- 1 Comparison of Human Macrophages Derived from Peripheral Blood
- 2 and Bone Marrow
- 3 Macrophages derived from peripheral blood vs bone marrow

- 5 Hannah L Smith*†, Russell B Foxall*, Patrick J Duriez*, Emma L Teal*, Adam D Hoppe‡,
- 6 Janos M Kanczler[†], Juliet C Gray^{*}, Stephen A Beers^{*}

7

- 8 * Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences,
- 9 Faculty of Medicine, University of Southampton, Southampton, UK
- 10 [†]Bone and Joint Research Group, Human Development and Health, Institute of
- 11 Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton,
- 12 UK
- [‡] Department of Chemistry, Biochemistry and Physics, South Dakota State University,
- 14 Brookings, South Dakota, US.

15

16 Corresponding author: Stephen A Beers, S.A.Beers@soton.ac.uk, 02381206639.

[.]

¹ This work was funded by Hannah's Willberry Wonder Pony Charity (Registered Charity No: 1166416), the University of Southampton (Presidential Scholarship Award 201819), the National Institute of Allergy and Infectious Diseases under the National Institute of Health (NIH 1U01AI148153-01), and CRUK Program Award 100001.

² Non-standard abbreviations: pMDMs (peripheral blood monocyte derived macrophages), bMDMs (bone marrow monocyte derived macrophages).

Abstract

17

Macrophage differentiation, phenotype and function have been assessed extensively in vitro 18 19 by predominantly deriving human macrophages from peripheral blood. It is accepted that 20 there are differences between macrophages isolated from different human tissues, however, 21 the importance of anatomical source for in vitro differentiation and characterization is less 22 clear. Here, phenotype and function were evaluated between human macrophages derived 23 from bone marrow or peripheral blood. Macrophages were differentiated by adherence of 24 heterogenous cell populations or CD14 isolation and polarized with IFNy and LPS or IL-4 25 and IL-13 for 48 hours before evaluation of phenotype and phagocytic capacity. The presence 26 of stromal cells in bone marrow heterogenous cultures, resulted in a reduction in macrophage 27 purity compared to peripheral blood, which was negated after CD14 isolation. 28 Phenotypically, monocyte-derived macrophages (MDMs) derived from peripheral blood and 29 bone marrow resulted in similar expression of classical and polarized macrophages markers, including CD14, HLA-DR, CD38 and CD40 (increased after IFNy/LPS), and CD11b and 30 31 CD206 (elevated after IL-4/IL-13). Functionally, these cells also showed similar levels of Fc-32 independent and Fc-dependent phagocytosis, although there was a non-significant reduction 33 of Fc-dependent phagocytosis in the bone marrow derived macrophages after IFNy/LPS 34 stimulation. In summary, we have identified that human MDMs differentiated from 35 peripheral blood and bone marrow showed similar characteristics and functionality, 36 suggesting that isolating cells from different anatomical niches does not affect macrophage 37 differentiation after CD14 isolation. Consequently, due to high yield and ready availability 38 peripheral blood derived macrophages are still the most suitable source.

39 Key Words: Macrophages, Bone Marrow, PBMCs, Phagocytosis, ADCP.

- 40
- 41 Key Points
- 42 Human bMDMs demonstrate similar phenotype to pMDMs after CD14 isolation
- Human bMDM and pMDMs show comparable phagocytic function
- PBMCs and bone marrow can be used interchangeably to study human macrophage biology

Introduction

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Macrophages are important innate immune cells that are involved in the detection and destruction of pathogens, with key roles in immune regulation and tissue homeostasis. Macrophages are derived either from monocyte precursors (1) or are established during embryonic development and maintained by local proliferation independent of circulating monocytes (2, 3). While both monocyte derived and tissue resident macrophages have distinctive roles in immune response and homeostasis, evidence has shown both types of macrophages can have their function reprogrammed to adapt to the specific environmental needs, this includes monocyte derived macrophages acting as tissue resident macrophages and showing the ability to self-maintain (4, 5). Understanding macrophage function, particularly their immune modulatory capacity, has been an area of intense focus for many years as this could be exploited for the development of new treatments for cancer and autoimmune diseases. Macrophages have been broadly classified by their wide spectrum of polarization (linked phenotypic and functional) states (6) extending from pro-inflammatory (M1-like) macrophages (7), to alternatively activated (M2like) macrophages which stimulate proliferation and tissue repair (8). In several solid tumors macrophage polarization has been correlated with prognosis, indicating a reduced survival rate linked with a higher number of M2-like macrophages in the tumor microenvironment (9, 10). Similarly, infiltration of monocytes and macrophages have been found in several autoimmune diseases, including rheumatoid arthritis and inflammatory bowel disease, where they show a range of polarization phenotypes depending on the stage of disease and microenvironment (11). The significance of macrophage polarization in a range of diseases highlights the importance of understanding the interactions and functions of these cells in vitro, to investigate how these cells differentiate for the development and testing of new therapies. Primary human

macrophages studied in vitro are generally isolated and differentiated from peripheral blood mononuclear cells (PBMCs) (12, 13), where they have been used to investigate a variety of macrophage roles, including within the tumor microenvironment (14, 15). This choice of tissue source simply relates to its ready availability, ease of access and volume of material obtainable, but does not mean peripheral blood monocyte derived macrophages (pMDMs) are necessarily the most robust and representative source of macrophages for in vitro analysis relating to different anatomical contexts. Indeed, due to differences in tissue availability and abundance, murine macrophage assays are often derived from the bone marrow. The similarity between *in vitro* differentiated blood and bone derived macrophages in humans is not well studied. The majority of those reports that can be identified were performed in the 1970's and 80's using markedly different protocols to current optimized methods, notably recombinant M-CSF was not available at that time (16-18). More recent studies have focused on specific diseases, for example how the replication of the Hepatitis E Virus compared in monocyte-derived and bone marrow-derived macrophages (19), not on the functional differences of the macrophages themselves. A study by van Leeuwen-Kerkhoff et al (20) has identified phenotypic and function differences between dendritic cells in the peripheral blood and bone marrow, which could suggest possible variations in other immune cell populations, including macrophages. Here, phenotypic differences between macrophages differentiated from PBMCs (pMDMs), and bone marrow (bMDMs) were compared from both heterogenous populations and after CD14 isolation. These analyses identified minimal differences after polarization into M1 and M2-like macrophages. Functionally, phagocytosis, both Fc dependent and independent, resulted in a non-significant trend for a reduction in the level of phagocytosis in M1-like bMDMs compared to pMDMs, but no change in M0 and M2-like phagocytosis.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

94 Materials and Methods

95 **Primary Samples** 96 For all tissue used, informed patient consent was obtained in alignment with the Declaration 97 of Helsinki. Ethical approval was obtained for using healthy donor leukocyte cones from the 98 NHS blood and transplant service (REC number 16/ES/0048), and peripheral blood samples 99 from Chronic Lymphoblastic Leukemia (CLL) patients (REC number 10/H0504/187). 100 Femoral head and bone marrow was obtained from patients undergoing elective hip 101 replacement surgery at the University Hospital Southampton NHS Foundation Trust and 102 Spire Southampton Hospital (REC number 18/NM/0231). 103 Isolation of Immune Cells 104 PBMCs were isolated from healthy donor leukocyte cones by density gradient centrifugation 105 at 800 x g for 20 minutes (Lymphoprep, FisherScientific 11508545) and contaminating 106 platelets eliminated by three slow speed centrifugation washes in PBS/EDTA (PBS+ 2mM 107 EDTA) at 150 x g, 15 minutes. Cells were isolated from bone fragments through vigorous 108 shaking in PBS/EDTA, then washed in PBS/EDTA (300 x g, 5 minutes). The red blood cells 109 were then lysed (1 L PBS + 8.4 g ammonium chloride + 1g potassium hydrogen carbonate) 110 for 5 minutes and resuspended in alpha MEM + 1% P/S (100 U/ml penicillin + 100 ug/ml 111 streptomycin). 112 Macrophage Differentiation Isolated PBMCs and bone marrow cells were plated at a concentration between 1-2x10⁷ 113 114 cells/ml in αMEM + 1 % P/S + 1 % human AB serum (Sigma, H3667) and differentiated into 115 macrophages as previously described (15). Briefly, the cells were incubated for 2 hours 116 before non-adherent cells were removed through repeated washes in PBS. The cells were then incubated overnight in complete alpha MEM media (alpha MEM + 1 % P/S + 10 % FCS), 117

where 100 ng/ml of M-CSF (made in house using published sequences) was then added, and the macrophages were differentiated for 7 days. PBMC and bone marrow samples were also used for the isolation of CD14+ cells prior to differentiation using either the Miltenyi CD14 MicroBeads Isolation kit (130-050-201), or StemCell EasySep CD14+ selection kit (17858), both performed according to manufacturer's instructions. The resulting monocytes (containing both classical and non-classical) were cultured at 1x10⁶ cells/ml in complete alpha MEM + M-CSF for 7 days. On day seven the macrophages were either analyzed by flow cytometry or polarized with 2 ng/ml IFNγ (PeproTech, 300-02) and 50 ng/ml LPS (Sigma, L3024) for M1, or 10 ng/ml IL-4 (PeproTech, 200-04) and 10 ng/ml IL-13 (PeproTech, 200-13) for M2, as previously described (15).

Flow Cytometry
Cells were harvested by gentle scraping after 15 minutes incubation in PBS on ice, then stained for 30 minutes at 4°C in the dark, with a panel of antibodies to cell surface markers (

Table I. Antibodies for Flow Cytometry). After incubation the cells were centrifuged and resuspended in FACS buffer (1x PBS + 5 μ g/ml (w/v) BSA + 0.1 % (v/v) Azide) before being analyzed by flow cytometry (FACS Canto II, Becton Dickinson), and further analyzed using FlowJo Version 10 software (FlowJo LLC). A representative flow cytometry gating strategy is provided in Supplementary Figure 1.

Phagocytosis

To assess Fc independent phagocytosis $1.2x10^6$ 3 μm BSA coated beads were incubated with the macrophages for 1 hour before being analyzed by flow cytometry. As previously reported (21), 3 μm beads (polysciences, 17134-15) were labelled with AF488 BSA prior to use before being analyzed by flow cytometry. Antibody dependent cellular phagocytosis (ADCP) was assessed as reported previously (15). CLL cells were used as target cells, stained with CFSE (ThermoFisher C34554) and opsonized with 10 $\mu g/ml$ of rituximab hIgG1 antibody or trastuzumab as an isotype control prior to ADCP (antibodies gifted by the Oncology Pharmacy at Southampton General Hospital). The phagocytic index of the macrophages was calculated by deducting the percentage ADCP of the isotype control from the opsonized cells before normalizing this to the M0 cells from the same donor.

Statistics

Experimental data were analyzed using GraphPad Prism version 10 software. Results were expressed as mean \pm -SD. Significance was assessed using either a one-way ANOVA with Tukey's post hoc test (>2 groups), or an unpaired T test (<2 groups). The statistical test used is stated on each figure. Values of p≤0.05 were considered significant. Significance presented as \pm -Co.05, \pm -Co.01, \pm -Co.001, \pm -Co.0001.

Results

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

Macrophage differentiation from heterogenous cell populations To assess whether there were any phenotypic differences between macrophages derived from blood and bone, pMDM and bMDMs were first differentiated from heterogenous source populations. Adherent cells from PBMC or bone marrow suspensions were cultured for 7 days with M-CSF before being analyzed by flow cytometry. Three markers were used to characterize the macrophages; CD14, a monocyte/macrophage differentiation marker (22), CD11b an integrin involved in adhesion and cell migration, which is highly expressed on macrophages (23), and HLA-DR which is responsible for antigen presentation and initiation of the inflammatory response (24). Both pMDM and bMDM populations showed similar morphologies with heterogenous populations of large and small, round and elongated cells, representative images were taken after 7 days of differentiation (Figure 1A). However, flow cytometry analysis of these macrophages indicated phenotypic differences (flow cytometry gating strategy in Supplementary Figure 1). Figure 1B shows a reduction in the percentage of cells expressing all three markers assessed in the bMDMs, which was statistically significant for CD14 and HLA-DR. This trend was also observed in the geometric mean (Figure 1C), which was statistically significant for CD11b. This suggests that the bMDM samples contained a lower number of macrophages compared to the pMDMs, and that those macrophages positive for these markers also expressed lower levels. Macrophages have a variety of functions linked to their polarization state, extremes of which can be represented by M1- and M2-like phenotypes. To identify differences in response to polarization, macrophages were differentiated for 7 days with M-CSF then polarized for a further 48 hours with IFNy and LPS (M1) or IL-4 and IL-13 (M2) before being analyzed by flow cytometry. Representative images (Figure 2A) show the pMDMs and bMDMs had a similar morphology across activation states, including heterogenous M0 macrophages,

rounder M1-like macrophages, and more elongated M2-like macrophages. Figure 2B shows the expression of polarization markers including CD38 and CD40 which are established M1like markers (25, 26) and CD11b which has been identified as an M2-like marker (27, 28). These results demonstrate similar patterns of expression between the polarized macrophages, with an increase in CD38 and CD40 for the M1-like macrophages and an increase in CD11b in M2-like. However, the bMDMs had lower expression of these markers compared to the pMDMs, which was significant for CD38. In contrast, the geometric means of the three macrophage markers were similar between pMDM and bMDM, suggesting that once polarized, although there were less cells expressing these markers those that were positive had similar expression levels. The bMDMs displayed a reduction in the expression of various macrophages markers compared to pMDMs, both after initial differentiation (7 days) and subsequently after polarization (+48 hours). It was notable, that the cell yield was considerably lower in the bone marrow samples compared to peripheral blood, with on average 3-4 times fewer cells and larger donor variation. Double the number of bone marrow cells also needed to be plated initially to result in similar confluency to pMDM after 7 days, with more cellular debris and lipid residue also found in the bMDM wells. Furthermore, in the majority of bMDM cultures adherent bone marrow stromal cells were also identified (Supplementary Figure 2). This suggested that the bMDM cultures were contaminated by stromal cells, which resulted in an overall decrease in the number of differentiated macrophages. Macrophage differentiation from CD14 isolated cells To overcome the infiltration of stromal cells in the bMDM macrophage populations and their potential to impact on comparison to pMDM, CD14 positive cells were first isolated from both the heterogenous cell suspensions. These CD14+ cells (similar average purity >90%

obtained from both sources) were then incubated for 7 days with M-CSF and their

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

morphology and phenotype compared. The morphology of the CD14 isolated macrophages 7 days after differentiation were similar, with a mixture of both elongated and more rounded cells (Figure 3A). These cells also show a similar morphology to the heterogenous isolated macrophages (Figure 1), although the CD14 isolated cells were more uniform and didn't show areas of stromal cell contamination as previously identified in the bMDMs (Supplementary Figure 2). Notably, despite CD14 isolation there was still a small amount of lipid residue visible in the bMDMs at the time of plating and during washing steps. Although donor variability was evident with both sources, Figure 3B demonstrates similar percentage expression for the three macrophage markers, CD14, CD11b and HLA-DR, across sample types which was also reflected in their geometric means (Figure 3C). Similarities in expression were also observed for CD47 and SIRPα (Supplementary Figure 3A-B). This demonstrated that the isolation of CD14 positive cells was effective in removing previously contaminating stromal cells and that these contaminants were largely responsible for the differences previously observed. The CD14 isolated pMDMs and bMDMs were then polarized to compare the phenotypes of M1 and M2-like macrophages (Figure 4). There were similarities in morphology between the cells derived from the PBMC and bone marrow (Figure 4A), where M1-like macrophages consisted of larger, rounded cells, and the M2-like macrophages were straighter and more elongated. These macrophages also showed a similar morphology to the heterogenous isolated cells (Figure 2), but again without the stromal cell contamination previously identified in bMDMs (Supplementary Figure 2). There was similar expression of CD38 (Figure 4B) between the M1 polarized pMDMs and bMDMs, but the expression of CD40, was decreased in the bMDM populations compared to the pMDM, suggesting potential subtle differences in M1 phenotype. Assessment of the expression of the mannose receptor, CD206, was also used alongside CD11b to assess M2-like polarization (29). Both markers showed a

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

similar level of expression, with only a slight reduction of CD206 in the bMDMs compared to pMDMs. There were also similar trends in the geometric mean of M1-like markers for the two sources (Figure 4C) and in FcyR expression in all polarization conditions (Supplementary Figure 3C-F). In contrast, there was a reduction in the geometric means of M2-like markers in the bMDM samples compared to the pMDMs, although this was not significant. From this we inferred that although there were similar numbers of CD11b and CD206 positive macrophages after M2 polarization, there was a reduction in expression, suggesting a marginal reduction in M2 characteristics. Fc independent phagocytosis Overall, CD14 isolated M0 macrophages derived from PBMCs and bone marrow cells (pMDM and bMDM respectively), showed a similar phenotype after 7 days differentiation with M-CSF, but some non-significant trends were observed after M1 and M2-like polarization. To test whether these M0 pMDM and bMDMs were similarly functionally active, they were assessed for their Fc independent phagocytic potential. Previous reports have established that phagocytosis of beads larger than 15 µm is FcyR dependent (21, 30), thus 3 µm BSA coated beads fluorescently labelled with Alexa Fluor 488 were employed and co-cultured with macrophages for 1 hour to compare their Fc independent phagocytic uptake (Figure 5). The presence of the labelled BSA beads (green) were identified within the pMDMs (Figure 5A) and bMDMs (Figure 5B) demonstrating phagocytosis had occurred. Figure 5C illustrates comparable percentage of phagocytosis between MDMs from the two sources, suggesting tissue source did not affect phagocytic function in in vitro differentiated macrophages. Fc dependent Phagocytosis Macrophages were also assessed for antibody dependent cellular phagocytosis (ADCP). Here macrophages were polarized with either IFN-y and LPS (M1) or IL-4 and IL-13 (M2), then

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

co-cultured for 1 hour with CFSE labelled CLL cells which had been opsonized with either the anti-CD20 chimeric human IgG1 antibody, rituximab, or trastuzumab as an isotype control. Phagocytosis of rituximab opsonized CLL cells can be clearly observed in M0 pMDMs (Figure 6A) and bMDMs (Figure 6B) (examples indicated by purple arrows), compared to very low to no phagocytosis in controls. Macrophages were further analyzed for phagocytic effector capacity using flow cytometry by comparing the percentage of CD16+CFSE+ cells (macrophages that had phagocytosed CLL cells). Clear differences can be seen between the ADCP of polarized cells, with M1-like having the highest percentage and M2-like the lowest (Figure 7A and B), as observed in previous reports (15, 21, 31). Figure 7C summarizes the differences in ADCP between the pMDMs and bMDMs. For both, there is a clear decrease in ADCP with M2-like macrophages compared to M0, which showed similar levels with both cell sources. In contrast, M1-like bMDMs demonstrated similar percentages of phagocytosis to M0 and were lower compared to M1-like pMDMs. When these data were normalized to a phagocytic index (Figure 7D) there was no difference between the phagocytic capacity of M1-like and M0 bMDMs suggesting that bMDMs did not have the same capacity for M1 effector function as pMDMs. This difference in effector capacity was not observed in the previous characterization of these cells, which showed similarly higher levels of CD38 and CD40 expression in M1-like macrophages compared to M0 (Figure 4). Interestingly, even though M2-like bMDMs demonstrated reduced CD11b and CD206 expression, this did not affect the relative inhibition of ADCP capacity which was comparable between M2-like pMDM and bMDMs.

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Discussion

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Macrophage growth, differentiation and function as immune cells has been extensively studied using in vitro methods, which generally utilize human peripheral blood to establish macrophage populations. The choice of tissue, although mainly down to availability and yield of cells, may influence the phenotype and function of differentiated macrophages. In mice, different macrophage populations have already been identified from various tissues, with macrophages derived from bone marrow, spleen and the peritoneal cavity showing differences in activation in an M0 state as well after M1 and M2-like polarization (32). Diverse populations have also been identified in human macrophages with distinct transcriptional and epigenetic profiles evident from different tissues and activation states (33). In both mice and human these differences have been attributed to the presence of tissueresident and monocyte derived macrophages as well as tissue location. In the blood there are no circulating macrophages, so all pMDMs located in tissue under inflammatory conditions first differentiate from monocytes produced in the bone marrow (34). When analyzed using the adherence method for generating macrophages, a standard protocol for both human peripheral blood and mouse bone marrow derived macrophages (15, 31), we observed a distinct contamination of stromal cells in the bMDM cultures (Supplementary Figure 2), evidenced by an overall reduction in macrophage markers assessed (Figure 1 and 2). Isolating CD14 positive monocytes prior to differentiation removed any stromal cells from the cultures and resulted in similar phenotypes between pMDMs and bMDMs (Figure 3 and 4), with some exceptions including in CD40 expression. Two markers were used to identify an M1-like phenotype including CD38 and CD40, which have been strongly linked to activation and M1 polarization (25, 35, 36). CD38 showed similar expression in both pMDM and bMDM cultures, while CD40 had a reduced trend in the bMDMs (Figure 4), combining these data, along with those in Supplementary Figure 3,

indicates this difference is negligible and could have been due to donor variations. The level of CD206 expression also showed a non-significant decrease in polarized bMDMs compared to pMDMs (Figure 4), which would likely equalize with more repeats. Multiple macrophage markers have been shown to change depending on the length of stimulation, with studies suggesting the expression of macrophage markers changes over time (37), this could also be different between the two sources and explain the small differences in expression. Consequently, a combination of markers, as used here, is most appropriate for identifying distinct macrophage populations and is especially important in human macrophages where there can be large sample variability. The level of activation of macrophages effects their ability to phagocytose targets, with multiple studies showing M1-like macrophages showing a higher level of ADCP compared to M2-like macrophages (15, 21, 31). Phagocytosis assays, both Fc independent (Figure 5) and dependent (Figure 6 and 7), showed that there were no differences in the effector function of M0 macrophages from the two sources. The small decrease in M2-like polarization markers in the bMDMs also did not correlate with the level of ADCP for these cells (Figure 7), which showed similar percentage phagocytosis with the M2 polarized pMDMs. In contrast, M1-like bMDMs demonstrated a reduction in ADCP compared to pMDMs, although this was not significant (Figure 7). One possibility is this inhibition of activation could be due to the presence of small amounts of lipids in the bMDM culture. Bone marrow has a high adipocyte and fatty tissue content, and although CD14 positive cells were isolated some lipid residue was still visible when the cells were plated and washed. The bMDMs could have taken up those lipids during differentiation, which has previously been shown to inhibit phagocytosis of apoptotic cells and alter the lipid composition of the macrophage plasma membranes (38). It should also be noted that the bone marrow was donated by patients having hip replacement surgery, and consequently were likely osteoarthritic or osteoporotic. The limited increase in

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

M1 ADCP compared to M0 could be a result of this diseased source. Another limitation of this study is the lack of investigation at the transcriptomic level, for example RNA sequencing, which might reveal differences in gene expression between pMDMs and bMDMs before and after polarization. Although changes in mRNA expression don't always correlate with shifts in protein expression, such transcriptional data could be important in understanding any fundamental differences between pMDMs and bMDMs that were not observed here and thereby further inform future investigations utilizing cells from these two sources.

In summary, there were no differences in either phenotype or phagocytic function of M0 macrophages derived from two anatomic niches: human PBMC and bone marrow. There were small differences in the phenotype of polarized macrophages, which did result in a non-significant reduction of ADCP in M1-like bMDM but did not affect M2-like macrophages. This suggests that these two cell sources could be used interchangeably for monocyte-derived macrophage *in vitro* assays, although due to increased yield and availability peripheral blood derived macrophages remain the most suitable source.

Acknowledgements
We would like to thank the orthopedic surgeons at the University Hospital Southampton and
Spire Southampton Hospital for providing the bone material used in this project, as well as
the support from the bone and joint research group, and the antibody and vaccine group in
Southampton, UK. We would also like to thank BioInvent International for kindly providing
FcγRIIa and FcγRIIb specific antibodies, and Dr Francesco Forconi and the University of
Southampton Human Tissue Bank for provision of CLL samples.

351 References

- Honold, L., and M. Nahrendorf. 2018. Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. *Circ Res* 122: 113-127.
- Yona, S., K.-W. Kim, Y. Wolf, A. Mildner, D. Varol, M. Breker, D. Strauss-Ayali, S. Viukov, M.
 Guilliams, A. Misharin, David A. Hume, H. Perlman, B. Malissen, E. Zelzer, and S. Jung. 2013.
 Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under
 Homeostasis. *Immunity* 38: 79-91.
- 358 3. Ginhoux, F., M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M. F. Mehler, S. J. Conway, L. G. Ng, E. R. Stanley, I. M. Samokhvalov, and M. Merad. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. *Science* 330: 841-845.
- Lavin, Y., D. Winter, R. Blecher-Gonen, E. David, H. Keren-Shaul, M. Merad, S. Jung, and I.
 Amit. 2014. Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local
 Microenvironment. *Cell* 159: 1312-1326.
- Scott, C. L., F. Zheng, P. De Baetselier, L. Martens, Y. Saeys, S. De Prijck, S. Lippens, C. Abels,
 S. Schoonooghe, G. Raes, N. Devoogdt, B. N. Lambrecht, A. Beschin, and M. Guilliams. 2016.
 Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer
 Nature Communications 7: 10321.
- Xue, J., S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs, I. Quester, D. De Nardo, T. D. Gohel,
 M. Emde, L. Schmidleithner, H. Ganesan, A. Nino-Castro, M. R. Mallmann, L. Labzin, H. Theis,
 M. Kraut, M. Beyer, E. Latz, T. C. Freeman, T. Ulas, and J. L. Schultze. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation.
 Immunity 40: 274-288.
- 373 7. Biswas, S. K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nature Immunology* 11: 889-896.
- 375 8. Italiani, P., and D. Boraschi. 2014. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. *Frontiers in Immunology* 5.
- Noy, R., and J. W. Pollard. 2014. Tumor-associated macrophages: from mechanisms to therapy. *Immunity* 41: 49-61.
- 379 10. Franklin, R. A., and M. O. Li. 2016. Ontogeny of Tumor-associated Macrophages and Its Implication in Cancer Regulation. *Trends in cancer* 2: 20-34.
- 381 11. Ma, W. T., F. Gao, K. Gu, and D. K. Chen. 2019. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. *Front Immunol* 10: 1140.
- Sudhakaran, P. R., A. Radhika, and S. S. Jacob. 2007. Monocyte macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage-specific activities.

 Glycoconjugate Journal 24: 49-55.
- Vogel, D. Y., J. E. Glim, A. W. Stavenuiter, M. Breur, P. Heijnen, S. Amor, C. D. Dijkstra, and R.
 H. Beelen. 2014. Human macrophage polarization in vitro: maturation and activation methods compared. *Immunobiology* 219: 695-703.
- 389 14. Werner, M., S. Pace, A. Czapka, P. M. Jordan, J. Gerstmeier, A. Koeberle, and O. Werz. 2020. Communication between human macrophages and epithelial cancer cell lines dictates lipid mediator biosynthesis. *Cell Mol Life Sci* 77: 4365-4378.
- Hussain, K., R. Liu, R. C. G. Smith, K. T. J. Müller, M. Ghorbani, S. Macari, K. L. S. Cleary, R. J.
 Oldham, R. B. Foxall, S. James, S. G. Booth, T. Murray, L. N. Dahal, C. E. Hargreaves, R. S.
- Kemp, J. Longley, J. Douglas, H. Markham, S. J. Chee, R. J. Stopforth, A. Roghanian, M. J.
- Carter, C. H. Ottensmeier, B. Frendéus, R. I. Cutress, R. R. French, M. J. Glennie, J. C.
- 396 Strefford, S. M. Thirdborough, S. A. Beers, and M. S. Cragg. 2022. HIF activation enhances
- FcyRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy. *J Exp Clin Cancer Res* 41: 131.

- 399 16. Bainton, D. R., and D. W. Golde. 1978. Differentiation of macrophages from normal human bone marrow in liquid culture. Electron microscopy and cytochemistry. *J Clin Invest* 61: 1555-1569.
- 402 17. Golde, D. W., and M. J. Cline. 1973. Growth of human bone marrow in liquid culture. *Blood* 403 41: 45-57.
- Wang, S. Y., H. Castro-Malaspina, and M. A. Moore. 1985. Long-term culture of human bone marrow macrophages: macrophage development is associated with the production of granulomonopoietic enhancing activity (GM-EA). *J Immunol* 135: 1186-1193.
- 407 19. Sayed, I. M., M. I. Seddik, M. A. Gaber, S. H. Saber, S. A. Mandour, and M. A. El-Mokhtar. 408 2020. Replication of Hepatitis E Virus (HEV) in Primary Human-Derived Monocytes and Macrophages In Vitro. *Vaccines* 8.
- van Leeuwen-Kerkhoff, N., K. Lundberg, T. M. Westers, S. Kordasti, H. J. Bontkes, M.
 Lindstedt, T. D. de Gruijl, and A. A. van de Loosdrecht. 2018. Human Bone Marrow-Derived
 Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared
 to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes.
 Front Immunol 9: 1619.
- Dahal, L. N., C. Y. Huang, R. J. Stopforth, A. Mead, K. Chan, J. X. Bowater, M. C. Taylor, P.
 Narang, H. T. C. Chan, J. H. Kim, A. T. Vaughan, F. Forconi, and S. A. Beers. 2018. Shaving Is an Epiphenomenon of Type I and II Anti-CD20-Mediated Phagocytosis, whereas Antigenic Modulation Limits Type I Monoclonal Antibody Efficacy. *J Immunol* 201: 1211-1221.
- 419 22. Landmann, R., B. Müller, and W. Zimmerli. 2000. CD14, new aspects of ligand and signal diversity. *Microbes Infect* 2: 295-304.
- 421 23. Rhein, P., R. Mitlohner, G. Basso, G. Gaipa, M. N. Dworzak, R. Kirschner-Schwabe, C.
 422 Hagemeier, M. Stanulla, M. Schrappe, W. D. Ludwig, L. Karawajew, and R. Ratei. 2010.
 423 CD11b is a therapy resistance- and minimal residual disease-specific marker in precursor B-cell acute lymphoblastic leukemia. *Blood* 115: 3763-3771.
- 425 24. Karakikes, I., I. E. Morrison, P. O'Toole, G. Metodieva, C. V. Navarrete, J. Gomez, J. M.
 426 Miranda-Sayago, R. J. Cherry, M. Metodiev, and N. Fernandez. 2012. Interaction of HLA-DR
 427 and CD74 at the cell surface of antigen-presenting cells by single particle image analysis.
 428 Faseb j 26: 4886-4896.
- 429 25. Amici, S. A., N. A. Young, J. Narvaez-Miranda, K. A. Jablonski, J. Arcos, L. Rosas, T. L.
 430 Papenfuss, J. B. Torrelles, W. N. Jarjour, and M. Guerau-de-Arellano. 2018. CD38 Is Robustly
 431 Induced in Human Macrophages and Monocytes in Inflammatory Conditions. *Front Immunol*432 9: 1593.
- Zirlik, A., C. Maier, N. Gerdes, L. MacFarlane, J. Soosairajah, U. Bavendiek, I. Ahrens, S. Ernst,
 N. Bassler, A. Missiou, Z. Patko, M. Aikawa, U. Schönbeck, C. Bode, P. Libby, and K. Peter.
 2007. CD40 Ligand Mediates Inflammation Independently of CD40 by Interaction With Mac1. Circulation 115: 1571-1580.
- Schmid, M. C., S. Q. Khan, M. M. Kaneda, P. Pathria, R. Shepard, T. L. Louis, S. Anand, G.
 Woo, C. Leem, M. H. Faridi, T. Geraghty, A. Rajagopalan, S. Gupta, M. Ahmed, R. I. VazquezPadron, D. A. Cheresh, V. Gupta, and J. A. Varner. 2018. Integrin CD11b activation drives
 anti-tumor innate immunity. *Nature Communications* 9: 5379.
- 441 28. Buchacher, T., A. Ohradanova-Repic, H. Stockinger, M. B. Fischer, and V. Weber. 2015. M2
 442 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia
 443 pneumoniae. *PLoS One* 10: e0143593.
- 444 29. Azad, A. K., M. V. Rajaram, and L. S. Schlesinger. 2014. Exploitation of the Macrophage
 445 Mannose Receptor (CD206) in Infectious Disease Diagnostics and Therapeutics. *J Cytol Mol Biol* 1.
- 447 30. Cannon, G. J., and J. A. Swanson. 1992. The macrophage capacity for phagocytosis. *J Cell Sci* 101 (Pt 4): 907-913.

- J. Dahal, L. N., L. Dou, K. Hussain, R. Liu, A. Earley, K. L. Cox, S. Murinello, I. Tracy, F. Forconi, A.
 J. Steele, P. J. Duriez, D. Gomez-Nicola, J. L. Teeling, M. J. Glennie, M. S. Cragg, and S. A.
 Beers. 2017. STING Activation Reverses Lymphoma-Mediated Resistance to Antibody
 Immunotherapy. *Cancer Res* 77: 3619-3631.
- 453 32. Zhao, Y. L., P. X. Tian, F. Han, J. Zheng, X. X. Xia, W. J. Xue, X. M. Ding, and C. G. Ding. 2017. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. *J Zhejiang Univ Sci B* 18: 1055-1063.
- 456
 458
 459
 Schmidt, S. V., W. Krebs, T. Ulas, J. Xue, K. Baßler, P. Günther, A. L. Hardt, H. Schultze, J.
 Sander, K. Klee, H. Theis, M. Kraut, M. Beyer, and J. L. Schultze. 2016. The transcriptional regulator network of human inflammatory macrophages is defined by open chromatin. *Cell Res* 26: 151-170.
- Shi, C., and E. G. Pamer. 2011. Monocyte recruitment during infection and inflammation. *Nat Rev Immunol* 11: 762-774.
- Jablonski, K. A., S. A. Amici, L. M. Webb, D. Ruiz-Rosado Jde, P. G. Popovich, S. Partida-Sanchez, and M. Guerau-de-Arellano. 2015. Novel Markers to Delineate Murine M1 and M2 Macrophages. *PLoS One* 10: e0145342.
- Musso, T., S. Deaglio, L. Franco, L. Calosso, R. Badolato, G. Garbarino, U. Dianzani, and F.
 Malavasi. 2001. CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines. *J Leukoc Biol* 69: 605-612.
- Unuvar Purcu, D., A. Korkmaz, S. Gunalp, D. G. Helvaci, Y. Erdal, Y. Dogan, A. Suner, G.
 Wingender, and D. Sag. 2022. Effect of stimulation time on the expression of human
 macrophage polarization markers. *PLoS One* 17: e0265196.

476

471 38. Li, S., Y. Sun, C. P. Liang, E. B. Thorp, S. Han, A. W. Jehle, V. Saraswathi, B. Pridgen, J. E.
472 Kanter, R. Li, C. L. Welch, A. H. Hasty, K. E. Bornfeldt, J. L. Breslow, I. Tabas, and A. R. Tall.
473 2009. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of
474 ob/ob mice and reversal by a fish oil diet. *Circ Res* 105: 1072-1082.

477 Table I. Antibodies for Flow Cytometry

Antibody	Fluorochrome	Isotype	Company
HLA-DR	PerCpCy5.5	Mouse IgG2a	Biolegend, 307629
CD14	APC	Mouse IgG1	Biolegend, 367117
CD11b	Pacific Blue	Rat IgG2b	Biolegend, 101224
CD38	PE	Mouse IgG1	Biolegend, 356604
CD40	APC Cy7	Mouse IgG1	Biolegend, 334324
CD206	PE	Mouse IgG1	Biolegend, 321106

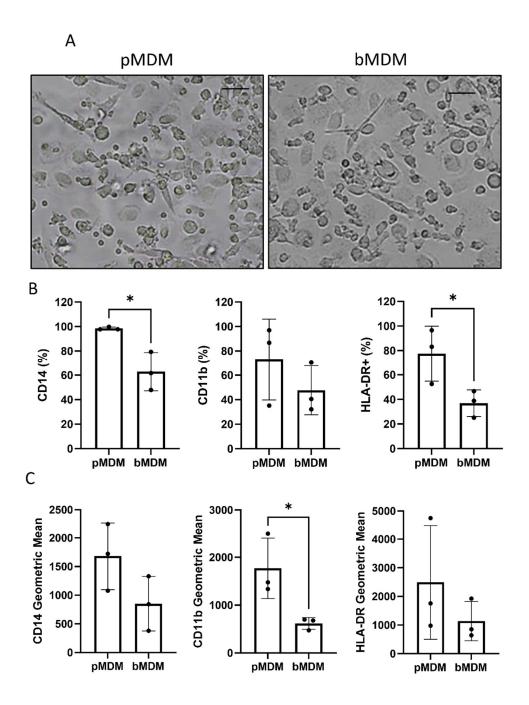


Figure 1. Phenotype of macrophages derived from heterogenous cell populations. A) Representative Images of pMDM and bMDMs. Adherent cells were isolated and differentiated with M-CSF for seven days. Scale Bar= 100 μm. B) The percentage of pMDMs and bMDMs expressing the macrophage markers CD14, CD11b and HLA-DR. C) The geometric mean of pMDM and bMDMs expressing CD14, CD11b and HLA-DR. N=3 samples with data points representing the mean of three technical replicates. Results presented as mean +/- SD, statistics analyzed using an unpaired T test, significance presented as *<0.05

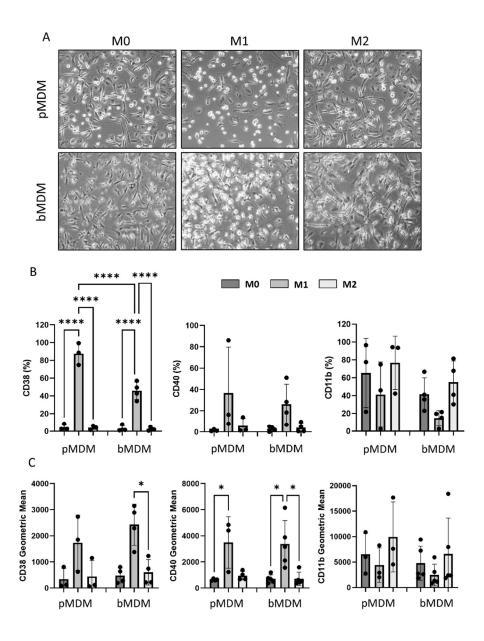


Figure 2. Phenotype of polarized macrophages derived from heterogenous cell populations.

Adherent cells were isolated and differentiated with M-CSF for seven days before being polarized for a further 48 hours, with either IFN- γ and LPS (M1), or IL-4 and IL-13 (M2). A) Representative Images of M0, M1 and M2 polarized pMDM and bMDMs. Scale Bar=100 μ m. B) The percentage of polarized pMDMs and bMDMs expressing M1 markers CD38 and CD40, and an M2 marker CD11b. C) The geometric mean of polarized pMDM and bMDM cells expressing CD38, CD40 and CD11b. N=3-4 samples with each data point representing the mean of three technical replicates. Results presented as mean +/- SD, statistics analyzed using a one-way ANOVA, significance presented as *<0.05, ****<0.0001.

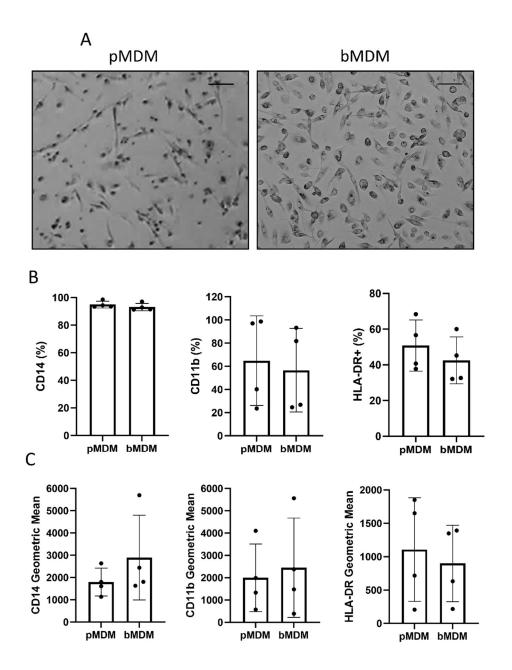


Figure 3. Macrophage phenotype after 7 days differentiation from CD14 isolated monocytes. CD14 cells from PBMCs or bone marrow suspensions were isolated using magnetic cell sorting, then differentiated with M-CSF for seven days. A) Representative Images of pMDM and bMDM differentiated cells. Scale Bar= 100 µm. B) The percentage of pMDMs and bMDMs expressing macrophage markers CD14, CD11b and HLA-DR. C) The geometric mean of pMDM and bMDM cells expressing CD14, CD11b and HLA-DR. N=4 patients with data points representing the mean of three technical replicates. Results presented as mean +/- SD, statistics analyzed using an unpaired T test, no significance determined.

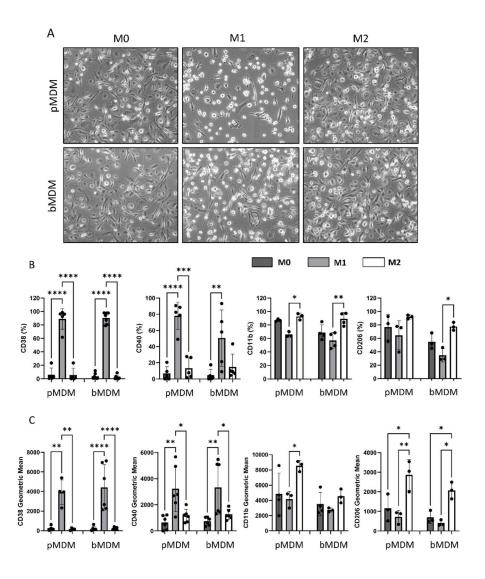


Figure 4. Phenotype of polarized macrophages differentiated from CD14 isolated monocytes. A) Representative Images of pMDM and bMDM differentiated cells polarized into M1 and M2-like macrophages. Cells were isolated from PBMC or bone marrow suspensions and differentiated with M-CSF for seven days before being polarized for a further 48hours. M1-like macrophages were incubated with IFN-γ and LPS, M2-like macrophages were incubated with IL-4 and IL-13. Scale Bar= 100 μm. B) The percentage of polarized pMDMs and bMDMs expressing M1 markers CD38 and CD40, and M2 markers CD11b and CD206. C) The geometric mean of polarized pMDM and bMDM cells expressing CD38, CD40, CD11b and CD206. N=3-4 samples with each data point representing the mean of three technical replicates. Results presented as mean +/- SD, statistics analyzed using a one-way NOVA, significance presented as *<0.05, **<0.01 ***<0.001.

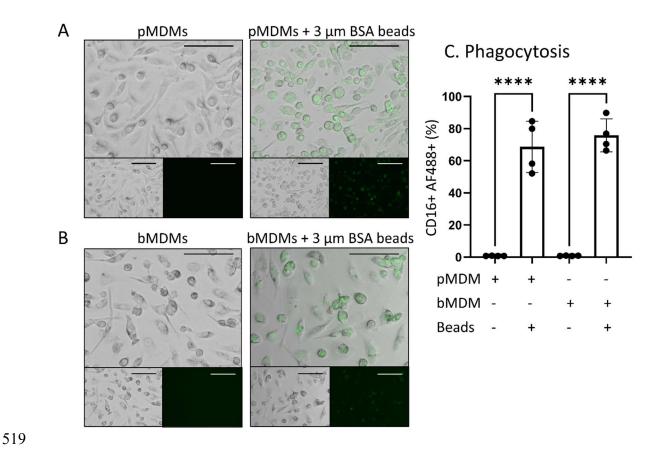


Figure 5. Fc independent phagocytosis of CD14 isolated macrophages. CD14+ cells were isolated using magnetic isolation from PBMCs or bone marrow suspensions, then incubated for seven days with M-CSF. 3 µm BSA Beads labelled with AF488 were then incubated with established macrophages for one hour. Uptake of the BSA beads (green) in A) pMDMs and B) bMDMs. Scale bar= 100 µm. C) Percentage of AF488+ macrophages when incubated with and without the BSA beads. N=4 samples with each data point representing the mean of three to five technical replicates. Results presented as mean +/- SD, statistics analyzed using a one-way ANOVA, significance presented as ****<0.0001.

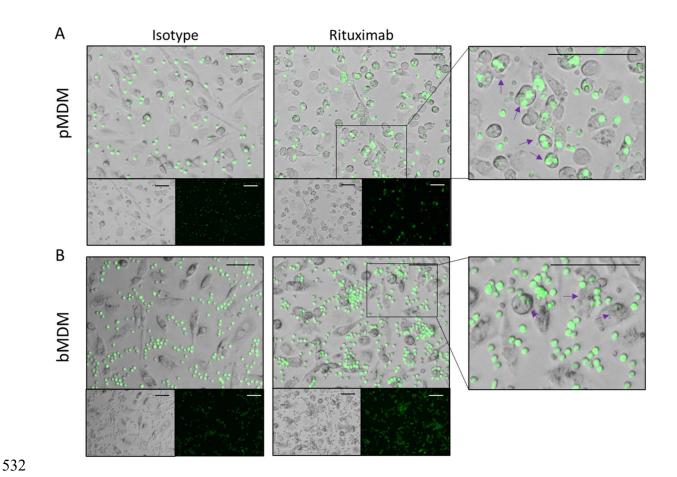


Figure 6. Antibody dependent cellular phagocytosis of macrophages differentiated from CD14 isolated monocytes. CD14 positive cells were isolated from PBMCs and human bone marrow suspensions and cultured for seven days with M-CSF to generate pMDM an bMDM respectively. CFSE labelled CLL cells were then incubated with macrophages for 1 hour after being opsonized with rituximab or an isotype control. Uptake of CFSE+ CLL cells (green) by either A) pMDMs or B) bMDMs. Cells highlighted by purple arrows indicate macrophages which have engulfed CLL cells. Scale Bar= 50 μm. Representative images from N=5.

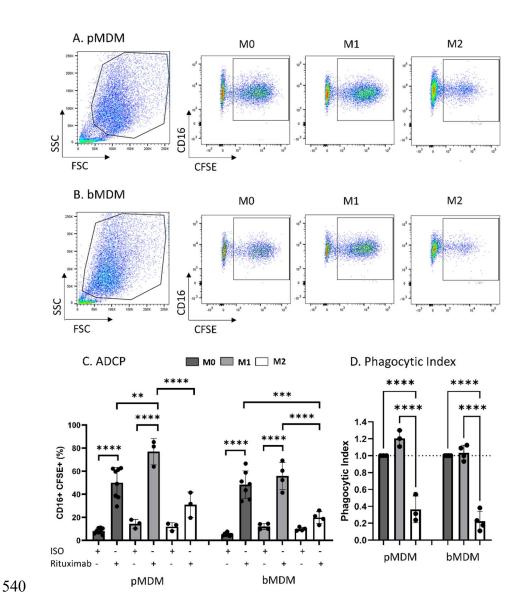
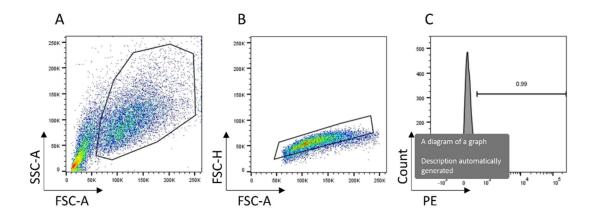
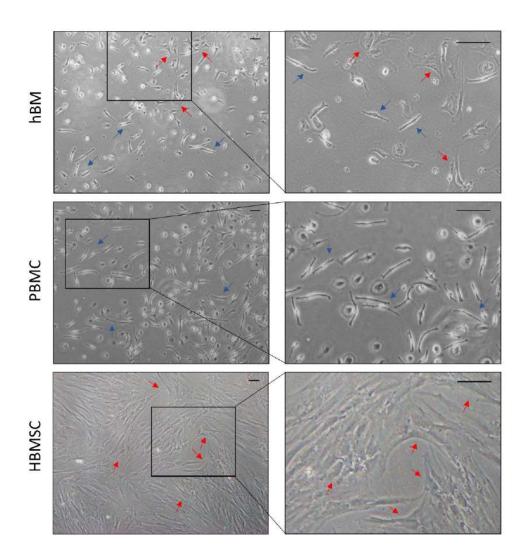




Figure 7. Flow Cytometry analysis of ADCP from macrophages differentiated from CD14 isolated monocytes. CD14 positive cells were isolated from PBMCs or bone marrow suspensions and cultured for seven days with M-CSF, then polarized for 48 hours with IFNγ and LPS (M1) or IL-4 and IL-13 (M2). CFSE labelled CLL cells opsonized with either rituximab or an isotype control was then cocultured with the macrophages for one hour. The A) pMDMs and B) bMDMs were then stained for CD16 and assessed by flow cytometry identifying the CD16+CFSE+ cells. C) Percentage uptake of CLL cells by M0, M1 and M2 polarized pMDMs and bMDMs. D) Phagocytic index of polarized macrophages normalized to M0 cells. N=3-8 samples with each data point representing the mean of three to five technical replicates. Results presented as mean +/- SD, statistics analyzed using a one-way NOVA, significance presented as **<0.01, ***<0.001, ****<0.0001.

Supplementary Figure 1. Representative flow cytometry gating strategy. After incubation macrophages were analysed on a BD Canto with data processed using FlowJo (v10). A) Live cells were identified based on size and morphology followed by B) doublet removal. C) Isotype control antibodies were used to identify positive staining.

Supplementary Figure 2. Representative images showing contamination of stromal cells into the bone marrow macrophage populations. A) A heterogenous cell population was isolated from human bone marrow (hBM), and after two hours adherent cells were cultured with M-CSF for 5 days, showing both macrophages and stromal cells. B) Macrophages were differentiated from a heterogeneous cell population of PBMCs, after a two-hour incubation the non-adherent cells were removed, and the remaining cells were cultured with M-CSF for 5 days. C) Stromal cells grown from a heterogenous cell population of human bone marrow and cultured without M-CSF for 14 days. Scale Bar= 100 µm, blue arrows indicate macrophages, red arrows indicate stromal cells.