

Microscale computed tomography (μ CT) imaging of leak pathways for optimised leak-free 3D printed fluidics

Rowan Leeder,^a Kathryn E. Rankin,^b Adrian M. Nightingale^a

^a Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK

^b μ -VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK

8

9

10 Abstract:

11 3D printing is a highly attractive method for manufacturing micro- and milli-fluidic devices due to
12 fast fabrication times and low barrier to entry. Of the common 3D printing methods, fused filament
13 fabrication (FFF) is the most accessible but is also susceptible to leakages if using default printer
14 settings. Here we combine microscale computed tomography (μ CT) X-ray imaging with bulk leak
15 testing to understand the fundamental structural reasons why leakages occur and the effect of
16 optimising print parameters. In contrast to previous recommendations, we show that the amount of
17 infill can be reduced as required, with print bodies being intrinsically porous regardless of infill.
18 Instead we find it is solely channel wall quality that determines whether leaks will occur. In keeping
19 with previous reports, we see that smaller layer heights (<0.1 mm) and increased flow rates ($>100\%$
20 compared to recommended rate) are key to preventing leakage and show this is because of their
21 positive effect on channel wall formation. A key consequence of being able to maintain channel
22 integrity whilst using low infill values is that print times and material costs can be greatly reduced
23 (over 50 % time and cost savings for the test pieces used here) without compromising device
24 performance.

25

26 **Keywords:**

27 3D Printing, Computed Tomography, Fused Filament Fabrication, Fused Deposition Modelling,
28 Polypropylene-ethylene Co-polymer, Microfluidic, Millifluidic

29 **Introduction**

30 3D printing is an increasingly popular tool for fabricating micro- and milli-fluidic systems.^{1, 2} While
31 they cannot reach the sub-micron resolution of devices replica-moulded from lithographically
32 fabricated masters, they offer advantages in terms of speed, cost, and accessibility. Fused filament
33 fabrication (FFF, also often referred to as fused deposition modelling, FDM) and photocure printing
34 (e.g. stereolithographic addition, SLA) are the most common methods due to the wide availability of
35 low-cost printers. In FFF printing thermoplastics are extruded through a heated nozzle that can move
36 in the x-y plane, such that the nozzle puts down a series of pathways to build up a two-dimensional
37 pattern. If the pattern is on a movable z-stage, two-dimensional layers can be built up, one upon the
38 other, to generate three-dimensional features. While the spatial resolution on FFF printing is slightly
39 inferior to photocure methods,³ prints can be made in a much wider range of materials, with
40 different mechanical and electrical properties and excellent chemical compatibilities. Furthermore,
41 external items (e.g. electrodes, optics, membranes) can be more easily incorporated to expand the
42 functionality of finished printed devices.⁴⁻⁶ FFF printing has allowed users to design and fabricate a
43 range of bespoke chemical processing technology, including flow reactors with 3D mixing elements,⁷
44 photochemical reactors,⁸ redox flow batteries,⁹ chromatography columns,¹⁰ and filtration and
45 separation devices.⁶

46 A challenge with FFF printed fluidics however is they typically leak when fabricated using default
47 print settings. Users can control a range of print setting options to tailor the print and, for leak-free
48 fluidics, recent papers have recommended using low layer heights (0.1 mm or less^{3, 11-16}), increased
49 flow rates (typically 4-10 % greater than the software-recommended flow rate^{8, 12-15, 17}) and 100%
50 infill^{3, 8, 11-14, 16, 17} (where infill determines how much material is deposited in the print interior). The
51 recommended print settings have been arrived at empirically, but are hypothesised to prevent
52 leakages by removing small air gaps between neighbouring pathways¹³ that can result from the
53 rounded pathway cross sections^{18, 19} In this work we use micro-focus X-ray computed tomography
54 (μ CT) X-ray imaging to find evidence for the leak pathways - linking macroscopic observations of
55 leakage with microscopic observations of the internal structure of printed parts and hence arriving
56 at an informed understanding of how to optimise print parameters for printing fluidics.

57 **Experimental**

58 Standardised test pieces were designed with a single channel (1.5 mm diameter, 40 mm length)
59 which was closed at one end and had a female $\frac{1}{4}$ -28" fitting at the other end to connect to external
60 tubing. The channel width was deliberately chosen to be conservatively wide and easily printable to
61 ensure reliable printing. Two variants of this design were implemented to allow the main channel to
62 be positioned vertically (Fig. 1a-c) or horizontally (Fig. 1d-f) whilst ensuring that the $\frac{1}{4}$ -28" fitting was
63 always printed in a vertical orientation- ensuring the screw threads printed well and that the sealing
64 surface (at the bottom of the fitting) was flat and smooth to allow reliable sealing to a flangeless
65 fitting (IDEX). In each model the channels were surrounded by 9.7 mm of solid material, and
66 markings were patterned into the outer surface so that the position of any external leaks could be
67 related back to the print orientation.

68

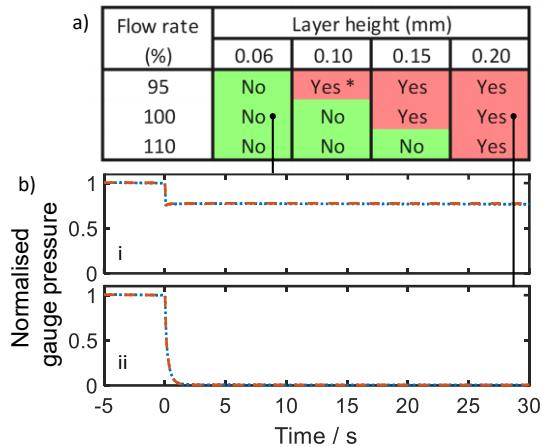
69 *Figure 1: Images showing the test pieces printed with vertical channels (a-c) and horizontal channels*
70 *(d-f). In each case the design is shown as a solid device (a,d), in cross-section (b,e) and as printed (c,f).*
71 *All scale bars represent 1 cm.*

72

73 All test pieces were printed on an Ultimaker 3 printer fitted with a 0.4 mm nozzle using Ultimaker-
74 brand polypropylene filament. Like most commercial polypropylene filaments, consultation of the
75 safety data sheet shows that the material was in fact a polypropylene-ethylene co-polymer.
76 Polypropylene was used as this is the most chemically compatible of the commonly available
77 filament materials and hence best suited to fluidic applications. It has been widely used in studies of
78 FFF-printed fluidics.^{6, 12-14, 18} and more generally in 3D printed reactors.^{5, 8, 16, 17, 20-22} Pieces were
79 designed in Solidworks, exported as .stl files, then imported into Ultimaker Cura to prepare print
80 settings. The default settings for polypropylene were used, with the exception of layer height, flow
81 rate, and infill which were adjusted as later described. All pieces were printed individually in the
82 centre of the buildplate. Ultimaker-brand adhesion sheets were used on the buildplate to ensure
83 good contact between buildplate and the first layer of each print.

84 Leak testing was done in two ways. For quick screening a manual approach was used, whereby a
85 10 ml disposable syringe (BD Plastipak) was connected to the test piece and pressure applied by
86 hand, giving gauge pressures > 160 kPa. After screening a more quantitative approach was used
87 which involved exposing the test piece to an elevated pressure and then tracking what happened to
88 the system pressure over time: Each test piece was connected in series to a) an open/close manual
89 valve (Idex P-782), b) a pressure sensor (NXP MPX4250A, connected using a T-junction, Idex P 713)
90 used to quantify the system pressure, and c) a syringe pump (KD Scientific KDS 100, using a 10 ml BD
91 Plastipak syringe) used to pressurise the system. Throughout, 1/4-28" flangeless fittings were used
92 (IDEX) and 2 mm inner diameter PTFE tubing. The pressure sensor was connected to an Arduino
93 Nano microcontroller which in turn fed readings to a desktop computer running a Labview script
94 (developed in-house) to continually record the system pressure. During testing, the valve was
95 initially closed and the syringe pump run (1 ml/min) until the gauge pressure increased to
96 approximately 150 kPa. When the required pressure had been achieved, the syringe pump was
97 stopped, and the pressure reading left to stabilise (~30 s). The valve was then opened to expose the
98 test piece to the pressurised side of the system and the ensuing pressure trend recorded.

99 For µCT imaging, test pieces were scanned using a Nikon XTEK XTH 225 kVp micro-focus CT system
100 with a Perkin Elmer XRD 1621 CN14 HS detector (PerkinElmer Optoelectronics, Germany) and
101 Tungsten target material. The X-ray conditions were set as 100 kVp peak voltage and 238 µA current
102 and the source to object and source to detector distances set as 100 mm and 798 mm, respectively.
103 Using an exposure time of 250 ms and 24 dB analogue gain on the detector, 1501 projection images


104 were acquired throughout 360° rotation of the test piece, using the minimise ring artefacts
105 acquisition mode and averaging 4 frames per projection.

106 Projection data were reconstructed into 32 bit float volumetric datasets (1000x1000x2000 voxels)
107 using the filtered back-projection algorithms implemented within CTPro3D and CTAgent software
108 v6.2 (Nikon Metrology, UK). The resulting voxel resolution was 25 µm. Each 32 bit raw volume was
109 down-sampled to 8 bit using ImageJ/Fiji (Rasband, W.S., ImageJ, U. S. National Institutes of Health,
110 Bethesda, Maryland, USA, <https://imagej.nih.gov/ij/>, 1997-2019) to reduce data processing time.

111 ImageJ/Fiji was used to compare the volume fraction of porosity within the theoretically solid wall
112 surrounding the central channel. The channel of each test piece was aligned vertically with the Z axis
113 (by reslicing the volume in XZ and YZ and using Image->Rotate), and a 59 voxel diameter circular
114 region (1.5 mm diameter) was specified at the channel, to indicate the channel region as in test
115 piece CAD model. A 120 voxel diameter circular region with co-ordinates centred with that of the
116 channel region was then specified to indicate the 3 mm outer diameter of the nominally solid wall
117 surrounding the channel. The volume was cropped and the slice range in Z was set as the nominal
118 height of the channel (120x120x1595 voxels, 3 x 3 x 40 mm height). A global thresholding method
119 (otsu) was used to segment the volume into regions corresponding to air/porosity (0-140) and
120 material (141-255) using a black background of binary masks. By analysing the histogram stack, the
121 count of voxels corresponding to air (0) and material (255) within the nominally solid wall region was
122 used to calculate the void volume fraction for comparison (voids in wall volume / total wall volume).

123 **Results**

124 Previous literature reports of leak-free fluidics recommend using 100% infill, low layer heights
125 (0.1 mm or lower), and increased flow rates.^{3, 8, 11-15} Of these parameters, the infill makes the most
126 intuitive sense as it should leave no spaces in the bulk of the print for fluid to leak into. Hence we
127 began by keeping infill constant at 100 % and investigating the role of over-extrusion (increased flow
128 rate) and layer height. Over extrusion is the most notable of these parameters as it is not normally
129 used for standard (non-fluidic) printing applications and the option to control this parameter is not
130 easily accessible within slicing software - in contrast to layer height or infill. By increasing the flow of
131 the plastic without increasing the distance between layer paths or layer height, the width of the
132 extruded pathway (i.e. the width of the molten plastic trail put down by the moving nozzle)
133 increases, such that it should better contact (and hence better bond with) neighbouring pathways in
134 each 2D print layer. An inherent disadvantage of over-extrusion, however, is that it will drive printed
135 dimensions away from their nominal sizes (increasing dimensions of positive features in the x-y
136 plane, decreasing dimensions of negative features), increasing the need for empirical dimension
137 optimisation, and hence over-extrusion should be avoided if possible.

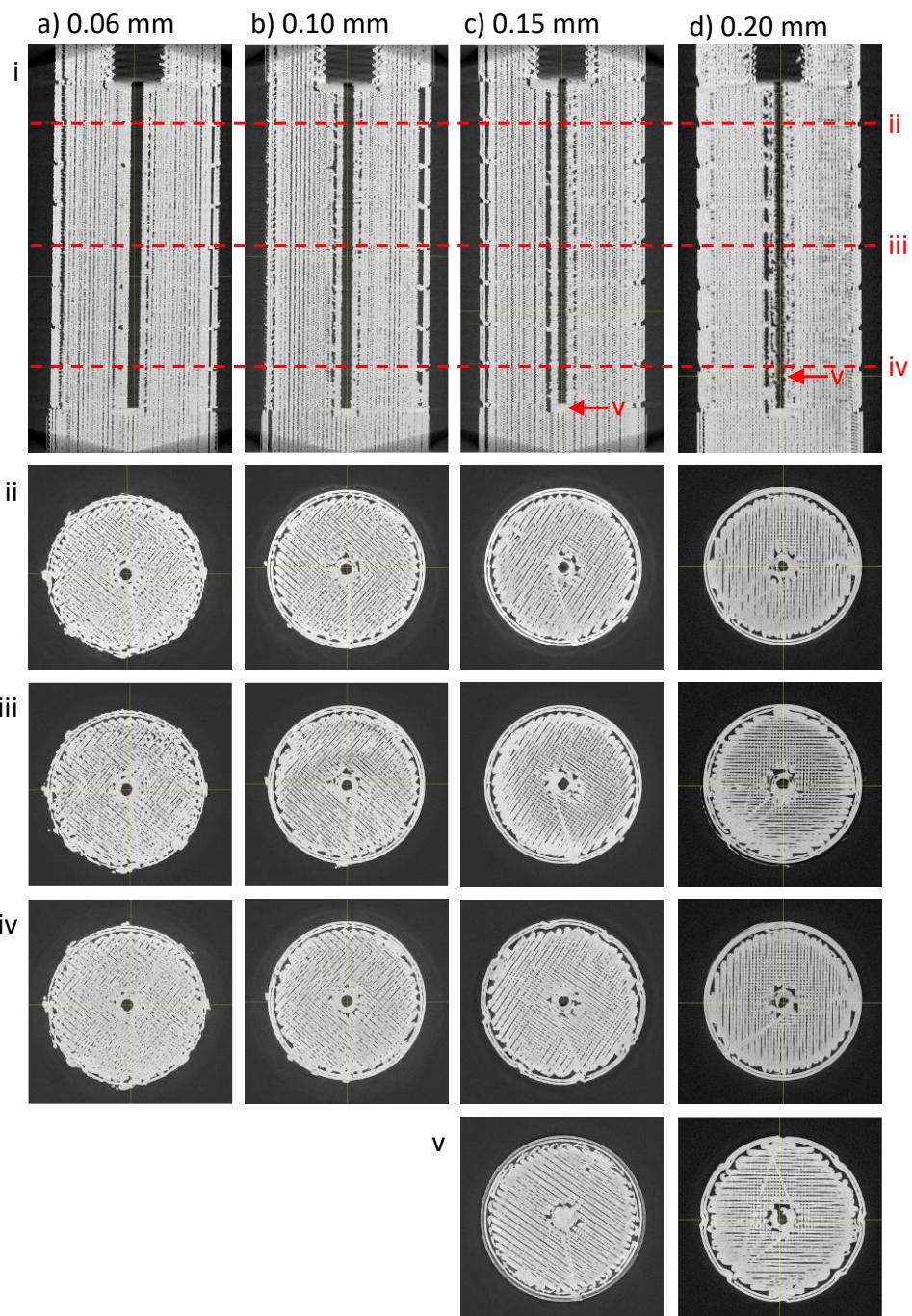
138

139 *Figure 2: a) Manual test results for test pieces with a vertical main channel, printed with varying*
 140 *layer heights and flow rates, showing whether leaking was observed. For the 0.10 mm layer height,*
 141 *95 % flow rate sample (result marked “*”) leaking was only observed at elevated pressures. Example*
 142 *results for two quantitative tests are shown below: b)i - a leak-free test piece printed with 100 % flow*
 143 *rate, 0.06 mm layer height, and b)ii - a leaking test piece printed with 100 % flow rate, 0.20 mm layer*
 144 *height. In both cases, the valve exposing the test piece to the elevated pressure was opened at t = 0.*
 145 *For both quantitative tests two separate measurements of the same device are shown (red dashed*
 146 *and blue dotted lines). In each case the lines overlay each other showing the measurements to be*
 147 *repeatable.*

148

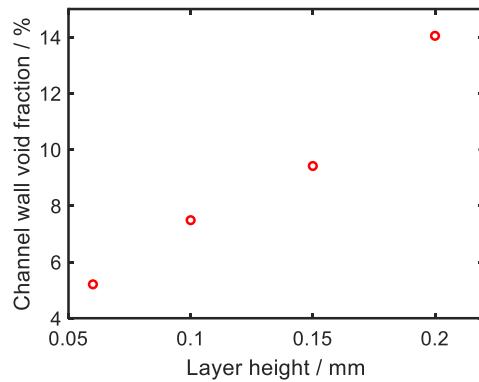
149 Testing began with the test pieces with vertical channels (Fig. 1a-c). Multiple versions were printed,
 150 with layer heights ranging between 0.06 and 0.2 mm (the standard range suggested by the slicing
 151 software for this printer and material) and extrusion rates of 95, 100 and 110 %. Fig. 2a shows the
 152 results from manual leak testing. At the lowest layer height, no leaks were detected in any of the
 153 test pieces, even when the plastic was under-extruded at 95 %. Extrusion rate also had a positive
 154 effect, most notably at the higher layer heights - for example the 0.15 mm layer height print was
 155 only leak-free at 110 % extrusion. To ensure reproducibility, test pieces at a range of layer heights
 156 (0.06, 0.1 and 0.2 mm, with 100% extrusion) and extrusion rates (95, 100, and 110 %, with 0.1 mm
 157 layer height) were reprinted and tested again. All repeat test results reproduced the original
 158 findings. For all pieces that leaked, the observed external position of the leaks varied randomly and
 159 could not be linked to print orientation.

160 The manual results were subsequently checked with quantitative testing in which test pieces were
 161 exposed to a pre-pressurised fluidic manifold and the drop in pressure monitored. All quantitative
 162 tests were consistent with manual testing, with representative results shown in Fig. 2b. When a leak-
 163 free piece was tested (Fig. 2b.i) the pressure drop on exposure was finite, consistent with the
 164 pressure dissipating across an increased volume but immediately stabilising due to the absence of
 165 leaks. By contrast, when a leaky test piece was exposed to the pressurised system (Fig. 2b.ii), the
 166 pressure continuously dropped until the system was completely depressurised - consistent with fluid
 167 being freely lost. Repeats of both tests with a second set of test pieces reproduced the results
 168 (Fig. S1,2). These findings correlate well with previous reports that emphasise the positive effect of
 169 over-extrusion (high flow rates) and low layer height, however it is notable that test pieces printed
 170 with the lowest layer heights (≤ 0.1 mm) did not require over-extrusion. The avoidance of over-
 171 extrusion where possible would allow printed dimensions to more closely match the nominal
 172 dimensions as defined in the original design.


173 We then imaged identical untested test pieces to investigate the structural causes for the observed
174 leaks. Fig. 3 shows reconstructed μ CT slice images of test pieces printed with differing layer heights
175 (a-d) but the same extrusion flow rate (100 %), shown as vertical (i) and horizontal (ii-v) cross
176 sections. The horizontal cross sections (on a parallel plane to the print bed) clearly show the two-
177 dimensional printing pathways taken by the printhead as it lay down each layer. It shows the
178 exterior and internal fluidic channel clearly defined by “wall” pathways with infill, put down as
179 parallel lines, in between. Despite the nominal 100 % infill setting, the body of each print is far from
180 being a solid monolithic piece. Airgaps are visible within the interior of all test pieces irrespective of
181 layer height setting. The porousness of the test pieces indicate that the main print body will have
182 minimal to no effect on preventing leakage and hence it is the integrity of the walls, and in particular
183 the walls of the fluidic channel, that will determine whether a piece leaks or not.

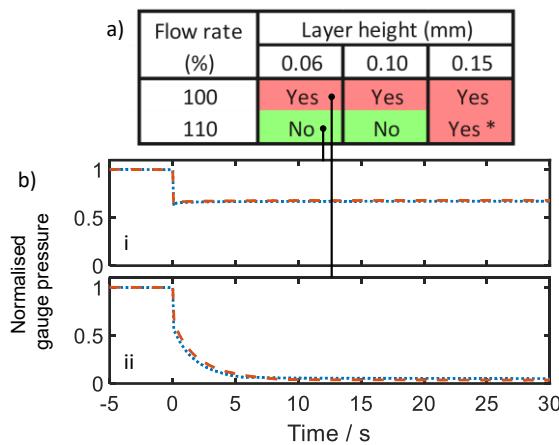
184 The print quality of the channel walls correlated well with the corresponding manual leak testing: At
185 low layer heights (e.g. 0.06 mm layer height, Fig. 3a) the cross sections show the channel walls to be
186 consistently well printed, with no visible gaps and a good connection between walls and infill. As the
187 layer height increases (Fig. 3b-d), the quality of the channel walls visibly deteriorates. At the extreme
188 of 0.2 mm, gaps are clearly visible (Fig. 3d.ii-iv) with clear pathways from the channel into the infill
189 area (Fig. 3a.v). These qualitative observations match well with quantification of the void fraction
190 within the channel wall (Fig. 4), which increases from 5.2 % at 0.06 mm layer height to 14.0 % at
191 0.20 mm layer height. While void fraction is not a direct measure of leak pathways, as it gives no
192 information of the connections across the channel, we would expect a greater chance of leak
193 pathways forming as the void fraction increases.

194 The high quality of the low-layer-height prints is consistent with the bulk leak testing (where over
195 extrusion was not required) and shows how leak prevention is consistent with the quality of the
196 channel walls. This correlates well with a previous report that found increasing wall size (i.e. the
197 number of wall pathways used to define each feature) had a positive effect on leak prevention,²³
198 though in our own testing we found wall size had no impact on leakage (data not shown).


199 The importance of layer height here is likely due to the vertical orientation of the channels during
200 printing, where connection between layers (rather than between pathways in each layer) is of
201 optimum importance. Small layer heights will generate a pathway cross-section with a higher aspect
202 ratio,^{18, 24} which will lead to an increased contact area between layers.

203

204


205 *Figure 3: Reconstructed μCT slice images of test pieces with a vertical channel printed at 100 % flow*
 206 *rate and layer heights of a) 0.06 mm, b) 0.10 mm, c) 0.15 mm, and d) 0.20 mm. Each are shown in*
 207 *vertical profile (i) and below in horizontal cross-section (ii, iii, and iv) at the positions indicated by the*
 208 *red dotted lines in (i). Additional cross-sections (v, marked by red arrows in i) show the intact base of*
 209 *the channel for the 0.15 mm test piece (c), and a very clear break in the channel wall for the 0.20 mm*
 210 *test piece (d).*

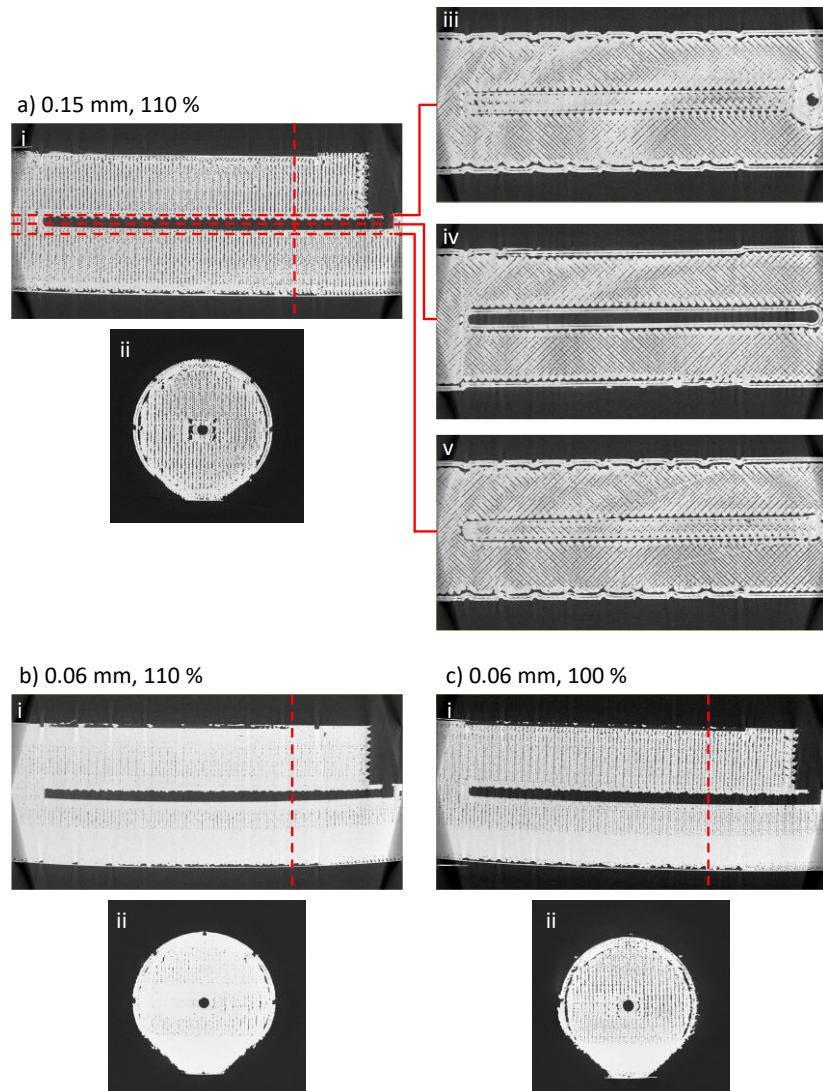
211

212 *Figure 4: Void fraction within the channel wall shown relative to layer height setting for test pieces*
 213 *printed with vertical channels and 100 % flow rate.*

214

215

216 *Figure 5: a) Manual test results for test pieces with a horizontal main channel, printed with varying*
 217 *layer heights and flow rates, showing whether leaking was observed. For the 0.15 mm layer height,*
 218 *110 % flow rate sample (marked “*”) leaking was only observed at elevated pressures. The results of*
 219 *two quantitative tests are shown below: b)i - a leak-free test piece printed with 110 % flow rate,*
 220 *0.06 mm layer height, and b)ii - a leaking test piece printed with 100 % flow rate, 0.06 mm layer*
 221 *height, where t = 0 represents the moment the pressurised system was exposed to the test pieces. For*
 222 *both quantitative tests two separate measurements of the same device are shown (red dashed and*
 223 *blue dotted lines) and in each case the lines overlay each other showing the measurements to be*
 224 *repeatable.*

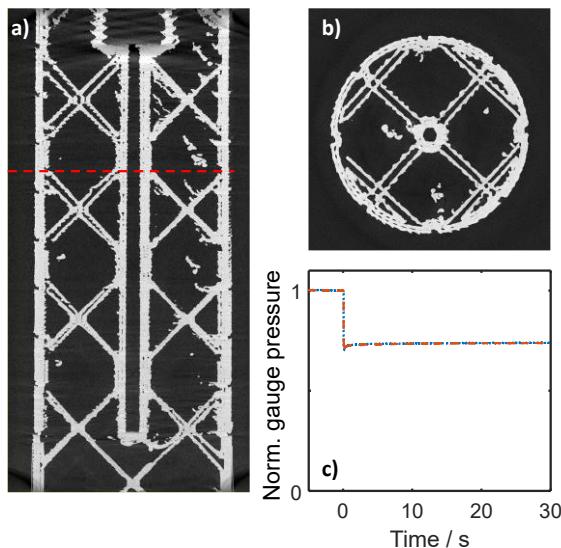

225

226 To ascertain whether the findings for the vertical channel test pieces were more generally applicable
 227 to other channel orientations, we then examined test pieces printed with horizontal channels
 228 (Fig. 1d-f). As was the case for the vertical channel test pieces, the test pieces with horizontal
 229 channels were printed with different layer heights and flow rates, whilst keeping the infill constant
 230 at 100 %.

231 As before, leaks could be clearly identified from manual testing (Fig. 5a) and this was corroborated
 232 by quantitative testing (Fig. 5b). Again, the position of all external leaks varied randomly and could
 233 not be linked to print orientation. The relative importance of the different print parameters were
 234 notably different compared to the vertical channel test pieces however. Here flow rate was the most

235 important parameter, with over-extrusion a requirement for leak free test pieces, irrespective of
236 layer height (Fig. 5a) The reason behind this can be seen by looking at the interior structure. Fig. 6
237 shows three test pieces printed with differing print parameters, where a) and c) both leaked, and b)
238 was leak-free. In each case the internal structure is shown as vertical cross sections along the long (i)
239 and short (ii) dimensions, with horizontal cross sections (on a parallel plane to the print bed)
240 additionally shown for one test piece (Fig. 6a.iii-v). Again the bulk interior of all test piece bodies are
241 seen to be porous (though this was less pronounced when over-extruding at 110 % flow rate,
242 Fig. 6b). The internal porosity again shows that if prints are to be leak-free, fluid must be contained
243 by the channel walls and hence these must be printed without gaps or breakages. Fig 6a.iii-v shows
244 how the channel walls were constructed. Across the middle of the channel (Fig. 6a.iv) filament has
245 been put down around the perimeter of the channels (similar to the cross section of the vertical
246 channels shown in Fig. 3), however the top (Fig. 6a.iii) and bottom (Fig. 6a.v) of the channels are
247 capped with 2D flat plates, constructed by putting down filament in a zig-zag pattern, similar to that
248 used to infill the bulk of the test pieces. It is in those two-dimensional top and bottom pieces that
249 imperfections in the channel wall are visible in the leaky test pieces (Fig. 6a.ii,iii,v and Fig. 6c.ii). A
250 good seal between neighbouring pathways in the 2D print plane is therefore key to having a water-
251 tight seal and explains why over-extrusion is more important for these horizontal channels than for
252 the test pieces with vertical channels – over extrusion increases the width of the bead (whilst
253 maintaining the same height), increases the contact between neighbouring paths, and hence
254 reduces chances of gaps in the plate structures that cap the top and bottom of the channels.

255


256

257 *Figure 6: Reconstructed μCT slice images of test pieces with a horizontal channel printed with a)*
 258 *0.15 mm layer height and 100 % flow rate, b) 0.06 mm layer height and 110 % flow rate, and c)*
 259 *0.06 mm layer height and 100 % flow rate. For a), the internal structure of the piece is shown as a*
 260 *vertical cross-section along the length of the piece (i), a vertical cross-section across the width (ii) and*
 261 *three horizontal cross sections positioned immediately above (iii), at the same height as (iv), and*
 262 *immediately below (v) the channel. The dashed red lines in (i) correspond to the position of the cross*
 263 *sections in (ii)-(v). For b) and c) the internal structure is shown via a vertical cross-section along the*
 264 *length of the piece (i) and a vertical cross-section across the width (ii). The dashed red lines in each (i)*
 265 *correspond to the position of the cross section shown in (ii).*

266

267 Interestingly, the porosity of the test piece bodies and the importance of channel wall integrity
 268 suggests that the amount of infill should make no difference to whether a piece leaks or not. To test
 269 this we printed a vertical-channel test piece with 20 % infill, a layer height of 0.06 mm and 110 %
 270 flow rate (Fig. 7). The resulting test piece had well defined contiguous channel walls (Fig. 7a,b) and
 271 was consequently leak free (Fig. 7c, Fig. S3). The void fraction within the channel walls was
 272 determined to be 6.5 %, consistent with previous measurements of leak-free devices (see Fig. 2 and
 273 Fig. 4). The ability to reduce infill without compromising leak integrity is significant as reducing the

274 infill reduces print time (e.g. 4.75 hours vs 10.75 hours for the vertical test piece here) and material
275 use (9 g vs 20 g here).

276

277 *Figure 7: a)&b) Reconstructed μCT slice images of test pieces with a vertical channel printed with*
278 *0.06 mm layer height and 100 % flow rate, shown as a vertical horizontal cross section (a) with a red*
279 *dashed line showing the location of a corresponding horizontal cross section (b). Quantitative testing*
280 *results of the same test piece are shown in (c). Two separate measurements of the same device are*
281 *shown (red dashed and blue dotted lines) which overlay each other, showing the measurements to be*
282 *repeatable.*

283

284 While the findings described here, using polypropylene–ethylene copolymer, are expected to be
285 broadly applicable to most common FFF filament materials and printers, we anticipate variations
286 with material and printer. Leakage prevention is dependent on forming good bonds between
287 extruded plastic paths, and this is determined by the rheological properties of the plastic and the
288 temperature during the deposition process, which in turn is related to the printer and print
289 settings.²⁵

290 It has previously been observed that different materials will have different behaviour on leaving the
291 nozzle (e.g. solidification rates) which affect bonding.²⁶⁻²⁸ Preliminary tests carried out in our lab
292 have shown that the same qualitative trends that we report here are seen when using other
293 common filament materials (i.e. lowering layer heights and over-extruding prevents leakage) which
294 we intend to explore in more detail in a later publication.

295 Cooling rates will be dependent on the printer and the printer settings,^{26, 29} hence it is reasonable to
296 expect that different printers might require different print settings. In particular, we note that the
297 printer used here was open on two sides, hence we might expect different ambient temperatures
298 and hence cooling rates when compared to printers that are completely open, or completely
299 contained and temperature-controlled. Similarly, differences might be seen depending on where the
300 print was located on the buildplate and how this affects the ambient temperature.²⁹

301 Finally we note that we have focussed on preventing leakage by ensuring that channel walls are
302 intact. A contrasting approach might be to instead focus on reducing the porosity of the bulk. This
303 could be done, for example, by replacing the standard infill pattern with injection printing,³⁰ a
304 technique whereby walls are first printed and then large volumes of material extruded into the

305 interior space to create a monolithic void-free interior. While this could be a viable approach, it is
306 not a standard print option for slicing software and requires bespoke coding, making it inaccessible
307 to most users. Moreover, it does not offer the advantages of faster print times and lower materials
308 cost that are possible with well-formed channel walls and low infill (Fig. 7).

309 **Conclusion**

310 In summary, these results confirm previous reports that low layer heights and increased flowrates
311 lead to leak-free devices but show that these print parameters are of different importance
312 depending on whether channels are vertical or horizontal. Moreover μ CT scans show the underlying
313 reason for these parameter choices is to ensure that channel walls are well formed. For vertical
314 channels low layer height (≤ 0.1 mm) is most important to ensure channel wall integrity, while over-
315 extrusion ($> 100\%$) is the determining factor for horizontal channels. Hence both are recommended
316 for most prints where channels could be in a range of orientations. The importance of well-formed
317 channel walls also means that, when using optimised layer height and flow rate settings, infills can
318 be set much lower to greatly decrease print times and material usage – in contrast to previous
319 literature recommendations of 100 % infill.

320 **Supporting information**

321 Additional quantitative leak testing results.

322 **Acknowledgements**

323 AMN is supported by the Natural Environment Research Council (NE/Z503599/1 and NE/Z503551/1).
324 CT scanning was supported by the National Research Facility for Lab X-ray CT (NXCT) at the μ -VIS X-
325 ray Imaging Centre, University of Southampton (EPSRC grant EP/T02593X/1). This research used
326 equipment purchased by 'CeM-CATS: A Centre for Multi-disciplinary Computer Assisted Tomography
327 at Southampton' through EPSRC grant EP/H01506X/1.

328

329 **References**

330 (1) Su, R.; Wang, F.; McAlpine, M. C. 3D printed microfluidics: advances in strategies, integration, and
331 applications. *Lab on a Chip* **2023**, 23 (5), 1279-1299, 10.1039/D2LC01177H. DOI:
332 10.1039/D2LC01177H.

333 (2) Montaner, M. B.; Hilton, S. T. Recent advances in 3D printing for continuous flow chemistry.
334 *Current Opinion in Green and Sustainable Chemistry* **2024**, 47. DOI: 10.1016/j.cogsc.2024.100923.

335 (3) Macdonald, N. P.; Cabot, J. M.; Smejkal, P.; Guijt, R. M.; Paull, B.; Breadmore, M. C. Comparing
336 Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. *Analytical Chemistry* **2017**,
337 89 (7), 3858-3866. DOI: 10.1021/acs.analchem.7b00136.

338 (4) Li, F.; Macdonald, N. P.; Guijt, R. M.; Breadmore, M. C. Increasing the functionalities of 3D printed
339 microchemical devices by single material, multimaterial, and print-pause-print 3D printing. *Lab on a*
340 *Chip* **2019**, 19 (1), 35-49, 10.1039/C8LC00826D. DOI: 10.1039/C8LC00826D.

341 (5) du Preez, A.; Meijboom, R.; Smit, E. Low-Cost 3D-Printed Reactionware for the Determination of
342 Fatty Acid Content in Edible Oils using a Base-Catalyzed Transesterification Method in Continuous
343 Flow. *Food Analytical Methods* **2022**, 15 (7), 1816-1825. DOI: 10.1007/s12161-022-02233-2.

344 (6) Clark, M. J.; Garg, T.; Rankin, K. E.; Bradshaw, D.; Nightingale, A. M. 3D printed filtration and
345 separation devices with integrated membranes and no post-printing assembly. *Reaction Chemistry &*
346 *Engineering* **2024**, 9 (2), 251-259. DOI: 10.1039/d3re00245d.

347 (7) Harding, M. J.; Brady, S.; O'Connor, H.; Lopez-Rodriguez, R.; Edwards, M. D.; Tracy, S.; Dowling,
348 D.; Gibson, G.; Girard, K. P.; Ferguson, S. 3D printing of PEEK reactors for flow chemistry and
349 continuous chemical processing. *Reaction Chemistry & Engineering* **2020**, 5 (4), 728-735,
350 10.1039/C9RE00408D. DOI: 10.1039/C9RE00408D.

351 (8) Penny, M. R.; Hilton, S. T. 3D printed reactors and Kessil lamp holders for flow photochemistry:
352 design and system standardization. *Journal of Flow Chemistry* **2023**, 13 (4), 435-442. DOI:
353 10.1007/s41981-023-00278-w.

354 (9) O'Connor, H.; Bailey, J. J.; Istrate, O. M.; Klusener, P. A. A.; Watson, R.; Glover, S.; Iacoviello, F.;
355 Brett, D. J. L.; Shearing, P. R.; Nockemann, P. An open-source platform for 3D-printed redox flow
356 battery test cells. *Sustainable Energy & Fuels* **2022**, 6 (6), 1529-1540. DOI: 10.1039/d1se01851e.

357 (10) Abdulhussain, N.; Nawada, S.; Curriyan, S.; Passamonti, M.; Schoenmakers, P. Fabrication of
358 polymer monoliths within the confines of non-transparent 3D-printed polymer housings. *Journal of*
359 *Chromatography A* **2020**, 1623, 461159. DOI: <https://doi.org/10.1016/j.chroma.2020.461159>.

360 (11) Tiboni, M.; Tiboni, M.; Pierro, A.; Del Papa, M.; Sparaventi, S.; Cespi, M.; Casettari, L.
361 Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
362 *International Journal of Pharmaceutics* **2021**, 599. DOI: 10.1016/j.ijpharm.2021.120464.

363 (12) Rao, Z. X.; Patel, B.; Monaco, A.; Cao, Z. J.; Barniol-Xicota, M.; Pichon, E.; Ladlow, M.; Hilton, S. T.
364 3D-Printed Polypropylene Continuous-Flow Column Reactors: Exploration of Reactor Utility in
365 S_{sub}N_{sub}Ar Reactions and the Synthesis of Bicyclic and Tetracyclic Heterocycles. *European*
366 *Journal of Organic Chemistry* **2017**, 2017 (44), 6499-6504. DOI: 10.1002/ejoc.201701111.

367 (13) Quero, R. F.; da Silveira, G. D.; da Silva, J. A. F.; de Jesus, D. P. Understanding and improving
368 FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices. *Lab on a*
369 *Chip* **2021**, 21 (19), 3715-3729. DOI: 10.1039/d1lc00518a.

370 (14) Price, A. J. N.; Capel, A. J.; Lee, R. J.; Pradel, P.; Christie, S. D. R. An open source toolkit for 3D
371 printed fluidics. *Journal of Flow Chemistry* **2021**, 11 (1), 37-51. DOI: 10.1007/s41981-020-00117-2.

372 (15) Hapke, S.; Luinstra, G. A.; Zentel, K. M. Optimization of a 3D-printed tubular reactor for free
373 radical polymerization by CFD. *Journal of Flow Chemistry* **2021**, 11 (3), 539-552. DOI:
374 10.1007/s41981-021-00154-5.

375 (16) Silver, K.; Li, J.; Porch, A.; Jamieson, W. D.; Castell, O.; Dimitriou, P.; Kallnik, C.; Barrow, D. 3D-
376 printed microfluidic-microwave device for droplet network formation and characterisation. *Lab on a*
377 *Chip* **2024**, 24 (22), 5101-5112, 10.1039/D4LC00387J. DOI: 10.1039/D4LC00387J.

378 (17) du Preez, A.; Strydom, A. M.; Ndinteh, D. T.; Smit, E. Modular 3D printed flow system for
379 efficient one-step synthesis of phenyl-functionalised silica-coated superparamagnetic iron oxide

380 nanoparticles. *Reaction Chemistry & Engineering* **2024**, 9 (10), 2740-2749, 10.1039/D4RE00242C.
381 DOI: 10.1039/D4RE00242C.

382 (18) Carneiro, O. S.; Silva, A. F.; Gomes, R. Fused deposition modeling with polypropylene. *Materials*
383 & Design

2015, 83, 768-776. DOI: 10.1016/j.matdes.2015.06.053.

384 (19) Wu, L.; Beirne, S.; Cabot, J. M.; Paull, B.; Wallace, G. G.; Innis, P. C. Fused filament fabrication 3D
385 printed polylactic acid electroosmotic pumps. *Lab on a Chip* **2021**, 21 (17), 3338-3351,
386 10.1039/D1LC00452B. DOI: 10.1039/D1LC00452B.

387 (20) Malatini, C.; Carbajales, C.; Luna, M.; Beltrán, O.; Amorfn, M.; Masaguer, C. F.; Blanco, J. M.;
388 Barbosa, S.; Taboada, P.; Coelho, A. 3D-Printing of Capsule Devices as Compartmentalization Tools
389 for Supported Reagents in the Search of Antiproliferative Isatins. *Pharmaceutics* **2023**, 16 (2). DOI:
390 10.3390/ph16020310.

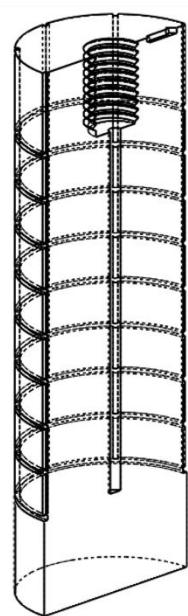
391 (21) Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Combining 3D printing and liquid handling to
392 produce user-friendly reactionware for chemical synthesis and purification. *Chemical Science* **2013**, 4
393 (8), 3099-3103. DOI: 10.1039/c3sc51253c.

394 (22) Kitson, P. J.; Marie, G.; Francoia, J. P.; Zalesskiy, S. S.; Sigerson, R. C.; Mathieson, J. S.; Cronin, L.
395 Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. *Science*
396 **2018**, 359 (6373), 314-319. DOI: 10.1126/science.aa03466.

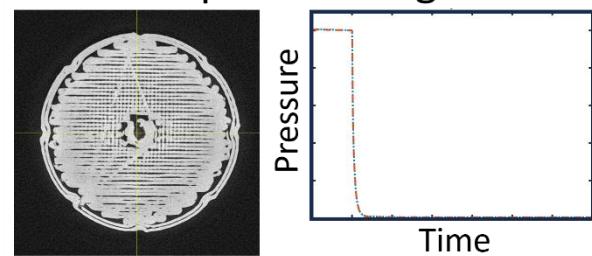
397 (23) Salentijn, G. I. J.; Oomen, P. E.; Grajewski, M.; Verpoorte, E. Fused Deposition Modeling 3D
398 Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. *Analytical*
399 *Chemistry* **2017**, 89 (13), 7053-7061. DOI: 10.1021/acs.analchem.7b00828.

400 (24) Ferretti, P.; Leon-Cardenas, C.; Santi, G. M.; Sali, M.; Ciotti, E.; Frizziero, L.; Donnici, G.; Liverani,
401 A. Relationship between FDM 3D Printing Parameters Study: Parameter Optimization for Lower
402 Defects. *Polymers* **2021**, 13 (13), 2190.

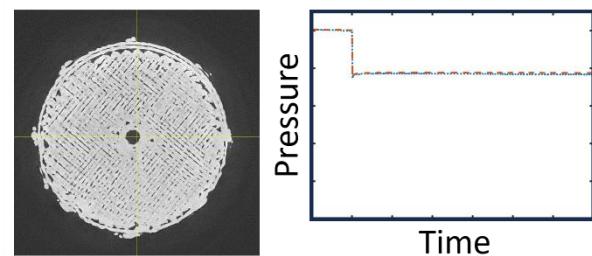
403 (25) Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated
404 Composite: A Review on Mechanical Properties, Defects and Treatments. *Polymers* **2020**, 12 (7). DOI:
405 10.3390/polym12071529.


406 (26) Domenech, T.; Ovlaque, P.; Trolez, Y.; Olivier, D.; Bujeau, B.; Charlon, S.; Soulestin, J.
407 Competition between bead boundary fusion and crystallization kinetics in material extrusion-based
408 additive manufacturing. *Additive Manufacturing* **2024**, 92. DOI: 10.1016/j.addma.2024.104395.

409 (27) Lee, J.; Patil, N. A.; Park, J. H. Correlating microstructural and rheological variations in
410 acrylonitrile-butadiene-styrene (ABS) with interlayer bond formation in material extrusion additive
411 manufacturing. *Additive Manufacturing* **2024**, 96. DOI: 10.1016/j.addma.2024.104553.


412 (28) Thumsorn, S.; Prasong, W.; Kurose, T.; Ishigami, A.; Kobayashi, Y.; Ito, H. Rheological Behavior
413 and Dynamic Mechanical Properties for Interpretation of Layer Adhesion in FDM 3D Printing.
414 *Polymers* **2022**, 14 (13), 2721.

415 (29) Sun, Q.; Rizvi, G. M.; Bellehumeur, C. T.; Gu, P. Effect of processing conditions on the bonding
416 quality of FDM polymer filaments. *Rapid Prototyping Journal* **2008**, 14 (2), 72-80. DOI:
417 10.1108/13552540810862028.


418 (30) Kazmer, D. O.; Colon, A. Injection printing: additive molding via shell material extrusion and
419 filling. *Additive Manufacturing* **2020**, 36, 101469. DOI:
420 <https://doi.org/10.1016/j.addma.2020.101469>.

Standard print settings

Optimized print settings

