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Abstract: 28 

Radiolucent foreign body aspiration (FBA) remains diagnostically challenging due to its subtle imaging signatures 29 

on chest CT scans, often leading to delayed or missed diagnoses. We present a deep learning model integrating 30 

MedpSeg, a high-precision airway segmentation method, with a convolutional classifier to detect radiolucent FBA. 31 

The model was trained and validated across three independent cohorts, demonstrating consistent performance 32 

with accuracies above 90% and balanced recall–precision metrics. In a blinded independent evaluation cohort, the 33 

model outperformed expert radiologists in both recall (71.4% vs. 35.7%) and F1 score (74.1% vs. 52.6%), 34 

highlighting its potential to reduce missed cases (false negatives) and support clinical decision-making. This study 35 

illustrates the translational potential of artificial intelligence for addressing diagnostically complex and high-risk 36 

conditions, offering an effective tool to support radiologists in the assessment of suspected radiolucent foreign 37 

body aspiration. Code is available at https://github.com/ZheChen1999/FBA_DL.38 

https://github.com/ZheChen1999/FBA_DL
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Introduction 39 

Foreign body aspiration (FBA) is a potentially life-threatening condition that disproportionately affects young 40 

children and older adults, often resulting in delayed treatment and serious complications when not promptly 41 

diagnosed 1-3. Chest radiography is the primary imaging modality used to identify a foreign body in the lower 42 

airway. A retrospective analysis of FBA cases at the Central Hospital of Wuhan, China (2012–2022) 4, along 43 

with a study by Sehgal and colleagues 5, demonstrated that up to 75% of FBA cases in the adults involve 44 

radiolucent foreign bodies. Among these, half of these patients experienced disease duration exceeding 60 days, 45 

and two-thirds were misdiagnosed due to the foreign body not being detected early on CT scans 4,6,7. Symptoms 46 

of radiolucent FBA vary widely depending on the location, size, and type of the foreign body, ranging from 47 

persistent cough and chest discomfort in adults to acute airway obstruction in infants 8,9. Radiological imaging 48 

plays a critical role in diagnosing FBA. However, radiolucent foreign bodies, which are invisible on conventional 49 

radiographs, present a significant diagnostic challenge. Previous studies revealed that approximately 66% of 50 

radiolucent foreign body cases were initially misdiagnosed, often as pneumonia 4,10. This highlights the urgent 51 

need for advanced diagnostic methods capable of accurately identifying radiolucent foreign bodies. When 52 

radiographic findings are inconclusive, multi-detector computed tomography (MDCT) is clinically indicated due 53 

to its superior ability to visualize airway structures and detect subtle pathological changes. However, interpretation 54 

remains difficult and diagnostic accuracy is subject to inter-reader variability 11.  55 

    Building on this diagnostic gap, we propose a deep learning (DL)-based framework designed to improve the 56 

detection of radiolucent FBAs on chest CT scans 12-14. Advances in artificial intelligence (AI) and convolutional 57 

neural networks (CNNs) have led to notable improvements in airway segmentation and image classification across 58 

various thoracic imaging tasks 15. Although encouraging results have been reported for pediatric FBA detection 59 
16, identifying radiolucent foreign bodies in adults remains challenging due to their small size, diverse morphology, 60 

and resemblance to surrounding tissue structures 17. 61 

    To address these challenges, this study proposes a two-stage deep learning pipeline that integrates high-62 

precision airway segmentation using MedpSeg with multi-view classification via ResNet-18, specifically 63 

optimized for radiolucent FBA detection. The model was trained and validated on multiple datasets—including 64 

internal modelling, external validation, and independent evaluation cohorts—and its performance was directly 65 

compared with expert radiologists. Our model achieved consistent detection with high accuracy and improved 66 

diagnostic balance, demonstrating its potential to enhance clinical workflows for suspected radiolucent FBA cases.  67 
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Results 68 

Patient Characteristics 69 

As shown in Supplementary Table 1 and Fig. 1, this study included patients diagnosed with radiolucent FBA 70 

from 2017 to 2024 at The Central Hospital of Wuhan and The Renmin Hospital of Wuhan University. A total of 71 

41 radiolucent FBA cases were enrolled in the internal modelling cohort, of whom 26 (63.4%) were male and 15 72 

(36.6%) were female, with a median age of 66 years (interquartile range, IQR 53–77). An additional 21 radiolucent 73 

FBA cases were included in the external validation cohort, with a median age of 66 years (IQR 57–70), 13 (61.9%) 74 

being male and 8 (38.1%) female. Compared with non-FBA (NFBA) patients, FBA cases had a significantly 75 

longer disease course in both the internal modelling and external validation cohorts (60 vs. 7 days, P < 0.0001) 76 

(See Fig.1 for detailed cohort allocation). ICU admission was also more frequent among FBA patients in the 77 

internal modelling cohort (22% vs. 5%, P = 0.0013). Chronic respiratory comorbidities such as chronic obstructive 78 

pulmonary disease (COPD, 19.5%), asthma (2.4%) and bronchiectasis (9.8%) were observed in a subset of FBA 79 

patients, although without statistically significant differences compared to NFBA patients. Importantly, 80 

radiological findings from MDCT demonstrated notable distinctions. In the internal modelling cohort, FBA 81 

patients exhibited a significantly higher prevalence of atelectasis (46.3% vs. 18.1%, P = 0.0002) and a significantly 82 

lower prevalence of pleural effusion (0% vs. 15.9%, P = 0.0125), pulmonary emphysema (9.8% vs. 27.4%, 83 

P = 0.0266) and lung nodules (26.8% vs. 42.5%, P < 0.0001). In the external validation cohort, pneumonic patches 84 

were significantly less common in FBA patients compared to NFBA patients (38.1% vs. 96.3%, P < 0.0001), 85 

whereas the prevalence of tuberculosis (28.6% vs. 8.5%, P = 0.0236) and airway stenosis (23.8% vs. 4.9%, P = 86 

0.0163) was significantly higher in the FBA group. The inclusion process for the internal modelling, external 87 

validation, and independent evaluation cohorts is illustrated in Fig. 1, providing a clear breakdown of patient 88 

sources and exclusion criteria across study sites. This structure underpins the comparative analysis of model 89 

generalizability. 90 

Radiological findings from MDCT showed that in the internal modelling cohort, the right middle lobe 91 

bronchus (32%) was the most frequent site of radiolucent foreign body, followed by the right upper lobe bronchus 92 

(27%). Bone fragments (e.g., chicken, fish, crayfish shell) were the most common type of foreign body (37%), 93 

followed by plant materials (27%) (Supplementary Table 2), consistent with earlier studies 4,18-20.  94 

 95 

3D Airway Segmentation 96 
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To ensure anatomical accuracy, a semi-automated labelling workflow was implemented prior to model training, 97 

combining deep learning predictions with expert corrections. This process, detailed in Fig. 2, served to refine the 98 

airway segmentation ground truth and enhance model robustness against occlusions and branch artifacts. The 99 

MedpSeg model, a state-of-the-art deep learning framework, demonstrated outstanding performance in airway 100 

segmentation, consistently outperforming MedSeg and AG-UNet, across key evaluation metrics. In the internal 101 

modelling cohort, MedpSeg achieved the highest dice similarity coefficient (DSC) of 87.48% and the lowest 102 

average symmetric surface distance (ASSD) of 0.71 mm, indicating superior segmentation accuracy and boundary 103 

precision. In the external validation cohort, the model maintained robust performance with a DSC of 86.58% and 104 

an ASSD of 0.75 mm, further validating its generalizability. Compared to MedSeg and AG-UNet, MedpSeg 105 

exhibited superior precision in capturing intricate airway structures, particularly in cases involving partial 106 

obstructions. As shown in Table 1 and Fig. 3, the segmentation results from MedpSeg aligned most closely with 107 

the gold standard (ground truth), demonstrating minimal false negatives and false positives. These findings 108 

underscore MedpSeg’s potential to improve airway segmentation accuracy, offering a reliable basis for subsequent 109 

foreign body detection and localization. The model’s consistent performance across internal and external datasets 110 

highlights its robustness and applicability in diverse clinical settings. Once trained, MedpSeg performed 111 

segmentation without any human intervention (Fig. 1). 112 

 113 

A Deep Learning Method to Detect Radiolucent FBA on Chest CT Scans 114 

We then explored various classification backbones, including ResNet-18, EfficientNet-B0, DenseNet-121, ViT-115 

B/16, and Swin-T (tiny). As shown in Supplementary Table S3, ResNet-18 achieved the best balance between 116 

predictive performance and computational efficiency, making it particularly suitable for real-time clinical 117 

deployment. While some transformer-based models (e.g., ViT-B/16, Swin-T) demonstrated competitive recall, 118 

they tended to underperform in precision and overall F1 score, likely due to their higher parameter complexity 119 

and sensitivity to smaller datasets. These results suggest that ResNet-18 offers a favorable trade-off between 120 

model complexity and performance in the context of radiolucent FBA detection. 121 

    To enable accurate detection of radiolucent FBA, we implemented a two-stage deep learning framework 122 

combining anatomical feature extraction with multi-view image classification. As illustrated in Fig. 4, segmented 123 

3D airway structures are captured from multiple angles to generate a set of snapshot views. These multi-angle 124 

images are fed into a ResNet-18 convolutional neural network, which includes convolutional, pooling, and fully 125 

connected layers, fine-tuned for binary classification between FBA and NFBA. This multi-view strategy improves 126 
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the model’s ability to localize subtle, non-radiopaque foreign bodies that may be overlooked in standard slice-127 

wise analysis. 128 

    The training loss and validation accuracy trends for the ResNet-18 model over 100 epochs were examined in 129 

the radiolucent FBA cases (Fig. 5a). The rapid decline in training loss (red line) during the initial epochs indicates 130 

effective learning, with errors stabilizing at a low level. Simultaneously, the validation accuracy (blue line) 131 

steadily increases and stabilizes near 0.9, reflecting strong generalization to unseen data. Minor oscillations in 132 

validation accuracy suggest potential overfitting or inconsistencies in the validation dataset, warranting further 133 

optimization through regularization techniques or hyperparameter tuning to improve robustness. We then checked 134 

the Receiver Operating Characteristic (ROC) curve for the model to detect radiolucent FBA cases. The area under 135 

the ROC curve (AUC) for radiolucent FBA detection was 0.91 (95% confidence interval, CI: 0.86–0.95) for the 136 

internal modelling cohort, 0.88 (95% CI: 0.82–0.94) for the external validation cohort, and 0.89 (95% CI: 0.83–137 

0.96) for the independent evaluation cohort. Pairwise comparisons using DeLong's test revealed no statistically 138 

significant differences in AUCs between the cohorts (internal modelling vs. external validation: P = 0.31; internal 139 

modelling vs. independent evaluation: P = 0.45; external validation vs. independent evaluation: P = 0.67), 140 

indicating consistent and robust diagnostic performance in detecting radiolucent FBA cases across datasets (Fig. 141 

5b). 142 

    Model performance was also evaluated in both the internal modelling and external validation cohorts. As 143 

shown in Table 2, the model achieved an accuracy of 94.4%, recall of 78.0%, precision of 84.2%, and F1 score 144 

of 81.0% in the internal cohort. In the external validation cohort, accuracy was 90.3%, recall 76.2%, precision 145 

76.2%, and F1 score 76.2%.  146 

    To further evaluate generalization, we performed an age-based subgroup analysis within the independent 147 

evaluation cohort. Patients were divided into two groups: individuals under 40 years old and those aged 40 years 148 

or older. Among individuals under 40 years old (n = 12), the model achieved an accuracy of 83.3%, precision of 149 

75.0%, recall of 75.0%, and F1 score of 75.0%. For those aged 40 years or above (n = 58), the accuracy was 150 

91.4%, with precision, recall, and F1 score of 77.8%, 70.0%, and 73.7%, respectively (Supplementary Table S4). 151 

Fisher’s exact tests for recall, precision, and accuracy revealed no statistically significant differences between the 152 

two age groups (all P > 0.5), suggesting that the model maintains consistent classification performance across age 153 

strata. These results demonstrate that the model generalizes well across different ages. 154 

 155 

An Ablation Study to Evaluate the Contributions of Each Pipeline Component 156 
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For this purpose, we conducted a comprehensive ablation study using the independent evaluation cohort (n = 70). 157 

Beginning with a baseline model trained solely on raw axial CT slices, we sequentially incorporated segmentation 158 

masks, reduced-view projections, and data augmentation. As shown in Supplementary Table S5, the baseline 159 

model yielded an accuracy of 72.3% and an F1 score of 44.6%. The inclusion of segmentation masks modestly 160 

improved performance (accuracy: 75.8%; F1 score: 57.3%), and adopting a reduced multi-view strategy (six 161 

projection views) further enhanced performance to 79.6% accuracy and a 59.6% F1 score. The addition of data 162 

augmentation contributed substantial gains in generalizability, resulting in 85.4% accuracy and a 65.9% F1 score. 163 

The complete pipeline—incorporating segmentation, augmentation, and a full set of 12 projection views—164 

achieved the highest overall performance, with an accuracy of 90.0% and an F1 score of 74.1%. These findings 165 

underscore the synergistic benefits of structural modelling, enhanced spatial context, and data diversity in 166 

detecting subtle features associated with radiolucent FBA. 167 

 168 

Evaluating the Performance of Deep Learning vs. Expert Radiologists 169 

Finally we assembled an independent evaluation cohort from The Zhongnan Hospital of Wuhan University, 170 

consisting of 14 bronchoscopy-confirmed radiolucent FBA cases and 56 NFBA controls (Fig. 1). As detailed in 171 

Supplementary Table 6, among the radiolucent FBA cases, 8 (57.2%) were male and 6 (42.8%) were female, with 172 

a median age of 56 years (IQR 38–74). CT scans were independently reviewed by 3 board-certified thoracic 173 

radiologists (each with over 10 years of clinical experience) blinded to bronchoscopy findings; any discrepancies 174 

were resolved by consensus (Fig. 1). Table 3 presents the comparative performance metrics of the deep learning 175 

model and the expert radiologists on this independent evaluation cohort. The deep learning model achieved an 176 

accuracy of 90.0%, with a precision of 76.9%, recall of 71.4%, and an F1 score of 74.1%. In comparison, expert 177 

radiologists demonstrated a perfect precision of 100% but a lower recall of 35.7%, resulting in an overall accuracy 178 

of 87.1% and an F1 score of 52.6%. Notably, the deep learning model outperformed experienced radiologists in 179 

both recall (71.4% vs. 35.7%; P <  0.05) and F1 score (74.1% vs. 52.6%; P <  0.05). The F1 score, as the harmonic 180 

mean of precision and recall, provides a balanced metric that is especially informative in the context of imbalanced 181 

datasets. These results highlight the model’s potential to reduce missed cases (false negatives) while maintaining 182 

acceptable precision, thereby supporting clinical decision-making.  183 
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Discussion 184 

FBA poses significant clinical challenges, often leading to prolonged disease courses and high rates of 185 

misdiagnosis. One of the primary difficulties in diagnosing FBA is that many foreign bodies are radiolucent, 186 

making them nearly invisible on routine imaging methods including X-rays and CT scans. In addition, patients 187 

may lack a clear recollection of an aspiration event—such as choking or coughing while eating—further 188 

complicating the diagnosis. This study demonstrates that deep learning models can effectively address these 189 

challenges, particularly in identifying radiolucent FBAs, by leveraging advanced CT imaging analysis.  190 

    Accurate airway segmentation is crucial for identifying FBA cases. In this study, airway segmentation during 191 

training was performed using the MedpSeg deep learning model, with radiologists-guided corrections 192 

incorporated to ensure accurate and reliable airway mapping, achieving a DSC of 87.48%. This approach achieved 193 

higher segmentation accuracy compared to conventional methods like region growing or wave propagation, which 194 

typically achieve DSC values around 70-80% 21. Compared to benchmarks, such as U-Net variants used in 195 

competitions like EXACT'09, our approach exhibited greater robustness, especially in cases involving airway 196 

obstruction. Although previous studies validated the applicability of U-Net and similar architectures, their 197 

dependence on manual preprocessing or post-segmentation adjustments limited their scalability 22-24. Performance 198 

on a 10-case hold-out set, unseen during iterative refinement, confirmed the absence of overfitting or feedback-199 

related inflation. By integrating manual corrections into iterative training, we reduced false positives and improved 200 

generalizability. 201 

    In detecting radiolucent FBAs, the ResNet-18–based classification model achieved excellent performance 202 

across three distinct datasets. Accuracy ranged from 90.0% to 94.4%, with precision between 76.2% and 84.2%, 203 

and recall between 76.2% and 78.0%. These results are especially significant when compared to expert 204 

radiologists’ performance in the independent evaluation cohort: although human readers achieved perfect 205 

precision (100%), their recall dropped markedly to 35.7%, indicating a high false-negative rate. The model, in 206 

contrast, offered a more balanced trade-off between recall and precision, with a higher F1 score (74.1% vs. 52.6%), 207 

highlighting its value as a second-reader tool to reduce missed diagnoses and to prioritize appropriate 208 

bronchoscopic evaluation. 209 

Previous studies have explored a range of strategies for detecting foreign body aspiration, including 210 

radiographic interpretation, rule-based diagnostic models, and conventional machine learning methods 25-27. 211 

However, these methods often lacked specificity to radiolucent FBA, were limited to radiography, or were 212 

validated only on small, homogeneous datasets. For example, retrospective studies have shown that up to 66% of 213 
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radiolucent FBAs are initially misdiagnosed as pneumonia or asthma, due to the subtlety of CT findings and 214 

absence of radiopaque markers 4. Traditional machine learning approaches, such as support vector machines or 215 

radiomics-based classifiers, have reported moderate performance (AUC ~ 0.75–0.80) in small datasets but lacked 216 

validation across independent cohorts. More recently, Truong and colleagues applied deep learning to pediatric 217 

chest X-rays for FBA detection 12, achieving an AUC of 0.88, but their method was not applicable to radiolucent 218 

cases or CT-based workflows. Similarly, airway segmentation frameworks by Charbonnier et al. and Garcia-219 

Uceda Juarez et al. focused on anatomical reconstruction but did not address FBA detection directly 22,28. Our 220 

study addresses this gap by focusing specifically on radiolucent FBA and validating across three distinct 221 

institutional cohorts using CT imaging. 222 

Despite the encouraging results, several limitations must be acknowledged. First, the retrospective design of 223 

this study introduces potential selection bias and the overall sample size remains relatively limited. To help 224 

mitigate this, we incorporated data from 3 independent hospitals in Wuhan (China), each with different radiology 225 

departments and CT scanner models (UCT780 64-row, Philips Brilliance iCT, Canon Aquilion One, UCT780 80-226 

row). Although geographically close, this setup introduces a degree of institutional heterogeneity, which helps 227 

approximate certain aspects of multi-center validation. Furthermore, these hospitals recruited patients from across 228 

central China and beyond, encompassing a range of population characteristics (e.g., age distribution, diet, and 229 

comorbidity profiles). Second, although CT imaging provides excellent spatial resolution for airway assessment, 230 

its relatively high radiation dose limits widespread application, particularly for screening or serial follow-up in 231 

pediatric populations. Our model is therefore intended for targeted use in cases with clinical suspicion following 232 

inconclusive X-ray findings. Future work will explore integration with low-dose CT protocols and assess the cost-233 

effectiveness and clinical impact of this approach in triage workflows. Third, radiolucent FBAs represent a 234 

minority class in real-world clinical datasets, complicating model optimization. To improve this, we adopted focal 235 

loss, class-balanced mini-batching, and data augmentation strategies during training. Additional techniques such 236 

as synthetic oversampling or semi-supervised learning could further improve model sensitivity 29,30. Fourth, the 237 

model demonstrated higher recall than expert radiologists but slightly lower precision, raising the possibility of 238 

more false-positive cases. However, it is designed as a second-reader or triage tool—rather than a diagnostic 239 

replacement—and may assist clinicians by highlighting subtle airway-localized changes suggestive of radiolucent 240 

FBA, especially when CT findings are inconclusive. Lastly, the model currently relies solely on imaging features. 241 

Incorporating additional clinical metadata—such as symptom duration, aspiration history, and comorbidities—242 

into a multimodal AI framework could further enhance diagnostic accuracy and clinical decision support. 243 
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The proposed diagnostic workflow (Fig. 6) for FBA detection and localization outlines a stepwise, evidence-244 

based approach. Initial assessments using chest X-rays provide a rapid, non-invasive method to identify 245 

radiopaque FBAs. For suspected radiolucent FBA cases, further evaluation with chest CT scans is recommended. 246 

When conventional imaging methods fail to detect abnormalities, applying a deep learning model to CT scans 247 

enhances detection capabilities, particularly for subtle abnormalities that might escape manual interpretation. This 248 

approach effectively guides bronchoscopy for precise removal, minimizing complications such as airway damage 249 

or prolonged obstruction. 250 

This study highlights the clinical value and transformative potential of deep learning in the diagnosis of 251 

radiolucent FBA. By integrating accurate airway segmentation with multi-view CT classification, the proposed 252 

model achieved high accuracy, generalizability across internal modelling, external validation, and independent 253 

evaluation cohorts, and demonstrated superior recall and F1 score compared to experienced radiologists, with 254 

slightly lower precision. These findings suggest that deep learning-based systems can effectively complement 255 

clinical workflows by reducing missed cases, maintaining acceptable false-positive rates, and supporting more 256 

targeted bronchoscopic interventions. Prospective, multi-center studies with larger and more diverse populations 257 

are necessary to improve model robustness and reduce site-specific or demographic bias 31.  258 
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Methods  259 

Study Design and Ethical Approval 260 

This retrospective, multi-center study was conducted in compliance with the Standards for Reporting Diagnostic 261 

Accuracy Studies (STARD) guidelines 32. Ethical approval was obtained from the institutional review boards of 262 

all participating centers: The Central Hospital of Wuhan (WHZXKYL2024-108), The Renmin Hospital of Wuhan 263 

University (WDRY2025-K083), and The Zhongnan Hospital of Wuhan University (2025086K). Due to the 264 

retrospective nature and full anonymization of imaging data, informed consent was waived. The study aimed to 265 

develop and evaluate a deep learning pipeline for detecting radiolucent foreign body aspiration from chest 266 

computed tomography scans by combining high-precision airway segmentation with multi-view convolutional 267 

classification. Three datasets were used: internal modelling, external validation, and independent evaluation, with 268 

strict cohort separation throughout all stages of development and testing. 269 

 270 

Patient Cohorts and Data Acquisition 271 

As shown in Fig. 1, This study utilized a multi-source, multi-center dataset encompassing both publicly available 272 

and clinically acquired thoracic CT scans. Our datasets reflect real-world heterogeneity in demographics and 273 

imaging conditions, enhancing the external validity of our findings. 274 

Airway Tree Modelling 2022 (ATM22) challenge comprises 500 computed tomography (CT) scans, with 275 

300 allocated for training, 50 for external validation, and 150 for testing, which were sourced from the publicly 276 

available LIDC-IDRI dataset and the Shanghai Chest Hospital 33,34. Initial preprocessing of the CT images 277 

involved employing robust deep-learning models and an ensemble technique to generate preliminary segmentation 278 

results. Subsequently, three experienced radiologists, possessing a cumulative expertise exceeding ten years, 279 

meticulously outlined and cross-verified these results to derive the final refined airway tree structure.  280 

The Internal Modelling Dataset was derived from patients screened at The Central Hospital of Wuhan. It 281 

included data from both FBA (Foreign Body Aspiration) patients and a randomly selected cohort of NFBA (Non-282 

FBA) patients. For FBA patients, an initial pool of 81 cases was identified through clinical records and 283 

bronchoscopy reports. From this pool, 23 cases were excluded due to missing or incomplete clinical data, leaving 284 

a total of 58 patients in the final dataset. Among these, 17 cases were classified as radiopaque, where foreign 285 

bodies were visible on CT scans, while the remaining 41 cases were categorized as radiolucent, where no visible 286 

foreign bodies were detected on CT images but were confirmed through bronchoscopy. For the NFBA cohort, a 287 

total of 260 hospitalized patients were randomly selected from the same hospital during the study period. After 288 
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excluding 33 cases with incomplete CT imaging or missing diagnostic records, 227 patients were retained in the 289 

final dataset. 290 

The External Validation Dataset was collected from The Renmin Hospital of Wuhan University to test the 291 

generalizability of the model. Data collection followed a similar process for the internal modelling dataset. For 292 

FBA patients, 49 cases were initially screened based on clinical data and bronchoscopy reports. After excluding 293 

19 cases with incomplete clinical records, a total of 30 cases were included in the final dataset. Among these, 9 294 

cases were classified as radiopaque, and 21 cases were classified as radiolucent. For NFBA patients, 128 295 

hospitalized patients were randomly selected during the same timeframe. After excluding 27 cases with missing 296 

or incomplete imaging or diagnostic data, 82 patients were retained.  297 

The Independent Evaluation Dataset (The Zhongnan Hospital of Wuhan University) was compiled to 298 

assess the real-world generalizability of the proposed model in a clinical setting. A total of 70 patients were 299 

retrospectively included based on bronchoscopy-confirmed diagnoses and availability of high-quality CT imaging. 300 

Of 18 FBA cases reviewed at the Zhongnan Hospital of Wuhan University, 14 were classified as radiolucent and 301 

included in the independent evaluation cohort. The remaining 4 radiopaque cases were excluded prior to 302 

preprocessing. The NFBA cohort comprised 56 hospitalized patients, randomly selected during the same time 303 

period. These patients were confirmed to have no evidence of foreign body aspiration based on clinical history, 304 

imaging, and bronchoscopy when applicable. This independent dataset provided a robust platform to evaluate the 305 

model's diagnostic performance in a real-world, heterogenous clinical environment, and was used to benchmark 306 

the model's performance against expert radiologist interpretation. 307 

Geographic and Clinical Diversity Collectively, these datasets encompass diverse patient populations from 308 

three independent tertiary centers within Wuhan, China—each serving different districts and referral patterns. 309 

This regional diversity enhances the robustness of model evaluation and supports broader generalizability. 310 

Importantly, while all data were from Chinese institutions, the combination of multi-institutional sourcing, varied 311 

scanner protocols, and heterogenous inpatient demographics enhances the translational relevance of our findings. 312 

 313 

CT Image Preprocessing 314 

To ensure consistency and reproducibility across imaging data obtained from multiple institutions and CT scanner 315 

vendors, all chest CT scans were subjected to a standardized preprocessing pipeline prior to airway segmentation 316 

and classification. First, volumetric data were resampled to an isotropic voxel spacing of 1.0 × 1.0 × 1.0 mm³ 317 

using trilinear interpolation to harmonize spatial resolution and enable uniform processing of three-dimensional 318 
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anatomical structures. Voxel intensities were clipped to a fixed Hounsfield Unit (HU) range of [–1000, +400 HU], 319 

capturing the attenuation characteristics of air-filled airways, pulmonary parenchyma, and soft tissue while 320 

excluding high-density bone and metal artifacts. The clipped values were then normalized to the [0, 1] range using 321 

min–max scaling to facilitate numerical stability during model optimization. For inputs to the classification 322 

network, an additional Z-score normalization step was applied to 2D airway projection images to match the 323 

distribution of pretrained ImageNet features and improve downstream feature alignment during transfer learning. 324 

To ensure consistent input dimensions for the 3D segmentation network, all CT volumes were either centrally 325 

cropped or zero-padded to a standardized shape of 128 × 128 × 128 voxels, empirically determined to capture the 326 

full extent of the tracheobronchial tree while balancing computational load. In cases with large fields of view, 327 

anatomical centering based on the airway centroid was applied to preserve relevant structures. Finally, a Gaussian 328 

smoothing filter (σ = 1.0) was applied to each CT volume. This denoising step improved segmentation boundary 329 

clarity and supported accurate mesh-based airway surface reconstruction used for subsequent classification. 330 

 331 

Data Augmentation 332 

To enhance model generalizability across diverse anatomical presentations and imaging conditions, as well as to 333 

mitigate overfitting due to moderate class imbalance, a comprehensive data augmentation strategy was applied 334 

during training of both the airway segmentation and classification networks. For 3D segmentation tasks, online 335 

augmentations included random flipping along all three spatial axes, small-angle rotations (±15°), and elastic 336 

deformations to simulate realistic variations in airway curvature and subsegmental branching. Additionally, 337 

random cropping, Gaussian noise injection (mean = 0, standard deviation = 0.02), and brightness/contrast 338 

perturbations (±15%) were used to mimic inter-scanner variability and noise introduced by low-dose protocols. 339 

For the classification network, which operates on 2D rendered views of segmented airway surfaces, augmentations 340 

were applied at the image level. These included random affine transformations (rotation, translation, and zoom 341 

within ±10%), circular occlusion masking to simulate segmentation dropouts or partial obstruction, and color 342 

jittering to account for rendering variations. Furthermore, view dropout was implemented by randomly omitting 343 

one to two views out of the 12 total per subject, forcing the model to rely on incomplete visual context and 344 

improving robustness to partial input. All augmentations were applied dynamically during mini-batch generation 345 

using a fixed random seed for reproducibility. The augmentation parameters were empirically optimized based on 346 

performance on a held-out validation set, and all transformations were constrained to maintain anatomical 347 

plausibility of airway geometry. 348 
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 349 

Class Imbalance Mitigation 350 

Radiolucent FBA represents a rare but clinically significant diagnostic challenge, resulting in a marked class 351 

imbalance between positive (radiolucent FBA) and negative (non-FBA) cases. To mitigate this imbalance and 352 

support robust model training, we implemented a suite of complementary strategies aimed at improving sensitivity 353 

while preserving specificity. 354 

    First, we employed stratified mini-batch sampling to enforce a 1:1 ratio of radiolucent FBA to non-FBA cases 355 

in each training batch. This sampling approach ensured consistent exposure to the minority class and stabilized 356 

learning dynamics across epochs, reducing the risk of the model converging toward a trivial majority-class 357 

solution. Second, to further address class imbalance during optimization, we adopted focal loss as the primary 358 

objective function 35. Focal loss emphasizes hard-to-classify examples by down-weighting well-classified 359 

instances. Specifically, we set the focusing parameter γ to 2.0 and the class weight α to 0.25 for positive samples. 360 

This formulation enabled the model to concentrate learning on subtle, ambiguous cases typical of radiolucent 361 

FBA. The Focal Loss ℒ!"#$%  is defined as: 362 

                                   ℒ!"#$% = −𝛼&(1 − 𝑝&)'log	(𝑝&)            (1)	363 

where 𝑝&  is the predicted probability for the ground truth class, 𝑎& ∈ [0,1] is a weighting factor to balance 364 

positive and negative voxels, 𝛾 ≥ 0 is the focusing parameter that adjusts the rate at which easy examples are 365 

down-weighted. 366 

 367 

Airway 3D Reconstruction 368 

For airway 3D reconstruction, a combination of publicly available datasets and hospital-derived CT scans was 369 

used. The primary dataset, sourced from the Airway Tree Modelling 2022 (ATM22) challenge, included 500 CT 370 

scans (300 for training, 50 for external validation, and 150 for testing) derived from the LIDC-IDRI dataset and 371 

the Shanghai Chest Hospital 33,34. We adopted the MedpSeg model, a state-of-the-art deep learning framework, 372 

for airway segmentation 36. The MedpSeg model was designed to address the inherent anatomical challenges of 373 

airway segmentation, including fine branching structures, large inter-patient variability, and class imbalance 374 

between airway and background voxels. The architecture followed an encoder–decoder configuration with skip 375 

connections and included residual blocks to facilitate gradient flow and channel-wise attention mechanisms to 376 

improve feature selectivity in decoder layers. Each encoder block consisted of two 3D convolutional layers (kernel 377 

size 3×3×3), batch normalization, and ReLU activation, followed by 3D max pooling (2×2×2). Decoder blocks 378 
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employed transposed convolutions for upsampling, combined with symmetric encoder features. A final 1×1×1 379 

convolution followed by sigmoid activation produced binary airway masks.  380 

The initial segmentation outputs were reviewed and refined by radiologists, who corrected missing airway 381 

branches or removed erroneous segmentations (a semi-automated workflow; Fig. 2). Segmentation training 382 

involved a three-round iterative refinement workflow with radiologist feedback. In Iteration 1, the pretrained 383 

MedpSeg model (ATM22) was applied to the 60 internal hospital CTs. The outputs were reviewed and manually 384 

corrected by three board-certified thoracic radiologists (≥10 years experience), addressing missing branches, false 385 

positives, and segmentation discontinuities. In Iteration 2, the model was retrained on these corrected masks and 386 

applied to a new subset of scans; approximately 20% of outputs required further correction. In Iteration 3, final 387 

retraining was performed on the cumulative corrected dataset, after which <10% of cases required minimal edits 388 

(average correction time 8–12 minutes vs. 25–30 minutes for full manual labeling). This semi-automated human-389 

in-the-loop workflow significantly reduced annotation burden while preserving anatomical fidelity. Notably, no 390 

manual correction or retraining was performed during model inference in any of the validation or test phases, 391 

ensuring full automation for downstream clinical application. 392 

This iterative process progressively improved model accuracy while significantly reducing manual workload. 393 

Once trained, MedpSeg performed segmentation without any human intervention. No manual correction or 394 

retraining is required for external use. During training, approximately 40% of the cases initially required manual 395 

correction to fix missing branches or reduce false positives. After several rounds of retraining and refinement, the 396 

manual intervention rate decreased to below 10%. Each correction took 8–12 minutes on average, compared to 397 

25–30 minutes for full manual annotation, representing a substantial reduction in workload. No manual correction 398 

was used during model inference in the validation or evaluation phases. 399 

    Segmentation accuracy was quantitatively evaluated using a comprehensive set of metrics: Dice Similarity 400 

Coefficient (DSC), Average Symmetric Surface Distance (ASSD), Volumetric Overlap Error (VOE), Relative 401 

Volume Difference (RVD), and Mean Intersection over Union (mIoU). On a held-out internal test subset excluded 402 

from all training phases, MedpSeg achieved DSC = 86.8% and ASSD = 0.73 mm, with comparable performance 403 

on the external validation cohort, indicating excellent generalization. The final segmentation outputs were 404 

converted to triangulated surface meshes for 3D airway rendering and multi-view projection, serving as input to 405 

the classification pipeline. 406 

 407 

Foreign Body Aspiration Identification Based on Deep Learning 408 
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As shown in Fig. 3, the workflow for multi-view-based FBA classification involves several key steps. Initially, 409 

raw CT images undergo preprocessing and airway tree extraction, producing detailed 3D airway models. These 410 

models are then captured from multiple viewpoints to generate a series of 2D snapshots, which serve as input for 411 

a convolutional neural network (CNN) classifier. 412 

    To facilitate reproducibility, all critical preprocessing and rendering parameters have been made publicly 413 

available via our GitHub repository. CT volumes were clipped to a Hounsfield Unit (HU) range of –1000 to +400, 414 

resampled to isotropic voxel dimensions of 1.0 mm³, and intensity-normalized using min-max scaling. For airway 415 

rendering, 12 uniformly spaced snapshot views were generated across the 3D airway surface using a virtual camera 416 

radius of 150 mm. Each image was rendered at a resolution of 224 × 224 pixels and subsequently fed into a 417 

ResNet-18 classifier. 418 

Each rendered 2D projection was passed through a ResNet-18 backbone, pre-trained on ImageNet and fine-419 

tuned for binary classification. The network consists of four residual convolutional blocks, batch normalization, 420 

ReLU activations, and global average pooling, followed by a fully connected classification head comprising a 421 

256-unit dense layer, dropout (p = 0.5), and SoftMax output. Final patient-level predictions were obtained by 422 

averaging SoftMax probabilities across all 12 views. 423 

Model optimization was performed using the Adam optimizer with an initial learning rate of 1 × 10⁻⁴, reduced 424 

by a factor of 0.1 if validation loss plateaued over five epochs. A batch size of 16 was used, and training continued 425 

for a maximum of 100 epochs with early stopping triggered after 10 epochs of non-improvement in validation 426 

loss. The final model was selected based on the best validation F1 score.     427 

To ensure reproducibility and robust internal evaluation, five-fold cross-validation was employed. Each fold 428 

was constructed with strict patient-level separation and identical hyperparameter settings. All models were 429 

subsequently evaluated on an independent test cohort held out from training. 430 

The computational environment consisted of high-performance hardware, including an Intel Core i9-10900X 431 

CPU, 128 GB of RAM, and two NVIDIA GeForce RTX A5000 GPUs with 24 GB of memory each. The code 432 

supporting this implementation is available for public access on Github, ensuring both transparency and 433 

reproducibility. This multi-view classification strategy, combined with the fine-tuned deep learning architecture, 434 

enhances the ability to accurately identify radiolucent foreign body aspirations on CT images. The internal 435 

modelling cohort for classification was trained and evaluated exclusively on radiolucent FBA and NFBA cases.  436 

 437 

Expert Radiologists Evaluation 438 
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To benchmark the model against expert radiologists’ performance, we conducted a blinded evaluation involving 439 

a panel of experienced thoracic radiologists. Specifically, three board-certified thoracic radiologists, each with 440 

over 10 years of clinical experience, independently reviewed all CT scans in the independent test cohort. All 441 

radiologists were blinded to model predictions, patient clinical history, and bronchoscopy results. Axial CT 442 

images were presented in a standalone DICOM viewer without additional contextual information. 443 

    Discrepancies among the three readers were resolved using a consensus protocol. In cases where two 444 

radiologists agreed and one disagreed, the majority vote determined the reference label. In the rare instances where 445 

all three readers provided divergent assessments, the case was jointly reviewed and resolved through discussion. 446 

These expert interpretations were used as the reference standard for performance comparisons with the deep 447 

learning model.  448 

 449 

Performance Metrics 450 

To comprehensively evaluate the performance of the classification model, we employed 4 standard metrics: 451 

accuracy, precision, recall, and F1 score. Accuracy measures the overall proportion of correctly predicted 452 

instances and provides a general sense of model performance. The F1 score serves as the harmonic mean of 453 

precision and recall, offering a balanced metric that is particularly useful when dealing with imbalanced datasets. 454 

Together, these metrics offer a comprehensive and reliable framework for evaluating classification performance. 455 

The formula is as follows: 456 

                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ()*+	-./0&01+/
()*+	-./0&01+/2345/+	-./0&01+/

           (2) 457 

                         𝑅𝑒𝑐𝑎𝑙𝑙 = ()*+	-./0&01+/
()*+	-./0&01+2345/+	6+74&01+/

                                      (3) 458 

                         𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2	 ×	-)+80/0.9	×	;+8455
-)+80/0.9	2;+8455

                                        (4) 459 

                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ()*+	6+74&01+/2()*+	-./0&01+/
()*+	6+74&01+/2()*+	-./0&01+/2345/+	6+74&01+/2345/+	-./0&01+/

           (5) 460 

 461 

Randomisation and Validation Strategy 462 

To ensure methodological rigor and prevent data leakage, we adopted a stratified five-fold cross-validation 463 

strategy with strict patient-level separation, such that no data from a single subject appeared in more than one fold. 464 

Stratified random sampling preserved the class distribution of radiolucent FBA and non-FBA cases across all 465 

folds, supporting stable learning and unbiased validation. A fixed random seed was used throughout the 466 

partitioning process to maintain reproducibility and enable consistent experimental conditions. 467 
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    All preprocessing and data augmentation procedures were confined strictly to the training folds within each 468 

iteration, thereby eliminating the possibility of information leakage into the validation set. We elected not to 469 

implement chronological separation due to the narrow temporal span of data collection (2017–2024) and the low 470 

prevalence of radiolucent FBA, which would have severely limited the number of positive cases available for 471 

model training. Instead, the independent evaluation cohort and external validation dataset were entirely held out 472 

from the training pipeline and reserved for final model performance assessment, ensuring an unbiased evaluation 473 

of generalization capability. 474 

 475 

Statistical Analysis 476 

Continuous variables were assessed for normality using the Shapiro-Wilk test. Normally distributed data was 477 

expressed as mean (standard deviation) and compared between groups (FBA vs. NFBA) using the independent 478 

samples t-test. For non-normally distributed data, results were summarized as median (interquartile range, IQR) 479 

and compared using the Wilcoxon rank-sum test. Categorical variables were expressed as numbers (percentages) 480 

and compared using the chi-square test or Fisher's exact test when the expected number of cells was less than 5. 481 

Two-sided P-values less than 0.05 were considered statistically significant. All analyses were performed using R 482 

(version 4.4.2). 483 

    To compare model performance with expert radiologists interpretation on the independent evaluation dataset, 484 

McNemar’s test was used for paired sensitivity and specificity comparisons. Bootstrapping with 1,000 iterations 485 

was used to estimate 95% confidence intervals and assess differences in F1 score. All analyses were performed in 486 

Python (v3.9) using SciPy and scikit-learn.  487 
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Figures 593 

Fig. 1 | Study design. Workflow illustrating the distribution of participants across the 594 
internal modelling, external validation, and independent evaluation cohorts. The independent 595 
evaluation cohort included a comparison between three board-certified thoracic radiologists 596 
and the deep learning model. FBA: Foreign Body Aspiration. 597 

 598 
  599 
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Fig. 2 | Semi-automated airway labelling process. Semi-automatic airway segmentation 600 
combines deep learning and manual correction for efficient, accurate airway CT 601 
segmentation. Steps include preprocessing, deep learning model segmentation (e.g., U-Net), 602 
manual correction by experts, and iterative training with corrected data. De‑identified CT 603 
images are shown with the informed consent requirement waived by the corresponding Ethics 604 
Review Committee. 605 

  606 
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Fig. 3 | The example airway trees obtained by segmentation using 3 different methods. 607 
The first column shows the gold standard (reference label), while the second, third, and 608 
fourth columns depict airway trees reconstructed using the MedSeg, MedpSeg, and AG-UNet 609 
(Connectivity-Aware) methods, respectively. In the visualizations, red represents the model 610 
prediction, blue indicates the overlap between the model prediction and the gold standard, 611 
and green denotes the gold standard. 612 

  613 
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Fig. 4 | The proposed workflow of the multi-view-based image classification for foreign 614 
body aspiration detection. In brief, the CT images undergo preprocessing and airway tree 615 
extraction to generate 3D airway models. Multi-snapshots of these models are taken from 616 
different angles. These snapshots are then processed using a convolutional neural network 617 
(CNN) architecture, which includes convolution, max pooling, and fully connected layers. 618 
Finally, the processed images are classified into 2 categories: FBA (foreign body aspiration) 619 
and NFBA (non foreign body aspiration). De-identified CT images, identical to those 620 
presented in Figure 2, are shown with the informed consent requirement waived by the 621 
corresponding Ethics Review Committee. 622 

  623 
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Fig. 5 | A deep learning model to detect radiolucent foreign body aspiration (FBA) in 624 
chest CT scans. (a) The training loss and validation accuracy of a Resnet-18 model over 100 625 
epochs for radiolucent FBA cases. The training loss is indicated in red and the validation 626 
accuracy in blue. (b) The receiver operating characteristic curve for the internal modelling to 627 
detect radiolucent FBA cases. AUC: area under the curve; ROC: receiver operating 628 
characteristic. 629 

  630 
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Fig. 6 | The proposed diagnostic workflow for detecting foreign body aspiration (FBA). 631 
The stepwise approach begins with chest X-rays to identify radiopaque FBA. For suspected 632 
radiolucent FBA, chest CT scans are recommended. If imaging is inconclusive, applying a 633 
deep learning model to CT scans enhances detection of subtle abnormalities. This workflow 634 
guides bronchoscopy for precise removal while minimising complications. 635 
 636 

637 
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Tables 
Table 1 | Segmentation Performance Comparison Across Methods in the Internal Modelling and External Validation Cohorts 

Internal Modelling DSC (%) VOE (%) RVD (%) ASSD (mm) Pre (%) FNR (%) FPR (%) MIOU (%) 

MedSeg 86.54 20.43 19.37 0.76 99.70 20.52 1.29 0.854 

MedpSeg 87.48 18.23 18.75 0.71 99.89 20.15 1.22 0.897 

AG-Unet 85.24 21.37 20.13 0.82 99.57 21.45 1.35 0.793 

External Validation DSC (%) VOE (%) RVD (%) ASSD (mm) Pre (%) FNR (%) FPR (%) MIOU (%) 

MedSeg 85.35 21.25 20.58 0.81 99.58 21.23 1.45 0.837 

MedpSeg 86.58 18.75 19.28 0.75 99.81 21.05 1.37 0.878 

AG-Unet 84.57 22.15 21.58 0.85 99.33 22.13 1.58 0.775 

DSC: Dice Similarity Coefficient; VOE: Volumetric Overlap Error; RVD: Relative Volume Difference; ASSD: Average Symmetric Surface Distance; Pre: 
Precision; FNR: False Negative Rate; FPR: False Positive Rate; MIOU: Mean Intersection over Union.  
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Table 2 | Performance of the Deep Learning Model for Radiolucent FBA: Internal Modelling and External Validation Cohorts 
Radiolucent FBA cohort TP FN TN FP Accuracy Precision Recall F1 Score 

Internal Modelling (n=268) 32 (11.9%) 9 (3.4%) 221 (82.5%) 6 (2.2%) 94.4% 84.2% 78.0% 81.0% 

External Validation (n=103) 16 (15.5%) 5 (4.9%) 77 (74.8%) 5 (4.9%) 90.3% 76.2% 76.2% 76.2% 

Data are n (%). FBA: Foreign Body Aspiration; TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative. 
Note: Values in parentheses represent the percentage relative to the full cohort. Percentages for TP/FN/TN/FP are calculated with denominator = n (FBA+NFBA 
cases).  
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Table 3 | Performance Comparison Between the Deep Learning Model and Expert Radiologists in the Independent Evaluation Cohort 
for Radiolucent FBA Cases 

Radiolucent FBA cohort (n=70) TP FN TN FP Accuracy Precision Recall F1 Score 

Deep Learning Model 10 (14.3%) 4 (5.7%) 53 (75.7%) 3 (4.3%) 90.0% 76.9% 71.4% 74.1% 

Expert Radiologists 5 (7.1%) 9 (12.9%) 56 (80%) 0 (0%) 87.1% 100% 35.7% 52.6% 

Data are n (%). FBA:Foreign Body Aspiration; TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative. 
Note: Values in parentheses represent the percentage relative to the full evaluation cohort (N = 70; 14 FBA and 56 NFBA). Percentages for TP and FN are 
calculated with denominator = 14 (FBA cases), and for TN and FP with denominator = 56 (NFBA cases). 
P values with McNemar’s test. 
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Supplementary Tables 
Table S1 | Patient Characteristics of Radiolucent FBA and NFBA in Internal Modelling and External Validation Cohorts. 

  Internal Modelling (n=268) External Validation (n=103) 
 FBA (n=41)  NFBA (n=227) P-value FBA (n=21) NFBA (n=82) P-value 
Age, years 
 66 (53-77) 62 (53-77) 0.04* 66 (57-70) 66 (57-70) 0.67 
Sex 

Female 15 (36.6%) 116 (51.1%) 0.1232  8 (38.1%) 44 (53.7%) 0.3039 
Male 26 (63.4%) 111 (48.9%) 13 (61.9%) 38 (46.3%) 

BMI 

 22.49 
(20.76-24.51) 

22.83  
(20.76-24.51) 

0.82 23.19  
(20.83-25.1) 

23.07  
(20.83-25.1) 

0.67 

Length of disease course, days 
 60 

(10-120) 
7 
(10-120) 

<0.0001* 60  
(14-180) 

7  
(14-180) 

<0.0001* 

Hospital stays, days 
  8 

(6-10) 
7 
(6-10) 

0.04* 7  
(5-9) 

7  
(5-9) 

0.47 

Experience in ICU 
yes  9 (22%)  12 (5%) 0.0013*  1 (4.8%)  6 (7.3%) 1 
no 32 (78%) 215 (95%) 20 (95.2%) 76 (92.7%) 

COPD 
yes 8 (19.5%) 35 (15.5%) 0.6787 2 (9.5%) 16 (19.5%) 0.3536 
no 33(80.5%) 192 (84.5%)  19 (90.5%) 66 (80.5%)  

Asthma 
yes 1 (2.4%) 12 (5.3%) 0.6987 3 (14.3%) 6 (7.3%) 0.3837 
no 40 (97.6%) 215 (94.7%)  18 (85.7%) 76 (92.7%)  

Bronchiectasis 
yes 4 (9.8%) 12 (5.3%) 0.3634 1 (4.8%) 11 (13.4%) 0.4513 
no 37 (90.2%) 215 (94.7%)  20 (95.2%) 71 (86.6%)  

Lung cancer 
yes 1 (2.4%) 3 (1.3%) 0.4888 0 (0%) 3 (3.7%) 1 
no 40 (97.6%) 224 (98.7%)  21 (100%) 79 (96.3%)  

 
Interstitial lung disease 
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yes 1 (2.4%) 6 (2.7%) 1 2 (9.5%) 3 (3.7%) 0.2687 
no 40 (97.60) 221 (97.3%)  19 (90.5%) 79 (96.3%)  

Nervous system disease 
yes 7 (17.1%) 17 (7.5%)  0.0697 2 (9.5%) 7 (8.5%) 1 
no 34 (82.9%) 210 (92.5%)  19 (90.5%) 75 (91.5%)  

Smoking history 
yes 19 (46.3%) 170 (74.9%) 0.0084* 7 (33.3%) 22 (27%) 0.7494 
no 22 (53.7%) 57 (25.2%)  14 (66.7%) 60 (73.2%)  

Pneumonic patch 
 

yes 36 (87.8%) 217 (95.6%) 0.0616 8 (38.1%) 79 (96.3%) <0.0001* 
no 5 (12.2%) 10 (4.4%)  13 (61.9%) 3 (3.7%)  

Airway stenosis 
 

yes 6 (14.8%) 17 (7.5%) 0.1377 5 (23.8%) 4 (4.9%) 0.0163* 
no 35 (85.4%) 210 (92.5%)  16 (76.2%) 78 (95.1%)  

Atelectasis 
 

yes 19 (46.3%) 41 (18.1%) 0.0002* 3 (14.3%) 19 (23.2%) 0.5526 
no 22 (53.7%) 186 (81.9%)  18 (85.7%) 63 (76.8%)  

Pleural effusion 
 

yes 0 (0%) 36 (15.9%) 0.0125* 1 (4.8%) 14 (17.1%) 0.2954 
no 41 (100%) 191 (84.1)  20 (95.2%) 68 (82.9%)  

Consolidation 
 

yes 4 (9.8%) 27 (11.9%) 1 3 (14.3%) 18 (22%) 0.5539 
no 37 (90.2%) 200 (88.1%)  18 (85.7%) 64 (78%)  

Pulmonary emphysema 
 

yes 4 (9.8%) 62 (27.4%) 0.0266* 6 (28.6%) 20 (24.4%) 0.9108 
no 37 (90.2%) 165 (72.6%)  15 (71.4%) 62 (75.6%)  

Tuberculosis 
 

yes 2 (4.9%) 15 (6.6%) 1 6 (28.6%) 7 (8.5%) 0.0236* 
no 39 (95.1%) 212 (93.4%)  15 (71.4%) 75 (91.5%)  

Lung nodule 
 

yes 11 (26.8%) 130 (42.5%) <0.0001* 8 (38.1%) 50 (61%) 0.1011 
no 30 (73.2%) 97 (57.5%)  13 (61.9%) 32 (39%)  

Data are median (IQR) or n (%). *P-value < 0.05 with statistical significance 
FBA: foreign body aspiration; NFBA: Non-foreign body aspiration. 
 
 
 
Table S2 | Radiolucent Foreign Body Characteristics in the Internal Modelling and External Validation Cohorts. 
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 Internal Modeling (n = 41)  External Validation (n = 21) P-value 
Site of foreign body 
Glottis  0 (0%)  0 (0%) 0.1253 
Windpipe  0 (0%)  0 (0%) 
Left main bronchus  3 (7%)  0 (0%) 
Left upper lobe bronchus  4 (10%)  1 (5%) 
Left lower lobe bronchus  5 (12%)  2 (10%) 
Right main bronchus  2 (5%)  1 (5%) 
Right upper lobe bronchus 11 (27%)  0 (0%) 
Right middle lobe bronchus 13 (32%) 7 (33%)  
Right lower lobe bronchus  1 (2%) 10 (48%) 
Multiple sites  2 (5%)  0 (0%) 
Type of foreign body 
Bone 15 (37%) 8 (38%) 0.2485 
Medicine pill   1 (2%)  0 (0%) 
Plants 11 (27%)  1 (5%) 
Inorganics#  2  (5%)  0 (0%) 
Unknown 12 (29%) 12 (57%) 

Data are median (IQR) or n (%). *P-value < 0.05 with statistical significance. 
#Metal subjects, plastic films and dentures are classified as inorganics, while bones, medicine pills and plants as organics. 
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Table S3 | Backbone Architecture comparison in the Independent Evaluation Cohort for Radiolucent FBA Cases 
Backbone TP FN TN FP Accuracy Precision Recall F1 Score 

ResNet-18 10 ( 14.3%) 4 (5.7%) 53 (75.7%) 3 (4.3%) 90.0% 76.9% 71.4% 74.1% 

EfficientNet-B0  9 (12.9%) 5 (7.1%) 53 (75.7%) 3 (4.3%) 88.6% 75.0% 64.3% 69.2% 

DenseNet-121  9 (12.9%) 5 (7.1%) 52 (74.3%) 4 (5.7%) 87.1% 69.2% 64.3% 66.7% 

ViT-B/16  8 (11.4%) 6 (8.6%) 52 (74.3%) 4 (5.7%) 85.7% 66.7% 57.1% 61.5% 

Swin-T (tiny)  9 (12.9%) 5 (7.1%) 51 (72.9%) 5 (7.1%) 85.7% 64.3% 64.3% 64.3% 

Data are n (%).TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative. 
Interpretation: The full pipeline achieved the highest performance across all evaluation metrics, validating the importance of each module. These findings suggest that structural modeling and 
comprehensive spatial coverage are critical for detecting subtle FBA-related changes. 
Note: Values in parentheses represent the percentage relative to the full cohort. Percentages for TP/FN/TN/FP are calculated with denominator = n (FBA+NFBA cases). 
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Table S4 | Age-based Subgroup Performance Comparison in the Independent Evaluation Cohort 
Age Group  TP FN TN FP Accuracy Precision Recall F1 Score 

< 40 years (n = 12) 3 (25.0%) 1 (8.3%) 7 (58.3%) 1 (8.3%) 83.3% 75.0% 75.0% 75.0% 

≥ 40 years (n = 58) 7 (12.1%) 3 (5.2%) 46 (79.3%) 2 (3.4%) 91.4% 77.8% 70.0% 73.7% 

Data are n (%).TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative. 
Note: Values in parentheses represent the percentage relative to the full cohort. Percentages for TP/FN/TN/FP are calculated with denominator = n (FBA+NFBA cases).  
All P values were calculated using Fisher’s exact test.  
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Table S5 | An Ablation Study in the Independent Evaluation Cohort for Radiolucent FBA Cases 
 

Radiolucent FBA cohort (n=70) TP FN TN FP Accuracy Precision Recall F1 Score 

Baseline (Raw CT Only)  8 (11.4%) 6 (8.6%) 43 (61.4%) 13(18.6%) 72.9% 38.1% 57.1% 45.7% 

+ With Segmentation Mask  9 (12.9%) 5 (7.1%) 45 (64.3%) 11 (15.7%) 77.1% 45.0% 64.3% 52.9% 

+ Fewer Views (6 Views)  9 (12.9%) 5 (7.1%) 47 (67.1%) 9 (12.9%) 80.0% 50.0% 64.3% 56.3% 

+ With Data Augmentation 10 (14.3%) 4 (5.7%) 49 (70.0%) 7 (10.0%) 84.3% 58.8% 71.4% 64.5% 

Full Pipeline (Proposed 12 Views) 10 ( 14.3%) 4 (5.7%) 53 (75.7%) 3 (4.3%) 90.0% 76.9% 71.4% 74.1% 

Data are n (%).TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative. 
Interpretation: The full pipeline achieved the highest performance across all evaluation metrics, validating the importance of each module. These findings suggest that structural modeling and 
comprehensive spatial coverage are critical for detecting subtle FBA-related changes. 
Note: Values in parentheses represent the percentage relative to the full cohort. Percentages for TP/FN/TN/FP are calculated with denominator = n (FBA+NFBA cases). 
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Table S6 | Patient Characteristics of Radiolucent FBA and NFBA in the Independent Evaluation Cohort 

 FBA (n = 14)  NFBA (n = 56) P-value 
Age, years 
 56 (38-74) 59 (24-76) 0.7185 
Sex 

Female 6 (42.8%) 24 (42.8%) 0.3293 
Male 8 (57.2%) 32 (57.2%) 

BMI 
 22.59 (20.61-24.35) 23.85 (20.85-25.68) 0.95 

Hospital stays, days 
 7 (1-27) 7 (2-28) 0.4055 

Experience in ICU, days 
yes 2 (14.3%) 1 (1.8%) 0.5286 

no 12 (85.7%) 55 (98.2%) 

COPD 
yes 1 (7.1%) 11 (19.6%) 0.0915 

no 13 (92.9%) 45 (80.4%)  
Asthma 

yes 0 (0%) 7 (12.5%) 1 

no 14 (100%) 49 (87.5%)  
Bronchiectasis 

yes 1 (7.1%) 7 (12.5%) 0.5369 

no 13 (92.9) 49 (87.5%)  

Interstitial lung disease 
yes 0 (0%) 2 (3.6%) 1 

no 14 (0%) 54 (96.4%)  
Data are median (IQR) or n (%). *P-value < 0.05 with statistical significance 
FBA: foreign body aspiration; NFBA: Non-foreign body aspiration


