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biogeochemical-Argo floats and novel statistical methods

by Mark Robert Taylor

Chlorophyll concentration is a widely used proxy for phytoplankton biomass, and its
continued monitoring is essential for understanding phytoplankton’s role in the
global carbon cycle and as the foundation of marine ecosystems. The work presented
in this thesis explores the large-scale spatio-temporal variability of vertical chlorophyll
structure, particularly its relationships with environmental conditions, using data
collected by Biogeochemical-Argo floats through a suite of statistical approaches.
First, a spatio-temporal modelling framework was employed to identify the drivers of
subsurface chlorophyll maxima (SCMs) on a global scale. This method pooled
observations across space and time and revealed that the euphotic depth (ze,) was the
main driver of SCM depth and intensity. However, these insights were limited by the
need to extract SCM properties prior to modelling. Consequently, functional
regression models were used to examine how environmental conditions influenced
the profile shapes of chlorophyll and particle backscatter (by,), which enabled the
study of SCMs within the context of entire profiles. Results showed that SCM depth
was primarily governed by the z,,, while peak by, was linked to the nitracline depth.
Additionally, photoacclimation, the physiological response of phytoplankton to low
light conditions, emerged as a key driver of SCMs throughout the low latitudes.
Finally, a novel measure of variance for oceanographic profiles was applied to
chlorophyll and temperature data, and their correlation was assessed. Spatio-temporal
autocorrelation of both variables was examined in Eulerian and semi-Lagrangian
perspectives. This analysis revealed that the similarity in spatio-temporal length
scales of chlorophyll and temperature varies by region and spatial extent of the
dataset. In summary, this work highlighted the importance of light in determining the
vertical distribution of phytoplankton and how contemporary statistical tools improve
ecological insights into subsurface biogeochemical observations from autonomous

platforms.
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Chapter 1

Introduction

1.1 Phytoplankton and the marine carbon cycle

Phytoplankton are microscopic plant-like organisms that form the foundation of the
marine ecosystem. Through photosynthesis, they convert inorganic carbon in the form
of carbon dioxide (CO;) and dissolved nutrients into organic carbon, using sunlight as
a source of energy. This process occurs at the top of the water column, where sunlight
is strongest. Approximately 45% of all primary production occurs in aquatic
ecosystems (Falkowski, 1994), despite the fact that phytoplankton only contributes
less than 1% of the global biomass of plants (Field et al., 1998). Phytoplankton contain
pigments including chlorophyll, which absorbs energy from the red and blue parts of
the electromagnetic spectrum, giving phytoplankton a green appearance when
viewed in large quantities. Chlorophyll is essential for photosynthesis, with
chlorophyll-a the major light-harvesting pigment (Falkowski and Raven, 2013). There
is a wide variety of phytoplankton species, ranging in size by several orders of
magnitude (typically 0.2 - 200 pm) (Sieburth et al., 1978). Their small size yields a
large surface area-to-volume ratio, which allows a high rate of photosynthesis per unit
mass. Different species have different nutrient requirements; for example, diatoms
need silicon to build hard shell-like structures. In addition, various species occupy

different niches within the marine environment.

The ocean plays a vital role in the global carbon cycle both as a carbon sink and
through its exchanges with the atmosphere, due to its large volume and the relatively
long residence times of carbon within it (Figure 1.1). Anthropogenic activity has
increased atmospheric carbon concentration by 52% above preindustrial levels
(Friedlingstein et al., 2024), and 25% of atmospheric CO, has been absorbed by the
ocean (Gruber et al., 2023). Although the solubility pump is thought to drive the
uptake of anthropogenic CO,, the biological carbon pump is essential to maintain the
dissolved inorganic carbon gradient from the surface to the deep ocean. Without
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biological uptake and storage of carbon, atmospheric CO, concentrations would be
approximately 150-200 ppm higher than pre-industrial levels (Parekh et al., 2006;
Tjiputra et al., 2025). Phytoplankton remove CO, from the sunlit euphotic zone near
the surface, and when they die or are consumed by zooplankton, the associated
particulate organic carbon may enter the mesopelagic zone. Here, further work by
zooplankton and microbial respiration converts some of this organic carbon back into
CO,, but a significant fraction remains stored for hundreds or thousands of years
(DeVries, 2022; Siegel et al., 2023). The biological carbon pump is responsible for
sequestering approximately 10 Gt of carbon each year (DeVries and Weber, 2017).
Given that phytoplankton abundance is not homogeneous throughout the global
ocean and varies on multiple temporal scales, the strength of the biological carbon
pump is not uniform. There is uncertainty surrounding the role phytoplankton will
play in future biogeochemical cycles in the presence of warming oceans (Agusti et al.,
2019; Jorda et al., 2020; Browning and Moore, 2023), although it has been reported that
phytoplankton biomass may be reducing by 1% yr~! (Boyce et al., 2010). Model
projections suggest that global primary production may reduce by 3% by 2100,
relative to pre-industrial values (multi-model CMIP mean, SSP5-8.5 scenario)
(Kwiatkowski et al., 2020). Therefore, understanding the abundance and distribution
of phytoplankton and their role in the marine carbon cycle is essential to predict

future changes in the climate system.

1.2 The vertical distribution of phytoplankton and
chlorophyll

1.2.1 Phytoplankton growth

Several key nutrients are required for photosynthesis by phytoplankton, typically split
into macronutrients (silicate, nitrogen, phosphorus) and micronutrients (e.g. iron and
manganese). Solar irradiance is also essential as it provides energy for photosynthesis.
As phytoplankton grow and multiply, nutrients are used up, gradually reducing the
availability of resources. Consequently, the supply of one of the nutrients, or the light
intensity, eventually becomes insufficient for the continued net growth of
phytoplankton, once accounting for losses due to mortality. Once the limiting factor
becomes available again, the rate of cell division can increase, and another factor may

become limiting.

The concentration of nutrients and the intensity of light vary with depth and,
consequently, the ability of phytoplankton to grow and reproduce is not uniform
throughout the water column. Solar irradiance attenuates as it passes through

seawater according to Beer’s law, which means that its highest intensity occurs at the
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FIGURE 1.1: Diagram of the global carbon cycle, showing quantities of carbon stored
in different components of the atmosphere, ocean, and terrestrial Earth, as well as the
annual fluxes between them. Taken from Ciais et al. (2014).

surface and decays exponentially with depth. Consequently, in situations where
nutrients are distributed uniformly across depth, the abundance of phytoplankton is
highest near the surface and decreases with depth. Near-surface blooms are therefore
a common phenomenon during spring at mid and high latitudes.

In highly stratified water columns where surface nutrients are depleted and not
resupplied from below through mixing, the growth of phytoplankton near the surface
is reduced. Nutrient concentrations increase with depth, in contrast to decreasing light
intensity. This creates a scenario in which optimal conditions for phytoplankton
growth occur well below the surface, resulting in a peak in phytoplankton biomass
(Cphyto) (Beckmann and Hense, 2007; Barbieux et al., 2019; Martin et al., 2010).
However, this does not always align with the peak in chlorophyll, as the ratio the
mass of between cellular chlorophyll and phytoplankton biomass (Chl:Cppyt)
typically increases under low light conditions — a physiological adaptation called
photoacclimation. This was first proposed by Steele (1964), who identified the
potential for the chlorophyll peak to be located deeper than the peak in Cpypyio-
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FIGURE 1.2: Schematic diagrams showing the typical light and nutrient profiles that

give rise to subsurface chlorophyll maxima (SCMs), along with the characteristic bio-

optical profiles of the two general types of SCM: subsurface biomass maxima (SBMs;
left) and subsurface photoacclimation maxima (SAMs; right).

Consequently, it is now common to distinguish between subsurface biomass maxima
(SBMs) and subsurface acclimation maxima (SAMs), under the umbrella of subsurface
chlorophyll maxima (SCMs) (Figure 1.2). It is well established that the chlorophyll
concentration at the SCM decreases with the depth of the peak (Herbland and
Voituriez, 1979; Uitz et al., 2006; Cornec et al., 2021a). SCMs in high latitudes have
been shown to form due to simultaneous increases in biomass and photoacclimation
(Su et al., 2021).

Beyond surface blooms and SCMs, there is a wide variety of chlorophyll profile shapes
depending on environmental conditions. For example, profiles with two distinct
peaks have been observed (Mufioz-Anderson et al., 2015), or without a peak (that is,
showing low chlorophyll throughout an entire profile) which occurs when a limiting
factor is completely absent for a sustained period (Cornec et al., 2021a). The thickness
of the SCM peak also varies, from < 5 m (Cowles et al., 1998; Dekshenieks et al., 2001;
Durham and Stocker, 2012) to tens of metres (Uitz et al., 2006; Xu et al., 2022b).

1.2.2 Models of phytoplankton growth

For several decades, models of phytoplankton growth throughout the water column
have been proposed in order to understand the dynamics between resources,
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phytoplankton, and their consumers. Riley (1949) provided the first explanation of the
interactions between nutrients, phytoplankton, and zooplankton in a vertically
dynamic system. Their key improvement to previous work was the inclusion of
turbulence that allowed nutrients and phytoplankton to be transported vertically over
small distances. Steele and Yentsch (1960) added a variable sinking rate that decreased
with depth, which allowed SCMs to form deeper at the base of the euphotic zone.
Steele (1964) was the first to consider including a variable Chl:Cppyy, ratio, allowing
the distinction between the accumulation of phytoplankton biomass and the
photoacclimation of phytoplankton. Further modelling approaches by Kiefer et al.
(1976) and Fennel and Boss (2003) provided evidence that physiological adaptations
contributed to the formation of SCMs. Whilst stratification is recognised as a
fundamental prerequisite for the formation of SCMs (Cullen, 2015), and supported by
theoretical modelling (Beckmann and Hense, 2007), it has also been shown that
increased stratification can also lead to more unpredictable SCM behaviour (Huisman
et al., 2006). The impacts of sinking rates (Hodges and Rudnick, 2004; Li and Hansell,
2016) and mesoscale ocean physics (Varela et al., 1992; Li and Hansell, 2016) have also
been studied through models.

1.2.3 Chlorophyll profiles and environmental conditions

Many studies using observations, modelling, and theory have identified relationships
between chlorophyll profiles and environmental conditions. I will briefly summarise
the key findings from the literature.

Light Light is required for photosynthesis to occur, but the relationship between
light and chlorophyll profiles still contains some uncertainty. Photosynthetically
available radiation is the total intensity of light that photosynthetic plankton can use
for photosynthesis, and typically encompasses wavelengths between approximately
400 nm and 700 nm. Surface irradiance has been used to infer the structure of
subsurface chlorophyll (Gong et al., 2015; Joy-Warren et al., 2019). The presence of
clouds can reduce surface irradiance and promote photoacclimation in phytoplankton
(Begouen Demeaux et al., 2025). Studies of SCMs typically compare the profile shape
with the euphotic depth (zey), typically defined as the depth at which the
downwelling irradiance reaches a fraction of its surface intensity, often 1% (Ryther,
1956), although other values are also used (Wu et al., 2021). Several studies have
found a positive correlation between z., and the depth of the SCM (zscym) (Xu et al.,
2022b; Garg et al., 2024; Miyares et al., 2024). According to Cornec et al. (2021a), a
minimum light level within the mixed layer was a necessary but insufficient condition
for the formation of SCMs. This agrees with Mignot et al. (2014) and Xing et al. (2023)
who identified a connection between vertical chlorophyll structure and isolumes.
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Nitrate Nitrogen is a limiting factor for primary production in most of the global
ocean, especially subtropical gyres (Browning and Moore, 2023), so it is not surprising
that the nitracline depth (zscym), which describes the rapid increase in nitrate
concentration from low concentrations typically found near the surface, is an
important indicator of subsurface chlorophyll structure. Cullen (2015) suggests that
the maximum phytoplankton biomass occurs at the nutricline. Herbland and
Voituriez (1979) identified a strong positive relationship between the z,jneand zscy in
stratified tropical waters and a strong negative relationship between z;jine and the
magnitude of the subsurface peak (Chlscyr). In some studies, zgcw is coupled with
Znaine (Herbland and Voituriez, 1979; Cullen and Eppley, 1981), whereas in others they
were correlated but did not occur at the same depth (Miyares et al., 2024; Garg et al.,
2024). Gong et al. (2017) found that, analytically, the zscy should be shallower than
Zncline Pecause phytoplankton in the SCM function as a barrier to the upward flux of
nutrients. The steepness of the nitracline gradient indicates the magnitude of the
upward nitrate flux, with steeper gradients shown to promote more intense and
thinner SCMs (Gong et al., 2015, 2017).

Other nutrients Nutrients other than nitrogen can be (co-) limiting for
phytoplankton growth (Moore et al., 2013), including iron (Hawco et al., 2021), silicate
(Egge and Aksnes, 1992), phosphate (Lin et al., 2016) and manganese (Hawco et al.,
2022). The case of iron as a limiting factor is well documented in the Southern Ocean
(Moore et al., 2013). Terrestrial sources of iron lead to elevated chlorophyll
concentrations at both the surface and subsurface (Baldry et al., 2020). Various
sources, such as sea ice melt (Wang et al., 2014), islands (Graham et al., 2015; Robinson
et al., 2016) and wildfires (Tang et al., 2021; Weis et al., 2022), can release sufficient iron
to trigger surface blooms of phytoplankton. Studies on the effects of other nutrients on
SCMs are relatively rare in the literature. An example is that of Firdaus et al. (2024),
who demonstrated that water columns in Indonesia containing an SCM were

nitrogen-limited given the high ratio of phosphate and silicate to nitrate.

Temperature and density The mixing of oceans determines the availability of
nutrients in the euphotic zone, and it is therefore unsurprising that the physical
structure of the water column has been shown to affect vertical chlorophyll
distribution. For example, Carranza et al. (2018) observed that sigmoid-shaped
profiles of chlorophyll developed during Southern Ocean storms which were usually
followed by the formation of SCMs several days later, coinciding with a decrease in
wind-driven mixing and a shoaling of the MLD. Several regional studies have found
that the depth of SCMs was governed by the depth of a particular isotherm (Jayaram
et al., 2021) or isopycnal (Xu et al., 2022b). Zampollo et al. (2023) found that the
bottom of the pycnocline was a good predictor of zgcy in a local, coastal setting.
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Strongly stratified water columns provide the ideal conditions for the formation of
SCMs, provided that light is sufficient (Beckmann and Hense, 2007; Cullen, 2015;
Cornec et al., 2021a; Bock et al., 2022). Consequently, Miyares et al. (2024) found that
in low latitudes the zgcy was almost always located at or below the MLD, and
frequently much deeper.

Surface chlorophyll Morel and Berthon (1989) first analysed the subsurface
chlorophyll distribution in relation to surface chlorophyll concentration from a global
dataset. Their work was built upon by Uitz et al. (2006) who created typical
chlorophyll profile shapes based on their surface concentration in the subtropics. They
found that lower surface concentrations result in deeper SCM with lower peak
concentrations and thicker peaks. This provided significant evidence that surface
chlorophyll could be used as a predictor of subsurface profile shape and characteristics
of SCMs (Mignot et al., 2011). Quartly et al. (2023) extended this research to
interannual timescales, removing seasonal variability and identifying that higher
surface concentrations produce shallower and less intense SCMs. Xu et al. (2022b) and
Miyares et al. (2024) both found a power law connecting surface chlorophyll and zgcy.

1.24 Community composition and the wider ecosystem

There is a great diversity of phytoplankton species across the global ocean, which
allows them to occupy a range of ecological niches within the epipelagic where they
form the foundation of the marine ecosystem. Their size varies over several orders of
magnitude, with the smallest species having a high surface area-to-volume ratio, and
a high Chl:Cppyy, ratio (Falkowski and Kiefer, 1985; Cloern et al., 1995), allowing them
to grow at greater depths. Consequently, differences in species composition can be
linked with the depth of SCMs (Uitz et al., 2006; Latasa et al., 2016, 2017; Sato et al.,
2022; Miyares et al., 2024) meaning that similar communities are observed on large
spatial scales (Bouman et al., 2006; Brewin et al., 2010; Ward et al., 2014). Latasa et al.
(2023) found evidence that resource partitioning within SCMs is influenced by species
following specific isolumes, supporting the findings of Sato et al. (2022), who
observed consistent vertical ordering of phytoplankton groups across ocean basins.
Nutrient limitation varies regionally (Moore et al., 2013; Arteaga et al., 2014) which
can also influence species composition (Elizondo et al., 2021). For example, diatoms
dominate the Southern Ocean community because of the availability of silicate, which
they use to build hard shells and is much more limiting in other regions. On a smaller
scale, the variable availability of nutrients within an SCM can lead to several species
contributing to the overall peak in chlorophyll (Latasa et al., 2016). The relative
availability of light and nutrients can lead to changes in the dominant phytoplankton

species (Brewin et al., 2022; Xing et al., 2023). There is evidence to suggest that
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productivity is highest in communities with moderate diversity, in which a variety of

ecological niches are occupied (Vallina et al., 2014).

Zooplankton play an important role in determining phytoplankton abundance
(Steinberg and Landry, 2017). Studies have found that grazing can produce more
pronounced SCMs by reducing phytoplankton biomass near the surface (Pilati and
Waurtsbaugh, 2003; Moeller et al., 2019). This suggests that SCMs can be partly
controlled by top-down processes, in addition to bottom-up mechanisms, and the
interaction between these two factors has been studied (Ward et al., 2014;
Rodriguez-Galvez et al., 2023).

1.3 Monitoring subsurface chlorophyll on a global scale

Subsurface chlorophyll concentration was first measured using discrete bottle samples
at a small number of depths (Cullen, 2015). From even quite limited observations,
some theoretical models were developed that provided a possible explanation for
subsurface chlorophyll peaks (Riley, 1949; Steele and Yentsch, 1960). Subsequently,
methods were developed to continuously measure chlorophyll throughout the water
column (Lorenzen, 1966; Strickland, 1968) using in vivo flow-through fluorometry.
Ship-based observations provided the majority of subsurface chlorophyll
concentration measurements for several decades, although these were restricted in
quantity and spatio-temporal distribution for logistical reasons (Smith et al., 2019).
Consequently, observations were very sparse in space and time, especially in remote
regions (such as the Southern Ocean) or during unfavourable conditions (for example,

during winter or under sea ice).

In contrast to ship-based observations, satellite measurements of ocean colour, from
which surface chlorophyll can be estimated, sacrificed the ability to measure below the
ocean surface to vastly increase the spatio-temporal coverage of observations. Since
the deployment of the SeaWIFS (Sea-Viewing Wide Field-of-View Sensor) satellite in
1997, there has been a continuous record of satellite-derived ocean colour
observations. This can provide chlorophyll estimates to a high resolution (1-10 km)
over much of the ocean, as well as a variety of other relevant biogeochemical variables
(Brewin et al., 2021). The polar regions are not sampled during the winter because
they receive too little sunlight. Furthermore, some locations that are often covered by
cloud or sea ice have reduced temporal coverage (Tan et al., 2020). Estimation of
subsurface chlorophyll concentration from surface measurements is not trivial (see
Section 1.2.3), as SCMs are not directly detectable by satellite.

Technological advances have led to the development of various underwater
instruments capable of measuring subsurface chlorophyll without the need for

research vessels, for example. Biogeochemical-Argo (BGC-Argo) floats are an
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autonomous platform that measures physical and biogeochemical properties in the
upper 2000 m of the water column, typically once every ten days. The floats form a
global array with deployments in every major ocean basin. The first BGC-Argo floats
were deployed in the late 2000s, although the first to be equipped with bio-optical
sensors were deployed in 2010. BGC-Argo floats are an extension of the so-called core
Argo floats (wWhich measure profiles of temperature and salinity) and have been fitted
with a selection of sensors capable of measuring dissolved oxygen, chlorophyll
fluorescence, backscatter by particles (by,, a proxy for particulate organic carbon), pH,
nitrate concentration, and downwelling irradiance (Claustre et al., 2020). As of May
2025, there are 539 operational BGC-Argo floats equipped with bio-optical sensors.
They are often deployed in batches under projects funded by different countries and
organisations. For example, the Southern Ocean Carbon and Climate Observing and
Modelling (SOCCOM) project (Sarmiento et al., 2023) deployed a large number of
floats in the Southern Ocean. Once deployed from a research ship, they require no
further physical assistance from scientists and therefore can be deployed in regions
that experience harsh conditions at other times of the year, even in the presence of sea
ice. The floats are semi-Lagrangian, meaning that they approximately follow the
horizontal flow of water. Consequently, floats can end up sampling areas far from
their deployment location. There are targets to reach an array of 1000 fully equipped
BGC-Argo floats worldwide (Owens et al., 2022; Thierry et al., 2025). Some of the more
technical aspects of BGC-Argo floats and their sensors are described in Section 2.1.

Other observing platforms include gliders (Testor et al., 2019; Carvalho et al., 2020),
autonomous underwater vehicles, and remotely operated vehicles (Whitt et al., 2020),
which can be programmed to perform high-resolution monitoring over a particular
route. In particular, these platforms are beneficial for identifying sub-mesoscale and
(sub-) diurnal variability. However, these are deployed on a smaller scale than the
BGC-Argo array, which provides the largest global observing system for subsurface
chlorophyll. Ship-based observations of phytoplankton abundance and species
composition are still vital to fully understand the effects of environmental conditions,
which cannot be fully observed through other sources (Garg et al., 2024; Miyares et al.,
2024). Figure 1.3 demonstrates how the combination of different observing systems is
beneficial for a complete understanding of phytoplankton dynamics and distribution
across the three-dimensional global ocean and over a range of temporal scales. In
summary, the quantity of subsurface chlorophyll measurements has increased
significantly in the past couple of decades, enabling the study of the SCMs on a global

scale.
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FIGURE 1.3: A diagram displaying the spatio-temporal scales of processes affecting
biogeochemistry and the scales measured by different observing systems. Taken from

Chai et al. (2020).

1.4 Spatio-temporal distribution of subsurface chlorophyll

across the global ocean

1.4.1 Biogeographical regions

Similarly to terrestrial biomes, the global ocean can be partitioned into distinct

biogeographical regions, each describing a characteristic marine ecosystem. The first

such division was suggested by Longhurst et al. (1995) containing 56 regions with

similar values for several variables including sea surface temperature, surface

chlorophyll concentration and sea ice coverage. Alternative regions were suggested

by Sarmiento et al. (2004) and Gurney et al. (2008), although none of these had

dynamic boundaries. Reygondeau et al. (2013) developed a seasonally varying set of
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regions, before Fay and McKinley (2014) defined biomes with complex and dynamic
boundaries. Biogeographical regions have also been defined using phytoplankton
community composition (Elizondo et al., 2021). All the aforementioned approaches
used gridded data products to define a region for nearly all of the global ocean. In
contrast, Bock et al. (2022) used data from the BGC-Argo array to identify six biome
types based on their seasonal cycles of chlorophyll and by, profiles. Their approach
extracted the main components of seasonal variation in profiles, although they were
unable to define biome boundaries because of the sparse coverage of BGC-Argo floats.
I will briefly describe the key differences in vertical chlorophyll distribution within

each major biome, particularly the different mechanisms for SCM formation.

Subtropics Subtropical regions typically offer the ideal environmental conditions for
the formation of SCMs, namely stratified water columns with year-round high
irradiance (Beckmann and Hense, 2007). Several studies have shown that the
oligotrophic subtropical gyres, which have some of the lowest surface chlorophyll
concentrations (< 0.15 mg m~?), generally have the deepest SCMs, which can be
located at > 160 m depth (Uitz et al., 2006; Mignot et al., 2014; Cornec et al., 2021a;
Yasunaka et al., 2021; Bock et al., 2022), although the depth of SCMs varies by several
tens of metres seasonally due to changes in surface solar irradiance (Letelier et al.,
2004). These regions cover a significant proportion of the ocean surface making the
subtropical SCM a globally important ecosystem. These regions typically favour
smaller phytoplankton (Latasa et al., 2017; Sato et al., 2022), which have a high
Chl:Cphyto ratio, meaning that the peak in chlorophyll is deeper than the peak in
phytoplankton biomass (Fennel and Boss, 2003; Cornec et al., 2021a; Masuda et al.,
2021).

Tropics Locations near the equator tend to display an SCM between depths of 50 m
and 80 m, typically around the nitracline, with little seasonal variation (Cornec et al.,
2021a; Bock et al., 2022; Miyares et al., 2024). The shallower SCMs are driven by
upwelling, bringing nutrients into the euphotic zone and supporting SCMs with
higher biomass. The increase in biomass is a product of elevated light availability and
high-nutrient flux conditions (Bock et al., 2022). Bock et al. (2022) also found that the
nitracline was 29 m deeper than the MLD on average, indicating that SCMs in the
equatorial regions are primarily supported by nutrient supply from below the mixed
layer, rather than by mixing within it. Masuda et al. (2021) found that
photoacclimation is still important in the equatorial regions despite shallower SCMs,
finding similar Chl:Cppy, ratios, which peaked at a depth of around 120 m.

Mid latitudes The seasonal variability of water column characteristics increases

with distance from the equator, resulting in SCMs forming only during summer in the
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mid latitudes (Bock et al., 2022). Shoaling of the MLD increases stratification and
reduces the supply of nutrients to sunlit surface waters, allowing the formation of
SCMs, which tend to be shallower than in the subtropics (Cornec et al., 2021a; Bock

et al., 2022). Before the formation of summer SCMs, a spring bloom typically occurs
near the surface (Martinez et al., 2011; Chiswell et al., 2015), with high chlorophyll
concentrations observed (> 1 mg m3). Sometimes, a smaller surface bloom occurs
during autumn, as the MLD deepens, resupplying the surface with nutrients
(Wihsgott et al., 2019). The Mediterranean Sea provides an interesting case study: the
western end experiences seasonal SCMs, whereas the eastern more closely resembles
subtropical conditions and has a year-round SCM (Lavigne et al., 2015; Barbieux et al.,
2019). These seasonal variations in chlorophyll vertical distribution reflect a change in

species composition (Bolafios et al., 2020).

Polar regions The polar oceans represent some of the most remote environments for
studying phytoplankton and their role in the wider ecosystem. The deployment of
BGC-Argo floats in these regions (including through the SOCCOM project) has helped
the study of their phenology throughout the entire year, including during periods
under sea ice. The extreme seasonal variation in light availability is reflected in the
phenology of high-latitude phytoplankton populations. In spring, chlorophyll
concentrations increase, even before the sea ice has melted (Hague and Vichi, 2021;
Vives et al., 2024b). Once the ice has completely disappeared, strong surface blooms
occur (Uchida et al., 2019; Kubryakova et al., 2025). Although they show very different
physical conditions than the water columns traditionally considered ideal for SCM
formation, recent research has established that they commonly form at high latitudes
(Holm-Hansen and Hewes, 2004; Venables and Moore, 2010; Baldry et al., 2020, 2024;
Kubryakova et al., 2025). The dominant phytoplankton species in the Southern Ocean
are diatoms, whose buoyancy may aid the formation of SCMs (Baldry et al., 2020).
Iron limitations in the Southern Ocean can also lead to SCMs (Baldry et al., 2020). In
the Arctic, SCMs typically form at a depth of between 20-50 m due to low light levels
(Martin et al., 2010; Arrigo et al., 2011) after the spring bloom (Ardyna et al., 2013).
Unsurprisingly given the low light levels, photoacclimation plays a significant role in
SCM formation in both polar regions (Baldry et al., 2020; Masuda et al., 2021).

1.4.2 Scales of variability

As outlined earlier, vertical chlorophyll structure varies by location and, in many
cases, season. These differences tend to occur over ocean basin scales (Karl, 1999) due
to global thermohaline circulation, stratification and the intensity of solar irradiance.
However, within a biome, there is also significant variability on the mesoscale (~100

km), due to the presence and polarity of eddies (Huang and Xu, 2018; Cornec et al.,
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2021b; Xu et al., 2022b; Strutton et al., 2023; Wang and Liu, 2024). These studies have
established that cold-core (cyclonic) eddies bring nutrients closer to the surface,
causing SCMs to rise in the water column. The opposite is true for warm-core
(anticyclonic) eddies. Ocean fronts can also lead to small-scale variability both at the
surface (Sokolov and Rintoul, 2007) and throughout the water column (Tripathy et al.,
2015; McKee et al., 2023). Interannual surface chlorophyll variability has been shown
to be dominated by small-scale processes (Keerthi et al., 2022; Prend et al., 2022),
although it has not yet been shown that the same applies to chlorophyll profiles. On a
vertical scale, SCMs can have very thin peaks (Cowles et al., 1998; Durham and
Stocker, 2012), which can indicate the presence of precise conditions that favour a
particular phytoplankton functional group. The vertical position of the SCM can
change due to diel migration of phytoplankton in the water column, reflecting a
behavioural adaptation to access light near the surface during the day and greater
nutrient availability in deeper waters during the night (Cullen, 1985; Cullen and
Maclntyre, 1998; Wirtz et al., 2022).

1.5 The usefulness of spatio-temporal modelling

A spatio-temporal dataset consists of observations that are each associated with a
specific location and time. This type of data is common in environmental science,
where variations over space and time are often of significant interest. There are several
types of spatio-temporal datasets. Firstly, there are geostatistical datasets in which the
variable of interest has been measured at specific point locations. Second, there are
areal datasets, where each measurement is associated with a region. Third, there are
point patterns in which the locations of measurements are the primary interest, rather
than measurements at those locations. An example of this is the distribution of trees in
a forest. In this thesis, I am only interested solely in geostatistical datasets, and this
will be referred to as spatio-temporal modelling throughout this thesis, unless
otherwise made clear.

There are a number of reasons why including spatio-temporal information within an
analysis is desirable. For example, we can account for the spatio-temporal
dependencies between observations. Tobler’s first law of geography states that
observations close to each other are more similar than those far apart (Miller, 2004),
and this is a characteristic that should be integrated into a statistical model when
measurements are associated with locations and times. Consequently, spatio-temporal
models pool information over space and time through the inclusion of latent effects.
Such latent effects allow for the partitioning of variance between that attributable to
measured covariates and that arising from unmeasured covariates that may vary over
space and time. This has the added benefit of better quantifying estimates and their

corresponding uncertainties in covariate effects, since the presence of a
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spatio-temporal latent effect can substantially affect covariate effects (Willems et al.,
2022). By controlling for spatial variability, it becomes more feasible to accurately
detect temporal patterns such as seasonality and long-term trends (Laurini, 2019;
Hammond et al., 2020). A common objective of spatio-temporal modelling is to
produce maps of a variable of interest, and possibly to forecast, whilst incorporating
uncertainty quantification. Interpolation through the use of a latent spatio-temporal
effect aids in this by accounting for autocorrelation between observations. One of the
disadvantages of traditional spatio-temporal modelling methods is often the
computation time, given the necessity of calculating a distance matrix between all
observations. Several approaches have been suggested to alleviate this burden by
modelling covariance between locations using an approximation, which can be solved
using computationally efficient methods (Lindgren et al., 2011; Anderson et al., 2022;
Pereira et al., 2022). These approximations significantly reduce computational time
and memory requirements, making it feasible to apply spatio-temporal models to
large datasets.

The literature on spatio-temporal modelling is extensive and contains a wide range of
techniques, especially in the development of statistical software for such analyses.
Excellent overviews of the topic are provided by Cressie and Wikle (2011) and Sahu
(2022). A range of spatio-temporal models have been developed for the analysis of
oceanography datasets (Du et al., 2018; Hammond et al., 2020; Hildeman et al., 2021).
Stein (2020) identified statistical challenges associated with analysing the Argo float
data. Firstly, from a spatial modelling perspective, it is quite a large dataset. This has
ramifications in estimating the covariance between all observations based on the
distance between them, which is a computationally expensive process. Second, the
fact that the floats drift over time such that no specific location is ever sampled twice
means that there are challenges in estimating temporal autocorrelation. Nevertheless,
several approaches for spatio-temporal modelling Argo float data have been
proposed. Sahu and Challenor (2008) suggested a hierarchical modelling approach to
account for seasonality. Roemmich and Gilson (2009) produced the first global
temperature and salinity maps from the core Argo float data by first estimating a
mean field and then performing kriging. Kuusela and Stein (2018) extended this by
performing local regression, in which smaller ‘local”’ models are fitted to subsets of the
data through a moving window to improve the characterisation of anomalies.

Geostatistical analyses are mainly focussed on datasets whose spatial coordinates lie
on a two-dimensional surface (for example, a flat plane or the Earth’s surface). This
means that for many oceanographic studies, such as those on sea surface temperature,
many spatio-temporal modelling approaches are applicable. However, the Argo
dataset is inherently three-dimensional in space, since each measurement has an
associated longitude, latitude, and depth. These techniques are unsuitable for

analysing spatio-temporal data across multiple depths simultaneously, as traditional
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modelling approaches cannot capture this structure and require depth-by-depth
modelling, as was done by Sahu and Challenor (2008), Roemmich and Gilson (2009)
and Kuusela and Stein (2018). Including depth as a third spatial dimension is not
trivial, since the length scales of variability in the vertical are several orders of
magnitude smaller than in the horizontal. Therefore, alternative methods are required
to fully utilise the dependency within and between profiles.

Machine learning (ML) algorithms provide an alternative to true parametric
spatio-temporal models to construct maps from observations due to their ability to
extract complex relationships between several variables and make reasonable
predictions for complex systems. In oceanography, it has become common to use ML
for three-dimensional interpolation between sparse observations of a variable of
interest using a more widely measured variable, often obtained by satellites, as a
predictor (Sauzede et al., 2016; Chen et al., 2021; Renosh et al., 2023). A limitation with
ML approaches is that weaker inferences can be made from a statistical perspective
since dependence structures between locations and times are not explicitly described
by the model framework. This is where spatio-temporal models are advantageous.
While some results from spatio-temporal modelling might not immediately appear as
preferable to ML, the depth of inference — particularly in partitioning variability
between covariate effects and latent spatio-temporal variability — offers sufficient

justification for these methods.

1.6 The usefulness of functional data analysis

Given the dependence between measurements in a single profile, it is no surprise that
previous studies on chlorophyll profile shape have fitted profiles to families of
mathematical curves (Lewis et al., 1983; Ardyna et al., 2013; Gong et al., 2015;
Mufnoz-Anderson et al., 2015; Carranza et al., 2018; Xu et al., 2022b). In doing so, entire
profiles can be described using only a small number of parameters representing
characteristics such as SCM depth or thickness. The main reason for this is to facilitate
the interpretation of environmental changes that affect these parameters and,
consequently, the profile shape. Choices for curves include Gaussians (Gong et al.,
2015; Xu et al., 2022b), sigmoids (Carranza et al., 2018) or even combinations of
multiple curves (Mufioz-Anderson et al., 2015; Carranza et al., 2018; Brewin et al.,
2022; Sato et al., 2022). Theoretical results have suggested that these profile shapes
should be observed; however, in practice, there are cases where profiles do not fit one
of the assumed shapes. Additionally, the process of fitting curves to profiles can be
time-consuming for large datasets, or for complicated curves, since they typically

contain more parameters.
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Functional data analysis (FDA) provides an alternative and appropriate set of
techniques for ocean profile data. This branch of statistics comprises methods for data
analysis in which a variable of interest is a continuous function of another variable,
which in practice is represented using basis functions. This contrasts with
scalar-valued data, which consists of finite sets of values, and are the building blocks
of most familiar statistical methods. The difference between these two will be made
clear where necessary throughout this thesis. FDA gained attention in the 1990s and a
general guide to the topic is given by Ramsay and Silverman (2005), who describe
methods for regression models for functional data. It is worth mentioning that
functional regression can involve predicting functional data using scalar covariates, or
vice versa, or predicting functional data with functional covariates (Ramsay and
Dalzell, 1991). Mathematical details of functional regression are described in Section
2.2.2. The FDA literature has expanded significantly in the past two decades, with
developments in regression (Greven and Scheipl, 2017), clustering (Zhang and Parnell,
2023) and, geostatistics (Mateu and Giraldo, 2021), who present a detailed selection of
geostatistical models for functional data, including spatio-temporal kriging (optimal
interpolation), analysis of variance and clustering. Recently, Urbano-Leon et al. (2023)
developed a method for defining variance and correlation for functional data as a
scalar value, enabling correlation analyses analogous to those for scalar datasets. Since
this approach has not yet been applied to datasets of oceanographic profiles, I explore
its use with Argo profiles in Chapter 5.

FDA provides a natural framework for oceanographic profiles, which are a function of
depth. There are several immediate advantages to using FDA for Argo data. Firstly,
the dependency between discrete measurements on a single profile is included within
the framework by assuming a continuous function passes through all measurements.
Moreover, Argo profiles often sample irregularly across a range of depths, and by
describing profiles as functional data objects, this irregularity can be neglected in later
analysis. Profiles as functional data objects allow for the extraction of the gradient and
integrals of variables over depths, for example, the heat content of the ocean (Yarger
et al., 2022). Despite these benefits, there have been relatively few applications of FDA
in oceanography. To my knowledge the first was Assuncéo et al. (2020), who used it to
study thermohaline structure from ship-based observations. Yarger et al. (2022)
developed a spatio-temporal model designed specifically for Argo data. This
approach involved fitting local mean and covariance functions to predict temperature
and salinity profiles at unsampled locations. Korte-Stapff et al. (2022) proposed a
method for interpolating between the sparse BGC-Argo using more widely sampled
core Argo profiles throughout the Southern Ocean. Le Ster et al. (2023) used linear
functional models to assess chlorophyll profile variability measured from biologging
tags attached to marine mammals. Kande et al. (2024) also explored the use of FDA for

spatial statistics in a marine ecology context.
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1.7 Aims

My aims for this thesis are two-fold. Firstly, I seek to assess the spatio-temporal
variability of chlorophyll profiles from BGC-Argo profiles, with a particular focus on
those displaying SCMs. I aim to quantify the extent to which the presence and
structure of SCMs are determined by environmental drivers such as light, nutrients,
and the MLD, and physiological adaptations by phytoplankton. This will hopefully
contribute to a greater understanding of the mechanisms of SCM formation and
maintenance within ocean ecosystems. The second aim is to apply a selection of
statistical approaches to data from BGC-Argo floats from spatio-temporal modelling
and FDA, assessing their usefulness for future applications. Each of Chapters 3-5
addresses a slightly different biogeochemical question and demonstrates a different
statistical approach. Collectively, the thesis demonstrates both the ecological insights
gained from BGC-Argo float data and the methodological advances that assist their

interpretation.

1.8 Thesis structure

In this thesis, I demonstrate techniques from spatio-temporal modelling and FDA to
investigate spatio-temporal variability in subsurface chlorophyll using data from
BGC-Argo floats. I will first introduce the Argo dataset in Chapter 2, as well as a more
technical background to the statistical approaches. In Chapter 3, I investigate drivers
of SCM characteristics on a global scale using a spatio-temporal model. In Chapter 4, I
employ functional regression models to assess how environmental conditions affect
SCMs at low latitudes. In Chapter 5, I apply a novel method for defining variance and
correlation for functional data to oceanographic profiling data, using chlorophyll and
temperature BGC-Argo profiles across the global ocean as an example. Finally, in
Chapter 6, I summarise the collective findings of the entire thesis and suggests

directions for future research.

Chapters 3-5 are intended to be submitted to scientific journals, and there may be some
repetition across chapters, particularly when reviewing previous work and describing
the aims for each chapter. All references have been collated at the end of the thesis.
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Chapter 2

Materials and Methods

2.1 Argo float data

Argo floats are autonomous platforms equipped with a range of sensors to measure
the properties of the top 2000m of the marine water column. In addition to measuring
the temperature, salinity, and pressure of the water column, biogeochemical-Argo
(BGC-Argo) floats carry a suite of specialised sensors for monitoring biogeochemical
processes (Claustre et al., 2020; Chai et al., 2020). They control their depth by changing
the volume of an oil-filled bladder and transmit measurements back to land via
satellite using an Iridium antenna. Floats are programmed to not surface in the
presence of sea ice (Wong and Riser, 2011); instead, they continue profiling beneath
the ice and transmit data once they re-emerge. The positions of under-ice profiles are
later estimated (Chamberlain et al., 2018). A diagram of a BGC-Argo float is shown in
Figure 2.1.

Most floats complete one profile of the upper 2000 m of the water column, typically
every 10 days for 5-7 years, before descending to a parking depth of 1000 m. They can
be programmed to complete profiles at particular times, meaning that some floats
have much higher sampling frequency than others and consequently have a shorter
lifespan. The vertical sampling structure varies between floats and sensors, but
typically deeper measurements are sparser compared to the upper ocean. A schematic
showing a cycle of an Argo float is shown in Figure 2.2.

All measurements collected are given an initial quality control flag by the Argo data
centre (Table 2.1). Measurements that have quality control flags of 3 or 4 after
adjustment are not included in any analyses. Similarly, I only used “Delayed” mode
data, which have been more thoroughly quality controlled, in contrast to “Real time”
data. All Argo float data were downloaded in netCDF format prior to analysis using
the R package argoFloats. These methods are described in the relevant chapters.
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FIGURE 2.1: Diagram of a BGC-Argo float equipped with measuring temperature,

salinity and the following six biogeochemical parameters: chlorophyll-a fluorescence,

optical backscatter, pH, dissolved oxygen (DO), nitrate and downwelling irradiance.
Figure taken from https://www.go-bgc.org/floats (last accessed 17/06/2025).
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FIGURE 2.2: Schematic of a typical cycle of an Argo float. Taken from Claustre et al.
(2020).
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Flag Meaning
No QC
Good
Probably good
Probably bad
Bad
Value changed
Interpolated value
9 Missing value

o

R Ul = W IN -

TABLE 2.1: The quality control flags for measurements from Argo floats. No measure-
ments with a flag of 3 or 4 were included in any analyses.

2.1.1 Chlorophyll concentration

Some BGC-Argo floats are fitted with bio-optical sensors manufactured by SeaBird
which can measure chlorophyll-a fluorescence. The sensor detects a change in the
intensity of light at two different wavelengths. Specifically, when light is intercepted
by chlorophyll a, a fraction of the photons absorbed at the blue end of the spectrum
(470 nm) are re-emitted at the red end of the spectrum (695 nm), which carry less
energy. The light emitted is the fluorescence of chlorophyll-a (Fcy, [mole quanta m =3
s71]). The following equation is used to estimate chlorophyll-a fluorescence from the

raw chlorophyll concentration [Chl]aw
FChl = E[Chl]rawa*d)f (21)

where E is the excitation irradiance [mole quanta m~2s~!], a* is the chlorophyll-a
specific absorption coefficient [m? (mg Chl a)"!]and ®  is the fluorescence yield [mole
quanta emitted (mole quanta absorbed) !]. The recorded chlorophyll concentration
(denoted as [Chl]ec with units [mg m*3]) is then estimated by applying a float-specific
conversion supplied by the manufacturer. The conversion takes the following form

[Chl]sec = (Fcp — dark offset) x scale factor. (2.2)

This method for estimating chlorophyll concentration by Argo data team allows for
for several corrections (Schmechtig et al., 2023), given below:

1. In situ dark correction. This error refers to an offset to the measurement in the
presence of zero chlorophyll. This correction is provided by the manufacturer
but can change once the sensor is added to a float as well as during its active

lifespan.

2. Non-photochemical quenching (NPQ). NPQ is a physiological response of
phytoplankton to high light levels, resulting in lower fluorescence
measurements than expected given the chlorophyll concentration. This is
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corrected by assuming that any decrease in fluorescence below the maximum
observed in the mixed layer is due to NPQ (Xing et al., 2012). For practical
reasons, this is the method chosen for the BGC-Argo dataset, although more
recent methods have been suggested (Roesler et al., 2017; Xing et al., 2017, 2018).

3. Scale factor. This describes the rescaling from fluorescence units [mole quanta
m~3 s7!] to concentration units [mg m~3] and is supplied by the manufacturer.
However, several factors can affect this including (but not limited to) location,

depth, time of day and species composition.

From here on when I refer to chlorophyll concentration I mean the recorded
chlorophyll concentration and I drop the square brackets around chlorophyll
concentration for consistency. It should be noted that a recent study showed that the
relationship between Fcp and chlorophyll concentration varies between different
phytoplankton communities (Petit et al., 2022). Moreover, detected fluorescence can
originate from sources other than chlorophyll in the deep sea, such as in low oxygen
conditions (Xing et al., 2017; Wojtasiewicz et al., 2020). However, this is unlikely to be
a significant factor in my analyses since I focus on the top 250 m of the ocean. The
chlorophyll fluorescence sensor on BGC-Argo floats does not show significant drift
over time (Claustre et al., 2020).

These adjusted chlorophyll concentration values (labelled as
CHLOROPHYLL_A_ADJUSTED in the Argo dataset) serve as the starting point for
my analyses. Additional quality control procedures are implemented as needed,
depending on the specific analysis, and are therefore described in the relevant
chapters.

2.1.2 Particle backscatter
2.1.2.1 Measurement

The backscatter coefficient at wavelength A, b,(A), is calculated through several steps.
First, the volume scattering function (VSF), a function of backscattering angle 6 and
wavelength A, is estimated for a specific angle (often 117°) (Boss and Pegau, 2001).
Then by,(A) is calculated by integrating the VSF between 6 = 90° and 6 = 180°,
including a scaling by a factor of 1.1 (Boss and Pegau, 2001). Finally, the total
backscatter by, is partitioned into the backscatter from seawater and the backscatter by
particles, which can be interpreted as the combined concentration of detritus and
phytoplankton in the open ocean. This is essential since seawater can cause up to 80%

1

of backscatter in very clear water (Morel and Gentili, 1991). The unit of by, is m™" and

the measurement represents the probability per unit length that light is backscattered
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by particles. On BGC-Argo floats, by, is measured at A =700 nm (sometimes at other
wavelengths as well) using the SeaBird WETLabs sensor.

2.1.2.2 Quality control

The assumption is that by, scales linearly with particle concentration, but in reality it
also varies with particle size and composition. The real-time by, data are subject to the
quality control tests developed by Dall’Olmo et al. (2023). The following tests are
applied to the raw by, profiles.

1. Missing data test. This checks whether there is at least one measurement across a
range of depth bins in the top 1000 m of the water column.

2. High deep value test. A particularly high b;, measurement can indicate that the
sensor has malfunctioned or that it has been subjected to biofouling. This test
only affects values deeper than 700 m, which is deeper than any used in this

work.

3. Negative by, test. Negative values can indicate that the sensor is out of the water
and has malfunctioned.

4. Noisy profile test. A profile with more than 10% of measurements far from the
median value (residuals are greater than 0.0005 m~1), is given a QC flag of 3
(“Probably bad”).

5. Parking hook test. Particles can accumulate on the sensor while it is at its
parking depth of 1000 m. This test identifies when these particles detach from
the sensor as it ascends in the water column. If this is detected, then these
measurements receive a quality control flag of 4 (“Bad”).

Full details of these tests can be found in the backscatter manual supplied by the
BGC-Argo data team (Dall’olmo et al., 2023). The adjusted by, measurements (labelled
BBP700_ADJUSTED in the Argo dataset) are combined with the adjusted chlorophyll

measurements for my analysis in Chapter 4.

2.1.3 Temperature, salinity and depth

Measurements of conductivity, temperature, and depth (CTD) are collected by all
Argo floats using SeaBird CTD sensors (such as the SBE-41 and other versions). These
sensors are specifically designed for autonomous use in the ocean, providing stable
and accurate measurements over the multi-year lifespans of the floats. The CTD
measurements go through a rigorous quality control process that includes real-time
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automated tests such as spike detection and checks for sensor drift followed by
delayed-mode adjustments based on sensor drift, comparisons with ship-based
reference profiles, and historical climatologies. These procedures ensure that the data
used for oceanographic analyses are of the highest possible accuracy. Given the
technical nature and complexity of these quality control procedures, I refer the reader
to the Argo CTD data manual, which gives complete details of the quality control
procedures (Wong et al., 2025). In this thesis, the CTD-derived variables are used
within each of Chapters 3-5 and I will describe any further treatment of them in the

relevant chapters.

2.2 Overview of statistical methods

221 Spatio-temporal models
2.2.1.1 Summary of Bayesian statistics

Bayesian statistics is a branch of statistics in which the parameters that govern random
processes are not assumed to have fixed ‘true’ values. Instead, their values are
described probabilistically. By combining prior beliefs with evidence (in the form of
data), we update our understanding to form posterior beliefs. Uncertainty about
parameter values is expressed through probability distributions, allowing us to
represent not a single estimate but a full range of plausible values along with their
associated uncertainties.

Suppose that we have some prior knowledge of a process and describe our
uncertainty of a parameter with a given distribution. Suppose we then collect some
data and calculate the likelihood function, a function of the probability of seeing the
data given parameter values. The procedure to update our prior beliefs is given by the
following relationship

Posterior « Prior x Likelihood. (2.3)

The proportional symbol in Equation 2.3 is included to simplify the expression by
removing a denominator of the probability of seeing the data, which is a complicated
calculation and is unnecessary for parameter estimation. The shape of the posterior
distribution is important, as it explains our updated uncertainty. If required, we can
identify a summary statistic describing the posterior distribution (often the mean or
median) as a single value updated parameter estimate. The location of the maximum
is unaffected by the absent constant of proportionality, which means this denominator

can be ignored in practice.

This perspective naturally allows for hierarchical model structures, whereby the

parameters of some probability distribution are themselves described by probability
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distributions. In this case, a prior distribution is provided for each parameter that
forms the base of the hierarchy. For more extensive guides to Bayesian statistics,
readers are referred to Bolstad and Curran (2016) and Sahu (2022).

2.2.1.2 Parameter estimation

In some Bayesian models, the choice of prior distribution allows for an analytical
solution to the posterior distribution. However, in practice this is not often the case
(often for complicated hierarchical models), and instead the posterior distribution is
difficult to identify and needs to be estimated using a numerical approximation called
Monte Carlo sampling, which relies on taking many random samples to estimate
values. A common example of this is Markov chain Monte Carlo (MCMC) sampling,
in which samples are generated sequentially, slowly exploring the parameter space.
Depending on the problem, this can be a computationally expensive and
time-consuming task to ensure that the (possibly high-dimensional) parameter space

is well sampled, i.e., that parameter estimates have converged.

2.2.1.3 Integrated Nested Laplace Approximation

In recent years, approximate Bayesian inference has become increasingly popular. An
example of this is the integrated nested Laplace approximation (INLA), as described
by Rue et al. (2009), which is designed for the class of statistical models called latent
Gaussian models (LGMs). LGMs are hierarchical models comprising observations, a
latent Gaussian field, and hyperparameters. The observations y are assumed to be
generated by a process belonging to the exponential family of distributions with
hyperparameters 0, and the mean y is connected to the linear predictor through a link
function. A vector x contains the linear predictor and the covariate coefficients. The
latent effect x is distributed according to a Gaussian Markov random field (GMREF),
which is dependent on some hyperparameters 0,. The set of all hyperparameters
governing both the mean and the GMRF is denoted by 6. The data layer is given by

y|x, 0 ~ 1t(y|x,0) (2.4)

where 7T denotes a generic probability distribution. The latent variables x represent a
GMREF given by

x|6 ~ N(u(6),Q(6)™") (2.5)

where Q(0) is a precision matrix, defined as the inverse of a covariance matrix.

Finally, there are prior distributions for the hyperparameters.

0 ~ 7(6) (2.6)
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The objective is to estimate the values of the parameters 8, which control the mean
and the GMRE. In contrast to MCMC sampling approaches, INLA is deterministic.
INLA involves several steps, which I will briefly explain.

1. First, the marginal posterior of the hyperparameters is approximated
n(0ly) ~ 7(0|y) using the Laplace approximation, which involves estimating a

Gaussian centred on the mode of the posterior distribution.

2. The latent Gaussian field is approximated given the hyperparameters
n(x]0,y) ~ 71(x]60,y).

3. Integrate over 6 using a numerical method to get 7(x|y) ~ [ 7t(x|6,y)7(0|y)do.

An advantage of INLA is the avoidance of sampling x directly, which is often
high-dimensional. The sparsity of the precision matrix Q of the GMRF helps with
computational efficiency. Spatio-temporal models are a type of LGM which means

that their parameters can be estimated using INLA.

2.2.1.4 Stochastic Partial Differential Equation spatio-temporal models

There is a selection of spatial covariance functions that are used in spatial models. A
common choice is the Matérn covariance function, which is defined by the following

equation

I(v)

where d is the Euclidean distance between two locations, ¢ is the marginal covariance,

Co(d) = 22 (ﬁi) K, <\E z> 2.7)

v > 0 is the smoothness parameter, p > 0 is the range parameter, I is the Gamma
function, and K, is the Bessel function of the second kind. The range controls how
quickly the correlation decays with distance, and the smoothness controls the
differentiability of the function and typically takes values of v € {0.5,1.5,2.5,... } for
computational convenience. The Matérn is a popular choice of covariance function
because both the range and the smoothness can be varied. Examples of Matérn

covariance functions are shown in Figure 2.3.

A covariance matrix in traditional spatial statistics requires the calculation of all
covariances between all pairs of observations. This communicates the full
correspondence between any single point and all the others directly but requires a lot
of computational power, especially as a dataset grows in size. A Gaussian random
field can be approximated as a GMREF by discretising on a finite set of locations in a
study region. This can be done by designing a mesh of the study region (often a
Delauney triangulation, which is built from small triangles). It is recommended to

construct a mesh that exceeds the boundaries of a study region to avoid boundary
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FIGURE 2.3: Examples of Matérn correlation functions with range p = 1,2,3, and 4
respectively and the smoothness v = 0.5,1, and 1.5.

y [ ‘%;'\ A5
i S e

FIGURE 2.4: An example of a mesh described by a Delauney triangulation. Here the

red dots show the locations of observations. The inner black line represents the bound-

ary of the study region and any triangles outside that are incorporated to keep valid
boundary conditions.
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conditions affecting estimates of the GMRF at the edge of the study region. An
example 2D mesh is shown in Figure 2.4. The GRF at any location is then
approximated by a distance-weighted linear combination of piecewise linear basis
functions 1 (one basis function for each vertex) of the GMRF at the vertices of the
mesh (Figure 2.5). This approximation for spatial and spatio-temporal modelling was
developed by Rue et al. (2009) and Lindgren et al. (2011). The spatial autocorrelation
of the GMREF is represented in the precision matrix Q whose elements are zero unless
they describe the covariance between vertices that share an edge in the mesh. This
means that Q is largely comprised of zeros, which allows fast computations by
leveraging methods from graph theory.

Consider the following stochastic partial differential equation (SPDE)
(K* — A)u(s) = W(s) (2.8)

where W is spatial white noise, u(s) is a Gaussian random field (GRF), « is the spatial
autocorrelation range of the GRF, and A is the Laplacian operator. Conveniently, the
solution to this SPDE is the Matérn covariance function, which means this SPDE can
be used to represent random fields in spatial models. This allows us to leverage
numerical methods for solving partial differential equations to find approximations to
the GRF using a mesh as described above. Examples of four samples from the same
GMREF are shown in Figure 2.6. Note how the distance over which locations are

strongly correlated remains similar across each sample.

The SPDE can be extended from a spatial model to a spatio-temporal model by
allowing the GRF to vary in time. Temporal autocorrelation in GRFs is governed by a
parameter « € [—1,1] and connects neighbouring GRFs at times ¢ and ¢ + 1, denoted
ut(s) and u;41(s) respectively, by the relation u;1(s) = aus(s) + (1 — a?)x(s) where
x¢(s) is a random sample from the GRF. Examples of spatio-temporal GMRFs are
shown in Figure 2.7 and Figure 2.8 with & = 0.5 and a = 0.9, respectively.

2.2.1.5 Barrier model

The covariance of a random field can be non-stationary, meaning its properties (such
as its range) can vary over space, or time, or both (Bakka et al., 2018). One form of
non-stationarity is the representation of physical barriers in the spatial autocorrelation
via changing values in the precision matrix. The barrier model was first suggested and
demonstrated by Bakka et al. (2019) for meshes in the plane. Using Bakka et al. (2019)
as inspiration, I define a spatial autocorrelation structure for global oceanographic
data, which represents land masses as barriers, across which correlation is heavily
restricted.
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FIGURE 2.5: Illustration of how a GRF can be approximated by a GMRF. A discreti-

sation of the study region in a Delauney triangulation allows for a finite number of

locations to be approximated using linear combinations of linear basis functions. This

approach means that the corresponding covariance matrix is very sparse (i.e., it con-

tains many zeros) since most vertices are not neighbours of each other. Taken from
Krainski et al. (2018).

Denoting the inner product (a generalisation of the dot product) as (, ), and denoting
the vector gradient as V, I define the following n x n matrices, where #n is the number
of vertices in the mesh.

Cij = (Y1, 9)) (2.9)
Gij = (Vyi, V) (2.10)
Kij = KZCij + Gij (2.11)

These matrices are the sums of contributions from all triangles in the mesh. The

precision matrix Q for a given spatial autocorrelation range « is given by
Q = KC'K. (2.12)

For computational reasons, C can be replaced with a diagonal matrix C, with
Cij = (i, 1). Refer to Lindgren et al. (2011) for justification of this.
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FIGURE 2.6: Four samples from a random field with range x = 0.2. This random field
is isotropic (the range is constant in all directions). Here the warmer and cooler colours

represent positive and negative values in the random field respectively. Note how the
spatial correlation length scale is similar across samples.
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Suppose that a mesh triangle T has vertices T = (v, v1, v2), each located in R3, with
the corresponding edges

ey = Vy — Vq, (2.13)
€] = Vo —Vy, (2.14)
€ = V1 — V. (215)

Suppose that the triangle T has area |T|, then the contributions of triangle T to C and

G are
. |T|
[Ci,i(T)]izo,l,ZZ?(l 1 1), (2.16)
1
[Gi,j(T)]i,jzo,l,zzm(eo e1 e)l(ep e e). (2.17)

where i = 0, 1,2 are the mesh vertex indices (i.e., nine elements for each triangle).

To implement the physical barrier condition, I reduced the contributions to C and G
by mesh triangles whose centres are located over land by 80%. This reduces the spatial
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FIGURE 2.7: Example of a spatio-temporal GMRF with the autoregressive coefficient

« = 0.5. Each panel shows one of 25 regularly spaced times.

autocorrelation range significantly so that correlation takes ‘the path of least

resistance” around land masses spreading out radially from a point. Although this

method differs from Bakka et al. (2019), the spatial autocorrelation structure behaves

in a similar way. An example of this non-stationary correlation structure is presented

in Figure 2.9. This type of covariance structure is what I use in the spatio-temporal

models in Chapter 3.

2.2.2 Functional data analysis

2.2.2.1 Background

Functional data analysis (FDA) is a branch of statistics that contains methods for data

objects that take the form of curves. Formally, this means that a single observation y
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FIGURE 2.8: Example of a spatio-temporal GMRF with the autoregressive coefficient
« = 0.9. Each panel shows one of 25 regularly spaced times.

can be written in the form y = f(t), where t belongs to some continuous domain. This
contrasts with classical statistical methods, which are typically designed for scalar or
vector data—that is, single values or finite-dimensional sets. In contrast, functional
datasets are inherently infinite-dimensional, motivating the development of
specialised statistical theory and methods. Oceanographic profiles provide an
excellent opportunity to take advantage of these techniques (Figure 2.10). In the
following, I briefly outline the mathematical foundations of FDA, providing context to
some of the methods used in this thesis.

First, I define a random function X as a function of t over some closed and bounded
interval [a, b], denoted X(t). Here, t can be referred to as the argument, indexing
variable, or domain variable, with common examples being time and wavelength.
Formally, random functions of the form X(t) lie in the space L?, which contains all
continuous functions defined on a closed and bounded interval [4, b], for which all
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FIGURE 2.9: (a) A sample GMRF on the globe with the spatial correlation length x =

0.4 (assuming the Earth’s radius is 1) over the ocean and x = 0.08 over land. (b)

Correlation from 1000 random samples (with the same length scales as above) between

a reference location in the northwest Atlantic (marked by the black cross) and the
global ocean.
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FIGURE 2.10: Here are two statistical perspectives of the measurements from a single

Argo float profile. On the left, each measurement is considered one observation, re-

gardless of depth. Consequently, the entire profile consists of multiple observations.

Alternatively, on the right the entire profile is viewed as one functional data observa-
tion.
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squared values are finite fab |X(t)|?dt < co. Intuitively, this means that the random

function X(t) has a finite amount of overall variation.

Suppose that I have n independent and identically distributed realisations

Xi(t) : t € [a,b]"_,. Analogous to defining a mean and variance for random variables, I
can define a mean function and a covariance function to summarise collections of
realisations of random functions. The mean function y(t) is defined as p(t) = E[X(t)].
This implies that the mean function is defined over the same interval from a to b as
each of the realisations and that the value of the mean function is simply the mean of

all the realisations X;(t) at index t. The variance function is given by

1
(n—1)

Var(t) = (1) — (1)) 2.18)
=1

and describes how much variability occurs at each point in the domain of ¢. The
covariance function X(s, t) is a surface with the domain [a, b] x [a, b] where

(s, t) = Cov(X(s), X(t)). In practice, this tells us how values of the function at two
different indexes (s and t) tend to covary. The entire surface X(s, t) summarises these

pairwise covariances across the entire domain.

2.2.2.2 Functional regression models

Functional regression models (FRMs) are regression models that contain at least one
functional variable with the same objective as traditional scalar regression: to quantify
the effect of some covariate(s) on some response variable(s). Function-on-scalar
regression aims to describe the effects of scalar-valued covariates on a functional

response variable. Mathematically, this is written as
Yi(t) = pot) + [ Br()Xuidt + -+ +&i(t) (2.19)

where the intercept By(t) and error €(t) are both functions. The intercept function can
be thought of as a baseline outcome, which describes the outcome when the covariate
is zero. The coefficient function B (t) therefore represents deviations away from the
baseline function, such that the integral contributes deviations proportional to the

covariate value.

There are other categories of FRMs that are not presented in this thesis but I will
mention them for completeness. Scalar-on-function regression describes the effects of
function-valued covariates on a scalar response variable. Function-on-function
regression describes the effects of functional covariates on functional response

variables.
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2.2.2.3 Scalar-valued variance for scalar functional data

The classic definition for the variance of functional datasets is also a function
(Equation 2.18). This is problematic because functions in the L? space do not form an
ordered set and consequently comparative statements between the variances of
multiple functional datasets cannot be made, meaning correlation between functional
datasets cannot be defined under this definition of variance. However, recently
Urbano-Leon et al. (2023) developed an approach for defining the variance of
functional data as a scalar. This is achieved through the use of basis functions and by
defining the variance of a functional dataset as the sum of the variances of the basis
coefficients. The idea can simply be extended to defining a scalar-valued covariance
and correlation. To avoid repetition, I leave the mathematical details of this method
for Chapter 5.
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Chapter 3

Mapping Global Subsurface
Chlorophyll Maxima Characteristics
using Argo Floats and
Spatio-temporal Models

This chapter is, at the time of writing, in preparation for publication in Journal of

Geophysical Research: Oceans as:

Taylor, M., Henson, S., Sahu, S., Hammond, M., Cael, B.B. Mapping Global Subsurface
Chlorophyll Maxima Characteristics using Argo Floats and Spatio-temporal Models.

3.1 Abstract

Subsurface chlorophyll maxima (SCMs), a feature in which peak chlorophyll
concentrations occur well below the ocean surface, are a ubiquitous feature of the
global ocean. The deployment of autonomous biogeochemical Argo (BGC-Argo) floats
has significantly increased the availability and spatio-temporal coverage of
chlorophyll profiles, enabling global analysis of SCM dynamics. In this study, I
estimated two key properties of SCMs, intensity (Chlscy) and depth (zscm), using
over 5600 BGC-Argo profiles from 2020. I applied a spatio-temporal geostatistical
modelling framework utilising the integrated nested Laplace approximation to
quantify the effects of physical and biological covariates on SCM properties while
accounting for spatial and temporal autocorrelation. My results demonstrated that
including a spatio-temporal random effect improves model performance and yields
more reliable estimates of environmental drivers. The euphotic depth emerged as a

major driver of the SCM structure, positively related to zscym and negatively related to
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Chlscyp. Other influential factors included mixed layer depth, sea surface height
anomaly, and zooplankton biomass. I applied my fitted spatio-temporal models to
interpolate SCM characteristics across 20 000 locations sampled by core Argo floats,
producing global predictions of SCM structure. These maps revealed spatial patterns
and seasonal dynamics consistent with previous observational studies, including deep
SCMs in subtropical gyres and pronounced seasonality at higher latitudes. My
approach demonstrated the utility of formal spatio-temporal models for analysing
BGC-Argo float data and provides a framework for future studies of global ocean
biogeochemistry that accounts for dependencies between observations, whilst keeping

computational costs relatively low.

3.2 Introduction

Chlorophyll concentration is a commonly used proxy for the biomass of
phytoplankton, microscopic plant-like organisms that form the base of the marine
ecosystem and perform a key role in the global carbon cycle. Subsurface chlorophyll
maxima (SCMs) are ubiquitous features of the global ocean, whereby the maximum
concentration of chlorophyll is located significantly below the surface of the ocean.
They form when the water column is stratified, and nutrients and light are limited
from above and below respectively (Cullen, 2015). SCMs account for a significant
proportion of the global marine primary production (Silsbe and Malkin, 2016).
Although they have been studied for several decades, there is still some uncertainty
over which environmental factors control their formation and maintenance. SCMs can
form either through an accumulation of phytoplankton (i.e., an increase in their
abundance) (Herbland and Voituriez, 1979; Holm-Hansen and Hewes, 2004;
Beckmann and Hense, 2007), or through an increase in their intra-cellular chlorophyll
content as a proportion of their mass (Fennel and Boss, 2003; Masuda et al., 2021). This
second mechanism is called photoacclimation and is a physiological response to light

limitation.

The Argo float array is a global network of autonomous platforms that measure
properties of sea water throughout the top 2000 m of the water column. The array
comprises core floats, which carry sensors for measuring temperature and salinity,
and biogeochemical-Argo (BGC-Argo) floats, which are equipped with additional
sensors for monitoring several key variables in marine biogeochemistry (Claustre

et al., 2020). One sensor measures the fluorescence of chlorophyll, from which
chlorophyll concentration is estimated (Schmechtig et al., 2023). The deployment of
BGC-Argo floats has hugely increased the number of subsurface observations, as well
as the spatio-temporal coverage of observations, particularly in remote environments
which were previously inaccessible to ship-borne sampling, one example being the

Southern Ocean during winter.
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Several studies have identified global patterns in the distribution of SCMs using data
from the BGC-Argo float network (Cornec et al., 2021a; Yasunaka et al., 2021; Bock

et al., 2022). These studies consistently report the deepest SCMs, often reaching depths
of 150 m, in the centres of subtropical oligotrophic gyres. Notably, these deep SCMs
are not associated with coincident peaks in particle backscatter, a proxy for particulate
organic carbon. Deeper SCMs tend to exhibit lower chlorophyll concentrations both at
the maximum and at the surface (Uitz et al., 2006; Xu et al., 2022b; Quartly et al., 2023;
Miyares et al., 2024). While SCMs are most prevalent in the subtropics and tropics,
they also form in summer at higher latitudes, including polar regions (Baldry et al.,
2020; Bouman et al., 2020; Bendtsen et al., 2023; Baldry et al., 2024), emphasising their
global significance. As expected, SCM seasonality is more pronounced at higher
latitudes due to large seasonal variations in day length and surface irradiance (Cornec
etal., 2021a; Yasunaka et al., 2021). SCMs are not observed in the high-latitude winters.

It is well established that the primary determinants of SCM depth (zscwm) are the
euphotic depth (zey) (Cullen, 2015; Xu et al., 2022b) and the nitracline depth (z,cjine)
(Herbland and Voituriez, 1979; Cullen, 2015; Gong et al., 2015). These represent
important depths regarding light availability and nutrient concentration, respectively,
and they often constrain the optimal conditions for phytoplankton growth beneath the
surface. Thermocline structure, particularly the mixed layer depth (MLD), has also
been shown to modulate SCM characteristics by influencing vertical mixing and
stratification (Itoh et al., 2015; Zampollo et al., 2023). A shallow mixed layer, for
example, may reduce nutrient availability near the surface, and improve conditions
for SCM formation. Mesoscale ocean dynamics, such as eddies and fronts, introduce
additional variability by changing the vertical structure of both light and nutrients.
For instance, anticyclonic eddies are typically associated with a deepening of
isopycnals, deepening the ze, and zngjine, and thereby promoting deeper SCMs
(Cornec et al., 2021b). In contrast, cyclonic eddies often shoaling of isopycnals, leading
to shallower SCMs (Cornec et al., 2021b; Xu et al., 2022b; Strutton et al., 2023).
Furthermore, grazing pressure from zooplankton, particularly near the surface, can
suppress chlorophyll concentrations in the upper water column and indirectly
enhance the formation or deepening of SCMs by shifting the balance between
phytoplankton growth and loss processes (Pilati and Wurtsbaugh, 2003). It is worth
noting that a similar effect on SCMs can be caused by mixotrophs, organisms that can
switch between photosynthesis and grazing as sources of energy depending on light
availability (Moeller et al., 2019).

No previous studies of SCMs using BGC-Argo float data have accounted for
dependencies between nearby observations through formal spatio-temporal statistical
modelling. Spatial and spatio-temporal models have gained considerable attention
over the past two decades, with methods tailored to increasingly large and unique
datasets. A key category is geostatistical models, where each observation is tied to a
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location, and potentially a time in the case of spatio-temporal models. These models
typically aim to explain variability within a dataset, and predict values at unobserved
locations and times. Furthermore, the Argo dataset poses an interesting statistical
challenge: floats move between observations, so no location is ever sampled twice,
complicating the modelling of temporal autocorrelation (Stein, 2020). Nonetheless,
several studies have explored mapping Argo-derived variables. Sahu and Challenor
(2008) used a hierarchical Bayesian model to map temperature and salinity in the
North Atlantic. Roemmich and Gilson (2009) developed a local regression model to
produce the first global climatologies from core Argo data. Later efforts continued
modelling data from specific depths (Kuusela and Stein, 2018; Sahu, 2022). Yarger

et al. (2022) took a different approach, treating Argo profiles as functional data to map
temperature globally across all depths. While this technique provided several
advantages, including 3D prediction, it relied on a relatively uniform and dense
coverage of profiles, which is feasible with core Argo floats but not with BGC-Argo
floats equipped with chlorophyll sensors.

In this work I apply a novel spatio-temporal modelling method for Argo data, using
the stochastic partial differential equation (SPDE) approach first developed by
Lindgren et al. (2011). They found that continuous Gaussian random fields (GRFs)
(the additional latent effect that makes a model spatial or spatio-temporal) can be
discretised into Gauss-Markov random fields (GMRFs). This hugely reduces the
computational complexity and allows for larger datasets to be modelled more
efficiently, without any loss in accuracy. This technique has previously been used for
climate and oceanographic datasets since they are typically sizeable (Dahlén et al.,
2020; Fuglstad and Castruccio, 2020; Fioravanti et al., 2023). An additional benefit of
this technique is the specification of non-stationary covariance structures (Bakka et al.,
2018; Hildeman et al., 2021). I use a method for introducing non-stationary covariance
to study ocean regions with hard boundaries (coastlines), inspired by that of (Bakka
et al., 2019). This involves reducing the spatial correlation length over land and
forcing correlation to pass along a coastline. This has been done on a local scale
previously (Chaudhuri et al., 2023) but not on a global scale to my knowledge.

There are two main objectives for this study. Firstly, to identify the relative importance
of various environmental conditions on SCM depth and intensity through the use of a
spatio-temporal statistical model. Second, to make predictions of SCM characteristics
at previously unobserved locations using the fitted models. By leveraging the
structure of global biogeochemical datasets, I aim to demonstrate the value of
incorporating spatio-temporal dependencies into chlorophyll modelling, by fitting
models with and without spatio-temporal latent effects.
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3.3 Data

3.3.1 Argo float data

I used a dataset containing measurements from 5602 BGC-Argo and 20 000 core Argo
profiles completed in 2020 whose locations are locations are shown in Figure 3.1. This
dataset included profiles located in all major ocean basins during each month. This
data was accessed from the ifremer index (https:/ /data-argo.ifremer.fr) on 12th April
2023 through the R package argoFloats (Kelley et al., 2021b). This package was used to
select profiles from 2020 and to perform a quality control check of profiles to remove
profiles considered ‘Probably bad’ or ‘Bad” (Argo quality control flags 3 or 4,

respectively).

3.3.1.1 Chlorophyll

The chlorophyll variable from BGC-Argo float data was used to estimate the intensity
and depth of SCMs. I removed profiles which did not meet the following criteria: (1)
at least one observation in the top 15 m, (2) at least one observation below 150 m, (3)
and at least 20 observations in total. Each chlorophyll profile was smoothed using a
running median over a span of five measurements, similar to Cornec et al. (2021a).
Two SCM characteristics were identified for each chlorophyll profile: the maximum
concentration (Chlgcyr) and the SCM depth (zscw, i-e. the depth at which the
maximum concentration is observed). I chose to estimate the SCM characteristics like
this to avoid fitting mathematical curves to profiles as in Carranza et al. (2018) and Xu
et al. (2022b), since such a wide range of profile shapes would have required a
complicated function, which would have been computationally quite expensive. I
applied a log,, transformation of Chlgcyy, as chlorophyll has a log normal distribution
(Campbell, 1995). This had the added benefit of forcing positive values for predictions
of chlorophyll concentration.

3.3.1.2 Temperature and salinity

I calculated potential density profiles using the Gibbs seawater equations (Kelley

et al.,, 2021a), based on temperature and salinity profiles from both BGC and core Argo
floats. The same criteria for removing chlorophyll profiles based on the number of
measurements were applied to potential density profiles. I then estimated the mixed
layer depth (MLD) by identifying the shallowest depth which exceeded the surface
potential density by at least 0.03 kg m~3 (de Boyer Montégut et al., 2004).
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Chlorophyll (5602 profiles)

FIGURE 3.1: Locations of all of the BGC-Argo profiles (green) and core Argo profiles

(blue) used in this work. Note the sparseness of the BGC-Argo profiles in comparison

to the core Argo profiles, and clustering of BGC-Argo profiles in several regions, such
as in the Southern Ocean.

3.3.2 Gridded data products

I supplemented the Argo float dataset with additional variables from 3D hindcast
products from https:/ /data.marine.copernicus.eu/products. I chose products whose
variables had near-global coverage and daily temporal resolution in order to match
the time and location of Argo float profiles as closely as possible. Both the following
datasets were last accessed on 13th April 2023.

3.3.2.1 Euphotic depth and zooplankton abundance

I obtained estimates for the euphotic depth and zooplankton abundance from the
“Global ocean low and mid trophic levels biomass content hindcast” Copernicus
product (https://doi.org/10.48670/moi-00020). This product is a hindcast model and
has a spatial resolution of 1/12° and daily temporal resolution. The zooplankton
abundance is measured as the carbon mass of zooplankton in the water column (g
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m~2). The mean absolute difference of the zooplankton biomass is 0.44 gC m~2 and is
a slight overestimate of observations. This product does not indicate where in the
water column the zooplankton are located, although I still include it as it could be a
useful indicator for the interactions between different trophic levels. The quality
information document for the this gridded product details that uncertainty comes
from a variety of sources, firstly from raw data collection and then from the model and
its forcings, which is greater than the uncertainty in the euphotic depth variable in this
product.

3.3.2.2 Sea surface height anomaly

I used the Copernicus “Global Ocean Gridded L 4 Sea Surface Heights And Derived
Variables” product (https://doi.org/10.48670/moi-00148) which has 1/8° spatial
resolution and daily temporal resolution. The sea surface height anomaly (SSHA) is
calculated with reference to the 20-year average between 1993-2012 and it is estimated
through optimal interpolation of along-track measurements. I use SSHA as a proxy for
the presence, polarity and intensity of mesoscale eddies (Chelton et al., 2011), which
have been shown to affect vertical chlorophyll distribution (Cornec et al., 2021b). The
main sources of uncertainty in this product come from the sampling frequency of the
altimeters and the interpolation onto a regular grid, but there is good confidence in the
SSHA data with altimeter measurements having a root mean square error of around 1

cm.

3.4 Methods

I took a statistical modelling approach to identify the physical and biological
influences of SCM properties using data from BGC-Argo profiles. SCM properties
have previously been modelled statistically on a regional scale without the inclusion
of spatio-temporal latent effects (Xu et al., 2022b) but to my knowledge there are no
examples on a global scale. BGC-argo float data has been used to assess global
chlorophyll patterns (Cornec et al., 2021a; Bock et al., 2022), however these studies
focussed on classifying locations and defining general profile types rather than spatial
interpolation between observations across ocean basins. Here I fit statistical models to
BGC-Argo float data and then use the results to interpolate across the global ocean at
locations of the more widespread core Argo profiles whilst extracting the different
sources of profile variability.
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3.4.1 Bayesian spatio-temporal models for global oceanographic data

Model structure I fitted two Bayesian models to each of the SCM properties: zgcm
and Chlgcy. The first model was a normal linear model with the following covariates
as fixed effects: euphotic depth, MLD, sea surface height anomaly (SSHA), day length,
and zooplankton biomass. Table 3.1 describes justifications of these covariates. This
model was specified as:

P
Y;=PBo+ Y BpXip +éi 3.1)
p=1

for observationsi = 1,..., N and parameters p = 1,..., P and where X is the design

matrix and €; ~ N(0, 03

‘bs) is @ random zero-mean error term. The second model was

identical to the first other than the addition of a spatio-temporal random effect U. This
extra term accounted for the unmeasured sources of variation, which may be specific
to particular locations or seasons. This allowed the similarities of neighbouring
observations to be incorporated within in the model. Furthermore, the inclusion of
latent effects could have potentially offset any biases in fixed effect coefficients

introduced by the clustering of BGC-Argo profiles. The model specification became
P
Y;=Bo+ Y BpXip+ U(si,ti) + e (3.2)
p=1

where s; and t; are the location and month of observation i respectively.

Spatio-temporal latent field In theory, the spatio-temporal random effect U(s, ) is a
continuous surface that varies smoothly over space and time. Gaussian random fields
(GRFs) are commonly used to model such effects, as they allow spatial and temporal
dependence to be specified through a covariance function. However, GRFs require the
computation of a full covariance matrix, which involves calculating pairwise distances
between all observations—a task that becomes computationally prohibitive for large
datasets. The Matérn covariance function is frequently used in this context because it

provides a flexible way to model spatial autocorrelation based on distance.

To address the computational limitations of GRFs, I instead used Gaussian Markov
random fields (GMRFs), which represent a discretised approximation of GRFs. This
approach involved constructing a triangular mesh over the study region and
assuming that spatial dependence only existed between neighbouring mesh nodes. As
a result, the number of necessary distance calculations was drastically reduced,
greatly improving computational efficiency. This approximation was justified because
the Matérn covariance function can be derived as the solution to a specific stochastic
partial differential equation (SPDE) (Equation 2.8), which can be solved numerically
using the mesh-based finite element method described in Section 2.2.1.
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A further advantage of the SPDE approach is that it allows for non-stationary
covariance structures (Bakka et al., 2018). I used this to impose a physical barrier
correlation structure (Bakka et al., 2019), where the Matérn correlation length scale
was reduced over land such that correlation “flows” around coastlines. Since this
technique has not been used before for large-scale oceanographic data, I chose for the
correlation length scale to be five times shorter on land than over ocean. This value
was chosen as it matches the example in the original methods paper (Bakka et al.,
2019), however it was acknowledged that this arbitrary selection is a limitation of the
method. I considered this an important addition for my study given that two locations
with land between can have significantly different physical and biogeochemical
processes despite being a short physical distance apart (for example, the Arabian Sea
and the Bay of Bengal), especially given the clustered spatial distribution of the
BGC-Argo floats.

The temporal autocorrelation of the spatio-temporal random field between
consecutive months was assumed to be an autoregressive process. This has a single
parameter « € [—1,1] controlling the autocorrelation. Values of « close to 1 indicate
high temporal autocorrelation in which the GMRF associated with each month will be

similar to those for the previous and following months.

Priors There were four hyperparameters in this model controlling the
spatio-temporal component: the range of U (the distance beyond which spatial
correlation is negligible), the marginal variance of U (controlling the amplitude of
spatial variation), the temporal autocorrelation coefficient of U and the precision for
the observations. Each of these hyperparameters had a prior distribution over their
respective valid parameter space. Specifically, I defined weakly informative priors
over the positive real numbers for the range, marginal variance, and precision, and

over the interval (-1,1) for the temporal autocorrelation coefficient a.

Model fitting From a spatial statistics perspective, my dataset is moderately sized,
making estimation of the spatial random effect U computationally intensive through
traditional Markov chain Monte Carlo (MCMC) methods. To address this, I utilised an
approximate Bayesian inference method called integrated nested Laplace
approximations, which provide accurate parameter estimates in a fraction of the time
MCMC would take. Since my study region encompasses the global ocean, the SPDE
mesh was constructed on the surface of a sphere. I specified a fine mesh resolution
over the ocean to improve accuracy, and a coarser resolution over land to provide
boundary conditions while minimising computational cost. To preserve hard
boundaries in narrow regions such as the Isthmus of Panama, I used a mesh with a
maximum edge length of approximately 100 km over the ocean. This resulted in a
mesh containing over 36 000 nodes (Figure 3.2). Observation locations are linked to
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the mesh through a linear interpolation of the spatial field using the three mesh nodes
forming the triangle in which each observation lies (see Lindgren et al. (2011) for
details).

The data was randomly split into a training set (80%) to fit the models and a validation
set (20%, 1120 observations) to assess model fit. Each spatio-temporal model took
approximately 28 minutes on a standard laptop with an Intel core i5 processor
whereas the normal linear models took considerably less time. The computation time
increased exponentially with each additional month of profile data, which motivated
the decision to limit this study to a 12-month period.

3.4.2 Model selection

I used the Watanabe-Akaike information criterion (WAIC) to assess model fit whilst
accounting for model complexity. It is a Bayesian extension of the Akaike information
criterion that includes information from the entire posterior distribution for each
parameter, rather than a point estimate (the mode of the posterior). I also calculated
the root mean square error (RMSE), which provides a measure of the differences
between observations and predictions. I used these in conjunction with the statistical
coverage of the model, which is the proportion of observations whose true value lies
within a 95% prediction interval (Sahu, 2022).

3.4.3 Spatial prediction and interpolation

Locations of 20 000 randomly selected core Argo profiles from 2020 were used for
prediction using the model output. This meant that all the covariates were available
for predictions and were calculated in the same way as the training dataset. Given the
spatial distribution of core Argo floats, this provided a relatively uniform distribution
of prediction locations over the global ocean. The number of predictions for each
month ranged from 1250 to 1842.

3.5 Results

3.5.1 Model comparison

I fitted statistical models to BGC-Argo float data to investigate the drivers of SCM
intensity and depth. For each SCM property, I implemented two models: a standard
linear model and a spatio-temporal model. Model performance was assessed using a

validation dataset by comparing predicted values to observed outcomes. In all cases,
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FIGURE 3.2: An example of a high resolution global triangulation mesh for SPDE mod-
els. This mesh contains approximately 36 000 vertices, with a very fine mesh over the
region of interest (i.e., the ocean) and a low resolution elsewhere (i.e. over land) in
order to minimise the computational cost of fitting the spatio-temporal models. Each
land mass is shown by a coloured boundary.

Variable

Why include it in the models?

Expectations

MLD

Euphotic depth

Day length

Zooplankton
biomass

SSHA

The MLD represents the bound-
ary between well mixed surface
water and nutrient-rich deep
water.

The depth to which light can
penetrate should affect the
growth and abundance of phy-
toplankton as (Cullen, 2015).
Polar regions experience highly
seasonal light levels.

Zooplankton grazing can influ-
ence vertical phytoplankton dis-
tribution (Moeller et al., 2019).
Previous studies have shown
that SCMs are affected by
(sub)mesoscale physics (Cornec
etal., 2021b; Xu et al., 2022b).

As the MLD increases, Chlgcym
increases and zgcy decreases.

Greater euphotic depths should
correspond with deeper and
weaker SCM.

Longer days might encourage
more intense SCMs, but I expect
their depth will not be affected
significantly by daylight hours.
I expect that high zooplankton
abundance will force weaker
and deeper SCMs.

Positive (negative) SSH anoma-
lies will result in more (less)

intense and shallower (deeper)
SCMs.

TABLE 3.1: Summary of fixed effects included in the linear model and the spatio-

temporal model.
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Chlscm ZscM
Normal linear ~Spatio-temporal Normal linear Spatio-temporal
WAIC 1977 -1864 43082 40608
RMSE 0.295 0.195 31.1 24.6
Coverage 9% 76% 6% 52%

TABLE 3.2: Model comparison using WAIC, RMSE, and predictive coverage. For both
Chlgcm and zgey, the spatio-temporal model outperforms the linear model.

the spatio-temporal model outperformed the linear model, even after accounting for
the increased complexity introduced by the spatio-temporal component (Table 3.2).
The root mean square error (RMSE) for Chlscy and zseym was reduced by 33% and
21%, respectively, when using the spatio-temporal model instead of the normal linear
model. Additionally, the statistical coverage, which reports the proportion of 95%
prediction intervals that contain the corresponding observed value, substantially
improved for both SCM properties under the spatio-temporal model. Specifically, it
increased from 9% to 76% for Chlscy and from 6% to 52% for zgcm. Maps showing the
spatio-temporal breakdown of statistical coverage of zscy and Chlscy in Figures A.1
and A.2, respectively.

3.5.2 Drivers of SCM properties

Figure 3.3 shows the posterior distributions of the five fixed effects for each of the
SCM properties. Fixed effects were considered significant if their 95% credible
intervals excluded zero. Similarly, a significant change in effect size between models
occurred when they overlapped by less than 5%. In the Chlgcy model, all covariates
were statistically significant except for sea surface height anomaly. The inclusion of
the spatio-temporal effect led to notable changes in the estimated effects of z,
zooplankton biomass, and MLD. Following the inclusion of the spatio-temporal effect,
the z¢, had the strongest influence on Chlgcy, with an estimated coefficient of —0.5 per
100 m increase in zey, corresponding to a three-fold decrease. Incorporating the
spatio-temporal effect reduced the effect sizes of ze, and MLD, while increasing the
effect of zooplankton biomass. In the zgcy model, all covariates became statistically
significant after including the spatial random effect, with the posterior distribution for
the MLD effect shifting away from zero. Zooplankton biomass was the only covariate
with a negative effect. Euphotic depth and SSHA exhibited the strongest influences on
zscm- The estimated effect of SSHA remained largely unchanged with the addition of
the spatio-temporal component, while the uncertainty in the zooplankton biomass
effect increased.

The latent spatio-temporal effect for Chlscy (denoted Ucyy,,,) displayed a negative
effect in both polar regions during their respective winters (Figure 3.4). In these
regions, the effect was often as low as -1 (corresponding to an order of magnitude
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FIGURE 3.3: Comparison of fixed effect coefficient posterior distributions for the spa-

tial models (blue curves) and non-spatial models (red curves) for (a) zscy and (b)

Chlgcpm. The dotted line denotes no effect, and a statistically significant effect was de-

fined as one whose 95% credible interval did not contain zero. Note how the magni-

tude and even the sign of some effects changes when spatio-temporal autocorrelation
is included in models.
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FIGURE 3.4: Monthly estimates of the latent effect included in the spatio-temporal
model for log;,(Chlscy) which accounts for variability unexplained by the fixed ef-
fects.

decrease in Chlgcy). This suggests that the primary driver(s) controlling these
chlorophyll profiles (e.g. light intensity) was not included in the model. No clear
pattern was seen in Ucyy,,, throughout the tropics and subtropics, which indicates
that in these regions the fixed effects explained most of the variability and the latent
effect had a smaller role over large-scales. In contrast the latent effect for the zscm
model (denoted U,,) displayed large positive values in each of the subtropical
oligotrophic gyres (expect the Indian Ocean, possibly due to a lack of observations)
(Figure 3.5). The effect increased the predicted depth of SCMs by several tens of
metres, the most evident being in the South Pacific and, to a lesser extent, the North
Atlantic and North Pacific, which were present year-round. A seasonal effect was seen
in the polar summers, reducing the depth of predicted SCMs by around 20 - 40 m. In
summary, the latent effects pick up some large-scale variability not included in the

covariates for Chlscy and absorbs unexplained regional variability in zgcy.
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FIGURE 3.5: Monthly estimates of the latent effect included in the spatio-temporal
model for zgcyr which accounts for variability unexplained by the fixed effects.

3.5.3 Global SCM prediction

I made predictions of SCM properties at 1120 validation locations using the
spatio-temporal models. Predictions for Chlgcy were generally in agreement with the
true value (> = 0.89) (Figure 3.6a) and the statistical coverage is 76%. The best
prediction rate appeared to be for values between 0.1 and 1 mg m~3, however the
model did not fit so well at the extremes. Specifically, the highest and lowest values
were underestimated and overestimated respectively. The predictive skill for the zgcy
spatio-temporal model was slightly inferior to the Chlscy; model (> = 0.79). Lower
zscm observations were not well represented and almost no predictions were made for
the top 15 m of the water column despite a significant number of observations being
in that range. No unphysical predictions were made (negative depths) although the
95% prediction interval for several observations overlaps zero.

Global predictions of Chlgcy showed strong seasonal patterns at mid to high
latitudes, with the highest concentrations (> 1 mg m~3) occurring during spring and
summer (Figure 3.7). Very low concentrations (< 0.1 mg m~%) were predicted during
the polar winter and within the oligotrophic gyres. In contrast, predictions of zgcum
exhibited much less seasonal variation. Deep SCMs were predicted within all
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FIGURE 3.6: Comparison of observed values and fitted values (dots) with 95% predic-

tion intervals (vertical lines) for (a) zgcy and (b) Chlgeyg. Blue and red dots denote

those whose 95% prediction interval did and did not contain the true value, respec-
tively.
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FIGURE 3.7: Monthly predictions of Chlgcy at locations of 20 000 core Argo profiles in
2020 using the covariate estimates and spatial random effects from the spatio-temporal
model.

subtropical gyres except the Indian Ocean, which had very few observations (Figure
3.8). In these regions, zscym typically exceeded 100 m, with the North Pacific gyre
showing the greatest seasonal variability. The North Atlantic gyre appeared smaller
and shifted westward, potentially reflecting data gaps near the gyre centre. Prediction
uncertainty for both zgcy and Chlgeyy increased with distance from observations
(Figures A.3 and A .4).

Figure 3.9 shows combined predictions of Chlgcy and zscwm as a function of latitude
and time. A clear seasonal migration is visible, with peak Chlgcy values — and thus
shallower SCMs — shifting between hemispheres. The latitudinal bands between 15°
and 35° in both hemispheres correspond to the subtropical regions, which exhibited
the deepest SCMs. SCMs in the Southern Hemisphere was slightly deeper on average,
largely due to the deepest predictions in the South Pacific gyre. As expected, seasonal
variation was minimal near the equator. A small number of unphysical predictions (43
out of 20 000) had predicted depths above the ocean surface (i.e., zscm < 0), which

were mainly in the equatorial Atlantic near the South American coast.
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FIGURE 3.8: Monthly predictions of zgcy at locations of 20 000 core Argo profiles in
2020 using the covariate estimates and spatial random effects from the spatio-temporal
model.

3.6 Discussion

The vertical distribution of Chl-a in the global ocean varies across space and time
(Yasunaka et al., 2021; Bock et al., 2022). In particular, the depth and intensity of SCMs
are known to vary due to availability of light and nutrients (see Cullen (2015) and
references therein). In this work, I applied a statistical modelling approach to Chl-a
data from BGC-Argo floats to quantify the physical and biological influences on SCM
characteristics and to produce global maps of these characteristics.

3.6.1 Drivers of SCMs
3.6.1.1 Physical and biological effects
I found euphotic depth to be a significant driver of SCM properties (Figure 3.3), with a

deeper ze, corresponding to deeper and weaker SCMs. This supports previous

evidence (Xu et al., 2022b) and meets my expectations, since high Chlgcys in surface
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FIGURE 3.9: Monthly predictions of zgcy and Chlgey using the spatio-temporal
model, as functions of latitude. The red curves denote the mean zgcy.

waters increases light attenuation deeper in the water column and limits growing
conditions deeper in the water column. The MLD had a relatively small effect, which
is surprising given that this controls the depth to which nutrients are entrained,
particularly in the Southern Ocean where many of my observation were located (Xu
et al., 2022a) and given that previous studies had found links between vertical
chlorophyll distribution and the MLD (Carranza et al., 2018; Itoh et al., 2015; Miyares
et al., 2024). Bock et al. (2022) saw that a deeper MLD resulted in shallower and more
intense SCMs, especially in regions that experience seasonal variation such as the mid-
and high-latitudes and the Arabian Sea. SSHA, which I used as a proxy for the
presence and intensity of mesoscale eddies, had a large positive effect on zgcy of
approximately 40 m per metre of SSHA. This compares to Cornec et al. (2021b), who
found that SCMs were around 10% deeper in the core of anticyclonic eddies and
attribute this to photoacclimation. Cornec et al. (2021b) also saw that Chlscy
decreased by 5% - 15% in anticyclonic eddies, however I found no significant effect
from SSHA on Chlgcy. The effect of SSHA might have been dampened by that of the
Zeu, as Wang et al. (2023) identified a relationship between the two variables, with
(anti-) cyclones promoting shallower (deeper) ze,. Evidence suggests that surface

chlorophyll concentration responds to (sub-) mesoscale ocean features like eddies and
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fronts (McGillicuddy Jr, 2016; Mahadevan, 2016; Prend et al., 2022; Levy et al., 2023) so
it is reasonable to suggest that SCMs are also affected by small-scale processes.

My results suggest that zooplankton biomass accumulates in shallower and more
intense SCMs, contradictory to Moeller et al. (2019) who found that the presence of
zooplankton near the surface could deepen SCMs (Moeller et al., 2019). Given the
zooplankton data I used was integrated over the entire water column, this information
may not capture the correct processes occurring across different depths. Including day
length as a covariate in the models was intended to account for highly seasonal light
availability near the poles, however it had a negligible effect on Chlscy and zgew. It is
possible that this difference was reflected within the z¢, fixed effect already, or that a
non-linear effect would have been more appropriate. It could have been beneficial to
predict subsurface chlorophyll concentration using the surface concentration like Uitz
et al. (2006) did with ship-based measurements and some machine learning studies
have done with BGC-Argo float data (Sauzede et al., 2016; Chen et al., 2022). I justify
neglecting this potential covariate in my models since my aim was to prioritise
quantifying physical and biological drivers of SCMs rather than focussing on
constructing the best predictions. The relationship between surface and subsurface
chlorophyll will likely be non-linear since low surface concentrations can relate to
both negligible subsurface concentrations (in the polar winters) or to low but not
insignificant SCMs in the subtropics, whereas in the mid-latitudes the surface

concentration could be a stronger predictor for shallower SCMs or blooms.

3.6.1.2 Spatio-temporal effects

The spatio-temporal random effects (Figures 3.4 and 3.5) highlight regions where
variability remains unexplained by the fixed covariates. For Chlgcy, the random effect
exhibits notable seasonal structure, with strong negative values near the poles during
winter. This likely reflects the failure of the fixed effects to fully capture the seasonal
absence of phytoplankton, which is plausible given that such profiles represent a
minority in the dataset, and the fixed-effect estimates are weighted toward
observations with higher concentrations. Localised ‘hotspots” in the random effects
(e.g., the Labrador Sea for Chlscy) may result from spatial clustering of observations,
suggesting possible local overfitting. The latent effect for zscy shows a positive effect
in the subtropical gyres, indicating a contribution to deeper SCMs. This may be
explained by the fact that the dataset from which I obtained the euphotic depth
covariate was limited to around 110 m, which would have underestimated the deepest
SCMs without the inclusion of the spatio-temporal random effect.
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3.6.2 Predictions of SCM characteristics on a global scale

The spatio-temporal model for Chlgcy fitted the observations well (76% statistical
coverage, r> = 0.89) (Figure 3.6), but it did not fit so well for zscm (52% statistical

coverage, r> = 0.79). SCM intensities between 0.1 and 1 mg m3

were generally
well-reproduced, however the highest values were underestimated. These high
concentrations are likely triggered by some factor not included in my analysis and on
too small a scale to be detected by the spatial effect. Several of the highest values are
located in the Southern Ocean which is known to be iron-limited (Hawco et al., 2021).
Therefore, it is possible that these blooms have been induced by a local-scale iron
supply such as sea ice melt (Behera et al., 2020; Baldry et al., 2020), or sediment from

islands (Robinson et al., 2016).

Overall, my model predictions generally agree with the analyses by Cornec et al.
(2021a) and Yasunaka et al. (2021), with both SCM characteristics largely dependent
on latitude (Figure 3.9). The seasonality of Chlscy increases towards the poles with
highest concentrations during spring and summer in the mid- and high latitudes. The
deepest and least intense SCMs are found in the oligotrophic gyres and shallowest are
located near continental boundaries and at latitudes greater than 40° in both
hemispheres. I found that the SCMs in the North Pacific subtropical gyre are deeper
during summer, possibly due to changes in the nitracline depth (Letelier et al., 2004).
Spatial or temporal differences in zgcy may indicate variations in phytoplankton
community composition, as seen by Sato et al. (2022) and Brewin et al. (2022), however

this cannot be determined from my analysis.

3.6.3 Wider implications for SCMs

One of the advantages of this approach is that I was able to interpolate SCM
properties across the global ocean. Such information is of use for identifying regions
where satellite ocean colour data may be missing for significant subsurface
chlorophyll concentration and validating biogeochemical model output (Mignot et al.,
2021). If repeated for the entire BGC-Argo dataset, which extends from 2015 to 2025,
interannual variability could be identified. My study expands on work by Cornec

et al. (2021a) and Yasunaka et al. (2021) in assessing global SCM patterns and drivers
but extends their work by interpolating between floats and by quantifying the impact
of multiple influences concurrently within a statistical framework. The natural
extension is to apply this methodology to the datasets of the aforementioned studies,
which collated profiles over a longer time period and acquired concurrent profile
covariates, such as nitrate or downwelling irradiance, or supplemented the Argo
profiles with observations from other sources such as gliders (Carvalho et al., 2020).
My spatio-temporal modelling approach shows the increased uncertainty generated
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by more sparsely distributed floats (Figures A.3 and A.4), highlighting the importance
of increasing the quantity of floats and improving their spatial coverage across the
global ocean.

3.6.4 Spatio-temporal modelling of global BGC-Argo data

In this work, I applied a novel statistical modelling approach to data from BGC-Argo
floats. I used the INLA-SPDE method developed by Lindgren et al. (2011) which
provided computational benefits and allowed for describing a non-stationary
correlation structure. More specifically, I included a physical barrier constraint to
dampen the autocorrelation between locations separated by land. SPDE
spatio-temporal models have previously been used for global datasets (Dahlén et al.
(2020), however to my knowledge this work is the first using marine biogeochemical
data on a global scale, where including land barriers might be important. My results
suggest that spatio-temporal models are appropriate for research regarding large-scale
biogeochemical phenomena like SCMs (Table 3.2). The magnitude (and sign) of some
covariate fixed effects were significantly different when a spatio-temporal random
effect was included, as in Willems et al. (2022). This work only investigated using fixed
effects for covariates, which assumes that the effects are constant in space and time. In
practice, SCMs can form due to a variety of environmental factors (Baldry et al., 2020)
and these can vary across locations and seasons. Including spatially varying
covariates (SVCs) could be more realistic although this would significantly increase
the computational expense of the model fitting process. SVCs have not been used
often within the R-INLA functionality, however alternative R packages do offer such a
feature such as sdmTMB (Anderson et al., 2022). Similarly, the significance of some
covariates may have been different if smooth non linear effects were used instead of
tixed effects, particularly for the zooplankton biomass and day length covariates.

3.6.5 Limitations and future work

The biggest limitation of this work was the estimation of zgcy. Previous studies have
used a variety of methods to define and compute the SCM properties from Chl-a
profiles (Carranza et al., 2018; Sato et al., 2022; Xu et al., 2022b), although it was
difficult to make a rigorous definition for SCMs whilst avoiding computational issues.
Many profiles in my dataset did not display a single clear peak, but instead had either
no peak, a non-Gaussian shape such as a sigmoid, or even multiple peaks.
Consequently, my method for defining SCM characteristics was likely sub-optimal.
Another potential drawback is that I did not include the nitracline depth or absolute
light intensity as covariates, which in some regions may be as important (or more

important according to some studies) than the z., in determining zscy (Herbland and
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Voituriez, 1979; Gong et al., 2017; Miyares et al., 2024), since it controls the availability
of nutrients in the upper ocean.

My spatio-temporal modelling approach considered data that comprised a single
value for each observation. This meant that the SCM properties needed to be
estimated prior to model fitting. In particular, estimating zgcy poorly may have
introduced some added bias into my results. One could address this issue by using a
statistical approach called functional data analysis (FDA) that views each profile as a
single observation. Yarger et al. (2022) recently developed a functional data
methodology for Argo float data to interpolate temperature and salinity profiles
across the global ocean. Not only would using this method utilise all measurements
within a profile, but it would avoid estimating the SCM properties so a wide range of
profile shapes could be included without assuming they have clear peaks. Perhaps the
bias of sampling location affected model fitting, especially when identifying spatial
patterns. I explore the application of FDA techniques on Argo float profiles in Chapter
4 and Chapter 5.

I make several recommendations following this work: (1) Use spatio-temporal
modelling when using data from BGC-Argo profiles across a large area and spanning
at least several months. Including a spatio-temporal latent effect accounts for
unobserved effects as well as autocorrelation between neighbouring observations in
space and time. Furthermore, I suggest considering a model with spatially varying
covariates because the limiting factors of phytoplankton growth vary with location
and season, although I acknowledge that this requires further computational power.
(2) Use chlorophyll data from multiple years; the BGC-Argo array is unevenly
distributed across the global ocean so increasing the span of observations could
improve model fit especially in under sampled areas. This might aid in distinguishing
between interannual variability and more permanent spatial differences over smaller
scales. (3) If the aim of the work is to produce maps, then I recommend using
covariates from spatially complete datasets. This would allow a gridded product to be
produced without further interpolation of the model predictions. (4) Using a
functional data approach such as Yarger et al. (2022) would be beneficial for several
reasons. First, all measurements from a profile are included in the model-fitting
process so the need to define and estimate the SCM is avoided. Second, this method
allows for a variety of profile shapes, and it accounts for the fact that many profiles do
not have a single, clear peak but rather multiple peaks or no peak at all. (5) Repeating
the work using both chlorophyll and backscatter data could help address questions
regarding the role of photoacclimation in SCM formation on a global scale (Cornec
etal., 2021a; Masuda et al., 2021).
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3.7 Conclusion

This research aimed to use chlorophyll data from BGC-Argo floats to quantify the
effects of different environmental factors on the vertical distribution of chlorophyll
throughout the global ocean during 2020. In particular, I investigated how the
intensity and depth of SCMs vary over space and time using a spatio-temporal
modelling approach. My approach was computationally efficient as it used the
SPDE-INLA technique developed by Lindgren et al. (2011) and accounted for reduced
spatial autocorrelation when two locations were separated by land. I found that a
combination of biological and physical factors affected both the intensity and the
depth of SCMs, with the z¢, having a significant influence on both SCM properties.
MLD had a negligible effect on both characteristics and SSHA was not found to be a
significant driver for Chlgcy, in contrast to previous research (Cornec et al., 2021b),
although it was for zgcy. Fitted models were used to make predictions of SCM
properties across the global ocean using data from core Argo floats. This revealed
global patterns seen by previous studies (Cornec et al., 2021a; Yasunaka et al., 2021),
with the deepest and least intense SCMs occurring in the oligotrophic subtropical
gyres and the most intense occurring closer to the surface, especially at higher
latitudes. My approach worked well for modelling SCM intensity, but less well for
SCM depth. This was likely due to many profiles not having a clearly defined peak.
Future statistical models of vertical chlorophyll distribution could benefit from using
functional data analysis. Such an approach could use all measurements in a profile,
eliminating the need to identify SCMs and accounting for a variety of profile shapes,

including those that do not contain a single, distinct peak.
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Chapter 4

Assessing Environmental Influences
on Subsurface Chlorophyll Maxima
with Functional Regression Models

This chapter is, at the time of writing, in preparation for publication in Journal of

Geophysical Research: Oceans as:

Taylor, M., Cornec, M., Henson, S., Sahu, S., Hammond, M., Cael, B.B. Assessing
Environmental Influences on Subsurface Chlorophyll Maxima with Functional Regression
Models.

4.1 Abstract

Subsurface chlorophyll maxima (SCMs) are a common phenomenon in the global
ocean, characterised by a subsurface peak of chlorophyll concentration, reflecting
active phytoplankton layers well below the ocean surface. SCMs form when nutrients
and light are limited from above and below respectively. It is well established that the
vertical distribution of chlorophyll, including the depth of SCMs, varies spatially and
temporally, due to changing environmental conditions. In this study, I used profiling
data from 26 biogeochemical-Argo floats to identify relationships between
environmental conditions and SCMs in tropical and subtropical ocean regions. I
utilised functional regression, a statistical technique in which each profile can be
considered as one datum, in order to identify relationships between profile shape and
environmental conditions. I fitted functional regression models to profiles of
chlorophyll and particle backscatter (by,), a proxy for particulate organic carbon. I
found that bio-optical profile shape was better reproduced using an additive model
with non-linear scalar effects than with linear scalar effects. My results suggest that
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the SCM closely follows the euphotic depth, whereas the peak by, is located at or
above the nitracline. Predictions chlorophyll and by, profiles were made over the
permanently stratified regions of the global ocean. This revealed distinct latitudinal
bands where the ordering of the euphotic depth and nitracline depth determined the
depth and intensity of the SCM. I also found evidence suggesting that
photoacclimation is a dominant characteristic of SCMs in both subtropical and

equatorial regions.

4.2 Introduction

Chlorophyll-a is the primary pigment in photosynthetic organisms, and its
concentration is widely used as a proxy for phytoplankton biomass in marine
ecosystems. Chlorophyll concentration in the ocean varies by several orders of
magnitude over time, geographic space, and depth. One common feature of the
vertical distribution is a local maximum concentration located significantly below the
surface due to limitations of nutrients and light from above and below, respectively
(Cullen, 2015). This phenomenon is termed a subsurface chlorophyll maximum (SCM)
and can be located as deep as 200 m below the surface (Mignot et al., 2014). SCMs can
form through two mechanisms: biomass accumulation and photoacclimation. The
former refers to cases where an actual increase in phytoplankton biomass is observed
at depth (more precisely an increase in phytoplankton carbon, denoted Cppyio)
(Beckmann and Hense, 2007; Herbland and Voituriez, 1979; Hodges and Rudnick,
2004), whereas the latter describes a physiological response of phytoplankton to low
light levels by increasing the amount of intracellular chlorophyll per unit biomass
(Fennel and Boss, 2003; Letelier et al., 2004; Masuda et al., 2021). The cases have been
termed subsurface biomass maxima (5BMs) and subsurface photoacclimation maxima
(SAMs) respectively. Over longer time periods, adaption to low-light may also be a
driver, rather than acclimation SCMs are ubiquitous features across the tropics and
subtropics, where nearly-permanently stable environmental conditions allow for their
formation and maintenance, particularly in oligotrophic regions where surface
chlorophyll concentration is low (Uitz et al., 2006). It has been found that DCMs
contribute around half of depth-integrated NPP using ocean models (Silsbe and
Malkin, 2016) and BGC-Argo float data (Vives et al., 2024a), although this fraction
varies regionally and seasonally. Consequently SCMs play an important role in the
global carbon cycle and marine ecosystem.

Due to their depth, SCMs cannot be directly observed by satellite and their monitoring
requires the use of ship-based sampling or autonomous platforms. The
biogeochemical-Argo float array is a global network of robotic profiling floats
equipped with bio-optical sensors capable of measuring a range of physical and
biogeochemical variables throughout the top 2000 m of the water column, typically
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every ten days (Claustre et al., 2020). Many floats carry bio-optical sensors for
measuring chlorophyll fluorescence, from which chlorophyll concentration can be
estimated (Roesler et al., 2017), and particle backscatter (by,), a proxy for particulate
organic carbon (POC) (Loisel and Morel, 1998; Cetini¢ et al., 2012). Coincident
chlorophyll and by, profiles from BGC-Argo floats have been used to describe the
global distribution and classification of SCMs between SBMs and SAMs (Cornec et al.,
2021a) as well as identifying distinct biogeographical regimes based on seasonal
variability of the two bio-optical parameters (Bock et al., 2022). Deeper SCMs are
typically found in the subtropical oligotrophic gyres (Cornec et al., 2021a; Yasunaka
et al.,, 2021) and have a lower maximum chlorophyll concentration and are thicker
(Uitz et al., 2006) and are more likely to be formed through photoacclimation rather
than biomass accumulation (Cornec et al., 2021a).

It is well-established that SCMs form in strongly stratified water columns (Beckmann
and Hense, 2007; Cullen, 2015; Garg et al., 2024), where the upper layer is
nutrient-depleted and stable conditions allow for the persistence of these features. The
depth of SCMs (zscm) has been shown to be associated with a range of water column
features including the euphotic depth (zey) (Agusti and Duarte, 1999; Gong et al., 2015;
Xu et al., 2022b; Garg et al., 2024; Miyares et al., 2024), the nitracline depth (z,gjine)
(Herbland and Voituriez, 1979; Richardson and Bendtsen, 2019; Garg et al., 2024;
Miyares et al., 2024), isopycnals (Xu et al., 2022b) and isotherms (Chowdhury et al.,
2021). Moreover, SCM intensity (Chlscy), defined as the chlorophyll concentration at
the SCM peak, is typically lower for deeper euphotic depths (Xu et al., 2022b),
whereas Gong et al. (2015) showed that the nitracline gradient determined the Chlgcy.
Seasonal variability in light intensity in subtropical regions can shift the zgcy by
several tens of metres (Letelier et al., 2004) and influence phytoplankton community
composition, with deeper SCMs favouring smaller species due to their ability to grow
in low light levels (Latasa et al., 2016; Garg et al., 2024). Bock et al. (2022) compared
chlorophyll and by, seasonal cycles on a global scale to the zey, the z,jine and the
mixed layer depth (MLD). They found that in tropical regions the SCM was located
around the nitracline and above the z¢,, whereas in subtropical regions the ze, and
Zncline Were much more similar and were both located deeper than the SCM. In
seasonally stratified regions SCMs only formed during summer in response to the
substantial variability in the MLD, in contrast to the z¢, and zpine remaining nearly
constant year-round (Bock et al., 2022).

Accurately identifying and quantifying the mechanisms behind the formation and
maintenance of SCMs is important in order to fully understand how they vary in space
and time, what their global significance to the marine carbon cycle is and anticipate
how that might be impacted by anthropogenic climate change. However, uncertainty
remains over precisely how the influences of light and nutrients affect the shape of
chlorophyll and by, profiles pertaining to SCMs. Previous modelling studies assessed
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how each limiting factor affects the profiles of phytoplankton carbon and chlorophyll
respectively, which shed some light on the importance of photoacclimation (Fennel
and Boss, 2003; Masuda et al., 2021). Several attempts have been made to fit
mathematical curves such as sigmoids and Gaussians to chlorophyll profiles (Gong
etal.,, 2015; Carranza et al., 2018; Xu et al., 2022b; Brewin et al., 2022). This approach
reduces the complexity of entire profiles into a few well understood parameters,
allowing for simple analysis of how profile characteristics (such as the zgcy) vary
under different circumstances. Alternatively, profiles have been clustered based on
their shape before analysis (Cornec et al., 2021a). In recent years, neural networks
have become increasingly popular when reconstructing bio-optical profiles (Sauzede
etal.,, 2015; Chen et al., 2022; Yu et al., 2024). Although such methods provide an
excellent opportunity for spatio-temporal interpolation at unsampled locations, they
do not explicitly identify the relationships between entire profiles and environmental
conditions. Consequently, a gap in the literature persists for a statistical approach
which identifies the effects of environmental conditions on bio-optical profiles without

prior fitting of profiles to mathematical curves or extraction of profile characteristics.

In this work, I aim to use profiling data from BGC-Argo floats to better understand
drivers of variability in chlorophyll vertical distribution through the use of functional
data analysis (FDA). FDA is a branch of statistics focussed on data that take the form
of curves or surfaces, where the variable of interest is a function of at least one other
variable. A well-established and growing literature exists for FDA, encompassing
standard statistical techniques such as regression, clustering, and principal component
analysis (Ramsay and Silverman, 2005; Wang et al., 2016) as well as more advanced
topics like geostatistics (Mateu and Giraldo, 2021). FDA methods have recently been
applied to the Argo float profiling data, with Yarger et al. (2022) and Korte-Stapff et al.
(2022) modelling temperature and salinity, and oxygen, respectively, all as functions of
pressure. These studies showed the utility of functional data representations for
oceanographic variables, especially in understanding the dependencies between
measurements across depth. I apply a similar treatment to profiles from BGC-Argo
profiling data in the top 250 m of the water column to assess causes of variability in
shape amongst bio-optical profiles. This work highlights the opportunity to analyse
the variability of entire profiles through FDA rather than focussing on profile
characteristics, whilst avoiding predefining possible theoretical curves and thus
allowing the data to speak for itself.
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4.3 Materials and methods

4.3.1 Study region

I used profiling data from BGC-Argo floats located in low latitude biomes, where
SCMs are reported as dominant features of chlorophyll profiles (Cullen, 2015; Cornec
et al., 2021a). Profiles were selected if they were located within either the subtropical
or equatorial biomes defined by Fay and McKinley (2014), both being
nearly-permanently stratified systems. I use the mean biomes of Fay and McKinley
(2014), which are defined by clustering locations into contiguous regions, based on
similarities in surface chlorophyll concentration, sea surface temperature (SST), sea ice
coverage and MLD. Any profile that was not assigned a biome but was located nearest
to one of my desired biomes, and was within 500 km of it, was also included in my
dataset. This was done for two reasons, the first being to increase the number of
profiles assigned to biomes, and the second being to slightly widen the range of
environmental conditions, which might aid the identification of relationships between
covariates and response variables. I only used profiles with measurements of
chlorophyll, by, (a measure of suspended particles and a proxy for particulate organic
carbon (Cetini¢ et al., 2012; Loisel and Morel, 1998)), nitrate and photosynthetically
available radiation (PAR) alongside the standard CTD (conductivity, temperature and
depth) measurements. Furthermore, I restricted myself to only using profiles
completed at most two hours either side of local noon. This was done so that PAR
profiles were not affected significantly by diurnal light variations. In total, 1323
profiles from 26 BGC-Argo floats met these criteria, collectively spanning a period
from 24/10/2012 to 05/11/2023, with each float completing a profile approximately
once every 10 days. The locations of profiles used in this analysis are shown in Figure
41.

4.3.2 Bio-optical profiles

Several quality control procedures were applied to the chlorophyll and by, profiles to
remove bad data and prepare the profile for modelling, as detailed in Cornec et al.
(2021a). Measurements with an Argo quality control flag of 3 (“Probably bad”) or 4
("Bad”) were removed. I only used measurements from the top 250 m of the water
column, as chlorophyll is typically negligible below that depth, and consequently is
not of interest in the study of SCMs. BGC-Argo floats do not all sample the water
column at the same depths so first I regridded and interpolated the chlorophyll and
by, profiles to 1 m intervals. Next, [ applied a log,, transformation to the chlorophyll
data given that chlorophyll has an approximately log-normal distribution (Campbell,
1995). This helped reduce the magnitude of spikes in the profiles and ensured that no

unphysical predictions (negative chlorophyll concentrations) were made. Finally I
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FIGURE 4.1: My study region was the combined area of subtropical permanently strat-
ified biome and the equatorial biome defined by Fay and McKinley (2014) (shown in
orange). Other biomes are shown in blue and regions in grey denote cases where no
biome could be assigned. Within this region, I used data from BGC-Argo floats which
had profiles of chlorophyll, by, potential density (derived from temperature, salinity
and pressure), nitrate and PAR. My dataset comprised 1323 profiles (black dots) from
26 BGC-Argo floats. Specifically, I used 423 profiles in the Pacific Ocean, 850 profiles
in the Atlantic Ocean and 50 profiles in the Indian Ocean.

smoothed the chlorophyll and by, profiles to reduce the relative magnitude of spikes
using a running median over a window of 10 m. Note that throughout this work
when I refer to optical backscatter, I assume measurements at a wavelength of 700 nm,

unless clearly stated otherwise.

4.3.3 Covariate quality control and preparation

Following Argo protocols, hydrological data collected by the SBE 41 seabird CTD
sensors were processed and quality-controlled as described by Wong et al. (2020). The
MLD was estimated as the minimum depth at which the potential density increased
by at least 0.03 kg m~3 relative to its value at 10 m (de Boyer Montégut et al., 2004).
The z¢, was defined by the minimum depth where PAR was smaller than 1% of its
median value in the top 15 m of the water column. This was done to remove
variability in near-surface measurements caused by waves. The z,jino Was defined by
a1 ymol L~ threshold above the surface nitrate concentration as in Cornec et al.
(2021a).
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4.3.4 Analysis

Model structure I used a method from a branch of statistics called functional data
analysis (FDA), where each observation is a continuous curve or surface with respect
to some other variable (Ramsay and Silverman, 2005). In practice, functional data
observations are a finite set of measurements and, as the gaps between measurements
decrease, the approximation to a continuous function improves. In many applications,
the indexing variable is time, but in an oceanographic context, it is natural to view
profiling data as functions of pressure. Functional regression models (FRMs) aim to
infer relationships between variables, where at least one of which is a functional
variable. Refer to Table B.1 for a comparison of concepts in functional regression and
their analogues in scalar-valued regression. In this work, I treated profiles from
BGC-Argo floats as functions of pressure similar to Yarger et al. (2022) and
Korte-Stapff et al. (2022). The following equation shows an example model formula
which includes a linear effect $1(p) and a non-linear effect f(z, p),

y(p) = u(p) + z1B1(p) + f(z2,p) +--- +€(p) (4.1)

where the response variable y(p) is a function of p, p(p) is the intercept function, z;
and z; are scalar covariates and €;(p) is a normally distributed functional error term.
The dots in Equation 4.1 signify that there could be additional covariates (of either
type shown in Equation 4.1). Note that in this work I ignore functional covariates
since they add considerable complexity to the model and could make results more
difficult to interpret from a mechanistic perspective.

I fitted two FRMs to bio-optical profiles to compare the predictive ability of models
using linear scalar covariates or non-linear scalar covariates to compare their
effectiveness. The scalar covariates I used were MLD, zq, and z,ine, Where each of
these was derived from a profile, namely potential density, PAR or nitrate respectively.
The mean functions of the response variable y(p) of specific models I fitted are shown
below.

y(p) = u(p) + MLDB1(p) + zeuP2(p) + ZnclineP3(p) + €(p) (4.2)
y(p) = u(p) + fA(MLD, p) + f2(zeu, P) + f3(Zncline, P) + €(p) (4.3)

Equations 4.2 and 4.3 will be referred to from here on as the linear model and the
non-linear model respectively. Each of the model structures was fitted using
chlorophyll and by, profiles as the response variable.

Computation In practice, the functional coefficient parts of the model are described
by basis functions. In this work, I use cubic splines for functional coefficients, given

they guarantee a smooth function whilst combining computational efficiency and
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model flexibility. The splines had knots at regular 5 m intervals vertically in the water
column. The models were fitted using the pffr function within the refund package in
R (R Core Team, 2023). Model parameters were estimated through restricted
maximum likelihood (REML), in which redundant parameters are removed by
applying a transformation to the dataset, thereby reducing the computational
complexity. After fitting the models, I used the maxd function from the castr R
package to identify the zgcy of observed and fitted chlorophyll profiles from each
model. I also retrieved the chlorophyll concentration at the SCM (i.e., Chlgcy) to

compare the different models.

4.3.5 Prediction

I expanded the method to a wider spatio-temporal scales (with greater coverage) by
leveraging time and depth resolved gridded products and the output from the best
fitting model (the non-linear scalar model). Gridded products for each covariate were
obtained at a 1° spatial resolution and a 1-month temporal resolution. The MLD field
was sourced from the Global Ocean Surface Mixed Layer (GOSML) monthly
climatology, with estimates derived from Argo float CTD profiles. Nitrate profiles
were estimated for each grid cell using the CANYON-B machine learning model
(Bittig et al., 2018; Sauzede et al., 2017), which relied on CTD and oxygen profiles
collected by BGC-Argo floats, as oxygen sensors are more widely available than
nitrate sensors. Using these profiles, the same method was applied to estimate
nitracline depth. These three covariates at each grid cell were then used to predict
chlorophyll and backscatter profiles from 5 m to 250 m at a 1 m vertical resolution.

The fitted by, profiles were used to derive the phytoplankton carbon mass (Cpnyto)
through the same approach as Estapa et al. (2019). This first involved estimating the
backscatter at 470 nm from the backscatter at 700 nm using the power law found by
Morel and Maritorena (2001)

~1
470
by, (470) = by, (700) <700) . (4.4)
Note that estimates of the exponent in Equation 4.4 vary significantly. Despite this, the
analysis is continued to provide an indication of the mechanisms that affect Cphyto-
The conversion developed by Graff et al. (2015) was then used to estimate the Cppyto
concentration which took the following form

Cphyto = 12128 X by, (470) + 0.59. (4.5)

phyto
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4.4 Results

4.4.1 Evaluation of FRMs for bio-optical profiles

Both model structures reproduced chlorophyll profiles well when zgcy was located
between 110 m and 150 m (e.g., Figures 4.2a-c), a range which contains 56% of profiles.
However, the concentration of shallower SCMs was not characterised quite as well as
deeper SCMs by either model (Figures 4.2d-e). The thickness of SCMs in predicted
profiles was overestimated for observations with narrower peaks (Figure 4.2e). Some
unusual features from my dataset, such as chlorophyll profiles multiple peaks were
not captured by either of the FRMs (e.g. Figure 4.2f). However, those chlorophyll
profiles formed a small minority (< 1%) of my dataset, so this is unlikely to be
reflected in predictions. The linear model did not effectively capture the variability
throughout the top 250 m of the water column (Figure 4.3a). Its fitted profiles
appeared to give the same prediction at a depth of approximately 110 m, suggesting
there was no variability. The relationship between zgcy and Chlgey in the observed
profiles was better reproduced by the non-linear model (Figure 4.3b), with deeper
peaks having a smaller concentration until a depth of 100 m. In contrast the predicted
profiles from the linear model indicated that, below a depth of 115 m, the Chlgcm
increases with zgcy, which disagrees with both the observations and previous
research. The lower AIC and RMSE of the non-linear model suggested it explains a
significantly greater amount of variability in chlorophyll profiles, without including
unreasonably many parameters (Table 4.1). Consequently, the non-linear model was
considered to fit chlorophyll profiles better than the linear model and was used in

later analyses.

The mean fitted by, profile of each model closely resembled the mean observed by,
profile (Figure 4.4), but the variability differed, with the non-linear model displaying
slightly more variability around the mean, which was more similar to the observed
profiles. Both models identified that variability was highest in the top 50 m. The linear
model produced predictions with very little variability at a depth of around 115 m,
possibly reflecting a situation where the linear effects are changing sign. An inspection
of the characteristics of by, peaks (depth and concentration) did not aid the
comparison between models as both models gave similar results. The AIC and RMSE
were again smaller for the non-linear model (Table 4.1), indicating that the non-linear
model better explained the variability in by, profiles.

4.4.2 Effects of environmental conditions on chlorophyll and b, profiles

I explored the relationships between the covariates and the bio-optical profiles
identified by the non-linear scalar model (Figure 4.5). I found that the zgcy was
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FIGURE 4.2: Six examples of chlorophyll profile observations (black curves) and fitted
profiles from the two models. (a-c) show deeper SCMs. (d-e) show slightly shallower
SCMs. (f) shows a more complicated profile shape with two peaks in chlorophyll.

Response FRM type RMSE AIC Explained Deviance (%)
Linear 0.448 468768.2 57.0

Chlorophyll (0 inear 0.407 396362.8 64.5

. Linear 1.217x10~% -5568338 48.8

by Non-linear 1.161x10~% -5596971 53.4

TABLE 4.1: A comparison of model performance using three different measures of
goodness-of-fit. The best fitting model type according to each measure is shown in
bold.
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FIGURE 4.3: (a) Comparison of variability among all observed chlorophyll profiles
and the fitted profiles from the linear model and the non-linear model, respectively.
The black curve in each panel represents the mean chlorophyll profile. (b) The orange
dots display the zgcy and Chlgey of each profile. The red line shows the relationship
between the depth and concentration of the SCM across models and the observations.
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FIGURE 4.4: Comparison of variability among all observed by, profiles and the fitted
profiles from the linear model and non-linear model, respectively. The black curve in
each panel indicates the mean profile.
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located at the euphotic depth, which ranged from 50 m to 160 m, with the SCM peak
spanning around 20 m either side of the ze,. High concentrations of by, were restricted
to above the z., especially for zsc < 100 m, where there was a sharp decrease at the
Zeu. SCMs were typically found below shallow (< 90 m) nitraclines and above deep (>
140 m) nitraclines. The peak in biomass often occurred at the nitracline (for z,cjine < 90
m). Deeper than this, the biomass peak was considerably thicker (up to 100 m), but of
a lower intensity. Biomass concentrations were significantly lower at depths more than
20 m below the nitracline compared to the same distance above it, whereas chlorophyll
exhibited a more symmetric peak on both sides of the nitracline. Although the effects
of MLD on chlorophyll and b;, were statistically significant, their magnitudes were
substantially smaller than that of the other covariates. The intercept functions for the
non-linear model of chlorophyll and by, are shown in Figures B.1a and B.1b
respectively. The non-linear effects for chlorophyll and by, are shown in Figures B.2
and B.3 respectively. The standard errors of the non-linear effects for chlorophyll and
by, are shown in Figures B.4 and B.5 respectively. Summaries of the non-linear model

effects for chlorophyll and by, are given in Tables B.2 and B.3 respectively.

4.4.3 Predictions of SCM characteristics

Predictions of zgcy and Chlgey exhibited notable spatio-temporal variability (Figure
4.6). The deepest SCMs, typically around 120 m and reaching depths of up to 157 m in
the South Pacific, were predicted in the central regions of the subtropical gyres with a
chlorophyll concentration of around 0.2 mg m 3. In these locations, the deepest SCMs
were predicted during summer, with a seasonal range of approximately 15 m.
Shallower SCMs (around 60 m) were predicted in upwelling regions along the
equator, near continental shelves and in mid-latitudes where the mixed layer was
deeper. The highest Chlscy (0.8 mg m~—3) were predicted in the eastern equatorial
Pacific and eastern Central Atlantic, with minimal seasonal variability.

Predicted profiles located 15° either side of the equator had prominent peaks in
chlorophyll around 100 m without a corresponding peak in b, (Figure 4.7). These
profiles had a peak in Chl:Cppyy, (typically around 0.016 mg Chl mg Cphytofl) located
between 10 m and 20 m below the SCM. There was a small increase in by, from the
surface to the SCM, before it started decreasing with depth. SCM thickness was
considerably larger for profiles at 15° and 30° (in both hemispheres) than at the
equator. SCMs around the equator appeared as SBMs, with peaks in b, occurring just
above the SCM. Despite the increased by, the highest Chl:Cppyy, ratios (0.025 mg Chl
mg Cphytofl) were found in the mid-latitudes during spring and summer, and at the
equator. Seasonal variability in chlorophyll, by, and Chl:Cppyy, profile shape increased
with distance from the equator (Figures 4.7 and 4.8). In the subtropics, the overall
shape of chlorophyll profiles below 40 m resembled Gaussian curves (Figure 4.7).
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FIGURE 4.5: Fitted profiles of chlorophyll and b;, compared to the covariates from

the non-linear model. The dashed line represents the one-to-one line of the covariate

depth. Each row shows the effect of a different covariate. Note that I use points rather
than lines here to avoid overlapping results.

Chlorophyll profiles without a prominent SCM and slightly elevated near-surface
concentrations were predicted during winter 30° from the equator in both
hemispheres (Figure 4.7).

Zonal averages of the predictions revealed five latitudinal regimes, identified by
changes in the sign of the difference between z¢, and z,gjine (Figure 4.8). These bands
roughly corresponded to the north and south mid-latitudes, the north and south
subtropics, and the equatorial region respectively. Note that the precise boundaries of
these regimes changed seasonally. Positive values of zey- Zncline Were associated with
SCMs and higher Chlgcy, while negative values corresponded to deeper SCMs and
lower Chlscy. Elevated by, in the top 80 m was restricted to the three latitudinal
bands where z¢, < 100 m (the equator, and the mid latitudes). In the subtropical gyres
the elevated Chl:Cppyt, was typically located between the zey and zpcjine, Whereas in
equatorial regions, it extended to about 20 m below the z¢,. SCMs with high
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FIGURE 4.6: Predicted climatologies of zgcy and Chlgeyy for January, April, July and
October. The black grid cells indicate locations where the non-linear model did not

predict an SCM but instead predicted the maximum chlorophyll concentration at the
shallowest prediction depth of 5 m (2.2% of predicted profiles).
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Chl:Cphyto rarely overlapped the depths of high by, Instead its distribution with
respect to latitude more closely resembled that of chlorophyll.

4.5 Discussion

4.5.1 Comparing FRMs for bio-optical profiles

I present a novel method for analysing biogeochemical profiling data, with the aim of
describing relationships between environmental conditions and vertical profiles of
bio-optical variables in SCM environments. Specifically, FRMs were employed to
identify how profiles of chlorophyll and by, were affected by light, nitrate and
stratification. Two different model structures were compared with linear effects and
non-linear effects respectively. The model with non-linear effects performed
substantially better than the model with scalar effects (Table 4.1). In particular the
relationship between zgcy and Chlgen was best reproduced by the non-linear scalar
model (Figure 4.3). My approach allows for the study of vertical profile variability and
effects of environmental conditions without prior extraction of specific SCM
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FIGURE 4.7: Predicted zonally-averaged climatological profiles of chlorophyll, by, and
Chl:Cppyto for January, April, July and October at a selection of latitudes in the low
phy
latitudes.

characteristics or fitting a profile to a family of mathematical curves (Gong et al., 2015;
Carranza et al., 2018; Brewin et al., 2022; Xu et al., 2022b). This increases the flexibility
of the model and allows the data to speak for itself, although it does require greater
computational power and more advanced statistical understanding to interpret the
output. None of the models recreated very thin phytoplankton layers (< 5 m), which
have been highlighted by Durham and Stocker (2012), or chlorophyll profiles with two
peaks (Mufioz-Anderson et al., 2015), which might be better modelled with a reduced
dataset containing only profiles with such characteristics. It is worth mentioning that I
did not investigate using functional covariates, i.e., profiles as covariates, which
intuitively might provide more information for predicting bio-optical profiles.
However, I did not decide to try this as inferring real world mechanisms might have
been more difficult to identify from model output. This could be worth attempting in

future work.
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FIGURE 4.8: Climatological zonal averages for January and July of predicted chloro-
phyll, bbp and Chl:Cphyto. The solid, dashed and dotted black curves denote the zgy,
the z,dline, and the MLD respectively.

4.5.2 Relationships between bio-optical profiles and environmental
conditions

In contrast to previous studies (Uitz et al., 2006; Cornec et al., 2021a; Xu et al., 2022b), I
obtained statistical relationships between environmental conditions and continuous
bio-optical profiles. My results suggest that the SCMs form at the z.,, whereas peaks
in backscatter sit closer to the z,ine- The prediction of elevated by, at and above the
Zey Within the top 80 m in equatorial regions aligns with Bock et al. (2022). The
coupling between z., and zgcym (Figure 4.5) supports previous findings (Letelier et al.,
2004; Mignot et al., 2014; Xu et al., 2022b; Xing et al., 2023; Garg et al., 2024). My
estimated effect of the MLD on the chlorophyll was negligible compared to those of
Zeu and Zpjine, Which suggests the MLD plays a smaller role in determining SCM
characteristics. This would agree with previous studies who found that the MLD only
affected SCMs in seasonally stratified regions (Bock et al., 2022; Dai et al., 2023). The
strong positive correlation between the zscy and the z,jine described by Herbland and
Voituriez (1979) was less evident in my study. I identified large-scale relationships
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between environmental conditions and bio-optical profiles (Figures 4.5 and 4.8).
Latitudinal patterns in bio-optical profiles have been observed before but here I
provide a bridge between small-scale studies that used in situ data (Xu et al., 2022b;
Garg et al., 2024) and theoretical modelling studies (Fennel and Boss, 2003; Hodges
and Rudnick, 2004; Gong et al., 2015). One notable inconsistency in my results is the
reduction in Chlgcy for SCMs located at a depth of around 100 m (Figure 4.3). This
occurs in locations where both z, and zjine are both around 100 m (Figure B.6). This
might be explained by the effects from z¢,, and z,qine cancelling each other out,
resulting in an unusual chlorophyll profile shape compared to those of slightly
different covariate values. Three-dimensional scatter plots showing the combinations
of the covariates for the observed and predicted profiles are available in Figures B.7
and B.8.

4.5.3 Large-scale patterns in bio-optical profiles

I observed that the deepest and least intense SCMs occur in the subtropical gyres,
while shallower and more intense SCMs are found near the equator (Figures 4.7 and
4.8), consistent with previous studies (Cornec et al., 2021a; Masuda et al., 2021; Bock
et al., 2022; Yasunaka et al., 2021). My results also indicate that, in general, SCMs in
the subtropics are not only deeper but also exhibit the thickest vertical structures
(Figure 4.7). Additionally, I found that seasonal variability in chlorophyll and by,
increases with distance from the equator (Figures 4.7 and 4.8), aligning with the
findings of Cornec et al. (2021a) and Bock et al. (2022). At the equator, seasonal
changes in the zgcm, byp, and Chl:Cppyy, are minimal (typically less than 10 m across
the year) supporting observations by Bock et al. (2022).

The zonally averaged predictions suggest the Chl:Cppy, ratio does increase in SCMs
across a range of latitudes, with a larger proportion seen during summer than winter
(Figure 4.8). The Chl:Cppyyo ratio is very high (> 0.02 mg Chl mg Cphytofl) even as far
south as 50°S during summer, suggesting that nutrients have been depleted and light
is now a limiting factor. Steele (1964) found that SCM depth is not related to the
maximum possible value of the Chl:Cppyy, ratio. However, it is possible that increases
in Chl:Cppyto might not only be due to photoacclimation but also represent a change in
species composition (Letelier et al., 2004) which may be adapted to have different
maximum Chl:Cppyy, ratios, indicating a longer term selection rather than a

physiological change within individual organisms.

4.5.4 Limitations and future work

A notable caveat of this study was the prediction of bio-optical profiles in locations
distant from the observations used for model fitting. This was due to the sparseness
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and clustering of floats equipped with all of the sensors and restricting the dataset to
those profiles completed within two hours of local noon. Most of the available profiles
were concentrated in the subtropical gyres, which may have biased covariate effect
estimates. This issue may be alleviated in the future as more fully equipped floats are
deployed more evenly throughout the global ocean. I did not include any interaction
effects in the additive non-linear model, which may be important since phytoplankton
growth depends on the availability of both nutrients and light simultaneously.
However, extracting useful information from such a model may have been difficult.
Additionally, top-down controls on phytoplankton, which have been shown to be
significant (Longhurst, 1976; Prowe et al., 2012; Moeller et al., 2019; Rodriguez-Galvez
et al., 2023), were not considered due to the lack of coincident measurements of
zooplankton with BGC-Argo profiles. The method used to infer Chl:Cppyt, may not be
applicable at all prediction locations, particularly in regions with the deepest SCMs.
However, its application across a broad range of latitudes by Arteaga et al. (2022)
suggests it may still be appropriate in many cases. Finally, it may not be entirely
appropriate to define the z., based on a fraction of surface irradiance (Banse, 2004),
since this does not account for the actual amount of light reaching a given depth.
Instead, perhaps a definition based on absolute light intensity would be more

informative from a physiological perspective.

This work does not include nutrients other than nitrate, which may also be limiting
factors in phytoplankton growth, as the BGC-Argo floats do not carry sensors for
phosphate, silicate, etc. It could be interesting to apply this methodology to a dataset
containing measurements of a wider range of potentially limiting nutrients, for
example the GEOTRACES program (Anderson, 2020). Alternatively, this approach
could be used to analyse the vertical distribution of different phytoplankton species in
various environments, such as the datasets analysed by Sato et al. (2022) and Miyares
et al. (2024). Although this study focussed on SCMs located in permanently stratified
biomes, several studies have highlighted their formation at higher latitudes in
summer (Bouman et al., 2020; Cornec et al., 2021a; Baldry et al., 2020, 2024). Moreover,
the study of SCMs could be applied to quantify the effect of mesoscale ocean physics
on SCMs (Cornec et al., 2021b; Wang and Liu, 2024). From a statistical perspective, a
bivariate FRM may more effectively capture the covariance between chlorophyll and
byp, potentially leading to more accurate estimates of the Chl:Cppy, ratio, although
this may significantly increase the computational cost of model fitting. Alternatively,
approaches that incorporate spatio-temporal latent effects, such as the one developed
by Yarger et al. (2022), could offer further insights. As the number of BGC-Argo floats
equipped with the full array of sensors increases both in number and global coverage
(Owens et al., 2022; Thierry et al., 2025), there may be opportunities to apply the
present methodology to address further questions from marine biogeochemistry.
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4.6 Conclusions

Over the past decade, SCMs have received growing attention, partly due to the
increasing availability of subsurface measurements of bio-optical parameters from the
BGC-Argo float array. Plenty of research has focussed on establishing relationships
between characteristics of SCMs (e.g. zscm or Chlgcym) and environmental conditions,
however these have usually involved prior identification of SCM characteristics
(Herbland and Voituriez, 1979; Cornec et al., 2021a) or the fitting of profiles to
convenient mathematical curves (Gong et al., 2015; Xu et al., 2022b). In this study I
present a functional regression analysis, in which data takes the form of curves, of
chlorophyll and by, profiles, using data from 26 BGC-Argo floats (comprising 1323
profiles) across tropical and subtropical ocean regions. Through an additive model, I
identified non-linear relationships between bio-optical profiles and the zey, the z,gine,
and the MLD. Notably, I found that the depth of the zscy closely follows ze,, while
peaks in by, were concentrated at the zpine. This suggests that light availability is
main control of zgcy whereas biomass accumulates at the nitracline. These findings
align with theoretical results by Fennel and Boss (2003) and Gong et al. (2015) by
indicating that photoacclimation is a primary driver of most SCMs, not only for the
deepest SCMs. Using my model, I produced a climatology of predictions of
chlorophyll, b, and, through subsequent calculations, Chl:Cpp,y,. This revealed the
large-scale differences in subsurface bio-optical profiles previously identified by Bock
et al. (2022). Overall, my findings demonstrate that functional data analysis is a viable
and insightful approach for investigating biogeochemical processes, and it is possible
to reconstruct large-scale interpolations through the use of a few features of the water

column as covariates.

The methodology shown in this work could be extended in several ways including
assessing the vertical distributions of phytoplankton functional groups (Brewin et al.,
2022; Sato et al., 2022), or the influence of mesoscale physics (Cornec et al., 2021b; Xu
et al., 2022b) on bio-optical profiles. Moreover, this work was restricted to regions with
strongly stratified water columns so it could be interesting to repeat it for mid-latitude
or polar environments, where SCMs do form during summer (Cornec et al., 2021a;
Baldry et al., 2020). Here I have demonstrated the usefulness of utilising FRMs for
profiling data and hope that others in marine biogeochemistry find it an attractive
alternative to previous methods, especially as the number of BGC-Argo floats
equipped with a full selection of sensors increases (Owens et al., 2022; Thierry et al.,
2025).
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Chapter 5

Scalar Variance and Correlation for
Oceanographic Profiles: an Argo
Float Application

This chapter is, at the time of writing, in preparation for publication in Global

Biogeochemical Cycles as:

Taylor, M., Henson, S., Sahu, S., Hammond, M., Cael, B.B. Scalar Variance and Correlation
for Oceanographic Profiles: an Argo Float Application.

5.1 Abstract

Depth profiles are a commonly used observation in oceanography and their number
has grown rapidly in recent years with the deployment of autonomous platforms such
as biogeochemical-Argo (BGC-Argo) floats. Functional data analysis (FDA) allows us
to treat profiles as single datums, enabling the analysis of profile shape within a
convenient and coherent framework. Consequently, FDA has recently been utilised in
oceanographic studies. However, previous analyses have typically assessed variability
only as a function of depth, without providing a single summary measure for variance
across entire profiles. Here, I applied a new technique that calculates scalar-valued
measures of variance and correlation for groups of curves. This enabled the
assessment of profile variability and correlation in ways directly analogous to
traditional scalar-valued data analysis. I used this method to assess the variability of
chlorophyll and temperature profiles (between 5 m and 250 m) from a global dataset
of 98 413 BGC-Argo floats. Chlorophyll profiles had significantly higher variance in
the high latitudes during spring and summer than in the tropics. The variability of
temperature profiles was greatest between 30° and 40° either side of the equator, in
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regions with fronts between water masses. The strongest correlation between
chlorophyll and temperature profiles occurred at the fronts, as well as in the
Mediterranean Sea. From a semi-Lagrangian perspective, I found that the seasonal
autocorrelation of temperature profiles is stronger than that of chlorophyll profiles,
assuming that a float remains in a relatively small area. From an Eulerian perspective,
I showed that seasonal variation dominates spatial variation towards the poles when
compared over large spatial scales. This work provides an indication that scalar
variance and correlation of oceanographic profiles could be useful in a variety of

contexts, including observing system optimisation and calibrating sensors.

5.2 Introduction

Amongst the most common forms of oceanographic observation is the depth profile
since it aids the assessment of depth-dependent variation of properties of seawater. In
many scenarios, the overall shape of a depth profile is as important as the exact
numerical values at any specific depth as this can provide information about the
vertical structure of the ocean and how phenomena are formed and maintained, e.g.
the distribution of water masses or the structure of eddies. In recent decades, the
quantity of depth profiles has increased substantially due to the widespread
deployment of autonomous observing platforms, which are capable of measuring a
variety of variables concurrently in remote locations and on a global scale, previously
unattainable through traditional ship-based research (Chai et al., 2020). Consequently,
the development of statistical tools appropriate and, if possible, dedicated for the
analysis of depth profiles will help reveal features of the vertical structure of the ocean.

Functional data take the form of curves and surfaces, whereby the variable of interest
is considered a function of another so-called indexing variable. Recent work has
demonstrated the benefits of treating oceanographic profiles as continuous functional
data objects, where depth (or equally pressure) is used as an indexing variable (Yarger
et al., 2022; Korte-Stapff et al., 2022). This allows for the essence of the shape of an
oceanographic profile to be captured within each datum, alongside the numerical
values. Although previous studies have utilised this approach in the context of
spatio-temporal modelling, there are opportunities to explore more fundamental
analyses through the lens of functional data analysis. For example, Urbano-Leon et al.
(2023) developed a methodology for quantifying the variance of a set of functional
data as a single value (a scalar), when previously only a variance function was
possible (Ramsay and Silverman, 2005). This approach involves representing each
function as the linear combination of a set of basis functions and summing the
variances of basis coefficients. Moreover, they demonstrated a simple extension to
calculate a scalar correlation coefficient between paired sets of functional data,

allowing them to quantify the similarity of annual temperature patterns across several
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regions in Canada. The purpose of this work is to present the first calculation of scalar
variance and correlation for oceanographic profiles, using autonomous platform data
as an example. This provides oceanographers with a new tool to quantify and
compare profile variability, potentially aiding interpretation of physical and
biogeochemical patterns in the ocean.

The biogeochemical-Argo (BGC-Argo) float array is a global network of profiling
floats that carry a range of sensors capable of measuring biogeochemical and physical
parameters of the top 2000 m of the water column (Claustre et al., 2020). Around 520
BGC-Argo floats can measure chlorophyll, a common proxy for the biomass of
phytoplankton, which form the base of the marine food web and play an important
role in the ocean carbon cycle (Falkowski, 1994). The understanding of subsurface
chlorophyll distribution has improved significantly due to the abundance of
measurements by BGC-Argo floats over a range of spatial and temporal scales from
global (Cornec et al., 2021a; Yasunaka et al., 2021) to mesoscale and sub-seasonal scales
(Cornec et al., 2021b; McKee et al., 2023; Strutton et al., 2023).

Identifying spatial and temporal scales of variation of chlorophyll is useful in
determining the mechanisms that promote or hinder the growth of phytoplankton.
Several studies have revealed a connection between mesoscale dynamics (such as
eddies) and chlorophyll concentration (Cornec et al., 2021b; McKee et al., 2022;
Strutton et al., 2023). Some analyses have found that the difference between length
scales of surface chlorophyll when viewed from Eulerian and Lagrangian time scales
are negligible (Kuhn et al., 2023), whereas McKee et al. (2022) utilised both
frameworks to find that profile anomalies were connected to mesoscale stirring.
Temperature fields have also been characterised by distinct length scales through a
variety of methods (Storto et al., 2018; Gille and Kelly, 1996; Mirouze et al., 2016; Song
et al., 2022). However, a gap in the literature remains for the global assessment of the
spatial and temporal length scales of chlorophyll profiles and how they compare to
those of temperature profiles. In this work, I calculated the variance of chlorophyll
and temperature profiles as well as their correlation from 98 413 BGC-Argo floats on a
variety of spatial scales and from Eulerian and Lagrangian perspectives. My results
suggest that the spatial scales over which profiles are paired when calculating
correlation is important when comparing chlorophyll and temperature. Furthermore,
I found that temporal length scales in a Lagrangian framework are less useful when a
float trajectory passes from one biogeographical region to another.

The development of specific statistical techniques for oceanographic profiles is
important due to the increased deployments of autonomous profiling platforms.
Benefits of utilising the variance and correlation for profiles could range from
identifying relationships between the shapes of profiles to the calibration of multiple
platforms and optimisation of observing system deployments (Chamberlain et al.,
2023; Chu et al., 2024). Given the trajectory of oceanography towards increased
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autonomous subsurface measurements, suitable statistical analysis methodologies are
necessary to extract maximum value from the data. My results provide an example of
treating profiles as functional data allows for the calculation of a novel measure of

variance and correlation, and how these metrics vary over space and time.

5.3 Materials and Methods

5.3.1 Scalar variance and correlation of functional data

Functional datasets are those in which each datum takes the form of a continuous
curve or surface which is a function of at least one other variable. Here, I apply this
framework to chlorophyll and temperature as a function of pressure. Recent
developments in the field of functional data analysis have produced a method for
calculating scalar-valued summary statistics, specifically the variance and correlation,
for functional datasets (Urbano-Leon et al., 2023). The method will be described
briefly here but refer to the original paper for full details and proofs. Suppose that I
have two sets X and ) each containing n curves (for example, paired chlorophyll and
temperature profiles) and then decompose each curve from & and Y into p
orthogonal basis functions with 4; ; and b; ; denoting the coefficient of the jth basis
component of the ith curve in sets X and ) respectively. The mean basis coefficients
for each set are calculated as follows

n L 1 M
Zai,]‘, Bj = E wa (51)

i=1 i=1

Aj =

|-

The mean basis coefficients represent a mean function for each set, describing a
characteristic curve shape. Using these mean functions, I can calculate the variance of
the coefficients for each of the basis functions (denoted V;; and V;, respectively). The
variances of sets X and ) are then simply the sums of each of the basis variances V;,
and Vj, respectively.
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Similarly, the covariance between the sets for the jth basis function is C; and the total
covariance between the sets X’ and ) is the sum of the covariances of each basis

coefficient C -
p
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FIGURE 5.1: Four examples of paired sets of ocean profiles as functional data and their

respective correlations. Colours indicate matching pairs across datasets. The specific

numerical values within each profile are not as important as the direction and relative
magnitude of any deviations from a typical profile shape.

The equation to calculate the correlation between the sets X and ) is the same for
scalar data.

B Cov(X,Y)
Cor(X,Y) = VVar(X,Y)Var(X,))

The standard deviation of functional data is simply the square root of the variance, in
an identical way to scalar-valued statistics.

(5.5)

Mathematically, a correlation of +1 would represent a case where each basis coefficient
is perfectly linear and positively correlated. A deviation (from the mean function) in a
specific basis component in set X’ corresponds to a deviation in the same direction in

the equivalent component in the set ). In contrast, a correlation of -1 represents a case
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where each basis is perfectly linear and negatively correlated. A correlation of +1
implies the functional shape is maintained perfectly whereas a correlation of -1
suggests the sets are exactly out of phase, meaning any deviation in a particular
component in set X’ corresponds to a deviation in the opposite direction from the
mean function in set ). Note that this does not imply that each pair of functions is a
pointwise negative of the other, but instead they vary in opposite directions along the
structural features captured by the basis coefficient. Figure 5.1 shows several
examples of datasets containing six pairs of oceanographic profiles, and their
correlation. The first example displays a near-perfect dependency, meaning almost all
deviations from the mean in one set are replicated in the second set. The second shows
a slightly weaker positive correlation but a clear relationship is visible by visual
inspection. The third shows almost zero correlation and the fourth shows a case with
strong negative correlation where deviations from a mean function in the positive
direction near the surface in one set corresponds to negative deviations from the mean

function near the surface in the other set.

5.3.2 BGC-Argo float data

In this study I used profiles collected by BGC-Argo floats with chlorophyll and
temperature measurements. Observations were unevenly distributed across the global
ocean, increasing in frequency over time between 30/05/2010 and 30/12/2024.
Profiles were partitioned into groups according to the mean biomes defined by Fay
and McKinley (2014). The Mediterranean Sea (excluding the Black Sea) was used as an
additional region. Any profiles without a timestamp were excluded from the analysis.
Measurements assigned a quality control flag by the Argo data centre of 3 (“Probably
bad”) or 4 (“Bad”) were removed. Profiles with fewer than 20 measurements between
5 m and 250 m were also removed, as were those whose range of measurements did
not span at least from 20 m to 230 m. In total, 98 413 profiles from 890 BGC-Argo floats
remained and were used in subsequent analyses. Figure 5.2 shows the distributions of

profiles in space and time.

The R package castr was used to prepare chlorophyll and temperature profiles for
analysis. The profiles were regridded to 5 m across a range from 5 m to 250 m using
linear interpolation. In cases where the edge values were NA, the nearest non-NA
value was interpolated until either 5 m or 250 m. Each profile was then smoothed
using a sliding window of width 15 m using a moving median. The chlorophyll
profiles had been corrected for non-photochemical quenching prior to download
(Schmechtig et al., 2023). A log,, transformation was not applied to the chlorophyll
profiles in this work (as in previous chapters) because that would have reduced the
variability of large values (which are of considerable interest) whilst increasing the
relative variability of the small values. This could have led to poorly identifying



5.3. Materials and Methods 87

a
‘:w “/‘%} . \‘
J 2 ’
L
Biome
. A 2 ® ICE
P o8 = ke e . ® SPSS
ST 1 v o e oy snmwesipy  © STSS
- S Yo A STPS
® EQU
MED

@
=]
=]

Monthly Observations
w
o
o

o

2010 2011 2012 2013 2014 2015 2018 2017 2018 2018 2020 2021 2022 2023 2024 2025

FIGURE 5.2: (a) Global distribution of the 98 413 BGC-Argo profiles used in this work.
Points are coloured by the mean biome in which they are located according to the clas-
sification by Fay and McKinley (2014). Profiles were partitioned into the ice biome
(ICE, n = 10 173), the subpolar seasonally stratified biome (SPSS, 30 958), the subtrop-
ical seasonally stratified biome (STSS, 14 483), the subtropical permanently stratified
biome (STPS, 29011) and the equatorial biome (EQU, 4454). The Mediterranean Sea
was also included as an additional biogeographical region (MED, 9366). (b) Timeline
showing the number of completed profiles globally each month from January 2010 to
December 2024.

strong correlation given that the overall shape of the profile has been altered and
amplified uninteresting sections of profiles. Moreover, in contrast to the analysis in
Chapter 4, there was no prediction and consequently there was no requirement to
enforce positivity of chlorophyll measurements later. Profiles with either no recorded
location or an unreasonable location (detected by a float trajectory having a speed
greater than 0.5 ms~!) were identified by interpolating along the great-circle path
between the two adjacent observations, using the relative time of the missing location.

5.3.3 Application of scalar variance and correlation on BGC-Argo profiles

In a similar way to Yarger et al. (2022) and Korte-Stapff et al. (2022), I consider the
profiles from Argo floats as functional data objects. Specifically, I treat chlorophyll and
temperature profiles as functions with respect to pressure. As described in section
5.3.1, the profiles are represented using basis functions. Due to the continuous nature
of oceanographic profiles and for computational efficiency, I use Fourier basis
functions with 50 components (one for each of the regridded profile measurements).
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From here on, the analysis is divided into three parts depending on how the
theoretical sets X and ) are comprised with the BGC-Argo profiles prior to

calculations of variance and correlation.

5.3.3.1 Variance and correlation between chlorophyll and temperature profiles

Consider the variance and correlation of concurrent profiles of chlorophyll and
temperature. The sets A and ) are simply the chlorophyll and temperature profiles
respectively (the labelling of each set is unimportant, but for consistency chlorophyll
will be set X' if both variables are involved). The respective variances of each variable
and their correlation were calculated for the entire dataset (98 413 profiles) as well as
after extracting profiles for individual biomes. Then the profiles were binned into a 5°
longitude-latitude grid. In each grid cell, the variances of chlorophyll and
temperature, and their correlation was calculated, in cells with at least 10 profiles in an
individual bin. The same was done for meteorological seasons and monthly bins on a
10° grid.

5.3.3.2 Semi-Lagrangian autocorrelation of chlorophyll and temperature profiles

Suppose instead of grouping profiles by location, I group them by which float they
were collected. Argo floats are free to drift with the horizontal advection of the ocean
and consequently can follow the same water mass over time (a Lagrangian
framework). Given that Argo floats spend the majority of their time at their parking
depth of 1000 m, and my depths of interest are shallower than 250 m, the float will
experience a slightly different horizontal drift to the surface. Hence, the Lagrangian
perspective of chlorophyll is only semi-Lagrangian although previous application of
this has yielded effective results (McKee et al., 2022).

I analysed seven floats whose lifespans were longer than two years and had regular
sampling frequencies namely (WMOs 1902385, 4903365, 6901767, 5905107, 5906204,
5904021 and 6901585). These floats represented a range of biogeographical regions.
Sets X and Y are filled with corresponding chlorophyll and temperature profiles. The
respective variances of chlorophyll and temperature profiles were calculated for each

float, as well as their correlation.

In addition, the temporal autocorrelation functions (ACFs) of chlorophyll and
temperature profiles were calculated. This was done by iteratively extracting pairs of
profiles with a certain time lag. Sets X and )V were filled with the earlier and later
profiles from pairs respectively, but crucially here they are the same variable but from

another cycle. The correlation between & and ) was then calculated for daily time
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lags from 1 to 730 days. If there were fewer than 10 pairs of profiles for a given time

lag, then no correlation was calculated.

5.3.3.3 Eulerian autocorrelation of chlorophyll and temperature profiles

The Eulerian spatio-temporal autocorrelation structure (STAS) of chlorophyll and
temperature profiles was computed separately for each biome. For each combination
of spatial radius r and temporal lag I, I identified pairs of profiles {i, j} that satisfied
the conditions |dgc(s;, 8;) — 7| < Terror and |t; — t;| = [, where s denotes the geographic
coordinates (longitude and latitude) of an observation and t denotes time. The great
circle distance (the shortest distance between two points) dgc was computed using the
Haversine formula (Robusto, 1957). Note that the distances cross land for a minority
of profile pairs. I then calculated the correlation between all profile pairs meeting
these criteria. I considered search radii ranging from 50 km to 2000 km in 50 km
increments and temporal lags from 1 to 365 days, resulting in a total of 29 200
spatial-temporal combinations. Given that distances between profiles are highly
unlikely to be an exact multiple of 50 km apart, I allowed a window of distances,
centred about r with maximum difference of 7¢rror, Which I set as 50 km. To improve
the interpretability of the STAS, a smoothing kernel was applied to the resulting
autocorrelation grid. This kernel was weighted by the number of profile pairs
contributing to each (r,1) combination, and had a span of 150 km in space and 10 days
in time. Due to the smaller number of profiles in the ICE and EQU biomes, these were
combined with SPSS and STPS biomes respectively for this part of the analysis.

Finally, the previous analysis was repeated using chlorophyll and temperature values
from individual depths rather than full vertical profiles. This was done by creating
false profiles with the surface value repeated throughout, which is equivalent in
practice to using a single depth with one basis function. This resulted in separate
STAS calculations for each depth bin from 5 m to 250 m. The resulting depth-specific
STASs were then compared to those obtained using the full-profile data.

5.3.3.4 Computation

All analyses were conducted using the statistical software R version 4.4.1 R Core Team
(2023) on a computer with an intel Core i5 processor. Calculating the Eulerian
spatio-temporal autocorrelation was the computationally most expensive result,
which took around 30 minutes. The majority of this time is spent calculating the
distance matrix between all profiles a certain time lag apart. The search for viable
pairs in terms of temporal lag was optimised using a function written in C++, which

was considerably faster than the equivalent function written in R.
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Variance Covariance Correlation
Chlorophyll Temperature
Global 119 152185 -958 -0.22
EQU 18 27756 57 0.08
STPS 18 34481 -182.2 -0.23
STSS 56 32199 -370 -0.27
SPSS 190 18859 -104 -0.05
ICE 306 1983 69 0.09
MED 31 6360 -152 -0.34

TABLE 5.1: Summary of the variance and the correlation of annual chlorophyll and
temperature profiles (5 m - 250 m), by region.

5.4 Results

5.4.1 Variance and correlation of chlorophyll and temperature coincident
profiles

The variances of chlorophyll and temperature profiles varied substantially across
biomes (Table 5.1). Chlorophyll profiles exhibited the highest variances in
high-latitude regions, particularly in the ICE and SPSS biomes, with variances up to 17
times greater than those observed in the EQU and STPS biomes. In contrast, the
highest temperature variances were found in the EQU, STPS, and STSS biomes, which
may partly reflect the broader latitudinal ranges encompassed by these regions. The
ICE biome, by comparison, exhibited relatively low temperature variance. The global
correlation between chlorophyll and temperature profiles (measured between 5 m and
250 m depth) was slightly negative (—0.22). No strong correlation between the two
variables was found within any biome, with the largest magnitude observed in the
Mediterranean (—0.34), a region that had relatively low variance for each variable.
These results suggest that, at biome scales and annual timescales, chlorophyll and
temperature profiles are not strongly correlated. It is noteworthy that the global
variance of chlorophyll profiles was not greater than in any single biome, whereas the
global variance of temperature profiles was approximately an order of magnitude
higher than within any individual biome. This means that temperature profiles vary
mostly over large spatial scales, compared to seasonally within a single region. In
contrast, chlorophyll varies widely within some high-latitude regions, potentially over
both space and time. A seasonal breakdown of profile variance is given in Table C.1.

Figure 5.3 shows how the variability of chlorophyll and temperature changed over
smaller spatial (10° longitude-latitude grid) and seasonal scales. Chlorophyll profiles
exhibited the greatest variability in the North Atlantic and across the Southern Ocean
during their respective spring and summer. Within the Southern Ocean, variance
increased towards the Antarctic continent. The standard deviation of chlorophyll

profiles near the equator was approximately an order of magnitude lower than in
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high-latitude regions. Temperature profile variability also varied by an order of
magnitude, although a clear latitudinal pattern was less apparent. A persistent band
of higher temperature variance occurred between 30°S and 40°S throughout the year -
similar to the transition zone identified by Henson et al. (2009). The northwest
Atlantic and the eastern equatorial Pacific also exhibited elevated variance. In
contrast, the Southern Ocean south of the Antarctic Circumpolar Current showed
consistently low temperature variability year-round, as did the extreme northern
region of Baffin Bay. Grid cells with the highest temperature variability tended to
coincide with frontal zones between subtropical and subpolar water masses, where
the generation of eddies may have contributed to greater variability in temperature
profile structure. Monthly maps of the standard deviation of chlorophyll and
temperature profiles are shown in Figure C.1.

The year-round correlation between chlorophyll profiles and temperature profiles was
weak (a magnitude less than 0.3) at most locations (Figure 5.4). Latitudinal bands in
each hemisphere between 30° and 40° from the equator showed weak to moderate
negative correlation (—0.6 < Cor < —0.2). This relationship was clearest in the North
Atlantic, Mediterranean, central South Pacific, and South Atlantic. This may indicate
that the variable supply of nutrients (due to changes in the MLD) influences
chlorophyll profile shape and consequently that these are regions of nutrient
limitation. The region south of 60° showed weak to moderate positive correlation.
This likely reflects greater light availability during summer, which contributes to
higher temperatures and alleviates light-limited growth. When partitioned into
seasonal correlations, the spatial pattern from Figure 5.4 became less clear although
the high-latitude regions showed a stronger positive correlation during winter (Figure
5.5). The correlation in the high latitude Atlantic varied considerably throughout the
year, even changing sign from negative to positive from summer to autumn. The
correlation in the Mediterranean did not vary significantly throughout the year.
Monthly maps of the correlation between chlorophyll and temperature profiles are
shown in Figure C.2.

5.4.2 Autocorrelation of chlorophyll and temperature profiles from a
semi-Lagrangian perspective

From a semi-Lagrangian perspective, floats located at lower latitudes exhibited lower
variance among chlorophyll profiles, with differences spanning two orders of
magnitude, whereas floats with the highest temperature variance were located in mid-
to high-latitude regions (Table 5.2). Notably, float 5906204 travelled a substantial
distance during its lifetime, moving from relatively warm waters in the Indian Ocean
to cooler waters near the Cape of Good Hope. This movement induced a change in
profile structure from persistent deep chlorophyll maxima to near-surface blooms. In
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FIGURE 5.3: Maps showing the standard deviation of (a) chlorophyll profiles and (b)
temperature profiles within each 10° grid cell for each season. Note that profiles were
restricted to between 5 m - 250 m.

contrast, the float with the lowest variance in both chlorophyll and temperature
profiles (WMO 1902385) was located in the subtropical North Atlantic Ocean and

remained within a single biogeographical region.

The temporal autocorrelation of chlorophyll and temperature profiles from individual
floats exhibited clear patterns (Figure 5.6). Autocorrelation functions (ACFs) from four
floats (WMOs 1902385, 4903365, 6901767, and 5905107) displayed a clear annual cycle,
with a sinusoidal pattern for both temperature and chlorophyll. WMO 1902385,
located in the North Atlantic gyre, showed the ACF with the lowest amplitude,
consistent with the weaker seasonality in temperature and stratification in this region.
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FIGURE 5.4: Map showing the correlation between chlorophyll and temperature pro-

files (5 m - 250 m) within a 5° grid cell. Larger dot sizes indicate a greater number of

profiles in a grid cell. Grid cells with fewer than 10 profiles were ignored. The dots to
the right of the map are correlations per latitudinal band.
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FIGURE 5.5: Maps showing the correlation between chlorophyll and temperature pro-
files (5 m-250 m) in each 10° grid for each season. Larger dot sizes indicate a greater

number of profiles in a grid cell. Grid cells with fewer than 10 profiles were ignored.
The dots to the right of the map are correlations per latitudinal band.

After a time lag of only 10 days, the autocorrelation of chlorophyll was only 0.4
compared to 0.81 for temperature, and generally, the amplitude of the temperature
ACF exceeded that of chlorophyll, indicating that the annual cycle of temperature was
more distinct. This suggests that chlorophyll profiles may respond more significantly
to sub-seasonal or mesoscale effects. The ACFs of three floats (WMOs 5906204,
5904021, 6901585) did not exhibit a sinusoidal pattern. These floats travelled a
substantial distance, sometimes over a range of latitudes and between contrasting
marine environments. Consequently, in these cases the temperature ACFs remained
above 0.5 for considerably longer than the seasonal cycle (up to a year for WMO
6901585). The time lag required to reach an autocorrelation of zero for chlorophyll and
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TABLE 5.2: Variance and correlation between chlorophyll and temperature profiles
along a selection of seven BGC-Argo float trajectories.

temperature was typically around 90 days (for floats that stayed in the same region).
Float 6901585 had the shortest decorrelation time scale for chlorophyll as it reached
zero after only around 45 days.
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FIGURE 5.6: Temporal ACFs of chlorophyll and temperature profiles from a selection
of seven BGC-Argo floats. First column: map of the trajectory of each float. Second
and third columns: semi-Lagrangian sections over the floats’ lifespan of chlorophyll,
and temperature, respectively. Fourth column: smooth curves showing the temporal
ACEFs for temperature (red) and chlorophyll (blue). Point opacity is lower for lags with
fewer pairings and the ACFs are weighted towards points with more pairs. Scattered
points indicates more irregular sampling in time, indicating a higher quantity of less
common lag times.

5.4.3 Autocorrelation of chlorophyll and temperature profiles from an
Eulerian perspective

The Eulerian spatio-temporal autocorrelation structure (STAS) of chlorophyll profiles
exhibits a substantial seasonal signal in all regions, except the STPS and EQU biomes
(Figure 5.7). Figures 5.7a, d, g and j show substantially different STAS patterns, with
temporal variability disappearing in the STPS and EQU biomes. In contrast, a
seasonal cycle and spatial decay were observed in the Mediterranean. The spatial
autocorrelation function is moderately similar across all biomes, initially decreasing
with distance until approximately 500 km, after which it either decreases more slowly
or fluctuates. There is a slight trend for the spatial autocorrelation function to decay
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more rapidly in higher-latitude biomes. Temporal autocorrelation after six months
and one year is approximately 0 and 0.5, respectively. In comparison, the STAS of
temperature profiles shows less temporal variability relative to spatial decay (Figure
5.8), with the Mediterranean being the only exception. The spatial autocorrelation
decay for temperature is longer than that for chlorophyll (Figures 5.8a, d, g and j).
From Figures 5.7 and 5.8, I infer that, at the biome scale, chlorophyll profile shapes
vary over shorter spatial and temporal distances than temperature profiles.
Additionally, temperature variability across the biome is greater than that experienced
at most locations over the annual cycle. In contrast, chlorophyll profiles at individual
locations exhibit variability throughout the year that is more comparable to the

variability observed across the biome at a given time.

Regardless of biome, the STAS of chlorophyll when using entire profiles matched most
closely to those when using only a single depth near the surface (Figure 5.9a). The
similarity to entire profiles decreased with depth, as did the disparities between
biomes. In contrast, the STAS of temperature profiles was very closely related to the
STAS of any single depth across all biomes except the Mediterranean (Figure 5.9b).
These results suggested that most of the spatio-temporal variability of chlorophyll was
confined to the top 50 m, whereas the spatio-temporal variability of temperature

spanned a wider range of depths.

5.5 Discussion

5.5.1 Scalar variance and correlation of chlorophyll and temperature
profiles

Prior to the first uses of functional data analysis on oceanographic datasets (Yarger

et al., 2022; Korte-Stapff et al., 2022), the shape of chlorophyll and temperature profiles
have been analysed by fitting various mathematical curves to observations (Carranza
etal., 2018; Xu et al., 2022b), or from theoretical studies (Fennel and Boss, 2003;
Beckmann and Hense, 2007). A benefit of using parameterised functions is the
interpretation of variation between profiles, however those approaches lack an overall
value of profile variability analogous to scalar-valued data. My work proposes a
solution to this issue, which could be used in conjunction with parameterised
functions to fully utilise the available data. The use of empirical orthogonal functions
has allowed for the identification of the dominant modes of variability within profiles
(Bock et al., 2022; Kuhn et al., 2025) which has the advantage that it conveys a sense of

the overall variability and some interpretation of the main sources.

The regions with the highest chlorophyll variation were the high latitudes (Figure 5.3).
Although surface blooms are common in these regions (Cornec et al., 2021a),
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files and that derived from individual depths, for (a) chlorophyll and (b) temperature.

subsurface chlorophyll peaks have been regularly identified (Baldry et al., 2020; Boyd
et al., 2024; Bouman et al., 2020). Therefore, it is possible that the variance could come
from a variety of depths, depending on the small-scale mechanisms such as the
presence of sea ice. I observed high variability in temperature profiles along the
boundaries between the subpolar and subtropical regions (the transition zone in
Henson et al. (2009)), which are areas in which ocean fronts and mesoscale eddies are
common (Chapman et al., 2020). It is well understood that eddies alter the mixed layer
depth which in turn has the effect of aiding or hindering (depending on eddy polarity)
the injection of nutrients into the euphotic zone (Brannigan, 2016). Therefore, it might
not be surprising that these are some of the areas with strongest correlations, although
I expected a stronger relationship given the results from previous studies (Cornec
etal., 2021b; Wang and Liu, 2024). This may be elucidated more easily using
chlorophyll profile anomalies instead of the absolute profiles. Feng et al. (2015)
performed a global comparison of SST amongst other variables with surface
chlorophyll using satellite data and found that the effect of temperature on
chlorophyll did vary by region. The BGC-Argo program has not been operational for
long enough to establish climate-scale changes to chlorophyll profiles as a response to
warming oceans.

5.5.2 Scales of variability

My study did not fully resolve any questions regarding the spatial and temporal
length scales of chlorophyll and temperature profiles. I calculated the temporal
autocorrelation of profiles in a semi-Lagrangian perspective but could only quantify
variation over a seasonal temporal scale. In contrast, McKee et al. (2022) were able to
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identify variation over mesoscale length scales by combining BGC-Argo and satellite
data, as well as using chlorophyll anomalies. My restriction of using only BGC-Argo
float locations meant that I could not estimate spatial length scales in this framework.
However, Kuhn et al. (2023) showed that the differences in spatial scales of surface
chlorophyll between Eulerian and Lagrangian frameworks are negligible so it could
be possible to estimate the length scales sufficiently well using chlorophyll profile
anomalies from multiple floats. My results address slightly different questions,
specifically, which of the two variables has a higher seasonal predictability along a
given trajectory? I found that, if a float remains in the same biogeographical region,
temperature profiles display a stronger seasonal signal than chlorophyll profiles
(Figure 5.6). In the case of float 6901585, the float did move a significant distance over
its lifespan and consequently the temperature ACF did not show a seasonal cycle, but
instead remained above 0.8 up to lags of a year before decreasing to zero. This was in
stark contrast to the chlorophyll ACF, which had a rapid decay to zero. This may
indicate that within a biome the seasonal variability in chlorophyll across the entire
region is greater than at a particular location, whereas temperature varies more
substantially across the region, rather than seasonally at any single location. This is
only one example so no strong conclusion should be made, however it is a noteworthy
result. I identified differences in the relative contributions of spatial and temporal
variability of chlorophyll and temperature between biogeographical regions (Figures
5.7 and 5.8), with temporal variability increasing towards the poles. By treating the
Mediterranean Sea as a separate biome, I found that to be the only region which had
significant variability in both space and time, with similar patterns in temperature and
chlorophyll (although the latter had a weaker signal). This combination of spatial and
seasonal variation probably derives from the differences in physical oceanography
(Schroeder et al., 2023) and biogeography (Lavigne et al., 2015) at either end of the
Mediterranean.

Given that I found the STAS of chlorophyll and temperature are very similar
regardless of whether profiles or surface values are used, this supports the use of
neural networks that combine spatio-temporal data from satellite observations with
Argo profiling data (Sauzede et al., 2016; Meng et al., 2021; Hu et al., 2022a;
Garcia-Jimenez et al., 2025). My results suggest that the spatio-temporal variability
captured by the satellite should be a fair representation of the variation at depth,
which is of significance in particular for oligotrophic regions, where the highest
chlorophyll concentrations are well beyond the view of satellites. However, this does
not mean that satellites are detecting variability in SCMs, but rather that they measure
differences in the corresponding surface concentrations.
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5.5.3 Limitations

One of the drawbacks of using the scalar variance and correlation is that the
coefficient does not provide any information about the variations in shape or the
depths at which they occur. For example, although I have found moderate correlations
between chlorophyll and temperature profiles, my output does not indicate whether
deviations from a mean profile are near the surface or deeper in the water column.
Consequently, fully understanding these correlation coefficients might require some
prior understanding of the processes potentially underpinning the variation or further
investigation. Another limitation is that, as with correlation for scalar data, the
correlation coefficient is a measure of linear dependence. Therefore, this method will
not detect a non-linear dependency between variables. In this scenario, a functional
regression model with a non-linear covariate effect (similar to the methodology of
Chapter 4) might be a viable alternative. Additionally, the BGC-Argo array is
relatively sparse and clustered in space, which may lead to some biases in
autocorrelation length scales. Finally, when calculating temporal autocorrelation
functions from a Lagrangian perspective, it is important to have regular temporal
sampling in order to avoid adding bias into the autocorrelation of a specific lag. Out of
890 BGC-Argo floats in this dataset, relatively few (< 100) had regular enough
sampling gaps for easily interpretable ACFs.

5.5.4 Future work

There might be potential for utilising this approach across a range of applications in
oceanography. Firstly, incorporating the variance of profile shapes within methods for
optimising observing system design (Chamberlain et al., 2023; Chu et al., 2024) could
be beneficial since differences in profile shape may be associated with underlying
mechanisms. These approaches typically involve identifying combinations of
Lagrangian trajectories from which the maximum amount of spatio-temporal
variability is explained. It is reasonable that these methods could absorb the scalar
valued variance from entire profiles. A second application could be the calibration of
sensors onboard multiple platforms. For example, comparing measurements between
high frequency glider profiles and long-term observations from moorings or Argo
floats. I did not explore spatial autocorrelation in a Lagrangian framework. The
calculation of this could allow for a dimensional analysis (similar to McKee et al.
(2022)), although that would require the calculation of chlorophyll anomalies. As the
abundance of oceanographic profiles increases, a range of functional data techniques
including the one presented here could form a new statistical toolkit for
oceanographers, particularly in the context of exploratory data analysis. Alternatively,
this approach could be trialled on profiles from ocean models to assess how well they
reproduce real world variability.
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5.6 Conclusions

To my knowledge, this is the first application of scalar variance and correlation for
functional data in oceanography. By treating ocean profiles as functional data, I can
capture the essence of the shape of profiles, which often provides insights into the
processes affecting the water column. This technique enables us to investigate
variability across a range of depths measured by observing systems such as the
BGC-Argo float array in the same way as scalar valued data. Here I applied this
approach to 98 413 chlorophyll and temperature profiles across the global ocean and
analysed their variance and correlation over different scales.

My results highlight the importance of considering spatio-temporal scales when
assessing variability and correlation. I provide the first global maps of the variance of
chlorophyll and temperature profiles (Figure 5.3), and their correlation (Figure 5.4).
These results confirm that chlorophyll profile variability increases towards higher
latitudes, whereas maximum temperature profile variability occurs near fronts
between water masses, particularly in the Southern Ocean and North Atlantic. At the
biome scale, from an Eulerian perspective, temperature profiles vary more spatially
than seasonally, whereas for chlorophyll profiles, temporal variability dominates
(Figures 5.7 and 5.8). This suggests that variation among chlorophyll profiles within a
single biome is primarily driven by time (increasingly with distance from the equator),
whereas temperature profile variation is more strongly influenced by space, largely
through latitudinal gradients. Conversely, when changing to a semi-Lagrangian
perspective and following individual floats along their trajectories, temperature
profiles exhibit a stronger seasonal autocorrelation signal than chlorophyll profiles
(Figure 5.6). However, this analysis also indicated that floats drifting between
biogeographical regions do not produce sinusoidal autocorrelation functions, making
the estimation of temporal decorrelation scales ineffective with this approach. Finally,
I found that chlorophyll and temperature profiles are typically weakly positively
correlated over small spatial scales. Stronger positive correlations occurred at high
latitudes during winter, while moderate negative correlations were observed in the
latitudinal band between 30° and 40° in each hemisphere.

As the quantity of oceanographic depth profiles increases, developments in the field of
functional data analysis offer an opportunity for statistical analyses from an
alternative perspective that focusses on the shape of profiles. I see potential for further
use in a variety of applications, including observing system optimisation and the
calibration of sensors across multiple platforms.
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Chapter 6

Synthesis

6.1 Summary of results

6.1.1 Vertical chlorophyll distribution

The spatio-temporal distribution of SCMs has garnered renewed attention in recent
years (Mignot et al., 2014; Cornec et al., 2021a; Yasunaka et al., 2021) due to the
widespread deployment of BGC-Argo floats. In Chapter 3, I identified large-scale
spatial and seasonal patterns in SCM characteristics using a spatio-temporal
modelling approach. This provided evidence that the z¢, was positively correlated
with zgcym and negatively correlated with Chlgey (Figure 3.3). This also indicated that
MLD and zooplankton biomass had small but significant effects on both SCM depth
and intensity. Only zscy was affected by sea surface height anomaly (SSHA) (i.e.,
downwelling eddy features) which suggested that positive SSHAs resulted in deeper
SCMs which was the opposite to previous studies (Cornec et al., 2021b; Xu et al.,
2022b). Nevertheless, maps of predicted Chlgcy (Figure 3.7) and zscm (Figure 3.8)
closely resembled previous studies (Cornec et al., 2021a; Yasunaka et al., 2021; Masuda
et al., 2021), with the deepest and least intense SCMs occurring in the subtropical
oligotrophic gyres, especially the South Pacific subtropical gyre.

In Chapter 4, I found that light availability (or more specifically, the z.,) was the
primary driver of zscy, whereas the z,,jine Was coupled to the peak in phytoplankton
biomass. Year-round predictions of chlorophyll and by, profiles were produced for the
subtropical and tropical ocean. This revealed that photoacclimation (represented by
the Chl:Cppyto ratio) was an important mechanism across a range of latitudes, with
peaks in photoacclimation coinciding with peaks in chlorophyll (Figure 4.7).
Particularly at the equator, where the most intense SCMs were predicted,
photoacclimation was highest. Seasonal variability in photoacclimation (Figure 4.8)

was predicted to have elevated Chl:Cppyto in the summer at latitudes more than 30°
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from the equator. This analysis provides evidence that phytoplankton biomass
(represented by by,) is typically restricted to above the nitracline and reduces
significantly for deeper nitraclines (Figure 4.8).

In Chapter 5, the focus shifted from assessing the drivers of profile variability to
demonstrating a new measure of variability and correlation for profiling data. This
highlighted the seasonal differences in the variability of chlorophyll profiles when
compared to temperature profiles (Figure 5.3). Higher latitudes (more than 40° from
the equator) displayed the highest variability in chlorophyll profiles, especially during
the summer, possibly reflecting the presence of elevated chlorophyll in some profiles.
In contrast, temperature profiles varied most along the boundaries of water masses
such as the Antarctic Circumpolar Current. I identified a weak to moderate correlation
between temperature and chlorophyll profiles (Figure 5.4), although this varied
substantially by region and season. For example, the two variables were negatively
correlated year-round in the mid-latitudes, whereas the correlation strength varied
seasonally at high latitudes (Figure 5.5).

In summary, results from this work indicate that light availability is the primary
driver for vertical chlorophyll distribution, although nutrient availability determines
the depth of biomass accumulation, which is typically located shallower than the
zscm- Consequently, photoacclimation is an important mechanism through which
SCMs form and are maintained. The relationship between chlorophyll and
temperature profiles varies regionally, suggesting that stratification is more important

in some locations than others in determining phytoplankton abundance.

6.1.2 Statistical methods for BGC-Argo float data

In Chapter 3, the spatio-temporal modelling method demonstrated that using a
spatio-temporal latent variable improved the predictive ability of models for SCM
characteristics. Specifically, the RSMEs for zscy and Chlgey reduced by 21% and 33%
respectively. Furthermore, several of the covariate coefficient values changed
substantially after including the latent effect, with some changing sign. This suggests
that the latent effect explained a significant portion of the variability. The model for
predicting zscy was less successful than for Chlgcy. This may be explained by the
sensitivity in estimates of zgcy for profiles without a clear peak, as this can lead to a
situation where two very similar profiles could have significantly different zgcm
estimates. Such profiles could take the form of sigmoids as described by several
previous studies (Carranza et al., 2018; Brewin et al., 2022) or with very low
chlorophyll concentrations throughout the water column.

In light of this, I utilised methods from functional data analysis (FDA) for the
remainder of the thesis. In Chapter 4, I fitted two functional regression models (FRMs)
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to assess how environmental conditions affected chlorophyll and by, profiles. I found
that the models were better at reproducing SCM characteristics when the covariate
effects were implemented as non-linear scalars (i.e., each covariate value had a smooth
functional effect associated with it), rather than linear scalar (in which a function was
added after some scaling) (Table 4.1). In Chapter 5, I demonstrated the first
application of scalar variance and correlation of oceanographic profiles treated as
functional data. My results also showed the importance of study region scale, as
length scales of chlorophyll where shorter from the semi-Lagrangian perspective of a
single float (Figure 5.6), whereas the opposite was true on biome scale in an Eulerian

framework (Figures 5.7 and 5.8).

Overall, I found that FDA techniques aid the analysis of Argo float profiles. The major
benefit of these approaches is that they bypass the identification of profile features
(such as SCMs) prior to analysis and do not ignore the remainder of the profile in later
analyses. Another key motivation is communicating the idea of connectedness
between measurements within a single profile. For example, the presence of particles
higher in the water column reduces light availability below, and similarly nutrient
consumption deeper in the water column reduces the availability higher up. Given
that this dependency between all depths is fundamental to the theoretical modelling
of phytoplankton (Fennel and Boss, 2003; Beckmann and Hense, 2007; Gong et al.,
2015), it seems appropriate to treat profiles in a similar way during statistical analyses.

6.2 Wider implications

6.2.1 Predictability of chlorophyll profiles

Given the relatively sparse and clustered nature of subsurface chlorophyll profiles,
there is motivation to interpolate between observations using other oceanographic
variables as predictors. Previous work used a variety of predictor variables to predict
characteristics of SCMs primarily the zgcym (Xu et al., 2022b; Miyares et al., 2024) but
also the entire profile (Uitz et al., 2006). In this thesis, I investigated which
environmental conditions affect the shape of chlorophyll profiles and found that the
zeu Was the biggest influence. The non-linear model tested in Chapter 4 shows that
large-scale chlorophyll profile variability can be reproduced using functional effects of
only three covariates: Zey, Zncline and MLD. Even here, the MLD effect was relatively
small compared to the other two effects so it is reasonable to suggest that MLD could

be removed from the model without losing much predictability.

Machine learning approaches can utilise satellite and BGC-Argo float data to
interpolate full-depth bio-optical profiles across over large spatio-temporal scales and

at high resolution (Sauzéde et al., 2016). My results suggest that these approaches
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could benefit from using light and nitrate to predict profiles as well as location and
time. I also found that the spatial and temporal scales of variability of chlorophyll
profiles are very similar to those of chlorophyll concentration at the surface (Figure
5.9a). This provides further support for the machine learning techniques combining
satellite and BGC-Argo float data. Another option is to implement machine learning
with functional data as inputs and outputs.

6.2.2 Community composition and the marine ecosystem

Previous research has identified that different phytoplankton taxonomic groups
favour specific environmental conditions (Latasa et al., 2017; Sato et al., 2022; Latasa
et al., 2023). This partitioning of the water column allows multiple groups to exploit
conditions for which they are better adapted. Although the BGC-Argo float dataset
does not contain information about community composition, Brewin et al. (2022)
highlighted this phenomenon by detecting periods when two communities thrived,
and how this occurred at different depths. The results in this thesis support the idea
that light drives the SCM depth, and potentially different phytoplankton species’
vertical distribution (Sato et al., 2022; Latasa et al., 2023). Some phytoplankton
functional groups favour low light conditions, by having a high Chl:Cppyy, ratio. Sato
et al. (2022) note that the relative abundances of phytoplankton species do not vary
considerably over large-scales and this may reflect the importance of

photoacclimation across a range of latitudes, as identified in Chapter 4.

Phytoplankton form the foundation of the marine ecosystem and consequently their
abundance and distribution affect higher trophic levels, including their consumers,
zooplankton, whose biomass was included as a predictor variable in the models in
Chapter 3, although the results suggest that it actually had little predictive power. The
initial rationale was that the presence of zooplankton near the surface could deepen
and weaken the SCM, as modelled theoretically by Moeller et al. (2019). In practice,
however, this was not easy to infer from the model since the zooplankton biomass
data I had access to were integrated over the entire water column. Instead, my results
indicated that high zooplankton biomass was associated with high phytoplankton
abundance, as expected. It is worth noting that the zgcy was deeper in the presence of
elevated zooplankton biomass, although this cannot be interpreted as a causal effect
due to the aforementioned issues.

6.3 Potential improvements to statistical methods

This thesis has presented a variety of statistical methods to apply to BGC-Argo data,
though each approach has scope for change and improvement. I will highlight some
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potential modifications to these methods for future applications.

6.3.1 Spatio-temporal modelling

The stochastic partial differential equation (SPDE) methodology presented in Chapter
3 incorporated a non-stationary correlation structure in space through the hard barrier
condition similar to the one proposed by Bakka et al. (2019). This was one of several
potential ways to include non-stationarity, with anisotropy another option, in which
the correlation length scales at a location are larger in one direction, meaning curves of
constant correlation are ellipses rather than circles, and this direction can change with
location or time. There are several examples of this being applied in two dimensions
(Fuglstad et al., 2015; Tomasetto et al., 2024) and three dimensions (Pereira et al., 2022;
Berild and Fuglstad, 2023). Anisotropic correlation structures allow for the idea of
flow to be added into a covariance structure (Tomasetto et al., 2024; Berild and
Fuglstad, 2023). This is highly relevant for the ocean as there are distinct features of
global ocean dynamics, such as gyres, boundary currents, and fronts, that create
regions of similarity that align along different directions, often following latitudinal
bands or oceanographic structures. As a result, spatial covariance of chlorophyll is
often anisotropic and non-stationary, meaning that the correlation structure changes in
location or time. This has been applied to SST satellite data (Hu et al., 2022b). The 3D
version has been applied to oceanographic data on a local scale (Berild and Fuglstad,
2023), however it may not be as useful when horizontal length scales exceed vertical
length scales by several orders of magnitude, as in the case of global Argo float data.

An alternative extension could involve treating depth as an autoregressive component
(like I did for time) so that data over multiple depths can be included whilst
maintaining their connectivity although this may be computationally challenging.
Covariate values can also be used to introduce non-stationarity into the correlation
structure (Ingebrigtsen et al., 2014), however this may have fewer benefits than

anisotropy in the context of the work in this thesis.

I only conducted a brief preliminary investigation into the effect of the mesh size (in
terms of the number of vertices). It is possible that the computation speed may
improve with a reduction in mesh size without substantially affecting the model fit,
which might also have been improved by fitting a bivariate model with zgcy and
Chlgcm as concurrent response variables. However, this would also have increased the
computational cost. This may be possible using the INLA R package, but it is not
guaranteed to improve predictive performance. In the future quantum computing
may allow for more complex models to be fitted without the drawback of long
computation times, further strengthening the case for using spatio-temporal
modelling on large oceanographic datasets.
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6.3.2 Functional regression models

The work presented in Chapter 4 did not consider using profiles of other
biogeochemical parameters as functional covariates (e.g. nitrate or PAR profiles),
which could have aided the prediction of bio-optical profiles. However, this might
reduce the interpretability of the model. In addition, the proposed FRMs had no
spatio-temporal component within the model structure, which could capture
dependencies between observations, as was done by Yarger et al. (2022) and
Korte-Stapff et al. (2022). However, including such a component for an FRM would
significantly add to the computational cost and would require more advanced
statistical coding to implement, especially with non-linear effects as I believe there are
currently no publicly available methods to fit such a model. Alternatively, using a
different set of smaller biogeographical regions could have yielded different results,
for example, the Longhurst regions (Longhurst et al., 1995). However, this was not
appropriate due to the relatively small number of profiles completed within two hours
of noon and equipped with bio-optical, nitrate and irradiance sensors. A possible
extension could involve fitting a multivariate FRM to concurrent chlorophyll and by,
profiles, rather than fitting two separate models with the same structure. Could this
capture the dependence between the two variables? It may be worth considering a
functional regression model with satellite-derived surface chlorophyll concentration
as a covariate. This might be more beneficial for mapping (i.e., spatial prediction),
rather than for a mechanistic understanding. It is also possible that the best
combination of covariates was not tested, i.e., potentially a subset of the covariates
would have been an improvement. Therefore, a more comprehensive assessment of
different combinations of covariates and covariate types might yield better results.

6.3.3 Scalar variance and correlation of oceanographic profiles

As mentioned before, the shape of an oceanographic profile (how many peaks and
troughs occur, and at which depths) is sometimes the primary interest of researchers.
In this work, I provided the first use of scalar variance and correlation for
oceanographic profiles as functional data objects. Urbano-Leon et al. (2023) suggested
that there was potential for their approach to be developed further in order to create a
range of novel statistical tools for functional data, analogous to standard scalar-valued
techniques. The usefulness of statistical tests and suchlike in the context of
oceanographic profiles would be exciting to explore. For example, an
analysis-of-variance for oceanographic profiles - to partition variance between natural
(or residual) variability and the effect of an external factor. Given that so many
oceanographic profiles are collected each year, it would be beneficial for the
community to develop statistical methods suitable for functional profiling data in
order to better understand the scale and causes of profile variability.
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Combining the Argo data with geostrophic velocity data could have allowed the
estimation of spatial decorrelation length scales between profiles in a similar way to
Kuhn et al. (2023). However, those authors did not find a significant difference
between Eulerian and Lagrangian perspectives, so this might not yield any additional
insights. I also highlighted the fact that the sampling frequency of BGC-Argo floats
affects the estimation of temporal autocorrelation functions. In the case of irregular
sampling, estimates are very sensitive and produce noisy ACFs. I recommend
performing analyses after filtering profiles such that only the most regularly sampled

time lags are used in the ACF calculation.

6.3.4 Combining the three approaches

There are aspects of each method that could be adopted within a subsequent piece of
work assessing spatio-temporal patterns in subsurface chlorophyll from the

BGC-Argo float dataset. Such an approach could contain the following characteristics:

* A functional spatio-temporal model building on the work by Yarger et al. (2022)
and Korte-Stapff et al. (2022).

¢ Covariates describing the light and nutrient fields (either scalar or functional)

measured simultaneously with chlorophyll.

* Non-stationary correlation structure displaying anisotropic structures as well as
the barrier condition. This structure could be estimated using the scalar
correlation approach described in Chapter 5.

* Potential for extending to bivariate model by including b, as a second response
variable in order to study the importance of photoacclimation.

Developing an approach of this structure may have taken significant time and was not

attempted in this thesis.

6.4 Future applications in marine biogeochemistry

6.4.1 Subseasonal variability in subsurface chlorophyll distribution

In this thesis I only used profiles of chlorophyll from BGC-Argo floats, which typically
sample the water column once every ten days so the primary timescale under
consideration was seasonal. However, other platforms are capable of sampling at
higher temporal resolutions, including gliders (Thomalla et al., 2017; Carvalho et al.,
2020) and biologging with sensors carried by marine mammals (Carranza et al., 2018;
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Le Ster et al., 2023). It could be interesting to repeat the analysis carried out in Chapter
4 using profiling datasets collected over smaller spatial and temporal scales. This
could help extract the effects of environmental conditions, especially if they are
short-lived or difficult to detect with infrequent measurements. Variability in SCMs
related to small-scale physical processes, such as fronts and eddies have already been
studied (Cornec et al., 2021b; Xu et al., 2022b; Strutton et al., 2023), although it may be
beneficial to apply a formal statistical model to assess changes to profile shape.

6.4.2 Detecting climate trends in subsurface chlorophyll

Monitoring global trends in chlorophyll concentration is important for understanding
the impact warming oceans may have on phytoplankton abundance, both for
biogeochemical processes and for marine ecosystems. Previous research suggests that
several decades of observations are required to identify trends in surface chlorophyll
(Henson et al., 2010, 2016). Hammond et al. (2020) proposed a spatio-temporal model
for assessing trends in satellite-derived chlorophyll data which pooled observations
over space and time to extract seasonal and decadal variability. This approach was
found to be more sensitive to trends than generalised least squares regression in the
20-year time series used. Records of surface chlorophyll are longer than those of
subsurface chlorophyll at most locations. An additional barrier to detecting trends in
subsurface chlorophyll is that most subsurface observation platforms (such as Argo
floats) move over time, and consequently, locations are rarely resampled multiple
times, especially over the time scales required to identify trends. Although the
spatio-temporal model used in Chapter 3 accounted for this through a spatio-temporal
latent effect, it is not guaranteed that a long-term signal could be identified given the
high spatio-temporal variability of chlorophyll. Therefore, it may be some time before
a subsurface chlorophyll version of the study by Hammond et al. (2020) could be of
use, possibly using a functional spatio-temporal framework similar to those
developed by Yarger et al. (2022) and Korte-Stapff et al. (2022). Even when this is
attempted, it may only be able to make vague inferences about chlorophyll
concentration change over large-scale (e.g. latitudinal variation in trends) due to the
sparsity of profiling data. Longer-term trends in profile shape (such as those collected
by Hawaii Ocean Time-series) could be identified using FDA techniques, although
that was beyond the scope of this thesis.

The ongoing monitoring of subsurface chlorophyll on a global scale relies on the
continued deployment of autonomous platforms like BGC-Argo floats. There are aims
to have a network of 1000 BGC-Argo floats, each carrying all six key biogeochemical
variables (Owens et al., 2022; Thierry et al., 2025). A variety of projects deploy the
floats, each with slightly differing objectives and regions of interest. For example, the
SOCCOM project deployed a high number of floats in the Southern Ocean.
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Consequently, climate trends may be more easily identified (or identified earlier) in
some regions than others. This is without considering that the time series length
required to detect a long-term trend is thought to vary regionally (Henson et al., 2016).

6.4.3 Community composition of phytoplankton

The relative abundances of different phytoplankton groups varies across space and
time, including across depths (Uitz et al., 2006; Ward et al., 2014; Sato et al., 2022;
Miyares et al., 2024). The chlorophyll data used in this thesis do not provide
information about the corresponding phytoplankton species composition. Such
datasets are primarily collected through ship-based research, which naturally reduces
the spatio-temporal coverage of observations. Vertically-resolved phytoplankton
datasets can be constructed through a variety of methods including high-performance
liquid chromatography (Uitz et al., 2006; Latasa et al., 2017; Miyares et al., 2024), flow
cytometry (Sato et al., 2022) and radiometry (Bracher et al., 2020). Datasets of this type
have generally shown that smaller phytoplankton dominate deeper SCMs (Uitz et al.,
2006), although Miyares et al. (2024) found that one size class dominated all
environments. These datasets could be interesting to view from an FDA perspective as
either the absolute biomass for a given taxonomic group, or the proportion of the total
across all groups. In particular, it would be interesting to address the following
questions. 1) How similar are the profiles of taxonomic groups, and their aggregation,
to their combined chlorophyll profile? 2) How does the profile of each taxonomic
group relate to light and nutrient fields? The methods from Chapter 5 and Chapter 4
could be used to address these two questions respectively. It is worth noting that
Latasa et al. (2017) analysed profiles of phytoplankton biomass as functions of the
fraction of surface light intensity, instead of treating profiles as functions of depth.
This could be an interesting technique to try using the BGC-Argo float profiles that

have an irradiance sensor.

6.4.4 Calibration of sensors across multiple platforms

In Chapter 5, I demonstrated the use of scalar variance and correlation for
oceanographic profiles using the approach developed by Urbano-Leon et al. (2023).
This has potential to be used to calibrate sensors between multiple platforms. This
could take the form of multiple platforms measuring the same watermass
concurrently to assess variability across sensors. Alternatively, it could be used to
quantify drift of sensors over time, and whether this is dominated by drift at certain
depths or is uniform across profiles. A further application could be calibrating time
series from multiple platforms observing at different temporal resolutions. For

example calibrating measurements between an Argo float sampling the water column
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once every 10 days and a nearby glider completing a profile multiple times a day.
Given the variety of oceanographic observing techniques and platforms (Chai et al.,
2020), it seems reasonable to suggest that it may become common to integrate multiple
platforms over a range of spatial and temporal scales and this statistical technique
might prove useful. This would be applicable to all oceanographic variables measured
in profiles, but chlorophyll would be an interesting example given the variety of
profile shapes observed.

6.4.5 BGC-Argo float deployment optimisation

Given the limited (but growing) number of BGC-Argo floats, careful consideration
should be given to gaining as much scientific understanding about the global ocean as
possible. Several methods have been proposed that aim to maximise the explained
variability of an oceanographic variable, by sampling regions with irregularly
positioned floats (Mazloff et al., 2018; Chamberlain et al., 2023; Chu et al., 2024).
BGC-Argo floats move over time and the method described by (Chamberlain et al.,
2023) accounts for this. Measuring variance and autocorrelation length scales of
profiles using the method by Urbano-Leon et al. (2023) might be advantageous by
combining previous optimisation approaches with the scalar correlation measure

presented in this work.

However, in practice, the locations and timings of float deployments are restricted by
the routes of research cruises and by the requirements of the project through which
they were purchased. Consequently, until recently, the BGC-Argo floats remained
quite clustered in space. Projects such as Global Ocean Biogeochemistry array
(Matsumoto et al., 2022) aim to deploy floats in regions that have historically been

undersampled and could profit from utilising the method demonstrated in Chapter 5.

6.5 Final outlook

This thesis has explored distinct but complementary statistical approaches for analysis
of data from BGC-Argo floats, each providing advantages in the study of
biogeochemical data. First, spatio-temporal modelling allows for the quantification of
large-scale trends and patterns in key variables such as chlorophyll concentration and
the structure of subsurface maxima, while accounting for dependencies between
nearby observations. In contrast, FDA provides a natural framework for modelling
vertical profile data as continuous curves and identifying variability across depth.
Although I applied these methods separately in this work, looking ahead, I suggest
integrating these, as done by Yarger et al. (2022) and Korte-Stapff et al. (2022), in order

to gain a more holistic understanding of the three-dimensional variability in ocean
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ecosystems and the effects of different environmental processes. As the quantity and
resolution of subsurface biogeochemical observations increases with the deployment
of autonomous platforms, the development of statistically robust and ecologically
interpretable tools will be vital for conducting effective analysis and producing

meaningful scientific insight.
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Appendix A

Mapping Global Subsurface
Chlorophyll Maxima Characteristics
using Argo Floats and
Spatio-temporal Models

Additional figures supporting the analyses in Chapter 3 are presented here.
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FIGURE A.1: Monthly maps showing which of the observations of zgcy from the vali-
dation dataset were successfully within the 95% prediction interval (blue), or not (red)
using the spatio-temporal model.
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FIGURE A.2: Monthly maps showing which of the observations of Chlgcys from the
validation dataset were successfully within the 95% prediction interval (blue), or not
(red) using the spatio-temporal model.
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SD of zggy (M)
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FIGURE A.3: Standard deviation of the zgcy predictions using the spatio-temporal
model. Locations of observations are shown as black crosses. Note how the prediction
uncertainty typically increases with distance from observations.
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FIGURE A .4: Standard deviation of the Chlgcy predictions using the spatio-temporal
model. Locations of observations are shown as black crosses. Note how the prediction
uncertainty typically increases with distance from observations.
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Assessing Environmental Influences

on Subsurface Chlorophyll Maxima

with Functional Regression Models

Additional tables and figures supporting the analyses in Chapter 4 are presented here.

Term

Scalar-valued data

Function-valued data

Observation

Intercept
Linear scalar ef-
fect

Non-linear scalar
effect

Residual

A single value.

The mean value of the response
variable when all the covariate
effects are zero.

A value that is multiplied by
the covariate value before being
added to the intercept value.

A value specific to a particular
covariate value which is added
to the intercept.

The scalar difference between
the observation and the fitted
value from a model

A set of values which are po-
sitioned with respect to some
other variable. In theory this set
is infinite, but in practice it is fi-
nite.

The mean function when all of
the covariate values are zero.

A function which is multiplied
by a scalar coefficient which
added to the intercept function.
A function specific to a scalar co-
variate value which is added to
the intercept function.

A function - the difference be-
tween the observed function
and a fitted function from a
model.

TABLE B.1: A summary of the differences between regression of (univariate) scalar-

valued and functional data.
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| EDF | Ref.df | F | p-value
Intercept(p) | 18.89 | 19.00 | 211739 | <271
MLD(p) | 66.12 | 68.85 | 2505 | <2716
Zndine(p) | 6817 | 69.70 | 791.8 | <2716
Zeu(p) 65.20 | 68.35 | 566.7 | <2716

TABLE B.2: Summary of functional intercept and non-linear effects for the non-linear
model for chlorophyll.

| EDF |Ref.df | F | p-value
Intercept(p) | 18.77 | 19.00 | 14453.0 | < 216
MLD(p) 64.50 | 67.90 195.1 < 2716
Zncline (P) 68.37 | 69.82 199.4 < 216
Zeu(p) 64.87 | 68.00 450.9 <2716

TABLE B.3: Summary of functional intercept and non-linear effects for the non-linear
model for by,.
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FIGURE B.1: The intercept functions from the non-linear model for (a) Chl and (b)
byp. The upper and lower bounds of the 95% confidence interval are shown as dashed
curves.
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FIGURE B.4: Standard error of the three non-linear model effects for chlorophyll con-
centration. Note the logarithmic colour scale.
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FIGURE B.7: A three-dimensional scatter plot showing the distribution of covariate
values in the observed dataset and the corresponding zgcy predictions.
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FIGURE B.8: A three-dimensional scatter plot showing the distribution of covariate
values in the prediction dataset and the corresponding zgcy predictions.
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Appendix C

Scalar Variance and Correlation for
Oceanographic Profiles: an Argo
Float Application

Additional tables and figures supporting the analyses in Chapter 5 are presented here.
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Biome Season Variance Covariance Correlation
Chl Temp

Global  Winter 15.5 165881 149.1 0.09
Spring 137.6 156246 -1004.6 -0.21
Summer 2564 160994 -2051.5 0.32
Autumn  60.7 165916 -700.4 -0.22
EQU Winter 19.8 27951 76.5 0.10
Spring 179 28624 63.1 0.08
Summer 17.7 25317 18.9 0.03
Autumn 184 28011 60.4 0.08
STPS Winter 12.1 34123 -164.3 -0.26
Spring 17.1 33801 -198.8 -0.26
Summer 189 34443 -169.1 -0.21
Autumn 241 33770 -157.2 -0.17
STSS Winter 16.2 27366 -166.0 -0.25
Spring 57.0 26255 -225.3 -0.18
Summer 86.4 30980 -565.7 -0.35
Autumn 372 38549 -454.4 -0.38
SPSS Winter 125 17139 39.3 0.09
Spring 2759 19378 94.1 -0.04
Summer 281.8 17705 -390.8 -0.18
Autumn 46.1 19459 -23.5 0.03
ICE Winter 3.5 1151 7.0 0.11
Spring 95.5 1006 20.0 0.07
Summer 594.3 2077 -26.6 -0.02
Autumn 138.5 2168 57.1 0.10
MED Winter 10.5 4274 -68.6 -0.32
Spring 71.6 3607 -169.9 -0.33
Summer 17.7 4139 -72.3 -0.27
Autumn 6.4 6330 -53.4 -0.27

TABLE C.1: Summary of the variances of chlorophyll and temperature profiles by
biome and meteorological season, and their covariance and correlation.
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FIGURE C.1: Monthly maps of the standard deviation of (a) chlorophyll profiles and
(b) temperature profiles on a 10° grid.
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