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Automated detection of radiolucent
foreign body aspiration on chest CT using
deep learning
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Xiaofan Liu1,11, Zhe Chen2,11, Zhiyong Tang2,11, Xun Yang1,11, Yan Jiang3, Dan Zheng4, Fangfang Jiang5,
Fang Ni1, Shuang Geng1, Qiong Qian1, Yan Hao1, Junjie Xu1, Yin Wang1, Mingyuan Zhu1, Xiaoqing Wang1,
Rob M. Ewing2,6 , Zehor Belkhatir7 , Guqin Zhang8 , Hanxiang Nie9 , Yi Hu1 , Weihua Wang1 &
Yihua Wang2,6,10

Radiolucent foreign body aspiration (FBA) remains diagnostically challenging due to its subtle imaging
signatures on chest CT scans, often leading to delayed or missed diagnoses. We present a deep
learning model integrating MedpSeg, a high-precision airway segmentation method, with a
convolutional classifier to detect radiolucent FBA. The model was trained and validated across three
independent cohorts, demonstrating consistent performance with accuracies above 90% and
balanced recall–precision metrics. In a blinded independent evaluation cohort, the model
outperformed expert radiologists in both recall (71.4% vs. 35.7%) and F1 score (74.1% vs. 52.6%),
highlighting its potential to reduce missed cases (false negatives) and support clinical decision-
making. This study illustrates the translational potential of artificial intelligence for addressing
diagnostically complex andhigh-risk conditions, offering an effective tool to support radiologists in the
assessment of suspected radiolucent foreign body aspiration. Code is available at https://github.com/
ZheChen1999/FBA_DL.

Foreign body aspiration (FBA) is a potentially life-threatening condition
that disproportionately affects young children and older adults, often
resulting in delayed treatment and serious complications when not
promptly diagnosed1–3. Chest radiography is the primary imaging modality
used to identify a foreign body in the lower airway. A retrospective analysis
of FBA cases at the Central Hospital of Wuhan, China (2012–2022)4, along
with a study by Sehgal and colleagues5, demonstrated that up to 75%of FBA
cases in the adults involve radiolucent foreign bodies. Among these, half of
these patients experienced disease duration exceeding 60 days, and two-
thirds were misdiagnosed due to the foreign body not being detected early
on CT scans4,6,7. Symptoms of radiolucent FBA vary widely depending on

the location, size, and type of the foreign body, ranging from persistent
cough and chest discomfort in adults to acute airway obstruction in
infants8,9. Radiological imaging plays a critical role in diagnosing FBA.
However, radiolucent foreign bodies, which are invisible on conventional
radiographs, present a significant diagnostic challenge. Previous studies
revealed that approximately 66% of radiolucent foreign body cases were
initially misdiagnosed, often as pneumonia4,10. This highlights the urgent
need for advanced diagnostic methods capable of accurately identifying
radiolucent foreign bodies. When radiographic findings are inconclusive,
multi-detector computed tomography (MDCT) is clinically indicateddue to
its superior ability to visualize airway structures and detect subtle
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pathological changes. However, interpretation remains difficult and diag-
nostic accuracy is subject to inter-reader variability11.

Buildingon this diagnostic gap,wepropose adeep learning (DL)-based
framework designed to improve the detection of radiolucent FBAs on chest
CT scans12–14. Advances in artificial intelligence (AI) and convolutional
neural networks (CNNs) have led to notable improvements in airway seg-
mentation and image classification across various thoracic imaging tasks15.
Although encouraging results have been reported for pediatric FBA
detection16, identifying radiolucent foreign bodies in adults remains chal-
lenging due to their small size, diverse morphology, and resemblance to
surrounding tissue structures17.

To address these challenges, this study proposes a two-stage deep
learning pipeline that integrates high-precision airway segmentation using
MedpSeg with multi-view classification via ResNet-18, specifically opti-
mized for radiolucent FBA detection. The model was trained and validated
onmultiple datasets—including internal modeling, external validation, and
independent evaluation cohorts—and its performance was directly com-
pared with expert radiologists. Our model achieved consistent detection
with high accuracy and improved diagnostic balance, demonstrating its
potential to enhance clinicalworkflows for suspected radiolucent FBAcases.

Results
Patient characteristics
As shown in Supplementary Table 1 and Fig. 1, this study included
patients diagnosed with radiolucent FBA from 2017 to 2024 at The
Central Hospital of Wuhan and The Renmin Hospital of Wuhan
University. A total of 41 radiolucent FBA cases were enrolled in the
internal modeling cohort, of whom 26 (63.4%) were male and 15
(36.6%)were female, with amedian age of 66 years (interquartile range,

IQR 53–77). An additional 21 radiolucent FBA cases were included in
the external validation cohort, with a median age of 66 years (IQR
57–70), 13 (61.9%) being male and 8 (38.1%) female. Compared with
non-FBA (NFBA) patients, FBA cases had a significantly longer disease
course in both the internal modeling and external validation cohorts
(60 vs. 7 days, P < 0.0001) (See Fig.1 for detailed cohort allocation). ICU
admission was also more frequent among FBA patients in the internal
modeling cohort (22% vs. 5%, P = 0.0013). Chronic respiratory
comorbidities such as chronic obstructive pulmonary disease (COPD,
19.5%), asthma (2.4%) and bronchiectasis (9.8%) were observed in a
subset of FBA patients, although without statistically significant dif-
ferences compared to NFBA patients. Importantly, radiological find-
ings from MDCT demonstrated notable distinctions. In the internal
modeling cohort, FBA patients exhibited a significantly higher pre-
valence of atelectasis (46.3% vs. 18.1%, P = 0.0002) and a significantly
lower prevalence of pleural effusion (0% vs. 15.9%, P = 0.0125), pul-
monary emphysema (9.8% vs. 27.4%, P = 0.0266) and lung nodules
(26.8% vs. 42.5%, P < 0.0001). In the external validation cohort,
pneumonic patches were significantly less common in FBA patients
compared to NFBA patients (38.1% vs. 96.3%, P < 0.0001), whereas the
prevalence of tuberculosis (28.6% vs. 8.5%, P = 0.0236) and airway
stenosis (23.8% vs. 4.9%, P = 0.0163) was significantly higher in the
FBA group. The inclusion process for the internal modeling, external
validation, and independent evaluation cohorts is illustrated in Fig. 1,
providing a clear breakdown of patient sources and exclusion criteria
across study sites. This structure underpins the comparative analysis of
model generalizability.

Radiological findings from MDCT showed that in the internal mod-
eling cohort, the right middle lobe bronchus (32%) was the most frequent

Fig. 1 | Study design. Workflow illustrating the distribution of participants across the internal modeling, external validation, and independent evaluation cohorts. The
independent evaluation cohort included a comparison between three board-certified thoracic radiologists and the deep learning model. FBA Foreign Body Aspiration.
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site of radiolucent foreign body, followed by the right upper lobe bronchus
(27%). Bone fragments (e.g., chicken, fish, crayfish shell) were the most
common type of foreign body (37%), followed by plant materials (27%)
(Supplementary Table 2), consistent with earlier studies4,18–20.

3D airway segmentation
To ensure anatomical accuracy, a semi-automated labeling workflow
was implemented prior to model training, combining deep learning
predictions with expert corrections. This process, detailed in Fig. 2,
served to refine the airway segmentation ground truth and enhance
model robustness against occlusions and branch artifacts. The
MedpSeg model, a state-of-the-art deep learning framework, demon-
strated outstanding performance in airway segmentation, consistently
outperforming MedSeg and AG-UNet, across key evaluation metrics.
In the internal modeling cohort, MedpSeg achieved the highest dice
similarity coefficient (DSC) of 87.48% and the lowest average sym-
metric surface distance (ASSD) of 0.71 mm, indicating superior seg-
mentation accuracy and boundary precision. In the external validation
cohort, the model maintained robust performance with a DSC of
86.58% and an ASSD of 0.75 mm, further validating its generalizability.
Compared to MedSeg and AG-UNet, MedpSeg exhibited superior
precision in capturing intricate airway structures, particularly in cases
involving partial obstructions. As shown in Table 1 and Fig. 3, the
segmentation results fromMedpSeg aligned most closely with the gold
standard (ground truth), demonstrating minimal false negatives and
false positives. These findings underscore MedpSeg’s potential to
improve airway segmentation accuracy, offering a reliable basis for
subsequent foreign body detection and localization. The model’s
consistent performance across internal and external datasets highlights
its robustness and applicability in diverse clinical settings. Once

trained, MedpSeg performed segmentation without any human
intervention (Fig. 1).

A deep learning method to detect radiolucent FBA on chest
CT scans
We then explored various classification backbones, including ResNet-
18, EfficientNet-B0, DenseNet-121, ViT-B/16, and Swin-T (tiny). As
shown in Supplementary Table S3, ResNet-18 achieved the best balance
between predictive performance and computational efficiency, making
it particularly suitable for real-time clinical deployment. While some
transformer-based models (e.g., ViT-B/16, Swin-T) demonstrated
competitive recall, they tended to underperform in precision and overall
F1 score, likely due to their higher parameter complexity and sensitivity
to smaller datasets. These results suggest that ResNet-18 offers a
favorable trade-off between model complexity and performance in the
context of radiolucent FBA detection.

To enable accurate detection of radiolucent FBA, we implemented a
two-stage deep learning framework combining anatomical feature extrac-
tion withmulti-view image classification. As illustrated in Fig. 4, segmented
3D airway structures are captured frommultiple angles to generate a set of
snapshot views. These multi-angle images are fed into a ResNet-18 con-
volutional neural network, which includes convolutional, pooling, and fully
connected layers, fine-tuned for binary classification between FBA and
NFBA. This multi-view strategy improves the model’s ability to localize
subtle, non-radiopaque foreign bodies that may be overlooked in standard
slice-wise analysis.

The training loss and validation accuracy trends for the ResNet-18
model over 100 epochs were examined in the radiolucent FBA cases
(Fig. 5a).The rapiddecline in training loss (red line)during the initial epochs
indicates effective learning, with errors stabilizing at a low level.

Fig. 2 | Semi-automated airway labeling process.
Semi-automatic airway segmentation combines
deep learning and manual correction for efficient,
accurate airway CT segmentation. Steps include
preprocessing, deep learning model segmentation
(e.g., U-Net), manual correction by experts, and
iterative training with corrected data. De‑identified
CT images are shown with the informed consent
requirement waived by the corresponding Ethics
Review Committee.

Table 1 | Segmentation performance comparison across methods in the internal modeling and external validation cohorts

Internal Modeling DSC (%) VOE (%) RVD (%) ASSD (mm) Pre (%) FNR (%) FPR (%) MIOU (%)

MedSeg 86.54 20.43 19.37 0.76 99.70 20.52 1.29 0.854

MedpSeg 87.48 18.23 18.75 0.71 99.89 20.15 1.22 0.897

AG-Unet 85.24 21.37 20.13 0.82 99.57 21.45 1.35 0.793

External Validation DSC (%) VOE (%) RVD (%) ASSD (mm) Pre (%) FNR (%) FPR (%) MIOU (%)

MedSeg 85.35 21.25 20.58 0.81 99.58 21.23 1.45 0.837

MedpSeg 86.58 18.75 19.28 0.75 99.81 21.05 1.37 0.878

AG-Unet 84.57 22.15 21.58 0.85 99.33 22.13 1.58 0.775

DSC dice similarity coefficient, VOE volumetric overlap error, RVD relative volume difference, ASSD average symmetric surface distance, Pre precision, FNR false negative rate, FPR false positive rate,
MIOUmean intersection over union.

https://doi.org/10.1038/s41746-025-02097-w Article

npj Digital Medicine |           (2025) 8:647 3

www.nature.com/npjdigitalmed


Simultaneously, the validation accuracy (blue line) steadily increases and
stabilizes near 0.9, reflecting strong generalization to unseen data. Minor
oscillations in validation accuracy suggest potential overfitting or incon-
sistencies in the validation dataset, warranting further optimization through
regularization techniques or hyperparameter tuning to improve robustness.
We then checked theReceiverOperatingCharacteristic (ROC) curve for the

model to detect radiolucent FBA cases. The area under the ROC curve
(AUC) for radiolucent FBAdetectionwas 0.91 (95%confidence interval, CI:
0.86–0.95) for the internalmodeling cohort, 0.88 (95%CI: 0.82–0.94) for the
external validation cohort, and0.89 (95%CI: 0.83–0.96) for the independent
evaluation cohort. Pairwise comparisons using DeLong’s test revealed no
statistically significant differences in AUCs between the cohorts (internal

Fig. 3 | The example airway trees obtained by
segmentation using three different methods. The
first column shows the gold standard (reference
label), while the second, third, and fourth columns
depict airway trees reconstructed using the MedSeg,
MedpSeg, and AG-UNet (Connectivity-Aware)
methods, respectively. In the visualizations, red
represents the model prediction, blue indicates the
overlap between the model prediction and the gold
standard, and green denotes the gold standard.
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modeling vs. external validation: P = 0.31; internal modeling vs. indepen-
dent evaluation: P = 0.45; external validation vs. independent evaluation:
P = 0.67), indicating consistent and robust diagnostic performance in
detecting radiolucent FBA cases across datasets (Fig. 5b).

Model performance was also evaluated in both the internal
modeling and external validation cohorts. As shown in Table 2, the
model achieved an accuracy of 94.4%, recall of 78.0%, precision of
84.2%, and F1 score of 81.0% in the internal cohort. In the external
validation cohort, accuracy was 90.3%, recall 76.2%, precision 76.2%,
and F1 score 76.2%.

To further evaluate generalization, we performed an age-based sub-
group analysis within the independent evaluation cohort. Patients were
divided into two groups: individuals under 40 years old and those aged 40
years or older. Among individuals under 40 years old (n = 12), the model
achieved an accuracy of 83.3%, precision of 75.0%, recall of 75.0%, and F1
score of 75.0%. For those aged 40 years or above (n = 58), the accuracy was
91.4%, with precision, recall, and F1 score of 77.8%, 70.0%, and 73.7%,

respectively (Supplementary Table S4). Fisher’s exact tests for recall, pre-
cision, and accuracy revealed no statistically significant differences between
the two age groups (all P > 0.5), suggesting that the model maintains con-
sistent classification performance across age strata. These results demon-
strate that the model generalizes well across different ages.

An ablation study to evaluate the contributions of each pipeline
component
For this purpose, we conducted a comprehensive ablation study using
the independent evaluation cohort (n = 70). Beginning with a baseline
model trained solely on raw axial CT slices, we sequentially incorporated
segmentation masks, reduced-view projections, and data augmentation.
As shown in Supplementary Table S5, the baseline model yielded an
accuracy of 72.3% and an F1 score of 44.6%. The inclusion of segmen-
tation masks modestly improved performance (accuracy: 75.8%;
F1 score: 57.3%), and adopting a reduced multi-view strategy (six pro-
jection views) further enhanced performance to 79.6% accuracy and a

Fig. 4 | The proposed workflow of the multi-view-
based image classification for foreign body
aspiration detection. In brief, the CT images
undergo preprocessing and airway tree extraction to
generate 3D airway models. Multi-snapshots of
these models are taken from different angles. These
snapshots are then processed using a convolutional
neural network (CNN) architecture, which includes
convolution, max pooling, and fully connected lay-
ers. Finally, the processed images are classified into
two categories: FBA (foreign body aspiration) and
NFBA (non-foreign body aspiration). De-identified
CT images, identical to those presented in Fig. 2, are
shown with the informed consent requirement
waived by the corresponding Ethics Review
Committee.

Fig. 5 | A deep learning model to detect radiolucent foreign body aspiration
(FBA) in chest CT scans. a The training loss and validation accuracy of a Resnet-18
model over 100 epochs for radiolucent FBA cases. The training loss is indicated in

red and the validation accuracy in blue. bThe receiver operating characteristic curve
for the internalmodeling to detect radiolucent FBA cases. AUCarea under the curve;
ROC receiver operating characteristic.
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59.6% F1 score. The addition of data augmentation contributed sub-
stantial gains in generalizability, resulting in 85.4% accuracy and a 65.9%
F1 score. The complete pipeline—incorporating segmentation, aug-
mentation, and a full set of 12 projection views—achieved the highest
overall performance, with an accuracy of 90.0% and an F1 score of 74.1%.
These findings underscore the synergistic benefits of structural model-
ing, enhanced spatial context, and data diversity in detecting subtle
features associated with radiolucent FBA.

Evaluating the performance of deep learning vs. expert
radiologists
Finally, we assembled an independent evaluation cohort from The
Zhongnan Hospital of Wuhan University, consisting of 14 bronchoscopy-
confirmed radiolucent FBAcases and 56NFBAcontrols (Fig. 1). Asdetailed
in SupplementaryTable 6, among the radiolucent FBAcases, 8 (57.2%)were
male and 6 (42.8%)were female, with amedian age of 56 years (IQR38–74).
CT scans were independently reviewed by three board-certified thoracic
radiologists (each with over 10 years of clinical experience) blinded to
bronchoscopy findings; any discrepancies were resolved by consensus
(Fig. 1). Table 3 presents the comparative performance metrics of the deep
learning model and the expert radiologists on this independent evaluation
cohort. The deep learning model achieved an accuracy of 90.0%, with a
precision of 76.9%, a recall of 71.4%, and an F1 score of 74.1%. In com-
parison, expert radiologists demonstrated a perfect precision of 100% but a
lower recall of 35.7%, resulting in an overall accuracy of 87.1% and an
F1 score of 52.6%. Notably, the deep learning model outperformed
experienced radiologists in both recall (71.4% vs. 35.7%; P < 0.05) and
F1 score (74.1% vs. 52.6%; P < 0.05). The F1 score, as the harmonic mean of
precision and recall, provides a balancedmetric that is especially informative
in the context of imbalanced datasets. These results highlight the model’s
potential to reduce missed cases (false negatives) while maintaining
acceptable precision, thereby supporting clinical decision-making.

Discussion
FBA poses significant clinical challenges, often leading to prolonged disease
courses and high rates of misdiagnosis. One of the primary difficulties in
diagnosing FBA is that many foreign bodies are radiolucent, making them
nearly invisible on routine imaging methods, including X-rays and CT
scans. In addition, patients may lack a clear recollection of an aspiration
event—such as choking or coughingwhile eating—further complicating the
diagnosis. This studydemonstrates that deep learningmodels can effectively

address these challenges, particularly in identifying radiolucent FBAs, by
leveraging advanced CT imaging analysis.

Accurate airway segmentation is crucial for identifying FBA cases. In
this study, airway segmentation during training was performed using the
MedpSeg deep learning model, with radiologists-guided corrections
incorporated to ensure accurate and reliable airway mapping, achieving a
DSC of 87.48%. This approach achieved higher segmentation accuracy
compared to conventional methods like region growing or wave propaga-
tion, which typically achieve DSC values around 70–80%21. Compared to
benchmarks, such as U-Net variants used in competitions like EXACT'09,
our approach exhibited greater robustness, especially in cases involving
airway obstruction. Although previous studies validated the applicability of
U-Net and similar architectures, their dependenceonmanual preprocessing
or post-segmentation adjustments limited their scalability22–24. Performance
on a 10-case hold-out set, unseenduring iterative refinement, confirmed the
absence of overfitting or feedback-related inflation. By integrating manual
corrections into iterative training, we reduced false positives and improved
generalizability.

In detecting radiolucent FBAs, the ResNet-18-based classification
model achieved excellent performance across three distinct datasets.
Accuracy ranged from 90.0% to 94.4%, with precision between 76.2% and
84.2%, and recall between 76.2% and 78.0%. These results are especially
significant when compared to expert radiologists’ performance in the
independent evaluation cohort: although human readers achieved perfect
precision (100%), their recall droppedmarkedly to 35.7%, indicating a high
false-negative rate. Themodel, in contrast, offered amorebalanced trade-off
between recall and precision, with a higher F1 score (74.1% vs. 52.6%),
highlighting its value as a second-reader tool to reducemisseddiagnoses and
to prioritize appropriate bronchoscopic evaluation.

Previous studies have explored a range of strategies for detecting
foreign body aspiration, including radiographic interpretation, rule-
based diagnostic models, and conventional machine learning
methods25–27. However, these methods often lacked specificity to radi-
olucent FBA, were limited to radiography, or were validated only on
small, homogeneous datasets. For example, retrospective studies have
shown that up to 66% of radiolucent FBAs are initially misdiagnosed as
pneumonia or asthma, due to the subtlety of CT findings and absence of
radiopaquemarkers4. Traditionalmachine learning approaches, such as
support vector machines or radiomics-based classifiers, have reported
moderate performance (AUC ~ 0.75–0.80) in small datasets but lacked
validation across independent cohorts. More recently, Truong and

Table 3 | Performance comparison between the deep learning model and expert radiologists in the independent evaluation
cohort for radiolucent FBA cases

Radiolucent FBA
cohort (n = 70)

TP FN TN FP Accuracy Precision Recall F1 Score

Deep Learning Model 10 (14.3%) 4 (5.7%) 53 (75.7%) 3 (4.3%) 90.0% 76.9% 71.4% 74.1%

Expert Radiologists 5 (7.1%) 9 (12.9%) 56 (80%) 0 (0%) 87.1% 100% 35.7% 52.6%

Data are n (%).
Values in parentheses represent the percentage relative to the full evaluation cohort (N = 70; 14 FBAand 56NFBA). Percentages for TP and FN are calculatedwith denominator = 14 (FBA cases), and for TN
and FP with denominator = 56 (NFBA cases).
FBA foreign body aspiration, TP true positive, FP false positive, TN true negative, FN false negative.
P values with McNemar’s test.

Table 2 | Performance of the deep learning model for radiolucent FBA

Radiolucent FBA cohort TP FN TN FP Accuracy Precision Recall F1 Score

Internal Modeling (n = 268) 32 (11.9%) 9 (3.4%) 221 (82.5%) 6 (2.2%) 94.4% 84.2% 78.0% 81.0%

External Validation (n = 103) 16 (15.5%) 5 (4.9%) 77 (74.8%) 5 (4.9%) 90.3% 76.2% 76.2% 76.2%

Internal modeling and external validation cohorts.
Data are n (%). FBA foreign body aspiration, TP true positive, FP false positive, TN true negative, FN false negative.
Note: Values in parentheses represent the percentage relative to the full cohort. Percentages for TP/FN/TN/FP are calculated with a denominator = n (FBA+NFBA cases).
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colleagues applied deep learning to pediatric chest X-rays for FBA
detection12, achieving an AUC of 0.88, but their method was not
applicable to radiolucent cases or CT-based workflows. Similarly, air-
way segmentation frameworks by Charbonnier et al. and Garcia-Uceda
Juarez et al. focused on anatomical reconstruction but did not address
FBA detection directly22,28. Our study addresses this gap by focusing
specifically on radiolucent FBA and validating across three distinct
institutional cohorts using CT imaging.

Despite the encouraging results, several limitations must be
acknowledged. First, the retrospective design of this study introduces
potential selection bias and the overall sample size remains relatively
limited. To help mitigate this, we incorporated data from three inde-
pendent hospitals in Wuhan (China), each with different radiology
departments and CT scanner models (UCT780 64-row, Philips Bril-
liance iCT, Canon Aquilion One, UCT780 80-row). Although geo-
graphically close, this setup introduces a degree of institutional
heterogeneity, which helps approximate certain aspects of multi-center
validation. Furthermore, these hospitals recruited patients from across
central China and beyond, encompassing a range of population char-
acteristics (e.g., age distribution, diet, and comorbidity profiles). Second,
although CT imaging provides excellent spatial resolution for airway
assessment, its relatively high radiation dose limits widespread appli-
cation, particularly for screening or serial follow-up in pediatric popu-
lations. Our model is therefore intended for targeted use in cases with
clinical suspicion following inconclusive X-ray findings. Future work
will explore integration with low-dose CT protocols and assess the cost-
effectiveness and clinical impact of this approach in triage workflows.
Third, radiolucent FBAs represent a minority class in real-world clinical
datasets, complicatingmodel optimization. To improve this, we adopted
focal loss, class-balanced mini-batching, and data augmentation stra-
tegies during training. Additional techniques such as synthetic over-
sampling or semi-supervised learning could further improve model

sensitivity29,30. Fourth, the model demonstrated higher recall than expert
radiologists but slightly lower precision, raising the possibility of more
false-positive cases. However, it is designed as a second-reader or triage
tool—rather than a diagnostic replacement—and may assist clinicians
by highlighting subtle airway-localized changes suggestive of radi-
olucent FBA, especially when CT findings are inconclusive. Lastly, the
model currently relies solely on imaging features. Incorporating addi-
tional clinical metadata—such as symptom duration, aspiration history,
and comorbidities—into a multimodal AI framework could further
enhance diagnostic accuracy and clinical decision support.

The proposed diagnostic workflow (Fig. 6) for FBA detection and
localization outlines a stepwise, evidence-based approach. Initial assess-
ments using chest X-rays provide a rapid, non-invasive method to identify
radiopaque FBAs. For suspected radiolucent FBA cases, further evaluation
with chestCTscans is recommended.Whenconventional imagingmethods
fail to detect abnormalities, applying a deep learning model to CT scans
enhances detection capabilities, particularly for subtle abnormalities that
might escape manual interpretation. This approach effectively guides
bronchoscopy for precise removal, minimizing complications such as air-
way damage or prolonged obstruction.

This study highlights the clinical value and transformative potential of
deep learning in the diagnosis of radiolucent FBA. By integrating accurate
airway segmentationwithmulti-viewCT classification, the proposedmodel
achieved high accuracy, generalizability across internal modeling, external
validation, and independent evaluation cohorts, and demonstrated superior
recall and F1 score compared to experienced radiologists, with slightly lower
precision. These findings suggest that deep learning-based systems can
effectively complement clinical workflows by reducing missed cases,
maintaining acceptable false-positive rates, and supporting more targeted
bronchoscopic interventions. Prospective, multi-center studies with larger
and more diverse populations are necessary to improve model robustness
and reduce site-specific or demographic bias31.

Fig. 6 | The proposed diagnostic workflow for
detecting foreign body aspiration (FBA). The
stepwise approach begins with chest X-rays to
identify radiopaque FBA. For suspected radiolucent
FBA, chest CT scans are recommended. If imaging is
inconclusive, applying a deep learning model to CT
scans enhances the detection of subtle abnormal-
ities. This workflow guides bronchoscopy for precise
removal while minimizing complications.
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Methods
Patient cohorts and data acquisition
As shown in Fig. 1, this study utilized a multi-source, multi-center dataset
encompassing both publicly available and clinically acquired thoracic CT
scans. Our datasets reflect real-world heterogeneity in demographics and
imaging conditions, enhancing the external validity of our findings.

Airway Tree Modeling 2022 (ATM22) challenge
Comprises 500 computed tomography (CT) scans, with 300 allocated for
training, 50 for external validation, and 150 for testing, which were sourced
from the publicly available LIDC-IDRI dataset and the Shanghai Chest
Hospital33,34. Initial preprocessing of the CT images involved employing
robust deep-learning models and an ensemble technique to generate pre-
liminary segmentation results. Subsequently, three experienced radiologists,
possessing a cumulative expertise exceeding ten years, meticulously outlined
andcross-verified these results toderive thefinal refinedairway tree structure.

The internal modeling dataset
Was derived from patients screened at The Central Hospital of Wuhan. It
included data from both FBA (Foreign Body Aspiration) patients and a
randomly selected cohort of NFBA (Non-FBA) patients. For FBA patients,
an initial pool of 81 cases was identified through clinical records and
bronchoscopy reports. From this pool, 23 cases were excluded due to
missing or incomplete clinical data, leaving a total of 58 patients in the final
dataset. Among these, 17 cases were classified as radiopaque, where foreign
bodies were visible on CT scans, while the remaining 41 cases were cate-
gorized as radiolucent, where no visible foreign bodies were detected on CT
images but were confirmed through bronchoscopy. For the NFBA cohort, a
total of 260 hospitalized patients were randomly selected from the same
hospital during the study period. After excluding 33 cases with incomplete
CT imaging ormissing diagnostic records, 227 patients were retained in the
final dataset.

The external validation dataset
Was collected from The Renmin Hospital of Wuhan University to test the
generalizability of the model. Data collection followed a similar process for
the internal modeling dataset. For FBA patients, 49 cases were initially
screened based on clinical data and bronchoscopy reports. After excluding
19 cases with incomplete clinical records, a total of 30 cases were included in
the final dataset. Among these, 9 cases were classified as radiopaque, and 21
cases were classified as radiolucent. For NFBA patients, 128 hospitalized
patients were randomly selected during the same timeframe. After
excluding 27 cases with missing or incomplete imaging or diagnostic data,
82 patients were retained.

The independent evaluation dataset
(The Zhongnan Hospital of Wuhan University) was compiled to assess the
real-world generalizability of theproposedmodel in a clinical setting.A total
of 70 patients were retrospectively included based on bronchoscopy-
confirmeddiagnoses and availabilityof high-qualityCT imaging.Of 18FBA
cases reviewed at the Zhongnan Hospital of Wuhan University, 14 were
classified as radiolucent and included in the independent evaluation cohort.
The remaining 4 radiopaque cases were excluded prior to preprocessing.
The NFBA cohort comprised 56 hospitalized patients, randomly selected
during the same time period. These patients were confirmed to have no
evidence of foreign body aspiration based on clinical history, imaging, and
bronchoscopywhen applicable. This independent dataset provided a robust
platform to evaluate the model’s diagnostic performance in a real-world,
heterogenous clinical environment, andwas used to benchmark themodel’s
performance against expert radiologist interpretation.

Geographic and clinical diversity
Collectively, these datasets encompass diverse patient populations from
three independent tertiary centers within Wuhan, China—each serving
different districts and referral patterns. This regional diversity enhances the

robustness of model evaluation and supports broader generalizability.
Importantly, while all data were fromChinese institutions, the combination
of multi-institutional sourcing, varied scanner protocols, and heterogenous
inpatient demographics enhances the translational relevance of our
findings.

CT image preprocessing
To ensure consistency and reproducibility across imaging data obtained
frommultiple institutions and CT scanner vendors, all chest CT scans were
subjected to a standardized preprocessing pipeline prior to airway seg-
mentation and classification. First, volumetric data were resampled to an
isotropic voxel spacing of 1.0 × 1.0× 1.0 mm³using trilinear interpolation to
harmonize spatial resolution and enable uniform processing of three-
dimensional anatomical structures. Voxel intensities were clipped to a fixed
Hounsfield Unit (HU) range of [–1000, +400 HU], capturing the
attenuation characteristics of air-filled airways, pulmonary parenchyma,
and soft tissue while excluding high-density bone and metal artifacts. The
clipped values were then normalized to the [0, 1] range using min–max
scaling to facilitate numerical stability during model optimization. For
inputs to the classification network, an additional Z-score normalization
stepwas applied to 2Dairway projection images tomatch the distribution of
pretrained ImageNet features and improve downstream feature alignment
during transfer learning. To ensure consistent input dimensions for the 3D
segmentation network, all CT volumes were either centrally cropped or
zero-padded to a standardized shape of 128 × 128 × 128 voxels, empirically
determined to capture the full extent of the tracheobronchial tree while
balancing computational load. In cases with large fields of view, anatomical
centering based on the airway centroid was applied to preserve relevant
structures. Finally, a Gaussian smoothing filter (σ = 1.0)was applied to each
CT volume. This denoising step improved segmentation boundary clarity
and supported accurate mesh-based airway surface reconstruction used for
subsequent classification.

Data augmentation
To enhance model generalizability across diverse anatomical presentations
and imaging conditions, as well as to mitigate overfitting due to moderate
class imbalance, a comprehensive data augmentation strategy was applied
during trainingof both the airway segmentationandclassificationnetworks.
For 3D segmentation tasks, online augmentations included randomflipping
along all three spatial axes, small-angle rotations (±15°), and elastic defor-
mations to simulate realistic variations in airway curvature and subseg-
mental branching.Additionally, randomcropping,Gaussiannoise injection
(mean = 0, standard deviation = 0.02), and brightness/contrast perturba-
tions (±15%) were used to mimic inter-scanner variability and noise
introduced by low-dose protocols. For the classification network, which
operates on 2D rendered views of segmented airway surfaces, augmenta-
tions were applied at the image level. These included random affine trans-
formations (rotation, translation, and zoom within ±10%), circular
occlusion masking to simulate segmentation dropouts or partial obstruc-
tion, and color jittering to account for rendering variations. Furthermore,
view dropout was implemented by randomly omitting one to two views out
of the 12 total per subject, forcing the model to rely on incomplete visual
context and improving robustness to partial input. All augmentations were
applied dynamically during mini-batch generation using a fixed random
seed for reproducibility. The augmentation parameters were empirically
optimized based on performance on a held-out validation set, and all
transformations were constrained to maintain anatomical plausibility of
airway geometry.

Class imbalance mitigation
Radiolucent FBA represents a rare but clinically significant diagnostic
challenge, resulting in a marked class imbalance between positive (radi-
olucent FBA) andnegative (non-FBA) cases. Tomitigate this imbalanceand
support robust model training, we implemented a suite of complementary
strategies aimed at improving sensitivity while preserving specificity.
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First, we employed stratifiedmini-batch sampling to enforce a 1:1 ratio
of radiolucent FBA to non-FBA cases in each training batch. This sampling
approach ensured consistent exposure to the minority class and stabilized
learning dynamics across epochs, reducing the risk of themodel converging
toward a trivial majority-class solution. Second, to further address class
imbalance during optimization, we adopted focal loss as the primary
objective function35. Focal loss emphasizes hard-to-classify examples by
down-weighting well-classified instances. Specifically, we set the focusing
parameter γ to 2.0 and the class weight α to 0.25 for positive samples. This
formulation enabled the model to concentrate learning on subtle, ambig-
uous cases typical of radiolucent FBA. The Focal Loss LFocal is defined as:

LFocal ¼ �αtð1� ptÞγ log ðptÞ ð1Þ

where pt is the predicted probability for the ground truth class, at 2
½0; 1� is aweighting factor to balance positive andnegative voxels, γ≥ 0 is the
focusing parameter that adjusts the rate at which easy examples are down-
weighted.

Airway 3D reconstruction
For airway 3D reconstruction, a combination of publicly available datasets
and hospital-derivedCT scanswas used. The primary dataset, sourced from
the Airway Tree Modelling 2022 (ATM22) challenge, included 500 CT
scans (300 for training, 50 for external validation, and 150 for testing)
derived from the LIDC-IDRI dataset and the Shanghai Chest Hospital33,34.
We adopted the MedpSeg model, a state-of-the-art deep learning frame-
work, for airway segmentation36. The MedpSeg model was designed to
address the inherent anatomical challenges of airway segmentation,
including fine branching structures, large inter-patient variability, and class
imbalance between airway and background voxels. The architecture fol-
lowed an encoder–decoder configuration with skip connections and
included residual blocks to facilitate gradient flow and channel-wise
attentionmechanisms to improve feature selectivity in decoder layers. Each
encoder block consisted of two 3D convolutional layers (kernel size
3 × 3 × 3), batch normalization, and ReLU activation, followed by 3D max
pooling (2 × 2 × 2). Decoder blocks employed transposed convolutions for
upsampling, combined with symmetric encoder features. A final 1 × 1 × 1
convolution followed by sigmoid activation produced binary airwaymasks.

The initial segmentation outputs were reviewed and refined by radi-
ologists, who corrected missing airway branches or removed erroneous
segmentations (a semi-automated workflow; Fig. 2). Segmentation training
involved a three-round iterative refinement workflow with radiologist
feedback. In Iteration 1, the pretrained MedpSeg model (ATM22) was
applied to the 60 internal hospital CTs. The outputs were reviewed and
manually corrected by three board-certified thoracic radiologists (≥10 years
experience), addressingmissing branches, false positives, and segmentation
discontinuities. In Iteration 2, the model was retrained on these corrected
masks and applied to a new subset of scans; approximately 20% of outputs
required further correction. In Iteration 3,final retrainingwas performedon
the cumulative corrected dataset, after which <10% of cases required
minimal edits (average correction time 8–12min vs. 25–30min for full
manual labeling). This semi-automated human-in-the-loop workflow sig-
nificantly reduced annotation burden while preserving anatomical fidelity.
Notably, no manual correction or retraining was performed during model
inference in any of the validation or test phases, ensuring full automation for
downstream clinical application.

This iterative process progressively improved model accuracy while
significantly reducingmanualworkload.Once trained,MedpSeg performed
segmentation without any human intervention. No manual correction or
retraining is required for external use. During training, approximately 40%
of the cases initially required manual correction to fix missing branches or
reduce false positives. After several rounds of retraining and refinement, the
manual intervention rate decreased to below 10%. Each correction took
8–12min on average, compared to 25–30min for full manual annotation,

representing a substantial reduction inworkload.Nomanual correctionwas
used during model inference in the validation or evaluation phases.

Segmentation accuracy was quantitatively evaluated using a compre-
hensive set of metrics: DSC, Average Symmetric Surface Distance (ASSD),
Volumetric Overlap Error (VOE), Relative Volume Difference (RVD), and
Mean Intersection over Union (mIoU). On a held-out internal test subset
excluded from all training phases, MedpSeg achieved DSC = 86.8% and
ASSD = 0.73mm, with comparable performance on the external validation
cohort, indicating excellent generalization. The final segmentation outputs
were converted to triangulated surface meshes for 3D airway rendering and
multi-view projection, serving as input to the classification pipeline.

Foreign body aspiration identification based on deep learning
As shown in Fig. 3, the workflow for multi-view-based FBA classification
involves several key steps. Initially, raw CT images undergo preprocessing
and airway tree extraction, producing detailed 3D airway models. These
models are then captured from multiple viewpoints to generate a series of
2D snapshots, which serve as input for a convolutional neural network
(CNN) classifier.

To facilitate reproducibility, all critical preprocessing and rendering
parameters have been made publicly available via our GitHub repository.
CT volumes were clipped to a Hounsfield Unit (HU) range of –1000 to
+400, resampled to isotropic voxel dimensions of 1.0 mm³, and intensity-
normalized using min-max scaling. For airway rendering, 12 uniformly
spaced snapshot views were generated across the 3D airway surface using a
virtual camera radius of 150mm.Each imagewas rendered at a resolutionof
224 × 224 pixels and subsequently fed into a ResNet-18 classifier.

Each rendered 2D projection was passed through a ResNet-18 back-
bone, pre-trained on ImageNet and fine-tuned for binary classification. The
network consists of four residual convolutional blocks, batch normalization,
ReLU activations, and global average pooling, followed by a fully connected
classification head comprising a 256-unit dense layer, dropout (p = 0.5), and
SoftMax output. Final patient-level predictions were obtained by averaging
SoftMax probabilities across all 12 views.

Model optimizationwas performed using the Adamoptimizer with an
initial learning rate of 1 × 10⁻⁴, reduced by a factor of 0.1 if validation loss
plateaued over five epochs. A batch size of 16 was used, and training con-
tinued for a maximum of 100 epochs with early stopping triggered after 10
epochs of non-improvement in validation loss. Thefinalmodelwas selected
based on the best validation F1 score.

To ensure reproducibility and robust internal evaluation, five-fold
cross-validation was employed. Each fold was constructed with strict
patient-level separation and identical hyperparameter settings. All models
were subsequently evaluated on an independent test cohort held out from
training.

The computational environment consisted of high-performance
hardware, including an Intel Core i9-10900X CPU, 128 GB of RAM,
and two NVIDIA GeForce RTX A5000 GPUs with 24 GB of memory
each. The code supporting this implementation is available for public
access on Github, ensuring both transparency and reproducibility.
This multi-view classification strategy, combined with the fine-tuned
deep learning architecture, enhances the ability to accurately identify
radiolucent foreign body aspirations on CT images. The internal
modeling cohort for classification was trained and evaluated exclu-
sively on radiolucent FBA and NFBA cases.

Expert radiologists evaluation
To benchmark the model against expert radiologists’ performance, we
conducted a blinded evaluation involving a panel of experienced thoracic
radiologists. Specifically, three board-certified thoracic radiologists, each
with over 10 years of clinical experience, independently reviewed all CT
scans in the independent test cohort. All radiologists were blinded tomodel
predictions, patient clinical history, and bronchoscopy results. Axial CT
images were presented in a standalone DICOM viewer without additional
contextual information.
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Discrepancies among the three readerswere resolvedusing a consensus
protocol. In cases where two radiologists agreed and one disagreed, the
majority vote determined the reference label. In the rare instances where all
three readers provided divergent assessments, the case was jointly reviewed
and resolved through discussion. These expert interpretations were used as
the reference standard for performance comparisons with the deep
learning model.

Performance metrics
To comprehensively evaluate the performance of the classification
model, we employed four standard metrics: accuracy, precision, recall,
and F1 score. Accuracy measures the overall proportion of correctly
predicted instances and provides a general sense of model perfor-
mance. The F1 score serves as the harmonic mean of precision and
recall, offering a balanced metric that is particularly useful when
dealing with imbalanced datasets. Together, these metrics offer a
comprehensive and reliable framework for evaluating classification
performance. The formula is as follows:

Precision ¼ True Positives
True Positivesþ False Positives

ð2Þ

Recall ¼ True Positives
True Positiveþ False Negatives

ð3Þ

F1Score ¼ 2 ×
Precision×Recall
Precisionþ Recall

ð4Þ

Accuracy ¼ True Negativesþ True Positives
True Negativesþ True Positivesþ False Negativesþ False Positives

ð5Þ

Randomization and validation strategy
To ensure methodological rigor and prevent data leakage, we adopted a
stratified five-fold cross-validation strategy with strict patient-level separa-
tion, such that no data from a single subject appeared inmore than one fold.
Stratified random sampling preserved the class distribution of radiolucent
FBA and non-FBA cases across all folds, supporting stable learning and
unbiased validation. A fixed random seed was used throughout the parti-
tioning process to maintain reproducibility and enable consistent experi-
mental conditions.

All preprocessing and data augmentation procedures were confined
strictly to the training folds within each iteration, thereby eliminating the
possibility of information leakage into the validation set. We elected not to
implement chronological separation due to the narrow temporal span of
data collection (2017–2024) and the low prevalence of radiolucent FBA,
whichwould have severely limited the number of positive cases available for
model training. Instead, the independent evaluation cohort and external
validation dataset were entirely held out from the training pipeline and
reserved for final model performance assessment, ensuring an unbiased
evaluation of generalization capability.

Statistical analysis
Continuous variables were assessed for normality using the Shapiro-Wilk
test. Normally distributed data was expressed as mean (standard deviation)
and compared between groups (FBA vs. NFBA) using the independent
samples t-test. For non-normally distributed data, results were summarized
as median (interquartile range, IQR) and compared using the Wilcoxon
rank-sum test. Categorical variables were expressed as numbers (percen-
tages) and compared using the chi-square test or Fisher’s exact test when the
expected number of cells was less than 5. Two-sided P values less than 0.05
were consideredstatistically significant.All analyseswereperformedusingR
(version 4.4.2).

To compare model performance with expert radiologists interpreta-
tion on the independent evaluation dataset, McNemar’s test was used for
paired sensitivity and specificity comparisons. Bootstrapping with 1000
iterations was used to estimate 95% confidence intervals and assess differ-
ences in F1 score. All analyses were performed in Python (v3.9) using SciPy
and scikit-learn.

Study design and ethical approval
This retrospective, multi-center study was conducted in compliance with
the Standards for Reporting Diagnostic Accuracy Studies (STARD)
guidelines32. Ethical approval was obtained from the institutional review
boards of all participating centers: The Central Hospital of Wuhan
(WHZXKYL2024-108), The Renmin Hospital of Wuhan University
(WDRY2025-K083), and The Zhongnan Hospital of Wuhan University
(2025086K). Due to the retrospective nature and full anonymization of
imaging data, informed consent was waived. The study aimed to develop
and evaluate a deep learning pipeline for detecting radiolucent foreign body
aspiration from chest computed tomography scans by combining
high-precision airway segmentation with multi-view convolutional classi-
fication. Three datasets were used: internal modeling, external validation,
and independent evaluation, with strict cohort separation throughout all
stages of development and testing.

Data availability
The data supporting the findings of this study are available upon reasonable
request from the corresponding author with approval from the corre-
sponding hospital. The source code for this implementation is publicly
accessible at the following website: https://github.com/ZheChen1999/
FBA_DL.
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