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Nontuberculous mycobacteria remodel lung microbiota in cystic 
fibrosis-associated respiratory infections
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ABSTRACT Nontuberculous mycobacterial (NTM) infections in people with cystic 
fibrosis (pwCF) can have detrimental effects on prognosis and pose significant chal­
lenges to treatment. However, there are still questions regarding the contribution and 
influence of NTMs on the respiratory microbiome and the mechanisms by which NTMs 
cause infections. Here, we investigate the impact of NTM infection on microbiome 
composition and lung function (percent predicted forced expiratory volume in 1 second). 
Primary comparisons were between culture-positive cohorts for Mycobacterium avium 
complex and Mycobacterium abscessus complex and those who were culture-negative for 
NTMs and attending outpatient clinics. Additionally, the consequence of cystic fibrosis 
transmembrane conductance regulator (CFTR) modulator therapy status and positive 
NTM culture was assessed in terms of microbiome change. Our data suggest that the 
presence of NTM significantly alters the diversity and the composition of the lung 
microbiota in pwCF, including those receiving CFTR modulator therapies. Importantly, 
significant associations were detected between NTM presence and changes in abun­
dance of Pseudomonas aeruginosa and Burkholderia cepacia complex members, inferring 
modulatory effects of NTMs on respiratory microbiomes. This study contributes to the 
understanding of NTM infection and these organisms’ interaction with the respiratory 
microbiome and CFTR modulator therapy, highlighting the need for further research in 
this area.

IMPORTANCE The influence of NTM infection in pwCF is still debated, and the extent 
of their contribution to mortality and morbidity is still questioned. Findings in this 
study highlight a link between the presence of NTMs and significant alterations in 
the composition of the respiratory microbiome, particularly with respect to some of 
the canonical CF pathogens, especially Pseudomonas aeruginosa and members of the 
Burkholderia cepacia complex. This indicates that complex relationships are occurring 
within the microbiome. This study further contributes to the understanding of NTM 
infection in pwCF, with and without CFTR modulator therapy, and highlights the need 
for further research in this area. The knowledge gained from this study has implications 
for treatment strategies and management, ultimately aiming to improve and prolong the 
lives of pwCF.

KEYWORDS Nontuberculous mycobacterium, cystic fibrosis, Pseudomonas aeruginosa, 
Burkholderia cepacia complex, CFTR modulator therapy, microbiome, respiratory 
infection

C ystic fibrosis (CF) is a multisystemic genetic disorder affecting more than 70,000 
people worldwide (1). This autosomal recessive disease is caused by mutations in 

the cystic fibrosis transmembrane conductance regulator (CFTR) gene (2) leading to an 
accumulation of abnormally viscous mucus in several major organ systems. The result 
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of this is a variety of symptoms affecting the whole body. People with CF typically have 
several pulmonary symptoms such as recurrent chest infections, coughing, trouble 
breathing, and wheezing (1), which contribute to respiratory disease as the primary 
cause of morbidity and mortality (3). While CFTR modulators are relatively new to the CF 
treatment regimen, they can enhance the expression, function, and stability of a faulty 
CFTR protein (4). However, bacterial infection remains a constant issue (5), and research 
has not yet fully elucidated the effect that modulator therapy has on the respiratory 
microbiome.

Nontuberculous mycobacteria (NTMs) are ubiquitous environmental organisms that 
can cause chronic pulmonary infection in people with cystic fibrosis (pwCF). Once 
infected with NTMs, pwCF are more likely to develop severe lung disease and experience 
complications than those in the general population (6–8); however, those colonized by 
NTMs do not always have active disease (9). Where colonization progresses into active 
disease, pwCF have shown a significant reduction in percentage predicted of forced 
expiratory volume in 1 second (%FEV1) and increased frequency of exacerbations (10, 
11) and may be ineligible for lung transplantation due to the intrinsic antimicrobial 
properties of some NTM species (12).

The severity of nontuberculous mycobacterial pulmonary disease (NTM-PD) is highly 
dependent on the type of NTM acquired. One of the most clinically relevant, rapidly 
growing mycobacteria is the Mycobacterium abscessus complex (MABSC). The detection 
and isolation of MABSC has been increasing globally (13), as it is associated with 
increasing morbidity and mortality rates in immunocompromised individuals and those 
with underlying pulmonary diseases (14, 15). Conversely, the Mycobacterium avium 
complex (MAC) is part of the slow-growing mycobacterial group often isolated from 
soil, water, birds, and livestock (16). MAC infection often exhibits less aggressive disease 
and better pwCF outcomes when compared to MABSC (17). Therefore, the accurate and 
timely diagnosis of the type of NTM infection is essential to manage disease and prevent 
further damage to the pulmonary system (9, 18).

MAC and MABSC are associated with around 90% of the total reported cases of 
NTM-PD (19–21). The recent estimated global prevalence of NTM infection in pwCF is 
approximately 7.9%, with MABSC infection estimated at 4.1% and MAC at 3.7% (22). In 
2018, NTM prevalence was increasing by 5% annually in the US CF population, driven 
mainly by MAC infection (23) and with a 2.5% rise over a 5-year period in the UK (24), 
with MABSC being the predominant species detected (25). NTM-PD is the most common 
type of NTM infection globally and accounts for 80%–90% of all NTM-associated diseases 
(26–29).

The presence of NTMs and their association with other CF pathogens and the 
diversity of the CF microbiome have not been a major research focus, despite evidence 
that lung infection in CF is unquestionably polymicrobial in nature (30–34). Previous 
studies examining the interplay between NTM populations and NTM-PD in CF micro­
biomes are sparse; there is, however, limited research into NTM-microbiome associations 
in other pulmonary disorders that can contextualize this work. Macovei et al. (35) found 
that NTMs, including opportunistic pathogens, were present in healthy participants and 
that Streptococcaceae and Staphylococcaceae constituted a significant proportion of the 
microbiota. Yamasaki et al. (36) discovered that pwCF positive for NTM had a microbiota 
predominantly composed of Prevotella, Streptococcus, Neisseria, and Pseudomonas, and 
that the incidence of anaerobes was higher in those diagnosed with NTM infection. This 
suggests that anaerobes may play a role in the pathogenesis of NTM disease.

While there have been other studies examining the composition of the microbiota 
in the presence of NTMs, with most suggesting a unique bacterial community residing 
within each pwCF (35–37) or the impact of CFTR modulator therapies on NTM prevalence 
(38), there has been no research combining NTM complexes, CFTR modulator therapies, 
and CF-associated lung microbiome.

Here, we investigated changes in the CF lung microbiome during NTM infection 
and CFTR modulator therapy. Using a combination of clinical, diagnostic microbiology, 
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and microbiota sequencing data, we demonstrate the remodeling of the microbiome 
undertaken both by NTM infection and CFTR modulator therapy, with the significant 
reduction of some key pathogens (Pseudomonas aeruginosa) and the emergence of 
others (Burkholderia cepacia complex). This knowledge will enhance the understanding 
of how NTMs influence other pathogens, providing information regarding CF lung 
disease progression in relation to the microbiome in the presence of CFTR modulator 
therapy.

RESULTS

Due to the complexity of the sample isolation of pwCF during the coronavirus disease 
2019 (COVID-19) pandemic, it was necessary to combine results from sputum samples 
and cough swabs, some of which were collected in the clinic, while others were mailed 
(Table 1). The impact of this mixed sampling approach was therefore tested. There were 
no significant differences between the lung function (measured as %FEV1) of pwCF and 
sample type (F1,47 = 0.09, P = 0.768) or collection method (F1,47 = 0.01, P = 0.912). Our 
analysis, therefore, focused on the influence of clinical characteristics and the impact of 
chronic NTM-positive culture on lung function from a cohort of 57 pwCF taken from the 
UK and the USA (Table 1). Here, we found no statistically significant difference between 
the lung function of pwCF and age at sampling (F1,47 = 0.00, P = 1.000) or whether 
sampling occurred during an exacerbation (F1,47 = 0.74, P = 0.395), location (F1,47 = 
1.61, P = 0.211), sex (F1,47 = 0.07, P = 0.788), whether the pwCF was being treated 
with modulator therapy (F1,47 = 1.15, P = 0.290) or antibiotics (F1,47 = 2.74, P = 0.105) 
at the time of sampling, or whether the sputum was positive for NTM culture (F1,47 = 
0.70, P = 0.408). When the analysis considered an interactive effect of NTM infection 
and modulator therapy, a higher lung function was recorded for the group without 
NTM infection undergoing CFTR modulator therapy (%FEV1 of 73.1 ± 29.6) than any 
other combination (NTM negative, no modulator, %FEV1 of 55.1 ± 21.7; NTM positive, no 
modulator, %FEV1 of 65.8 ± 24.3; NTM positive, undergoing modulator therapy, %FEV1 of 
58.3 ± 27.1); however, no significant interactions were observed (F3,49 = 1.10, P = 0.359). 
Furthermore, there were no significant differences when assessing whether changes in 

TABLE 1 Summary of pwCF clinical characteristicsa

Characteristics Number of participants

Number of pwCF 57
  Southampton, UK (%) 33 (58)
  Burlington, VT (%) 24 (42)
Collection method (clinic/posted) 16/41
Sample type (sputum/cough swab) 35/22
Sex (male/female) 18/39
Mean (SD) age (years) 29.2 (±6.6)
Minimum to maximum age (years) 19–53
Mean %FEV1 b (SD) 64.8 (27)
Individuals on CFTR modulator therapy (%) 30 (53)
CFTR genotype
  Homozygous Phe508del (%) 29 (51)
  Heterozygous Phe508del (%) 23 (40)
  Non-Phe508del (%) 5 (9)
  Individuals with chronic positive NTMc culture (%) 27 (47)
   MACd (%f) 14 (52)
   MABSCe (%f) 11 (41)
   Other (%f) 5 (19)
aData are presented as mean and standard deviation (SD) or number and percentage (%) unless otherwise stated.
b%FEV1, percentage predicted of forced expiratory volume in 1 second.
c NTM, Nontuberculous mycobacteria.
dMAC – M. avium complex.
eMABSC – M. abscessus complex.
fPercentage of chronic NTM culture-positive pwCF.
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microbial diversity impacted lung function for either diversity (R = 0.11, P = 0.420) or 
dominance (R = −0.07, P = 0.625).

Microbiome diversity changes with NTM-positive culture and modulator 
treatment

The 16S rRNA gene sequencing yielded a total of 415,856 bacterial sequence reads after 
filtering and quality control (39), with a mean (±standard deviation throughout) number 
of 7,296 (±6,283) reads per pwCF (n = 57, range = 1,180–31,791 reads). All 16S rRNA 
reads from NTMs were also removed so as not to bias the analysis. In total, 215 bacterial 
operational taxonomic units (OTUs) were assigned after manual curation (34) with a 
mean of 12.3 (±8.7) OTUs per sample.

While sample storage has been shown as not having an impact on the dominant 
members of the microbiome (40, 41), sample type is known to have significant discrep­
ancies in microbiome analysis in adults (42). To acknowledge this, we analyzed the 
impact of sample type on the microbiome, determining that there was a significant 
difference in microbial composition in terms of diversity (t26 = 4.09, P < 0.001) and 
dominance (t54 = 4.68, P < 0.001). However, accounting for this is not trivial. As with 
other studies (43–45), we found that sputum production is inversely associated with 
modulator therapy (odds ratio [OR] = 0.04, 95% confidence interval [CI] 0.01–0.17, P < 
0.001) and associated with exacerbations (OR = 15.00, 95% CI 3.67–103.72, P = 0.001). As 
the objective of this study is to begin to understand the effect of chronic NTM infection 
on the respiratory microbiota across the pwCF spectrum, we have combined the samples 
for the analysis so as not to bias the results for a particular populace (45).

Furthermore, the effect of antibiotic treatment (binary) at the time of sampling 
was assessed. In our data set, antibiotic treatment was more likely to be the case for 
pwCF producing sputum samples (OR = 5.82, 95% CI 1.87–20.21, P = 0.003). The results 
indicated that antibiotics had a significant effect on diversity (t37 = 2.56, P = 0.015) but 
not dominance (t55 = 1.68, P = 0.099).

Finally, the likelihood of sputum production being associated with being NTM culture 
positive was also assessed (OR = 8.50, 95% CI 2.61–32.03, P = 0.001); however, there 
was no significant increase in the likelihood of being on antibiotics if NTM was culture 
positive (OR = 1.88, 95% CI 0.66–5.49, P = 0.242). Due to this and the confounding 
effects of the other variables, we subsequently accounted for antibiotic treatment in 
all further models to address the issue of different sampling strategies while retaining 
numbers to generalize the effect of NTM infection on as broader a range of pwCF 
as possible. Interestingly, when the NTM culture status was considered, there were 
significant changes in diversity (t33 = 3.59, P = 0.001) and community dominance (t53 
= 2.07, P = 0.044), with the significant effect of NTM-positive culture retained after 
accounting for antibiotic treatment (F1,54 = 12.06, P = 0.001). The analysis indicated that 
samples which were found to be culture positive for NTMs (Fig. 1A) had a lower diversity 
(mean Fisher’s alpha index of diversity = 1.04 ± 0.48) while being more dominated by 
a single taxon (mean Berger-Parker index of dominance = 0.44 ± 0.16) compared to the 
culture-negative samples (mean Fisher’s alpha = 1.95 ± 1.24, mean Berger-Parker index = 
0.34 ± 0.21).

Further investigation focused on what impact the group of NTM present had on the 
microbiome diversity (Fig. 1B). The results showed that, after accounting for significant 
(F1,52 = 8.22, P = 0.006) antibiotic treatment, the NTM type had significant effects (F3,52 = 
4.31, P = 0.009) on the microbiome. Furthermore, pwCF diagnosed with MABSC were 
found to have significantly (Padj = 0.010) lower diversity (mean Fisher’s alpha = 0.96 ± 
0.31) than the NTM-negative group (mean Fisher’s alpha = 1.95 ± 1.24). No significant 
differences were observed between the NTM-negative group and the MAC group (mean 
Fisher’s alpha = 1.03 ± 0.55, Padj = 0.103) and other NTMs cultured (mean Fisher’s alpha = 
1.24 ± 0.57, Padj = 0.509). Furthermore, no significant difference was observed between 
any of the NTM types (Padj > 0.751). The NTM type did not significantly (F3,65 = 1.28, P = 
0.289) influence how dominated a community was.
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The analysis then turned to the assessment of modulator treatment on the micro­
biome and whether there was any interplay with NTM status. While there was no 
significant interaction between modulator treatment (binary) and NTM group on lung 
function (F1,53 = 3.08, P = 0.085), there were significant impacts on diversity and domi­
nance (Fig. 2). The results indicated that even accounting for a significant effect of 
antibiotic treatment (F1,54 = 8.11, P = 0.006), the modulator treatment had a significant 
impact on microbiome diversity (F1,54 = 9.99, P = 0.003), with those on modulator 
therapy having a higher number of taxa present (mean Fisher’s alpha = 1.93 ± 1.17) than 
those not on modulators (mean Fisher’s alpha = 0.96 ± 0.48). This trend continued, even 
though there was no significant (F1,54 = 3.43, P = 0.070) effect of antibiotics, with those 
on modulators shown as having a significantly (F1,54 = 12.94, P = 0.001) less dominated 
(mean Berger-Parker index = 0.30 ± 0.16) microbiome than those not on modulator 
treatment (mean Berger-Parker index = 0.49 ± 0.18).

The analysis has already indicated that NTM culture status and modulator therapy
significantly altered diversity. The analysis continued to evaluate if there were significant 
interactions between infection and treatment. While the overall model indicated a non-
significant interaction (F1,52 = 3.07, P = 0.086), the post hoc analysis revealed that there 
were significant differences, depending on the combination of whether the pwCF were 

FIG 1 Differences in microbiome diversity during NTM infection. Differences in diversity (Fisher’s alpha) were shown to be significant in NTM culture-positive 

and NTM culture-negative samples (A); however, there was little impact beyond this when the different NTM groups were considered (B). The asterisk indicates a 

statistically significant Tukey’s honestly significant difference result, where * and ** represent P values of <0.05 and 0.01, respectively.
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undergoing CFTR modulator therapy and had a positive NTM culture. Here, NTM culture-
negative pwCF with CFTR modulator therapy (mean Fisher’s alpha = 2.24 ± 1.29) had a 
significantly (Padj < 0.046) higher diversity than all the other groups (Fig. 3).

Microbiome composition is remodeled by the presence of NTM

Given there was a significant influence of mycobacterial culture status on microbial alpha 
diversity, the analysis next focused on beta-diversity measures (Fig. 4). By analyzing 
community composition, the results indicated that there were significant differences 
(permutational multivariate analysis of variance [PERMANOVA] F1,54 = 2.01, R2 = 0.035, P 
= 0.007) due to antibiotic treatment, and significant differences in community composi­
tion in those samples with different NTMs were detected (PERMANOVA F3,54 = 1.32, R2 = 
0.07, P = 0.050). Pairwise comparisons failed to find significant difference between paired 
comparisons (Padj > 0.302).

These differences in composition were investigated and, after removing taxa that 
were significantly associated with antibiotic treatment (n = 5, Table S1), the analysis 
found that 10 species (Table S2) were significantly reduced in abundance in NTM culture-
positive samples, including the canonical pathogen Pseudomonas aeruginosa (P = 0.005); 
anaerobic species Prevotella histicola (P = 0.005), Veillonella nakazawae (P = 0.010), and 

FIG 2 The effect of modulators on microbiome diversity. Significant changes in microbiome diversity 

(Fisher’s alpha) were observed for pwCF during modulator treatment, where diversity levels increase 

with modulators (A), with an accompanying decrease in how dominated (Berger-Parker) the communities 

were (B). The asterisk indicates a statistically significant Tukey’s honestly significant difference result, 

where ** represents P values of <0.01.
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Veillonella rogosae (P = 0.045); and commensal species Streptococcus intermedius (P = 
0.040) and Gemella morbillorum (P = 0.015). Conversely, only one taxon significantly 
increased within the NTM-positive samples: Achromobacter xylosoxidans (P = 0.035) .

Modulator therapy enhances remodeling by NTMs

Finally, the impact of modulator therapy on microbiome composition was modeled 
together with the NTM group. This was to assess whether the taxonomy of NTM present 
had an interactive effect with modulator therapy on the microbiome. After accounting 
for the significant (F1,48 = 2.08, R2 = 0.04, P = 0.005) influence of antibiotic treatment, 
there were clear significant (F1,48 = 2.76, R2 = 0.05, P = 0.002) differences in microbiome 
composition attributed to the presence of a modulator (Fig. 5). There were also signifi-
cant differences between the different NTM group present (F3,48 = 1.37, R2 = 0.07, P = 
0.029), suggesting that there are different consequences of CFTR modulator therapy with 
different Mycobacterium spp. present; however, no significant interaction between 
modulator therapy and the NTM group present was found (F3,66 = 1.07, R2 = 0.05, P = 
0.323).

Finally, the species were assessed for their association with modulator-NTM combina­
tions. Overall, 17 species were found to have significant associations (Table S3); in 
particular, multiple Prevotella histocola (P = 0.030) and Streptococcus intermedius (P = 
0.030) were significantly associated with pwCF groups on modulators or without NTM 
infection. In contrast, recognized pathogen P. aeruginosa was significantly associated (P = 
0.005) with both NTM-negative groups, regardless of CFTR modulator therapy, and 

FIG 3 Interactions of NTM culture status (positive/negative) and modulator therapy (modulator/none) on microbiome 

diversity. Samples from pwCF who were NTM culture negative and on CFTR modulator therapy had significantly more diverse 

microbiomes than any of the other combinations of NTM culture status and CFTR modulator therapy. The asterisk indicates 

a statistically significant Tukey’s honestly significant difference result, where * and *** represent P values of <0.05 and 0.001,

respectively.
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members of the Burkholderia cepacia complex (BCC, P = 0.015) and the genus Staphylo­
coccus (P = 0.015) and Haemophilus influenzae (P = 0.045) were associated with groups 
without CFTR modulator therapy, regardless of NTM infection status.

DISCUSSION

Previous research has shown that pwCF who have a microbiota with low diversity and 
high species dominance are associated with poorer clinical outcomes in relation to lung 
function (32, 46, 47). These individuals are also at higher risk of increased frequency of 
pulmonary exacerbation, which may lead to a faster progression of lung disease (47, 48). 
Infection with NTMs has also been associated with poor clinical outcomes and decline in 
pulmonary function (49, 50). Earlier research analyzing the community composition in CF 
lung microbiota and its relationship to NTM positivity is limited, therefore highlighting 
a research gap that needs to be addressed. While this study should be considered 
as an initial investigation, due to sample numbers included, predominantly due to 
the concurrent onset of the COVID-19 pandemic, and widespread uptake and use of 

FIG 4 Graphical representation of community dissimilarity in ordinal space using non-metric multidimensional scaling. 

Dissimilarities between the communities were measured using the Bray-Curtis dissimilarity index and plotted in ordinal space 

where points closest together are highly similar, whereas points far apart are highly dissimilar. Significant clusters were 

observed between samples that were NTM culture positive (dotted line, red circular points) and those that were negative 

(continuous line, square points), with subclusters (gray lines) indicating the NTM groups; MABSC (orange), MAC (green), and 

other (blue). Ellipses represent the standard deviation around the mean centroid for the cluster. Gray lines converge at the 

centroid for that cluster. NMDS, non-metric multidimensional scaling.
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CFTR modulator therapies, occurring midway through recruitment, this study adopted 
a multifaceted approach to assess the overall microbiota, the type of NTM present in 
the microbiota, and the impact of CFTR modulator therapy. Our data highlight potential 
impacts that can be used to create hypotheses for future, larger studies.

Here, we present differences between the composition of the CF lung microbiota 
in NTM-positive and NTM-negative individuals and those on modulator therapy. In 
particular, the analysis indicated that there was a significant decrease in the frequency 
and abundance of P. aeruginosa in samples that were culture positive for NTM infection. 
Although the mechanisms underpinning this are unknown, this observation has been 
recorded previously (51), and interactions between species are increasingly shown to 
be key to lung functioning (34). We postulate that NTMs either interact antagonisti­
cally to some members of the microbiome or exploit vacant niches within the lung 
habitat, preventing subsequent colonization. This latter postulation could coincide with 
collateral effects of treatment with antibiotics, such as aminoglycosides (52), or the 
composition and niche occupation of the microbiome initially experienced by incom­
ing pathogen (53), although further research is required. The analysis also indicated a 
relationship between modulator use and an increase in “commensal” bacterial species, 
as previously postulated (54). However, the high levels of BCC (55) members detected 

FIG 5 Microbiome composition is significantly influenced by modulator therapy. Plotted in ordinal space using non-metric 

multidimensional scaling, there are significant differences between microbiomes with (filled points, dotted line) and without 

(open points, continuous line) CFTR modulator therapy. NTM groups are denoted as follows: MABSC (orange), MAC (green),

and other (blue). Ellipses represent the standard deviation around the mean centroid for the cluster.
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in non-modulator-treated groups are concerning clinically . BCC is known to cause 
“cepacia syndrome,” characterized by severe necrotizing pneumonia, respiratory failure, 
and bacteremia, with a high mortality rate and a contradiction to potentially lifesaving 
lung transplantation (56, 57); however, whether there is a mechanistic link between NTM 
and BCC prevalence is an area of future study.

Our analysis also provided evidence that while there were significant changes in the 
microbiome between those receiving CFTR modulator therapy and those not receiving 
it, NTM culture-positive pwCF remained compositionally distinct from NTM-negative 
samples, regardless of whether they were undertaking CFTR modulator therapy. This 
suggests that NTMs persist despite CFTR modulators, as with other pathogens (58), 
requiring the further study of the importance and pathogenesis of these organisms.

Our cohort included samples from individuals across the spectrum of pwCF; some 
were undergoing exacerbation, antibiotic treatment, or CFTR modulator therapy. As 
NTM infection, particularly chronic infection, affects between 2.6% (59) and 10.0% (60) 
of the pwCF population, it is vital to capture the widest remit possible to understand 
general aspects of NTM infection. This poses a dilemma: with the introduction of 
CFTR modulator therapies, it is no longer the norm that pwCF will produce sputum 
spontaneously, leading to the James Lind Alliance research priority in CF: “What is 
the best way to diagnose lung infection when there is no sputum?” (61). As such, to 
understand mechanisms of pathogenicity and the wider microbiome, it is necessary 
to have representation of the population regardless of sampling methodologies so as
to not artificially bias the study. This does, however, bring further cofactors into the 
analysis, as shown here; sputum producers are more likely to be in exacerbation or not 
on modulators, with cough swab samples coming from those not attending a clinic. This 
begs the question of whether the microbiological discrepancies between sputum and 
cough swabs are truly greater than the natural variation between pwCF. Answering this 
question could be addressed by larger studies.

A further caveat is that the assignment of species taxonomy should be considered 
putative due to the length of the 16S rRNA gene sequence. A previous study (62) 
concluded that sequencing regions of 16S rRNA gene alone can be insufficient in 
distinguishing between closely related species, such as those from the BCC. Furthermore, 
due to the non-specific nature of 16S rRNA gene sequencing (63), NTM complexes 
are often underrepresented (64) and incorrectly identified (65, 66). Focused research 
in this area is needed to develop a high-throughput, culture-independent, method for 
identifying NTM alongside the wider microbiome.

In conclusion, the data and analysis presented here highlight potential effects of 
the presence of NTM and their influence on the respiratory microbiome, in particular, 
significant associations between NTM presence and decreasing P. aeruginosa. Due to 
the undefined consequences of NTM infection and clinical decline (9), it is not possible 
with this data set to attribute mechanistic causality; however, given the associations 
presented here, we believe this is clearly an area of clinical importance and future work.

MATERIALS AND METHODS

Participant recruitment

Adult pwCF were recruited from the University Southampton Hospital (UHS) NHS Trust, 
Cystic Fibrosis Center, UK, and The University of Vermont (UVM), USA (Table 1). PwCF 
who had no history of positive NTM culture were denoted as “NTM negative,” and those 
who were culture positive and clinically defined as chronically colonized using the Leeds 
criteria (67) at the time of sampling were denoted as “NTM positive” and were subse­
quently subgrouped according to the species of NTM they were culture positive with 
MAC, MABSC, or other. Culture of pwCF respiratory samples was done and confirmed by 
UHS and UVM clinical pathology laboratories. Initially, participants were assessed, and 
respiratory samples were collected in the clinic during routine appointments by their 
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regular CF team. The collection method differed, with some samples being collected in 
the clinic (until March 2020) and others collected at home due to COVID-19 restrictions 
on clinic attendance and posted (from Sept 2020).

Nucleic acid extraction

Prior to DNA extraction, sputum samples were centrifuged at 1,107 × g for 10 minutes 
at room temperature; the supernatant was discarded; and the pellet resuspended in 
900 µL of phosphate-buffered saline (PBS). The process was repeated with the final 
pellet resuspended in 500 µL of PBS (30). To discriminate between live and dead 
cells, propidium monoazide (PMA) was used to covalently cross-link to DNA molecules, 
inhibiting amplification by PCR and thus excluding the dead/damaged cells from further 
analysis (68, 69). In brief, 500 µL of washed sputum was transferred into a 1.5 mL amber 
micro-centrifuge tube (Sigma-Aldrich, UK), and 1.25 µL of PMA (Biotium, USA) was added 
to each tube, then incubated for 15 minutes at room temperature. The mixture was then 
transferred into a clear micro-centrifuge tube then added to an LED lightbox for a further 
15 minutes (70). PMA-sputum was added to a capped 1.5 mL microcentrifuge tube which 
was previously prepared with one tungsten carbide bead and glass beads (Merck, Dorset, 
UK) (70) and 400 µL of DNA/RNA lysis buffer (Zymo Research, USA). The samples were
homogenized (FastPrep-24 Homogeniser; MP Biomedicals, Loughborough, UK) for two 
30 second bursts. Nucleic acid extraction was performed following the manufacturer’s 
instructions using Quick-DNA/RNA Miniprep Kit (Zymo Research). DNA was then stored 
at −20°C for future use.

Microbiome sequencing

The microbiome of the samples was assessed by two-step 16S rRNA gene amplicon-
based sequencing using the Illumina MiSeq system. The first amplicon PCR was achieved 
using phased primer sets (71, 72) targeting the V4–V5 regions of the 16S rRNA gene 
(73–75). Each 25 µL PCR consisted of 12.5 µL 2× Q5 Master Mix (New England Biolabs, 
Hitchin, UK), 2 µL (0.2 µM) of phased primer pool (Invitrogen, Paisley, UK), and 8.5 µL 
of ultrapure, molecular-grade water (Cytiva, Fisher Scientific UK Ltd.) with the following 
parameters: 95°C for 3 minutes, followed by 30 cycles at 95°C for 30 seconds, 60°C 
for 30 seconds and 72°C for 30 seconds, ending with one cycle at 72°C for 5 minutes. 
PCR reactions were confirmed by gel electrophoresis. Following successful amplicon 
amplification, PCR fragments of 350 bp and below were removed using AMpure XP PCR 
purification beads (Beckman Coulter Life Sciences, USA) following the manufacturer’s 
instructions and quantified using a Qubit fluorometer (Thermo Fisher, UK). Illumina 
sequencing adapters were added to each sample in a second PCR. Each 25 µL PCR 
reaction consisted of 12.5 µL, 2× Q5 Master Mix (New England Biolabs), 1.25 mM of 
each primer, 5 µL cleaned PCR product, and 2.5 µL of ultrapure molecular grade water 
using the following parameters: 95°C for 3 minutes, followed by 20 cycles at 95°C for 30 
seconds, 55°C for 30 seconds and 72°C for 30 seconds, ending with one cycle at 72°C 
for 5 minutes. The fragment was confirmed using gel electrophoresis and then purified 
using AMpure beads, and fragment sizes were confirmed using the Agilent Bioanalyzer 
(Agilent, USA). The samples were sequenced on the Illumina MiSeq platform using the 
Illumina MiSeq V3 600 cycle reagent kit (Illumina Cambridge Ltd, Cambridge, UK).

Microbiome sequence analysis

The analysis of raw sequence data was then performed through the DADA2 pipeline 
(39) using R (76) (v.4.3.2). Forward and reverse reads were truncated at 200 and 175 bp, 
respectively, with taxonomy assigned using the default matching parameters (100% 
identity) to the SILVA Database (v.138.1) (77). Unassigned amplicon sequence variants 
(ASVs) found were manually assigned using the Basic Local Alignment Search Tool (78) 
nucleotide database (79) and matched with sequences based on a minimum of 95% 
query coverage, with the lowest e value (34). Multiple sequences assigned to the same 
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ASV were condensed into OTUs for statistical analysis. Given the length of the ribosomal 
sequences analyzed, species identities should be considered putative.

Statistical analysis

To assess the likelihood of explanatory variables co-occurring, binary regression was 
undertaken using a general linear model with binomial errors, generating the odd 
ratios and confidence intervals from the estimates. Clinical characteristics were modeled 
against lung function in a single analysis of variance with type III errors, which assessed 
the variation as if each variable was entered first in the model. To gauge the degree 
of change in the microbiome, each sample was examined for diversity (Fisher’s alpha 
index of diversity), dominance (Berger-Parker index), and Bray-Curtis similarity measures. 
In addition to the similarity indices, non-metric multidimensional scaling was used 
to visualize the differences between groups. The significance of the alpha-diversity 
measures was determined using the Kruskal-Wallis analysis, and the beta diversity was 
tested for significance using Bray-Curtis-based PERMANOVA with 999 permutations. In 
all models, antibiotics (binary) were entered first into the model to account for variation 
associated with antibiotic treatment, as described in the text; all other variables were 
entered after, and their significance was calculated in order. Post hoc analyses were 
conducted using Tukey’s honestly significant difference, and adjusted P values (Padj) 
were reported. Calculation of significant indicator species was undertaken using 100 
permutations to assess whether individual species had higher (or lower) frequencies 
and abundances in one particular group compared to the others (80). All analysis 
and visualizations were conducted using R (76) (v.4.3.2) using the packages car (81), 
indicspecies (80), and vegan (82).
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