges, |R| = 16
routes as

Start 1 Start 2 Start 3 Start 4
{1, 2} {2, 3} {3, 4} {4, 1}
{1, 2, 3} {2, 3, 4} {3, 4, 1} {4, 1, 2}
{1, 2, 3, 4} {2, 3, 4, 1} {3, 4, 1, 2} {4, 1, 2, 3}
{1, 2, 4} {2, 4} {4, 3}

{2, 4, 1}

Generating the commodity matrix K. Here we set |K| = 2 commodity with and the matrix K ∈ {0, 1}2×16

has two nonzero, located at K1,2 and K2,5, i.e., K is 6% sparse. The source-sink pairs are (1, 3) and (2, 3) in
K, where ▲ denotes source and ▼ denotes sink in the graph. We take N = 100 scenarios for ζ1, . . . , ζ100.

Generating he price elasticity matrix B. We generate the matrix B = −I + ϵzero-diagonal(SS⊤), where
S ∈ S|R|×|R| is randomly generated by with Sij ∼ U([0, 1]), zero-diagonal means we replace the diagonal entries
with zero, and ϵ < 1/λmax

(
zero-diagonal(SS⊤)

)
.

Algorithm. We run the algorithm with an initial price p0 set to be (pl + pu)/2. Here the algorithm converges in
two iterations for reaching tolerance 10−12. We compare our algorithm with the standard Interior-Point Method
in MATLAB7. All the methods produce a feasible solution for solving (Onp-x-MC). This result is to verify that
the proposed TR-SQP is able to produce correct solution.

6On a MacBook Pro with M2 chip with 16GB memory.
7It is a solver that uses sparsity and is compatible with the problem’s constraints. See https://mathworks.com/help/optim/

ug/choosing-the-algorithm.html

13

https://mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://mathworks.com/help/optim/ug/choosing-the-algorithm.html

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 3: A graph. The top left corner shows the (x, p) value obtained by IPM and TR-SQP of the route
highlighted in red.

6.2 Speedup via exploiting sparsity

We conduct experiments to evaluate the impact of sparsity on the algorithm speedup gained by exploiting sparsity.
We fix |K| = 2 and take |R| ∈ {50, 75, . . . , 225} and let |E| = |R|/5. We repeat the experiment 10 times for
each setup and plot the median over the 10 random problem data. Fig. 4 shows the median computational time
taken for the algorithm to converge, with error bar (± one standard deviation). We observed a similar pattern
for the case |K| = 8.

50 100 150 200

5

10

15

Figure 4: Experimental result on varying |R|: the median curve over 50 random runs with error bar (±1 std). The
result shows that exploiting the sparsity greatly reduces the computational time, with a speedup factor between
5x to 100x.

Real-world dataset. We use the data from Transportation Networks for Research [21]. In particular, we use
the transportation network dataset from Sioux Falls, South Dakota, US, which consists of 3298 routes, see Fig.5.
In an experiment with |K| = 2, TR-SQP with sparsity takes 35 seconds to converge, while TR-SQP without
exploiting sparsity takes 172 seconds to converge to the same objective function value. If we allow TR-SQP with
sparsity to run 172 seconds, then it will run 5x more iterations than TR-SQP without exploiting sparsity.

7 Conclusion and future direction

In this work we propose a new model on the optimal network pricing (Onp) with the assumption of oblivious
users, in which the users remain oblivious to real-time traffic conditions and others’ behavior. Inspired by works

14

1

23

4
5 6

7

8

9

10

11

12

13

14

15 16
17

1819
20

21 22

23
24

Figure 5: Transportation network of Sioux Falls, South Dakota, US. The graph has |V| = 24, |E| = 76 and
|R| = 3298.

on transportation research and network pricing for selfish traffic, we mathematically derive and prove a new
formulation of Onp with decision-dependent modeling that relaxes certain existing modeling constraints in the
literature. Then, we express the Onp formulation as a constrained nonconvex stochastic quadratic program
with uncertainty, and we propose an efficient algorithm to solve the problem, utilizing graph theory, sparse
linear algebra, and stochastic approximation. We showcase the effectiveness of the proposed algorithm and the
usefulness of the new Onp formulation. We list some possible future works below.

• Relaxing the almost surely argument. In the derivation of the theory, we rely heavy on the statistical

argument that the event [y
(i)
p]j ∈ {0, [xu]j} in (13) for ζ ∼ N (µ,Σ) has a probability zero. Practically this

is not the case as a computer has finite precision. For example, if the numerical precision of the computer

is up to 16 decimal places, then the probability of the event [y
(i)
p]j ∈ {0, [xu]j} is now 10−16, which is not

zero. Relaxing this argument, such as using Majorization-Minimization, will be a meaningful future work.
Resampling MC and subgradient for the gradient computation on the boundary can also be explored.

• Design algorithms dealing with multivariate CDFs and high-dimensional integrals in (Onp-x) directly without
MC, and explore a more accurate MC-based methodology for the approximation of the objective function.

Acknowledgments The authors acknowledge the financial support received from the Engineering and Physical
Sciences Research Council (EPSRC) through a Turing AI Acceleration Fellowship on Citizen-Centric AI Sys-
tems (EP/V022067/1), and the Future Electric Vehicle Energy Networks supporting Renewables (FEVER) Grant
(EP/W005883/1).

References

[1] Amir Beck. First-order methods in optimization. SIAM, 2017.

[2] Patrick Briest, Martin Hoefer, and Piotr Krysta. Stackelberg network pricing games. Algorithmica,
62(3):733–753, 2012.

[3] Yi-Chang Chiu, Jon Bottom, Michael Mahut, Alexander Paz, Ramachandran Balakrishna, Steven Waller,
and Jim Hicks. Dynamic traffic assignment: A primer (transportation research circular e-c153). 2011.

[4] Frank H Clarke. Generalized gradients and applications. Transactions of the American Mathematical Society,
205:247–262, 1975.

[5] Dmitriy Drusvyatskiy and Lin Xiao. Stochastic optimization with decision-dependent distributions. Mathe-
matics of Operations Research, 48(2):954–998, 2023.

[6] Matthias Falkner, Michael Devetsikiotis, and Ioannis Lambadaris. An overview of pricing concepts for
broadband ip networks. IEEE Communications Surveys & Tutorials, 3(2):2–13, 2000.

15

[7] Ara Hayrapetyan, Eva Tardos, and Tom Wexler. A network pricing game for selfish traffic. In Proceedings
of the twenty-fourth annual ACM symposium on Principles of distributed computing, pages 284–291, 2005.

[8] George Karakostas, Taeyon Kim, Anastasios Viglas, and Hao Xia. On the degradation of performance for
traffic networks with oblivious users. Transportation Research Part B: Methodological, 45(2):364–371, 2011.

[9] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Annual symposium on theoretical
aspects of computer science, pages 404–413. Springer, 1999.

[10] Qiang Li and Hoi-To Wai. Stochastic optimization schemes for performative prediction with nonconvex loss.
arXiv preprint arXiv:2405.17922, 2024.

[11] Celestine Mendler-Dünner, Juan Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization for
performative prediction. Advances in Neural Information Processing Systems, 33:4929–4939, 2020.

[12] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 14(1):124–143, 1996.

[13] Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian J Ratliff. Multiplayer
performative prediction: Learning in decision-dependent games. Journal of Machine Learning Research,
24(202):1–56, 2023.

[14] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

[15] Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In
International Conference on Machine Learning, pages 7599–7609. PMLR, 2020.

[16] Sébastien Roch, Gilles Savard, and Patrice Marcotte. An approximation algorithm for stackelberg network
pricing. Networks: An International Journal, 46(1):57–67, 2005.

[17] R Tyrrell Rockafellar and Roger JB Wets. Variational analysis. Springer, 1998.

[18] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal of
Game Theory, 2:65–67, 1973.

[19] Srinivas Shakkottai and Rayadurgam Srikant. Economics of network pricing with multiple isps. IEEE/ACM
Transactions On Networking, 14(6):1233–1245, 2006.

[20] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochastic programming:
modeling and theory. SIAM, 2021.

[21] Transportation Networks for Research Core Team. Transportation networks for research. https://github.
com/bstabler/TransportationNetworks. Accessed: 2025-10-05.

[22] Martin Treiber and Arne Kesting. Traffic flow dynamics. Traffic Flow Dynamics: Data, Models and Simu-
lation, Springer-Verlag Berlin Heidelberg, 227:228, 2013.

[23] William S Vickrey. Congestion theory and transport investment. The American economic review, 59(2):251–
260, 1969.

[24] John Glen Wardrop. Road paper. some theoretical aspects of road traffic research. Proceedings of the
institution of civil engineers, 1(3):325–362, 1952.

16

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

	Introduction
	Derivation and theory of Onp
	Monte Carlo, Gradient and Hessian
	Deriving the Monte Carlo approximation.
	Gradient derivation and computation
	Hessian of and

	Nonconvexity and Convexity
	 is nonconvex
	Condition for local convexity
	 is convex almost surely for some
	Convexity of the constraint set

	TR-SQP algorithm
	Experiment
	Verification on a toy problem
	Speedup via exploiting sparsity

	Conclusion and future direction

