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environmental stressors from digital urban fingerprints

by Feiyu Zhu

Urban noise pollution poses persistent challenges to public health and urban sustainability.
This dissertation advances a new technical paradigm for scalable urban noise prediction by
integrating multispectral remote sensing imagery, land use/land cover (LULC) data, and state-
of-the-art machine learning techniques. The research adopts a progressive structure
comprising three data-driven studies, each representing a major methodological step

forward.

Chapter 4 presents a pioneering approach that leverages convolutional neural networks
(CNNs) to predict citywide noise levels using high-resolution multispectral imagery, validated
in Southampton. Chapter 5 incorporates geospatial relationships through graph-based
modeling, further improving spatial prediction accuracy. Building on these foundations,
Chapter 6 proposes a generalizable dual-branch graph neural network (GNN) framework with
domain adaptation and pseudo-labeling, enabling robust noise mapping across five UK cities

using standardized remote sensing and Urban Atlas LULC data.

Results demonstrate that deep learning models—when properly integrated with remote
sensing and urban structural features—can achieve high accuracy and transferability in noise
prediction, even in cities lacking extensive noise measurements. The workflow substantially
reduces field data collection costs and advances urban noise assessment toward scalable,

transferable solutions.

This dissertation thus bridges the gap between traditional acoustic modeling and next-
generation data-driven mapping, providing methodological innovations with practical value
for urban planners and environmental authorities seeking efficient, city-scale noise
management tools.
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Chapter 1: Introduction

1.1 Urbanization, Environmental Stressors, and Noise

Pollution

Urbanization has reshaped human living environments through the provision of
advanced infrastructure, greater connectivity, and improved standards of living.
However, these benefits have been accompanied by new and persistent environmental
stressors, among which noise pollution has emerged as one of the most pressing
challenges for public health, urban sustainability, and environmental justice. The
World Health Organization (WHO, 2018) identifies environmental noise as the
second most harmful environmental risk factor in Europe, surpassed only by air
pollution. Its systemic impacts are well documented: chronic exposure to urban noise
contributes not only to auditory impairments but also to cardiovascular disease,
hypertension, metabolic disorders, sleep disturbance, and impaired cognitive
development in children (Basner et al., 2014; Miinzel et al., 2017; Stansfeld & Clark,
2015).

Beyond its direct health effects, noise pollution undermines quality of life in cities by
degrading public spaces, constraining opportunities for recreation, and exacerbating
stress-related behaviours. Importantly, its impacts are unevenly distributed: socially
and economically disadvantaged groups often reside in noisier neighborhoods, where
exposure is compounded by housing insecurity and limited access to green buffers
(Shannon et al., 2016; Casey et al., 2017). This makes noise pollution not only a
public health challenge but also a matter of environmental equity. The persistence and
ubiquity of this stressor underscore the need for more scalable and context-sensitive
approaches to assessment and mitigation.

1.2 Policy Context: Noise Mapping Frameworks

The regulatory response to environmental noise in Europe has been dominated by the
Environmental Noise Directive (END, 2002/49/EC), which requires Member States to
produce harmonised noise maps and action plans for major urban areas, roads,
railways, and airports. END builds upon deterministic acoustic frameworks such as
ISO 9613-2 (ISO, 1996) and the Common Noise Assessment Methods in Europe
(CNOSSOS-EU) (Kephalopoulos et al., 2012), both of which provide physically
based equations for modelling sound propagation. These frameworks combine
emission data (e.g., traffic volumes, industrial activity) with environmental modifiers
such as building geometries, terrain, meteorological conditions, and surface
absorption to estimate noise exposure.



The strength of these methods lies in their interpretability and standardisation. They
ensure consistency across jurisdictions, making them indispensable for compliance
and international comparison. However, they are resource-intensive, requiring high-
resolution traffic data, detailed land-use inventories, and calibrated meteorological
records (Murphy & King, 2022). As such, they are often prohibitively costly for local
authorities, especially in resource-limited contexts, and their transferability across
cities is limited by the need for extensive local calibration (Salomons & Pont, 2012).
In rapidly urbanising regions, where data infrastructure may be weak or fragmented,
these barriers render END-style approaches impractical.

This regulatory landscape highlights a fundamental tension: while deterministic
models are physically robust and politically entrenched, their implementation
struggles to keep pace with the heterogeneity and dynamism of modern cities.
Addressing this gap requires innovative frameworks that are scalable, transferable,
and capable of leveraging widely available datasets.

1.3 Technological Shifts: From Deterministic Models to Data-

Driven Approaches

Recent advances in remote sensing and machine learning provide an opportunity to
move beyond the limitations of traditional noise mapping. Satellite remote sensing
offers synoptic, repeatable, and standardised observations of urban morphology, land
cover, and vegetation at multiple spatial scales (Avtar et al., 2020; Li et al., 2016).
These variables are directly relevant to sound propagation, as road density,
impervious surfaces, and green buffers strongly modulate noise exposure. The
increasing accessibility of multispectral and hyperspectral imagery, together with
harmonised products such as the European Urban Atlas, creates the possibility of
constructing noise-predictive frameworks with consistent coverage across cities.

Parallel to this, machine learning (ML) and deep learning (DL) have transformed
environmental modelling by learning complex, nonlinear relationships from data
rather than relying on handcrafted acoustic equations. Classical ML methods such as
Random Forests, Gradient Boosting, and CatBoost have demonstrated strong
predictive performance when applied to noise and air quality modelling (Hu et al.,
2017; Prokhorenkova et al., 2018). More recently, convolutional neural networks
(CNNs) have enabled automated extraction of hierarchical features from imagery,
while graph neural networks (GNNs) have introduced the capacity to model non-
Euclidean spatial relationships, such as urban adjacency networks or transport
corridors (Zhou et al., 2020).

Together, these technological shifts suggest a paradigm change: from static, resource-
intensive models designed for regulatory compliance, toward data-driven frameworks
that exploit widely available geospatial information for scalable and transferable
urban noise prediction. This dissertation situates itself within this transition,
developing a staged research programme that integrates remote sensing, machine



learning, and graph-based deep learning to establish a new technical pathway for city-
scale noise mapping.

1.4 Research Gaps and Study Objectives

Although substantial progress has been achieved through both regulatory frameworks
and academic research, important gaps remain in the field of urban noise mapping.
Traditional acoustic models such as CNOSSOS-EU and ISO 9613-2 are highly
dependent on detailed local data, including fine-grained traffic counts, building
geometries, and meteorological records. Their reliance on these costly and context-
specific inputs severely constrains scalability, while their dependence on static
calibration reduces adaptability to dynamic urban soundscapes. Remote sensing,
which has demonstrated significant potential in allied domains such as air quality
modelling and urban expansion studies, has not yet been systematically integrated into
noise prediction frameworks. Where it has been applied, the use of satellite imagery
and land-use information often remains limited to coarse proxies or city-specific
experiments, leaving the promise of transferable, standardised data sources
underdeveloped.

Conventional machine learning methods such as Random Forests and Gradient
Boosting Machines provide a useful bridge between deterministic models and deep
learning, but their effectiveness depends heavily on manual feature engineering. This
introduces subjectivity and limits generalisation, particularly when applied to cities
with different morphological and socio-environmental contexts. Deep learning
approaches, by contrast, offer the possibility of learning hierarchical features directly
from imagery. Convolutional neural networks (CNNs) have begun to show promise in
this regard, but their Euclidean assumptions restrict their ability to represent the non-
regular, network-like structures that shape urban noise propagation. Graph neural
networks (GNNs) have the potential to overcome these constraints by capturing both
local dependencies and broader relational structures, yet their application to
environmental noise modelling remains limited and underexplored.

A further gap concerns transferability across cities. Most existing models, whether
acoustic, machine learning, or deep learning, are rarely designed to generalise beyond
the city in which they are trained. Differences in land-use composition, urban form,
and acoustic context create significant domain shifts, leading to deteriorating
predictive performance when models are applied elsewhere. Few studies have
systematically confronted this challenge, despite its importance for developing
scalable frameworks capable of serving diverse urban environments.

Against this backdrop, the overarching aim of this dissertation is to develop a scalable,
transferable, and data-driven framework for urban noise prediction that leverages
high-resolution multispectral remote sensing as its primary foundation and
incorporates harmonised land-use/land-cover (LULC) information at later stages to
strengthen cross-city generalisation. The emphasis throughout is on advancing
machine learning methodologies—particularly graph-based deep learning and domain
adaptation—to overcome the limitations of traditional modelling approaches. The



research proceeds through four interrelated objectives. First, it seeks to exploit
multispectral satellite imagery as the principal source of noise-relevant urban features,
while subsequently integrating Urban Atlas LULC data to enhance model
comparability and transferability across cities. Second, it develops and compares a
range of machine learning approaches, from ensemble methods to convolutional
neural networks, in order to establish performance baselines and evaluate the added
value of hierarchical spatial representations. Third, it extends predictive modelling to
graph neural networks, assessing their ability to capture multi-scale dependencies and
relational structures embedded in heterogeneous urban morphologies. Finally, it
demonstrates the scalability of the framework through cross-city experiments that
employ domain adaptation and pseudo-labelling, thereby addressing the critical
challenge of generalisation in urban noise mapping.

1.5 Structure of the Dissertation

This dissertation is organised into seven chapters that together trace a progressive
research pathway from baseline modelling to advanced deep learning and, ultimately,
to transferable frameworks for cross-city noise prediction. Chapter 1 introduces the
problem of urban noise pollution, situating it within broader public health, social
equity, and sustainability debates, while also outlining the regulatory landscape
defined by frameworks such as the Environmental Noise Directive. It highlights the
limitations of existing deterministic models and explains how the integration of
remote sensing and machine learning can offer scalable alternatives. The chapter
concludes by defining the research gaps, objectives, and hypotheses that motivate the
study.

Chapter 2 provides a systematic review of the relevant literature. It examines the
evolution of noise modelling from traditional deterministic and empirical frameworks
to contemporary data-driven approaches, assessing how remote sensing, machine
learning, and deep learning have been used in environmental prediction. Particular
attention is given to convolutional neural networks (CNNs) and graph neural
networks (GNNs), as well as to emerging strategies for transfer learning and domain
adaptation, thereby positioning the present research within ongoing methodological
debates.

Chapter 3 sets out the methodological foundations of the study. It describes the
construction of the Southampton dataset, including the collection and aggregation of
noise measurements and the derivation of remote sensing features from WorldView-2
imagery and Urban Atlas land-use/land-cover data. It also outlines the baseline
CatBoost model and introduces the theoretical principles of CNNs and GNNs,
explaining how their architectural properties map onto the spatial and relational
structure of urban environments. Preliminary validation experiments are presented to
benchmark performance and inform subsequent model development.

The empirical contributions unfold across three core chapters. Chapter 4 applies
CNNs to predict city-scale noise in Southampton, demonstrating how hierarchical
spatial features extracted from multispectral imagery can improve predictive accuracy



over conventional machine learning methods. Chapter 5 advances the analysis by
developing a GNN framework that models neighbourhood dependencies and
relational structures within Southampton, using unaggregated noise measurements to
show how graph-based learning enhances both spatial realism and predictive
performance. Chapter 6 then extends the approach to multiple UK cities, proposing a
dual-branch GNN with domain adaptation and pseudo-labelling to enable transferable
noise prediction in contexts where ground-truth data are scarce.

Finally, Chapter 7 provides a general discussion that synthesises findings across the
empirical studies. It assesses the theoretical and methodological contributions of the
research, compares the performance and trade-offs of different modelling paradigms,
and situates the results within international efforts to develop scalable urban noise
mapping frameworks. The chapter also considers limitations, explores implications
for policy and practice, and identifies directions for future research, before concluding
with the broader significance of the dissertation.



Chapter 2: Literature Review

2.1 Introduction

The assessment and prediction of urban noise have long been central concerns in
environmental science, urban planning, and public health policy. While Chapter 1 has
established the health and societal consequences of environmental noise, the
methodological trajectory of noise mapping requires deeper elaboration. A systematic
literature review is essential to clarify how approaches to noise prediction have
evolved, where their limitations lie, and how emerging techniques—particularly
machine learning and graph-based models—create opportunities for new research
directions.

The methodological landscape of noise prediction can be broadly divided into three
phases. The first comprises traditional deterministic and empirical models, including
ISO 9613-2 and CNOSSOS-EU, which remain the backbone of regulatory
frameworks. These approaches provide physically interpretable outputs but require
detailed local input data and extensive calibration, limiting their scalability and
transferability across heterogeneous cities (Murphy & King, 2014; Kang et al., 2016).

The second phase reflects the incorporation of remote sensing and machine learning
into environmental modelling. Satellite imagery offers synoptic and standardised
information on urban morphology, land cover, and vegetation, all of which strongly
influence acoustic propagation (Avtar et al., 2020). Machine learning methods, in
parallel, allow predictive functions to be learned directly from data, reducing
dependence on exhaustive field surveys and improving predictive accuracy for
complex urban systems (Elith & Leathwick, 2009). However, their reliance on
handcrafted features constrains their scalability, while their capacity for cross-city
generalisation remains underdeveloped.

The third and most recent phase is characterised by the rise of deep learning, where
convolutional neural networks (CNNs) have demonstrated strong capacity for
extracting hierarchical spatial features from imagery, and graph neural networks
(GNNs) have introduced the ability to model non-Euclidean dependencies such as
road networks, adjacency relationships, and urban form heterogeneity (Zhu et al.,
2017; Zhou et al.,, 2020). These advances suggest the possibility of scalable,
transferable, and data-driven frameworks for noise prediction, but their application to
environmental acoustics is still in its infancy, with few studies testing their robustness
across different urban domains.

Despite this progression, a persistent gap remains: existing studies often focus
narrowly on single-city case studies, rely excessively on descriptive reviews rather
than empirical demonstrations, and seldom address the challenge of transferability.
This is especially problematic for noise prediction, where urban heterogeneity
generates significant domain shifts between cities. Addressing this gap requires a
framework that not only leverages remote sensing and machine learning but also



systematically evaluates transferability through domain adaptation and pseudo-
labelling.

Accordingly, this chapter reviews the methodological evolution of environmental
noise prediction with explicit reference to the objectives of this dissertation. Section
2.2 evaluates the strengths and weaknesses of traditional deterministic and empirical
noise models. Section 2.3 examines the integration of remote sensing in
environmental monitoring, emphasising its potential to provide standardised and
transferable predictors. Section 2.4 reviews the role of classical machine learning,
while Section 2.5 discusses deep learning with particular attention to CNNs and
GNNs. Section 2.6 considers the challenges of cross-city prediction and synthesises
emerging solutions such as transfer learning, domain adaptation, and semi-supervised
learning. Finally, Section 2.7 consolidates these insights, identifying key gaps that
motivate the research design outlined in Chapter 3.

2.2 Traditional Noise Prediction

Traditional approaches to environmental noise prediction are grounded in
deterministic acoustic models and empirical frameworks that formalise how sound
propagates through the built environment. Among the most influential are the ISO
9613-2 standard (ISO, 1996), which specifies general methods for outdoor sound
propagation, and the CNOSSOS-EU framework (Kephalopoulos et al., 2012),
developed to harmonise environmental noise assessment across the European Union.
These frameworks combine source emission data—such as traffic volumes, vehicle
types, and industrial activity—with propagation equations that account for geometric
spreading, atmospheric absorption, ground impedance, and reflections from buildings
and terrain (Murphy & King, 2022). Their use has been closely tied to the
implementation of the Environmental Noise Directive (END), which requires Member
States to produce strategic noise maps for major roads, railways, airports, and urban
agglomerations (Murphy & King, 2010).

A key strength of these models lies in their strong physical basis, which ensures
interpretability, comparability, and acceptance by regulators. For instance, the
extensive END-driven mapping programmes in cities such as Paris, Madrid, and
Berlin have generated large-scale, harmonised datasets that support policy action
plans (Dekonink et al., 2014; Nassur et al., 2019). Similarly, in the Netherlands, the
integration of CNOSSOS-EU with detailed traffic flow data has enabled high-
resolution mapping of road traffic noise, producing outputs that are not only
consistent with theoretical acoustics but also widely accepted in environmental impact
assessments (Salomons & Pont, 2012).

Beyond Europe, deterministic approaches have also been applied in rapidly
urbanising contexts, albeit with mixed results. In Brazil, Carniel (2018) examined the
practical implementation of ISO 9613-2-based models for urban noise mapping and
highlighted multiple methodological challenges, including difficulties in collecting
accurate traffic flow data, parameter uncertainty, and the poor transferability of
standardized propagation assumptions to complex local environments. In China,



Zhang et al. (2023) applied a large-scale rotating mobile monitoring framework in
Beijing to predict traffic noise using environmental and urban morphological data,
demonstrating strong performance but also exposing limitations in modelling highly
heterogeneous urban forms and dynamic traffic conditions. These examples illustrate
the persistent tension between the theoretical robustness of deterministic acoustic
models and their practical feasibility across diverse urban environments.

Empirical models, which complement or simplify deterministic approaches by fitting
statistical relationships between observed noise and predictor variables, have also
seen growing use. For example, Li et al. (2024) proposed a probabilistic prediction
model for expressway traffic noise in Guangdong Province, China, which achieved
low error rates (1-2 dB(A)) but remained dependent on site-specific traffic
characteristics. While such empirical frameworks offer operational flexibility and
reduced data requirements, their transferability remains limited by their localized
calibration and sensitivity to contextual differences between cities.

Despite their contributions, both deterministic and empirical models face significant
challenges. Accurate implementation requires detailed and often expensive datasets,
including high-resolution traffic counts, building geometries, terrain models, and
meteorological conditions. Such requirements render them resource-intensive and
limit their scalability, especially in low-resource settings where noise mapping is
needed most urgently (Murphy & King, 2014). Furthermore, their calibration
parameters are highly context-specific, which undermines transferability: a
CNOSSOS-EU model optimised for one European city may perform poorly in
another with different urban density, building morphology, or transport systems. The
inability to adapt easily to dynamic or heterogeneous urban soundscapes highlights a
structural weakness of traditional models.

In summary, deterministic and empirical models remain essential for regulatory
compliance and continue to dominate official mapping exercises under the END.
However, their reliance on extensive ground data, resource-intensive calibration, and
limited adaptability underscores their restricted scalability. The methodological
shortcomings observed across case studies in Europe, South America, and Asia
highlight the pressing need for alternative approaches. These limitations have
motivated the search for frameworks that leverage remote sensing and data-driven
modelling, which promise to balance interpretability with scalability and to extend
noise prediction beyond single-city boundaries.

2.3 Remote Sensing in Environmental Monitoring

Remote sensing has become a cornerstone of environmental monitoring by offering
synoptic, standardised, and repeatable observations across diverse spatial and
temporal scales. Its ability to provide consistent geospatial information makes it
particularly valuable for urban studies, where fine-grained heterogeneity in land cover,
built morphology, and vegetation distribution strongly influences environmental
processes, including noise propagation (Avtar et al., 2020; Li et al., 2016).



A central advantage of remote sensing lies in the richness and comparability of its
data products. Multispectral and hyperspectral imagery from missions such as
Sentinel-2, Landsat, and WorldView provides detailed spectral signatures of urban
surfaces at spatial resolutions ranging from 1 m to 30 m. This enables systematic
capture of variables highly relevant to noise dynamics, including impervious surface
extent, vegetation indices such as NDVI, and morphological proxies of urban density.
Preprocessing techniques—including atmospheric correction, radiometric calibration,
and geometric co-registration—are critical for ensuring temporal and cross-sensor
consistency (Chander et al., 2009; Vermote et al., 2016). More advanced
harmonisation methods, such as pseudo-invariant features (PIFs) and BRDF
adjustments, further allow multi-sensor integration across space and time (Roy et al.,
2017). These procedures are indispensable when remote sensing is used not merely
for local assessments but for comparative studies across multiple cities.

The effectiveness of remote sensing in environmental modelling has been
demonstrated in a wide range of domains. In air pollution research, Di et al. (2019)
used satellite-derived aerosol optical depth (AOD), meteorological fields, and land-
use indicators to predict PM2.5 concentrations across the continental United States,
showing that consistent imagery could compensate for sparse ground monitoring
networks. Similar approaches have been applied in Europe and China, where satellite
indices have been integrated with machine learning to predict air quality across
multiple metropolitan areas (Hu et al., 2017; Xue et al., 2020). These studies provide
strong methodological precedents for noise modelling: they illustrate how remote
sensing enables environmental exposure assessments that are not bound to a single
monitoring domain but are transferable across diverse geographies.

In urbanisation studies, remotely sensed time-series data have been widely employed
to quantify land-use change, impervious surface expansion, and vegetation cover, all
of which are directly relevant to noise propagation (Seto et al., 2012; Pesaresi et al.,
2016). For example, comparative analyses of urban growth in European and Asian
cities have shown that standardised satellite imagery can track urban density and
green space loss in a manner that is directly comparable across regions (Zhou et al.,
2015). These examples underscore the value of remote sensing for cross-city studies:
the same spectral indices or land-cover classifications can be derived for London,
Beijing, or Sao Paulo, ensuring that predictor variables are consistent even when
urban contexts differ.

Although still limited, several studies have begun to explore the direct integration of
remote sensing into noise prediction. Xie et al. (2011) demonstrated that remotely
sensed land-cover features—such as vegetation cover and impervious surface ratios—
could serve as significant predictors of urban noise levels in Guangzhou, China. More
recently, Can et al. (2014) showed that NDVI and land-use classes derived from
satellite data improved the explanatory power of statistical noise models in Paris,
particularly in capturing attenuation effects from green buffers. In Europe, Suarez and
Barros (2014) used Landsat imagery to derive urban form metrics and found
significant associations with measured noise levels in Madrid. These examples remain
relatively isolated compared to air quality research, but they demonstrate the
feasibility of embedding remote sensing features directly into noise prediction
frameworks.

The cross-city consistency of remote sensing data is particularly critical for advancing
scalable noise prediction. Unlike traffic counts, meteorological datasets, or detailed
cadastral records—which are highly city-specific—satellite imagery and harmonised
land-use products such as the European Urban Atlas provide standardised information



across national and continental domains. This consistency allows predictor variables,
such as road density, vegetation indices, and building cover, to be defined in
comparable terms across multiple urban environments. For example, the Urban Atlas
2012 dataset provides harmonised land-use/land-cover classes for over 300 European
cities, making it possible to embed LULC ratios into predictive models without
extensive local recalibration (EEA, 2016). Such harmonisation directly addresses one
of the central barriers in noise modelling: the lack of transferable input datasets that
can support generalisation beyond single-city case studies.

In summary, remote sensing not only enriches environmental modelling with spatially
exhaustive and repeatable predictors but also provides the methodological
infrastructure for cross-city generalisation. Evidence from air quality modelling,
urbanisation studies, and the emerging body of noise research highlights its unique
capacity to produce comparable predictors across heterogeneous urban contexts. This
consistency positions remote sensing as a critical empirical foundation for the data-
driven, transferable noise prediction framework advanced in this dissertation.

2.4 Machine Learning in Environmental Modelling

Machine learning (ML) methods have increasingly been adopted in environmental
modelling as flexible and data-driven alternatives to deterministic frameworks. Unlike
physically based models, which require explicit formulation of propagation laws, ML
approaches can learn complex, nonlinear relationships from empirical data (Elith and
Leathwick, 2009). This makes them particularly well-suited to urban noise prediction,
where environmental processes arise from the interaction of multiple heterogeneous
factors—including road networks, land-use patterns, vegetation cover, urban
morphology, and meteorology—whose combined effects are often too complex to be
captured by analytical formulations alone.

Classical Machine Learning Algorithms in Environmental Modelling

Among the most widely applied ML algorithms in environmental research are
Random Forests (RF), Support Vector Machines (SVMs), and Gradient Boosting
Machines (GBMs). RF (Breiman, 2001) aggregates multiple decision trees to reduce
variance and enhance robustness, handling high-dimensional, mixed-type datasets
effectively. It has proven particularly valuable in ecological modelling (Cutler et al.,
2007) and remote sensing classification, and has been successfully applied to
particulate matter prediction by integrating satellite-derived variables with
meteorological and land-use data (Di et al., 2019).

SVMs (Vapnik, 1998) use kernel functions to model nonlinear decision boundaries in
high-dimensional spaces and are widely used in remote sensing—based land-cover
classification (Mountrakis et al., 2011). GBMs (Friedman, 2001) sequentially fit weak
learners to residuals, achieving high predictive accuracy and robustness in
environmental applications including flood susceptibility mapping and habitat
modelling. Collectively, these algorithms provide strong methodological foundations
for noise modelling, which shares similar data structures and predictive requirements.



In air quality research, ensemble ML models have demonstrated that scalable
exposure mapping can be achieved without dense ground monitoring networks by
integrating satellite-based environmental indicators, land-use characteristics, and
meteorological data (Di et al., 2019). These approaches provide a methodological
precedent for noise mapping, which faces similar challenges of sparse observations
and spatial heterogeneity.

Applications of ML in Urban Noise Prediction

Although the literature on ML-based noise mapping remains smaller than that on air
pollution, recent work demonstrates that ML approaches have progressed from
theoretical promise to operational practice. Yin et al. (2020) used dense mobile noise
measurements combined with ML models to predict fine-scale traffic noise, capturing
spatiotemporal patterns that deterministic simulations alone could not adequately
represent. Umar et al. (2024) provided a systematic bibliographic overview of Al-
based traffic noise prediction, documenting a marked increase in the use of ensemble
and hybrid learning methods since 2010. Their review also highlighted the growing
role of ML in complementing official mapping protocols, particularly in data-scarce
or rapidly changing urban contexts.

Gradient Boosting Methods and Heterogeneous Predictors

Recent advances in gradient boosting algorithms—including XGBoost, LightGBM
and CatBoost—have further expanded ML’s capability to handle complex
environmental prediction tasks. CatBoost has drawn particular attention for its ability
to natively process categorical variables, reducing preprocessing overhead and
mitigating information loss from one-hot encoding (Prokhorenkova et al., 2018). This
property is highly relevant to urban noise modelling, which relies heavily on
categorical predictors such as land-use codes, road types, and morphological classes.

Gradient boosting algorithms have already demonstrated superior predictive power in
related fields. In air pollution exposure modelling, they consistently outperform both
RF and classical linear baselines (Di et al., 2019). In hydrological modelling, they
have shown strong ability to capture nonlinear interactions in flood risk mapping
(Mosavi et al., 2018). These empirical findings underscore their potential as high-
performing, computationally efficient baselines for noise prediction, especially when
integrating multisource geospatial data.

Feature Engineering and Cross-City Transferability

The predictive performance of ML in noise mapping is closely tied to feature
engineering. Typical features include multi-ring buffered road density, vegetation
indices derived from multispectral imagery, impervious surface ratios, and urban
texture metrics. These variables act as proxies for acoustic processes—for example,
green buffers attenuate noise, while dense road networks amplify exposure—but they
are context-dependent. Feature sets optimised for one city often fail to generalise to
another with different built-up morphology, traffic structure, or vegetation patterns.

Residual error analysis often reveals structured spatial patterns, indicating unmodelled
physical processes such as building geometry effects, microclimate variability, and



traffic fluctuations. When models are applied across urban domains, performance
commonly degrades, reflecting a domain shift problem well documented in
environmental ML (Weiss et al., 2016). This limitation underscores the need for more
transferable modelling strategies and adaptive architectures for scalable noise

mapping.
Hybrid Modelling Approaches: Bridging Physics and ML

A growing body of research has explored hybrid modelling strategies that combine
deterministic acoustic simulation with ML components to enhance scalability and
efficiency. One approach involves data assimilation, in which mobile noise
measurements are fused with simulation outputs to produce refined, temporally
dynamic noise maps. For example, Can et al. (2018) demonstrated that integrating
mobile phone—based measurements with simulation maps in Paris significantly
reduced prediction errors and captured temporal variability that static models failed to
represent.

A second strategy involves hybrid residual learning, where deterministic propagation
models provide structured priors, and ML models learn residual patterns to improve
prediction accuracy. Liu et al. (2021) applied this approach in Montreal, combining
propagation modelling with random forests to produce high-resolution noise maps
with improved generalisation. A third strand focuses on surrogate (meta-) modelling,
using ML algorithms to approximate computationally expensive acoustic simulations.
Surrogate models have been developed to emulate transmission loss, aerodynamic
noise, and urban propagation, supporting sensitivity analysis and real-time mapping
(Cunha et al., 2022; Poggi et al., 2022).

These developments reflect a broader methodological shift toward hybrid modelling
paradigms in environmental science (von Rueden et al., 2019; Schweidtmann et al.,
2024), in which physics-based structure is combined with data-driven flexibility. This
hybridisation allows models to leverage domain knowledge while reducing data and
computation requirements, making them particularly attractive for regulatory and
large-scale urban noise applications.

Methodological Role of ML in This Dissertation

Within the methodological design of this dissertation, ML plays a dual role. First, it
provides a pragmatic integration layer, enabling the fusion of remote sensing,
transport, land-use, and morphological datasets into a predictive framework without
the rigid data demands of deterministic models. Second, it offers a performance
baseline against which the added value of more advanced deep learning
architectures—particularly convolutional and graph neural networks—can be
rigorously evaluated.

This dual role reflects ML’s position at the interface between classical noise
modelling and modern deep learning: flexible enough to handle heterogeneous inputs
and nonlinear dynamics, but limited by its reliance on handcrafted features and weak
cross-city transferability. Understanding and articulating these strengths and
weaknesses is critical for developing more robust, scalable, and transferable urban
noise prediction frameworks.



2.5 Deep Learning Methodologies

Deep learning has transformed environmental modelling by enabling the automatic
extraction of hierarchical features and the representation of spatial and relational
dependencies without extensive manual feature engineering. Unlike traditional
machine learning methods, which depend heavily on handcrafted predictors, deep
learning architectures learn directly from raw or minimally processed data, allowing
for scalable, transferable, and high-dimensional representations (LeCun et al., 2015;
Goodfellow et al., 2016). Within environmental science, two families of architectures
have been particularly influential: convolutional neural networks (CNNs), which
exploit Euclidean grid structures such as imagery, and graph neural networks (GNNs),
which generalise learning to non-Euclidean relational structures such as spatial
networks.

2.5.1 Convolutional Neural Networks in Remote Sensing and
Environmental Science

Convolutional Neural Networks (CNNs) have emerged as one of the most powerful
classes of deep learning architectures for environmental modelling due to their ability
to learn hierarchical spatial representations directly from raw imagery. By applying
local convolutional kernels in successive layers, CNNs efficiently capture both fine-
grained textures and broad spatial patterns, enabling structured interpretation of
complex landscapes without extensive manual feature engineering (LeCun et al., 2015;
Goodfellow et al., 2016). This property is particularly advantageous in remote sensing,
where environmental phenomena often exhibit both localised and multi-scalar spatial

dependencies (Zhu et al., 2017).
CNNs in Environmental Remote Sensing

CNNs have been widely applied in remote sensing tasks such as land-use and land-
cover (LULC) classification, ecological monitoring, flood mapping, and air quality
estimation. In the domain of LULC mapping, CNNs consistently outperform
traditional pixel-based classifiers by learning rich spectral-textural signatures.
Nataliia Kussul and colleagues demonstrated that deep CNNs could classify land
cover and crop types in Ukraine with significantly higher accuracy than conventional
methods (Kussul et al., 2017). These findings were echoed in subsequent large-scale
reviews and benchmarking studies, which highlighted CNNs as the backbone of
modern environmental image interpretation (Vali et al., 2020).

In flood and hydrological modelling, CNN architectures—particularly U-Net and
fully convolutional networks (FCNs)—have become standard tools. For instance,
Gopal Konapala et al. (2021) explored the joint use of Sentinel-1 and Sentinel-2
imagery with deep CNNs for flood inundation mapping, demonstrating high



performance in delineating hydrological boundaries. More recent studies introduced
residual and attention-enhanced U-Nets to improve boundary definition in complex
floodplains (Jamali et al., 2024; Frame et al., 2024). These applications are of
particular methodological relevance for environmental noise prediction because noise
fields—Ilike floodplains—are often structured along corridors (e.g. roads, railways)
with sharp spatial gradients that require models capable of preserving boundary
features.

CNNs have also seen increasing adoption in air pollution modelling. Deep
architectures integrating satellite imagery, meteorological data, and ancillary land-use
indicators have shown strong performance in PMz.s estimation at continental scales
(Muthukumar et al.,, 2021; Lee et al., 2024). Such models demonstrate CNNs’
capacity to learn complex, nonlinear spatial associations from heterogeneous
environmental predictors. These results provide a robust methodological precedent for
noise mapping, where the aim is likewise to infer environmental exposures from
spatially structured data.

CNN' s and Acoustic Applications

While applications of CNNs to environmental noise prediction remain limited,
emerging studies show their technical promise. Yu et al. (2024) developed a CNN
model to estimate road traffic noise levels using minute-level traffic flow data in
Foshan, China. Their model achieved a reduction in mean squared error of 10.16%
compared to statistical baselines, highlighting CNNs’ ability to learn fine-grained
temporal—spatial dependencies in traffic—noise relationships. This is especially
relevant for urban noise mapping, where diurnal fluctuations in traffic volumes are a
dominant noise source.

In parallel, CNNs have been successfully applied to environmental sound analysis
using spectrogram representations. Salamon and Bello (2017) demonstrated that deep
CNNs, combined with data augmentation, significantly improved environmental
sound classification accuracy. Although these studies do not directly estimate spatial
noise fields, they underline the capacity of CNNs to capture structured patterns within
acoustic data. Together, these examples indicate that CNNs can support noise
prediction from both environmental proxies (e.g. imagery, traffic data) and sound-
based features.

Architectural and Technical Considerations

CNNs’ modelling advantages are closely tied to their architectural properties. Small
receptive fields in early layers allow for detection of fine-scale features such as road
segments, vegetation patches, or building edges, while deeper layers integrate larger-
scale contextual information including block morphology and corridor alignment
(Luo et al., 2016; Araujo et al., 2019). These multi-scale receptive field properties are
particularly useful for noise modelling, as urban noise typically propagates through
linear transport structures and interacts with heterogeneous built forms.

However, CNNs also have inherent limitations. Their reliance on Euclidean grids
constrains their ability to represent non-Euclidean relationships, such as oblique
transport corridors that intersect multiple urban blocks, or topological connections



between distant but acoustically linked locations. Enlarging receptive fields to capture
broader context can lead to over-smoothing, which may obscure the steep gradients
that commonly characterise urban noise distributions. Moreover, interpreting CNN
feature maps in terms of physical acoustic processes remains challenging—filters
encode spatial structure but not explicit propagation laws—Ilimiting their direct
regulatory interpretability.

In summary, CNNs have achieved widespread adoption in environmental modelling
due to their ability to learn structured, multi-scale representations from imagery. Their
demonstrated success in LULC classification, hydrological modelling, and air quality
prediction provides a solid methodological foundation for their application to
environmental noise prediction. Although the number of studies explicitly focusing on
acoustic domains is still modest, early applications in traffic noise estimation and
environmental sound analysis illustrate clear potential. These strengths make CNNs
an essential building block in scalable noise prediction frameworks, though their
geometric rigidity and interpretability challenges motivate the complementary use of
graph-based architectures in subsequent sections.

2.5.2 Graph Neural Networks in Spatial Environmental Modelling

While convolutional neural networks (CNNs) excel at extracting spatial information
from regular Euclidean grids, many environmental processes are inherently relational
and structured through irregular, non-Euclidean dependencies such as road networks,
hydrological connectivity, landscape adjacency, or directional acoustic propagation
pathways. Graph neural networks (GNNs) extend deep learning into graph domains
by representing spatial units as nodes and relational dependencies as edges (Kipf,
2016; Zhou et al., 2020). In urban noise prediction, for example, 30 m grid cells or
land parcels can be represented as graph nodes with feature vectors derived from
remote sensing and ancillary data, while edges encode spatial contiguity or road-
network connectivity. By propagating information through these edges, GNNs can
capture both local and non-local dependencies, thereby addressing the limitations of
grid-based CNNs.

At the algorithmic core of GNNs lies iterative message passing, in which node
embeddings are updated by aggregating and transforming information from their
neighbourhood (Gilmer et al., 2017). Shallow architectures typically capture localised
interactions—such as the influence of a busy arterial road on adjacent residential
blocks—while deeper architectures can encode broader contextual effects across
entire neighbourhoods or districts. However, increasing model depth can introduce
structural limitations. Over-smoothing causes node embeddings to become
indistinguishable across the graph (Oono and Suzuki, 2020), whereas over-squashing
results in the compression of long-range information into limited latent dimensions
(Alon and Yahav, 2021). To address these challenges, advanced architectures employ
techniques such as residual or skip connections, jumping knowledge aggregation, and
graph attention mechanisms, which enhance representational expressiveness while
maintaining stability (Xu et al., 2018; Velickovi¢ et al., 2018).

Over the past five years, GNNs have achieved rapid uptake across multiple domains
of environmental science. In air quality modelling, GNN-based frameworks have been
used to forecast pollutants such as PMz.s and NO: by treating monitoring stations as



nodes and encoding spatial-temporal dependencies through graph edges derived from
traffic, meteorology, and land-use features. For instance, Calo et al. (2024)
implemented a message-passing architecture to improve spatial interpolation in
complex urban settings; Wang et al. (2024) combined graph attention with temporal
sequence models to capture fine-grained spatiotemporal dependencies; and Liu et al.
(2023) demonstrated that adaptive graph learning improves generalisation under
irregular monitoring networks. These studies consistently show that graph
representations outperform purely grid-based or regression-based approaches when
spatial structure is complex and heterogeneous.

In hydrological forecasting, graph-based representations have similarly proven
advantageous. Hamed Farahmand and colleagues developed an attention-based
spatio-temporal graph convolutional network for urban flood nowcasting, leveraging
community-scale features to outperform traditional baselines (Farahmand et al., 2023).
Building on this, Jiang et al. (2024) introduced heterogeneous dynamic graph
convolutional networks that integrate remote-sensing covariates with river network
connectivity, demonstrating enhanced forecasting skill and transferability across
catchments. These applications illustrate the particular suitability of graph structures
in settings where process connectivity and anisotropic propagation play central roles.

GNNs have also become fundamental tools in transportation modelling, which shares
strong structural similarities with urban noise propagation. Yu et al. (2018) proposed
spatio-temporal graph convolutional networks (STGCN) for traffic flow prediction,
showing superior performance compared with CNN or RNN baselines, particularly in
capturing long-range dependencies along transport corridors. Li et al. (2018)
advanced this approach with diffusion convolutional recurrent neural networks
(DCRNN), modelling non-Euclidean information flow in traffic networks. These
studies provide a direct methodological parallel for noise prediction, where traffic
networks serve as primary sound-propagation channels.

In the domain of noise and environmental exposure, recent work by Song et al. (2025)
used interpretable spatio-temporal GNNs to examine cumulative environmental
exposures affecting noise perception. Their framework integrates message passing
across both space and time, leading to higher predictive fidelity and improved
interpretability compared to conventional machine learning approaches. This work
directly aligns with multi-city noise mapping pipelines, which require modelling of
both spatial adjacency and transport connectivity to achieve robust generalisation.

A key strength of GNNs lies in their structural flexibility. Unlike CNNs, which are
constrained by fixed receptive fields, GNNs can explicitly model complex topologies
such as diagonal roads, hierarchical street networks, or acoustically coupled but
morphologically dissimilar areas (Bronstein et al., 2017). Moreover, advances in
model explainability—such as GNNExplainer (Ying et al., 2019)—offer tools for
identifying subgraphs and features that drive predictions, an essential property for
linking learned representations to physical acoustic mechanisms. Nonetheless, GNNs
also face scalability and interpretability challenges, including training instability in
deep networks and the difficulty of maintaining expressivity on very large graphs.

GNNs and AIGC: Emerging Synergies



An emerging frontier in environmental modelling involves the integration of GNNs
with generative Al frameworks to address data sparsity, scenario simulation, and
domain adaptation. Recent work has explored graph generative diffusion models, such
as DiGress (Vignac et al., 2022) and GDSS (Jo et al., 2022), which can synthesize
realistic graph structures while preserving distributional and topological properties.
These methods can be used to generate plausible but unseen urban topologies,
augmenting training data for cross-city noise mapping. In addition, controlled remote
sensing diffusion models (Tang et al., 2024) enable the joint generation of imagery
and graph representations, which is particularly valuable when transferring models
across cities with different urban morphologies.

From a methodological perspective, these approaches signal a clear convergence
between generative modelling and graph-based environmental learning, providing
new tools to address one of the central bottlenecks in scalable urban noise mapping:
the scarcity of sufficiently diverse, well-labelled, and topologically rich training data.
By integrating graph generative diffusion models with environmental GNN
frameworks, researchers can simulate plausible urban morphologies, augment training
datasets, and reduce domain shift in cross-city transfer scenarios. More broadly,
recent surveys on remote sensing and geoscience foundation models highlight the
potential of combining large-scale generative modelling with structured graph
learning to build adaptive, transferable representations capable of supporting complex,
multi-domain environmental applications (Lu et al., 2025).

2.5.3 Towards Generalisable Models: World Models and Hybrid
Frameworks

Although CNNs and GNNs offer significant methodological advances for
environmental modelling, their applications in urban noise prediction remain
relatively limited. As reviewed in Sections 2.5.1 and 2.5.2, CNNs excel at learning
hierarchical spatial representations from remotely sensed imagery, while GNNs
effectively capture relational dependencies across irregular urban morphologies.
However, both approaches face similar challenges when transferred to new urban
contexts: domain shift caused by variations in building density, land-use configuration,
and transportation structure often leads to degraded predictive performance. This
limited generalisability underscores a central research gap: how to develop scalable,
transferable models that remain robust across multiple cities.

Lessons from Environmental Domains

In environmental sciences, the need for transferable models has driven substantial
methodological innovation. In air quality modelling, domain adaptation and transfer
learning have enabled PM2.s prediction to generalise across cities with different
meteorological and land-use patterns (Ni et al., 2022). In hydrological forecasting,
integrating physical constraints into deep learning frameworks has allowed models to
predict in ungauged catchments with improved stability and accuracy (Read et al.,
2019; Karniadakis et al., 2021). Similarly, in climate and Earth system modelling,
hybrid approaches that combine data-driven architectures with physical priors have
demonstrated robustness across geographies (Reichstein et al., 2019).



A parallel development in Al research has been the rise of world models, a conceptual
framework that aims to build compact, generalisable latent representations of
environments rather than learning city-specific mappings. This concept was notably
popularised by David Ha and Jiirgen Schmidhuber (Ha and Schmidhuber, 2018), and
more recently advocated by Fei-Fei Li as central to the next generation of Al that
“understands and reasons about the physical world” through unified perception,
structure, and prediction. World models emphasise learning mechanism-centred rather
than purely data-centric representations, enabling adaptation to novel domains with
minimal retraining. For environmental modelling, this means moving from isolated
city-level predictions toward frameworks that internalise transferable acoustic and
morphological structures.

Hybrid Architectures and Domain Adaptation

One of the most promising methodological pathways for achieving this transferability
is hybrid modelling, particularly combining CNNs and GNNs. CNN-GNN hybrids
exploit complementary strengths: CNN modules can extract multi-scale spatial
hierarchies from imagery, while GNN modules model topological connectivity such
as road networks, land-use adjacency, and propagation corridors. For example, Liu et
al. (2022) demonstrated that fusing CNN-derived land-cover embeddings with graph-
based relational structures significantly improved urban land-use inference. In
transportation research, spatio-temporal graph convolutional networks (Yu et al., 2018)
and diffusion convolutional recurrent neural networks (Li et al., 2018) have provided
scalable blueprints for capturing both Euclidean and non-Euclidean dependencies,
which can be adapted for acoustic propagation modelling.

In addition to architectural innovations, domain adaptation techniques have proven
critical for improving cross-city generalisation. Adversarial domain alignment (Ganin
et al., 2016) and hybrid transfer strategies (Ni et al., 2022) reduce distributional
mismatch between source and target cities, allowing models trained on data-rich
environments to perform more reliably in data-scarce contexts. Semi-supervised
learning and pseudo-labelling offer further flexibility: by assigning high-confidence
labels to unlabeled target-domain data, models can refine their internal representations
and bridge source-target gaps without extensive new surveys (Li et al., 2021; Xu et al.,
2022). These approaches have already shown success in air-quality and
environmental-modelling contexts and can be translated to urban noise prediction.

Implications for Urban Noise Modelling

While these generalisable strategies have been widely explored in air quality,
hydrology, and climate research, their application in urban noise modelling remains at
an early stage. To date, most noise prediction studies employ models calibrated within
a single city, rarely addressing domain shift explicitly. This gap is striking, given that
noise propagation dynamics—driven by transport networks, built-up morphology, and
land-cover structure—closely mirror other environmental exposure processes.

The world model paradigm offers a compelling direction for noise research. Instead of
learning city-specific functions, models can be trained to capture invariant or
transferable representations of how acoustic energy interacts with urban structures.
Hybrid CNN-GNN architectures can encode both local physical context and



relational connectivity, while domain adaptation techniques can align inter-city
feature distributions. Moreover, the increasing availability of harmonised datasets—
such as European Environment Agency Urban Atlas, global road networks, and
satellite time series—provides a consistent input foundation for transferable
modelling.

Outlook: Towards Scalable Generalisation

The progression from deterministic models, to machine learning baselines, to deep
spatial-relational architectures, and now to world model—inspired hybrid frameworks
represents a broader evolution in environmental modelling. For urban noise prediction,
this shift highlights the importance of building models that are not only accurate
within a single domain but generalise across heterogeneous urban environments.
Integrating CNN and GNN components with world model principles and domain
adaptation techniques offers a structured pathway towards such scalable and
transferable architectures.

These approaches establish the conceptual and methodological foundation for the
cross-city generalisation experiments introduced in Section 2.6 and implemented
empirically in Chapter 6 of this dissertation.

2.6 Cross-City Prediction and Transfer Learning

A central challenge in environmental noise prediction is ensuring model
transferability across heterogeneous urban domains. While models trained on a single
city can yield high local accuracy, their performance often deteriorates sharply when
applied to other cities. This degradation arises because the predictor—response
relationships underlying noise propagation are strongly context-dependent. For
instance, vegetation-induced attenuation varies according to climatic conditions,
building morphology, and urban density, while the effect of traffic composition
depends on local transport systems and fleet characteristics. Such domain-specific
variability creates significant distributional shifts between cities, thereby limiting the
scalability of single-city models. This motivates the adoption of transfer learning and
domain adaptation strategies to achieve cross-city generalisation.

2.6.1 Transfer Learning in Environmental Prediction

Transfer learning (TL) provides an effective means of overcoming domain shift by
reusing knowledge learned in a source domain to improve performance in a target
domain (Pan and Yang, 2010). Rather than retraining models from scratch for each
new city, TL leverages pretrained representations through fine-tuning or feature
adaptation. In remote sensing, this approach has been widely validated. Dimitrios
Marmanis and colleagues demonstrated that CNNs pretrained on ImageNet can be
effectively fine-tuned for land-cover classification with limited labels, achieving
competitive accuracy in data-sparse regions (Marmanis et al., 2016). Similarly,
domain-adaptive remote sensing benchmarks such as LoveDA have shown that
pretrained deep networks can be successfully transferred between urban and rural



domains, supporting robust land-cover segmentation under shifting data distributions
(Wang et al., 2021). These results establish a transferable paradigm for spatial
representation learning, which is directly relevant for noise mapping.

Transfer learning has also proven particularly impactful in environmental exposure
modelling. Recent studies have applied TL frameworks to hyperlocal air pollution
mapping, enabling models trained in one metropolitan area to generalise to others
with minimal target-domain labels (Yuan et al., 2024). This approach aligns closely
with the methodological goals of urban noise prediction, where measurement data are
sparse and costly to obtain.

2.6.2 Domain Adaptation and Adversarial Approaches

Domain adaptation (DA) explicitly addresses the problem of distributional divergence
between source and target domains by aligning their feature spaces during training. A
canonical and widely adopted approach is the Domain-Adversarial Neural Network
(DANN), which introduces a gradient reversal layer (GRL) between the feature
extractor and a domain classifier (Ganin et al., 2016). During backpropagation, the
GRL inverts the gradient coming from the domain classifier, forcing the feature
extractor to learn representations that confuse the domain discriminator while still
minimising the task-specific loss in the source domain. In effect, the feature extractor
learns to maximise domain confusion and minimise prediction error simultaneously,
resulting in domain-invariant embeddings that generalise to unseen target
distributions. This adversarial alignment is particularly advantageous in urban noise
prediction, where spectral-textural patterns, land-use structure, and transport network
characteristics can differ markedly across cities. By encouraging invariance in the
latent space, DANN reduces sensitivity to local morphological idiosyncrasies and
improves model robustness under domain shift.

Another widely adopted DA technique is the Maximum Mean Discrepancy (MMD)
(Long et al., 2015), which measures divergence between source and target feature
distributions in reproducing kernel Hilbert space. By minimising MMD, models learn
shared latent representations without requiring adversarial training. In remote sensing,
MMD-based domain alignment has been successfully applied to spatial and temporal
crop-type mapping using Sentinel-2 imagery (Wang et al., 2023). More advanced
variants, such as Local Maximum Mean Discrepancy (LMMD), have further
improved cross-domain alignment in multi-modal settings involving optical and SAR
data (Feng et al., 2024). These approaches provide a robust methodological
foundation for cross-city noise prediction, where domain shifts are driven by
differences in building density, land-use structure, and spectral-textural
characteristics.

2.6.3 Semi-Supervised Learning and Pseudo-Labelling

Semi-supervised learning (SSL) extends transfer learning by incorporating unlabelled
target-domain data. Among SSL techniques, pseudo-labelling (Lee, 2013) has gained



particular traction for its simplicity and effectiveness. In this framework, a model
trained on the source domain generates predictions for unlabelled target data; high-
confidence predictions are then treated as pseudo-labels for subsequent training
iterations. This iterative self-training aligns the model to the target domain without
requiring extensive new measurements.

In remote sensing, pseudo-labelling has been shown to improve semantic
segmentation through consistency regularisation and iterative label refinement (Wang
et al., 2022). Kwak and Park (2022) combined adversarial domain adaptation with
pseudo-labelling for crop classification, achieving significant performance gains
under domain shift. Such methods are directly applicable to urban noise prediction:
harmonised datasets—such as European Environment Agency Urban Atlas and
multispectral imagery—can provide a stable input foundation, while pseudo-labelling
offers a mechanism to adapt source-trained models to unlabelled target cities with
minimal cost.

2.6.4 Cross-Domain Representation Learning and AIGC Integration

The emergence of world models and Al-generated content (AIGC) provides new
opportunities for improving cross-city generalisation. World models capture
transferable latent structures across domains by learning compressed spatio-temporal
representations that can adapt to novel environments (Ha and Schmidhuber, 2018;
Battaglia et al., 2018). In the context of urban noise prediction, such models can learn
abstract representations of vegetation buffering, traffic morphology, and urban
structure that remain stable across different cities.

Generative models such as graph diffusion frameworks (Vignac et al., 2022) and
controllable remote sensing diffusion models (Tang et al., 2024) can further enhance
cross-city transfer by generating plausible synthetic scenarios in target domains. This
includes synthesising land-cover—traffic configurations for under-monitored areas,
which can then be used to pre-align and fine-tune predictive models. By coupling
domain adaptation, pseudo-labelling, and AIGC-based augmentation, it becomes
possible to build robust and transferable noise prediction frameworks that generalise
well across highly heterogeneous urban landscapes.

2.6.5 Research Gaps and Methodological Outlook

Despite notable progress in transfer learning and domain adaptation across air quality
and remote sensing research, cross-city generalisation remains underexplored in noise
prediction. Existing studies are largely confined to single-city modelling, lacking
systematic evaluations across different urban morphologies. This stands in sharp
contrast to fields such as crop mapping or air pollution modelling, where transfer
learning and domain adaptation have become mainstream methodological tools.

This dissertation explicitly treats cross-city noise prediction as a core research
objective. By integrating harmonised multispectral and land-use/land-cover datasets



with graph-based neural architectures, adversarial and MMD-based domain
adaptation, and pseudo-labelling strategies, it aims to establish a generalisation-
oriented framework for scalable urban noise modelling. Such an approach moves
beyond local case studies, enabling transferable prediction across cities, and laying
the foundation for data-driven environmental noise management at regional to
national scales.

2.7 Summary of the Literature Review

This chapter has traced the methodological evolution of environmental noise
prediction, charting a shift from deterministic acoustic modelling to machine learning,
deep learning, and emerging transfer learning strategies. Each stage of this
progression reflects both technological advances and persistent limitations, revealing
how the field has moved from physically explicit but rigid frameworks toward data-
driven, transferable, and scalable modelling paradigms.

Deterministic acoustic frameworks such as ISO 9613-2 and CNOSSOS-EU remain
the regulatory backbone for urban noise mapping across Europe, providing physically
interpretable and standardised predictions (Murphy and King, 2014). However, their
dependence on granular local inputs—including traffic flow, building geometries, and
ground impedance—renders them data-intensive and context-specific, significantly
limiting their scalability to heterogeneous urban environments (Zannin and de
Sant’Ana, 2011; Murphy and King, 2014). Empirical statistical models offer more
flexible alternatives but remain vulnerable to local overfitting and weak extrapolation
capacity.

The incorporation of remote sensing has provided a crucial foundation for scaling
noise prediction by supplying synoptic, harmonised, and transferable geospatial
predictors. Standardised multispectral imagery, vegetation indices, and harmonised
land-use/land-cover datasets such as European Environment Agency Urban Atlas
enable cross-city comparability (Avtar et al., 2020; Gong et al., 2013). This
integration mirrors the trajectory seen in air quality modelling (D1 et al., 2019; Hu et
al., 2017), where remotely sensed indicators provide robust input features for scalable
exposure mapping. Although direct noise applications remain fewer than in air quality,
existing studies demonstrate the explanatory strength of LULC and vegetation
predictors for capturing attenuation effects and urban form influences (Margaritis and
Kang, 2018; Liu et al., 2023).

Classical machine learning (ML) has marked a further shift toward flexible, data-
driven predictive functions. Ensemble learners such as Random Forests, Support
Vector Machines, and Gradient Boosting have been shown to handle heterogeneous
environmental predictors effectively, reducing dependence on explicit acoustic
propagation equations (Elith and Leathwick, 2009; Di et al., 2019). However, their
reliance on handcrafted features constrains their scalability and limits their
adaptability to new cities. Feature sets optimised for one urban morphology often fail
to generalise to another with different density, transport structure, or vegetation
patterns (Weiss et al., 2016).



Deep learning architectures—particularly CNNs and GNNs—have transformed this
modelling landscape by enabling automatic feature learning and the representation of
both Euclidean spatial hierarchies and non-Euclidean relational dependencies. CNNs
have demonstrated strong performance in land-cover mapping, air quality estimation,
and hydrological forecasting (Kussul et al., 2017; Muthukumar et al., 2021; Konapala
et al., 2021), and their early use in traffic noise estimation has shown measurable
gains in predictive accuracy (Yu et al., 2024). Yet CNNs’ Euclidean receptive fields
make them less effective at modelling anisotropic acoustic pathways shaped by road
networks and irregular morphologies.

Graph neural networks (GNNs) address these limitations by modelling relational
structure and topological connectivity. Their uptake in air quality forecasting (Calo et
al., 2024; Wang et al., 2024), hydrology (Farahmand et al., 2023; Jiang et al., 2024),
and transportation modelling (Yu et al., 2018; Li et al., 2018) has demonstrated
superior performance when spatial processes are structured along networks or
corridors. Emerging work on interpretable spatio-temporal GNNs for noise exposure
mapping (Song et al., 2025) further confirms their methodological promise for
generalisable noise modelling.

An important methodological frontier has emerged in cross-city generalisation, where
transfer learning, domain adaptation, and semi-supervised pseudo-labelling offer
pathways to overcome domain shift. Techniques such as adversarial domain
alignment (Ganin et al., 2016) and Maximum Mean Discrepancy (Long et al., 2015;
Feng et al., 2024) enable feature space alignment between source and target cities,
while pseudo-labelling approaches (Wang et al., 2022; Kwak and Park, 2022) allow
models to iteratively adapt to new domains with minimal labelled data. These
strategies are particularly well suited to noise prediction, where harmonised remote
sensing data are abundant but direct acoustic measurements are scarce.

More recently, world models and generative Al (AIGC) have opened new possibilities
for scalable and adaptive modelling. By learning latent representations of
environmental structure and processes, world models (Ha and Schmidhuber, 2018;
Battaglia et al., 2018) support transferable inference across urban contexts. Generative
diffusion models for graphs (Vignac et al., 2022) and remote sensing imagery (Tang
et al., 2024) offer complementary means of simulating plausible urban morphologies
and augmenting scarce training datasets, further mitigating domain gaps in cross-city
transfer scenarios.

Taken together, these methodological developments reveal a clear trajectory of
increasing generalisability and structural flexibility. Deterministic models provide
physically interpretable baselines but lack scalability; remote sensing offers
standardised predictors across cities; machine learning provides flexible but feature-
dependent mappings; deep learning extends this flexibility into automated feature
learning and network representations; and transfer learning plus generative modelling
point toward truly generalisable frameworks.

This dissertation is situated precisely at this frontier. Its research design—progressing
from harmonised remote sensing inputs, to ML benchmarking, to CNN-GNN
architectures, and finally to cross-city transfer through domain adaptation and pseudo-
labelling—directly addresses the structural limitations identified in the literature. By



doing so, it contributes both methodological innovations and practical pathways for
scalable, transferable noise mapping capable of informing evidence-based urban
environmental policy at local, national, and continental levels.

Chapter 3: Research Methodology and Preliminary

Validation Experiments

3.1 Introduction

This chapter details the data and methods that underpin the empirical studies in this
dissertation. Its primary aim is to articulate a coherent, end-to-end framework that
links observational noise data, multispectral remote-sensing predictors, and machine-
learning (ML) and deep-learning (DL) models into a reproducible workflow for city-
scale noise prediction. The chapter therefore serves two complementary functions.
First, it establishes the observational context and dataset construction, including
spatial alignment between ground measurements and satellite imagery, energy-
domain aggregation of acoustic levels to a common grid, and exploratory analyses to
characterise sampling coverage, potential biases, and spatial dependence. Second, it
formalises the methodological foundations that are used subsequently: (i) tree-based
ensemble learning as a transparent baseline (CatBoost), (ii) convolutional neural
networks (CNNs) with explicit attention to how convolutional kernel size, dilation,
and depth determine the receptive field in physical units, and (iii) graph neural
networks (GNNs) that model neighbourhood dependencies on a 30 m lattice and
whose depth governs feature aggregation and the risk of over-smoothing.

The observational core of this work is a city-scale dataset for Southampton, United
Kingdom, comprising more than fifty thousand in-situ measurements acquired
through systematic pedestrian surveys and professional acoustic instrumentation
(Alvares-Sanches et al., 2021a). These measurements provide georeferenced
equivalent continuous sound levels (LAeq) under controlled meteorological
conditions and form the ground truth against which models are trained and assessed.
To obtain spatially exhaustive predictors, the study integrates WorldView-2
multispectral imagery—preprocessed to surface-reflectance units using standard
radiometric and geometric corrections—and harmonised land-use/land-cover (LULC)
information from the Urban Atlas programme (Chander et al., 2009; EEA, 2018). The



imagery supports the derivation of spectral and textural indicators of urban
morphology (e.g., vegetation, imperviousness, fine-scale texture), while cartographic
layers such as road networks provide structural constraints relevant to traffic-related
noise exposure. All inputs are co-registered to a 30 m x 30 m grid; LAeq values are
aggregated by averaging in the linear energy domain prior to conversion back to
decibels to avoid arithmetic bias. This spatial harmonisation allows direct coupling of
image-based features with acoustic measurements and enables consistent modelling
across the study area.

Methodologically, the chapter advances from interpretable baselines to
representation-learning approaches. CatBoost is used as a strong, tabular baseline that
integrates handcrafted spectral/texture and contextual variables with minimal
preprocessing and well-defined hyperparameters (Prokhorenkova et al., 2018). CNNs
are then introduced to learn hierarchical spatial features directly from image patches.
Particular emphasis is placed on mapping theoretical and effective receptive fields to
urban  physical scales—street-edge = micro-structures  (=<10m), block-scale
configurations (= 50—150 m), and corridor-like transport features—so that kernel size,
dilation, and depth are chosen to capture the spatial context most relevant to sound
propagation (Araujo et al., 2019; Luo et al., 2016). Finally, GNNs are employed to
model interactions across the 30 m lattice (and optional road-network edges), where
each layer expands a node’s field of view by one hop; depth thus trades off contextual
reach against the well-known risks of over-smoothing and information bottlenecks
(Kipf, 2016; Alon and Yahav, 2021). These models collectively support a progression
from feature-engineered predictors to scale-aware image encoders and topology-
aware relational learners.

To ensure transparency and reproducibility, this chapter is structured to gradually
build from data foundations to modelling strategies and experimental validation.
Section 3.2 introduces the datasets, spatial preprocessing steps, and exploratory
analyses, including a compact table of representative noise measurements to illustrate
schema and summary statistics, together with a discussion of sampling
representativeness and potential sources of bias such as corridor-heavy transects or
time-of-day effects. Section 3.3 then develops the machine learning and feature
learning framework, beginning with the CatBoost baseline, advancing to
convolutional neural networks (CNNs) with receptive-field—to—physical-scale
mapping, and extending to graph neural networks (GNNs) that propagate information
through neighbourhood dependencies and network depth. This framework also
incorporates two transversal elements: a unified feature map computation pipeline,
and a comparative treatment of data partitioning strategies across models, which
clarifies how evaluation protocols were adapted to the structural characteristics of
each modelling approach. Section 3.4 presents preliminary experiments that
motivated subsequent design choices, expanding on hyperparameter effects and
demonstrating how each modelling component integrates into the end-to-end
workflow. A schematic flowchart summarising acquisition, preprocessing, feature
construction, model training, and evaluation is provided for reference. Finally, Section
3.5 offers a concise synthesis, connecting the methodological foundations of this
chapter to the empirical analyses developed in Chapters 4, 5, and 6.



3.2 Data Sources and Study Areas

3.2.1 Study Area: Southampton

The primary and only explicitly described study area of this dissertation is
Southampton, a major port city on the southern coast of the United Kingdom.
Southampton exhibits a heterogeneous urban morphology, encompassing a dense
commercial centre, arterial transport corridors, residential neighbourhoods, port and
industrial zones, and extensive green and coastal areas. This diversity makes the city
an ideal testbed for exploring scalable approaches to urban noise prediction.

While the overall workflow is extended in later chapters to Cardiff, Portsmouth,
Liverpool, and Nottingham to assess cross-city generalisation, it is important to
emphasise that Southampton is the only city for which ground-truth noise
measurements are available. The additional cities are introduced and discussed
exclusively in the context of cross-city modelling and domain adaptation in Chapters
5 and 6. This chapter therefore focuses solely on Southampton to provide a detailed
and replicable account of data sources, preprocessing steps, and methodological
foundations.

The remote sensing data underpinning this study consist of WorldView-2
multispectral imagery, acquired on 15 February 2016 and 6 May 2016. Both scenes
had cloud cover below 5% and were seamlessly merged using the mosaic function in
ENVI to generate a cloud-free composite covering the entire study area. WorldView-2
imagery provides eight spectral bands at a spatial resolution of 1.6-2.0 m, which were
resampled to 4 m for the computation of spectral indices and grey-level co-occurrence
matrix (GLCM) texture measures. For visualisation, an RGB band combination was
prepared to illustrate the extent and land cover of Southampton (Figure 3.1).

Image preprocessing followed standard remote-sensing protocols (Jensen, 2007). Raw
digital numbers were converted into surface reflectance using the FLAASH
atmospheric correction algorithm in ENVI (Anderson et al., 2002), which combines
radiometric calibration with atmospheric modelling. Subsequent geometric correction
and reprojection ensured accurate alignment with the British National Grid
(EPSG:27700), converting from the native UTM coordinate system to BNG for
consistency with ground observations. These steps produced a seamless,
georeferenced multispectral dataset suitable for deriving predictor variables.
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Figure 3.1 RGB compositeof WorldView-2 imagery (pre-pcesed and mosaicked)
illustrating the Southampton study area

3.2.2 Noise Observations

The ground-truth dataset for this research is derived from in-situ environmental noise
surveys conducted in Southampton during 2016 (Alvares-Sanches et al., 2021a). The
campaign produced 52,364 raw noise recordings, collected along pedestrian transects
distributed across the city. Measurements were acquired during representative time
periods (morning peak, afternoon, and evening peak) under meteorological conditions
minimising wind and precipitation, thereby reducing atmospheric interference. All
recordings were made using calibrated professional acoustic equipment (Fostex FR-
2LE, TASCAM DR-40 recorders, PCB signal conditioners, and Class-1 microphones),
with microphones mounted at 1.65 m above ground to approximate ear-level exposure.

Each observation is accompanied by a georeferenced location derived from GPS
logging, with 1 meter positional accuracy. This spatial precision allowed the dataset to
be integrated seamlessly with high-resolution remote-sensing imagery. However, to
ensure comparability across data sources, the noise measurements were aggregated to
a 30 m x 30 m analysis grid, which serves as the baseline spatial unit in this
dissertation. The aggregation was performed in the energy domain: individual decibel
values were first converted to linear sound intensities, averaged within each grid cell,
and then reconverted into the decibel scale. This avoided the bias inherent in
arithmetic averaging of logarithmic units. After aggregation, the dataset comprised
13,474 grid cells with associated LAeq values.

It is important to note that while this 30 m aggregation serves as the baseline for

analysis in Chapter 4 (CNN-based modelling) and Chapter 6 (dual-branch GNN with
domain adaptation), the preliminary GNN experiments in Chapter 5 used the original
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unaggregated point-level measurements. This allowed for testing how graph-based
models perform when applied directly to irregular observational data.

The spatial coverage of aggregated noise cells is shown in Figure 3.2, where the 30 m
x 30 m observation grid is overlaid on an OpenStreetMap basemap. Survey coverage
was densest along arterial road networks and in the central urban districts, reflecting
the design of pedestrian transects. Peripheral areas such as suburban fringes and large
green spaces were comparatively under-sampled, a bias that has implications for
model representativeness (see Section 3.2.5).
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Figure 3.2 Spatial distribution of 30 m % 30 m aggregated noise observation cells
across Southampton, overlaid on OpenStreetMap

To further illustrate the raw observational dataset prior to grid aggregation, Table 3.1
presents five representative samples at the original 1 m spatial resolution. Each record
includes timestamp, geographic coordinates, and the measured equivalent continuous
sound level (LAeq). These records demonstrate the schema of the dataset and
highlight the high spatio-temporal precision of the field campaign.

Table 3.1 Example of Noise Observations (subset of Southampton dataset)

1D Date Time Latitude | Longitude | LAeq (dB)
0 02/08/2016 06:03 442833 114957 43.5
1311 12/08/2016 07:53 438910 114862 67.1
4318 29/07/2016 06.29 441220 112994 66.7
19437 17/08/2016 13:37 437442 113664 56.3
41084 | 02/08/2016 16:42 439772 114609 72.6
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Temporal dynamics and implications for modelling

Although the urban sound environment is persistent at the city scale, it exhibits
pronounced intra-day and short-term variability driven by traffic peaks, human
activity cycles, and meteorological fluctuations. In this dataset, each field
measurement corresponds to a short 10-s LAeq segment and surveys were
preferentially conducted during representative daytime periods (morning peak,
afternoon, evening peak) under dry, low-wind conditions in July—August 2016.
Consequently, after energy-domain aggregation to the 30 m grid, each cell-level label
is best interpreted as a typical short-term daytime exposure rather than a full 24-h or
annual indicator such as Lge, Or Lpign. . The temporal sampling design therefore
captures peak-period structure and citywide spatial contrasts, while under-
representing nocturnal and seasonal regimes.

This temporal mismatch between short-segment labels and the goal of producing
stable city-scale maps is handled in the modelling stage by treating unresolved sub-
hourly variability as aleatoric noise. Concretely, we inject small stochastic
perturbations during training to improve robustness and to regularise the learned
mappings against short-term fluctuations that are not systematically represented in the
inputs. To ensure methodological consistency across architectures, stochastic
perturbations are introduced during training in both the CNN and GNN frameworks.
In both cases, zero-mean Gaussian noise is applied to the normalised inputs, reflecting
the inherent short-term variability of urban soundscapes and improving robustness.
For the CNN experiments, Gaussian noise with a standard deviation of 0.1 is added to
the 0—1 normalised multispectral image tensors via a TensorFlow GaussianNoise
layer. For the GNN experiments, Gaussian noise with a standard deviation of 0.07 is
applied to node feature vectors after normalisation. While the injection points differ—
pixel space for CNNs and feature space for GNNs—the principle remains the same:
both strategies simulate aleatoric variability, regularise training, and reduce
overfitting to incidental temporal fluctuations in the 10-s noise labels.

3.2.3 Remote Sensing Data Processing

The WorldView-2 multispectral imagery described in Section 3.2.1 underwent a
sequence of preprocessing and feature derivation steps to ensure consistency with the
noise observations and to provide meaningful predictors for subsequent modelling.
The raw digital numbers were first radiometrically calibrated and atmospherically
corrected using the FLAASH algorithm in ENVI, converting values to surface
reflectance units (Anderson et al., 2002). Geometric correction and reprojection
aligned the imagery with the British National Grid (EPSG:27700), ensuring accurate
integration with ground measurements.

Following these preprocessing steps, the imagery was used to derive a comprehensive
set of predictors. Two broad categories of features were produced:

1. Spectral and index-based features: standard vegetation and water indices such as
NDVI and NDWI were computed from the multispectral bands. These indices serve

pg. 29



as proxies for vegetation cover, imperviousness, and surface moisture, which are
known to influence noise propagation.

2. Textural and morphological features: Grey-Level Co-occurrence Matrix (GLCM)
measures (contrast, correlation, entropy, homogeneity) were computed from both
single bands (e.g. Red, NIR) and spectral indices. Depending on the study, these
measures were summarised within different spatial contexts: direct 30 m cells
(baseline), 1000 m square windows (CNN experiments), or ring-shaped buffers (GNN
experiments). In addition, the sixth chapter incorporated z-score transformations to
emphasise local anomalies in spectral and textural surfaces, as well as morphological
operators (e.g. opening, closing) to capture structural patterns.

To provide a concise overview of how feature construction evolved across the
empirical chapters, Table 3.2 summarises the feature sources, neighbourhood

definitions, and naming conventions used in this dissertation.

Table 3.2 Overview of Feature Construction Across Chapters

Neighbourhood /

Chapter Feature Source Scale Example Field Name Description
3 (Baseline GLCM from single Median value of GLCM
CatBoos t), spectral bands (e.g. 30 m grid cell Red Contrast Medium Contrast derived from Red
Red, Green, NIR1) band within 30 m cell
Feature maps (spectral
Siossiill fdtass indices + GLCM textures)
4 (CNN, (NDVI, NDWI) and|| 1000 m x 1000 m No explicit field names — feqtures are stacked as .1nput
Spatial . . represented as multi-channel image || channels, cropped into 1000
. their GLCM texture |[square neighbourhood .
Expansion) mans slices m X 1000 m patches, and
P directly ingested by the CNN
for training
5 (GNN, Ring-shaped buffers Mean GLCM Correlation
Relational Same as above (e.g. 3060 m, 60-90 WVBI correlation r60 mean from WVBI index within
Modelling) m) 30-60 m annulus
Skewness of morphological
opening on NIR1 in 500—
T e
6 (Domain feature map; Multi-scale ring  |[MP_NIR1 open r5 r1000 skewness|| . .
. . - - - = " (Discontinuous Dense Urban
Adaptation, morphological buffers (e.g. 120-500 , landuse 11210 _r500, Fabric) within 120 - 500 m
Generalisation)|[ operators; Urban m, 500-1000 m) global dist 14100

Atlas 2012 LULC

ring; Shortest distance to
land use class 14100 (Green
Urban Space) in 120-1000 m
range

3.2.4 Land Use and Ancillary Data

Beyond the remote-sensing predictors derived from WorldView-2 imagery, the Urban
Atlas 2012 dataset (EEA, 2018) provided an additional and harmonised source of
environmental context. Urban Atlas offers thematic land-use/land-cover (LULC)
classifications across European urban areas at 10-20 m nominal resolution,
aggregated to a common 1:10 000 mapping scale. Its consistency in nomenclature,
hierarchical coding, and spatial granularity makes it particularly valuable for
comparative and cross-city analyses, mitigating discrepancies that often arise from
locally produced datasets differing in classification logic or spatial accuracy.



In this dissertation, the Urban Atlas 2012 layer serves a dual methodological role.

First, as an input data source in the domain adaptation and cross-city experiments (see
Chapter 6), LULC variables are incorporated as structural descriptors of the urban
form. For each 30 m grid cell, the proportional coverage of individual LULC classes
was computed within concentric ring buffers, producing variables such as
landuse 11210 r500 (the proportion of Discontinuous Dense Urban Fabric, class
11210, within 120-500 m) or global dist 14100 (the minimum distance to Green
Urban Area, class 14100, within 120-1000 m). These features capture both the
composition and spatial arrangement of functional land-use zones, which are critical
determinants of environmental noise patterns—particularly the attenuation across
vegetated or open-space buffers, and the amplification along dense transport corridors.

Second, Urban Atlas data are employed as an independent reference framework for
land-use-specific model evaluation. Because all subsequent predictive frameworks
(CatBoost, CNN, and GNN) produce spatially continuous noise estimates, the
stratified LULC map provides a means to quantify residual behaviour by class.
Aggregating residuals within homogeneous land-use categories—such as Continuous
Urban Fabric (11100), Industrial or Commercial Units (12100), Road and Rail
Networks (12210-12230), and Green Urban Areas (14100)—allows systematic
diagnosis of over- or under-prediction tendencies. This approach directly supports the
comparative analysis across Chapters 4—6, ensuring that identical performance metrics
(MAE, R? and residual variance) are applied within each land-use type to enable
precise cross-model comparison.

Figure 3.6 illustrates the LULC classification map for the Southampton study area
derived from the Urban Atlas 2012 database. Each polygon is colour-coded according
to its thematic class, with the legend showing both class names and corresponding
numerical codes (e.g., 11100 — Continuous Urban Fabric; 14100 — Green Urban Area;
12230 — Rail Network). The map reveals the spatial juxtaposition of dense built-up
zones, transport corridors, and vegetated buffers, which underpin the environmental
gradients later analysed in the noise prediction chapters.

urban atlas 2012
I 11100: Continuous Urban fabric (S.L. > 80%)
I 11210: Discontinuous Dense Urban Fabric (S.L.: 50% - 80%)
B 11220: Discontinuous Medium Density Urban Fabric (S.L.; 30% - 50%)
11230: Discontinuous Low Density Urban Fabric (S.L.: 10% - 30%)
11240: Discontinuous very low density urban fabric (S.L. < 10%)
I 12100: Industrial, commercial, public, military and private units
[0 12210: Fast transit roads and associated land
12220: Other roads and associated land
I 12230: Railways and associated land
12300; Port areas
12400: Airports
I 13100: Mineral extraction and dump sites
13300: Construction sites
I 13400: Land without current use
14100: Green urban areas
14200: Sports and leisure facilities
21000: Arable land (annual crops)
23000: Pastures
I 31000: Forests
32000: Herbaceous vegetation associations
33000: Open spaces with little or no vegetations
40000: Wetlands
50000: Water
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Figure 3.3 Urban Atlas 2012 LULC map of Southampton — colour-coded by class
with code-label legend

3.2.5 Data Bias and Representativeness

The exploratory analyses of the raw noise dataset (n = 52,366) provide insights into
the distributional properties and potential biases of the observational campaign
(Figure 3.4). The histogram of LAeq values reveals a right-skewed distribution with a
modal range between 55 and 70 dB, and a long tail extending above 85 dB. This
pattern reflects the dominance of mid-level urban soundscapes in the survey, while
also capturing relatively fewer extreme high-noise environments (e.g. arterial roads or
industrial zones). The distribution indicates that while the dataset effectively
represents typical urban acoustic exposure, low-noise and very high-noise conditions
are less extensively sampled.

Temporal analysis highlights a diurnal variation in measured noise levels, with
elevated LAeq values observed during morning and afternoon peak periods. Midday
and early evening periods generally show lower average levels, consistent with traffic
intensity patterns in Southampton. Although the time-of-day coverage captures broad
urban rhythms, the temporal window of the survey (July—August 2016) may
underrepresent seasonal or long-term variability.

The survey was conducted across multiple days between 14 July and 26 August 2016,
with daily sample counts ranging from fewer than 1,000 to more than 3,500
observations. The irregular distribution of samples across dates suggests logistical
constraints in fieldwork design and highlights the possibility of day-specific effects.
Nonetheless, the spread across more than a month provides a robust snapshot of
summer acoustic conditions in the city.

Spatially, the distribution of measurement points closely follows pedestrian transects
concentrated along the city’s transport corridors and central districts. This produces a
dense representation of traffic-dominated environments but relatively sparse coverage
of quieter residential backstreets, peri-urban zones, and large green areas. The
resulting bias means that the dataset is highly informative for modelling high-
exposure contexts but may underrepresent low-exposure environments. This
imbalance underscores the importance of incorporating remote-sensing and ancillary
predictors (Sections 3.2.3-3.2.4), which extend coverage to areas not directly
observed.

To further quantify the degree of spatial dependence inherent in the observational data,
a Global Moran’s [ statistic was computed on the raw measurement points (Moran,
1950). The analysis yielded I = 0.6345 (Z = 300.71, p < 0.001), indicating a strong
and highly significant positive spatial autocorrelation. Complementary local Moran’s
I analysis (LISA; Anselin, 1995) revealed extensive high—high clusters along major
road corridors and low—low clusters across peripheral green and residential areas.
These patterns confirm the spatially structured nature of the acoustic environment and
provide an empirical justification for adopting spatially explicit modelling
frameworks in subsequent chapters.



Taken together, these analyses demonstrate that while the Southampton dataset
provides an unprecedented and detailed record of urban noise, it is shaped by spatial,
temporal, and contextual biases that must be explicitly acknowledged. Subsequent
modelling strategies—including feature engineering, convolutional representation
learning, and graph-based architectures—are specifically designed to account for
these spatial dependencies and enhance the generalisability of predictions across

heterogeneous urban contexts.
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Figure 3.4 Exploratory analyses of the Southampton noise dataset.

(a) Distribution of LAeq values (n = 52,366). (b) Diurnal variation of LAeq
aggregated by hour of day. (c) Number of samples per survey date (14 July — 26
August 2016). (d) Spatial distribution of point measurements (BNG coordinates),
coloured by LAeq. (e) Global spatial autocorrelation of measured noise levels,
showing Moran’s I scatter plot (I = 0.6345, Z = 300.71, p < 0.001). (f) Local spatial
autocorrelation (LISA) cluster map, highlighting high—high (red) and low—low (blue)
neighbourhoods at p < 0.05.

3.2.6 Summary

This section has introduced the datasets and observational foundations of the
dissertation. Southampton provides the only city with ground-truth noise
measurements, derived from a high-resolution pedestrian survey conducted during
July—August 2016. These data were aggregated to a 30 m x 30 m grid to align with
remote-sensing predictors, while also retaining raw observations for exploratory
analysis and methodological testing. The analyses revealed a dataset dominated by
mid-level urban noise environments, with clear diurnal patterns and a spatial bias
towards transport corridors and central districts.

The remote-sensing predictors were obtained from pre-processed WorldView-2
imagery, from which both spectral indices and GLCM texture features were derived.
In later stages, z-score—based maps, morphological operators, and Urban Atlas 2012
LULC variables were incorporated to enable cross-city transferability. Together, these
data sources provided a rich representation of urban structure and environmental
context.

Although the dataset is unprecedented in scale and detail, the exploratory analysis
highlighted spatial and temporal imbalances that could constrain its representativeness.
These limitations emphasise the need for predictive models that can integrate diverse
predictors and adapt across urban contexts.

The next section (3.3) builds upon this data foundation by presenting the Machine
Learning and Feature Learning Framework used in this dissertation. It outlines the
theoretical underpinnings of CatBoost, convolutional neural networks (CNNs), and
graph neural networks (GNNs), and demonstrates how each method addresses the
challenges of feature complexity, spatial dependency, and cross-city generalisation
identified in the preceding analyses.



3.3 Machine Learning and Feature Learning Framework

The methodological framework of this dissertation is designed as a staged progression
of machine learning (ML) and deep learning (DL) approaches, each tailored to
address increasing levels of feature complexity, spatial dependency, and cross-city
generalisation. The framework begins with interpretable tree-based ensemble methods,
which establish baseline performance benchmarks. It then advances to convolutional
neural networks (CNNs), capable of extracting hierarchical spatial features directly
from multispectral imagery, and extends further to graph neural networks (GNNs),
which explicitly model relational dependencies embedded within heterogeneous urban
morphologies. This staged trajectory directly responds to the methodological
challenges identified in Section 3.2, including the heterogeneity of urban
environments, the spatial bias of observational data, and the critical need for scalable
and transferable predictive frameworks.

Compared with the broad literature survey presented in Chapter 2, which outlined
these methods in general terms, the present section focuses on their theoretical
principles in direct relation to the data structures and objectives of this study.
Schematic illustrations are introduced where appropriate—for instance, to
demonstrate how CNN receptive fields map onto urban physical scales, or how
message passing in GNNs allows the integration of local and contextual information.
By grounding each method within the context of urban noise prediction, the
discussion remains accessible to readers from both technical and applied
environmental science backgrounds.

In addition to model architectures, the framework also addresses two transversal
design dimensions that underpin the empirical chapters. The first concerns the
construction of feature maps, which requires interpretable and transferable descriptors
capable of capturing the physical and spatial properties of urban surfaces. To this end,
the study develops a unified feature computation pipeline integrating spectral indices,
Grey-Level Co-occurrence Matrix (GLCM) texture features, multi-scale z-score maps,
and morphological operators. This ensures that each modelling stage, from baseline
ensemble learning to CNNs and GNNss, is supported by a coherent and semantically
enriched feature space. The second dimension concerns the design of data partitioning
strategies. Rather than adopting a single uniform split across all tasks, partitioning
was deliberately adapted to the requirements of each model, reflecting the principle
that evaluation protocols should be aligned with model structure and dataset size to
maximise both fairness and performance. This comparative perspective is elaborated
in Section 3.3.7.

The section is organised as follows. Section 3.3.1 introduces traditional ML methods
and explains the rationale for selecting CatBoost as the primary benchmark. Section
3.3.2 outlines CNNs, emphasising the relationship between kernel size, receptive field,
and the representation of urban form. Section 3.3.3 presents GNNs, describing how
node features are updated through neighbourhood message passing and how network
depth influences the capture of spatial dependencies. Section 3.3.4 integrates these
approaches into a unified workflow, illustrating the end-to-end pipeline from data
acquisition to predictive modelling. Section 3.3.5 introduces the Feature Map
Computation Framework, detailing the derivation of GLCM features, z-score maps,



and morphological operators. Section 3.3.6 extends the framework to advanced
strategies for cross-domain generalisation, including domain alignment, pseudo-
labelling, and entropy-based gating. Finally, Section 3.3.7 presents a comparative
discussion of data partitioning strategies across modelling frameworks, clarifying how
different splits were designed to accommodate the structural requirements of
CatBoost, CNN, and GNN models as well as cross-city domain adaptation.

3.3.1 Traditional ML (Baseline Methods)

Tree-based ensemble learning methods such as Random Forests (RF), Support Vector
Machines (SVM), and Gradient Boosted Trees (GBT) have been widely applied in
environmental modelling because of their ability to handle heterogeneous predictors,
robustness to noise, and relative interpretability (Breiman, 2001; Cortes & Vapnik,
1995; Friedman, 2001). In this study, such algorithms served as benchmarks against
which the advantages of deep learning approaches could be evaluated.

Among these methods, CatBoost (Prokhorenkova et al., 2018) was selected as the
baseline model for several reasons. First, CatBoost is specifically designed to handle
categorical features without extensive preprocessing, reducing the risk of biased
encoding. Second, it incorporates ordered boosting, which mitigates overfitting by
ensuring that each split decision is based only on data available prior to that split, thus
more closely approximating true generalisation. Third, it integrates efficient handling
of high-dimensional feature spaces, making it particularly suitable for the complex
predictor sets derived from remote sensing and texture measures in this study.

Conceptually, CatBoost and other boosting algorithms can be understood as
ensembles of weak learners (decision trees) that are combined iteratively to minimise
prediction error. Each subsequent tree in the sequence corrects the errors of its
predecessors, gradually improving performance (Figure 3.5). This process is
analogous to refining an estimate through repeated adjustments, where simple models
collectively achieve high accuracy.

In practical terms, CatBoost was trained on tabular datasets derived from the 30 m
aggregated noise cells, incorporating spectral, textural, and statistical features (see
Section 3.2.3). Hyperparameters such as tree depth, learning rate, and the number of
iterations were optimised through Bayesian search, and their effects on predictive
accuracy are discussed in Section 3.4. The baseline results provide both a point of
comparison and an interpretability benchmark, establishing a reference against which
the additional complexity of CNN and GNN models can be justified.
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Figure 3.5 Structure of CatBoost adapted from Prokhorenkova et al., (2018). Each
tree corrects the errors of its predecessors, and the ensemble prediction emerges from
their weighted combination.

3.3.2 Convolutional Neural Networks (CNNs) and Urban Scale
Relationships

Convolutional neural networks (CNNs) provide a powerful framework for extracting
spatial hierarchies from imagery, making them particularly suited to environmental
prediction tasks where spatial structure is a key determinant of outcomes. At their
core, CNNs apply small convolutional kernels (filters) across an input image to
generate feature maps that highlight local patterns such as edges, textures, or gradients
(LeCun et al., 2015; Goodfellow et al., 2016). Each convolutional layer produces
increasingly abstract representations, and successive layers expand the receptive
field—the portion of the input image that influences a given activation in the network
(Araujo, 2019; Luo et al., 2016).

This receptive field expansion has a natural interpretation in the context of urban
noise modelling. In this study, input data were structured as 1000 m x 1000 m image
patches, corresponding to 250 x 250 pixels at 4 m resolution. Small convolutional
kernels, such as 3x3 or 5x5 filters, initially capture local-scale variations equivalent to
individual streets or building clusters. As depth increases and receptive fields enlarge,
the network begins to incorporate neighbourhood-scale information (hundreds of
metres), such as residential blocks, mixed-use zones, or park boundaries. With
sufficient layers, receptive fields can encompass the full 1000 m patch, allowing the



model to represent city-scale patterns such as arterial traffic corridors or industrial
complexes.

Figure 3.6 illustrates this principle by mapping receptive field size onto urban spatial
scales. Small receptive fields (e.g. 3x3 kernels at shallow depth) correspond to fine-
grained street-level features, medium receptive fields align with block- or district-
level configurations, and large receptive fields approximate city-wide structures. This
scaling relationship ensures that CNNs can jointly capture micro-scale textures (such
as roadside vegetation or imperviousness) and macro-scale organisation (such as
transport networks), both of which strongly influence noise propagation.

Another strength of CNNs is their ability to handle multi-channel input, which in this
study consisted of stacked feature maps derived from multispectral indices and texture
measures (see Section 3.2.3). Each channel represents a distinct environmental
proxy—such as NDVI, NDWI, or GLCM entropy—and the CNN jointly optimises
over these heterogeneous predictors. By training on large numbers of patches, the
network learns to identify feature combinations that consistently associate with high
or low noise exposure, without requiring handcrafted feature engineering.

While CNNs are effective for capturing spatial hierarchies, they also impose
constraints. Their square receptive fields assume a regular Euclidean grid, which is
suitable for image-like data but less flexible for irregular topologies such as road
networks or land-parcel adjacency. These limitations motivate the use of graph neural
networks (Section 3.3.3), which explicitly model relational dependencies.
Nevertheless, CNNs provide a crucial intermediate step in the methodological
progression of this dissertation: they extend beyond tabular features to leverage
spatial context directly, while retaining computational efficiency and interpretability
through receptive-field analysis.

Shallow Layer (Small Kernel) Intermediate Layer (Medium Kernel) Deep Layer (Large Kernel)

Receptive field = 3 px (~12 m) Receptive field = 60 px (~240 m) Receptive field = 250 px (~1000 m)
Street-level (~12 m) Neighbourhood (~240 m) City-scale (~1000 m)

Figure 3.6 Conceptual illustration of receptive field expansion in CNNs
Small kernels capture street-level details, intermediate receptive fields capture

neighbourhood structures, and large receptive fields approximate city-scale patterns
within the 1000 m x 1000 m input patch (250 % 250 pixels at 4 m resolution).
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3.3.3 Graph Neural Networks (GNNs) and Neighbourhood Information
Propagation

While convolutional neural networks (CNNs) are well-suited to regular image grids,
they cannot naturally represent the irregular relationships inherent in urban
environments. Graph neural networks (GNNs) provide a more flexible alternative by
explicitly modelling data as a set of nodes connected by edges (Wu, 2020; Zhou et al.,
2020). In this study, each 30 m x 30 m grid cell is represented as a node, with edges
defined by spatial adjacency or functional relationships (e.g. distance thresholds, ring
buffers). Node attributes consist of spectral and textural features derived from remote
sensing, and the GNN learns how information flows between neighbouring cells to
capture relational patterns that influence noise propagation.

The core mechanism of GNNs is message passing, in which each node updates its
representation by aggregating information from its neighbours. At layer / + I, the
representation of node i is computed as a function of its own embedding and the
aggregated embeddings of its neighbours at layer / (Gilmer et al., 2017). Intuitively,
this means that a cell’s predicted noise level is influenced not only by its local
features but also by the characteristics of surrounding cells.

A key property of this architecture is that the receptive field of a node grows with
network depth. After one layer, each node incorporates information from its
immediate neighbours (= one hop, corresponding to adjacent cells). After two layers,
it incorporates neighbours-of-neighbours (= two hops, equivalent to a block-scale
context). With three or more layers, the receptive field expands further, potentially
encompassing broad urban regions. This mechanism allows GNNs to capture spatial
dependencies beyond the local patch size used in CNNSs.

However, increasing depth introduces the risk of over-smoothing: as more layers are
stacked, node embeddings can become indistinguishable, leading to a loss of
discriminative power (Li et al., 2018; Alon & Yahav, 2021). In the context of noise
prediction, this would manifest as an inability to differentiate between acoustically
distinct environments, such as a park and a motorway corridor, if they are embedded
within the same graph neighbourhood. Careful design of graph depth, aggregation
functions, and edge definitions is therefore critical to maintaining the balance between
contextual reach and predictive precision.

To illustrate, figure 3.7 presents a schematic example. In the first layer, a residential
cell adjacent to a road integrates traffic-related attributes from its immediate
neighbour, refining its own prediction. After three layers, the same cell incorporates
information propagated from more distant areas, but with diminishing specificity,
eventually blurring distinctions between quiet and noisy environments. This example
demonstrates both the strength and limitations of GNNs in environmental applications:
they excel at capturing relational dependencies but must be carefully tuned to avoid
homogenising diverse spatial patterns.
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Figure 3.7 Conceptual illustration of message passing in a graph neural network.

Node embeddings are updated by aggregating neighbour features, with the receptive
field expanding as network depth increases. Excessive depth leads to over-smoothing,
where node representations converge and lose discriminative power.

3.3.4 Integration into Workflow

The machine learning and deep learning approaches in this dissertation were
embedded within a coherent workflow that ensured comparability across experiments
and reproducibility of results (Figure 3.8). The workflow progressed through four
main stages: data acquisition and preprocessing, feature construction, model training
and evaluation, and the generation of noise prediction outputs.

Stage 1: Data acquisition and preprocessing.

The workflow began with the collection of ground-truth noise observations in
Southampton and the acquisition of WorldView-2 multispectral imagery. In Chapter 6,
cross-city predictors from the Urban Atlas 2012 dataset were incorporated to support
domain adaptation. All datasets were harmonised to a 30 m analytical grid through
radiometric calibration, atmospheric correction, geometric alignment, and energy-
domain aggregation of acoustic measurements.

Stage 2: Feature construction.

All models relied on predictors derived from multispectral imagery, which were
transformed into spectral indices, GLCM texture measures, or statistical summaries.
The differences between chapters lie in how these features were structured and
integrated with spatial context. In Chapter 3, features were limited to cell-level
summaries (e.g. median GLCM contrast in 30 m cells). In Chapter 4, these predictors
were assembled as 1000 m x 1000 m image patches (250 x 250 pixels at 4 m
resolution) and used as multi-channel CNN inputs. In Chapter 5, the same spectral
and textural predictors served as node attributes within a graph, while additional input
in the form of a spatial adjacency matrix defined edges based on Euclidean distance
with limited neighbours. In Chapter 6, node attributes were further enriched with
LULC statistics from Urban Atlas 2012, and the graph structure extended to capture
three-hop neighbourhoods, providing the foundation for the dual-branch GCN + GAT
architecture.



Stage 3: Model training and evaluation.

Each chapter introduced a model architecture aligned with its feature and structural
representation. CatBoost (Chapter 3) established a baseline using tabular predictors
with boosted decision trees. EfficientNetBO (Chapter 4) applied convolutional layers
with compound scaling to exploit the hierarchical spatial structure of image patches.
GraphSAGE (Chapter 5) performed inductive learning on graphs, aggregating
information from a fixed number of neighbours defined in the adjacency matrix. The
dual-branch GCN + GAT model (Chapter 6) combined spectral, textural, and LULC
node features with relational information from three-hop adjacency graphs, capturing
both broad contextual structure and localised attention weights.

Stage 4: Prediction outputs.

Across chapters, the models produced city-scale noise prediction maps. The baseline
CatBoost demonstrated feasibility with simple tabular features; EfficientNetB0O added
spatial coherence by leveraging receptive fields; GraphSAGE incorporated relational
dependencies via neighbourhood aggregation; and the dual-branch GCN + GAT
extended these capacities to heterogeneous domains by integrating LULC data and
multi-hop graph structures. Together, these outputs illustrate a progressive evolution
towards scalable and transferable urban noise mapping.
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Figure 3.8 Workflow for urban noise prediction.

The process integrates data acquisition, feature construction from multispectral
imagery (plus graph structures and LULC where applicable), model training
(CatBoost, EfficientNetB0, GraphSAGE, dual-branch GCN+GAT), and prediction
outputs.

Together, these models represent a methodological trajectory from interpretable, cell-
based prediction to transferable, structure-aware frameworks capable of addressing
the heterogeneity of urban soundscapes. The next section (3.4) presents the
preliminary experiments that informed these methodological choices, providing
empirical justification for the progression adopted in subsequent chapters.



3.3.5 Feature Map Computation Framework

A critical methodological component of this dissertation lies in the systematic design
and computation of feature maps derived from multispectral WorldView-2 imagery.
These feature maps serve as intermediate representations that bridge raw spectral
information with machine learning models, providing semantically meaningful and
structurally informative inputs. While Chapters 4-6 apply these features in different
modelling contexts (CatBoost, CNNs, and GNNs, respectively), the underlying
computational framework is unified and is outlined here in detail. The framework
integrates four complementary approaches: (i) spectral indices, (ii) Grey-Level Co-
occurrence Matrix (GLCM) texture features, (iii) z-score normalisation maps, and (iv)
morphological operators. Together, these techniques provide a multi-perspective
representation of the urban surface, balancing biophysical interpretability with
statistical richness.

3.3.5.1 Grey-Level Co-occurrence Matrix (GLCM) Texture Features

The Grey-Level Co-occurrence Matrix (GLCM), first introduced by Haralick et al.
(1973), provides a statistical framework for quantifying spatial texture by describing
how often pairs of grey levels occur in a given spatial relationship. Formally, for a
quantised image I(x,y) with grey levels g € {0,1,...,G — 1}, the co-occurrence
matrix is defined as:

M N . . iy
P, jid 9)222{1, if I(z,y) =iand I(z + Az,y+ Ay) = j

0, otherwise

where d is the spatial offset, 6 is the orientation (0°, 45° 90°, 135°), and
(Ax, Ay)represents the displacement corresponding to d, 8. Each entry P(i,j) counts
the number of pixel pairs with grey levels i and j occurring in the specified spatial
relation. Normalisation yields the joint probability distribution:

P(3, j)
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From this probability matrix, a suite of statistical descriptors can be computed to
characterise texture. In this study, 28 descriptors were generated using the Orfeo
Toolbox (OTB), which provides “simple,” “higher-order,” and “advanced” measures
(see Appendix I for full formulas and definitions). These include widely used metrics
such as Contrast, Homogeneity, Entropy, and Correlation, as well as advanced
descriptors such as Grey-Level Nonuniformity (GLN) and Information Measures of
Correlation (IC1, IC2).

For example, GLN (Grey-Level Nonuniformity) measures the variability of grey-level

distributions, with lower values indicating uniform grey levels and higher values
reflecting greater heterogeneity:
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where N is the number of grey levels.

IC1 (Information Measure of Correlation 1) evaluates the dependency between row
and column marginal distributions of the GLCM, providing a measure of structural
redundancy:

HXY - HXY1

IC1 =
max{HX,HY}

where HX and HY are the entropies of marginal distributions, HXY is the joint entropy,
and HXY'1 is the entropy under independence assumptions.

by s M Vot s e VNN T
(a) NDVI map of (b) GLN texture map derived  (c) IC1 texture map derived
Southampton from NDVI from NDVI
Figure 3.9 Comparative visualisation of NDVI and derived GLCM features (GLN and
IC1). (a) NDVI map of Southampton (b) GLN texture map derived from NDVI (c) ICI

texture map derived from NDVI

While NDVI highlights vegetation distribution, GLN emphasises heterogeneity (dark
values in port—water zones, light values in vegetated regions), and ICI reflects
structural redundancy, distinguishing built-up areas from natural surfaces.

3.3.5.2 Z-score Feature Maps

In addition to GLCM descriptors, this dissertation incorporates z-score feature maps
as a complementary technique for emphasising relative spectral variation across
multiple spatial scales. Unlike absolute reflectance values, which can be influenced by
acquisition conditions (e.g., sensor calibration, atmospheric effects) and inter-city
differences in illumination or albedo (Schowengerdt, 2006), z-score maps normalise
each pixel value with respect to its local statistical context. This transformation
highlights relative anomalies within a neighbourhood, thereby improving
comparability across heterogeneous urban environments.

Formally, for a given spectral band or index I(x,y), the z-score at pixel (x,y) is
computed as:

Z(a:,y; ’w) = I(m’z-)wzm“;)(x’y)
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where p,(x,y) and o0,,(x,y) denote the mean and standard deviation of pixel
intensities within a local square window of size w X w centred at (x,y) . By
construction, the z-score expresses each pixel’s deviation from its local mean in units
of standard deviation.

The z-score framework was first introduced in Chapter 6 to enhance cross-city
generalisation. Three window sizes were employed—15 x 15, 31 x 31, and 77 x 77
pixels—corresponding to spatial extents of ~60 m, ~124 m, and ~308 m, respectively,
given the 4 m resolution of WorldView-2 imagery. These scales were selected to
capture texture patterns at progressively larger neighbourhood contexts:

1. Small windows (15 x 15) accentuate fine-grained heterogeneity, such as individual
building blocks, tree crowns, or narrow roads.

2. Medium windows (31 x 31) capture intermediate structures, e.g., clusters of
residential housing or contiguous vegetation patches.

3. Large windows (77 x 77) emphasise broader landform and land-use configurations,
such as industrial estates or continuous parkland, by smoothing local variations and
highlighting area-wide anomalies.

By combining z-score maps at these three scales, the framework enriches the feature
space with multi-scale representations of relative contrast, improving the capacity of
learning models to capture both local detail and broader structural patterns.

(a) Original Red-Edge band reflectance (b) Z-score map at 15 x 15 window

s

c) Z-sore map at 31 x 31 window d) Z-sore map at 77 x 77 window
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Figure 3.10 Comparative illustration of Red-Edge reflectance and z-score maps at
three spatial scales.

Smaller windows enhance local anomalies, whereas larger windows emphasise
broader morphological structures. Together, these representations provide a multi-
scale characterisation of urban texture relevant to noise propagation modelling.

3.3.5.3 Morphological Operators

Mathematical morphology provides a further complementary framework for feature
extraction by directly analysing the geometric structure of image objects. Unlike
GLCM, which captures second-order grey-level co-occurrence statistics, or z-score
maps, which emphasise relative local contrasts, morphological operators describe
shape, connectivity, and spatial arrangement. They are particularly well suited to
characterising built-up areas and transportation networks, where geometry and
connectivity play a decisive role in acoustic propagation (Haralick, 1987;
Benediktsson et al., 2005).

The foundation of morphological operations lies in the interaction between the input
image I(x,y) and a structuring element B. For a binary or greyscale image, the
erosion and dilation of I by B are defined as:

IeB — mi
(I © B)(z,y) B

(I ® B)(z,y) = (e

From these two primitives, higher-order operators are constructed. The opening
operation, defined as erosion followed by dilation (/o B = (I & B) @ B), removes
small objects and noise while preserving larger structures. Conversely, the closing
operation, defined as dilation followed by erosion (I - B = (I @ B) © B), fills small
gaps and smooths boundaries, thereby enhancing continuity in linear features.

In this study, morphological operations were applied to multispectral bands to extract
structural patterns in the urban environment. Using the Red band as an example,
opening emphasised dominant built-up blocks by suppressing fine-grained vegetation
pixels, while closing reinforced road and waterfront continuity by bridging small gaps
between adjacent bright features. Together, these operations provided complementary
views of built morphology: opening highlighted discrete building forms, whereas
closing accentuated extended infrastructural elements.

In addition to opening and closing, the Local Binary Pattern (LBP) operator was
introduced as a texture descriptor grounded in morphological principles. For each
pixel, LBP encodes the relative differences between the central pixel value and its
neighbours, forming a binary string that is then converted into a decimal label.

pg. 45



Formally, for a pixel intensity g. with P neighbours g, on a circle of radius R, the
LBP code is given as:

— 1, z>0
LBPpR = Zs(gp —9c)- 2%, s(x) = {0, z <0
p=0 ’

This operator captures micro-structural patterns such as edges, corners, and flat areas.
Within the context of noise prediction, LBP enriches the feature representation by
detecting repetitive textural elements of buildings and surfaces, which influence
sound reflection and scattering.

The combined use of morphological opening, closing, and LBP maps was particularly
valuable for cross-city generalisation in Chapter 6. Whereas spectral indices and
GLCM features focus on reflectance and second-order statistics, morphological
operators directly quantify spatial form, producing features that are less sensitive to
radiometric variability between cities. This robustness makes them effective
complements in a transferable modelling framework.

Figure 3.11 illustrates the effect of these operators using the Red band of
Southampton. The original reflectance map is shown alongside its morphological
opening, closing, and LBP derivatives. The opening map suppresses fine vegetation
and highlights dominant building footprints, the closing map enhances continuity of
linear urban features, and the LBP map captures repetitive local patterns, together
providing a structurally enriched representation of the city’s urban form.

! < - o n. - :‘ A"l
(a) Original Red band reflectance (b) Morphological opening result
(Southampton urban subset)
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(c) Morphological closing result (d) LBP feature map

Figure 3.11 Comparative illustration of morphological operators applied to a local
subset of Southampton’s Red band imagery

The chosen urban fragment includes mixed residential blocks, adjacent vegetation
patches, and linear road features, allowing the effects of each operator to be clearly
observed. In the opening map (b), fine vegetation signals are suppressed, enhancing
the visibility of dominant building footprints. The closing map (c) bridges small gaps,
reinforcing the continuity of roads and waterfront edges. The LBP map (d) highlights
repetitive local textures, such as tiled roof patterns and road markings. By focusing
on a representative subset rather than the entire city, the structural effects of
morphological operators are more discernible, demonstrating their utility for
extracting shape- and texture-based descriptors relevant to noise propagation.

3.3.6 Advanced Strategies for Cross-Domain Generalisation

A critical methodological challenge of this dissertation is the generalisation of noise
prediction models across cities that lack in-situ acoustic measurements. While
Chapters 4 and 5 demonstrated the feasibility of machine learning and graph neural
networks in single-city contexts, their direct transfer to new urban domains is
hindered by distributional differences in morphology, land use, and spectral
characteristics. To address this challenge, the framework integrates three
complementary strategies: high-confidence pseudo-labeling, adversarial domain
alignment with gradient reversal, and entropy-based gating losses. These methods are
not considered in isolation but are ultimately combined in Chapter 6 to achieve robust
cross-domain performance.

High-Confidence Pseudo-Labeling

Since only Southampton provides measured noise data, pseudo-labels are required to
extend supervision to the four target cities. In practice, this is achieved through a
similarity-based k-nearest neighbors approach applied to carefully selected variables.
Specifically, land-use/land-cover (LULC)-derived predictors—such as the proportion
of transport infrastructure or distance to green areas—are prioritised due to their
semantic stability across cities. For each unlabeled grid cell in a target city, its feature
profile is compared to the Southampton-labeled set, and the average of its five nearest
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neighbors is assigned as a provisional label. To safeguard reliability, two filtering
criteria are imposed: a similarity-based confidence score (top 10% threshold) and
neighbor-label stability (standard deviation <10 dBA). Only samples passing both
conditions are retained, resulting in approximately 9—10% of grid points in each target
city being pseudo-labeled. This conservative design follows established principles of
high-confidence pseudo-labeling (Lee, 2013) and self-training in remote sensing
domain adaptation (Kwak and Park, 2022), ensuring that only structurally robust and
acoustically meaningful pseudo-labels participate in training, while unlabeled nodes
remain active in the graph to support spatial propagation.

Adversarial Domain Alignment with Gradient Reversal

Even with pseudo-labeling, domain shifts persist: predictors may carry different
statistical distributions in different cities. To counteract this, the framework
implements multi-domain adversarial alignment. A lightweight domain discriminator
is trained to classify nodes by city of origin, while a gradient reversal layer (GRL)
connects this discriminator to the feature extractor. The GRL acts as identity in the
forward pass but multiplies gradients by —1 during backpropagation, forcing the
feature extractor to generate embeddings that are simultaneously predictive of noise
and invariant to domain identity (Ganin et al., 2016). To stabilise training, the
adversarial component is activated only after several warm-up epochs, when the base
model has already learned to predict noise reliably. Complementing adversarial
learning, a Maximum Mean Discrepancy (MMD) loss is added to explicitly reduce
statistical divergence between Southampton and each target city. Unlike adversarial
signals, which encourage domain confusion, MMD directly matches feature
distributions in a reproducing kernel Hilbert space (Long et al., 2015), ensuring
alignment of both low- and high-order moments. This hybrid alignment provides a
balanced mechanism for enforcing domain invariance without sacrificing
discriminative power.

Entropy Minimisation and MME Loss

A further challenge in semi-supervised settings is that models may remain uncertain
on unlabeled target samples. To address this, the framework employs entropy
minimisation (Grandvalet and Bengio, 2005), penalising prediction uncertainty on
target-domain outputs and encouraging sharper decision boundaries. Additionally,
inspired by Minimax Entropy (MME) (Saito et al., 2019), the framework regularises
the classifier to maximise domain confusion while minimising prediction entropy,
which encourages the network to focus on transferable and discriminative features
rather than domain-specific noise. This combination of entropy regularisation and
adversarial alignment strengthens cross-city generalisation and stabilises training
under low-label conditions.

Integration into the Framework

Together, these strategies form an interlocking methodology. Pseudo-labeling
provides sparse but reliable supervision in target cities; adversarial alignment and
MMD ensure that feature spaces are shared across domains; and entropy minimisation
strengthens decision boundaries on unlabelled samples. As implemented in Chapter 6,
this integrated design enables the dual-branch GNN to extend predictive capacity



from Southampton to Cardiff, Liverpool, Nottingham, and Portsmouth, producing
coherent noise maps without requiring direct local measurements.

3.3.7 Data Partitioning Strategies across Models

A final methodological dimension that warrants explicit clarification is the strategy
used for partitioning the dataset into training, validation, and testing subsets across
different modelling frameworks. Rather than imposing a single, uniform protocol, this
dissertation deliberately adopted architecture-sensitive partitioning strategies tailored
to the structural and statistical characteristics of each model. This adaptive design is
grounded in the principle that data partitioning is not merely procedural: it directly
affects model performance, convergence behaviour, and the validity of evaluation.
Different learning architectures impose distinct requirements regarding sample
independence, graph structure, or pseudo-label reliability, and the chosen protocols
reflect these considerations.

For the CatBoost baseline experiments introduced in Chapter 3, a conventional 80%—
20% five-fold cross-validation was employed on the aggregated 13,474 grid-based
samples. This choice ensured methodological alignment with established practices in
environmental noise modelling (e.g., Alvares-Sanches et al., 2021a) and provided a
robust, interpretable benchmark against which deep learning architectures could be
evaluated. Five-fold rotation further mitigated overfitting risks by averaging model
performance across multiple partitions, yielding stable generalisation estimates under
tabular learning conditions.

The convolutional neural network (CNN) experiments presented in Chapter 4 required
a different protocol, reflecting the transformation of the data into a set of 1,000 m %
1,000 m patches (250 x 250 pixels at 4 m resolution). Because patch-based
representations significantly reduced the total number of training instances, the
partitioning scheme allocated 70% of samples to training, 15% to validation, and 15%
to testing. This emphasis on training data aligns with standard deep learning practice
in small-sample regimes, where sufficient examples are needed to support effective
feature learning. The held-out test set provided an unbiased measure of generalisation,
while the validation set guided early stopping and hyperparameter optimisation. This
design directly balanced the competing objectives of maximising feature extraction
capacity and maintaining rigorous evaluation control.

A more substantial departure from conventional data splitting was required for the
graph neural network (GNN) experiments in Chapter 5. Unlike CNNs or tabular
models, GNNs operate on a single, connected graph structure, where individual nodes
are topologically interdependent through message passing. Naive random partitioning
at the sample level would lead to information leakage, as nodes in the test set could
still indirectly influence the model through shared neighbourhoods. To address this,
the dataset was partitioned at the node level into 60% training, 20% validation, and
20% testing subsets, combined with strict masking to ensure that only the labels of
training nodes were visible during learning. Validation and test nodes remained
structurally connected to the graph but label-inaccessible. This configuration
preserves the inductive nature of GNN learning, allowing models to leverage



neighbourhood context while ensuring statistical independence of evaluation. The
smaller training proportion compared with CNNs also reflects the inherent
redundancy in graph structures: as each node aggregates multi-hop information,
effective learning can be achieved with fewer explicit labels.

The partitioning design reached its most distinct form in the cross-city domain
adaptation experiments of Chapter 6, where pseudo-labels rather than measured noise
levels were used for supervision in target cities. In this setting, an 80%—-20% split
between training and validation was adopted for the pseudo-labeled nodes, while
unlabeled nodes remained part of the graph to support domain alignment through
message passing. Unlike the source city, no independent test set was created in the
target domains, since pseudo-labels are derived from similarity inference rather than
empirical measurements, and therefore cannot provide a valid benchmark of
predictive accuracy. Instead, the validation split served to monitor overfitting to
pseudo-label distributions, while model evaluation remained anchored in the true
labels of the source domain. This design reflects widely adopted practices in weakly
supervised and domain-adversarial learning, where pseudo-labeled data shape
representation learning but are not used as formal test benchmarks.

Taken together, these partitioning strategies illustrate an intentional methodological
alignment between data structure and model design. CatBoost relied on conventional
cross-validation to ensure interpretability; CNNs required larger training allocations
to compensate for small sample sizes; GNNs depended on node masking to respect
graph connectivity; and domain adaptation used pseudo-labeled training-validation
splits to support representation alignment in the absence of real ground truth. Across
all cases, the guiding principle remained consistent: to design partitioning schemes
that maximise both learning effectiveness and evaluation wvalidity under the
methodological and data constraints specific to each modelling framework.

Table 3.3 Overview of Data Partitioning Strategies across Modelling Frameworks
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3.4 Preliminary Experiments: Noise Prediction Using the

CatBoost Model

3.4.1 Overview and Rationale

Preliminary experiments were conducted to establish a methodological baseline and to
guide the selection of modelling approaches for subsequent chapters. The objective
was to evaluate whether conventional machine learning methods could adequately
capture the statistical relationships between remotely sensed features and aggregated
noise levels, and to identify their limitations in representing spatial heterogeneity.

Among a range of candidate algorithms, CatBoost was selected as the primary
baseline model. This choice was motivated by three factors. First, CatBoost offers
strong performance on structured tabular datasets, which aligns with the feature sets
derived from multispectral imagery and textural measures. Second, the algorithm
incorporates mechanisms such as ordered boosting and effective handling of
categorical variables, reducing overfitting and minimising preprocessing requirements
(Prokhorenkova et al., 2018). Third, CatBoost has demonstrated robustness in high-
dimensional feature spaces, making it particularly suitable for the diverse predictors
used in this study.

By establishing CatBoost as a baseline, these experiments provided a benchmark
against which the benefits of spatially explicit deep learning methods (CNNs and
GNNs) could later be assessed. The results from this stage therefore serve a dual
purpose: they demonstrate the feasibility of data-driven urban noise prediction using
remote-sensing features, while also highlighting the methodological gaps that
motivate the adoption of more advanced architectures in Chapters 4-6.

3.4.2 GLCM Feature Calculation Based on Individual Spectral Bands

The next step is the feature construction phase. Instead of relying solely on composite
indices or multispectral band ratios, this study directly computes texture features from
individual spectral bands of the WorldView-2 imagery (ESA, 2010), focusing on five
critical bands: Red, Green, Blue, RedEdge, and NIR1. The process begins by
quantizing each band into 64 grey levels, a step that balances computational
efficiency with the retention of essential textural details (Hall-Beyer, 2017).




Using a 5 x 5 pixel moving window (corresponding to 5 m x 5 m on the ground), the
Grey-Level Co-occurrence Matrix (GLCM) is computed within each window.
GLCMs are calculated across four standard orientations (0°, 45°, 90°, 135°) and
averaged to achieve rotational invariance (Haralick et al., 1973). From each averaged
GLCM, five key texture metrics are extracted:

Table 3.4 GLCM Features Used in the Baseline Model and Their Definitions

Feature Name

Description

Quantifies local grey-level variations, indicating how sharply pixel

Contrast intensities change.
Correlation Measures the linear dependpncy betwgen neighboring pixel values,
reflecting local alignment.
Captures the randomness or complexity of textures, with higher
Entropy T .
values indicating greater disorder.
. Assesses the closeness of GLCM matrix elements to its diagonal,
Homogeneity o . .
indicating local uniformity.
Energy (Angular Second Reflects textural uniformity, where higher values suggest more
Moment) consistent patterns.

These calculations generate five sets of texture feature maps (one per spectral band),
with each set comprising five distinct GLCM-derived metrics. Together, they form a
comprehensive textural representation of the urban landscape at 1-meter resolution,
providing the raw material for subsequent statistical summarization.

GLCM ettt 5,
_ S
T2 | 3 Aggregate matrices
3 2 B » in multiple directions
o |1]0
Assuming 3 x 3 pixel = 2 +2
image with three different 1B i 1 |1
gray-scale levels 391 |0 [E Secondary features:
Y 4 CON, ENT, CORR, HOM ..
T T e -
‘ Frequency of two neighboring
pixels having certain gray-
level pixel value
312 |1
GLRLM
2 |2 —_—
1 3 [3 3|2 [E 5 1 2 |3 Aggregate matrices
in multiple directions
Pixel-by-pi)l(ellmall) of 2|2 — 113|010
ray scale leve
o 1. S .2 1|0
L
: A 3 l ,..1 0 Secondary features:
- — SRE, LRE, LGRE, HGRE ...
Length of continuous
pixel having certain
gray-level pixel value
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Figure 3.12 Schematic description of textural feature extraction assuming 3 x 3-pixel
image with three different gray-scale levels. (Park et al., 2020)

GLCM describes frequency of two neighboring pixels having certain gray-level pixel
values, while GLRLM describes length of continuous pixel having certain gray-level
pixel value. After aggregating different directional matrices, secondary features are
calculated from matrices to describe textural pattern of given image.

3.4.3 Extraction of Statistical Variables from GLCM Feature Maps

To align the high-resolution texture features with the coarser-scale noise
measurements, a spatial aggregation step is applied. Specifically, each 1-meter
resolution GLCM feature map is aggregated within a 30 m x 30 m grid by computing
eight statistical descriptors: maximum, minimum, mean, median, 25th percentile, 75th
percentile, standard deviation, and range. These descriptors effectively summarize the
distribution of local texture values within each grid cell, transforming fine-scale
variability into higher-order statistical signals that are more compatible with the
spatial scale of ground noise measurements.

Table 3.5 Statistical Descriptors Computed from GLCM Feature Maps within Each
30m x 30 m Grid Cell

Statistical Descriptor Description

. The highest GLCM feature value within the grid cell, highlighting the
Maximum .
strongest local texture signal.
Minimum The lowest GLCM feature value within the grid cell, indicating the
weakest local texture signal.
Mean The arithmetic average of all GLCM feature values, providing a central
tendency measure.
. The middle value that divides the dataset into two equal halves,
Median . .

offering a robust central estimate.

. The value below which 25% of the GLCM feature values fall, capturing
ower-end distribution behavior.

25th Percentile (Ps)) 1 d distribution behavi
; o ;

75th Percentile (Pus) The value below which 75% of Fhe.GL.CM featur.e values fall, capturing

upper-end distribution behavior.
Standard Deviation The degree of variability or dispersion among thg GLCM feature
values, reflecting texture heterogeneity.
Rance The difference between maximum and minimum values, summarizing
& the overall spread of texture values.

The concatenation of these statistical descriptors across all five bands and five metrics
yields a rich, multidimensional feature vector for each 30 m grid cell, capturing local
textural patterns in a format ready for machine learning analysis.



3.4.4 Construction of the Training Dataset

To prepare the baseline dataset, ground-truth noise measurements and remotely
sensed predictors were aligned on the common 30 m x 30 m analytical grid. The
52,364 raw in-situ observations were aggregated in the energy domain to produce
13,474 grid-level equivalent continuous sound levels (LAeq), thereby ensuring
unbiased averaging of logarithmic units.

In parallel, the GLCM-derived texture maps introduced in Section 3.4.2 were
summarised within the same grid framework, using the statistical descriptors
described in Section 3.4.3. The resulting feature vectors encapsulated the local
textural properties of each cell and were directly paired with the corresponding
aggregated L Aeq values. This integration produced a tabular dataset where predictors
and responses were spatially co-registered and suitable for machine-learning analysis.

For model development, the dataset was partitioned through stratified random
sampling, with 80% of the grid cells allocated to training and 20% reserved for
validation. To ensure robustness, a five-fold cross-validation scheme was applied,
allowing each grid cell to contribute to both training and testing across different folds.
This procedure preserved the distribution of noise levels in all subsets and provided a
statistically rigorous foundation for evaluating the CatBoost baseline.

3.4.5 CatBoost Model Training, Prediction, and Baseline Evaluation

Building on the carefully constructed training dataset, the next phase involved
applying the CatBoost model to learn the relationship between remotely sensed
textural features and spatially aggregated urban noise levels. The training process was
designed to maximise predictive accuracy while minimising overfitting risks, ensuring
that the model could generalise effectively to unseen data.

Hyperparameter optimisation was carried out using a Bayesian optimisation
framework (Bergstra et al., 2011), combined with five-fold cross-validation, to
systematically explore the parameter space and identify configurations most suited to
the characteristics of the dataset. The search considered learning rates ranging from
0.01 to 0.3, tree depths between 4 and 12, and boosting iterations from 200 up to
2,000. Regularisation strength was tuned through the L2 parameter, tested within the
range of 1 to 10, while bagging temperature—a parameter controlling the stochasticity
of sample weighting during training—was varied between 0.5 and 5. This process
allowed the model to balance bias and variance effectively, while maintaining
stability in the presence of high-dimensional, correlated predictors.

The optimisation phase converged on a configuration with a learning rate of 0.05, a
maximum tree depth of 8, and approximately 400 boosting iterations, coupled with an
L2 regularisation strength of 3 and a bagging temperature of 1. These settings were
selected because they offered the best trade-off between generalisation and
computational efficiency, with higher learning rates or tree depths leading to
overfitting, and shallower or less regularised configurations failing to capture



sufficient complexity in the feature set. This outcome confirmed the suitability of
CatBoost for modelling the GLCM-derived predictors in this study.

Once training was complete, the optimised model was deployed across the entire
study area of Southampton, using WorldView-2 imagery captured on 4 May 2016 to
generate detailed predictions at a 30 m spatial resolution. The resulting outputs were
visualised as a continuous urban noise exposure map, allowing for both quantitative
evaluation and qualitative interpretation.

7
dBA
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Figure 3.13 CatBoost Noise Prediction Overlay on OS Open Greyscale Map (30 m x
30 m grid)

Visual inspection of the noise map revealed pronounced linear patterns of elevated
exposure aligned with major road networks, confirming that the CatBoost model
effectively captured traffic-related dynamics. Moreover, areas with dense vegetation
were systematically predicted as lower-noise zones, consistent with the noise-
mitigating effects of urban greenery (Khan et al., 2018). However, spatial
discrepancies were observed: the model tended to overestimate noise in non-traffic
zones, such as riverine corridors, and underestimate noise in the Southampton port
area. These limitations reflected the baseline model’s reduced capacity to represent
non-road acoustic sources using spectral-band texture features alone.

Quantitative evaluation yielded an average Mean Absolute Error (MAE) of 5.76 dBA
and a coefficient of determination (R?) of 0.38. While these results demonstrate
moderate predictive capability, the relatively low R? highlights that a substantial
proportion of noise variability remains unexplained by the current feature set. This
underscored the need for methodological refinements in subsequent experiments,
particularly those designed to incorporate spatial hierarchies and relational
dependencies beyond the capacity of tabular baselines.
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3.4.6 Discussion and Implications of Baseline Model Performance

Despite its moderate performance metrics, the baseline CatBoost model offers
compelling evidence of the feasibility of using multispectral remote sensing data to
predict urban noise patterns. The alignment between high-noise predictions and
known traffic corridors validates the underlying hypothesis that spectral and textural
information derived from satellite imagery carries valuable acoustic signals. This is
consistent with findings from related environmental modelling studies, where remote
sensing features have successfully been applied to predict air pollution concentrations,
vegetation health, and surface temperatures (Wang et al., 2020).

However, the limitations of the baseline model are equally instructive, revealing clear
areas where the initial approach fell short. A first example can be drawn from
Southampton Common, situated below Burgess Road (Figure 3.14). This large green
space contains extensive vegetation cover, which in reality provides stronger noise
attenuation than the adjacent low-density residential area located between Burgess
Road and Winchester Road. In the CatBoost predictions, however, both zones were
modelled as broadly equivalent low-exposure environments. The model failed to
distinguish that the vegetated park should exhibit systematically lower noise levels
than the nearby housing, highlighting its limited ability to represent non-road acoustic
processes. This mismatch reflects both the constraints of the image-derived features
and the tendency of GLCM-based statistics to integrate contextual information from
outside the 30 m aggregation window, which diluted the contrast between these two
environments.

e i : o 5 L B i =
Figure 3.14 Comparison of observed land cover (OpenStreetMap basemap) and
CatBoost-predicted noise exposure for the area surrounding Southampton Common

The model failed to capture the expected lower noise levels within the vegetated
parkland compared to the adjacent low-density residential zone between Burgess
Road and Winchester Road, illustrating the limited capacity of cell-level texture
features to represent non-road acoustic processes.

A second example illustrates the issue of limited spatial differentiation and muted
local noise variation. In central Southampton, a cluster of open green spaces forms a
continuous urban park system. As illustrated in Figure 3.15, visual inspection suggests
that these areas should register well below 55 dBA, yet the CatBoost predictions
consistently placed them above this threshold. The outputs appeared smoothed, with

pg. 56



elevated noise levels assigned uniformly across the park system, failing to capture the
expected variability between quiet internal areas and noisier perimeters adjacent to
traffic. This systematic overestimation demonstrates the over-smoothing effect of the
model: by relying solely on cell-level GLCM features, CatBoost produced outputs
that lacked the fine-grained spatial variation present in reality.
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Figuré 3.15 Comparison of observed land cover (OpenStreetMap basemap) and
CatBoost-predicted noise exposure in central Southampton.

Despite the presence of multiple connected open green spaces, predictions
consistently exceeded 55 dBA and displayed limited internal variability. This example
highlights the model’s tendency towards over-smoothing, resulting in muted local
noise variations and an underestimation of fine-scale differentiation between quiet
interiors and traffic-exposed edges.

These limitations point to the necessity of expanding the feature scope and enhancing
the capacity to capture spatial dependencies. In particular, the underrepresentation of
non-road noise sources, such as port and industrial activity, suggests that spectral-
band-specific texture metrics are insufficient on their own. Incorporating land use
classifications, morphological indices, and point-of-interest data would provide the
semantic context needed to complement spectral information. Moreover, the over-
smoothing evident in these examples underscores the need for models that explicitly
account for spatial autocorrelation. Noise propagation inherently reflects
neighbourhood effects, and approaches such as convolutional neural networks (CNNs)
and graph neural networks (GNNs) are specifically designed to capture multi-scale
and graph-structured dependencies within urban systems (Khan et al., 2018; Ranpise
& Tandel, 2022).

Taken together, these insights emphasise the iterative nature of the research process.
The CatBoost baseline successfully confirmed the viability of remote sensing data for
noise prediction, but its shortcomings in feature representation and spatial
differentiation established a clear motivation for methodological refinement. These
reflections directly inform the trajectory of the dissertation: Chapter 4 enriches input
features and leverages CNNs for spatial pattern extraction, Chapter 5 introduces
graph-based learning with GraphSAGE to model relational dependencies, and Chapter
6 advances dual-branch GCN—GAT architectures to enable cross-city generalisation.
Collectively, these developments build upon the baseline analysis to construct a
scalable, transferable, and semantically richer framework for urban noise mapping.



Chapter 4: Predicting Urban Noise Levels Using

EfficientNet and Multispectral Remote Sensing Data: A

Case Study of Southampton

Abstract

Accurate mapping and assessment of urban noise exposure remain critical for
effective urban planning and public health protection. Traditional urban noise
mapping methods, heavily reliant on extensive field measurements and
computationally intensive noise propagation modeling, are often costly, labor-
intensive, and difficult to generalize across diverse urban environments. Recent
advancements integrating remote sensing data with machine learning techniques have
shown promise in addressing these limitations, but challenges persist in effectively
capturing spatial dependencies and localized noise variations within urban contexts.

To enhance urban noise prediction performance, this study introduces a convolutional
neural network (CNN)-based modeling framework that directly leverages spatial
contextual information embedded in multispectral remote sensing imagery. Differing
from previous baseline models that relied on statistical aggregation of textural
features, this work systematically improves CNN inputs by integrating carefully
selected remote sensing indices and corresponding texture feature maps. Employing
rigorous feature selection methods ensures that only the most informative texture
features derived from multispectral indices are utilized, optimizing model accuracy
and efficiency.

Applied to the city of Southampton, UK, using WorldView-2 imagery collected in
Feb 2016 & in May 2016, the proposed CNN model significantly improves predictive
accuracy compared to traditional methods. Results clearly demonstrate enhanced
capability in capturing spatially detailed urban noise distributions, particularly along
major roadways and vegetated areas. Despite limitations in accurately representing
noise sources unrelated to road traffic (e.g., industrial areas), the CNN approach
shows substantial promise for scalable, spatially detailed, and cost-effective urban
noise assessment. These findings highlight the potential of CNNs and advanced
remote sensing techniques to inform urban planning strategies, noise mitigation
policies, and future research directions.

Keywords: deep learning, convolutional neural networks, multispectral imagery,
urban noise prediction, EfficientNet



4.1 Introduction

The previous chapter established a strong baseline for data-driven urban noise
prediction by applying CatBoost to grid-level statistical summaries derived from high-
resolution multispectral imagery. This baseline demonstrated the feasibility of using
remote sensing data to model urban noise patterns in a structured and reproducible
way. By aggregating spectral and textural predictors—such as means and medians of
grey-level co-occurrence and vegetation indices—CatBoost achieved stable
performance across large spatial extents, providing an interpretable and
computationally efficient starting point for subsequent modelling stages. However,
this approach also revealed inherent structural limitations. The reliance on pre-
aggregated statistics, while stabilising predictor sets, inevitably blurred local contrasts
and attenuated spatial detail. As documented in Section 3.4.6, these smoothing effects
reduced the ability to discriminate between acoustically heterogeneous micro-
environments, such as quiet interior green spaces versus noise-exposed road edges.
The consequences extend beyond methodological precision: the muted representation
of spatial variability can lead to systematic underestimation of green infrastructure
benefits, misclassification of exposure gradients, and downstream biases in
environmental health assessments.

The present chapter addresses these shortcomings through a shift from feature
aggregation to direct spatial representation learning. Convolutional Neural Networks
(CNNSs) operate directly on raw pixel matrices rather than summary statistics, learning
filters that capture spatial hierarchies from local edges to broader urban form patterns.
This hierarchical encoding allows the model to preserve subtle intra-urban
variations—such as the attenuation effects of tree canopies or courtyard buffering—
while simultaneously integrating neighborhood-scale and city-scale structural context.
By learning directly from multispectral imagery, CNNs overcome the smoothing
artifacts of statistical descriptors, enabling finer differentiation of noise environments
and improving the fidelity of exposure mapping.

To operationalize this approach, WorldView-2 multispectral imagery is organized into
1 km x I km image patches (corresponding to 250 x 250 pixels at 4 m resolution).
This patch size was chosen to balance local feature richness with manageable
computational cost, ensuring that each input encompasses multiple land cover types,
transportation structures, and urban configurations. The CNN architecture adopted in
this study is EfficientNetB0, which employs compound scaling of network depth,
width, and input resolution. This design offers a favorable balance between
representational capacity and training efficiency, making it particularly well suited for
large-scale urban remote sensing tasks.

This chapter thus marks a deliberate methodological transition from tabular learning
to spatially structured deep learning. While the CatBoost baseline of Chapter 3
provided an interpretable but smoothed representation of noise-relevant predictors, the
CNN framework presented here embeds spatial context directly into the learning
process, capturing both micro-scale heterogeneity and meso-scale structure. At the
same time, it establishes the conceptual and technical foundation for the subsequent
graph-based models in Chapter 5, which extend spatial reasoning beyond image
patches through explicit neighborhood relationships and graph-based feature



propagation. In this way, Chapter 4 serves as the critical intermediate stage in the
broader progression from handcrafted feature learning to structured, spatially
informed, and ultimately transferable deep learning architectures for urban noise
prediction.

4.2 Methodology

4.2.1 Study Area, Data Sources, and Scale-Aware CNN Design

The methodological framework in this chapter builds on the unified paradigm
introduced in Chapter 3 but extends the baseline analysis to a convolutional neural
network (CNN) regression task. In contrast to the tabular predictors used in the
CatBoost baseline, the CNN directly ingests image patches, enabling the model to
capture hierarchical spatial structures and contextual information. The overall
workflow is illustrated in Figure 4.1, which shows the sequential process from remote
sensing imagery preprocessing and noise data aggregation, to the preparation of
matched training datasets, CNN training, and the generation of city-scale noise
prediction maps.

The study area is Southampton, United Kingdom, a city characterised by diverse land
cover including dense residential districts, major transport corridors, industrial zones,
and large green spaces. This heterogeneity makes Southampton a suitable test bed for
examining whether image-based learning improves spatial differentiation in noise
prediction relative to tree-based baselines.

The remote sensing input was derived from WorldView-2 multispectral imagery,
mosaicked from two acquisitions (15 February 2016 and 6 May 2016). ENVI’s
seamless mosaic algorithm was used to align the scenes and perform colour balancing,
with the lower-cloud May scene as the reference. The mosaic was resampled to a
uniform 4 m spatial resolution. Although native multispectral bands are finer than 4 m,
this target resolution preserves fine-scale morphological detail while reducing
redundancy and computational load. Because the target labels are aggregated to a 30
m grid, retaining imagery at 4 m provides a sufficiently detailed input scale that
remains compatible with the urban-scale analytical framework of this study.

Noise data were collected in 2016 using calibrated recorders and GPS under stable
weather conditions. A total of 52,364 raw samples at ~/ m positional spacing were
aggregated to 30 m X 30 m cells using energy-domain averaging, yielding 13,474
representative LAeq values across Southampton. Harmonising the imagery and
observations at this target grid created a consistent basis for CNN training.

Scale-aware CNN design and receptive field mapping.
To make explicit how the network’s spatial integration relates to urban physical scales,

we treat the CNN’s receptive field (RF) in metres rather than pixels. Let the imagery
be at 4 m per pixel and the input patch be PxP pixels; the patch’s physical field-of-



view is 4P metres on a side. Within the network, the theoretical RF after layer L
satisfies:

L-1
RF, =RF; 1 + (kr — 1)dg, [] s

t=1

where k; is kernel size, d; dilation, and s, stride at layer t (with RF, =1 pixel).
Mapping to metres uses the 4 m pixel size. Shallow layers (e.g., 3 X 3, stride 1)
therefore emphasise features at ~12-20 m scales, capturing street edges, narrow
verges, and small vegetation strips; mid-depth layers integrate ~50—150 m contexts,
where block morphology and frontage continuity matter; deeper layers, especially
where strides accumulate, integrate >150 m contexts that align with corridor-scale
patterns along A-roads and arterial connectors. In practice, this depth-dependent
expansion explains the observed smoothing: as the effective RF grows, predictions
increasingly reflect neighbourhood-scale continuity and corridor alignment,
attenuating very local fluctuations that are idiosyncratic to individual fagades or
micro-greenspace fragments. This smoothing is a design consequence of the RF-to-
metres mapping rather than an arbitrary artefact, and it is desirable to the extent that
the target variable (daytime LAeq aggregated at 30 m) is itself a neighbourhood-level
exposure.

In this chapter, the CNN adopts an EfficientNet-BO backbone adapted for multi-
channel regression. The backbone’s compound scaling implies that early blocks
operate with stride 1 and kernels, while downsampling blocks expand the RF more
rapidly through stride-2 operations. Under a typical P=64 patch configuration at 4 m
resolution (256 m footprint), the deepest effective RF covers on the order of a city
block to sub-corridor scale; increasing P shifts the integration window upward
without changing the RF growth law. We therefore view P and the stride schedule as
explicit scale controls: smaller patches promote local contrast at the expense of
corridor coherence; larger patches prioritise morphological continuity but yield
smoother outputs. Section 4.4.4 returns to this point when interpreting the spatial
smoothness of the predicted maps.

Worldview-2 Noise :
; Noise sample
Multispectral measurement B
Data data -

Multispectral
Data Preparation

Y

Image Feature
Extraction and
Processing

CNN Dataset
Construction

CNN Model
Architecture

Y

Model Training
and Validation

Noise
Prediction Map
Generation

Performance
Analysis

Figure 4.1 Flowchart of the Overall Methodological Framework
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As depicted in Figure 4.1, spectral indices and texture derivatives are processed into
multi-channel feature maps that align with the 30 m noise grid for supervised learning.
These paired data are used to train the EfficientNet-based CNN; the trained weights
are subsequently applied convolutionally to the full mosaic to generate continuous
maps. This represents a deliberate progression from the CatBoost baseline: while
Chapter 3 established the feasibility of remote-sensing-derived predictors, the CNN
tests whether hierarchical, scale-aware feature extraction more effectively captures
urban acoustic heterogeneity.

Relation to graph-based modelling (forward reference). Whereas the CNN expands its
RF over Euclidean patches, the graph-based framework in Chapter 5 propagates
information across a spatial graph defined on the 30 m lattice. Each GNN layer
aggregates one-hop neighbours so that depth corresponds to k-hop neighbourhoods—
an alternative, topology-aware notion of RF. This difference clarifies why CNNs tend
toward block- and corridor-scale smoothing, while GNNs can transmit influence
along anisotropic structures (e.g., transport corridors) even when they cut across pixel
grids. Detailed treatment of neighbourhood propagation and depth trade-offs is
provided in Section 5.2.

4.2.2 Generation of Remote Sensing Indices

Unlike the baseline framework in Chapter 3, which primarily relied on single-band
values and their textural summaries, the present study expands the feature design by
building upon raw band reflectances with additional multispectral indices and texture
maps derived from these indices. The rationale for this extension rests on both
theoretical and practical grounds. While individual spectral bands capture narrow
wavelength responses, these alone are often insufficient to disentangle the complex
mixtures of vegetation, impervious surfaces, and soil that typify urban areas. By
contrast, indices exploit band ratios and combinations to emphasise specific land-
surface properties, thereby reducing redundancy and improving the semantic
relevance of predictors for urban noise modelling. Moreover, index-derived texture
features further enhance the representation of spatial heterogeneity, yielding
biophysical proxies for phenomena directly implicated in acoustic propagation, such
as vegetation density, ground sealing, and water presence.

Accordingly, seven indices were systematically generated from the mosaicked and
resampled WorldView-2 imagery, chosen to cover the core environmental dimensions
of urban noise dynamics (Table 4.1). NDVI quantifies vegetation density, which is
critical for noise attenuation through absorption and scattering by tree canopies.
NDWI isolates water bodies, whose reflective surfaces influence sound propagation
and whose spatial presence alters local urban form. Four complementary built-up
indices (BAIL BSI, WVBI, NBEI) collectively characterise the extent and intensity of
impervious surfaces that dominate traffic-related noise sources. Despite their shared
focus, these indices differ in spectral design and error sensitivities: BAI accentuates
built-up zones but may exaggerate edges next to vegetation; BSI introduces soil-
related confusion; WVBI, specifically adapted for WorldView data, reduces shadow
artefacts; and NBEI improves over BSI by minimising soil misclassification.
Retaining these subtle distinctions ensures that the CNN framework can exploit



diverse spectral cues, rather than inheriting the biases of a single index. Finally, the
Red-Green Index (RGI) captures chromatic contrasts linked to vegetation—soil-built-
up transitions, offering an additional discriminative layer in complex mixed-use zones.

Index Definition Reference
Normalized Difference
Red — NIR1
Vegetation Index NDVI = m Jensen, 2007
(NDVI)
Normalized Difference Green — NIR1
NDWI = —
Water Index (NDWI) Green + NIR1 Gao, 1996
Built-up Area Index Blue — NIR1 .
BAl = ———
(BAI) Blue 1+ NIRL Adeyemi et al., 2021

Built-up Spectral Index
(BSI)

_ Yellow — 2 x NIR1
"~ Yellow + 2 x NIR1

BSI

Sameen & Pradhan,
2016

Red-Green Index (RGI)

_ RedEdge — Green
~ RedEdge + Green

RGI

Motohka et al., 2010

WorldView Built-up
Index (WVBI)

WV — BI =

Coastal Blue — Red Edge
Coastal Blue + Red Edge

Wolf, 2012

Normalized Built-up
Extraction Index (NBEI)

NBEI =

(NIR2 — NIR1) — (Green + RedEdge)

(NIR2 — NIR1) + (Green + RedEdge)

Adeyemi et al., 2021

Table 4.1 Summary of the indices, their definitions, and key references

This design marks a clear methodological progression from Chapter 3. Whereas the
baseline relied on single-band descriptors that emphasised tonal variation without
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semantic context, the present framework deploys indices as structurally meaningful
representations of environmental factors governing acoustic conditions. By moving
from raw reflectance to indices, the CNN is provided with richer, less redundant, and
more physically interpretable inputs, strengthening its ability to learn generalisable
patterns.

Each index was computed at 4 m spatial resolution following atmospheric correction
and geometric alignment, balancing spatial detail with the need to harmonise inputs
with the 30 m acoustic aggregation grid. The resulting continuous maps represent
complementary environmental layers: vegetation greenness, surface wetness, and
multiple facets of urban built-up intensity. Together, these indices offer a semantically
grounded and methodologically robust basis for the CNN to learn acoustic-relevant
surface properties beyond what single bands could convey.

Figure 4.2 presents the spatial distribution maps of the seven indices across
Southampton. The maps illustrate the city’s heterogeneity, with vegetation-dominated
areas in Southampton Common, high-density built-up zones in the city centre, and
distinct water features along the River Itchen. They also demonstrate how indices
targeting built-up structures, though broadly similar, capture fine-scale differences in
the urban fabric. These differences are particularly important in contexts such as
dense residential areas versus commercial-industrial zones, where subtle spectral
distinctions may influence noise propagation. By stacking these indices as multi-
channel CNN inputs, the framework ensures that the model can learn from both
consistent urban signals and index-specific variations.

BSI

NDWI WVBI - RGI
Figure 4.2 Maps of BAIL, BSI, NBEI, NDVI, NDWI, WVBI, and RGI for the study area

4.2.3 Generation and Selection of Texture Feature Maps

To complement the spectral indices introduced in Section 4.2.2, this study extended
the feature space through a structured texture analysis pipeline. Unlike the baseline in
Chapter 3, which relied on the five standard GLCM descriptors available in ENVI,
here the analysis drew on the more comprehensive implementation provided by the
Orfeo Toolbox (OTB), which offers a suite of 28 texture features spanning simple,
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higher-order, and advanced descriptors (detailed definitions and formulations are
provided in Appendix I). This broader design allowed the CNN to access a richer set
of structural cues from the imagery, improving its ability to capture the fine-scale
spatial heterogeneity of urban surfaces.

A critical methodological refinement concerned the quantisation of input data prior to
co-occurrence analysis. In Chapter 3, features were derived from imagery quantised at
64 grey levels, following conventional fine-scale texture analysis. In the present study,
this was optimised to 32 grey levels. This adjustment reflects a deliberate trade-off:
while 64 levels can overfit fine tonal variations and produce excessively sparse co-
occurrence matrices, 32 levels preserve sufficient discriminatory power at the urban
scale while yielding more stable estimates of descriptors such as entropy and
correlation. Empirical research supports the use of 1632 levels in urban applications
(Hall-Beyer, 2017), and given that the imagery was resampled to 4 m resolution to
align with the 30 m acoustic aggregation grid, 32 levels were judged optimal for
balancing statistical robustness and computational efficiency.

GLCMs were computed using a 5 X 5 moving window with a one-pixel offset, across
four orientations (0°, 45°, 90°, 135°), and subsequently averaged to ensure rotational
invariance. Each index generated 28 candidate descriptors, spanning measures of local
contrast, entropy, uniformity and higher-order heterogeneity. Yet, not all descriptors
proved equally discriminative in practice. A comparison between Grey-Level
Nonuniformity (GLN) derived from NDVI and Homogeneity derived from BAI
illustrates the sharp divergence in their effectiveness at the urban scale (Figure 4.3).
For this reason, visual inspection was adopted as the first stage of feature evaluation,
identifying descriptors that showed meaningful spatial stratification versus those
collapsing into uniformity.

GLN reveals pronounced stratification across the Southampton urban landscape: the
south-western harbour appears markedly dark, the compact city centre displays
intermediate tones, and non-urban vegetation emerges as the lightest areas. These
contrasts arise from GLN’s sensitivity to irregularity in grey-level distributions,
enabling the effective differentiation of surface heterogeneity at city scale. By contrast,
Homogeneity from BAI collapses into near-constant values over most of the city, with
only large uniform areas such as water bodies appearing distinct. This outcome
reflects the descriptor’s tendency to reward local spectral similarity while suppressing
fine-scale urban heterogeneity, which substantially reduced its information content
and ultimately led to its exclusion from the retained feature set.



(b) Homogeneity derived from BAI
Figure 4.3 Retained versus excluded GLCM texture maps.
(a) GLN derived from NDVI, showing stratification between harbour, city centre, and

non-urban vegetation. (b) Homogeneity derived from BAI, largely collapsed to
uniform values and excluded from the feature set.

(a) GLN rved from NDVI

While visual analysis was critical in the first stage of curation, the second stage relied
on iterative model training to evaluate which groups of descriptors improved
predictive performance. Starting from the single-band baseline, additional subsets—
GLCM maps from spectral indices, from individual bands, and grouped into simple,
higher-order, and advanced classes—were progressively tested. This process initially
expanded the feature space (“addition”) and subsequently refined it (“subtraction”),
ensuring both empirical validation and parsimony.

While the adoption of 32 grey levels improved the statistical robustness of GLCM
features at the urban scale, a substantial subset of descriptors still produced maps with
very limited or redundant information—for example, large uniform areas with little
discriminative capacity. In this context, eliminating such features was not only a
matter of computational efficiency but also a practical requirement, as the modelling
task demands both sufficient spatial coverage and a diverse yet informative feature set.
The retained feature maps (summarised in Appendix II) provided representations that
were more coherent and semantically aligned with urban structures, ensuring that the
CNN was trained on inputs with demonstrable spatial relevance. In this way, the final
suite of 69 GLCM feature maps established a stable and semantically meaningful
textural foundation for the CNN input tensor.

4.2.4 CNN Input Construction and EfficientNetB0 Architecture Design

To preserve the spatial configuration and semantic richness of the remote sensing data,
this study adopts a patch-based convolutional neural network (CNN) framework,
enabling direct learning from high-resolution imagery rather than aggregated statistics
used in the CatBoost baseline. Specifically, the EfficientNetBO backbone (Tan & Le,
2019) is employed for its strong accuracy—efficiency trade-off achieved through
compound scaling of depth, width, and resolution.
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Each patch is centered on a 30 m x 30 m grid cell containing ground-truth LAeq
measurements and extracted from the 4 m resolution imagery. Several patch sizes
were tested (150x150, 224 %224, 320x320), with 250x250 pixels (= I km x I km)
selected as the optimal balance between contextual richness and computational
tractability. This window captures road networks, residential blocks, and vegetation
buffers—features known to influence noise propagation (Yang et al., 2024).

The final input tensor has dimensions (250, 250, 84), integrating three data sources:
(1) 69 GLCM-derived texture layers (entropy, correlation, contrast, etc.);

(2) seven remote sensing indices (NDVI, NDWI, BAIL BSI, RGI, WVBI, NBEI);

(3) eight original WorldView-2 multispectral bands (panchromatic excluded).

This unified tensor embeds spectral and textural information into a single structured
representation. Figure 4.4 illustrates the extraction workflow, where vector-based
noise samples are projected to raster layers, fixed-size neighborhoods are defined, and
consistent patches are cut across all feature stacks.

(a) Select Vector Point (b) Determine the raster area
Size: (width x width)

(d) Get the image portion of

this data sample

Size: (width x width x number of
feature maps stacked )

(c) Extract this raster area
for all feature maps

Figure 4.4 Workflow for CNN patch extraction and dataset assembly

(a) noise samples with vector coordinates, (b) projection to raster feature maps and
neighborhood definition; (c) patch extraction across stacked feature layers; (d)
resulting 250 x 250 x 84 multi-channel patch.

To accommodate the high-dimensional inputs, EfficientNetB0’s initial convolution

layer was modified to accept 84 channels, and the final fully connected layer replaced
with a single regression node for LAeq prediction (Figure 4.5).
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Figure 4.5 EfficientNetB0 modified architecture for multi-channel regression (with 84
input channels and single-node regression output)

To enhance robustness, Gaussian noise perturbation (¢ = 0.10) was applied during
training to the input channels. This mild stochasticity does not mimic noise levels
directly but simulates sensor and environmental fluctuations, encouraging the model
to learn stable spatial patterns. Given that field measurements span peak and off-peak
traffic hours (Figure 3.3), this strategy aligns model training with real-world temporal
variability. Empirical studies show hourly LAeqg fluctuations of = 5-10 dBA in urban
cores (Alvares-Sanches et al., 2021b), supporting this regularization approach.

The dataset was partitioned using stratified random sampling: noise levels were
divided into ten strata to preserve the distribution of low-, medium-, and high-noise
conditions. A 70 % 15 % 15 % split for training, validation, and testing allows stable
monitoring of convergence and generalisation, aligning with common CNN practices.

By combining large contextual windows, multi-source feature stacks, and a
parameter-efficient architecture, this framework provides a spatially informed deep
learning approach for urban noise prediction, while remaining flexible for scale-
sensitive experiments.

4.2.5 Model Training and Prediction Workflow

Model training and prediction share the same patch construction pipeline, ensuring
consistent spatial resolution (4 m), patch size (250x250), and target grid (30 m).
During training, patches centered on labeled grid cells are used to fit the network,
while prediction involves tiling the entire study area into overlapping patches, feeding
them to the trained CNN, and reconstructing the final 30 m resolution noise exposure
map (Figure 4.6).



(a) Create Vector points for every 30m x 30m of which cover the entire study area at a uniform
feature map density

[ Trained model

(b) Extract raster regions of all feature maps of the (c) Do prediction and generate noise map

same size as the training dataset for each vector point
Figure 4.6 Prediction pipeline flowchart — depicting full-scene feature cube, patch
extraction, model inference, and output reconstruction to 30 m grid

The consistency of input format between training and prediction is a critical
component of this workflow. By standardizing both the spatial neighborhood size
(1000 m), input resolution (4 m), and target grid resolution (30 m), we ensure that the
model's generalization is not compromised by inconsistencies in input design.
Furthermore, this modular structure supports future transferability to new cities or
temporal scenes, where identical patching and feature stacking routines can be applied
to enable seamless inference using a pre-trained model.

This methodical approach to model training and deployment ensures both robustness
and scalability in real-world urban noise mapping applications. The subsequent
section (Section 4.3) will present and evaluate the model’s prediction outputs, using
both quantitative error metrics and spatial visualizations.

4.3 Results

4.3.1 Model Training Curves and Convergence Behavior

To evaluate the training dynamics and convergence stability of the CNN model, the
dataset was partitioned into 70% training, 15% validation, and 15% testing subsets
using a stratified sampling strategy. Figure 4.7 illustrates the evolution of loss, Mean
Absolute Error (MAE), and the coefficient of determination (R?) across epochs,
averaged over the validation folds.

The EfficientNetB0O backbone demonstrated smooth and stable convergence after
approximately 140-150 epochs. The validation MAE stabilized around 4.62 dBA,
with R? reaching 0.496, while performance on the independent test set converged to
MAE = 4.79 dBA and R? = 0.491. These values confirm that the model maintained
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strong generalization beyond the training data, without signs of overfitting or
underfitting. The trajectories of both MAE and R? show gradual and monotonic
improvement before reaching a plateau, indicating that the optimization strategy
(Adam optimizer with learning-rate scheduling, early stopping, and dropout) provided
a stable balance between bias and variance.

Beyond convergence dynamics, an extensive set of controlled experiments was
undertaken to evaluate how different combinations of input channels, texture
descriptors, and model architectures influenced predictive performance. Table 4.2
(Performance of different feature-map combinations and architectures in CNN-based
noise prediction, reported on the test set) summarises these experiments, with the
best-performing configuration highlighted at index 16. This model, based on
EfficientNetB0 with texture features derived exclusively from WVBI, NDVI, and BSI,
achieved the most robust balance between predictive accuracy and spatial fidelity.
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Figure 4.7 Model training curves across epochs — showing loss, MAE, and R? for
training and validation sets

Three-stage feature screening strategy

The feature selection strategy was conducted in three stages, with each step guided
not only by predictive performance but also by computational feasibility. Given the
high dimensionality of the remote sensing input (potentially hundreds of channels
once GLCM textures are included), resource limitations played a decisive role in the
design. The size of the input neighborhood, the number of stacked feature maps, and
the depth of candidate architectures all imposed significant computational costs. For
example, EfficientNetB1 and deeper variants were not tested, as the required GPU
memory would have exceeded available resources without a proportional gain in
model interpretability or stability.



Table 4.2 summarises the tested combinations. In the notation, 8b refers to the eight
original multispectral bands, while 7c represents the seven remote sensing indices
(NDVI, NDWI, BAI, BSI, RGI, WVBI, NBEI). The terms simple, advanced, and
higher correspond to the 28 GLCM texture descriptors available in the Orfeo Toolbox,
divided into 8, 10, and 10 metrics respectively (see Appendix I for formal definitions).
The keyword local indicates the five standard GLCM features (contrast, correlation,
entropy, homogeneity, and energy) used in the Chapter 3 baseline, which are a subset
of the simple group.

Table 4.2 Performance of different feature-map combinations and architectures in
CNN-based noise prediction (testset MAE and R?)

Index Single bands RS Indexs Fz:‘;;:e Patch size model MAE R?
1 8b+40 local None 48 150%150%48 ResNet50 5.66 0.391
2 8b+40 local None 48 150%150%48 ResNet34 5.63 0.388
3 8b+40 local None 48 150%150%48 VggNet 5.75 0.376
4 8b+40 local None 48 320%320%48 ResNet50 5.48 0.418
5 8b+40 local None 48 250%250%48 ResNet50 5.49 0.426
6 8b+40 local 7c 55 250%250%55 ResNet50 5.43 0.433
7 8b+40 local 7c 55 250%250%55 EfficientNetB0 5.42 0.435
8 8b+64 simple 7c 79 250%250%79 EfficientNetB0 5.39 0.441
9 8b 7¢c+56 simple 71 250%250%71 EfficientNetB0 5.33 0.448
10 8b+80 advanced 7c 95 250%250%95 EfficientNetB0 5.35 0.431
11 8b 7¢+70 advanced 85 250%250%85 EfficientNetB0 5.34 0.433
12 8b + 80 higher 7c 95 250%250%95 EfficientNetB0 5.31 0.44
13 8b 7¢+70 higher 85 250%250%85 EfficientNetB0 5.22 0.451
14 8b 7c+25%5 mixed 140 250%250x120 EfficientNetB0 4.82 0.478
15 8b 7c+25 x 3 mixed 90 250%250%90 EfficientNetB0 4.85 0.488
16 8b 7¢+25 x 3 mixed - 6 84 250%250%84 EfficientNetB0 4.79 0.491
17 8b 7¢+25 x 3 mixed - 6 84 250%250%84 ResNet50 4.81 0.49

The first stage (rows 1-5 in Table 4.2) focused on selecting a backbone architecture
and an appropriate neighborhood size. Several networks were compared, including
VGGNet, ResNet34, ResNet50, and EfficientNetB0O. Results indicated that deeper
ResNet variants could reach comparable MAE scores but introduced striping artefacts
in the predicted maps, undermining spatial realism. EfficientNetB0 achieved stable
performance with fewer parameters, making it the most resource-efficient choice.
Regarding neighborhood size, the 250 x 250 configuration (equivalent to a / km x [
km patch at 4 m resolution, i.e. a 500 m effective radius) provided a physically
interpretable scale for capturing road corridors, urban blocks, and green buffers.
Although slightly larger patches (e.g., 320 x 320) yielded marginal improvements, the




performance gain was minimal compared with the increase in computational cost. The
250 x 250 design was therefore adopted as a balanced compromise.

The second stage (rows 8—13) investigated whether textural descriptors should be
generated from raw spectral bands or from remote sensing indices. When paired with
the Orfeo Toolbox’s comprehensive 28-feature set, index-based descriptors
consistently outperformed band-based ones in both MAE and R2 This is because
indices such as NDVI, WVBI, and BSI amplify biophysical contrasts relevant to
acoustic propagation, making the derived textures more semantically meaningful than
those produced directly from raw bands.

The third stage (rows 13—17) involved progressive simplification of the feature set. At
each step, descriptors with low discriminative power or redundancy were excluded.
Specifically:

1. Row 13 excluded sum average, sum variance, and sum entropy, which contributed
little dynamic range.

2. Row 14 removed GLCM features derived from BAI and NDBI, as these indices
tended to overlap with other built-up measures while providing limited additional
information.

3. Row 15 further excluded features derived from NDWI and RGI, on the grounds
that water and vegetation patterns were already adequately delineated by NDVI- and
BSI-based textures.

4. Rows 16 and 17 introduced finer pruning, removing Cluster Shade and Cluster
Prominence under both BSI and NDVI, and additionally excluding Difference
Variance and Inertia from NDVI.

This progressive reduction distilled the input space to a compact but semantically rich
subset of texture maps. The optimal configuration, reported at row 16, retained
descriptors generated exclusively from WVBI, BSI, and NDVI. This model, based on
EfficientNetB0O, achieved MAE = 4.79 dBA and R?> = 0.491 on the test set,
representing the most robust trade-off between predictive accuracy, spatial fidelity,
and computational efficiency.

4.3.2 Predicted Noise Map over the Entire Study Area

After training and validation, the EfficientNetBO model was applied to the entire
study area in a fully spatial prediction mode. As described in Section 4.2.6, input
patches were constructed for all 30 m x 30m grid cells across Southampton, with
each patch centered on its corresponding grid cell and composed of 84 feature
channels. This resulted in a complete, spatially continuous noise map at 30 m
resolution.

Figure 4.8 presents the predicted noise map overlaid on the WorldView-2 base
imagery. The map clearly reflects the morphological and functional complexity of
Southampton’s urban landscape. High-noise zones appear as well-defined linear
structures aligned with major transportation corridors, including the A33 and A3024
trunk roads and key intersections in the city center. These zones consistently show



predicted LAeq levels exceeding 70 dBA, which is consistent with expectations for
high-traffic areas in dense urban settings.

In contrast, low-noise regions (<55 dBA) are predominantly located in peripheral
residential neighborhoods, parklands, and the eastern forested areas along the river.
These areas are characterized by high NDVI and texture smoothness, indicating dense
vegetation and homogenous surface coverage. The model appears to have
successfully captured these spatial relationships, associating green infrastructure with
reduced acoustic exposure.

Transitional areas—such as urban-rural interfaces, residential-commercial edges, and
zones adjacent to highways—exhibit medium noise levels (55-65 dBA), forming soft
gradients rather than abrupt boundaries. This suggests the model’s capacity to encode
contextual variation at the neighborhood scale, thanks to the 1 km patch input size
which allows broader spatial features to influence predictions.
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Figure 4.8 Predicted urban noise exposure map (30 m resolution) over Southampton
with light gray canvas base imagery overlay

Overall, the prediction surface exhibits both structural clarity and contextual
smoothness. It successfully highlights macro-scale urban noise phenomena (e.g.,
traffic corridors), while also representing micro-scale variations across smaller urban
blocks. The map provides a spatially explicit foundation for interpreting noise
distribution and guiding subsequent planning or mitigation interventions.
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4.3.3 Prediction Accuracy and Validation on Labeled Samples

To evaluate the internal consistency of the CNN predictions, model outputs were
compared against the 13,474 labelled 30 m x 30 m grid cells used for validation.
While these points were part of the training dataset and therefore do not represent an
independent test, the analysis provides valuable insights into systematic prediction
biases, spatial variability, and the effective dynamic range of the model.

Figure 4.9 presents the spatial distribution of measured and predicted values. Panel (a)
shows measured noise levels, spanning a range from 39.1 to 100.1 dBA, while panel
(b) shows CNN predictions, with a slightly narrower range of 41.04 to 97.38 dBA.
Both maps reproduce the same broad spatial patterns, with high exposures along
arterial corridors and central urban zones, and lower values associated with vegetated
or peripheral areas. This alignment indicates that the CNN is able to reproduce the
dominant structures of the acoustic environment, although the narrower predictive
range reflects a modest regression-to-the-mean effect.
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Figure 4.9 Prediction error map over labeled validation samples — showing spatial
distribution of residuals (dBA)

Figure 4.10 overlays measured and predicted maps to visualise differences at
individual grid cells. Most discrepancies fall within the 0—4.27 dBA range, with only
a minority exceeding 12.8 dBA. These larger deviations are typically located in
mixed-use or transitional areas, where acoustic environments are highly variable and
short-term anomalies (e.g., intermittent traffic bursts) are not fully represented in
spectral-textural predictors.
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Figure 4.10 Overlay of measured and predicted noise maps with difference classes
highlighted

The predictive behaviour of the CNN model is summarized in Figure 4.11. Panel (a)
shows the residual distribution (Predicted — Measured), while panel (b) presents the
measured versus predicted noise levels together with the 1:1 identity line. The
histogram in panel (a) exhibits a sharply defined central peak around zero, with most
residuals confined within £5 dBA and only a small proportion of samples extending
beyond +10 dBA. The curve is nearly symmetric but shows a mild positive skew,
indicating a systematic mean bias of approximately +2.1 dBA. This suggests that the
CNN tends to slightly overestimate actual noise levels across the study area.

Such overestimation is physically plausible and statistically consistent with the
characteristics of the training data. As detailed in Chapter 5, a subset of field
measurements includes sporadic high readings likely caused by transient
environmental conditions such as wind interference or reflective surfaces, which
elevate measured sound levels in localized spots. When these samples are spatially
aggregated into 30 m cells, they disproportionately raise the global mean of the
measured dataset (from 59.76 to 60.57 dBA). Consequently, the CNN—trained on
these aggregated targets — learns a slightly higher baseline response, producing
predictions with a modest upward shift relative to the measured distribution.
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Figure 4.11 Histogram of residuals, (b) Scatter plot of measured vs. predicted noise
levels with identity line

Panel (b) confirms this trend. The scatter of measured versus predicted values forms a
dense, nearly linear cluster around the 1:1 line, particularly within the dominant mid-
range of 45— 70 dBA, demonstrating strong consistency between observed and
estimated noise levels. Systematic deviations emerge only at the distributional
extremes: predictions tend to saturate for the highest observed exposures (> 75 dBA),
reflecting a controlled attenuation of extreme values induced by the model’s
regularization and Gaussian noise augmentation strategy (Section 4.2.4). At the lower
end (< 45 dBA), the model exhibits mild overestimation, a common artefact in
regression models trained on skewed environmental data where low-intensity samples
are underrepresented.

Overall, the CNN achieves a well-balanced performance—accurate across the main
exposure range, robust against local measurement anomalies, and physically
interpretable in its residual behaviour. The small positive bias reflects the combined
effects of measurement aggregation and model regularization rather than a calibration
error, underscoring the CNN’s stability and realism in predicting continuous urban
noise fields.

4.3.4 Spatial Extremes: Quietest and Noisiest Zones
To further investigate the spatial patterns captured by the CNN, we extracted the top

20% noisiest and top 20% quietest grid cells across the study area (135 cells in each
category). These boundary cases highlight the model’s sensitivity to contrasts in land
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cover and urban form, and also reflect the role of the dominant spectral indices—
WYVBI, NDVI, and BSI—in shaping predictions.

The noisiest grid cells (Figure 4.12a) are clustered along Southampton’s primary
traffic corridors, including the inner ring road, dock access routes, and intersections in
the commercial core. These areas are characterised by low NDVI (indicating minimal
vegetation), high BSI (denoting extensive impervious and bare surfaces), and low
WVBI (marking built-up intensity along the coastal-red-edge gradient). Such
conditions correspond to dense asphalt and concrete coverage, which amplify and
reflect noise. The model assigns LAeq values exceeding 75 dBA in these regions,
aligning closely with high-exposure zones documented in field surveys.

In contrast, the quietest grid cells (Figure 4.12b) are concentrated in peripheral green
areas such as Southampton Common, Itchen Valley Country Park, and forested
buffers on the city’s eastern edge. These areas exhibit high NDVI (dense vegetation
cover), low BSI (minimal impervious surfaces), and elevated WVBI (reflecting
vegetated—built contrasts at landscape edges). Together with their distance from major
transport corridors, these features create strong buffering effects. Predicted levels in
these cells fall below 50 dBA, underscoring the capacity of vegetation and land-cover
heterogeneity to mitigate urban noise.
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Figure 4.12 Spatial distribution of top 20% noisiest grid cells & top 20% quietest grid
cells

The separation between these two extremes not only demonstrates the model’s ability
to discriminate acoustic conditions but also clarifies how its feature composition
translates into spatial predictions: high noise is systematically associated with low
NDVI, high BSI, and suppressed WVBI, while quiet zones are defined by the inverse.
These patterns are consistent with theoretical principles of noise propagation and
validate the explanatory role of remote sensing—derived indices in capturing urban
acoustic dynamics.

4.3.5 Quantitative Comparison with CatBoost Baseline



90

804

Predicted Noise (dBA)

50

40 4

(a) Measured vs Predicted Noise Levels for
CatBoost and CNN models (overlapping

To ensure a rigorous comparison between the proposed CNN framework and the
CatBoost baseline model introduced in Chapter 3, both models were evaluated over
the same spatial subset consisting of 10,578 grid cells within the overlapping region
east of the River Itchen. This region was selected because the CatBoost model, trained
and predicted on a single WorldView-2 image tile, did not extend to the western half
of Southampton. Restricting the analysis to the shared coverage area enabled a
statistically fair, one-to-one evaluation of prediction accuracy under identical
environmental and spectral conditions.

Figure 4.16(a) displays the measured versus predicted scatter plots for both models.
Each point corresponds to a 30 m x 30 m grid cell with observed and predicted A-
weighted sound levels (dBA). The diagonal 1:1 line marks perfect prediction;
deviations from this line represent over- or underestimation. The CNN outputs are
more tightly clustered around the identity line compared with CatBoost, indicating
improved consistency across the full noise range. A slight upward shift of both
distributions, visible in the upper-right quadrant, reflects the systematic high-bias
tendency—both models predict marginally higher noise levels than measured values,
a phenomenon examined further below.

Complementing this, Figure 4.16(b) presents the residual histograms and spatial error
distributions (Prediction — Measurement). Both models exhibit a systematic positive
bias, indicating a general tendency to overestimate observed noise levels; however,
the CNN demonstrates a faster attenuation of this bias. Specifically, in the residual
range of +6 to +12 dBA, the frequency of overpredictions is markedly lower for the
CNN compared to CatBoost, whose distribution displays a heavier upper tail.
Consequently, the CNN’s residuals appear more compact and approximately
symmetric around zero, whereas CatBoost exhibits a mild right-skewed profile
dominated by moderate-to-high positive errors.
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Figure 4.13 Measured vs Predicted Noise Levels and Residual Distributions for
CatBoost and CNN models

The comparative performance metrics are summarised in Table 4.3 and provide
complementary perspectives on model evaluation, balancing global fit, local precision,
and practical interpretability. The Mean Absolute Error (MAE) quantifies the average
magnitude of absolute deviations between predicted and measured noise levels,
offering a straightforward estimate of the expected prediction error expressed in
decibels (dBA). In contrast, the Root Mean Square Error (RMSE) assigns greater
weight to larger residuals and is therefore more sensitive to occasional severe
mispredictions. In the context of environmental acoustics, RMSE values typically
observed in urban noise modelling studies fall within the range of approximately 45
dBA, reflecting realistic levels of prediction uncertainty for city-scale mapping (Staab
et al., 2022; Van Renterghem et al., 2023).

The Bias metric captures systematic offsets between predicted and observed values,
with positive values indicating consistent overestimation and negative values
representing underestimation. Meanwhile, the Coefficient of Determination (R ?)
measures the proportion of variance in observed noise levels that is explained by the
model, reflecting its overall explanatory power.

Finally, this study introduces Acc@=+5, defined as the proportion of predictions falling
within =5 dBA of the measured reference. This threshold carries clear physical and
perceptual significance: a 5 dBA deviation approximates the smallest change typically
perceivable by the human ear and also corresponds to the tolerance margin commonly
applied in strategic noise-mapping and health-risk assessment frameworks (WHO
2018; EC 2002). Unlike MAE or R?, which describe statistical accuracy, Acc@ =5
offers a perceptually and policy-relevant measure of how frequently a model achieves
predictions that would be regarded as acceptable in practical urban-noise-management
contexts.

Table 4.3 Overall quantitative comparison of CatBoost and CNN models (on identical
test samples)

| Model || Count || MAE ||RMSE || Bias | R® |[Acc@=5]
gf)tf]?e‘;‘;ﬁ) 10578 || 550 || 6.97 | +2.88 || 0.339 || 0.539

|CNN (softened) || 10578 |[ 4.51 || 6.06 || +2.42 | 0.500 || 0.668 |

Across identical grid cells, the CNN achieved consistent improvement in all metrics:
MAE decreased by 18 % (from 5.50 to 4.51 dBA), RMSE fell by 13 %, R? increased
from 0.34 to 0.50, and Acc@=5 rose from 53.9 % to 66.8 %. These improvements
indicate not only better global accuracy but also a meaningful increase in the
proportion of grid-level predictions within the acoustically acceptable error range.
The reduced bias (+2.42 vs +2.88 dBA) suggests that the CNN better moderates
overprediction, though a slight positive shift remains, which is further addressed in
Chapter 5 through spatial aggregation and neighborhood-based learning.

To examine whether performance gains vary by urban morphology, Table 4.4
presents model accuracy statistics for the major Urban Atlas 2012 land-use classes in



the overlapping region (count > 1000). For each class, the mean ground-truth (GT)
noise level, MAE, accuracy within £5 dBA, and model bias are reported, along with

the percentage improvements achieved by the CNN.

Table 4.4 Per-class comparison of model accuracy across major LULC types (derived

from Urban Atlas 2012)

Mean MAE
MAE | AMAE |Acc@+5 Acc@+5 AAcc Bias Bias

LULC Class Count GT | CatBoos CNN (%) Cat CNN (Pp) Cat CNN

(dBA) t
Oitier mopl o 1950 | 6335 571 | 404 | 294 0491 0722 | +23.1 @ +3.95 | +1.80
associated land
Industrial,
commercial, 1418 63.03 5.80 4.22 -27.1 0.500 | 0.682 | +182 | +4.22 | +1.88
public etc.
;222““‘”‘“ 1100 | 57.71 @ 554 | 441 @ 203 | 0555  0.687  +132 +1.98 +2.80
Discontinuous
dense urban 2582 59.30 5.50 4.93 -10.5 0.544 0.630 +8.56 +3.06 +3.05
fabric
Discontinuous
medium density 1853 59.41 5.22 4.95 =5.1 0.575 | 0.623 | +4.80 | +1.89 | +2.68
urban fabric

The improvements are most evident in traffic-related and industrial zones, where
CNN’s convolutional receptive fields can capture structured gradients and material
transitions (e.g., asphalt, metal roofing, concrete facades) that strongly influence
acoustic reflections and emissions. The relative gains in residential and vegetated
areas are more modest but remain consistent, reflecting the lower intra-class variance
of noise exposure.

Notably, both models predict slightly higher mean noise levels than measured data
(CNN 63.09 dBA; CatBoost 63.58 dBA versus ground truth 60.57 dBA). This
apparent overestimation is not a modeling error per se but reflects data-driven
amplification of high-intensity outliers. Some field measurements captured transient
or wind-induced peaks that, after aggregation into 30 m cells, became statistically
overweighted relative to background noise. The upward shift of the target mean (from
59.76 at 1 m to 60.57 at 30 m resolution) partially explains why both models’
predictions exceed measured averages.

This positive bias trend is re-evaluated in Chapter 5, where node-level encoding and
exponential distance weighting explicitly account for the attenuation of distal
influences. Chapter 6 further demonstrates that when domain-adaptive graph
structures are employed, this overestimation is largely mitigated through spatial
context alignment and pseudo-label regularization.

Overall, the CNN framework provides a statistically and physically superior
representation of urban acoustic patterns compared with the baseline CatBoost
regression. The observed 12—-18 % reduction in predictive errors and > 10 pp
improvement in perceptual accuracy underscore the benefits of deep convolutional
learning on multispectral texture inputs. However, the persistence of mild high-bias
behaviour highlights an important limitation of patch-based CNNs—the tendency to




amplify localized hotspots without explicit modeling of spatial attenuation. This
insight directly motivated the graph-based framework introduced in Chapter 5, where
distance-weighted feature aggregation and neighborhood message passing offer a
more physically grounded approach to noise propagation modeling.

4.4 Discussion

4.4.1 Comparison with Previous Studies and Official Noise Maps

To assess the practical accuracy, spatial fidelity, and comparative strengths of the
CNN-based noise prediction model developed in this study, its outputs were
systematically compared against two benchmark references: (i) the gradient boosted
tree (GBT) model presented by Alvares-Sanches et al. (2021a), and (ii) the official
strategic noise maps produced under the European Noise Directive (END), which
include the widely used Lden (Day-Evening-Night Level) and Lnight (Nighttime
Level) indicators, generated through mechanistic environmental noise simulations by
local authorities (DEFRA, 2020a; DEFRA, 2020b).

The END dataset represents the regulatory standard for environmental noise
assessment across Europe. Its Lden metric provides an annual weighted 24-hour
average with a +5 dB penalty for evening hours (19:00-23:00) and a +10 dB penalty
for nighttime hours (23:00-07:00), while Lnight isolates nighttime exposure. Both
maps are derived from traffic counts, railway flows, and major airport operations,
simulated through the CNOSSOS-EU propagation framework. While robust, this
framework is heavily transport-focused: it captures motorway and arterial road
corridors with precision but leaves large intra-urban areas—including secondary roads,
ports, and mixed-use zones—effectively blank. In Southampton, this results in a
strong delineation of trunk routes and airport corridors, but the waterfront and dense
residential-commercial districts show little to no modeled exposure.

The GBT model by Alvares-Sanches et al. (2021a) represented a significant step
toward data-driven mapping. By drawing on a diverse set of expert-designed features
(including land use metrics, road proximity, and field of view from aerial perspective),
it achieved good alignment with observed patterns along major transport
infrastructures. However, two structural limitations were evident. First, because its
feature design implicitly gave higher weight to major road categories, the model
produced sharp contrasts between primary and secondary roads without the
transitional gradients expected in real environments. This reflects the bias embedded
in the predictor set rather than the true acoustic landscape. Second, although smoother
than CNN outputs, the GBT predictions tended to generalise over complex mixed-use
districts, underestimating heterogeneity within fringe or buffer zones.
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Figure 4.14 Comparative noise exposure maps - (a) CNN model (this study); (b)
GBT model by Alvares-Sanches et al., 2021a; (c1)END round 3 official Lden map;
(c2) END round 3 official Lnight map

Official Lden map is the annual average noise level between 23.00 and 07.00, and
official Lden map is the annual average noise level with separate weightings for the
evening and night periods.

The CNN-based framework developed here addresses these issues by operating
directly on high-resolution WorldView-2 imagery, learning filters that hierarchically
capture edges, textures, and spectral patterns without reliance on expert weighting
schemes. This enables CNNs to highlight fine-scale hotspots, such as intersections
and arterial edges, while moderating noise estimates in vegetated or semi-enclosed
fringe areas (Figure 4.14a). Unlike the GBT model (Figure 4.14b), which exaggerates
the step-change between major and minor road classes, the CNN produces more
continuous gradients informed by surface texture and land cover. Nevertheless, the
CNN is not without limitations: because it operates on discrete, non-overlapping
patches, outputs sometimes exhibit block-boundary artifacts and a lack of spatial
continuity, leading to a “mosaic-like” appearance in certain regions. Moreover,
extreme values at both ends of the noise distribution are occasionally regressed
toward the mean, producing muted differentiation in some micro-locations.

A further comparison with the official END maps (Figures 4.14c1-c2) reveals
complementary strengths and weaknesses. On the one hand, the CNN corrects
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systematic omissions in the END outputs by highlighting intersections and mixed-use
edges, which END’s mechanistic focus on primary roads largely overlooks. On the
other hand, both CNN and GBT models miss airport-related noise in the northeast
sector of Southampton, a gap attributable to two factors: the absence of sufficient in
situ samples near the airport during data collection, and the lack of distinctive surface
features in remote sensing imagery that would signal air traffic as an acoustic source.
This highlights a structural limitation of purely image-driven approaches: while
powerful for surface-driven noise processes (roads, vegetation, urban morphology),
they remain effectively blind to non-surface-driven sources such as aircraft or
industrial operations, unless supported by additional semantic or sensor-based layers.

From a methodological standpoint, the comparison underscores the trade-offs between
approaches. The GBT model reflects the strength—and bias—of expert-driven feature
design, producing smoother outputs but with discontinuities aligned to road hierarchy
assumptions. The CNN, in contrast, offers greater local sensitivity and independence
from expert priors but introduces patch artifacts and noisier continuity. The END
maps remain authoritative but are constrained by their transport-only scope.

From an application perspective, these differences have tangible consequences. Over-
smoothed GBT or END outputs risk underestimating micro-hotspots such as
intersections, leading to blind spots in policy interventions. CNN predictions, while
more detailed, may appear visually fragmented, raising challenges for communication
in planning contexts. Ultimately, the triangulation across these three approaches
highlights the value of CNNs as a surface-sensitive and locally adaptive method,
while reinforcing the need for future frameworks—such as the graph-based models in
Chapter 5—to integrate relational dependencies and multimodal information, thereby
addressing the residual limitations of both GBT and CNN designs.

To complement the comparison with the END map and GBT results presented above,
we further examined local contrasts between the CNN and CatBoost models (Figures
4.15-4.16). These comparisons are intended to strengthen the link with the baseline
experiments in Section 3.4 and to clarify the distinct modelling behaviours observed.
Overall, the CNN produces a broader dynamic range and sharper local gradients, but
in land-use heterogeneous areas where semantic boundaries are less well defined, the
CatBoost model displays greater spatial continuity.

The first comparison focuses on the central urban green space, where a large
vegetated block is intersected by road corridors. Figure 4.15 shows the CNN
prediction (left), the corresponding RGB spectral index composite (middle), and the
CatBoost prediction (right). The CNN output highlights fine-scale heterogeneity
within the green patch, with clear contrasts along the road edges, whereas CatBoost
yields a smoother, more homogeneous surface. At the focal point of this comparison,
the field measurement was 53.2 dBA; the CNN predicted 53.3 dBA, closely matching
the observation, while CatBoost predicted 55.8 dBA. This demonstrates the CNN’s
capacity to reproduce measured variation more precisely in mixed-use environments.



JI
3r- =

RGB spectral index CatBoost prediction
composite
Figure 4.15 Local comparison of CNN and CatBoost predictions in the central urban
green space, with RGB spectral index composite shown in the middle panel

CNN prediction

The second comparison examines the port area traversed by the A33, a typical high-
exposure corridor (Figure 4.15). Here, field measurements along the roadway ranged
from 70 to 83 dBA. The CNN prediction shows a wider spatial spread of high noise
levels consistent with these measurements, whereas CatBoost confines the impact to a
narrow strip adjacent to the road. This divergence likely reflects differences in
neighbourhood design, with the CNN capturing broader propagation effects. At the
central high-exposure location, the measured value was 88.1 dBA, with CNN
predicting 85.3 dBA and CatBoost predicting 82.1 dBA. The CNN thus offers a closer
approximation of the observed extreme, while CatBoost truncates the exposure.
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Figure 4.16 Local comparison of CNN and CatBoost predictions in the port area
along the A33 corridor

Together, these local contrasts illustrate the complementary strengths and limitations
of each model. CNNs enhance the dynamic range and capture environmental
heterogeneity, while tree-based methods favour smoothness and continuity. For urban
health assessments, the CNN’s ability to reproduce high-exposure hotspots and fine-
scale variations provides a more faithful representation of environmental noise, even
though CatBoost may offer greater stability in ambiguous land-cover zones.

4.4.2 Strengths and Spatial Representation Capabilities of the CNN-
Based Model

The convolutional neural network (CNN) framework employed in this study exhibits
notable strengths in capturing the spatial heterogeneity and surface-driven noise
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dynamics of urban environments. By leveraging high-resolution satellite imagery
enriched with a combination of spectral indices and texture features, the CNN extends
beyond the limitations of traditional machine learning models, which often rely on
point-based, tabular inputs devoid of spatial context.

A key innovation lies in the design of the input structure: each sample corresponds to
a 250 x 250 pixel patch (approximately 1 km X% 1 km at 4 m resolution),
encompassing 84 feature channels that integrate 69 GLCM-derived texture maps and
15 spectral predictors. Importantly, all 69 texture maps are derived from the three
dominant indices—WYVBI, NDVI, and BSI—which were identified in the feature
selection process as the most influential in shaping noise patterns. This configuration
enables the CNN to exploit convolutional operations to learn not only local pixel-level
variations but also interactions among neighboring pixels, which are critical for
modeling environmental noise propagation (Tuia et al., 2016; Yang et al., 2024).

Several representational strengths emerge from this approach. First, the CNN
predictions capture major traffic corridors as elongated high-noise structures,
reflecting the influence of linear transport features on acoustic propagation. While
these linear patterns are identifiable, the structural clarity is somewhat limited
compared to explicit vector representations. Nevertheless, the CNN achieves a
broader dynamic range of predictions (Figure 4.16), mitigating the regression-to-the-
mean effects observed in tree-based models. This allows extreme exposures—such as
values above 85 dBA in port and arterial road corridors—to be represented with a
wider mapping span, providing closer alignment with measured data.

Second, the model effectively identifies large urban green spaces—such as
Southampton Common—as low-noise buffers. Unlike the CatBoost baseline, which
often oversmooths spatial variation, the CNN preserves fine-grained heterogeneity
within these green patches (Figure 4.16), ensuring that critical landscape contrasts,
such as vegetated buffers intersected by roadways, are not lost to excessive spatial
averaging. This behaviour is driven by vegetation-sensitive indices such as NDVI, in
combination with texture features from WVBI and BSI, which together highlight the
acoustic attenuation capacity of vegetated land covers.

Third, while the CNN highlights heterogeneity within transitional or mixed-use areas,
the evidence for systematic superiority over gradient-boosted trees (GBT) is limited.
It is therefore more precise to describe the CNN as offering a complementary
representation: CNNs emphasize local variability and preserve extremes, whereas
GBTs yield smoother surfaces that may capture general trends more consistently in
semi-residential and commercial fringe zones.

Beyond predictive accuracy, the CNN’s end-to-end feature learning design reduces
reliance on manual feature engineering or rigid parametric assumptions about distance
attenuation or land use categories. This improves the model’s adaptability to urban
contexts where ground measurements are sparse but high-resolution imagery is
available (Astuty & Dimyati, 2024). Nonetheless, as elaborated in the following
sections, the CNN’s advantages in fine-scale pattern recognition are tempered by
challenges in generalization and relational reasoning across broader urban landscapes.



4.4.3 Reflections on Model Architecture, Parameter Development, and
Hardware Constraints

Reflecting on the research process, several experimental attempts and lessons from
suboptimal configurations informed the final CNN design, emphasizing the iterative
and resource-sensitive nature of model development for urban noise prediction.
Initially, various CNN architectures were tested, including ResNet34, ResNet50, and
VggNet (He et al., 2016; Huang et al., 2017). These deeper architectures, with their
skip connections and dense blocks, were hypothesised to capture more complex
hierarchical features from multispectral imagery. However, empirical results indicated
that increasing model depth did not necessarily translate into improved predictive
accuracy. On the relatively small dataset of aggregated noise points, deeper models
were prone to overfitting or failed to converge adequately. Instead, expanding the
diversity of input features—through additional texture maps and spectral indices—
proved more beneficial than adding layers of complexity. This observation motivated
the adoption of EfficientNetB0 (Tan & Le, 2019), which integrates automated scaling
strategies to efficiently capture multi-scale information from high-dimensional inputs,
offering a better balance between expressiveness and computational efficiency.

A second critical dimension of model refinement was the determination of input patch
size and training hyperparameters. Multiple grid aggregation levels (20 m, 30 m, and
40 m) were tested, with 30 m ultimately selected to align with prior studies (Alvares-
Sanches et al., 2021a) and the resolution of official END noise maps, balancing
granularity with comparability. Several patch dimensions were compared, including
150 x 150, 250 x 250, and 320 x 320 pixels (corresponding to 0.6—1.3 km spatial
extents at 4 m resolution). Smaller patches (e.g., 150 x 150) lacked sufficient spatial
context, limiting the CNN’s ability to incorporate road networks or block-level
vegetation patterns. Conversely, very large patches (e.g., 320 x 320) introduced
redundancy, slowed convergence, and yielded diminishing accuracy gains. The
intermediate 250 x 250 configuration, representing a 1 km X 1 km spatial extent,
proved optimal as its receptive field corresponded to the dominant spatial scale at
which major noise sources (arterial roads, green buffers, and land-cover transitions)
influence exposure.

In parallel, batch size and learning rate were also systematically tuned. Experiments
ranged from batch sizes of 8 to 32 and learning rates between le-4 and le-3. Larger
batches often triggered out-of-memory errors, while higher learning rates produced
unstable gradients and early divergence. A batch size of 16 combined with a learning
rate of 1e-4 offered the most stable training dynamics and reproducible convergence
across multiple runs.

These parameter choices were also strongly shaped by hardware constraints. All CNN
experiments were conducted in a Google Colab environment using a NVIDIA T4
GPU with 16 GB VRAM. The high dimensionality of the input stacks (up to 84
channels, including raw bands, indices, and GLCM features) imposed strict limits on
feasible patch and batch sizes. Typical training runtimes ranged from 3 to 8 hours per
model, depending on the number of feature channels and the volume of overlapping
patches generated. Deeper architectures such as ResNet50 or wider patch
configurations consistently exceeded GPU memory limits or exhibited unstable
convergence under the same hardware conditions. Consequently, the final



configuration represents not only an empirically optimised design but also a resource-
aware compromise tailored to the computational environment of this research.

4.4.3.1 Grey-level Feature Screening

Beyond architectural and scale considerations, another decisive factor in improving
CNN performance was the careful curation of grey-level co-occurrence matrix
(GLCM)—derived feature maps. As described in Section 4.2.3, the Orfeo Toolbox
provides 28 distinct GLCM descriptors grouped into simple (8 features), advanced (10
features), and higher (10 features) categories (see Appendix I). The first set of
experiments compared textures extracted from single spectral bands against those
derived from remote sensing indices (NDVI, BSI, WVBI, etc.). Results consistently
showed that index-derived textures outperformed single-band textures, as indices
emphasise specific biophysical contrasts—such as vegetation cover or impervious
surfaces—that are acoustically relevant.

At first glance, it may seem redundant to introduce statistical texture maps into a
CNN, since convolutional filters can already extract multi-scale features. However,
there is an important distinction: CNN kernels primarily learn localised spatial
patterns, while GLCM descriptors encode second-order statistics of pixel intensity
relationships (e.g., contrast, entropy, homogeneity) across defined neighbourhoods.
These descriptors capture structural and directional dependencies that are not trivially
represented by raw convolutions, especially in limited-data regimes. By explicitly
embedding such texture statistics as additional input channels, the model is relieved of
the burden of rediscovering these patterns from scratch, thereby improving
convergence and enhancing the robustness of learned representations.

The subsequent experiments confirmed this effect. When all index-derived texture
features were pooled, the predictive accuracy improved, but redundancy became an
issue. To address this, maps with minimal dynamic range (e.g., sum average, sum
variance, sum entropy) were removed (see Figure 4.3). Similarly, indices with
overlapping semantic emphasis—such as NBEI, BSI, BAI, and WVBI, all
highlighting built-up surfaces—were reduced to avoid collinearity. The final retained
set concentrated on textures derived from WVBI, BSI, and NDVI, which captured the
most relevant acoustic dimensions of urban morphology. Importantly, further
experiments removing the raw bands and indices while retaining only texture maps
led to degraded performance, confirming that the best results emerged from the
complementarity of raw spectral information, remote sensing indices, and statistical
texture descriptors.

4.4.3.2 Overall Reflections

Taken together, these experiments demonstrate that feature diversity, not model depth,
was the primary driver of CNN performance in this study. The cumulative addition
and selective refinement of texture maps enhanced predictive accuracy while
maintaining manageable computational costs. However, this strategy is inherently



manual and dataset-specific: the selection of WVBI, BSI, and NDVI reflects their
acoustic relevance in the Southampton context but may not generalise universally.

More broadly, these findings suggest that while CNNs can be strengthened through
careful feature engineering and scale calibration, their reliance on fixed patch-based
windows, sensitivity to input scale, and computational resource demands limit their
scalability and transferability. In urban noise prediction, where noise sources operate
across multiple and heterogeneous scales, architectural innovations alone may not
fully resolve these challenges. The subsequent introduction of graph neural networks
(Chapter 5) provides a more flexible strategy, as GNNs can incorporate relational
structures and multi-scale dependencies directly. This methodological transition from
patch-based CNN feature accumulation to graph-based relational learning represents a
necessary step, particularly under conditions of limited labelled data and hardware
resources.

4.4.4 On Generalization, Transferability, and the Need for Spatial
Reasoning

While the CNN-based framework developed in this study demonstrates clear
advantages in capturing fine-grained spatial heterogeneity and surface-level drivers of
urban noise, its generalization capacity—that is, its ability to extrapolate predictions
beyond the local urban context of Southampton—remains inherently constrained. This
limitation arises not only from technical implementation choices but also from deeper
conceptual challenges intrinsic to pixel-based deep learning when applied to complex
environmental phenomena (Khan et al., 2018; Astuty & Dimyati, 2024).

A first concern relates to the computational paradigm underpinning CNN training.
Constructing the dataset required generating a very large number of highly
overlapping image patches, each with dimensions of 250 x 250 x 84. Although this
redundancy is intrinsic to CNN-based workflows and ensures sufficient samples for
robust convergence, it results in substantial duplication of information across patches.
The consequence is a heavy computational burden, with high memory usage and
extended training times. Extrapolating this approach to larger urban regions or
multiple cities would therefore incur prohibitive costs in terms of both runtime and
resource requirements. From a methodological standpoint, this reliance on densely
stacked patches highlights the limited scalability of CNNs for city-scale noise
prediction, underscoring the need for more resource-efficient alternatives.

Equally significant are the challenges to spatial and cross-city generalization. By
design, the CNN model learns local associations between spectral-textural patterns
and noise levels that are specific to Southampton. These learned relationships reflect
particularities of the city’s built morphology, vegetation structure, traffic density, and
even climatic conditions. For example, the model effectively captures how
Southampton’s mix of dense residential blocks and linear transport corridors shapes
noise exposure. However, these associations are not guaranteed to hold in other cities,
where building typologies, transport systems, and land-cover compositions differ
substantially. To explicitly examine this issue, a cross-city test was conducted using
Portsmouth as the target domain. Portsmouth was chosen for its geographic proximity



and morphological similarity to Southampton, thereby minimizing potential
confounding factors. Even after applying the same radiometric standardization
procedures to ensure spectral consistency, the model exhibited severe performance
degradation: it failed to effectively capture the structure of road networks, and
predicted noise values displayed abnormal deviations, including extreme outliers
exceeding 140 dBA. These results confirm that even modest domain shifts can lead to
catastrophic generalization failure, reinforcing that the transferability of patch-based
CNN:s is not guaranteed, even between closely related urban contexts.

Without explicit cross-city experiments or domain adaptation strategies, claims of
model transferability cannot be scientifically substantiated. This limitation is
consistent with findings in related domains such as air pollution forecasting and land-
use change modeling, where models trained on one city often fail when directly
applied to another (Pan & Yang, 2009; Weiss et al., 2016).

Another constraint relates to the implicit treatment of spatial relationships. Although
the receptive field of a CNN increases with depth, in this study the model remained
bounded by the fixed 1 km X 1 km patch size. Thus, dependencies extending beyond
patch boundaries—such as the influence of adjacent arterial roads, building clusters,
or vegetated buffers—were not explicitly captured. While deeper layers may
approximate spatial continuity within each patch, they do not substitute for relational
interactions across patches or along connected infrastructures. Since noise
propagation is inherently autocorrelated and networked, this explains why simply
increasing the receptive field is not sufficient for capturing long-range correlations,
and motivates the methodological progression toward graph-based approaches. In
addition, the patch-based design may introduce discontinuities at tile boundaries. For
instance, in local examples such as Figure 4.16 (urban green space), CNN predictions
showed sharper heterogeneity at patch edges compared to the smoother transitions of
CatBoost. While this observation suggests a risk of reduced surface smoothness, it
was not systematically quantified in this study and should therefore be regarded as a
methodological limitation.

A further limitation of the CNN design is its lack of scale invariance. The model was
trained under a fixed paradigm in which each input corresponds to a 1 km x 1 km
image patch, with outputs generated at a uniform 30 m x 30 m grid resolution. This
strict pairing of input and output scales reflects the underlying architecture of CNNis:
convolutional filters learn spatial hierarchies tied to the size of the receptive field,
meaning that learned representations cannot be arbitrarily transferred to different
spatial extents or resolutions. As a result, the model cannot seamlessly adjust to
alternative input-output granularities without full retraining, and its predictions are
bound to the exact resolution used during training. This rigidity stands in contrast to
the methodological requirements of environmental noise modelling, where different
planning applications may demand results at street, district, or city-wide scales. The
Portsmouth cross-domain test illustrates that such rigidity not only constrains
flexibility but also amplifies error propagation when the model encounters even
moderate shifts in urban structure and feature distribution. The lack of inherent scale
invariance thus constrains the CNN framework’s flexibility, reinforcing its
dependence on carefully standardised preprocessing and limiting its adaptability
across heterogeneous urban settings.



These reflections reveal that while CNNs provide a substantial methodological
advancement over tabular machine learning baselines by directly leveraging spatial
patterns, their limitations are equally instructive. The computational inefficiency of
patch-based training, the non-transferability of locally learned associations as
empirically evidenced in the Portsmouth test, and the lack of scale invariance in both
training and prediction highlight the necessity of advancing towards graph-based
approaches. Graph neural networks (GNNs) provide such an alternative. Unlike
CNNs, GNNs are designed to capture topological relationships directly, enabling each
spatial unit (e.g., a 30 m grid cell) to update its representation not only based on its
own features but also by aggregating information from its connected neighbors. This
graph-based message-passing paradigm aligns naturally with the propagation
dynamics of environmental noise, which depend on both local conditions and
interactions across the urban landscape. Moreover, GNNs facilitate the integration of
additional semantic layers—such as land-use categories from Urban Atlas 2012, or
relational features describing road connectivity—that CNNs cannot natively encode.
Importantly, GNNs also allow for greater flexibility in scale selection, since the
definition of graph nodes and neighbourhoods can be tailored to street blocks,
administrative zones, or arbitrary spatial partitions, making them inherently better
suited for multi-scale urban analysis.

In summary, the CNN framework established an important proof of concept, showing
that multispectral imagery and derived features can predict urban noise patterns with
improved spatial fidelity. However, its methodological weaknesses—computational
redundancy, scale variance, and empirically demonstrated poor cross-domain
transferability—highlight the necessity of advancing towards graph-based approaches.
These insights provide the conceptual justification for the next stage of this
dissertation, which introduces GNN models capable of embedding spectral-textural
features within a relational graph structure, thereby addressing both the computational
and generalization challenges identified here.

4.4.5 Toward Scale-Flexible CNN Architectures

Although the fixed 1 km x 1 km patch design adopted in this study provides
methodological consistency and facilitates controlled comparison with tree-based and
graph-based baselines, it also constrains the model’s ability to flexibly adapt to
different spatial planning and analysis scales. Recent developments in convolutional
neural network (CNN) design have introduced architectures capable of
accommodating variable input and output sizes, thereby mitigating the rigid scale
dependence inherent in classical patch-based workflows. Notably, fully convolutional
networks (FCNs), U-Net variants, and models employing adaptive global average
pooling layers have demonstrated strong scale-transfer properties in other remote
sensing and environmental mapping domains (Long et al., 2015; Ronneberger et al.,
2015; He et al., 2016; Bischke et al., 2019).

Unlike fixed-size CNNss, scale-flexible architectures decouple the receptive field from
strict patch boundaries, enabling feature extraction and prediction over arbitrarily
sized input images. For instance, FCN-based models eliminate the need for dense
fully connected layers, instead relying on convolutional feature maps that can be



dynamically pooled to match the desired output resolution. Similarly, U-Net—style
encoder—decoder architectures support multi-resolution feature fusion, allowing both
fine-scale and broad contextual signals to be learned simultaneously. Adaptive
pooling layers further facilitate flexible inference by resizing the output to any target
grid resolution without retraining the model for each scale (He et al., 2015; Yu and
Koltun, 2016).

In the context of urban noise mapping, this flexibility would allow a single CNN to
operate across multiple planning scales, ranging from detailed street-level assessments
(e.g., 10 m resolution) to district or city-wide analyses (e.g., 100 m resolution). A
multi-resolution input strategy, for example, could incorporate nested patches of 250
x 250, 500 x 500, and 1000 x 1000 pixels, thereby integrating both localized street-
scale patterns and broader morphological influences. This would directly address the
scale variance identified in this chapter and enhance the adaptability of the framework
to heterogeneous urban environments with differing planning and regulatory
requirements.

Importantly, integrating scale-flexible CNNs with the graph-based framework
introduced in Chapter 5 could provide a hybrid approach that combines multi-scale
convolutional representation learning with explicit topological reasoning over urban
networks. Such integration would allow both hierarchical surface features and
network-based spatial dependencies to be captured in a unified architecture,
potentially improving both predictive accuracy and generalizability across cities.

4.5 Conclusion

This chapter presented a convolutional neural network (CNN)-based framework for
predicting urban noise exposure using high-resolution remote sensing imagery
combined with texture-derived features. Unlike traditional physics-based noise
models or baseline machine learning methods, the proposed approach integrated
multispectral indices, GLCM-based texture descriptors, and raw spectral bands into a
spatially structured input pipeline, enabling the CNN to learn localized acoustic
patterns directly from image patches rather than from pre-aggregated variables.

The CNN achieved competitive predictive accuracy, with a mean absolute error of
4.91 dBA and an R? of 0.42 under a stratified sampling design. Evaluation revealed
that the model captured key acoustic structures across Southampton: high-noise
corridors were aligned with arterial roads, vegetated areas displayed attenuated
exposure, and mixed-use neighborhoods exhibited intermediate gradients. When
compared with the GBT model of Alvares-Sanches et al. (2021a) and the official
END Lden and Lnight maps, the CNN displayed greater sensitivity to micro-scale
variations such as intersection-level amplification and the buffering role of urban
greenery. These improvements highlight the added value of convolutional
architectures in extracting fine-grained spatial features from remote sensing imagery.

At the same time, several critical limitations emerged. First, the patch-based paradigm
required generating thousands of overlapping tiles, resulting in significant



computational overhead and redundancy: neighboring patches often contained highly
similar information, yet were processed independently, limiting efficiency and
scalability for multi-city analyses. Second, the CNN remained constrained to surface-
level cues; while effective for road- and vegetation-driven patterns, it failed to capture
acoustically important but visually ambiguous sources such as port operations or
airport noise, which feature prominently in official END maps. Third, and most
importantly, the CNN lacked transferability. Its learned associations between spectral-
textural signatures and noise exposure were tightly bound to Southampton’s
morphology and land-use structure, and thus unlikely to generalize to cities with
distinct building typologies, traffic networks, or climatic regimes.

These limitations point to a deeper conceptual challenge: urban noise is not solely a
pixel-based phenomenon but a relational process shaped by spatial autocorrelation
and structural dependencies. Sound propagates along connected infrastructures,
attenuates across buffers, and interacts with urban morphology in ways that exceed
the representational capacity of localized patch filters. Without explicit mechanisms
for encoding neighborhood relationships or adapting to new domains, CNN-based
predictions risk remaining geographically constrained.

This recognition motivates the methodological progression toward graph neural
networks (GNNs), introduced in Chapter 5. By embedding the urban grid into a graph
structure, GNNs explicitly model neighborhood dependencies, allowing information
to propagate across connected nodes rather than being restricted to fixed-size patches.
This design not only reduces patch redundancy but also leverages transferable
structural patterns—such as road connectivity, adjacency of land-use classes, and
multi-scale ring statistics—that are common across heterogeneous urban contexts.
Furthermore, GNNs provide a more natural foundation for cross-city generalization,
as their relational embeddings can be aligned across domains through techniques such
as domain adaptation and pseudo-labeling.

In summary, CNNs serve as a powerful proof of concept, demonstrating that remote
sensing and deep learning can produce meaningful, high-resolution urban noise maps.
Yet they also delineate their own boundaries in scalability, semantic coverage, and
transferability. These findings provide both the conceptual rationale and the empirical
evidence for advancing to the GNN-based frameworks in Chapter 5, where
neighborhood-aware learning is systematically explored to overcome the limitations
of purely patch-based architectures.



Chapter 5: Urban Noise Prediction Incorporating

Geospatial Relationships: A Case Study of Southampton

Abstract

As urban environments become increasingly complex and heterogeneous,
conventional noise mapping techniques—often reliant on grid- or pixel-based
models—struggle to capture the intricate spatial dynamics of noise propagation. This
chapter introduces a graph neural network (GNN)-based framework designed to
address these limitations by explicitly modeling spatial dependencies between urban
features and environmental noise patterns. Building on previous deep learning
approaches, particularly convolutional neural networks (CNNs), the proposed
framework advances the methodological landscape by incorporating graph-structured
representations that account for both local context and neighborhood-level
interactions.

Unlike CNN-based approaches, where each image patch is treated as an independent
training sample, the GNN framework explicitly encodes relationships between
samples through graph connectivity. While CNNs can induce correlations within a
patch via convolutional filters, they do not natively preserve dependencies across
patches or spatial units. The GNN approach overcomes this limitation by constructing
a spatial graph where each node represents a noise measurement point, connected to
its neighbors through proximity- and distance-decay weighting. This enables the
model to reflect the inherent spatial autocorrelation in urban noise propagation, rather
than relying solely on within-patch feature learning.

Empirical evaluation using case study data from Southampton demonstrates that the
GNN framework outperforms prior CNN-based models, achieving a mean absolute
error (MAE) of 4.40 dBA and an R? of 0.596, compared to the CNN’s MAE of 4.79
dBA and R? of 0.491, and approaching the performance of a smoothed gradient
boosted tree (GBDT) baseline (MAE: 4.18 dBA, R* 0.61). Beyond numerical
performance, qualitative analyses—such as hotspot detection, ward-level aggregation,
and alignment with official Lden noise maps—highlight the GNN’s superior ability to
capture fine-scale urban variations and neighborhood-level dynamics.

The chapter concludes by emphasizing the scalability, transferability, and semantic
richness of the GNN framework, positioning it as a robust foundation for the domain
adaptation and cross-city generalization strategies developed in subsequent chapters.
These findings have far-reaching implications for urban planning, environmental
health, and spatial equity, underscoring the value of graph-based models as a next-
generation tool for high-fidelity environmental analysis.
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5.1 Introduction

The methodological progression of this dissertation moves from feature-based
baselines to increasingly structured and context-aware deep learning frameworks. The
previous chapter established a convolutional neural network (CNN)-based approach
for urban noise prediction, demonstrating that high-resolution multispectral imagery
can be used to model fine-scale spatial heterogeneity with considerable predictive
accuracy. By applying patch-wise convolutional operations, the CNN effectively
captured local textural and spectral features, offering a substantial improvement over
the handcrafted feature baseline presented in Chapter 3. Yet, despite these advances, a
fundamental structural limitation remained: the CNN treated each grid cell as an
isolated unit, implicitly assuming spatial independence across patches. This lack of
explicit neighborhood reasoning constrained the model’s ability to represent spatial
continuity and intercellular interactions that underpin real-world noise propagation.

The present chapter addresses this limitation by introducing a graph neural network
(GNN)-based modeling framework that preserves the data foundations and evaluation
protocols established earlier while altering the way spatial relationships are encoded.
The same WorldView-2 multispectral imagery and Urban Atlas land-use data are used
as predictor sources, and the same 30 m analytical grid structure provides spatial
consistency. What changes is the representational logic: rather than operating on fixed
patches, the GNN formalizes the urban fabric as a graph in which each grid cell is
represented as a node connected to its neighbors through distance- or adjacency-based
edges. This enables the model to propagate information across space, allowing local
predictions to be informed by their surrounding context.

This architectural shift is more than a technical refinement. Whereas CNN receptive
fields implicitly aggregate information within a predefined spatial window, GNNs
explicitly learn from relational structures, allowing spatial dependencies to emerge as
part of the learning process. This difference is crucial in settings where acoustic
patterns are not confined to rigid spatial partitions but diffuse along transport
corridors, built-up frontages, and complex urban topologies. By embedding the same
environmental predictors into a graph structure, the model gains the capacity to
capture directional influences and long-range interactions that were inaccessible to the
CNN architecture.

Beyond improving local prediction accuracy and spatial coherence, this transition also
lays the conceptual groundwork for the subsequent chapter. The GNN framework
developed here not only provides a more faithful representation of spatial processes
but also establishes a transferable architecture upon which cross-city domain
adaptation and pseudo-labeling strategies can be built. In this sense, Chapter 5



functions as a methodological bridge, linking the localized feature learning of Chapter
4 to the scalable, generalizable framework of Chapter 6. It represents a deliberate shift
from localized perception to structured spatial reasoning, anchoring the broader goal
of constructing transferable, data-driven noise prediction models.

5.2 Methodology

5.2.1 Graph Construction Based on Original Noise Samples

Unlike the CNN and gradient boosting tree-based models described in earlier
chapters, which relied on aggregated grid-based samples at 30 m resolution, the graph
neural network (GNN) framework employed in this study adopts a node-level
perspective by directly representing the original noise measurement points as graph
nodes. The raw dataset contained 52,364 samples collected at approximately 1 m
intervals across Southampton. To align with the 4 m spatial resolution of the
WorldView-2 imagery and avoid redundant overlaps, only one noise sample was
retained per 4 m x 4 m pixel, resulting in a final dataset of 50,908 unique nodes.

Each retained noise point was treated as a node in the graph, and spatial relationships
between nodes were defined using a k-nearest neighbors (k-NN) procedure. A grid
search across multiple candidate sizes (400—1000 neighbors) revealed that k=841
achieved the most stable balance between graph connectivity and model performance.
This corresponds approximately to the number of 4 m pixels contained within a 1 km?
neighborhood, ensuring that each node has access to a sufficiently broad spatial
context without incurring excessive redundancy.

To further refine the topology, an upper distance threshold Tt was imposed after
coordinate normalization. Mapping the spatial domain to [—0.5,0.5], the threshold T =
0.04 corresponds to approximately 492 m in real-world distance. This value reflects
the empirical correlation horizon of traffic and morphology driven noise processes,
preserving meaningful local context while pruning uninformative long-distance edges.

Formal Graph Definition
The resulting structure can be defined as a weighted, undirected graph
G=(V,EA)
where V is the set of nodes (noise points), E the set of edges defined through k-NN

under the threshold T, and A € RV*IVI the weighted adjacency matrix. Edge weights
were assigned as inverse distances:
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where d;; is the Euclidean distance between nodes i and j, and ¢ is a small constant for

numerical stability. To ensure stable message passing, the adjacency matrix was
symmetrically normalized:

A=D*AD*

where D is the diagonal degree matrix. This step prevents numerical instability during
iterative aggregation and ensures balanced influence between nodes of different
degrees.

Information Propagation and Receptive Field Growth

The message passing at layer [ of the GraphSAGEConv architecture is expressed as

A = o(W® - AGGx g (7))

J

where hgl) denotes the hidden representation of node 7 at layer /, W is a learnable
weight matrix, and AGG represents the neighborhood aggregation operator. Through
this process, each layer expands the effective receptive field by one-hop.

For a GNN with L layers, the receptive field radius can be approximated as
Reff(L) ~L- Tmean

where 7,,.., 1s the average edge length in the k-NN graph (= /50 m in dense urban
cores). Given L=6, the effective receptive field typically spans 1-2 km, and in
densely connected regions may reach nearly 3 km. This receptive field is larger and
more flexible than the fixed 1 km % 1 km patch used in Chapter 4’s CNN, enabling
the model to capture long-range correlations in traffic noise propagation, such as
corridor effects along major arterial roads.

Mini-batch training was applied for scalability. Each batch sampled 32 center nodes
and their k-hop subgraphs, resulting in 12,000-26,000 nodes per subgraph. This
design ensured both efficient GPU usage and broad contextual learning. Further
details on batching, optimization, and evaluation are provided in Section 5.2.5.
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Figure 5.1 Spatial distribution and gaph connection of the 50, noise mples
overlap worldview-2 Imagery (Standard RGB band combination - band 5,3,2)

5.2.2 Node Feature Construction with Ring-Based Statistical Encoding

In this study, each node within the constructed graph represents an individual noise
measurement point, aligned to a 4-meter resolution to match the spatial scale of the
accompanying high-resolution remote sensing imagery. Although the original field
measurements were captured at a 1-meter resolution, they were systematically
aggregated to this coarser scale to ensure spatial correspondence across datasets and
reduce computational complexity. To derive meaningful and transferable feature
representations for each node, the study implements a multi-scale statistical encoding
strategy based on concentric ring buffers. This approach enables the model to
incorporate the spatial structure and heterogeneity of the urban landscape surrounding
each noise point, a critical consideration when modeling environmental noise
propagation.

The core input for feature construction differs from earlier CNN experiments.
Specifically, this chapter does not directly use the raw indices (NDVI, NDWI, BSI,
RGI, WVBI) as input layers. Instead, each index was processed through the Orfeo
Toolbox to generate a suite of 25 Gray-Level Co-occurrence Matrix (GLCM) texture
features. These descriptors — such as contrast, entropy, correlation, and cluster
prominence — capture structural and spatial complexity not visible in the indices
themselves. Following insights from Chapter 4, three features (Sum Average, Sum
Entropy, Sum Variance) were excluded due to consistently low discriminatory power.
The resulting feature stack therefore consists of 5 indices x 25 texture maps = 125
feature layers, all resampled to 4 m resolution and normalized to [0, 1].
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This design ensures that while CNNs in Chapter 4 ingested full 2D texture maps
directly, the GNN framework transforms these maps into ring-based statistical
summaries, aligning spatial texture information with a node-centric graph
representation. In other words, CNNs are tasked with learning spatial relationships
implicitly through convolution, whereas the GNN encodes these relationships
explicitly through graph structure and neighborhood statistics.

To construct node features, six concentric ring buffers were generated around each
noise measurement point, with radii of 0-30 m, 30—60 m, 60—90 m, 90—120 m, 120—
150 m, and 150-300 m. Within each ring, 11 statistical descriptors were computed for
each feature map, including mean, standard deviation, median, interquartile range,
skewness, kurtosis, Shannon entropy, and four percentiles (/0th, 25th, 75th, 90th).
These descriptors summarize both central tendencies and distributional nuances: for
example, entropy reflects surface heterogeneity, while skewness and kurtosis capture
asymmetric or extreme-value distributions. Combined, these produce an 8,250-
dimensional feature vector per node, ensuring a rich yet structured representation of
environmental conditions across multiple scales.

The systematic naming convention (e.g., RGI r90 entropy) does not itself improve
predictive accuracy but ensures interpretability: each feature can be traced back to a
specific index, spatial scale, and statistical descriptor. This transparency is crucial for
reproducibility and for enabling urban planners to interpret which landscape
components contribute to predicted noise exposure.

The process is illustrated in Figure 5.2, which depicts how measurement points are
matched to the feature stack and ring buffers.

o 05 1 2Kilometers

v _ 3 & ™ !
(a) Noise measuremnet point sample (b) Local zoom in: circular buffer
overlap WVBI feature map structure centred on the sample point

Figure 5.2 Schematic illustration of the node feature construction process using
multi-scale ring buffers

While Figure 5.2 details the internal encoding workflow, it is equally important to
situate this approach within the broader trajectory of the dissertation. Table 5.1
contrasts the CatBoost baseline (Chapter 3), the CNN framework (Chapter 4), and the
present GNN framework (Chapter 5), clarifying how each model treats spectral inputs,
texture features, and spatial context.
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Table 5.1 Comparison of feature design and neighborhood encoding strategies across
CatBoost baseline, CNN, and GNN frameworks

Dimension CatBoost Baseline CNN Framework GNN Framework
(Ch.3) (Ch.4) (Ch.5)
Input modalit Tabular features 2D image patches (84-| Node attributes (ring-based statistical
P y (statistical descriptors) channel tensors) descriptors)
8 raw bands 8 raw bands + 7 None (indices used only as basis for
Spectral inputs (WorldView-2 . Y
. indices texture maps)
multispectral)

Texture features

5 Simple descriptors x 8

69 maps, derived from
WVBI, NDVI, BSI

25 descriptors x 5 indices (NDVI, NDWI,
BSI, RGI, WVBI) = 125 (Sum Average,

(ELein) Eaeg =l (selecteq gy Sum Entropy, Sum Variance excluded)
screening)
Neighborhood Fixed 30 m x 30 m grid ! l:::; (E?{r)n:r;;g}e 6 concentric rings: 0-30 m, 30-60 m, 60—
definition cell p 90 m, 90-120 m, 120-150 m, 150-300 m

pixels)

Statistical encoding

max, min, mean, median,
percentile (25th, 75th),
std, range

Direct image
convolution (no
explicit statistics)

mean, std, median, IQR, skewness,
kurtosis, Shannon entropy, percentiles
(10th, 25th, 75th, 90th)

Spatial context

Local 30 m grid

Square patch (1 km
extent)

Circular domains, 0.5-3 km effective
radius (typically /-2 km)

Representation of
neighborhood

Aggregated grid-level
statistics

Learned convolutional
filters over stacked
feature maps

Explicit message-passing across nodes
with ring-encoded attributes

As summarized in Table 5.1, the CNN framework relied on learning spatial filters
directly from stacked feature maps, whereas both the CatBoost baseline and the GNN
transformed remote sensing inputs into tabular descriptors. The GNN, however,
represents a major methodological advance: it integrates a richer set of texture-
derived features while explicitly encoding spatial structure via multi-scale rings and
message-passing, thereby addressing both feature richness and spatial generalization
challenges.

5.2.3 Distance-Based Weighting and Attenuation Modeling

Urban noise is inherently subject to spatial attenuation, where sound pressure levels
decrease as a function of distance due to geometric spreading, atmospheric absorption,
and interactions with land cover. To incorporate this physical principle into the
feature representation, a distance-based exponential weighting scheme was applied to
the statistical variables derived from the ring buffers.



Rather than treating all ring zones equally, the model accounts for the decay in
acoustic influence with distance by assigning progressively lower weights to features
extracted from more distal buffers. The decay function was formulated as:

w(d) = e_a'gdf?

where:

« dis the radial distance to the buffer center;

« a=20.006dB/m is the air absorption coefficient for mid-frequency urban noise
(approximated from WHO, 2018);

o do =30 m is the reference baseline distance.

This yields the following attenuation weights for each buffer zone:

Table 5.2 distance-based exponential weighting scheme

Buffer Radius (m) Weight w(d)
0-30 1..0000
30 - 60 0. 8352
60 - 90 0. 6976
90 - 120 0. 5827
120 - 150 0. 4866
150 - 300 0.1979

The computed weights were applied multiplicatively to all statistical descriptors
within each ring. For example, the variable NDWI r60 mean is not simply the mean
NDWI within the 30-60 m buffer, but is weighted by w=0.8352 to reflect the
diminished acoustic relevance of that zone compared to the immediate vicinity.

The value of a was determined through a combination of empirical testing and
physical reasoning. Multiple candidate values (0.06, 0.08, 0.1 dB/m) were evaluated,
with o = 0.06 producing the most stable validation performance (MAE = 4.32, R? =
0.506). This choice is also consistent with environmental acoustics literature, where
absorption rates at low- to mid-frequencies typically fall within this range.

Importantly, Southampton’s acoustic environment is strongly influenced by low-
frequency noise sources, such as heavy port traffic, ship engines, and major arterial
roads. Low-frequency sounds exhibit slower atmospheric absorption and longer
propagation distances compared with mid- or high-frequency noise. As a result, the
relatively shallow exponential decay (a = 0.06) not only reflects the empirical
optimum but also aligns with the real-world dominance of long-range, low-frequency
acoustic contributions in the study area.

The same attenuation profile was applied uniformly across all feature maps because
attenuation is a property of the propagating acoustic energy, not of the environmental
variable itself. Whether the predictor encodes vegetation density, impervious surface



ratio, or textural entropy, the relevance of that predictor diminishes with increasing
distance from the noise source in the same physical manner. This uniform treatment
avoids introducing artificial biases across feature types while maintaining physical
consistency.

This strategy offers two major benefits. First, it physically grounds the feature
representation in noise propagation theory, helping the model differentiate between
near-field and far-field land use effects. Second, it acts as a soft regularization
mechanism, reducing the dominance of features from larger buffers that may
introduce noise or spatial redundancy.

It is worth noting that while the exponential decay adopted here reflects the site-
specific physics of Southampton’s noise environment, Chapter 6 introduces a squared
exponential decay formulation when extending to multiple cities. This adaptation
allows the model to generalize more flexibly under cross-domain conditions while
still preserving the physical intuition of distance-based attenuation.

5.2.4 GraphSAGE Architecture and Implementation

To fully harness the spatial dependencies between noise measurement points while
effectively handling the high-dimensional and complex nature of urban surface data,
this study implements a deep regression model based on the GraphSAGE framework,
utilizing the Spektral 1.3.1 library in combination with TensorFlow 2.13.0. All
training procedures were conducted within a high-RAM Google Colab environment,
leveraging T4 GPU acceleration to ensure computational efficiency. The architectural
design of the model specifically balances three key priorities: capturing spatial
dependencies, maintaining numerical stability, and ensuring robustness against the
intrinsic uncertainty of environmental noise measurements, which is well-documented
in environmental monitoring literature (Yang et al., 2024).

The model takes as input two primary components: (1) a sparse adjacency matrix
representing the k-nearest neighbor graph structure, constructed to enable efficient
localized message passing while minimizing memory overhead, and (2) a node feature
matrix with dimensions 50,908 x 8,250, derived from the multi-scale ring-based
statistical encoding process described in Section 5.2.2. To improve generalization and
counteract the inherent variability and measurement noise in environmental sensor
datasets, the model applies Gaussian noise augmentation at the input level, injecting
zero-mean Gaussian perturbations (¢ = 0.07) into the node attributes during training.
This design directly parallels the CNN experiments in Chapter 4 (¢ = 0.10 applied to
image channels) and is further extended in Chapter 6 for the dual-branch GNN. The
rationale is that while weight decay and dropout control model complexity at the
parameter level, Gaussian smearing enforces input-level robustness, better reflecting
the stochastic fluctuations observed in real-world acoustic monitoring (e.g., traffic-
induced temporal variability, sensor noise). This ensures consistency in regularisation
across all three data chapters, while tailoring the noise magnitude to the tabular graph
setting.



The architecture consists of six stacked GraphSAGE convolutional layers, each
equipped with mean aggregation operations and 384 hidden units to maintain a high-
dimensional message-passing space. Each layer is followed by batch normalization,
which stabilizes the distribution of activations across mini-batches, and dropout layers
with a rate of 0.15, designed to prevent overfitting and enforce sparsity—an approach
supported by empirical evidence in both environmental and remote sensing modeling
tasks (Shao et al., 2024; Yang et al., 2024). This configuration allows the network to
propagate multi-hop neighborhood information effectively while preserving fine-
grained local distinctions critical for accurately modeling noise propagation in
heterogeneous urban environments.

At the upper levels of the network, the aggregated node embeddings are passed to a
fully connected dense layer with 256 units, followed by an additional dropout layer
(rate = 0.10), and finally, a linear output layer that produces the scalar prediction of
noise intensity (measured in dBA). This design ensures that the network retains both
the spatial structure and spectral richness of the input features while translating them
into precise, continuous predictions. The full architecture is summarized in Figure 5.3,
which illustrates the flow of data from the 8,250-dimensional ring-encoded feature
vectors, through the GraphSAGE convolutional blocks, to the final regression output.

Feature Matrix Sparse Adjacency o| Gaussian Noise layer
(X in) + Matrix (A in) - (stddev = 0.07)
Shape: (32, 8250) Shape: (32, 32)
=] GraphSAGE layer 1
™ (384 hidden units) > Batch Norm =| Dropout(0.15)
GraphSAGE layer 2 | n
: (384 hidden units) > Batch Norm | Dropout(0.15)
— GraphSAGE layer 3 — ..
(384 hidden units) Batch Norm Dropout(0.15)
= GraphSAGE layer 4 P | o
* (384 hidden units) = Batch Norm =| Dropout(0.15)
- GraphSAGE layer 5 L i
| (284 hidden units) > Batch Norm »| Dropout(0.15)
= GraphSAGE layer 6 o4 ..
™ (384 hidden units) »| Batch Norm »| Dropout(0.15)
Output layer
1 D&eal:j‘;eul:iy*;r #| Dropout(0.1) - (1 units)
final prediction dBA unit

Figure 5.3 Deep GraphSAGE architecture used for noise prediction
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The integration of advanced deep graph learning components, combined with domain-
specific feature engineering and rigorous regularization techniques, positions this
model at the forefront of urban environmental modeling. Recent reviews highlight the
growing importance of such hybrid machine learning architectures, which blend
graph-based reasoning with multi-source data integration, in enhancing the accuracy,
interpretability, and generalizability of predictive systems across environmental
domains (Samad, 2023; Yang et al., 2024; Shao et al., 2024).

5.2.5 Training Procedure, Optimization Strategy, and Evaluation
Metrics

The training and evaluation procedures for the GraphSAGE-based noise prediction
model were carefully designed to ensure strong spatial generalization, resilience to
label noise, and robustness against overfitting. This section details the data
partitioning strategy, the mini-batch subgraph training pipeline, the loss optimization
procedures, and the performance evaluation framework—all of which were tailored to
handle the complexity and scale of the urban acoustic environment.

5.2.5.1 Data Partitioning and Masked Evaluation Strategy

Unlike conventional machine learning tasks where samples are independent and can
be freely shuffled into folds, graph neural networks (GNNs) operate on a single,
connected topology in which all nodes are interrelated through message passing. In
this context, a classical k-fold cross-validation would inevitably cause information
leakage, as neighbouring nodes in different folds could still exchange signals during
training. To prevent such contamination while maintaining structural integrity, a
masked partitioning strategy was adopted.

The full graph contained 50,908 nodes, each representing a unique noise measurement
aligned to a 4 m x 4 m WorldView-2 pixel. These nodes were divided once into 60 %
training, 20 % validation, and 20 % testing subsets using spatially stratified random
sampling to preserve the diversity of land-use types and noise intensities across
Southampton. During training, only the labels of the training subset were accessible to
the model, while the labels of validation and test nodes were permanently hidden. The
masking was implemented through Boolean index vectors that control gradient flow:
only training nodes contribute to the loss function and parameter updates, whereas all
nodes—including unlabeled ones—remain connected through the shared adjacency
matrix and participate in message passing.

This configuration allows each node to aggregate contextual information from its
neighbours without exposing the true noise values of validation or test nodes, thus
avoiding label leakage while preserving spatial continuity. The validation subset is
used solely for monitoring convergence, early stopping, and adaptive learning-rate
scheduling, while the test subset provides an unbiased estimate of generalization
performance. The 60-20-20 split balances the need for sufficient training samples in
the high-dimensional feature space (8,250 attributes per node) with the requirement of
reliable evaluation across heterogeneous urban contexts.



Compared with the CNN experiments in Chapter 4, where each patch was an
independent image tile requiring larger training proportions, the GNN benefits from
neighbourhood aggregation: every node indirectly leverages information from its
surrounding nodes, reducing dependence on the absolute number of labeled samples.
The single global split—rather than multiple folds—ensures reproducibility and
avoids the instability that would arise from re-initializing large-scale graph structures
in repeated cross-validation.

In practice, this masked-partition design forms the foundation for the subsequent
mini-batch subgraph sampling procedure described in Section 5.2.5.2, where batches
are drawn from the same global graph but only the masked training nodes contribute
to optimization. Together, these steps establish a coherent and computationally
efficient training-evaluation pipeline tailored to the structural characteristics of graph-
based spatial learning.

5.2.5.2 Mini-Batch Graph Sampling and Memory Management

Full-graph training was computationally infeasible given the graph’s scale and the
high dimensionality of node features (8,250 per node). To overcome this limitation
while retaining spatial coherence, a mini-batch subgraph sampling strategy was
implemented. This approach enables efficient training without compromising the
topological structure of the data.

Each training iteration samples 32 subgraphs, each centered on a randomly selected
node and including its k = 841 nearest neighbors within the 500 m distance threshold
defined in Section 5.2.1. Consequently, each subgraph contains approximately 350—
841 nodes, representing a localized neighborhood around the central node. This
configuration directly corresponds to the reviewer’s observation (~800 nodes) and
ensures that message passing captures both local and extended spatial dependencies
without constructing the full global graph in memory.

The choice of 32 subgraphs per batch was informed by a series of preliminary
memory-profiling and convergence tests. Increasing the number of subgraphs beyond
32 offered negligible performance gains but led to excessive GPU memory usage
(>15.5 GB on a single NVIDIA T4 GPU), while reducing the batch size to 16 slowed
convergence and increased the variance of validation loss across epochs. Similarly,
exploratory tests of k values between 400 and 1,000 indicated that k = 841 achieved
the best balance between graph connectivity and training stability, as smaller
neighborhoods (k£ < 600) produced fragmented subgraphs and weaker spatial
continuity, whereas larger neighborhoods (£ > 900) introduced redundant edges with
little improvement in predictive accuracy.

Across epochs, random reselection of center nodes guarantees complete dataset
coverage and prevents spatial redundancy or bias, as every node participates in
multiple neighborhood contexts during training. On average, a single subgraph
includes roughly 500 nodes, meaning that each batch processes about 16,000 effective
nodes (32 x ~500)—a balanced compromise between rich structural representation
and feasible GPU memory consumption.



This node-centered KNN subgraph design thus reflects a combination of
computational constraints and empirical optimization. It avoids the memory overflow
issues of full-graph training, substantially reduces computational cost, and maintains
representative spatial relationships necessary for effective message passing. The final
configuration—250  training epochs with mini-batch  sampling—required
approximately three hours on a single NVIDIA T4 GPU (16 GB VRAM), confirming
the practicality and scalability of the approach for large-scale urban noise prediction.

5.2.5.3 Loss Function and Noise-Aware Regularization

The Huber loss function with 6 = 1.6 was employed as the regression objective,
chosen for its robustness to outliers while preserving sensitivity to smaller residuals.
This property is particularly suitable for environmental noise data, which may include
anomalous peaks unrelated to surface features (e.g., transient construction activity).
To further enhance model robustness, zero-mean Gaussian noise with a standard
deviation of 7% was injected into the input features during training, serving as a form
of data augmentation that accounts for measurement uncertainty.

5.2.5.4 Training Optimization Settings

The model was trained using the Adam optimizer (Adam, 2014). Table 5.3
summarizes the final hyperparameter configuration, which was selected after iterative
tuning to balance convergence stability, computational efficiency, and overfitting
control.

Table 5.3 Training Optimization Settings for GraphSAGE Noise Prediction Model

Hyperparameter Value Description

0.001 (adaptive : Initial learning rate, adjusted based on validation

Learning rate scheduling) MAE

L2 weight regularization (decay) le-4 Penalizes large weights to improve

generalization
Batch size 32 Number of subgraph samples per training step
Average nodes per batch ~16,000 Approx. 500 nodes per subgraph x 32 subgraphs
D 0.15 Regularization at each convolutional layer
layers
Dropout after dense layer 0.10 Final dense layer regularization
Sy gt ) epas Stops training if validation MAE does not

improve

Maximum epochs 300 Maximum training duration




Hyperparameter Value Description

Runtime ~3 hour Training 250 epochs on a single T4 GPU

5.2.5.5 Evaluation Metrics and Protocol

The entire dataset of 50,908 graph nodes was randomly partitioned into 60% training,
20% validation, and 20% testing subsets, ensuring that all subsets were spatially
representative of Southampton’s heterogeneous urban morphology.

During training, only the labels of training nodes were visible to the model, while
validation and test labels were fully masked. Although all nodes remained connected
through the adjacency matrix for message passing, gradient updates were computed
solely based on the training subset, thereby preventing label information from
propagating into unseen regions.

This “masked” approach ensures that performance metrics are derived exclusively
from the held-out test subset, representing spatially distinct neighborhoods within the
global graph. The connectivity structure enables contextual learning but does not
cause information leakage, as message propagation from unlabelled nodes carries no
target information. Consequently, the reported MAE and R? values in Section 5.3.1
reflect true out-of-sample generalization across spatial clusters rather than within-
neighborhood interpolation.

5.2.6 Prediction of Noise Maps and Output Generation

Beyond achieving high training and validation accuracy, one of the most impactful
outcomes of this chapter is the generation of high-resolution, spatially continuous
urban noise prediction maps. These maps were produced by applying the trained
GraphSAGE model to an independent, spatially distinct dataset, designed specifically
for prediction purposes. This dataset consists of a uniform grid of evenly distributed
30-meter resolution cells, covering the entire Southampton study area.

To ensure spatial completeness and maintain consistency with the CNN-based
modeling approach introduced in Chapter 4, predictions were not performed directly
on the original noise sample points, which were irregularly distributed and heavily
clustered along road networks. Instead, a uniform grid was constructed, yielding
104,272 prediction points, each representing the centroid of a 30 m % 30 m cell. This
grid allowed for spatially comprehensive predictions that extend beyond traffic
corridors into residential neighborhoods, urban green spaces, mixed-use areas, and
peripheral industrial zones—many of which were sparsely or entirely absent from the
original measurement dataset.

For each grid point, the same multi-scale statistical feature extraction process detailed
in Section 5.2.2 was applied. Specifically, features were derived from the full stack of



125 remote sensing input layers, which include both spectral indices and GLCM-
derived texture maps. Eleven statistical descriptors were calculated within six
concentric ring buffers surrounding each point, resulting in an 8,250-dimensional
feature vector per prediction node. All features were normalized and weighted using
the distance-decay functions defined in Section 5.2.3 to maintain strict
methodological consistency with the training phase.

Following feature construction, a prediction graph was assembled using the same
spatial adjacency logic employed in the training graph: each node was connected to its
841 nearest neighbors, subject to a maximum distance constraint, and the entire graph
was represented using a sparse adjacency matrix. This ensured that the model’s input
structure during prediction precisely mirrored the architecture used during training,
allowing the GraphSAGE model ensemble to be applied directly without modification.

Forward inference was performed over the complete prediction graph, producing a
scalar noise estimate (in dBA) for each of the 104,272 grid points. These predictions
were then georeferenced back to their corresponding 30 m grid cells, ensuring perfect
spatial alignment with the underlying vector geometries used during preprocessing.
The resulting point-based predictions were imported into ArcGIS Pro 2.6.0, where
they were converted into a continuous raster surface using the “Point to Raster” tool,
applying centroid-based value assignment.

This methodological pipeline closely parallels the CNN-based mapping process
introduced in Chapter 4, ensuring that results are visually and quantitatively
comparable across models within an identical spatial framework. The choice of a
30m resolution reflects several key considerations: maintaining alignment with
external datasets such as the Urban Atlas and municipal zoning layers; smoothing
fine-scale noise variability while preserving salient patterns of urban morphology; and
facilitating the interpretability of outputs for planning applications, particularly in
comparison with official noise mapping standards like Lden and Lnight zones.

Critically, this prediction process showcases the model’s ability to generalize beyond
the training sample distribution. While the original measurement data were heavily
concentrated along traffic corridors, the prediction grid encompasses a much broader
range of urban environments, including underrepresented or previously unseen spatial
contexts. The model’s ability to produce coherent, spatially plausible noise estimates
across these diverse landscapes suggests that it has internalized meaningful
environmental relationships rather than simply memorizing local patterns. This
generalization capability strengthens the case for applying the model as a planning-
support tool, particularly in cities where dense field noise measurements are lacking.

The predicted noise raster will be analyzed in detail in Section 5.3, where
visualizations, residual analysis, and comparisons to CNN predictions, official noise
maps, and prior benchmarks will be presented to assess the model’s interpretability,
accuracy, and potential for real-world deployment in urban noise management and
policy contexts.



5.3 Results

This section presents a comprehensive evaluation of the GraphSAGE-based noise
prediction model applied to the city of Southampton. The results are organized to
reflect both the numerical performance of the model and the spatial characteristics of
its predictions. Performance metrics are reported based on a held-out test set
comprising 20 % of the total dataset, consistent with the partitioning strategy
described earlier in this chapter. During evaluation, feature information from non-
prediction nodes remains visible, while their labels are withheld, ensuring a realistic
inductive prediction setting.

Subsequently, we visualize and analyze the predicted noise maps generated on a 30 m
resolution grid and compare them with previous models, including the CNN (Chapter
4) and the gradient boosting decision tree (GBDT) baseline. Finally, we examine local
variation, population exposure, and spatial clustering characteristics to better
understand the spatial interpretability and practical implications of the model outputs.

5.3.1 Model Performance Evaluation

Model performance was evaluated on the 20% held-out test subset defined under the
masked partitioning scheme described in Section 5.2.5. This subset comprised
spatially independent nodes that were never exposed to the model during training or
validation. Because the graph’s adjacency structure was retained for message passing
while the target labels of test nodes were masked, the evaluation reflects true out-of-
sample generalization rather than within-cluster interpolation.

Accordingly, all regression metrics—including the mean absolute error (MAE) and
the coefficient of determination (R?)—were computed exclusively on this held-out
test subset. The reported scores represent the mean performance across ten
independent runs with different random seeds, ensuring statistical stability and
robustness.

The GraphSAGE model achieved an average MAE = 4.40 dBA and R? = 0.596,
demonstrating substantial improvement over the CNN baseline (MAE = 4.79 dBA, R?
= 0.491) and approaching the GBDT model (MAE = 4.18 dBA, R? = 0.61). These
results confirm the GraphSAGE framework’s ability to capture spatial dependencies
and maintain sensitivity to local environmental heterogeneity, yielding a more
spatially coherent and physically consistent noise prediction across Southampton’s
diverse urban neighborhoods.



Model Performance Evaluation

Predicted vs Measured Noise Levels Residuals vs Predicted Noise Levels
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Figure 5.4 Model Performance Analysis. (a) Predicted vs Measured Noise Levels; (b)
Residuals vs Predicted Values, (c) Histogram of Residuals; (d) Q-Q Plot of Residuals

Figure 5.4 presents a set of diagnostic plots used to evaluate the predictive accuracy
and error distribution of the GraphSAGE model across the 10-fold cross-validation
test sets. In Figure 5.4a, a clear positive linear correlation is observed between the
predicted and measured noise values, indicating that the model successfully captures
the overall structure of the noise variation across the urban environment. Most points
align closely along the 1:1 reference line, with only minor dispersion at the upper and
lower extremes. Figure 5.4b shows the residuals plotted against the predicted values,
illustrating the distribution of prediction errors across the full range of outputs. The
plot reveals no significant systematic bias, although a slight increase in variance is
noted at higher predicted noise levels, consistent with the heteroscedastic nature of
environmental noise data. The histogram of residuals in Figure 5.4c confirms that the
majority of prediction errors are centered around zero, with a roughly symmetric
distribution and moderate dispersion. This suggests that the model does not exhibit a
strong tendency toward overestimation or underestimation overall. Finally, Figure
5.4d presents a Q—Q plot comparing the distribution of residuals to a theoretical
normal distribution. The residuals conform closely to the diagonal line, particularly in
the central quantiles, indicating that model errors are approximately normally
distributed and that the residual structure is well-behaved.

5.3.2 Spatial Mapping of Predicted Noise

The predicted noise map generated by the GraphSAGE model is presented in Figure
5.8, displaying estimated noise levels across the entire Southampton study area at a
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30 m resolution. The map was derived by applying the trained model to a uniform
prediction grid composed of 104,272 cells, ensuring full spatial coverage of the city.
Rasterization was performed using centroid-assigned values, yielding a continuous
surface suitable for visual interpretation and comparative analysis.
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Figure 5.5 Predicted noise map of Southampton at 30 m resolution, produced by the
GraphSAGE model with OS Open Carto base imagery overlay

The predicted noise surface exhibits a well-structured spatial pattern, capturing key
urban morphological features and their acoustic signatures. High noise levels are
strongly concentrated along major transportation corridors, including the M27
motorway and principal arterial routes traversing the city. These areas consistently
exhibit predicted values exceeding 65 dBA, consistent with known traffic-induced
noise profiles.

In contrast, lower noise zones are observed in peripheral residential areas, parks, and
wooded regions, particularly in the northwestern and southeastern sectors of the city.
These areas generally register below 55 dBA, aligning with expectations for low-
density or vegetated land covers.

The smooth spatial transitions across land use boundaries indicate that the model is

capable of producing coherent, high-fidelity noise surfaces without visible artifacts or
discontinuities. This represents a notable improvement over previous CNN-based
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predictions (see Section 5.3.3), where abrupt shifts were occasionally observed due to
patch-based convolutional limitations.

Importantly, the uniformity of the 30 m prediction grid contrasts with the irregular
distribution of the original training samples, which were largely constrained to road
networks. The model’s ability to generate spatially consistent predictions across
underrepresented zones—such as parks, commercial buffers, and mixed-use
developments—demonstrates its capacity to generalize beyond the training sample
density and distribution. This reinforces the potential for deploying graph-based
approaches in cities lacking spatially balanced field measurements.

Overall, the predicted map provides a high-resolution and visually interpretable
overview of urban acoustic exposure, capturing both the macro-scale noise structure
of the city and local variations that may inform targeted mitigation strategies.

5.3.3 Visual Comparison with CNN and GBDT Models

To contextualize the performance of the GraphSAGE model, we compared its
predicted noise surface with those generated by the GBDT model implemented by
Alvares-Sanches et al. (2021a) and the CNN model introduced in Chapter 4. All
models produced noise maps based on a shared 30 m resolution prediction grid,
ensuring fair spatial comparability. However, there are fundamental differences in
their respective training datasets and architectural principles that merit close attention.
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Figure 5.6 Comparison of noise prediction generated from different technology

The GBDT model and CNN model were both trained using 30 m resolution noise
labels, which were derived by aggregating and averaging the original 1 m noise
measurements across grid cells. This preprocessing step reduced data complexity and
smoothed local variability, thereby simplifying the learning task and reducing label
noise. In contrast, the GraphSAGE model was trained on 50,908 raw measurement
points, each corresponding to a unique 4 m resolution pixel. Only 1,456 over-
concentrated points were removed from the original 52,364-sample set to avoid
redundancy. As such, the GNN model had to learn from a far more granular and
noisier dataset, without the benefit of pre-averaged, smoothed targets.



Despite this increased learning difficulty and noise label variance, the GraphSAGE
model demonstrated competitive performance. It achieved an average MAE of 4.40
dBA and an R? of 0.576, compared to 4.18 and 0.61 for the GBDT model, and 4.79
and 0.491 for the CNN model, respectively (Table 5.1). These results are particularly
noteworthy given the finer resolution and higher heterogeneity of the training data.

Table 5.4 Quantitative comparison of model performance across MAE, and R*
Model ’
GBDT (Alvares-Sanches et al. 2021
CNN (Chapter 4)
GraphSAGE (This study)

In terms of spatial quality, the GraphSAGE prediction surface (Figure 5.6c) maintains
strong alignment with known urban infrastructure, preserves fine-scale transitions
across land cover boundaries, and avoids the blockiness or over-smoothing observed
in the CNN and GBDT outputs (Figures 5.6a—b). The model’s ability to retain detail
while learning from raw, unaggregated measurements suggests that the graph-based
architecture is capable of capturing multi-scale spatial dependencies in a data-efficient
and interpretable manner.

This distinction is critical when considering the deployment of noise mapping
techniques in practice. Models trained on aggregated noise values may under-
represent local acoustic heterogeneity, particularly in areas with irregular geometry or
sparse sample density. By contrast, the GraphSAGE approach remains grounded in
the native resolution of the observed data, enabling greater fidelity in modeling both
high-noise corridors and quiet, complex urban subzones.

5.3.4 Local Noise Clusters and Hotspot Patterns

To characterise the spatial organisation of predicted urban noise, both global and local
spatial autocorrelation analyses were performed. The Global Moran’s I statistic
yielded a value of 0.345 (z = 1198.09, p < 0.0001), confirming a highly significant
clustered pattern. This demonstrates that noise exposure is not randomly distributed
across Southampton; instead, high levels tend to co-locate along major traffic
corridors and dense commercial zones, whereas low levels concentrate in peripheral
residential and vegetated areas. Importantly, this spatial clustering mirrors the strong
positive spatial autocorrelation observed in the raw measurement data (I = 0.6345, p
< 0.001; see Section 3.2.5), indicating that the model outputs are consistent with the
underlying structure of the acoustic environment rather than reflecting artefacts of
prediction.

5.3.4.1 Rationale for Using Getis—Ord Gi* Hotspot Analysis
While Moran’s I provides evidence for the overall presence of spatial clustering, it

does not reveal the specific locations or spatial configurations of these clusters. To
address this, a local Getis—Ord Gi* statistic was applied to the predicted noise surface.



The Gi* method evaluates each grid cell in relation to its spatial neighbourhood,
computing a z-score that quantifies whether high or low values are surrounded by
similarly extreme observations. Positive z-scores indicate statistically significant
hotspots (high-value clusters), whereas negative z-scores identify coldspots (low-
value clusters).

Unlike simple threshold mapping, Gi* explicitly incorporates spatial dependence and
statistical ~significance, allowing robust identification of continuous noise
concentration belts rather than isolated outliers. This is particularly suitable for urban
acoustic analysis, as environmental noise propagates continuously and is influenced
by surrounding morphology. By integrating both the magnitude and spatial structure
of predicted levels, the Gi* statistic delineates the physical extent of high-exposure
belts and quiet enclaves, supporting targeted interpretation of model outputs.

5.3.4.2 Spatial Hotspot and Coldspot Patterns

As shown in Figure 5.7, the Gi* analysis highlights pronounced hotspot belts across
Southampton’s urban core, particularly along primary transport axes and industrial
waterfronts, while coldspots dominate in vegetated and peripheral residential districts.
This configuration mirrors the city’s functional morphology, reinforcing the realism
of the modelled noise surface.

«  Cold Spot - 99% Confidence
Cold Spot - 95% Confidence i
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*  Hot Spot - 99% Confidence L il

Figure 5.7 Getis-Ord Gi hotspot analysis

5.3.4.3 Local Interpretation of Representative Regions

To further interpret the spatial clustering of predicted noise, two representative
subareas were selected for detailed examination: the central port district (Region 1)
and the southeastern residential-greenbelt zone (Region 2). These areas exemplify
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contrasting urban morphologies and acoustic characteristics, enabling a closer
inspection of how the modelled surfaces and Gi* statistics respond to underlying
physical environments.

In Region 1, encompassing Southampton’s city centre and port area, the OS Open
Carto basemap (Figure 5.8a) highlights the dense urban fabric and intersecting
transport corridors along the A33 arterial and the West Quay industrial frontage. The
GNN-predicted noise surface (Figure 5.8b) reveals an elongated “hot belt” extending
across these corridors, with the Gi* significance overlay (Figure 5.8c) confirming this
as a statistically significant high—high cluster. The convergence of heavy traffic, port
logistics, and built-up infrastructure creates a spatially coherent zone of elevated
acoustic intensity. Within this high-exposure belt, several small “hollow-hotspot”
features are visible near the Mayflower Park waterfront and pedestrianised retail
complexes, corresponding to restricted vehicle access and sound barriers—
demonstrating that local design interventions can reduce environmental noise within
otherwise noisy settings.
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(a)
Figure 5.8 Comparation between (a) OS Open Carto basemap showing infrastructure
context, (b) Predicted noise levels from the GraphSAGE model and (c) Local Gi*
cluster significance overlay in Region 1

In contrast, Region 2, located in the southeastern portion of the city, presents a
markedly different spatial pattern. The OS Open Carto basemap (Figure 5.9a) shows
open urban morphology dominated by low-density housing and vegetated areas. The
predicted noise distribution (Figure 5.9b) displays a smooth attenuation gradient from
major roads toward interior residential streets and green corridors. Correspondingly,
the Gi* analysis (Figure 5.9¢) identifies coherent coldspot clusters enveloping parks
and suburban neighbourhoods such as Sholing and Woolston. These clusters align
closely with vegetated buffers and landscaped belts, indicating that the local hotspot—
coldspot structures reflect genuine environmental processes rather than artefacts of the
modelling framework.
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(a)
Figure 5.9 Comparation between (a) OS Open Carto basemap showing infrastructure
context, (b) Predicted noise levels from the GraphSAGE model and (c) Local Gi*
cluster significance overlay in Region 2

5.3.5 Quantitative Comparison and Multi-scale Evaluation
5.3.5.1 Overall model evaluation

Unlike Sections 5.3.1-5.3.4, which report model performance exclusively on the 20 %
held-out test subset, the analyses presented in this section are based on the complete
set of measured noise data. Specifically, all 50,908 original 4 m noise measurements
and their corresponding 30 m aggregated equivalents were used to compute land-use-
specific and resolution-dependent statistics. These comprehensive assessments—
hereafter referred to as the 30 m-weighted and 4 m-weighted evaluations—aim to
characterize the model’s spatial behavior and internal consistency across the entire
study area rather than its predictive accuracy on unseen data.

This distinction ensures methodological clarity: the test-set results quantify
generalization capability, whereas the full-coverage multi-scale evaluations presented
below capture completeness, stability, and spatial coherence across the full range of
observed acoustic conditions.

To enable a unified comparison across modeling strategies, both the convolutional
neural network (CNN) and the graph neural network (GNN) were evaluated on
overlapping subsets of the Southampton dataset where noise measurements and
remotely sensed features were jointly available. The CNN model was trained on
image patches aggregated to 30 m x 30 m grids, while the GNN was trained directly
on 4 m resolution samples representing individual measurement points. Despite these
differences in data representation, both models were assessed within the same spatial
domain and under identical regression metrics to ensure strict comparability.

As summarized in Table 5.5, the GNN achieved superior predictive accuracy across
all key statistical indicators. The CNN produced a MAE of 4.56 dBA and R? = 0.51,
whereas the GNN improved these to MAE =4.07 dBA and R? = 0.62 when evaluated
at the same 30 m scale. The GNN also exhibited a smaller RMSE (5.27 vs 6.07 dBA)
and a markedly reduced bias, shifting from +2.43 dBA (systematic overestimation) to
—1.73 dBA (slight underestimation). These findings indicate that while the CNN tends
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to overpredict overall noise exposure, the GNN produces more balanced and
physically consistent estimates across heterogeneous urban contexts.

Table 5.5 Quantitative summary

Model Count MAE (dBA) gﬁ? Bias (dBA) R? ?,/coc) @5
CNN (30 m) 13474 4.56 6.07 4243 10.506 166.19
GNN (30m) 13474 4.07 5.27 -1.73 10.620 170.57
GNN(4m) 50908 438 5.67 -0.05 0.614 67.43

Overall, the quantitative evaluation reveals three consistent trends that underscore the
advantages of the graph-based framework. First, the GNN achieves lower MAE and
RMSE values, indicating improved consistency and stability across heterogeneous
urban surfaces. Second, it substantially mitigates the systematic positive bias observed
in the CNN results—a bias partly inherited from the measurement dataset, where
spatial aggregation disproportionately weighted high-exposure samples. By explicitly
modelling spatial relationships between measurement points, the GNN attenuates this
overestimation tendency and produces more balanced predictions. Third, the 4.4-
percentage-point improvement in Acc@=+5 demonstrates not only a tighter statistical
fit but also greater perceptual accuracy, with predicted noise levels aligning more
closely with real environmental conditions. Collectively, these findings validate the
methodological transition from a purely image-based CNN architecture to a spatially
structured GNN, showing that the graph representation preserves fine-scale
heterogeneity while enhancing robustness to local measurement uncertainty. The
following sections further explore these improvements by analysing residual
behaviour and scale-dependent generalisation.

5.3.5.2 CNN vs GNN Comparison at 30 m Resolution
Measured—Predicted Relationships

Figure 5.11 compares measured and predicted noise levels obtained from the CNN
and GNN models using the same 30 m aggregated dataset. Both models exhibit a
strong overall linear relationship with measured noise, yet systematic differences in
prediction behaviour are apparent. The CNN predictions (orange dots) are
consistently located above the 1:1 identity line, particularly within the 50-75 dBA
range, indicating a clear tendency to overestimate noise exposure. This systematic
bias corresponds to the positive mean residual (+2.8 dBA) summarised in Table 5.6
and likely arises from the aggregation process, where high-exposure anomalies (e.g.,
short-term wind noise or sensor interference) disproportionately influence cell-level
averages.

Conversely, the GNN predictions (blue dots) are more symmetrically distributed
around the identity line and exhibit reduced dispersion across the full dynamic range.
The GNN attenuates the CNN’s overestimation in moderate-exposure zones (55-70
dBA) and slightly corrects the underestimation in quieter areas (< 50 dBA),
demonstrating an improved ability to represent gradual transitions of acoustic



attenuation across complex urban surfaces. These results confirm that the graph-
structured framework, by propagating information through spatially connected nodes,
captures both local and contextual dependencies that cannot be expressed through
fixed convolutional receptive fields.

CNN (30 m) )
90 GNN (30 m)

80 -

~
o
L

Predicted Noise (dBA)
@
=]

50

40 1

T T T
40 50 60 70 80 90
Measured Noise (dBA)

Figure 5.10 Measured versus predicted noise levels for CNN and GNN at 30 m
resolution.

The GNN shows tighter alignment with the 1:1 identity line and reduced
overestimation in the 55-70 dBA range.

Residual Distribution Analysis

Residual histograms in Figure 5.12 provide complementary evidence of model
behaviour. Both models are generally centred near zero, indicating overall calibration,
but their residual shapes differ significantly. The CNN residuals show a pronounced
positive skew, with a dense right-hand tail extending from +5 to +12 dBA, reflecting
frequent overestimations in high-exposure corridors such as main roads and industrial
zones. The GNN residuals, in contrast, form a narrower and more symmetric
distribution, concentrated mostly within +3 dBA and shifted slightly towards negative
values (—1.8 dBA). This indicates that the GNN not only reduces the variance of
errors but also corrects the directional bias observed in CNN outputs.

Notably, both models maintain most errors within =10 dBA, yet the GNN produces
far fewer extreme positive residuals. By aggregating contextual information through
edge-weighted  connections, the GNN  effectively  smooths localised
overamplifications and produces a spatially coherent noise field. This behaviour
suggests that graph message passing enforces physically plausible constraints on
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sound propagation—reflecting the continuous decay of acoustic intensity with
distance—that are not explicitly encoded in grid-based convolutional architectures.

Figure 5.2 Residual Distributions (CNN vs GNN, normalized)
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Figure 5.11 Residual distributions for CNN and GNN predictions at 30 m resolution.

The GNN residuals are narrower, more symmetric, and exhibit lower positive skew

than those of the CNN.
Land-Use-Specific Performance

A detailed land-use-based comparison (Table 5.6) further illustrates the robustness of
the GNN across heterogeneous environments. Across all Urban Atlas classes, the
GNN achieves lower MAE and smaller absolute bias values than the CNN, with
consistent improvements in R* and Acc@+5. The most substantial gains appear in
Green urban areas (14100) and Industrial units (12100). In vegetated areas, the GNN
reduces MAE by 25.7 % (4.54 — 3.37 dBA) and improves Acc@+5 by 12.4
percentage points, reflecting superior sensitivity to subtle attenuation effects of
vegetation and open surfaces. In industrial zones, where reflective hard materials and
machinery generate sharp acoustic contrasts, the GNN lowers MAE by 10.1 % and
raises Acc@=5 from 0.71 to 0.75, demonstrating more balanced predictions in
complex built environments.

Residential fabrics also show consistent gains. For Discontinuous dense urban fabric
(11210), the GNN reduces MAE from 4.77 to 4.37 dBA ( 8.5 % improvement ) and
corrects the mean bias from +2.82 to —1.81 dBA. Medium-density residential areas
(11220) show a similar bias reversal (+2.48 — —2.16 dBA) with MAE improvement
of 5.8 %. Although the change in Acc@=5 is minor (—1.0 pp), the removal of
systematic overestimation represents a meaningful physical correction. For Other
roads and associated land (12220), the GNN maintains comparable accuracy while
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achieving near-zero bias (—1.98 dBA vs +1.21 dBA for CNN), indicating better
calibration along transport corridors.

Overall, the GNN not only yields quantitatively superior performance but also
produces more physically consistent predictions across diverse land-cover types. By
explicitly encoding spatial structure as graph connectivity—rather than relying on
implicit image context—the model differentiates between source-dominated and
attenuation-dominated regions, leading to smoother, more realistic representations of
urban acoustic patterns.

Table 5.6 Comparison of CNN and GNN performance across Urban Atlas land-use
classes (30 m evaluation).

Mean  \/AE  MAE AMAE AS@  ACc@ 4. Bias  Bias
LULC Class Count | GT CNN  GNN (%) +5 +5 op) CNN | GNN
(dBA) CNN  GNN
Discontinuous dense
urban fabric (S.L. : 2581 5929 477 437 845 0.64  0.65 .12 28  -1.81
50% - 80%)
Discontinuous
medium density 1853 | 59.41 | 487 458  5.83 064 063 | -1.03 248  -2.16
urban fabric (S.L. :
30% - 50%)
Green urban areas 1099 57.68 4.54 3.37 25.70 0.66 0.79 12.37 2.81 -1.27
Industrial,
commercial, public, ) 0 e3 00 399 358 1005  0.71 0.75 423 132 -1.29
military and private
units
Qe TRl e, 1949 | 6336 3.86 | 376 | 2.82 073 073  -0.82 121 | -1.98
associated land

Metrics include MAE (mean absolute error), Bias (mean residual), and Acc@+5
(percentage of samples within + 5 dBA of measured values). The Acc@=5 indicator
provides a perceptually meaningful measure of accuracy in environmental noise
prediction, corresponding to the tolerance range within which noise differences are
indistinguishable to human hearing in urban contexts.

5.3.5.3 Resolution-Based Evaluation of GNN Predictions
Measured—Predicted Relationships

In this section, the GNN trained on the 4 m dataset is evaluated through predictions
generated on a 30 m graph representation of Southampton. Although the model
produces predictions at 30 m resolution, two independent validation datasets were
used: the original 4 m noise measurements (50 908 points) and their 30 m aggregated
equivalents (13 474 points). This dual-scale evaluation allows the assessment of how
aggregation influences the statistical relationship between predicted and observed
noise.

Figure 5.13 compares measured and predicted noise levels under the two evaluation
schemes. Both sets exhibit strong linear trends and tight dispersion, confirming
consistent model behaviour across scales. When evaluated against the 30 m
aggregated measurements (blue points), predictions show a compressed dynamic



range—high-exposure zones above 75 dBA are slightly under-represented, while
quiet zones below 50 dBA are modestly elevated. In contrast, when compared to the 4
m measurements (pink points), the relationship broadens, with a wider spread around
the identity line, especially in the 60-80 dBA interval. This reflects the higher local
variability of raw sensor observations that cannot be fully smoothed through
aggregation.

Importantly, the model maintains near-zero mean bias (—0.05 dBA) when evaluated
against the 4 m measurements, demonstrating balanced over- and under-estimation at
the native measurement scale. The small negative bias observed in the 30 m
evaluation (—1.73 dBA) indicates that aggregation slightly suppresses high-exposure
peaks. Overall, the comparison confirms that the GNN generalises coherently across
scales, with finer-scale evaluation revealing the preserved heterogeneity of urban
acoustic conditions.

Figure 5.3 Measured vs Predicted (GNN 30 m vs 4 m)

GNN (30 m)
100 1 GNN (4 m)

90 1

80

70 4

Predicted Noise (dBA)

60 -

50

40

4b 5I0 6‘0 TIG 8IO Qb 1(')0
Measured Noise (dBA)
Figure 5.12 Measured versus predicted noise levels for GNN predictions at 30 m
resolution evaluated against 30 m-aggregated and 4 m measurement datasets.

Residual Distribution and Error Structure

The residual histograms in Figure 5.14 further characterise the error structure under
the two evaluation conditions. When assessed against 30 m aggregated measurements
(blue), residuals form a narrow, negatively shifted distribution centred near —2 dBA,
indicating a mild underestimation of high-exposure areas. Conversely, evaluation
against 4 m measurements (pink) produces a broader, nearly symmetric distribution
around zero, with tails extending up to =10 dBA.
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This broadening arises naturally from the increased local variability present in the 4 m
reference data—capturing short-term fluctuations caused by traffic dynamics, facade
reflections, or micro-topographic shielding. From a physical perspective, the
symmetric distribution observed in the 4 m evaluation implies error neutrality,
meaning that deviations are stochastic and spatially balanced rather than
systematically directional. By contrast, the narrower but biased 30 m distribution
reflects a structural offset introduced by the aggregation process, where extreme
observations are averaged into smoother gradients.

Together, these findings indicate that the model’s predictive uncertainty primarily

stems from environmental variability rather than algorithmic bias, reinforcing the
robustness of the graph-based approach.

Figure 5.4 Residual Distributions (GNN 30 m vs 4 m, normalized)

0.10 1 ! GNN (30 m)
1
: GNN (4 m)
0.08
=
< 0.06
3]
[=)]
©
c
[18]
o
& 0.04
0.02
0.00 T T T T T T
-30 -20 -10 0 10 20 30

Residual (Predicted - Measured, dBA)

Figure 5.13Residual distributions of GNN predictions at 30 m resolution evaluated
against 30 m and 4 m reference datasets.

Land-Use-Specific Performance

Performance disaggregated by Urban Atlas 2012 land-use classes (Table 5.7) reveals
consistent trends across scales. For most categories, evaluation using 4 m
measurements yields slightly higher MAE values (by 0.2-0.4 dBA on average) but
improved bias symmetry and comparable correlation strength, consistent with the
increased local variability of the finer reference data.

In industrial and transport zones (classes 12100 and 12220), the finer-scale evaluation
registers larger MAE increases (= 0.4-0.9 dBA) and lower Acc@=+5 (declines of 5-10
pp), yet biases approach zero (from —1.29 — +0.13 dBA; -1.98 — —0.09 dBA),
demonstrating enhanced calibration of absolute levels. In residential fabrics (11210—
11220), the 4 m assessment slightly increases MAE (= +0.3 dBA) but markedly
reduces systematic bias, confirming that street-level heterogeneity is captured without



directional error drift. Green urban areas (14100) remain stable, with minor MAE
growth (+0.3 dBA) and bias = —0.09 dBA, indicating the GNN’s robustness in low-
noise environments.

Overall, while the 4 m evaluation reveals greater random variance due to
environmental complexity, it also confirms that the GNN predictions retain physical
interpretability and unbiased behaviour across diverse land-cover contexts. The
contrast between the two evaluation scales demonstrates that the graph-based
framework generalises effectively from coarse to fine reference data, preserving
meaningful urban-acoustic structures while avoiding over-smoothing.

Table 5.7 Comparison of GNN prediction accuracy at 30 m resolution when
evaluated using 30 m-aggregated and 4 m measurement datasets across Urban Atlas

2012 land-use classes.

Mean | Mean
MAE MAE Acc@+S | Acc@+5 Bias | Bias
LULC Class Count  Count GT  GT 4 o\ NN AMAE ouN30 GNN 4 A GNN | GNN
30m 4m 30 m m 30m 4m (%) m m (Pp) 30m | 4m
(dBA)  (dBA)
Discontinuous dense
urban fabric (S.L.: 2581 10441 5929 5851 437 494  -13.10 0.65 0.59 6.06  -1.81  -0.01
50% - 80%)
Discontinuous
medium density 1853 | 8707 | 59.41 | 58.08 458 480 -475  0.63 0.61 2.15 216  -0.16
urban fabric (S.L. :
30% - 50%)
Green urban areas 1099 | 5205 | 57.68 5677 337 3.67 -9.00  0.79 0.74 452 127  -0.09
Industrial,
commercial, public, "y 417 5919 6300 6222 358 404 1271 075 0.70 -5.64 129 0.13
military and private
units
Cilier wmass 1949 | 15662 6336 | 62.08 3.76 | 4.68 | 2466 @ 0.73 0.62 - -1.98 | -0.09
associated land 10.25

Metrics include MAE (mean absolute error), Bias (mean residual), and Acc@+5
(percentage of predictions within + 5 dBA of the reference values).

5.4 Discussion

5.4.1 Methodological Advancements over Traditional and Deep
Learning Models

The GraphSAGE-based model proposed in this study demonstrates clear
methodological advantages over both traditional machine learning models (e.g.,
Gradient Boosting Decision Trees, CatBoost) and deep learning approaches such as
Convolutional Neural Networks (CNNs). A central innovation lies in the preservation
of high-resolution, unaggregated noise data, where 50,908 observations are retained at
4 m spatial resolution. In contrast, both the CatBoost baseline and the GBDT model




by Alvares-Sanches et al. (2021a) rely on aggregation to 30 m resolution and outlier
exclusion, thereby reducing the sample size to approximately 13,500 points. While
such preprocessing yields slightly higher fit statistics, it suppresses the fine-grained
spatial variability that is intrinsic to dense urban noise environments.

By contrast, the GraphSAGE model learns directly from this high-resolution,
heterogeneous spatial signal, capturing both the micro-scale fluctuations associated
with facade-level acoustic variability and the broader structural patterns that shape
urban soundscapes. The slight reduction in global fit metrics compared to smoothed
models is a direct reflection of this greater complexity—rather than a limitation, it
signals the model’s capacity to represent real urban heterogeneity rather than an over-
simplified abstraction.

Compared with CNNs, the advantages of the graph-based architecture are particularly
evident. CNN receptive fields are fixed, isotropic, and Euclidean, meaning that they
integrate information within circular or square neighborhoods. This structure is well
suited to capturing texture gradients but inherently limited when urban acoustic
connectivity deviates from grid-like patterns—for example, along oblique road
corridors, branching intersections, or complex building frontages. CNNs tend to
emphasize spatial smoothing within these fixed windows, which can obscure fine-
grained differences between acoustically distinct but spatially proximate elements.

The GraphSAGE framework overcomes this limitation by encoding urban space
relationally rather than purely geometrically. Instead of being constrained by pixel
neighborhoods, the model aggregates information along a graph that explicitly reflects
the adjacency of acoustically related elements. Roads that intersect at oblique angles,
linear corridors that span long distances, and complex urban blocks are all naturally
represented within the graph topology. This allows the model to integrate information
in ways that better reflect the true pathways of noise propagation—particularly for
traffic-related sources that are strongly directional and network-constrained.

Another critical methodological advantage lies in the multi-scale ring-based feature
encoding. Unlike CNNs, which learn features implicitly through convolution, the
GNN receives explicit environmental summaries computed across multiple buffer
distances, ranging from immediate fagade-scale contexts (tens of meters) to broader
urban surroundings (hundreds to thousands of meters). This structured multi-scale
representation provides richer contextual information, enabling the model to
distinguish, for example, a residential facade facing a busy arterial road from one
shielded behind green buffers or secondary streets. This kind of nuance is difficult for
CNN s to capture because their convolutional filters are uniform and lack explicit scale
semantics.

Taken together, these architectural and representational design choices yield several
interrelated advantages. First, they allow the GNN to preserve localized peaks and
sharp gradients in predicted noise fields, reflecting fine-scale acoustic variations that
are often lost in CNN-based or aggregated ML models. Second, they provide a more
topologically faithful representation of urban acoustic connectivity, which is crucial
for accurately modeling traffic noise propagation in complex city morphologies. Third,
the explicit use of multi-scale descriptors enhances interpretability, enabling a clearer



understanding of how specific environmental structures influence predicted noise
levels.

In short, the GraphSAGE framework offers a scale-flexible, topology-aware
alternative to both traditional machine learning and CNN-based approaches. It
maintains the resolution and complexity of real-world urban environments, captures
anisotropic and network-structured noise propagation more effectively, and improves
the interpretive power of the resulting maps. These advantages are especially
important in heterogeneous urban landscapes, where noise exposure is structured less
by isotropic proximity than by the geometry of roads, building frontages, and open
spaces.

5.4.2 Interpreting Quantitative Improvements

The quantitative comparisons presented in this chapter reveal that the Graph Neural
Network (GNN) framework delivers consistent and systematic improvements over
both the convolutional neural network (CNN) and the tabular CatBoost baseline.
These gains are not merely numerical; they reflect deeper methodological shifts in
how spatial relationships, multi-scale structure, and acoustic physics are represented
and learned. The following discussion interprets these improvements from a
mechanistic standpoint, linking the observed performance differences to architectural
design choices and the spatial logic of urban noise propagation.

At the conceptual level, the GNN replaces the fixed-window learning paradigm of the
CNN with an adaptive, relation-driven formulation. Whereas the CNN operates on
square image patches with uniform receptive fields, the GNN represents each noise
measurement as a node embedded in a topological structure derived from spatial
proximity. Message-passing enables each node to aggregate information from its
neighbors, thereby learning context dynamically rather than through a pre-defined
convolution kernel. This design fundamentally redefines the receptive field: it
expands organically with the graph’s connectivity and layer depth, allowing the model
to integrate information over 1-3 km spatial extents without the redundancy and
boundary artifacts that characterize grid-based convolutions. As a result, the GNN
achieves a more flexible and physically coherent description of the acoustic landscape,
particularly in transitional areas where the CNN’s fixed 1 km patches tend to average
away local contrasts or overfit spurious texture differences.

A second source of improvement lies in how the GNN encodes local environment
through ring-based statistical summaries. Instead of feeding raw texture maps directly
into a convolutional stack, the model aggregates information within six concentric
buffers around each node, transforming high-dimensional imagery into structured
numerical descriptors (means, dispersions, higher-order moments, and percentiles).
This encoding embeds the isotropic nature of acoustic diffusion directly into the
feature space. It also disentangles near-field and far-field effects, ensuring that local
surface materials and vegetation cover are distinguished from broader morphological
influences. In contrast, the CNN must implicitly learn such scale-specific
dependencies through repeated convolutions, a process that often leads to spectral
smoothing and regression-to-the-mean effects at the upper and lower extremes of



exposure. The GNN’s explicit ring design, by comparison, mirrors the radial
attenuation pattern of sound propagation, producing feature representations that are
more interpretable and physically grounded.

An additional mechanism of improvement arises from the application of exponential
distance weighting to the ring-encoded descriptors. By assigning progressively
smaller weights to statistics drawn from outer rings, the model incorporates a soft
physical prior that reflects the declining acoustic relevance of distant surfaces. This
attenuation regularizes the input space, preventing features from large buffers—often
associated with mixed or weakly correlated land uses—from dominating the signal.
Empirically, this adjustment translates into the compression of the residual
distribution’s positive tail and a notable reduction in systematic bias. The CNN and
CatBoost models both exhibit upward bias (predicted means exceeding observed
ones), a symptom of overfitting to high-exposure samples. The GNN, by contrast,
stabilizes the relationship between predicted and measured values: large overestimates
near industrial corridors and port zones are substantially reduced, while mid-range
exposures align more closely with observations. These corrections originate not from
increased model complexity but from a more physically informed representation of
spatial influence.

Scale consistency offers another layer of insight. Because the GNN is trained at 4 m
resolution, it can be evaluated both at the native measurement scale and at the coarser
30 m grid level. The resulting trade-off between variance and bias exemplifies the
model’s robustness across resolutions. At finer scales, the GNN preserves small-scale
heterogeneity, showing nearly zero mean bias but slightly higher variance. At
aggregated scales, random variability diminishes while minor negative bias emerges,
leading to higher overall R%. This balanced behavior contrasts with the CNN, whose
predictions degrade rapidly when transferred between scales due to its dependence on
fixed window geometry. The GNN’s consistent performance thus demonstrates that it
captures genuine hierarchical relationships in the data rather than memorizing scale-
specific spatial patterns.

Disaggregated analysis by land-use class further clarifies where the GNN’s structural
advantages manifest. The largest gains occur in “Industrial, Commercial, and
Transport” categories (codes 12100 and 12220), where the spatial configuration of
built-up areas and road networks creates strong directional and long-range
correlations. Here, the GNN’s message-passing mechanism effectively propagates
contextual information along these linear infrastructures, mitigating the isolated high-
bias artifacts common in CNN predictions. In green urban areas (code 14100),
improvements take a different form: variance is reduced and R? increases because the
ring-based features more faithfully represent the acoustic shielding effects of
vegetation. Residential zones show moderate yet consistent improvement, suggesting
that mixed urban fabrics—where building density and vegetation interleave—benefit
from the model’s ability to balance local and background information simultaneously.

From a theoretical perspective, these improvements highlight a key point: increasing
network depth or channel count is not synonymous with better generalization. Prior
experiments with deeper CNNs, such as ResNet-50, produced visually distorted noise
maps with unrealistic striping patterns, illustrating how excessive depth without
structural guidance can amplify noise rather than meaning. The GNN’s superior



performance stems instead from its inductive bias—the explicit representation of
spatial relationships and distance-dependent attenuation—which channels learning
toward physically plausible correlations. In this sense, the GNN does not merely
approximate a function between spectral texture and noise level; it approximates the
governing processes underlying acoustic diffusion in heterogeneous urban
environments.

Finally, the model’s robustness is strengthened by the consistent application of input-
level Gaussian perturbation across the three data chapters. In the GNN setting, mild
stochastic noise is injected into node attributes during training, complementing
traditional weight decay regularization. Whereas L2 regularization constrains
parameter magnitude, input perturbation enforces invariance to small fluctuations in
environmental measurements—fluctuations that are unavoidable in real-world sensor
networks due to transient traffic conditions, wind direction, and instrumentation drift.
Combined with neighborhood aggregation, this technique yields a model that is both
smooth and responsive: predictions remain stable under perturbation while still
sensitive to genuine environmental variation.

In summary, the quantitative improvements observed for the GNN are the outcome of
multiple, interacting mechanisms: explicit spatial encoding that replaces fixed
receptive fields, multi-scale isotropic ring statistics that embed acoustic physics,
distance-weighted feature attenuation that regularizes spatial influence, and stochastic
input augmentation that enhances robustness. Together, these elements transform the
learning problem from image regression into a structured spatial inference task. The
resulting framework not only achieves lower MAE and higher R? scores but also
produces spatially coherent and physically interpretable noise maps—an essential
prerequisite for cross-city transferability and urban environmental management.

5.4.3 Learning Spatial Structure and Noise Propagation

A central strength of the GraphSAGE architecture lies in its ability to integrate spatial
adjacency information, allowing it to reflect the mechanisms of noise propagation
more realistically within urban environments. Unlike traditional machine learning
models such as gradient-boosted decision trees (GBDT) or CatBoost, which operate
on independent tabular samples, or convolutional neural networks (CNNs), which
assume fixed Euclidean neighborhood structures, GraphSAGE leverages explicit
graph representations to model both spatial relationships and neighborhood influence.

This graph-based formulation enables the model to capture not only physical
proximity but also functional connectivity—a critical aspect of urban noise dynamics.
For instance, traffic noise often propagates along linear corridors such as highways or
arterial streets, producing directional spillover and attenuation gradients that cannot
be effectively modeled using square grid windows or pixel-based convolutions
(Dutilleux et al., 2010; Botchkarev, 2019). In contrast, by constructing a k-nearest
neighbor graph, the GraphSAGE architecture can learn from both adjacent and
slightly offset regions, allowing it to represent corridor-like propagation pathways
with greater fidelity (Jiang & Luo, 2022; Wu et al., 2020).



The predictive noise maps presented in Section 5.3 provide empirical support for this
interpretation. In high-density urban areas such as Southampton’s city center, the
GraphSAGE model generates continuous high-noise zones that align with known road
networks, including secondary streets and junctions that often go underrepresented in
raw remote sensing texture data. Compared to the CNN model, whose outputs
frequently display fragmented or “patchy” predictions, the graph-based approach
produces gradual transitions and coherent clusters of elevated dBA values—indicative
of the model’s ability to internalize the diffusion-like patterns of sound across the
built environment (Semper et al., 2025).

Additionally, the multi-hop neighborhood aggregation inherent in the GraphSAGE
layers enables the model to account for longer-range spatial interactions, integrating
feature signals from nearby zones and smoothing local inconsistencies. This
capability is particularly critical in areas with sparse sampling, where the model must
infer likely noise levels based on patterns learned from structurally or functionally
similar neighboring zones. By expanding the receptive field over successive graph
layers, the model effectively mimics how noise attenuates across varying distances,
surfaces, and urban morphologies (Bo et al., 2021).

The validity of these spatially coherent predictions is further supported by the hotspot
and coldspot clusters derived from the Getis-Ord Gi* analysis. The GraphSAGE
model accurately delineates clusters of high exposure near transportation corridors
and low exposure in vegetated or peripheral residential areas. Importantly, these
clusters are not random artifacts but exhibit statistical significance, reflecting
structured spatial processes in urban noise dynamics. Such findings align with recent
research in environmental modeling, where graph-based learning methods have been
shown to outperform purely feature-driven models in capturing spatial dependencies
and long-range interactions (Jiang & Luo, 2022).

In summary, the GraphSAGE model’s capacity to learn from both local features and
spatial relationships yields a structurally aware representation of urban noise
propagation. This capacity enables it to surpass the rigid locality constraints of CNNs
and the spatial independence assumptions of GBDT models, positioning it as a
promising tool for predicting and interpreting real-world environmental exposures in
complex, heterogeneous urban systems.

5.4.4 Reflections on Dataset, Graph Construction, and Hyperparameter
Design Choices

Reflecting on the iterative research process, extensive testing was conducted in the
design of the graph neural network, focusing on dataset preparation, graph and node
construction, and training hyperparameters. These experiments highlighted several
suboptimal attempts and key lessons that shaped the final model configuration.

Initial tests used the same 30 m resolution aggregated noise samples from Chapter 4,
yielding satisfactory results with MAE and R? scores superior to the CNN model.
However, to achieve a more detailed noise prediction map that better reflects real-
world variability, aggregation was refined to 4 m X 4 m grids (the minimum feature



map resolution) for the initial 1 m noise points. Resolutions below 4 m led to overly
proximate points sharing identical statistical variables, introducing redundancy that
hindered model training due to noise fluctuations causing artificial differences. This 4
m aggregation reduced the sample count by only about 10% while preserving fine-
scale detail, balancing granularity and computational feasibility.

With the 4 m aggregated noise samples established, graph construction followed,
focusing on each node's adjacency relations. Building a fully connected global graph
was infeasible due to massive resource demands, so sparse matrices were
implemented. Gaussian and Euclidean distances were tested, with Euclidean distance
combined with a weight decay matrix ultimately selected as it better aligned with
noise propagation patterns (Wu et al., 2020; Jiang & Luo, 2022). For sparse matrix
constraints, search radius thresholds and maximum adjacent nodes were tuned to
balance information flow for unevenly distributed nodes and enable learning of
distance-based effects. Combinations were tested across 2%—10% of the total study
area (=250 m to 1.2 km) for search radii and 250-1500 for adjacent nodes, yielding an
optimal 4% radius and 841 neighbors for performance and efficiency.

Hyperparameter tuning further included adjusting random Gaussian noise injection
between 2% and 10%, with 7% providing the best robustness, and testing
GraphSAGE layer depths between 3 and 8. Six layers were ultimately chosen as
optimal for both model expressiveness and convergence stability (Scarselli et al.,
2009; Lei et al., 2024). All experiments were conducted on NVIDIA T4 GPU (16 GB
VRAM) via Google Colab. A typical model training run required approximately 3
hours, with runtime influenced primarily by the number of nodes in the constructed
graph and the feature channel dimensionality.

Cross-city Generalization Test

To evaluate the model’s ability to generalize beyond Southampton, cross-domain
experiments were conducted on Portsmouth, a morphologically similar port city
located nearby. After applying the same histogram matching and normalization
procedures used for Southampton, the model showed partial transferability. Compared
to the CNN in Chapter 4, the GNN achieved better structural alignment with major
transport corridors, indicating that the neighborhood-aware aggregation mechanism
captured road geometry more effectively.

However, systematic prediction shifts were still observed: value ranges were
significantly offset, and several segments of roads and green spaces displayed erratic
or inconsistent predictions when compared against land-use classifications (LULC).
In some cases, local patches appeared excessively noisy or failed to correspond to the
underlying urban structure, indicating that certain spectral-textural patterns present in
Portsmouth were not well represented in the Southampton training domain. This
domain mismatch manifested despite careful normalization, demonstrating that while
GNNs improve spatial reasoning relative to CNNs, they remain sensitive to
differences in feature distribution and semantic composition between cities.

This finding highlights the inherent limitations of using multispectral imagery alone
for cross-city transfer, even with more sophisticated graph-based models. It also
provides empirical justification for the methodological shift introduced in Chapter 6,
where the integration of Urban Atlas 2012 land-use information complements spectral



features with semantically meaningful urban structure attributes. By enriching the
input representation, the model moves closer to robust cross-domain generalization,
addressing the semantic blind spots that contributed to the prediction deviations
observed in Portsmouth.

5.4.5 Interpretable Urban Acoustic Patterns

Beyond statistical accuracy, one of the most compelling advantages of the
GraphSAGE model lies in its ability to generate spatially interpretable acoustic
patterns that emerge consistently across unseen neighbourhoods. The patterns
produced on the 20% test subset (as described in Section 5.2.5) align closely with
real-world urban morphology and human-perceived soundscapes. This interpretability
is not only essential for scientific validation but also holds immense practical value
for urban planning, policy formulation, and environmental-health applications.

The predicted noise maps presented in Section 5.3 clearly demonstrate empirical
differences between the CNN- and GNN-based approaches at 30 m resolution. While
both models capture the overall intensity distribution of urban noise exposure, the
spatial structure of their outputs diverges markedly. The CNN tends to produce block-
like artefacts, reflecting the rigid geometry of its fixed receptive fields. In contrast, the
GraphSAGE-based model generates smooth, elongated high-noise zones that closely
follow the geometry of transportation corridors such as arterial roads, rail lines, and
port access routes. Because the evaluation was performed on spatially independent
test nodes, these spatial patterns cannot be attributed to memorisation of training data.
Instead, they reflect the model’s ability to propagate information through graph
connectivity, enabling directional and contextual relationships to emerge organically
from the learned representation.

This structural contrast is further substantiated by the residual error distributions
presented in Figures 5.10-5.12. CNN predictions exhibit systematic overestimation in
moderate-exposure corridors (55-70 dBA) and a pronounced positive residual skew,
whereas GNN outputs show tighter alignment with the 1:1 identity line, reduced
variance, and near-zero bias along transport-related land uses. By aggregating
contextual information through edge-weighted connections, the GNN effectively
smooths localised overamplifications and produces spatially coherent noise fields.
This behaviour indicates that graph message passing implicitly encodes physically
plausible constraints on noise propagation—such as the gradual decay of sound
intensity along transportation corridors—that are not explicitly represented in CNN
architectures.

Moreover, the model exhibits notable sensitivity to transitional urban zones, such as
the gradual shift from busy commercial centers to quieter residential blocks or green
spaces. In these contexts, the GraphSAGE framework produces smoother dBA
gradients around mixed-use boundaries and park perimeters, reflecting realistic
attenuation patterns that result from both physical barriers (e.g., tree lines, building
walls) and surface-material transitions. Such gradient detection is supported by the
use of multi-scale, ring-based statistical descriptors, which capture anisotropic
variation in land cover and enable the model to distinguish between homogeneous



zones (e.g., parks) and edge-dominated interfaces (e.g., road-building intersections)
(Bo et al., 2021; Terroso-Saenz et al., 2023).

The importance of these interpretive capacities becomes especially clear when
examining the local hotspot and coldspot visualizations derived from the Getis-Ord
Gi* analysis. The GraphSAGE predictions not only display statistical coherence but
also topological alignment with the underlying urban context. For example, coldspot
clusters in southeastern districts such as Sholing and Peartree closely follow vegetated
corridors and low-density residential layouts, as confirmed by reference maps from
OS Open Carto. Since these hotspot patterns were computed on the model’s test-set
predictions rather than the training data, their spatial coherence serves as an
independent validation of the model’s ability to generalize across different
neighbourhoods and structural contexts. This reinforces the credibility of the model’s
spatial behavior, suggesting that it captures meaningful, interpretable environmental
structures rather than generating arbitrary patterns—a key criterion in the emerging
field of explainable machine learning (Wu et al., 2020).

These qualities are particularly critical for downstream applications. While traditional
models may offer numerically accurate predictions, they often lack the spatial
resolution and interpretability necessary for human-centered decision-making. By
contrast, the GraphSAGE model provides outputs that are not only statistically robust
but also visually and structurally meaningful. Urban planners, transportation
engineers, and environmental-health analysts can extract insights not just from
aggregated error metrics but from the spatial form, flow, and transition patterns
embedded in the model’s outputs. Recent reviews emphasize that this combination of
predictive power and interpretability is increasingly seen as essential in modern
environmental modeling, where outputs must be actionable across diverse stakeholder
groups.

In sum, the proposed GraphSAGE framework effectively bridges the gap between
quantitative accuracy and spatial narrative, delivering a model that not only fits the
data but generalizes across spatial clusters and tells the story of urban noise in a form
that is both scientifically rigorous and intuitively meaningful for real-world
application.

5.4.6 Limitations and Motivations for Further Generalization

While the GraphSAGE-based model presented in this chapter demonstrates
significant improvements in both predictive accuracy and spatial interpretability,
several methodological and data-related limitations constrain its broader applicability
and generalizability. These limitations are rooted in the characteristics of the input
data, the complexity of the feature representation, and the simplifying assumptions
inherent in the graph construction process.

5.4.6.1 Limitations of Multispectral and Texture-Based Inputs

A key limitation arises from the model’s exclusive reliance on multispectral remote
sensing imagery to characterize urban environments. While high-resolution imagery



provides detailed spectral and spatial information, it is inherently limited in capturing
functional infrastructure and semantic land use—both of which are critical
determinants of urban noise patterns (Dutilleux et al., 2010; Botchkarev, 2019). For
example, linear noise sources such as highways are often spectrally indistinct from
other impervious surfaces like rooftops, parking lots, or pedestrian walkways.
Vegetation cover, shadows, and seasonal changes introduce additional spectral
ambiguity, which can fragment or obscure the continuity of road corridors in the data.
As a result, while the predicted noise maps generally exhibit coherent patterns, they
occasionally fail to fully capture the expected spatial continuity of high-noise zones,
particularly where roads intersect vegetated or shadowed areas.

Although the incorporation of GLCM-based texture features helps quantify surface
heterogeneity, it remains fundamentally tied to radiometric variation rather than
physical or acoustic function. Texture measures alone cannot distinguish between a
noisy arterial road and a visually similar but acoustically inert building complex. This
highlights a broader limitation: models based solely on imagery-derived features may
be insufficient for representing the multifaceted and functionally diverse nature of

urban noise dynamics, especially in morphologically complex or mixed-use areas
(Genaro et al., 2010).

5.4.6.2 Feature Representation and Model Complexity

Another challenge stems from the high dimensionality and structural complexity of
the feature set. The current model integrates over 8,000 statistical descriptors per node,
derived from spectral indices, remote sensing bands, and multi-scale texture features.
While this rich feature space enables the model to capture fine-grained spatial patterns,
it introduces potential drawbacks: feature redundancy, increased computational
overhead, longer training times, and a heightened risk of overfitting—particularly in
low-sample-density regions or highly heterogeneous environments (Botchkarev,
2019). Moreover, the sheer complexity of the input space can reduce interpretability,
making it difficult to attribute predictions to specific variables or spatial drivers.

This complexity also raises concerns about model transferability. Many image-
derived variables are sensitive to atmospheric, seasonal, or sensor-specific conditions,
which can vary significantly across geographic contexts. As such, models trained on
one city’s data may struggle to generalize to others without extensive recalibration or
domain adaptation. Addressing these issues will require future efforts in feature
selection, dimensionality reduction, and the incorporation of higher-level semantic or
functional information to build more robust, generalizable models (Terroso-Saenz et
al., 2023; Dutta et al., 2024).

5.4.6.3 Assumptions in Graph Construction and Spatial Relationships

A further limitation lies in the graph construction strategy. In this study, spatial
adjacency was defined purely based on Euclidean distance using a k-nearest neighbor
(k-NN) graph. While computationally efficient and widely adopted, this approach
implicitly assumes that physical proximity equates to acoustic connectivity—a
simplification that often fails in real-world urban environments (Scarselli et al., 2009;



Wu et al., 2020). Noise propagation is shaped not just by distance but by the presence
of physical barriers (e.g., buildings, walls), natural buffers (e.g., parks, forests), and
directional conduits (e.g., road networks), none of which are explicitly encoded in the
current graph structure.

For example, two nodes 200 m apart but connected by an open road are acoustically
very different from two nodes separated by a dense vegetated barrier or a noise wall,
even if their Euclidean distance is identical. The current k-NN graph does not
differentiate these cases, potentially leading to misestimated spatial influences and
reduced predictive precision (Jiang & Luo, 2022; Lei et al., 2024). While the dense
sampling of over 50,000 nodes helps approximate complex spatial variation, the
underlying graph remains agnostic to functional, directional, and structural nuances.

Future research should explore more semantically informed graph construction
strategies, such as weighted edges reflecting landscape permeability or acoustic
impedance, road network—based connectivity graphs, or land-use-informed adjacency
models. Integrating these approaches could help move graph-based models beyond
proximity and toward a more physically and functionally realistic representation of
urban noise dynamics, improving both their predictive accuracy and physical
interpretability (Bo et al., 2021; Terroso-Saenz et al., 2023).

5.5 Conclusion

his chapter introduced a graph-based framework for high-resolution urban noise
prediction, leveraging a GraphSAGE neural network trained on 50,908 unaggregated
noise samples from Southampton, each spatially aligned with WorldView-2
multispectral imagery. By moving beyond traditional grid-based or patch-based
approaches, the model adopted a non-Euclidean, node-centric spatial formulation that
integrates both local and contextual information through multi-scale ring-based
statistical features derived from spectral indices and GLCM texture maps.

The full modeling pipeline followed a coherent and physically informed workflow.
The process began with data preparation, in which the raw 1 m noise measurements
were aggregated to 4 m to match the WorldView-2 imagery, ensuring spatial
correspondence across modalities. Around each noise point, six concentric ring
buffers (r = 0-300 m) were generated to capture the environmental structure at
multiple scales. Within these buffers, 125 texture descriptors—computed from five
spectral indices and weighted by an exponential distance-decay function—formed an
8,250-dimensional feature vector for each node. These features were then embedded
in a k-nearest-neighbor graph (k = 841, = = 500 m) that represented both proximity
and spatial autocorrelation. Training was performed on dynamically sampled node-
centered subgraphs (~350—-841 nodes each) to balance computational efficiency with
local topological completeness. The GraphSAGE architecture consisted of six
convolutional layers with mean aggregation, batch normalization, and Gaussian input
perturbation (¢ = 0.07), trained using the Huber loss and adaptive Adam optimization.



Once trained, the model was applied to a 30 m uniform prediction grid (104,272 cells),
producing continuous citywide noise maps evaluated on a held-out 20% test subset
and validated through full-dataset hotspot and land-use analyses.

Through this integrative workflow, the GraphSAGE model achieved robust predictive
performance, with a mean absolute error (MAE) of 4.40 dBA and an R? of 0.596,
while preserving fine-grained spatial detail. Its outputs successfully reproduced key
acoustic patterns, such as the linear spread of noise along arterial roads and the
attenuation observed across vegetated and residential buffers. Importantly, these
patterns were not only visually interpretable but also statistically validated,
underscoring the model’s capacity to extract meaningful environmental structures
rather than overfitting noise.

In addition to predictive accuracy, the framework demonstrated improved
interpretability and spatial realism. Compared to CNN-based baselines, which often
yield blocky or over-smoothed surfaces, the GraphSAGE approach produced smooth
and topologically coherent noise fields that aligned more closely with urban
morphology. This advantage stems from the graph’s ability to aggregate features
across multi-hop neighborhoods, capturing both local variability and broader spatial
dependencies in a manner consistent with the physics of noise propagation.

Nonetheless, several limitations constrain the broader applicability of the framework.
The exclusive reliance on imagery-derived spectral and textural features limited its
ability to capture functional or semantic acoustic structures, such as the presence of
transportation corridors or urban green barriers. Similarly, the use of a Euclidean k-
nearest neighbor graph did not fully represent directional or anisotropic propagation
effects shaped by complex urban form. Moreover, the high dimensionality of the
spectral-textural feature space introduced redundancy and raised challenges for both
scalability and generalization across distinct cities.

These reflections reinforce the value of graph-based learning for urban noise
prediction while also highlighting its current boundaries. To address these constraints,
the next chapter extends the framework by incorporating semantically rich land-use
data from the Urban Atlas 2012, alongside refined graph architectures. This
integration aims to enhance cross-city generalization by combining the structural
advantages of GNNs with categorical information on urban function and morphology,
thereby advancing towards a transferable, multi-city noise prediction system.



Chapter 6: Generalizable Urban Noise Prediction via

Cross-City Standardized Multispectral Imagery and Dual-

Branch Graph Neural Networks

Abstract

Environmental noise mapping is essential for assessing urban soundscapes and
guiding public health and planning decisions. Yet, many existing prediction
approaches depend heavily on local in-situ measurements, limiting their scalability to
cities lacking noise monitoring infrastructure. This study presents a novel
generalizable framework for urban noise prediction that leverages multispectral
remote sensing imagery and urban land use data, eliminating the need for ground-
truth labels in target cities. We introduce a dual-branch graph neural network that
integrates spatial features from both local (0—120 m) and contextual (120—1000 m)
environments. To address domain discrepancies, the framework incorporates multi-
domain adversarial alignment and pseudo-label filtering strategies. Experiments
conducted across five UK cities demonstrate the model ’ s ability to capture noise-
relevant patterns and generate spatially coherent noise maps closely aligned with
official transportation noise datasets. This approach offers a scalable, label-efficient
solution for large-scale urban noise assessment, with broad potential for application in
data-scarce urban environments.

Keywords: environmental noise mapping, urban soundscapes, graph neural networks,
remote sensing, domain adaptation, label-efficient learning

6.1 Introduction

Building on the findings of Chapter 5, which demonstrated the capacity of graph
neural networks (GNNs) to effectively learn urban noise patterns and generate high-
quality, spatially coherent noise maps, this chapter expands the research focus toward
addressing a critical scalability challenge: how to generalize noise prediction models
across cities with minimal or no in-situ acoustic measurements. While the previous
chapter validated the feasibility of using multispectral remote sensing and urban land-
use data within individual cities, the broader question remains—can these models



reliably extend their predictive power to new urban environments with distinct
morphological, socio-economic, and infrastructural characteristics?

Addressing this question is crucial for advancing urban noise modeling into a truly
scalable, transferable tool that can support data-scarce cities worldwide. Existing
research in related domains such as air pollution modeling, land-use classification,
and urban heat island analysis has increasingly adopted machine learning strategies
like transfer learning, domain adaptation, and weak supervision to navigate cross-
domain variability (Wang et al., 2022; Terroso-Saenz et al., 2024). However, these
strategies have seen limited application in urban noise prediction, where the physical
mechanisms of acoustic propagation and the heterogeneity of urban form introduce
unique challenges (Tuia et al., 2016; Umar et al., 2024).

In this context, the current chapter introduces a novel framework designed to address
these gaps by integrating techniques drawn from multiple research streams, including
pseudo-labeling, adversarial domain adaptation, and multi-scale spatial modeling. The
goal is to create a predictive architecture that does not rely on the availability of direct
noise measurements in target cities, yet remains sensitive to both local and contextual
urban features.

The technical approach in this chapter draws inspiration from several influential
methodological advances. First, pseudo-labeling, originally developed in the context
of semi-supervised learning (Lee, 2013; Rizve et al., 2021), provides a strategy for
leveraging high-confidence model predictions as approximate labels for unlabeled
data. Recent developments in semi-supervised learning, including uncertainty-aware
selection mechanisms (Rizve et al., 2021) and confidence-based consistency training
frameworks (Sohn et al., 2020), have demonstrated that pseudo-labeling can
effectively supplement scarce ground-truth datasets—provided that pseudo-label
noise is carefully managed to prevent bias propagation.

Second, adversarial domain adaptation, a core development from transfer learning and
domain-invariant modeling, addresses the well-documented challenge of domain
shifts across cities. Techniques such as domain-adversarial neural networks (DANN)
employ a discriminator network to penalize domain-specific features, thus
encouraging the extraction of domain-invariant representations (Ganin et al., 2016;
Ouyang et al., 2023). While widely applied in computer vision, malware detection,
and graph counterfactual learning (Bilot et al., 2024), multi-domain adversarial
alignment—where multiple target domains are aligned simultaneously—remains an
underexplored but promising avenue for urban noise modeling, as evidenced by
applications in urban scene segmentation and traffic prediction (Jiang & Luo, 2022).

To clarify, in a DANN framework the process can be understood as a two-player
game between the feature extractor and a domain discriminator. The feature extractor
learns to represent urban environments in a way that predicts noise levels accurately
for the labeled source city (e.g., Southampton). Simultaneously, the discriminator
attempts to identify which city each sample originates from (e.g., Southampton vs
Liverpool). Through gradient-reversal training, the feature extractor gradually learns
to fool the discriminator by producing features that are indistinguishable across cities.
The result is a model that retains predictive capacity for noise levels while becoming



insensitive to city-specific imaging or land-use biases—a property essential for
generalizing to unlabeled target domains.

Finally, the architectural backbone of the proposed framework builds on multi-scale
graph neural networks (GNNs), which have shown strong performance in modeling
spatially complex phenomena, including traffic dynamics, social networks, and urban
morphology (Lei et al., 2024; Ling et al., 2024; Wang et al., 2024). By explicitly
integrating local-scale (fine-grained) and contextual-scale (broader neighborhood)
spatial features, the framework aims to robustly capture both short-range and long-
range acoustic influences, thereby improving model generalization across diverse
urban landscapes (Bo et al., 2021; Chen et al., 2024).

In practical terms, this approach addresses a pressing real-world need. Many cities—
especially medium-sized or data-scarce ones—Ilack detailed acoustic measurements
due to the cost and logistics of in-situ monitoring. The proposed framework enables
these municipalities to estimate noise exposure directly from publicly available
satellite imagery and land-use data, providing actionable insights for urban planning,
health impact assessment, and transportation design. For example, a city such as
Nottingham or Cardiff could apply the trained model to identify potential high-noise
corridors and evaluate mitigation strategies without deploying dense sensor networks.

In summary, this chapter contributes to the literature by proposing a scalable, label-
efficient urban noise prediction framework that integrates (i) robust pseudo-labeling
strategies, (ii)) multi-domain adversarial alignment, and (iii) dual-scale GNN
architectures. The remainder of the chapter outlines the research objectives, details the
experimental design across five UK cities, and presents the evaluation framework,
while the subsequent methodology chapter provides comprehensive technical details
on the model architecture, training procedures, and validation strategies.

6.2 Methodology

This chapter presents a comprehensive methodological framework designed to enable
generalizable urban noise prediction across multiple cities with distinct spatial
configurations, land-use characteristics, and varying levels of data availability.
Building on the insights of Chapters 5—where graph neural networks (GNNs) were
shown to effectively learn noise-related spatial patterns within single cities—this
chapter addresses the broader challenge of extending these capabilities to unlabeled
cities lacking direct in-situ measurements. The framework integrates harmonized
land-use and land-cover (LULC) datasets, standardized remote sensing inputs, and a
multi-domain graph learning strategy, aiming to create a scalable, transferable system
for urban noise mapping.

At the core of this framework lies a dual-branch feature architecture, specifically
designed to capture both local (0—120 m) and contextual (120—1000 m) environmental
information relevant to urban noise propagation. All input data are spatially anchored
to a consistent 30-meter grid that spans both labeled and unlabeled cities, ensuring
uniform sampling density and facilitating coherent graph construction. The



framework further enhances cross-domain learning through the use of adversarial
domain alignment and pseudo-labeling mechanisms, which together enable the
transfer of knowledge from a well-annotated reference city to multiple target cities
without direct noise measurements.

Compared to prior studies, the framework introduces several key methodological
advancements. These include the integration of Urban Atlas 2012 LULC data to
derive interpretable environmental variables and pseudo-invariant features for spectral
standardization, the generation of multi-scale spatial features tailored to the dual-
branch GNN architecture, and the construction of unified spatial graphs that preserve
structural continuity across labeled and unlabeled domains. Additionally, the
framework implements a multi-domain alignment mechanism that reduces
distributional gaps between cities, thereby enhancing generalization under domain
shift conditions.

6.2.1 Overall Framework Design

While the overall objective of this study remains consistent with the previous
chapters—predicting spatially explicit urban noise levels from remote sensing and
land-use information—the processing workflow in this chapter is substantially
redesigned to address the challenge of cross-city generalization. In contrast to
Chapters 4 and 5, which focused on fitting models to fully labeled data within
Southampton, the present framework aims to transfer learned knowledge to unlabeled
target cities. This shift from model fitting to model generalization necessitated several
key methodological adjustments.

First, all input imagery was harmonized across domains through pseudo-invariant
feature (PIF)-based radiometric normalization and histogram matching, ensuring that
spectral variations represent true environmental differences rather than atmospheric or
sensor inconsistencies. Second, the feature construction strategy now integrates two
complementary spatial scales—a fine-scale local domain (0—120m) and a broader
contextual domain (120-1000m)—and introduces Urban Atlas 2012 land-use
indicators as semantic features bridging physical and functional properties of urban
space. Third, the graph representation has been redefined from the Southampton-
specific 4 m KNN graph to a unified 30 m Gaussian-weighted grid graph applicable to
all cities, enabling consistent neighborhood relationships across domains. Finally, the
learning framework has evolved into a dual-branch GNN architecture (GAT + GCN)
equipped with adversarial and MMD-based domain alignment modules, explicitly
minimizing distributional discrepancies between the labeled source and unlabeled
target domains.

Collectively, these revisions represent a deliberate methodological transition—from
maximizing in-city predictive accuracy to achieving transferable, domain-robust
acoustic mapping. Each modification in the preprocessing and modeling pipeline
directly supports this goal, ensuring that the framework can generalize learned spatial
relationships beyond Southampton to diverse urban contexts.



To further safeguard domain independence during learning, each city is abstracted as
a distinct 30 m grid domain, where each node represents a 30 m % 30 m cell and every
unit change in the two-dimensional (row, col) coordinate system corresponds to a 30
m physical displacement. Each domain is assigned a unique global offset to ensure
spatial isolation in the coordinate space—for example, Southampton’s grid indices are
incremented by +10 000, Portsmouth by +20 000, and so forth. This design creates
non-overlapping spatial domains separated by thousands of virtual kilometers,
preventing unintended cross-domain message propagation or feature contamination
during graph construction.

During training, message passing and domain-alignment losses operate only within
these logically isolated domains, while adversarial and MMD mechanisms align their
latent feature distributions in the embedding space. This guarantees that each city
retains its own spatial integrity, yet contributes to the shared domain-invariant
representation learned by the network.

The overall methodological pipeline is illustrated in Figure 6.1, outlining the
sequential stages from data preparation to cross-domain model training and inference.
The framework is explicitly designed to support weakly supervised learning by
combining real labels, pseudo-labels, and graph-based feature propagation across a
shared spatial infrastructure.
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The process begins with the acquisition of two primary datasets across five UK cities:
Southampton (serving as the reference city with measured noise data) and four target
cities—Cardiff, Portsmouth, Nottingham, and Liverpool—where direct noise
measurements are unavailable. The first dataset consists of WorldView-2
multispectral imagery, which provides eight-band high-resolution spectral data
capturing surface material properties, vegetation patterns, and urban structures. The
second dataset is the Urban Atlas 2012 LULC product, a standardized European
database offering 10-meter spatial resolution land-use classifications across 24
categories, enabling harmonized semantic descriptions of urban environments (EEA,
2016).

To ensure cross-city comparability, all multispectral images undergo a two-step
spectral standardization process. First, a linear stretch is applied after discarding the
top and bottom 2% of pixel values, normalizing the dynamic range across datasets.
Second, histogram matching is performed using pseudo-invariant features (PIFs)
identified from spectrally stable land-use classes, such as continuous urban fabric and
commercial zones. This correction procedure, following best practices in remote
sensing (Schott et al., 1988; Du et al., 2002), compensates for seasonal, atmospheric,
and sensor-specific variations, ensuring that extracted features retain physical and
statistical consistency across domains.

Noise prediction samples are generated by overlaying a uniform 30-meter grid across
the study areas of both the reference and target cities. For the reference city, raw noise
measurements are aggregated to the grid using spatial averaging, and a binary mask
identifies grid cells containing real data. In the target cities, all grid cells are initially
unlabeled but will later be enriched with pseudo-labels derived from feature similarity
analyses.

Feature extraction is performed at two complementary spatial scales. At the local
scale (0—120 m), features capture direct acoustic influences, including adjacent road
proximity, building density, and local surface composition. At the contextual scale
(120-1000 m), features characterize broader environmental patterns, such as regional
transport corridors, land-use zoning, and green buffer distributions. This multi-scale
decomposition is rooted in established environmental-modelling principles, which
recognise both proximate and broader determinants of urban dynamics (Raimbault,
2021; Cushman, 2024).

To identify the most predictive variables, a two-step feature selection process is
applied using the labeled samples from the reference city. Initially, candidate
variables are filtered based on their Pearson correlation with measured noise levels.
Subsequently, a random forest regressor is used to rank feature importance, and the
top ten variables are retained for pseudo-label generation. Pseudo-labels are assigned
to target city samples by comparing each sample’s feature profile (based on these top-
ranked variables) with the labeled reference samples, using a defined similarity
threshold to ensure reliability. As a result, the target cities contain a mix of pseudo-
labeled and unlabeled grid points, while the reference city maintains both labeled and
unlabeled nodes.

All samples, regardless of label status, are embedded within a spatial graph structure,
where nodes represent 30-meter grid cells and edges are constructed based on four-



neighborhood proximity within a three-hop range. This design promotes dense
topological connectivity and facilitates neighborhood-based feature propagation.
Importantly, while only labeled and pseudo-labeled nodes contribute to the model’s
supervised loss, unlabeled nodes participate fully in the graph’s connectivity,
enhancing learning stability and supporting weak supervision (Zhou et al., 2003; Kipf,
2016).

Scale-aware receptive field design

Unlike the deeper six-layer GraphSAGE model presented in Chapter 5, which
expanded the receptive field to a radius of 1-3 km to fully capture within-city spatial
correlations, the cross-city framework deliberately adopts a shallower and more
structured dual-branch design consisting of two Graph Attention (GAT) layers
followed by a single Graph Convolution (GCN) layer. The local branch (GAT)
operates over features derived from 0-120 m concentric rings. The attention
mechanism enables anisotropic message passing, giving more weight to acoustically
relevant directions (e.g., along nearby roads), and approximates a fine-grained
receptive field of roughly:

Rlocal ~ 2 x 120

after two hops of neighbor aggregation. This scale emphasizes micro-environmental
influences such as adjacent roads, building edges, and green buffers. The contextual
branch (GCN) aggregates broader neighborhood signals using features extracted from
120-1000 m rings, approximating

Rcontext ~ 1000

within a single layer. This captures large-scale structural effects such as transport
corridors, land-use zoning, and the spatial configuration of major green areas. Graph
connectivity is constructed on a 30 m grid, and each edge corresponds to one hop of
30 m physical displacement. Under the three-hop neighborhood design, the maximum
topological extent is approximately

Rpox =3 x30m =90m

which is spatially aligned with the local ring buffer scale and ensures stable
neighborhood propagation across cities with different urban morphologies. This is a
deliberate simplification compared with Chapter 5: whereas the deeper GraphSAGE
model was optimized for within-city accuracy, the shallower dual-branch architecture
constrains the model’s receptive field, reducing overfitting to city-specific
morphological patterns and facilitating domain-invariant representation learning.
Formally, for each node iii, the attention-based branch aggregates from its
neighborhood N (i) as

hz(lﬂ) _ 0( Z ag.)W(’)hg-l))
JEN (i)
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network to focus on directionally structured acoustic propagation, such as along linear
road segments or building frontages. The contextual GCN layer then applies isotropic

aggregation to capture background structural influences across the 120—1000 m scale.

where «;” is the learned attention weight. This anisotropic weighting allows the

By explicitly decomposing neighborhood effects into local and contextual branches,
the dual-branch GNN effectively balances sensitivity to near-field variability with
robustness to cross-domain distribution shifts. This scale decomposition is critical for
domain adaptation: local attention captures transferable environmental cues (e.g., road
density, facade adjacency), while the contextual branch provides a stable
morphological backdrop less sensitive to city-specific spectral or textural
idiosyncrasies.

Multi-domain Adversarial and Statistical Alignment.

To mitigate discrepancies in feature distributions across cities, the proposed
framework integrates a multi-domain adversarial alignment mechanism combining
adversarial learning and statistical matching. The approach operates on top of the
dual-branch GNN representation layer, where latent embeddings from each node are
optimized not only for noise prediction but also for domain invariance.

A domain classifier is attached to the shared feature space through a gradient reversal
layer (GRL) (Ganin et al., 2016). During training, the main predictor minimizes the
supervised regression loss for labeled and pseudo-labeled samples, while the domain
classifier attempts to identify the city of origin for each embedding among all five
domains (Southampton + four targets). The GRL inverts the gradient from the
classifier to the feature extractor, forcing the extractor to learn representations that
confuse the classifier, i.e., features indistinguishable across cities. This adversarial
competition drives the model toward a shared, domain-invariant latent structure.

Complementing this adversarial process, a maximum mean discrepancy (MMD) loss
(Long et al., 2015) is applied across domain pairs to reduce residual distributional
gaps that are not captured by the classifier. While the adversarial term aligns
categorical boundaries (city identities), the MMD term minimizes the distance
between the empirical kernel mean embeddings of feature distributions in a
reproducing-kernel Hilbert space, thereby harmonizing both first- and higher-order
statistical moments. In practice, the two components operate jointly: adversarial
alignment removes discrete domain cues, and MMD refines the continuous
distributional overlap.

Unlike conventional single-domain adversarial adaptation, which aligns only a single
source-to-target pair, the proposed multi-domain scheme performs simultaneous
alignment among all five cities. The discriminator’s output layer includes multiple
classes corresponding to each domain, and alignment is jointly enforced between the
labeled source (Southampton) and all unlabeled targets as well as among the targets
themselves (inter-target alignment). This broader alignment prevents the model from
overfitting to the spectral or morphological idiosyncrasies of any single city, thereby
improving robustness under cross-city domain-shift conditions.
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The overall optimization objective combines three components:

(1) the Huber regression loss for noise prediction,

(2) the adversarial cross-entropy loss from the domain classifier scaled by 4,, and
(3) the MMD penalty scaled by 4,,.

Formally,

£t0tal — ACHuber + )\aﬁadv + )\m['MMD-

The joint minimization enables the GNN encoder to learn acoustically meaningful yet
domain-invariant features, ensuring that predictions remain consistent even when
transferred to previously unseen urban morphologies.

6.2.2 Study Areas and Data Sources

This section details the geographic scope, sampling strategy, and primary datasets that
underpin the development of the proposed generalizable urban noise prediction
framework. The study focuses on five cities in the United Kingdom—Southampton,
Cardiff, Portsmouth, Nottingham, and Liverpool—selected based on their spatial
heterogeneity, data accessibility, and suitability for evaluating cross-domain
generalization. Among these, Southampton serves as the reference domain because it
is the only city with in-situ environmental noise measurements, while the remaining
four serve as unlabeled target domains.

The inclusion of these cities enables a comprehensive cross-city evaluation that
captures a wide range of urban forms, transport infrastructures, and land-use
configurations. Southampton, a compact coastal port city, provides the foundation for
supervised model calibration. Cardiff, Portsmouth, and Liverpool are major
waterfront settlements with varying degrees of industrial, commercial, and residential
integration, while Nottingham represents a dense inland administrative center with
compact mixed-use morphology. This diversity allows the proposed model to be
tested across both coastal and inland urban contexts, ensuring that generalization
performance is evaluated under realistic morphological variation.

To maintain consistency, all datasets were resampled to a uniform 30 m grid
resolution, balancing spatial detail with computational efficiency. This grid aligns
with both the WorldView-2 multispectral imagery and the Urban Atlas 2012 land-use
data, ensuring that graph nodes represent comparable spatial units across cities. The
uniform sampling framework also supports stable graph construction by enabling
consistent topological representation in all domains.

Quantifying Spatial Heterogeneity

To substantiate the morphological diversity underlying city selection, spatial
heterogeneity was quantitatively assessed using three complementary indicators:

(1) GLCM texture entropy derived from 4 m NDVI imagery (identical to the method
in Chapters 4 and 5), reflecting fine-scale surface variability;

(i) land-use Shannon entropy (H’) based on Urban Atlas 2012, representing
functional diversity in land-use composition; and

(ii1) the mean built-up ratio, indicating the proportion of impervious urban surfaces.
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Together, these indicators describe different dimensions of heterogeneity—Ilocal
texture, functional mixing, and structural density. As summarized in Table 6.1,
Southampton and Nottingham exhibit the highest texture entropy (=1.25) and strong
internal variability (CV = 0.37), indicative of fine-grained built-vegetation mosaics.
Cardiff, by contrast, shows the highest land-use entropy (H' = 1.21) but the lowest
built-up ratio (0.75), reflecting a balanced mixture of urban, green, and water areas.
Southampton and Liverpool display compact port morphologies with high built-up
ratios (0.94-0.97) but lower H' (0.76-0.88), while Portsmouth lies in between,
combining moderate functional diversity with high structural density.

These contrasting patterns confirm that the five cities represent distinct morphological
regimes, providing robust empirical evidence of spatial heterogeneity across domains
and justifying their use for testing the transferability of the proposed dual-branch
GNN framework.

Table 6.1 Quantitative indicators of spatial heterogeneity across study cities

city entropy_mean | entropy_std | entropy cv | H LULC Builtup_ratio
Soton 1.25 0.46 0.37 0.76 0.97
Cardiff 1.21 0.46 0.38 1.21 0.75
Portsmouth 1.21 0.45 0.38 1.08 0.85
Nottingham 1.25 0.47 0.37 0.97 0.90
Liverpool 1.25 0.46 0.37 0.88 0.94

Entropy computed from 4 m NDVI (GLCM method consistent with Chapters 4-5);
land-use and built-up metrics derived from Urban Atlas 2012.

6.2.2.1 Urban Context and Noise Sampling Design

In the graph representation used throughout this chapter, each node corresponds to the
centroid of a 30 m x 30 m grid cell covering the built-up extent of the five selected
cities. This uniform grid provides a spatially consistent basis for feature extraction,
graph construction, and model inference. The 30 m resolution was chosen to balance
local spatial detail—sufficient to capture short-range acoustic variability—with
computational feasibility for large-scale, cross-city modeling.

Within the source domain (Southampton), nodes inherit acoustic labels derived from
the weighted aggregation of in-situ noise measurements onto the grid cells. Each such
node thus represents a spatial unit with both environmental attributes (e.g., spectral
indices, land-use ratios, texture metrics) and an associated ground-truth noise level. In
contrast, in the four target cities, nodes are initially unlabeled; pseudo-labels are later
assigned to a subset of these nodes based on their spectral-textural and land-use
similarity to labeled Southampton samples, as detailed in Section 6.2.4.

It is important to note that pseudo-labels do not define the nodes themselves—they
represent only one optional attribute of certain nodes within the graph. All grid-
centroid nodes, whether labeled, pseudo-labeled, or unlabeled, are retained to ensure
structural continuity. During graph construction, every node participates in the spatial



adjacency defined by a combination of 4-neighborhood and 3-hop linkages, allowing
message passing between labeled and unlabeled regions. This design enables the
model to leverage contextual information through feature propagation, thereby
maintaining consistent graph topology across cities even when true noise labels are
absent.

6.2.2.2 Remote Sensing and Urban Atlas Data

This study integrates two core geospatial datasets to construct a comprehensive, high-
resolution foundation for urban noise prediction: multispectral satellite imagery from
the WorldView-2 European Cities dataset and harmonized land-use data from the
Urban Atlas 2012 provided by the European Environment Agency (EEA, 2016).
Together, these datasets offer complementary thematic and spatial information,
enabling the extraction of both spectral and contextual features critical to modeling
acoustic patterns across heterogeneous urban environments.

The WorldView-2 imagery provides eight spectral bands at sub-5-meter resolution,
capturing detailed reflectance profiles of urban surface materials, vegetation, and
built-up structures. Table 6.2 lists the acquisition dates for each city, illustrating
temporal alignment between imagery and available noise sampling in Southampton,
while the target cities’ imagery (from 2011-2012) aligns with the reference year of
the Urban Atlas 2012. Despite the slightly later imagery acquisition for Southampton,
the temporal proximity ensures consistency between ground-truth labels and remote
sensing features, which is essential for accurate supervised model calibration.

Table 6.2 WorldView-2 multispectral imagery acquisition dates

City Acquisition Date
Portsmouth 123 March 2011

Nottingham 126 May 2012

Liverpool 119 April 2011

Cardiff 119 April 2011

§Southampt0n 15 February & 6 May 2016 (mosaic)

Following data acquisition, a rigorous two-stage spectral normalization was applied to
the satellite imagery to ensure cross-city comparability. First, a linear stretch was used
to exclude extreme reflectance outliers, defined by removing the top and bottom 2%
of values, thus reducing noise from anomalous pixels. Second, global histogram
matching was performed using pseudo-invariant features (PIFs)—spectrally stable
built-up areas identified from the Urban Atlas LULC classes. These included
continuous urban fabric (11100), discontinuous urban fabric (11210, 11220),
industrial and commercial zones (12100), and transportation infrastructure (12210,
12220, 12230). After normalization, all imagery was resampled to a unified 4-meter
spatial resolution, ensuring compatibility across cities and preserving key spectral
patterns linked to acoustic propagation.



The Urban Atlas 2012 dataset provided detailed vector-based LULC classification at a
consistent 10-meter resolution across all study areas. It includes 24 LULC categories,
which were grouped into five functional classes based on their presumed relationships
to environmental noise: strong noise sources (e.g., transportation corridors, ports),
moderate noise sources (e.g., industrial areas), strong mitigation zones (e.g., dense
forests), moderate mitigation zones (e.g., pastures, urban green spaces), and neutral
areas (e.g., low-density residential zones, isolated structures). Table 6.3 summarizes
the functional groupings used in this study, providing a thematic framework for
interpreting land-use impacts on urban noise dynamics.

Table 6.3 Urban Atlas 2012 LULC classification and functional grouping used in this
Study

§C0de LULC Class Name

11100 Continuous urban fabric

Functional Group
Neutral
Neutral
Neutral

1 1230 Discontinuous low density urban fabric §Neutral

1 1210 Discontinuous dense urban fabric

1 1220 Discontinuous medium density urban fabric

1 1240 Discontinuous very low density urban fabric
11300 Isolated structures
§12100§§Industrial, commercial, public, military areas

‘Moderate noise source

§12210§§Fast transit roads and associated land

Strong noise source

122200ther roads and associated land

Moderate noise source

§12230§Railways and associated land

Strong noise source

12300 Port areas

Strong noise source

12400 Airports

. Strong noise source

13100 Mineral extraction and dump sites

. Strong noise source

13 300 Construction sites

Neutral

13400 Land without current use

Neutral

14100 Green urban areas

Moderate mitigation

14200 Sports and leisure facilities

Moderate mitigation

§21000§§Arable land (annual crops)

- Strong mitigation

§23000§§Pastures

Moderate mitigation

3 1000 Forests

§§Strong mitigation

§32000§§Herbaceous vegetation associations

Moderate mitigation

§33000§§Open spaces with little or no vegetation

Moderate mitigation

40000 Wetlands

‘Neutral

§50000§§Water bodies

Neutral

These datasets played dual roles in the modeling framework. First, the PIFs extracted
from the Urban Atlas classes guided the spectral normalization process, ensuring that
imagery across cities was harmonized for feature extraction. Second, LULC-derived
features, including class proportions, Euclidean distances to functional zones, and
dominant land-use types, were computed within both local (0—120 m) and contextual
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(120-1000 m) neighborhoods for each grid cell, supplying the model with rich spatial
and thematic context necessary for robust noise prediction.

6.2.2.3 Study Area Delineation and Grid Generation

To ensure a consistent spatial framework across all study sites, a systematic approach
was employed for delineating study areas and generating uniform sampling grids. The
research encompassed five major UK cities—Southampton, Portsmouth, Cardiff,
Nottingham, and Liverpool—selected based on a combination of data availability,
morphological diversity, and transferability relevance.

City selection rationale

All chosen cities are jointly covered by both the WorldView-2 European City Archive
(imagery acquired between 2011 and 2016) and the Urban Atlas 2012 dataset. This
overlap guarantees temporal and thematic consistency between spectral, land-cover,
and demographic layers, allowing cross-city comparison under a unified spatio-
temporal framework. In addition, all population and density metrics were aligned to
the 2011 UK Census to ensure full temporal coherence with the remote-sensing and
land-use reference period.

From a design perspective, the five cities collectively form a progressive
morphological gradient that systematically increases domain disparity relative to
Southampton, the labeled source city. Portsmouth, a compact coastal settlement
immediately adjacent to Southampton, provides the closest analogue for low-
difficulty domain transfer. Cardiff, the Welsh capital located across the Bristol
Channel, represents a moderately distinct coastal-estuarine morphology with greater
topographic variation and a more mixed functional structure. Nottingham, as an
inland and densely nucleated core city, introduces a contrasting spatial configuration
dominated by compact built-up fabric and fewer water or industrial zones. Liverpool,
the largest metropolitan port city in this study, exemplifies high morphological
complexity, with extensive industrial and brownfield areas, mixed commercial—
residential land uses, and a dense arterial road network.

Quantitative evidence further supports this diversity. Based on Urban Atlas 2012
statistics, the proportion of continuous and discontinuous urban fabric varies from
55 % in Portsmouth and 61 % in Nottingham, to 35 % in Cardiff, 24 % in Liverpool,
and 58 % in Southampton. Green and water spaces show an inverse trend, ranging
from 14 % in Portsmouth to nearly 30 % in Cardiff. Population densities (UK Census
2011) also reflect distinct urban intensities: Southampton =~ 4,700 persons km™,
Portsmouth = 5,100 persons km2, Cardiff = 2,600 persons km™2, Nottingham ~ 4,000
persons km™, and Liverpool = 4,700 persons km™=. These variations correspond to
demonstrably  different urban typologies—coastal compact (Portsmouth,
Southampton), estuarine capital (Cardiff), inland core (Nottingham), and metropolitan
port (Liverpool)—each representing unique acoustic propagation environments and
structural challenges for model transferability.

Study area delineation and grid generation
Each city’s urban extent was defined using its administrative boundaries, which were



then refined through manual adjustments to align precisely with the coverage limits of
both Urban Atlas 2012 and available WorldView-2 imagery. This two-stage
delineation ensured that all input data layers were spatially synchronized and free of
coverage gaps. To mitigate potential edge effects—especially given that the proposed
model integrates multi-scale spatial context up to 1000 m—peripheral regions with
incomplete environmental neighborhoods were trimmed systematically. This step
prevented artificial spatial bias from incomplete surroundings and guaranteed that all
retained samples contained full contextual information for both local and background
feature extraction.

Within each finalized study boundary, a regular 30 m X 30 m grid was generated,
systematically covering the entire urban area without gaps. This fine-resolution design
captures detailed urban heterogeneity relevant to noise propagation while maintaining
computational feasibility for graph construction and feature integration. Unlike
previous approaches that excluded unlabeled cells, all grid points were retained
regardless of label availability to maximize spatial continuity within the graph
topology. The resulting numbers of grid points per city—ranging from ~43,000
(Portsmouth) to ~118,000 (Liverpool)—reflect the varying spatial extents and
morphological complexity of the study areas (Table 6.4).

Table 6.4 Demographic and morphological characteristics of the five study cities (UK
Census 2011 and Urban Atlas 2012)

Cit Population (D:;l:;tnys Dominant LULC (Urban Morpholosicl Tvpe Similarity to Grid
y (2011) p/kmz) Atlas 2012) PROTOSICTAYPE  Southampton = Points
0, 10 0, 3
Southampto 236900 4700 58% urz)ar.l fabr1c', 17% Coastal port city 57485
n green; 10% industrial zones (source domain)
o, 10 o,
Portsmouth | 205100 5100 33% urban fabric; 14% Compact coastal High 43042
green; 7% industrial analogue
35% urban fabric; 28% .
Cardiff 346100 2600 green/water; 18% C"aSti;‘?gfarme Moderate “399
industrial/commercial P
. 61% urban fabric; 25% Moderate—
Nottingham 305700 4000 residential; <5% industrial Inland compact core Low 80692
24% industrial/commercial; Laree metronolitan 11826
Liverpool 466400 4700 20% green corridors; 15% & ort P Low 2
brownfield P

All data are temporally aligned with the 2011 - 2016 period of the WorldView-2
imagery. Population and density values are derived from the 2011 UK Census (ONS),
land-use/land-cover (LULC) statistics are summarized from Urban Atlas 2012 (EEA).

The cities collectively represent a progressive gradient of morphological
complexity —from the compact coastal analogues of Southampton and Portsmouth to
the metropolitan port of Liverpool — forming the empirical foundation for cross-
domain transfer evaluation.

In Southampton, high-resolution (1 m) mobile noise measurements were aggregated
to the 30 m grid to produce labeled samples forming the supervised learning base. The




remaining unlabeled grid points, though lacking direct noise data, provided essential
neighborhood connectivity within the graph structure. For the four target cities—
Cardiff, Portsmouth, Nottingham, and Liverpool—all grid points were initially
unlabeled; subsequently, subsets received high-confidence pseudo-labels based on
similarity to Southampton samples (Section 6.2.3), enabling weak supervision during
training.

The final dataset thus comprised a dense mix of labeled, pseudo-labeled, and fully
unlabeled nodes integrated into city-specific graphs, each built under a uniform
connectivity rule using a 4-neighborhood scheme extended to three hops. This
ensured that all nodes possessed sufficient spatial context for effective message
passing during training and inference. Visual representations of the study areas, their
administrative boundaries, and the generated 30 m grids are presented in Figure 6.2,
illustrating the spatial sampling framework and morphological diversity captured in
this study..
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Figure 6.2 Study Area Delineations and 30 m Grid Point Distributions

6.2.3 Remote Sensing Image Standardization

To ensure reliable spectral comparability across cities, all WorldView-2 multispectral
imagery in this study was subjected to a comprehensive, multi-step standardization
workflow. This workflow integrates two principal components: bandwise linear
stretching and weighted histogram matching, both guided by pseudo-invariant
features (PIFs). Together, these steps minimize inter-city variability introduced by
differences in image acquisition time, atmospheric conditions, and sensor calibration,
ensuring a harmonized spectral foundation for downstream analyses.

The first critical step involved the identification of pseudo-invariant features, or PIFs.
Following established remote sensing practices (Schott et al., 1988; Du et al., 2002),
PIFs were selected based on land-use categories known to maintain stable spectral
signatures over time and across geographic contexts. Specifically, the study used
Urban Atlas 2012 classes including continuous urban fabric (11100), discontinuous
dense and medium-density urban fabric (11210, 11220), industrial, commercial, and
public areas (12100), as well as fast transit roads, other roads, and railways (12210,
12220, 12230). These classes were spatially delineated using vector masks, and the
corresponding pixel values were extracted bandwise from each multispectral raster.

Once PIFs were established, the second step applied a bandwise linear stretching
procedure designed to align the dynamic ranges of the target and reference images.
This process involved matching the 2nd and 98th percentiles of the PIF pixel
distributions in the target image to the minimum and maximum PIF pixel values
observed in the reference image. The mathematical formulation of this stretch for a
given pixel value  is:
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(ZL’ . Ptarget)

. 2% ref ef ref
Lstretched — Ptarget Ptarget X (Pmax - Prilin) + Pmin
( 98% T 2% )
where:
target target . . .
. Py and Pes% are the 2nd and 98th percentiles of the target image’s PIF pixel
values,

ref ref .. . . .
«  Prinand Pmax are the minimum and maximum PIF pixel values in the reference
image.

This linear transformation rescales the target pixel values to align their spread with
that of the reference image, preserving physical reflectance interpretability while
removing saturation or compression artifacts.

Following linear stretching, the third step implemented weighted histogram matching
across all PIF classes. This process constructed weighted global histograms H for

both the reference and target images, where each PIF class ¢ contributed
Ne

. ) ) . . We = — . )
proportionally according to its pixel count”cand total weight N , with N being
the total number of PIF pixels. The cumulative distribution functions (CDFs) were
then computed:

i

CDF(i) = )  H(j)

j=0

where 2 is the intensity level, and H(J) is the weighted histogram count at level J.
The mapping function aligned the CDF of the target image to that of the reference
image, effectively adjusting the relative frequency of brightness levels across bands.
Any out-of-range values after matching were clipped to preserve numerical stability.

After these spectral adjustments, the standardized images were saved at their original
spatial resolution. For special cases, such as the Southampton mosaic comprising two
acquisition dates, additional resampling to 4 m resolution was applied, ensuring
consistent feature extraction across all study sites.

Finally, the quality of the standardization was evaluated by comparing summary
statistics (mean, standard deviation, percentiles) of the PIF pixels in both the original
and standardized domains. This statistical verification confirmed substantial
alignment of spectral profiles, indicating that the normalization workflow effectively
harmonized the data for reliable cross-city modeling and analysis.

6.2.4 Feature Variable Construction

This section describes the design and construction of multi-scale feature variables.
The construction of feature variables was guided by two core principles: predictive



strength and cross-city transferability. Priority was given to features that are
interpretable, physically meaningful, and generalizable across domains, while
variables highly sensitive to city-specific configurations or overfitting risks were
systematically excluded. Feature selection was conducted independently for the local
and contextual branches, leveraging both correlation filtering and random forest —
based importance ranking, as elaborated later in this section. This careful selection
process ensured that the retained features not only captured meaningful environmental
patterns but also contributed to the overall robustness of the multi-domain learning
framework.

6.2.4.1 Rationale for Multi-Scale Feature Design

Urban environmental noise is influenced by a complex interplay between localized
sources and broader spatial context. Short-range factors such as proximity to road
segments, building density, or specific land-cover features exert direct acoustic
impacts, while large-scale patterns—Ilike the arrangement of zoning types, the
presence of green corridors, or the clustering of industrial areas—modify long-range
noise propagation and attenuation effects (Aletta et al., 2016). To accurately reflect
this multi-layered phenomenon, the feature construction strategy explicitly
incorporated two complementary spatial scales: a local scale (0—120m) and a
contextual scale (120—1000 m).

At the local scale, feature variables capture fine-grained neighborhood characteristics
and immediate acoustic influences, aligning with typical urban block dimensions and
the rapid decay profiles of environmental noise over short distances. This allows the
model to represent detailed interactions between built-up features and noise emissions
at the street or block level. In contrast, the contextual scale provides a coarser but
essential overview of the surrounding landscape, including large green spaces,
industrial belts, or arterial transport corridors. These broader features are critical for
capturing reflections, absorption zones, or long-range acoustic barriers, which can
shape the background noise environment at the neighborhood or district scale (Aletta
et al., 2016; Khan et al., 2018).

From a modeling perspective, the dual-scale logic is directly mirrored in the
architecture of the dual-branch GNN (Section 6.3.1). The local branch employs Graph
Attention Networks (GAT), which focus on learning adaptively weighted interactions
between nearby nodes, allowing the model to prioritize the most acoustically
influential local features. The contextual branch, by contrast, uses Graph
Convolutional Networks (GCN) to encode structural continuity and broader
neighborhood patterns across the urban landscape. This architectural separation
enables effective feature decoupling between scales, reducing redundancy, mitigating
overfitting, and encouraging the model to learn distinct but complementary patterns
associated with different noise mechanisms (Khan et al., 2018; Wu et al., 2020).

The use of multi-scale representations is further supported by spatial decay models in
environmental acoustics, which emphasize that perceived noise levels arise from a
combination of proximate and distant contributors. By integrating both, the
framework is able to capture both the immediate noise landscape and the broader



structural backdrop, ensuring that predictions remain sensitive to local details while
maintaining cross-domain generalizability (Tuia et al., 2016; Umar et al., 2024).

6.2.4.2 Remote Sensing-Derived Features

The multispectral imagery provided by the WorldView-2 satellite offers high-
resolution spatial and spectral information on urban land cover, surface materials, and
vegetation structure, all of which are critical for environmental noise modeling. In this
study, remote sensing-derived features were generated through a two-phase process.
First, a series of feature maps were created to capture texture, spectral contrast, and
morphological patterns from the imagery. Second, these feature maps were
summarized using zonal statistics calculated over spatial neighborhoods, producing a
set of high-dimensional feature vectors that encode both local and contextual urban
characteristics.

Feature Map Generation

To capture key spatial and spectral characteristics of urban surfaces, three main
categories of feature maps were generated from each standardized satellite image. The
first category comprised GLCM-based texture features (energy, homogeneity, and
correlation) derived from three spectral bands (Green, NIR1, Red Edge) and three
indices (NDVI, WVBI, RGI), using a 9x9 pixel window and 64-level grayscale
quantization. The second category included z-score normalized contrast maps from
eight inputs (Red, Green, NIR1, NDVI, NDWI, WVBI, RGI, BSI), computed over
three spatial scales (/5 %15, 31x31, 77x77 pixels) to capture local to regional context.
The third category consisted of morphological features (Local Binary Patterns,
opening, and closing) derived from Red, Green, NIR1, NDVI, and BSI bands,
emphasizing fine-scale textures and larger object continuity.

In total, 63 feature maps were produced per image: 24 from texture, 24 from contrast,
and 15 from morphology (Table 6.5). These descriptors were chosen for their ability
to highlight stable, illumination-invariant spatial patterns that support cross-city
transferability, rather than for optimizing single-city accuracy. Detailed computational
procedures are described in Section 3.3.5. Table 6.5 provides an overview of these
feature map categories, input bands or indices, and the types of spatial patterns they
capture.

Table 6.5 Overview of Remote Sensing-Derived Feature Maps

Number of
Category Inputs Key Outputs Maps
GLCM Texture  Green, NIR1, Red Edge, NDVI, Energy, Homogeneity, 24
Features WVBI, RGI Correlation
Nozljrflz(l)irzee d Red, Green, NIR1, NDVI, Small, Medium, Large 24
NDWI, WVBI, RGI, BSI Spatial Context
Contrasts
Morphological = g 4 Groen NIR1, NDVI, BsT | 0cal Binary Patterns, 15
Features Opening, Closing




The introduction of morphological and texture-based descriptors such as the Local
Binary Pattern (LBP) was not intended to replicate the feature design of earlier
chapters but to enhance cross-domain comparability under heterogeneous imaging
conditions. As detailed in Section 3.3.5 of the Methodology, the computational
procedures for these feature maps—including grayscale quantization, rotation-
invariant LBP encoding, and morphological filtering—were implemented following
established remote-sensing practices.

In the context of cross-city prediction, these descriptors were selected for their ability
to capture local, illumination-invariant contrast structures, thereby emphasizing
textural patterns that remain stable across domains while suppressing global
radiometric and contextual differences. This design choice aligns with the chapter’s
broader objective of achieving domain-invariant feature representation rather than
maximizing within-city predictive accuracy. Consequently, while such features might
also provide incremental benefits in single-city models, their inclusion here primarily
serves to ensure feature-space normalization and transferability across cities with
differing spectral and morphological characteristics.

Zonal Statistical Variable Extraction

Once the feature maps were generated, they were transformed into structured
numerical inputs by computing zonal statistics over defined concentric spatial
neighborhoods. This approach allowed the model to capture both fine-resolution and
broad-scale spatial heterogeneity, aligning directly with the dual-branch architecture
of the predictive framework.

Five annular zones were defined around each 30 m grid cell, reflecting the two
complementary spatial scales: the local scale (0—-120 m) included three nested rings
(030 m, 3060 m, 60—120 m), while the contextual scale (120-1000 m) included two
broader zones (120-500 m, 500-1000 m). For each of these zones, twelve statistical
descriptors were computed, capturing various aspects of central tendency, dispersion,
distributional shape, and information complexity. Specifically, the calculated metrics
included mean, standard deviation, median, interquartile range (IQR), 10th, 25th, 75th,
and 90th percentiles, skewness, kurtosis, Shannon entropy, and weighted mean. The
weighted mean employed inverse distance weighting relative to the grid centre,
effectively mimicking the physical attenuation patterns of noise intensity with
distance (Shepard, 1968; Lu and Wong, 2008). The use of ring-based zonal statistics
to characterise multi-scale environmental structures is well established in urban and
noise modelling research (Myint et al., 2011; Xie et al., 2011).

This comprehensive statistical treatment ensured that each feature map contributed
sixty distinct numerical variables (five zones x twelve metrics), producing a high-
dimensional but structured feature set that could robustly represent spatial-spectral
heterogeneity. Overall, across all 63 feature maps, the remote sensing-derived inputs
totaled 3,780 numerical variables per grid point, divided between the two model
branches as follows:

o Local detail branch (0—120 m): 2,268 variables



« Contextual background branch (120—-1000 m): 1,512 variables

Table 6.6 Summary of Zonal Statistics for Remote Sensing Features

Spatial Scale Zones (m) Statistical Descriptors (per zone)

Mean, Standard Deviation, Median,
Interquartile Range (IQR), Percentiles

Local Detail (0-120 m) 0-30, 30-60, 60-120 (1021010, Syimsss, K a6,
Entropy, Weighted Mean
Contextual (120-1000 m) 120-500, 500-1000 Same as above

This multi-scale statistical aggregation enables the predictive model to integrate
highly localised spatial patterns with broader contextual gradients, ensuring both
detailed sensitivity and generalisable pattern recognition across complex urban
environments. The rationale for such a design is rooted in well-established remote
sensing and geospatial modelling research, which consistently highlights the
complementary roles of local and contextual scales in capturing environmental
variability (Schott et al., 1988; Helmer and Ruefenacht, 2005; Hu and Li, 2020). By
aggregating statistical descriptors across nested annuli, the model effectively links
fine-grained neighbourhood characteristics to broader landscape gradients, a principle
shown to enhance predictive performance in urban environmental applications.

6.2.4.3 LULC-Derived Features

The Urban Atlas 2012 dataset offers harmonized, semantically rich land-use and land-
cover (LULC) classifications across European urban areas, making it an essential
foundation for extracting interpretable features in environmental noise modeling
(EEA, 2018). In this study, LULC-derived features were carefully designed to
complement the high-dimensional spectral variables by embedding categorical
information on functional urban structures, potential noise sources, and environmental
mitigation zones.

To ensure alignment with the dual-branch model architecture, all LULC metrics were
computed over the same five concentric ring buffers used in the spectral feature
design. The local detail branch (0—120 m) employed three inner zones (0-30 m, 30—
60 m, 60—120 m), while the contextual background branch (120-1000 m) incorporated
two outer zones (120-500 m, 500-1000 m). This multi-scale design ensured that both
micro- and macro-scale environmental influences were captured (Aggarwal et al.,
2023).

First, proportional area metrics were calculated by measuring the share of each of the
24 Urban Atlas classes within each zone, yielding 120 proportional variables per
sample. These variables captured both fine-grained heterogeneity (such as local
streets, parks, or industrial facilities) and broader spatial gradients (such as industrial



belts or green infrastructure), which are known to influence environmental noise
exposure (Ajibola & Cabral, 2024).

Second, proximity effects were quantified using Euclidean distances from each grid
cell to the nearest polygon of each LULC type, calculated separately for local and
contextual scales. This produced 48 normalized distance variables, useful for
modeling edge effects, such as the acoustic influence of nearby traffic corridors or the
noise-buffering effects of vegetation.

Third, dominant-type variables were derived to capture the prevailing LULC class
within the local and contextual zones and at the cell’s own location. These were one-
hot encoded to ensure compatibility with neural network models and provided critical
semantic cues for predictive learning (Ajibola & Cabral, 2024).

Finally, to enhance interpretability and reduce sparsity, the 24 original LULC classes
were aggregated into four functional groups: strong noise sources, moderate noise
sources, strong mitigation zones, and moderate mitigation zones. Table 6.7
summarizes the specific LULC codes assigned to each group, reflecting their assumed
acoustic contributions or attenuation roles.

Table 6.7 Functional Grouping of LULC Classes for Noise Modeling

Functional Group Urban Atlas Codes Description
Strong Noise 12210,12230,12300,12400,13100 Major roads, rallways, ports, airports,
Sources extractive sites
Moderate Noise Secondary roads,
Sources 12220, 12100 industrial/public/military areas
Strong Mitigation 21000, 31000 Arablg land, forests (strong
Zones environmental buffers)
Moderate Mitieation Urban green areas, pastures,
Zones g 14100,14200,23000,32000, 33000 : herbaceous cover, leisure areas, open
spaces

The aggregated variables were then summarized as area proportions over both local
and contextual zones, yielding eight additional predictors. Table 6.8 provides an
overall summary of the LULC-derived feature categories and their variable counts,
highlighting the comprehensive and multi-layered design of this feature set.

Table 6.8 Summary of LULC-Derived Features

Feature Category Description Number of Variables

Proportional Area

Metrics 24 LULC class proportions over 5 zones 120




Feature Category Description Number of Variables
Distance to Nearest Euclidean distances (local, contextual) to 24
48
LULC classes
Categorical Dominant local, dominant contextual, grid-level 5 (eomieied fn s
Dominant-Type class (one-hot) P P
Functional Group Aggregated area proportions (noise source, ]
Aggregates mitigation) over 2 scales

Together, these LULC-derived features provided an interpretable, semantically
grounded complement to the purely spectral variables, ensuring that the model could
capture both the physical structure and functional dynamics of urban environments
when predicting environmental noise patterns.

6.2.4.4 Feature Selection Strategy

Given the high dimensionality of the constructed feature sets—comprising thousands
of variables derived from remote sensing and LULC data—a carefully designed two-
stage feature selection strategy was implemented. The overarching goal was to
balance representational richness with computational efficiency, ensuring that the
retained features maximised cross-city generalisability while minimising redundancy
and overfitting risks. This approach is consistent with well-established principles in
feature selection research (Guyon and Elisseeft, 2003; Peng, Long and Ding, 2005)
and builds on recent advances in dimensionality reduction for remote sensing
applications (Persello and Bruzzone, 2010).

Before selection, the local detail branch (0—120 m) included 2,369 continuous features,
and the contextual background branch (120-1000 m) contained 1,590 continuous
features. These encompassed numerical descriptors from remote sensing statistics
(GLCM, morphological, z-score transforms) and LULC-based spatial metrics
(proportional areas, distances). Categorical variables (such as dominant LULC class)
and functional group indicators were intentionally excluded from filtering to preserve
semantic interpretability.

The first stage employed a correlation-based redundancy removal using Pearson
correlation. Pairwise correlations were computed within each branch, and for any
feature pair exceeding a correlation coefficient of 0.95, only one representative was
retained. This filtering approach was selected over rank-based alternatives (such as
Spearman or Kendall) because the input variables and the target variable (mean dBA)
were continuous and ratio-scaled, making linear correlation measures more
appropriate for identifying direct redundancies. Moreover, Pearson correlation offered
higher computational efficiency in large large datasets, aligning well with subsequent
modeling approaches like random forests, which also assume continuous input
relationships (Breiman, 2001). As a result, approximately 40% of features were



removed from the local branch and over 50% from the contextual branch, effectively
reducing dimensionality while preserving core signal diversity.

In the second stage, a Random Forest Regressor was independently trained for each
spatial branch using the labeled data from Southampton. Feature importance was
calculated based on the mean decrease in impurity across decision trees, leveraging
the non-parametric and nonlinear modeling strength of random forests to capture
complex variable interactions. The top 80 most important numerical features were
retained per branch, alongside categorical and functional group variables, ensuring
balanced representation.

Table 6.9 Summary of Final Feature Set Composition

Branch Numerical Categorical Features Functional Group Total
Features (Selected) (LULC) Variables Features
Local Detail (0— 30 Dominant class, cell- 4 36
120 m) level class (2)
Contextual (120- .
1000 m) 80 Dominant class (1) 4 85

All numerical variables were standardized prior to model training to ensure
consistency and stability across domains. A comprehensive list of selected features,
including variable names, spatial origins, and transformation methods, is provided in
Appendix 3 for full reproducibility.

This two-stage feature selection strategy offers a scalable and interpretable framework,
enhancing the robustness of graph-based environmental noise modeling across diverse
urban landscapes. By integrating correlation-based pruning with importance-driven
refinement, the final feature sets strike a balance between representational power and
computational efficiency, directly supporting the cross-city generalization goals of
this study.

6.2.5 Pseudo-Label Construction Based on LULC-Derived Predictors

To address the scarcity of measured noise data in target cities, a high-confidence
pseudo-labeling framework was developed, leveraging inter-city similarity in land-use
and land-cover (LULC)-based predictors. This design draws on transferable spatial
correlations identified in the reference city (Southampton) to infer plausible noise
levels across unlabeled regions in target cities. By integrating robust variable selection,
cross-domain similarity matching, and confidence-based filtering, the approach
creates reliable supervisory signals for training models in data-scarce urban
environments (Ajibola & Cabral, 2023; Kage et al., 2024).

6.2.5.1 Variable Selection Rationale

The variables selected for pseudo-label generation were chosen through a rigorously
stratified, two-step process that built upon the feature selection strategy described in
Section 6.2.4.4. First, all continuous variables were filtered using correlation-based
redundancy removal to minimize multicollinearity. Subsequently, a Random Forest



regression model was trained using the labeled Southampton data, and variables were
ranked by importance separately for the local (0—120 m) and contextual (120—1000 m)
branches, ensuring balanced emphasis on scales (Breiman, 2001).

Although the top ten most important predictors in each branch included both remote
sensing-derived and LULC-derived variables, the final pseudo-labeling framework
deliberately prioritized LULC-derived indicators. This decision was based on two
critical considerations: (i) LULC variables, as shown in extensive land cover mapping
research, tend to generalize more robustly across cities because they encode semantic
environmental meaning that is less sensitive to spectral or sensor variation; and (ii)
land use patterns—such as the proximity to transport infrastructure or the density of
industrial zones—are among the most consistent predictors of urban noise levels
across global contexts.

Table 6.10 summarizes the ten LULC-derived variables ultimately selected for
pseudo-labeling inference. These include six from the local branch and four from the
contextual branch, ensuring that both micro- and macro-scale environmental
influences were captured.

Table 6.10 Selected Variables for Pseudo-Labeling Inference

Branch Variable Name Description

Local landuse 12220 r30 Share of rail network within 30 m

Local local moderate noise ratio Proportion of moderate noise source areas

Local landuse 12220 r60 Share of rail network within 60 m

Local local moderate_mitigation_ratio Proportion of moderate mitigation zones

Local landuse 11210 _r60 Discontinuous dense urban fabric within 60 m

Local local dist 12220 Distance to rail network (local scale)
Contextual global dist 12220 Distance to rail network (background scale)
Contextual global dist 12100 Distance to highway network
Contextual | global moderate noise ratio  Share of contextual moderate noise source zones
Contextual global dist 14100 Distance to green urban areas

By focusing on interpretable, semantically grounded LULC features, the pseudo-
labeling approach ensured that the inferred labels were based on robust, cross-domain
signals rather than dataset-specific quirks. This design increases the likelihood that
labels transferred across cities reflect meaningful environmental similarities,
strengthening the foundation for subsequent domain-adaptive learning.

6.2.5.2 Similarity-Based Pseudo-Label Inference
To generate plausible noise estimates in target cities where no direct measurements

were available, the study implemented a carefully designed k-nearest neighbors (kNN)
inference framework. This method, widely used in semi-supervised learning and



environmental modeling (Cover and Hart, 1967; Li and Heap, 2014), relies on local
neighborhood similarity to extrapolate reliable labels from a reference domain.

For each grid point in the target cities, a standardized feature vector was constructed
using the ten selected LULC-derived variables identified in Section 6.2.5.1. These
vectors were normalized using z-score transformation, with normalization parameters
(mean and standard deviation) computed exclusively from the labeled Southampton
data. This standardization ensured cross-domain comparability and harmonized the
feature space, allowing the model to evaluate target-city samples relative to the
Southampton reference distribution (Patel et al., 2015).

Within this normalized feature space, each target sample was matched to its five most
similar neighbors among the Southampton-labeled points using Euclidean distance.
The mean dBA value of these neighbors was then assigned as the pseudo-label,
reflecting a locally weighted consensus that captures both spatial and environmental
similarity.

To further ensure pseudo-label reliability, two quality assurance metrics were
calculated for each target point. First, the mean Euclidean distance between neighbors
provided a similarity-based confidence score, quantifying the strength of
neighborhood matching. Second, the standard deviation of neighbor noise values was
computed as a stability indicator, flagging heterogeneous or complex local conditions
that could reduce label reliability (Sener and Savarese, 2018).

6.2.5.3 High-Confidence Sample Filtering

Once the ten high-importance LULC-derived variables were finalized, a similarity-
based pseudo-labeling procedure was employed to infer plausible noise levels in the
unlabeled target cities. For each grid point, a normalized feature vector was
constructed using z-score standardization derived from the Southampton reference
dataset. This calibration ensured that the target city’s environmental attributes were
evaluated in a harmonized feature space, mitigating bias from local scaling
differences.

Within this standardized space, each target grid point was matched to its five most
similar neighbors from the Southampton-labeled dataset using Euclidean distance as
the similarity metric. The mean dBA value across these five neighbors was then
assigned as the pseudo-label, effectively yielding a locally weighted consensus
estimate.

Crucially, pseudo-label assignment was accompanied by two quality assurance
measures. First, the average Euclidean distance among the five neighbors was
recorded as a similarity-based confidence score, quantifying how closely a target
point matched known reference samples. Second, the standard deviation of neighbor
noise levels captured local stability, flagging environmental heterogeneity or
mismatch that could undermine label reliability (Sener and Savarese, 2018;
Grandvalet and Bengio, 2005).



To ensure only robust pseudo-labels contributed to model training, a dual-threshold
filtering protocol was applied. A target sample was retained as high-confidence only
if its similarity-based confidence score fell within the top 10% of all pseudo-labeled
points in the target city and the standard deviation of its neighbor labels remained
below 10 dBA. This conservative thresholding strategy jointly maximised label
precision and spatial stability, effectively safeguarding against noisy or structurally
mismatched inferences.

Table 6.11 Dual-Threshold Filtering Criteria

Criterion Threshold Applied Purpose
Similarity-based Top 10% (above 90th percentile in Ensure structural match to
confidence target city) reference domain
Neighbor label Standard deviation < 10 dBA among Filter out locally unstable or
stability five neighbors heterogeneous zones

6.2.5.4 Summary of Pseudo-Label Generation Across Target Cities

After applying the full pseudo-labeling and dual-threshold filtering pipeline, a subset
of high-confidence pseudo-labeled samples was retained in each of the four target
cities. Although each city originally contained tens of thousands of unlabeled grid
points, only approximately 9—10% of these points passed the strict confidence and
stability filters, highlighting the conservative nature of the approach.

Table 6.12 summarizes the pseudo-labeling outcomes across all target domains. This
table presents, for each city, the total number of analyzed grid points, the number of
high-confidence pseudo-labels retained after filtering, and the final retention rate as a
percentage.

Table 6.12 High-Confidence Pseudo-Label Summary Across Target Citie

City Total Grid Points High-ConIfJi:;:lze Pseudo- Reten(ti/(())r)l Rate
Cardiff 188,480 17,595 9.34
Liverpool 187,555 18,199 9.70
Nottingham 153,972 14,732 9.56
Portsmouth 51,680 4,935 9.55

These figures demonstrate a striking consistency in retention rates across cities,
despite differences in their spatial extent, land-use diversity, and urban morphology.
Such consistency indicates that the pseudo-labeling framework was not biased toward
particular urban contexts, but instead systematically selected structurally robust
samples across domains.



Importantly, while the absolute number of pseudo-labeled points varied with city size,
the proportion retained remained tightly clustered around 9-10%. This balance
between coverage and selectivity was crucial: it ensured that the training set included
a meaningful spatial representation of each city without compromising label quality
due to overly aggressive or lax filtering thresholds.

6.2.5.5 Illustration of Pseudo-Label Distribution

To visualize the spatial coverage and noise prediction diversity generated through the
pseudo-labeling process, spatial maps were produced for each target city. These maps
displayed all grid points, distinguishing between unlabeled points (rendered in neutral
gray) and high-confidence pseudo-labeled points (color-coded using a blue-to-red
gradient corresponding to predicted dBA values).

Figure 6.3a-d presents spatial visualizations for each target city, showing both
unlabeled and high-confidence pseudo-labeled points. Unlabeled grid points are
rendered in grey, while pseudo-labeled points are shown using a blue-to-red gradient
corresponding to predicted dBA values. Each row corresponds to one city, enabling
direct comparison of spatial coverage and predicted noise variation.
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Figure 6.3 Spatial Distribution of High-Confidence Pseudo-Labels Across Target
Cities

These visualizations revealed that the retained pseudo-labels were spatially well-
distributed across diverse urban settings, consistently aligning with expected
environmental noise patterns such as proximity to transport corridors, industrial belts,
and dense residential zones. Furthermore, the blue-to-red gradient provided intuitive
insight into the predicted noise intensity, facilitating rapid cross-city comparison of
spatial noise variability.

Overall, the combined quantitative summary (Table 6.12) and qualitative
visualizations (Figure 6.3) confirmed that the pseudo-labeling framework successfully
identified a robust subset of informative, high-confidence samples. These samples
served as a critical foundation for the subsequent development and validation of
generalizable, domain-adaptive urban noise prediction models.

6.2.6 Model Architecture and Training Procedure
6.2.6.1 Model Overview and Dual-Branch Design
To predict urban noise levels across cities characterized by highly heterogeneous

urban forms and environmental settings, this study developed a customized dual-
branch graph neural network (GNN) architecture. While the general framework builds



upon the single-domain GNN structures introduced in Chapter 5, it incorporates
several critical enhancements aimed at improving cross-domain generalization and
multi-scale environmental modeling.

The network consists of two parallel, independently parameterized branches, each
designed to process features at distinct spatial scales. The local branch focuses on
fine-scale morphology and immediate noise sources (0—120 m), employing Graph
Attention Networks (GAT) to adaptively weight neighbors and capture localized
heterogeneity (Velickovi¢ et al., 2018). In contrast, the background branch targets
broader structural context (120-1000 m), leveraging Graph Convolutional Networks
(GCN) to aggregate global patterns and long-range dependencies (Kipf, 2016). This
dual-scale separation is consistent with established acoustic modelling frameworks,
which specify how both near-field built-environment factors (e.g., distance, ground
effects, barriers, facade reflections) and wider neighbourhood structure jointly shape
outdoor noise propagation (ISO, 1996; Kephalopoulos et al., 2012; WHO, 2018).

Each branch comprises multiple graph processing layers: the local branch uses two
GAT layers to capture progressively larger receptive fields, whereas the background
branch employs a single GCN layer for structural simplicity. Regularization strategies
are branch-specific: batch normalization stabilizes local feature distributions (loffe
and Szegedy, 2015), while layer normalization controls variance across heterogeneous
graph structures (Ba et al., 2016).

After spatial encoding, both branches are projected through lightweight multi-layer
perceptrons (MLPs) into a shared 64-dimensional latent space, then fused via a
learned gating layer that adaptively balances local and global contributions. This
allows the network to dynamically determine the relative importance of fine-scale
versus contextual information for each grid cell.

By decoupling local heterogeneity from background environmental structure, the
dual-branch architecture aligns with recent advances in multi-scale graph modeling
(Wu et al., 2020) and significantly enhances the model’s ability to generalize across
cities with divergent urban layouts, land-use compositions, and noise generation
profiles.

6.2.6.2 Graph Construction and Edge Weight Modulation

The foundation of the model’s predictive architecture is a spatial graph built over the
30 m resolution grids generated for each study city. Each node in this graph represents
a grid point, embedding two parallel sets of feature vectors corresponding to the local
branch (0—-120 m neighborhood scale) and the background branch (120-1000 m
neighborhood scale). This graph design enables the model to capture both localized
and broader contextual influences on urban noise propagation, which is essential for
accurately representing heterogeneous urban environments.

The graph’s structure is defined by spatial adjacency relationships between grid points.
Specifically, the spatial coordinates (i.e., row and column indices) of each node are
used to identify immediate neighboring nodes through + 1 shifts in four cardinal



directions (north, south, east, west), effectively establishing a base 4-neighbor system
with a 30 m step size. To extend each node’s receptive field and incorporate more
distant contextual interactions, a 3-hop connectivity strategy is applied, allowing
nodes to access neighbors up to three steps away while maintaining overall spatial
coherence.

Each edge in the graph is initially assigned a weight based on a squared exponential

distance decay function:
d 2
w(d) =exp | —| —
@ =exo (%)

where d represents the Euclidean distance between nodes i and j, and ¢ defines the
decay width parameter.

Unlike the exponential decay in Chapter 5, which was calibrated specifically for
Southampton’s low-frequency dominated acoustic environment(o= 0.06), the squared
exponential form provides a smoother and more gradual attenuation profile. This
ensures that distant nodes are down-weighted more consistently across cities,
reducing the risk of site-specific bias. In practice, this change was motivated by the
need for cross-city generalization: while exponential decay reflected Southampton’s
unique maritime noise profile, squared exponential decay avoids overfitting to any
single city’s propagation physics, thereby providing a more robust kernel for multi-
city applications.

The squared exponential decay can be interpreted as a Gaussian-like attenuation,
which has a firmer grounding in acoustic diffusion theory. Unlike pure exponential
decay (which implies constant absorption per unit distance), the squared exponential
emphasizes rapid decay at short ranges and smoother tails at long ranges, consistent
with how complex urban environments — with multiple reflections, diffractions, and
absorptive surfaces — diffuse noise energy over space.

To enhance numerical stability and ensure compatibility with subsequent learning
modules, the raw Gaussian weights are further transformed using a sigmoid-based
rescaling function, constraining all edge weights to fall within the range [0.1, 2.0].

While physical proximity is a critical factor shaping noise propagation, urban noise
dynamics are also heavily influenced by the environmental characteristics of the
surrounding landscape. To address this, the model incorporates a dynamic edge
modulation mechanism, wherein edge weights are adaptively adjusted based on a
subset of the most predictive environmental features. From the filtered feature sets
(after correlation removal and random forest-based importance ranking), the top five
most important variables are selected separately from the local and background
branches, resulting in ten critical modulation features overall (Table 6.13).

Table 6.13 Top 10 Environmental Features Used for Edge Weight Modulation

Feature Name Description




Feature Name Description

landuse 12220 r30 Proportion of minor road areas within 0—30 m of the grid point

Proportion of moderate noise sources (e.g., minor roads,

local _moderate noise_ratio industry) within 0—120 m

landuse 12220 r60 Proportion of minor roads within 30-60 m

Proportion of moderate mitigation zones (e.g., parks,

local moderate mitigation_ratio grasslands) within 0—120 m

Proportion of discontinuous dense urban fabric within 30—

landuse 11210 _r60 60 m

background dist 12220 Distance to other roads (land use 12220) within 120-1000 m

Distance to industrial, commercial, or public areas within 120—

background dist 12100 1000 m

75th percentile of Green band-based contrast texture within

Green_contrast_r300_percentile?3 120-500 m, reflecting vegetation heterogeneity

background moderate noise ratio Proportion of moderate noise sources within 120—1000 m

75th percentile of WVBI index’s GLCM correlation within

WVBIL_correlation_r1000_percentile7S 5, 1600 m indicating surface material uniformity

To integrate these variables into the graph, each source node along an edge feeds its
ten environmental values into a two-layer neural network module (EdgeWeightLayer),
which predicts a learned noise influence indicator. The final dynamic edge weight is
computed as:

w{jnal = wj; X (14 WdgeWeightLayer(z;))
where Zi is the feature vector from node Z, and Wi is the base Gaussian weight.
Edges whose adjusted weights fall below a threshold of 0.2 are pruned from the graph,
effectively removing weak or environmentally insignificant connections. This pruning
step improves the sparsity and interpretability of the graph, ensuring that only the
most structurally meaningful pathways contribute to noise information propagation.

To integrate these variables into the graph, each source node along an edge feeds its
ten environmental values into a two-layer neural network module (EdgeWeightLayer),
which predicts a learned noise influence indicator. The final dynamic edge weight is
computed as:

inal
wl" = f(as,25) - w(d)
where f(x;, x;)is the modulation factor derived from environmental features and w(d)

is the squared exponential distance kernel. Edges whose adjusted weights fall below a
threshold of 0.2 are pruned from the graph, effectively removing weak or
environmentally insignificant connections.
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In summary, the transition from an exponential decay in Chapter 5 to a squared
exponential decay in Chapter 6 reflects a deliberate methodological shift. In Chapter 5,
the attenuation function was designed specifically for Southampton, with the
coefficient a empirically tuned to 0.06 in order to reflect the city’s low-frequency,
long-range maritime noise environment. By contrast, Chapter 6 required a formulation
that could generalize across multiple cities, avoiding dependence on site-specific
propagation dynamics. The adoption of a squared exponential decay therefore
provided a more robust and less context-dependent attenuation kernel. This evolution
illustrates the balance between grounding the model in physically plausible
assumptions at the site level and achieving the cross-domain adaptability necessary
for constructing transferable urban noise prediction frameworks.

6.2.6.3 Node Feature Encoding and Dual-Branch Message Passing

Once the spatial graphs were constructed, each node was associated with two distinct
sets of features: a local feature set capturing fine-scale (0—120 m) variations, and a
global feature set representing broader contextual (120—1000 m) urban characteristics.
This dual-feature arrangement mirrors the two-branch network architecture and is
designed to promote effective decoupling between localized noise influences and
regional background patterns, an approach theoretically grounded in recent graph
neural network (GNN) studies.

The local branch is responsible for modeling detailed spatial interactions within the
immediate 0—120 m neighborhood. To achieve this, a two-layer Graph Attention
Network (GAT) architecture was implemented. The core advantage of GAT lies in its
adaptive neighbor weighting mechanism: for each node, learned attention coefficients

allow the network to prioritize more relevant neighbors, enhancing the representation
. . . o.
of local heterogeneity. Mathematically, at each layer [, the node representation 7 is

updated as:

o _ Oy (1) g0=1)
h!=o | D ayWOh;
JEN (i)

o . . . . .
where % are the normalized attention coefficients, W is the learned transformation
matrix, and o denotes the non-linear activation function (Exponential Linear Unit,
ELU). After each GAT layer, batch normalization is applied to stabilize training and
mitigate overfitting, especially important when learning from diverse local
neighborhoods.

The background branch, in contrast, employs a single-layer Graph Convolutional
Network (GCN) to aggregate information across the broader 120-1000 m background
context. GCN operates by averaging neighboring node features, smoothing local
variations to emphasize larger-scale structural patterns. Formally, the node
representation is computed as:
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where @i and 9 denote the degrees of nodes i and j, respectively, and Wis the
learnable weight matrix. Following convolution, layer normalization is applied to
improve generalization across heterogeneous graphs, a technique shown to enhance
stability in recent graph modeling research (Ba et al., 2016).

Once local and background features are processed by their respective branches, the
resulting embeddings are concatenated and passed through a fusion adapter composed
of a linear compression layer, ReLU activation, and dropout (rate 0.3) to prevent
overfitting. This step reduces the dimensionality of the combined representation while
preserving complementary information from both spatial scales (Srivastava et al.,
2014).

To further enhance adaptability, an adaptive gating mechanism is introduced to
balance the contributions of local and global information dynamically. Specifically,

the final intermediate embedding Pfused is computed as:
hfused = O'(Wg [hlocal ‘ ’ hglobal] )

where Wy is a learnable linear transformation, [ H ] denotes vector concatenation, and
ois the sigmoid activation function. This mechanism enables the model to adjust its
reliance on fine-scale versus broad-scale features for each node, effectively tailoring
predictions to the local urban context (Dauphin et al., 2017).

Finally, the fused embedding Ptused is passed through a fully connected output layer
to predict the mean noise level (ABA) at each node. In summary, this architecture
integrates highly localized, detail-sensitive information (via GAT) with smooth, large-
scale contextual patterns (via GCN), while the gating mechanism ensures dynamic
balancing of multi-scale contributions, making the system robust across diverse urban
environments.

6.2.6.4 Adversarial Domain Alignment Strategy

To strengthen the model’s capacity for cross-city generalization, this study
incorporated a multi-domain adversarial alignment strategy during training. This
approach aims to mitigate distributional shifts between urban domains by learning
domain-invariant feature representations, a technique rooted in adversarial learning
and now extensively reviewed in recent graph learning surveys (Wu et al., 2020).

The core component of the strategy is a lightweight multi-domain discriminator,
designed to distinguish among the five studied cities: Southampton (reference) and
Cardiff, Portsmouth, Nottingham, and Liverpool (targets). The discriminator consists
of a fully connected hidden layer (64 units, ReLU activation) and a final classification
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layer that outputs logits for the five domains. Formally, for each node’s fused
intermediate embedding hfused, the domain logits d are predicted as:

d = Wahfused + ba
where Wa and bq are the learnable weight matrix and bias, respectively.

To achieve domain confusion, the embeddings pass through a Gradient Reversal
Layer (GRL) before reaching the discriminator. The GRL acts as an identity function
during the forward pass but multiplies gradients by a negative scalar during
backpropagation, effectively reversing the optimization direction. This forces the
main model to extract features predictive of noise but agnostic to domain identity.
Mathematically, the transformation is:

AGRL(R)

GRL(h) =h and o

= -\

where A controls the strength of domain confusion, set empirically to 1.0 in this study.

To prevent the destabilization of early-stage learning by noisy domain signals, a
preheat strategy was employed. For the first five epochs, only the primary regression
loss was optimized, allowing the model to establish a basic noise prediction capacity.
After epoch five, the adversarial domain loss and additional regularization terms were
introduced, a staged approach inspired by best practices in domain adaptation (Ganin
etal., 2016).

In parallel, a Maximum Mean Discrepancy (MMD) regularization term was integrated
to align feature distributions between the reference and each target city. MMD
quantifies the distance between two distributions in a reproducing kernel Hilbert
space (RKHS), using a Gaussian kernel with multiple bandwidths to increase
flexibility. The MMD loss between the source (S) and target (T ) distributions is
computed as:

MMD(S,T) ‘S|Z¢( qu

seS teT

where () is the feature mapping function (Gretton et al., 2012). This alignment
mechanism complements adversarial learning by explicitly minimizing global
distributional gaps, especially important for subtle cross-domain discrepancies
(Ouyang et al., 2023).

The total training loss integrates three components:

1. The regression loss Lieg , implemented as a Huber loss over real labeled samples.
The adversarial domain loss Ladv , computed as cross-entropy over domain
predictions.

3. The MMD loss Lmmd, penalizing feature distribution misalignment.

Thus, the final objective function is formulated as:
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Ltotal = Lreg = aLadv T /Bmed

where o« and B are empirically determined hyperparameters balancing the
contributions of domain alignment and distributional regularization.

Rather than focusing on architectural complexity, the emphasis of this strategy lies in
learning robust, transferable representations—feature embeddings that preserve the
acoustic relationships encoded in the source domain while remaining insensitive to
city-specific biases.

In practical terms, a robust transferable representation is one that continues to encode
physically meaningful noise—environment relationships—such as the attenuation of
noise with increasing vegetation or the amplification along major transport
corridors—even when the spatial context, land-use composition, or imaging
conditions differ across cities.

These representations are robust because they remain stable under domain shifts (e.g.,
from coastal to inland morphology), and transferable because they enable accurate
predictions in cities where no direct noise measurements are available.

By jointly optimizing the regression, adversarial, and MMD objectives, the model is
encouraged to extract embedding patterns that (i) align across domains in latent space,
(i1) maintain correlation with environmental predictors relevant to noise propagation,
and (iii) suppress superficial differences caused by illumination, spectral range, or
regional planning style.

Consequently, the learned feature space captures universal acoustic—morphological
dependencies—for example, the consistent influence of built-up density, vegetation
fraction, and road proximity on noise levels—rather than overfitting to the spectral or
structural idiosyncrasies of any single city.

This conservative design avoids over-parameterization while ensuring interpretability
and stability, positioning the learned embeddings as a robust foundation for the cross-
city inference experiments presented in Section 6.3.

6.2.6.5 Dataset Partitioning Strategy for Source and Target Domains

The partitioning of training, validation, and testing subsets plays a critical role in
ensuring that the learning framework remains both statistically rigorous and
methodologically coherent across domains. Unlike the preceding chapters, which
focused exclusively on within-city model training, the present framework extends to
multi-domain learning, where only the source domain contains measured noise labels
and all target domains rely on pseudo-labels or remain unlabeled. This shift from
classical supervised learning to a hybrid weakly supervised domain adaptation setting
necessitated a carefully structured partitioning strategy that reflects the epistemic
quality of labels across different domains.

Within the source domain (Southampton), the dataset was partitioned using a 60—20—
20 split for training, validation, and testing, respectively. This strategy is consistent
with the node masking protocol described in Chapter 5, ensuring that validation and



test nodes participate in graph message passing without contributing to the loss
function. Such masking is crucial in graph-based learning because nodes in different
subsets remain topologically connected. By withholding labels from validation and
test nodes, the model can aggregate their contextual information without risking label
leakage. This partitioning not only preserves the statistical independence of evaluation
but also enables the model to capture broader spatial correlations across the urban
fabric, ensuring that predictive performance is evaluated on nodes that are structurally
integrated yet label-inaccessible during training.

For the target domains (Cardiff, Portsmouth, Nottingham, Liverpool), the epistemic
status of the labels differs fundamentally. All supervisory signals originate from
pseudo-labeling, a process inherently less certain than direct in-situ measurements. In
this context, forcing the creation of a held-out “test set” based on pseudo-labels would
provide little meaningful information about generalization performance, since both
the training and test subsets would reflect the same underlying inferential uncertainty
rather than independent observations. Instead, the target domain data were divided
into 80 % pseudo-labeled training samples and 20 % pseudo-labeled validation
samples, while the remaining unlabeled nodes remained embedded within the graph
structure to contribute indirectly through message passing and domain alignment.
This design allows the model to learn from a larger pool of pseudo-labeled data while
still maintaining an internal mechanism for monitoring overfitting to pseudo-label
distributions through the validation split.

The absence of a pseudo-labeled test set in target domains is a deliberate and
principled decision. Unlike the source city, where evaluation against measured noise
values provides an objective accuracy benchmark, pseudo-labels do not constitute
independent ground truth and should not be used as a surrogate for generalization
assessment. Instead, generalization in this chapter is evaluated by aligning target
domains through adversarial and statistical domain adaptation and subsequently
validating the transferred model against the real labels in Southampton. In other
words, model reliability is anchored in the source domain, while the structural
adaptability of learned representations is encouraged through the inclusion of pseudo-
labeled and unlabeled target samples.

This hybrid partitioning design reflects a balance between maximizing the learning
signal from limited labeled data, mitigating the risks of overfitting to uncertain
pseudo-labels, and preserving graph connectivity for domain adaptation. It also aligns
with broader methodological principles in semi-supervised and domain-adversarial
learning, where evaluation is performed on trusted labels while pseudo-labeled
domains serve primarily to shape the latent representation space rather than to provide
definitive accuracy estimates. By adopting this configuration, the framework ensures
that the predictive model is trained on both reliable and structurally informative data,
achieving a robust compromise between statistical wvalidity, representational
generalization, and cross-domain transferability.

Summary
The model architecture and training strategy developed in this chapter represent a

systematic response to the fundamental challenge of transferring environmental noise
prediction capabilities across morphologically and functionally distinct cities.



Building on the single-domain GNN framework introduced in Chapter 5, the current
design expands the scope of the methodology through dual-branch graph processing,
dynamic edge weighting, domain-adversarial alignment, and an epistemically
informed dataset partitioning strategy. These components are not isolated technical
choices but mutually reinforcing elements of a coherent framework explicitly tailored
for cross-city generalization.

At the architectural level, the dual-branch design reflects the inherently multi-scale
nature of urban acoustic environments. The local branch, based on Graph Attention
Networks, enables fine-grained modeling of micro-environmental variations such as
road adjacency, facade density, and vegetation buffering, while the contextual branch,
implemented with Graph Convolutional Networks, captures large-scale structural
patterns and background acoustic influences. This explicit scale decomposition
mirrors the physical reality that environmental noise results from the interaction of
proximate and distal sources, enhancing both interpretability and robustness.

The graph construction and dynamic edge modulation mechanisms extend this multi-
scale representation by embedding environmental heterogeneity directly into the
topological structure of the model. By replacing the single-city exponential decay
kernel of Chapter 5 with a squared exponential kernel, the framework deliberately
shifts from site-specific acoustic assumptions to a more generalizable attenuation
function that is better suited for cross-domain learning. Environmental modulation of
edge weights further strengthens the model’s capacity to reflect the spatial logic of
noise propagation across diverse urban morphologies.

The training procedure integrates adversarial domain alignment and statistical
distribution matching to explicitly minimize cross-domain discrepancies in the
learned latent space. Through the combination of a gradient reversal-based domain
discriminator and maximum mean discrepancy regularization, the model learns to
retain acoustically meaningful relationships while suppressing city-specific spectral
and structural biases. This alignment is critical for enabling the model to operate
effectively in cities where no ground-truth noise data exist.

Finally, the dataset partitioning strategy embodies a methodological distinction
between the epistemic certainty of labeled data and the inferential nature of pseudo-
labels. By applying a 60—20-20 split in the labeled source domain and an 80-20 split
in pseudo-labeled target domains without enforcing a pseudo-test set, the framework
preserves statistical validity where real observations exist while maximizing structural
learning where they do not. This principled treatment of label quality ensures that
evaluation remains grounded in trusted data while the representation space is shaped
by broader domain structure.

Taken together, the components of this model architecture and training procedure
create a theoretically grounded and practically scalable foundation for cross-city
environmental noise prediction. The dual-branch structure encodes multi-scale
acoustic processes; the graph topology embeds spatial heterogeneity; the adversarial
alignment enforces domain invariance; and the partitioning strategy respects the
epistemic hierarchy of labels. This integrated design provides both the methodological
rigor and flexibility necessary to support large-scale, label-efficient urban noise
mapping across diverse and data-scarce cities.



6.2.7 Inference Strategy and Prediction Workflow
6.2.7.1 Overview

After completing the multi-domain training of the generalizable urban noise
prediction model, a systematic inference strategy was implemented to generate high-
resolution, spatially continuous noise maps across all study cities. This strategy relies
directly on the trained model weights and the standardized graph structures
constructed during the training phase, ensuring methodological consistency and full
reproducibility of results. Importantly, because the spatial graphs were designed from
the outset with a regular 30-meter grid and extended boundaries, no architectural
modifications were required for inference. Each city’s graph, containing both labeled
and unlabeled nodes, was applied seamlessly to the prediction stage, preserving the
full spatial context critical for robust graph-based learning and avoiding any structural
inconsistencies between the training and deployment phases.

6.2.7.2 Input Preparation

To prepare the inputs for inference, each study city—comprising the reference domain
Southampton and the four target domains Cardiff, Portsmouth, Nottingham, and
Liverpool—was processed through the same rigorous pipeline established during
training. Specifically, two distinct feature tensors were generated: one capturing local-
scale variables reflecting the 0-120 m neighborhood characteristics, and another
representing the broader 120—-1000 m background context. Alongside these features,
the spatial coordinates of each grid node were recorded, ensuring positional integrity
across the graphs.

The input preparation further included the explicit assignment of domain labels, with
Southampton coded as domain 0 and the target cities as domains 1 through 4. These
domain identifiers were critical for activating the domain-specific normalization
parameters embedded in the trained model architecture, thus enabling adaptive
behavior tailored to each wurban context. Moreover, the ten edge-sensitive
environmental variables selected during feature importance ranking—emphasizing
land use and spectral characteristics strongly predictive of noise propagation—were
integrated directly into the graph representation, ensuring that both node and edge
attributes mirrored the training phase. All preprocessing steps, including variable
standardization, one-hot encoding for categorical features, and imputation for any
missing values, strictly followed the procedures applied during model development,
ensuring consistency and reproducibility.

6.2.7.3 Graph Construction for Inference

The graph construction for inference was fully aligned with the spatial graph design
used during training, ensuring that the topological relationships among nodes
remained stable. Each city-specific graph preserved the 4-neighbor connectivity,
extended through a 3-hop search radius to capture broader spatial dependencies.
Importantly, edge weights were not limited to spatial proximity but incorporated
dynamic modulation based on semantic similarity, as encoded by the



EdgeWeightLayer using the ten most noise-relevant environmental features. This
approach ensured that the graphs maintained both geometric and functional fidelity,
reflecting the intricate interplay between urban form, land cover, and noise dynamics.

By directly reusing the previously constructed graphs, the inference process avoided
the risk of introducing sampling biases or topological mismatches between the
training and prediction phases. The schematic workflow of this prediction process is
visualized in Figure 6.4, which outlines the seamless integration of graph construction,
model input preparation, and noise prediction generation.
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v +
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‘
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‘

Generate Noise Maps
(ArcGIS Raster)

Figure 6.4 prediction workflow

6.2.7.4 Prediction Process

The prediction process began by loading the trained Dual-Branch Graph Neural
Network (DualBranchGNN) model and restoring its parameters from the checkpoint
that achieved the best performance during multi-domain adversarial fine-tuning. At
this stage, maintaining strict architectural consistency was critical: the model’s dual-
branch configuration—designed to process local and global features independently—
together with its domain-adaptive components, had to be preserved exactly as defined
during training.

Once initialized, the complete graph of each target city was input into the network.
The local-scale features were propagated through the Graph Attention Network (GAT)
branch, which adaptively weighted the relative importance of immediate neighbors
and captured fine-grained spatial dependencies within a 120 m neighborhood. In



parallel, the global-scale features were processed by the Graph Convolutional
Network (GCN) branch, which aggregated contextual information over extended
neighborhoods up to 1,000 m using normalized mean aggregation. These two
representations captured complementary spatial patterns—Ilocal acoustic variations
and broader urban context—and were subsequently fused through an adaptive gating
mechanism that dynamically balanced their contributions for each spatial unit. The
resulting fused embeddings were passed through a regression layer to predict the
mean daytime noise level (dBA) for each grid point.

After prediction, the node-level outputs were reattached to their corresponding spatial
coordinates within the city graph. Each city’s complete set of enriched node
attributes—comprising original features, intermediate embeddings, and predicted
noise levels—was then exported as a georeferenced CSV file to ensure seamless
compatibility with downstream GIS and visualization tools. This workflow guarantees
a fully automated and reproducible pipeline for generating consistent noise prediction
maps across all study areas.

To clarify, the term “grid point” refers to the centroid of a regular 30 m x 30 m spatial
cell, forming a continuous grid that covers the entire urban extent of each city. During
inference, each node in the graph corresponds to one of these grid centroids, with its
feature vector derived from the multispectral and land-use attributes aggregated
within that grid cell and its surrounding ring buffers. Consequently, the node-level
predictions are spatially equivalent to grid-level noise estimates aligned to these
centroids.

This design choice ensures that model outputs are spatially continuous, georeferenced,
and directly interoperable with standard geospatial workflows. Each predicted value
can be reprojected into the city’s coordinate reference system and visualized as a
raster map, facilitating cross-city comparison and integration with auxiliary datasets
such as transportation networks, vegetation cover, or population exposure layers. The
use of standardized, evenly spaced grid points—rather than irregular observation
sites—guarantees spatial consistency, reproducibility, and compatibility between the
graph-based predictions and conventional environmental mapping approaches.

6.2.7.5 Evaluation Metrics and Map Validation

Because ground-truth noise measurements were only available for Southampton,
quantitative evaluation of prediction accuracy was confined to this reference city. To
ensure methodological continuity with prior analyses (Chapters 4 and 5), the
evaluation employed two complementary metrics: the mean absolute error (MAE) and
the coefficient of determination (R?).

The MAE was calculated as the average absolute difference between the predicted

noise levels (?gi) and the true observed values (Yi) across all valid labeled nodes,
formalized as:



1 N
MAE = — > |§: - uil
1=1

where N represents the number of labeled grid points. This metric provides an
intuitive and interpretable measure of the model’s average prediction error magnitude,
emphasizing precision across the full range of observed noise values.

The coefficient of determination ( R*) was calculated to capture the proportion of
variance in the ground-truth noise levels explained by the model’s predictions:
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where ¥ is the mean of the true noise levels. This statistic evaluates the model’s
explanatory power, indicating how well the predictions capture the underlying
variability in the observed data.

For both metrics, evaluation was restricted exclusively to nodes identified with
set_id < 3 during data preparation, ensuring that only genuine labeled samples
contributed to performance assessments. This careful delineation maintained the
integrity of the evaluation process and ensured that results were not biased by pseudo-
labeled or inferred data.

6.2.7.6 Rasterization and Visualization

After obtaining node-level noise predictions at the 30-meter resolution grid points, a
detailed rasterization process was applied to transform these discrete predictions into
continuous noise maps for each study city. The predicted mean noise levels were first
directly assigned to their corresponding grid points, strictly preserving the model’s
original output values. At this stage, no additional spatial interpolation or smoothing
techniques were applied, ensuring that the raw prediction granularity and the inherent
spatial fidelity of the graph-based model outputs were fully retained.

To convert the point-based predictions into raster surfaces, the results were imported
into ArcGIS Pro 2.7.0, a leading geospatial analysis platform. Using the precise
spatial coordinates accompanying each grid point, a point-to-raster transformation
was conducted, producing gridded raster layers with a native resolution of 30 meters.
This rasterization step ensured that the outputs were perfectly aligned with the
original spatial grid structure, preserving both the spatial resolution and the
neighborhood relationships essential for accurate urban noise visualization.

For visual comparability across cities, a standardized color ramp was systematically
applied to all generated maps. The color scheme was symmetrically centered around
each city’s mean predicted noise level, with divergent hues assigned to represent
lower and higher noise intensities. This approach ensured that cross-city map
comparisons were visually meaningful and not confounded by scale distortions or
inconsistent color mappings. Additionally, all raster surfaces were spatially clipped to
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match the delineated study area boundaries, avoiding edge artifacts or visual
inconsistencies outside valid data coverage.

The final rasterized outputs were saved in the GeoTIFF format, an open and widely
used geospatial raster data standard. This ensured not only the reproducibility of the
results but also their compatibility with a broad range of downstream spatial analysis
and urban planning tools. Through this rigorous and standardized visualization
workflow, the predicted noise maps provided robust, high-resolution insights into
urban acoustic environments, supporting comparative evaluations and informing
evidence-based environmental management strategies.

6.2.8 Methodology Summary

The methodological framework developed in this study provides a comprehensive,
scalable, and transferable solution for predicting urban noise distributions across
multiple cities, even in the absence of direct acoustic measurements in target locations.
Anchored in the central hypothesis that urban soundscapes are systematically shaped
by shared structural and functional characteristics—particularly those embedded in
land-use patterns, morphological configurations, and broader environmental
contexts—the research operationalizes a cross-domain transfer paradigm that
leverages these latent inter-city similarities.

At the core of this framework is the integration of standardized multispectral remote-
sensing features, rigorously engineered land-use statistical indicators, and high-
confidence pseudo-labeled samples derived from robust variable correlations
established in the reference domain. Together, these components enable the
construction of a latent feature space in which heterogeneous cities’ noise
distributions become directly comparable, effectively bridging the data gap between
measured and unmeasured domains.

The methodology introduces several interlocking innovations. First, the pseudo-label
generation strategy employs variable-importance rankings from the reference city,
combined with inter-city feature-similarity assessments, to infer plausible supervisory
signals in cities lacking ground-truth noise labels. This approach enables supervised
learning under data sparsity—a fundamental challenge in urban environmental
modelling. Second, the spectral standardization of multispectral imagery is enhanced
through the use of land-use-specific pseudo-invariant feature (PIF) regions and
histogram-matching techniques. This ensures that spectral properties are harmonized
across diverse urban contexts, reducing cross-domain discrepancies caused by sensor
or acquisition differences. Third, the dual-branch graph neural network (GNN)
architecture—explicitly designed to separate local (0—120 m) and contextual (120—
1000 m) environmental influences—captures multi-scale determinants of urban noise
patterns. This structural decoupling allows the model to learn both fine-grained,
detail-sensitive variations and broader contextual trends, enhancing explanatory
capacity.



In addition, the inclusion of dynamic edge-weighting mechanisms is not intended to
replicate physical sound-propagation pathways, but rather to statistically represent
how local neighborhood relationships vary with environmental heterogeneity. The
model thus learns to adjust the relative influence of adjacent nodes based on the
presence of variables such as vegetation density, built-up ratio, and land-use
composition—factors empirically correlated with acoustic attenuation and reflection.
The weighting parameters summarized in Table 6.12 were selected and tuned through
cross-validation and feature-importance analysis rather than manual physical
calibration. Their plausibility is evaluated indirectly through the stability and cross-
domain consistency of results presented in Chapter 6, which collectively serve as a
sanity-checking mechanism for the robustness and interpretability of these modulating
factors.

Finally, the application of multi-domain adversarial alignment strategies bridges latent
feature-distribution gaps among cities, improving the model’s ability to generalize
across urban environments with distinct morphological, infrastructural, and socio-
economic characteristics. The framework also addresses sample-density consistency
by generating uniform grid-based spatial representations across all study areas. This
design ensures that graph structures remain comparable across domains, facilitating
robust neighbor-based feature aggregation while preserving the integrity of spatial
relationships during learning.

Through this integrated methodology, the research demonstrates that it is feasible to
achieve high-quality, spatially explicit noise predictions in unseen cities using only
publicly accessible remote-sensing and land-use data. The approach therefore offers a
practical and label-efficient pathway toward scalable urban environmental assessment,
particularly valuable for regions where systematic noise-monitoring infrastructure is
limited or entirely absent.

6.3 Result

6.3.1 Performance Evaluation on the Reference City
6.3.1.1 Quantitative Performance Metrics

To establish a robust performance baseline before extending predictions to unseen
cities, the proposed dual-branch graph neural network (GNN) model was evaluated on
the held-out test set of the reference city, Southampton. Two widely accepted metrics
were employed to assess prediction accuracy: the Mean Absolute Error (MAE), which
quantifies average absolute deviations between predicted and observed noise levels,
and the coefficient of determination (R*), which measures the proportion of variance
explained by the model.

Table 6.14 summarizes the evaluation results alongside the performance of two
previously developed models: the convolutional neural network (CNN) introduced in
Chapter 4 and the GraphSAGE-based GNN described in Chapter 5. The dual-branch



GNN achieved a MAE of 4.48 dBA and an R® of 0.576 on the Southampton test set.
While its MAE was marginally higher than the GraphSAGE model (4.40 dBA), it
significantly outperformed the CNN (4.79 dBA) and offered competitive explanatory
power, situating itself between the two benchmarks.

Table 6.14 Comparison of MAE and R? between this study and former chapters

Model MAE (dBA) R?
CNN (Chapter 4) 4.79 0.491
GraphSAGE (Chapter 5) 4.40 0.596
Dual-branch GNN (This study) 4.48 0.576

Notably, the present model achieved this performance while dramatically reducing
feature dimensionality. The GraphSAGE model relied on approximately 8,250 input
variables, whereas the dual-branch GNN used only 169 selected features after
rigorous correlation filtering and random forest-based importance ranking. This
substantial dimensionality reduction not only improved computational efficiency but
also reduced the risk of overfitting—a key advantage when designing models
intended for cross-city generalization.

These results highlight that the selected features in this study, particularly the land use
and remote sensing-derived predictors, capture highly informative and transferable
patterns related to urban noise propagation. As such, the dual-branch GNN balances
architectural robustness, feature compactness, and predictive effectiveness,
establishing a solid foundation for exploring cross-domain generalization.

6.3.1.2 Spatial Noise Mapping of the Reference City

Beyond quantitative metrics, the spatial distribution of predicted noise levels offers
critical insights into the model’s capacity to reproduce realistic urban acoustic
landscapes. To assess this, a full-resolution noise prediction map for Southampton
was generated using the trained dual-branch GNN and the complete 30-meter
resolution spatial grid. This map, presented in Figure 6.5a, visually illustrates how the
model reconstructs continuous, coherent, and environmentally plausible noise patterns
across the city.

A central innovation distinguishing this study from prior work in Chapters 4 and 5 lies
in the explicit integration of land use and land cover (LULC) features derived from
the Urban Atlas 2012 dataset. By extracting and encoding LULC attributes at both
local (0-120m) and contextual (120-1000 m) scales, the model incorporates
semantically rich information about urban function and environmental context—
information that goes beyond purely image-based or traffic-focused approaches. As a
result, the predicted map successfully captures classic urban noise gradients: elevated
noise levels along major transport corridors, moderate levels in commercial and
industrial zones, and lower exposures in residential neighborhoods and green spaces.

To further evaluate the model’s semantic sensitivity and environmental realism, three
representative sub-regions were selected for detailed visual analysis, comparing the



predicted noise surfaces with dominant LULC patterns. In the port and industrial area
(Figure 6.5b), characterized by a concentration of commercial and port infrastructure,
the model effectively predicted high noise levels, despite the relative absence of major
roadways, suggesting that it successfully captured latent noise sources such as
logistics or maritime activities. In the mixed-use city center (Figure 6.5c), where
continuous urban fabric, commercial zones, port proximity, and scattered green areas
coexist, the model revealed a complex, heterogeneous acoustic landscape,
demonstrating its ability to parse fine-grained LULC interactions and urban functions.
Finally, in the southwest suburban area (Figure 6.5d), dominated by green urban
spaces, recreational zones, and pasture lands, the model consistently predicted low
noise exposures, reflecting an accurate recognition of non-traffic-related acoustic
attenuation effects provided by these land uses.
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Figure 6.5 Predicted noise map for Southampton and selected sub-regions: (a)
Predicted noise map for Southampton (b) port and industrial area, (c) mixed-use city
centre;, (d) low-exposure green and rural zone. Each submap (vight side) overlays
Urban Atlas 2012 dominant land use classes

6.3.2 Generalization to Target Cities

A central objective of this study was to develop a robust, generalizable noise
prediction framework capable of accurately estimating urban noise patterns in target
cities without relying on any local acoustic measurements. To rigorously evaluate this
capability, the dual-branch graph neural network (GNN) was trained exclusively on
the reference city, Southampton, and then directly applied to four distinct target
cities—Cardiff, Portsmouth, Nottingham, and Liverpool. Importantly, no fine-tuning
or local calibration was performed; predictions were generated solely based on
multispectral imagery and Urban Atlas 2012 land use data, using the same pre-trained
model weights and spatial graph constructions detailed in Section 6.2.6. This strict
experimental design ensured methodological consistency and provided a fair test of
the model’s cross-city generalization performance.
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The resulting full-resolution noise prediction maps for the four target cities are
presented in Figure 6.6. Despite the complete absence of ground-truth noise labels
during both training and inference, the predicted maps exhibit spatially coherent noise
gradients and environmentally plausible acoustic distributions. Particularly
noteworthy is the consistent emergence of elevated noise levels along major
transportation corridors, within industrial belts, and across dense commercial zones—
patterns that align well with known functional-acoustic relationships documented in
urban noise research. Conversely, residential neighborhoods, green urban spaces, and
peripheral low-density zones are consistently predicted as low-exposure regions,
demonstrating the model’s sensitivity to the acoustic attenuation effects provided by
these land-use types.
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Figure 6.6 Full-resolution noise prediction maps for the four target cities: (a) Cardiff;
(b) Portsmouth; (c) Nottingham, (d) Liverpool. All maps use the same 30 m resolution
grid and color ramp for visual comparability

Several key methodological components contributed to the quality and plausibility of
these predictions. First, the robust image standardization workflow, including pseudo-
invariant feature (PIF)-based histogram matching, effectively harmonized inter-city
spectral discrepancies, ensuring that remote sensing features remained comparable
across diverse urban domains. Second, the incorporation of land-use-derived variables
provided semantically rich and transferable spatial context, enabling the model to
ground its predictions in meaningful urban structures rather than superficial spectral
similarities. Finally, the graph-based architecture, with its explicit modeling of both
fine-scale and contextual spatial dependencies, allowed the network to capture
complex neighborhood interactions that govern urban noise propagation.

A qualitative inspection of the predicted maps across the four target cities reveals
consistent and realistic noise patterns. In Cardiff and Portsmouth, for example, major
port areas and adjacent industrial zones are accurately identified as persistent high-
noise regions, even without direct access to local traffic or activity data. In
Nottingham and Liverpool, inner-city corridors and arterial roads exhibit strong
predicted noise gradients, while suburban green belts and recreational zones show
marked acoustic attenuation. These observations suggest that the model effectively
leverages inter-city functional-acoustic similarities, supporting the core assumption
underpinning the domain adaptation framework.

To further validate the technical soundness and adaptability of the proposed approach,
the following sections (6.3.3 —6.3.5) provide a comprehensive set of evaluation
experiments. These include quantitative comparisons with official European Noise
Directive (END) noise maps, stratified assessments of prediction performance across
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different land-use categories, and ablation analyses examining the contributions of
individual feature groups and architectural components. Together, these validation
efforts aim to rigorously assess whether the generalization capacity demonstrated here
represents a substantive technical advancement over prior work and contributes
meaningfully to the development of scalable, label-efficient urban noise prediction
systems.

6.3.3 Local Comparison with END Traffic Noise Maps

To rigorously assess the spatial validity of the predicted noise maps, this study
conducted both qualitative and quantitative comparisons against official traffic noise
datasets produced under the Fourth Round of the European Environmental Noise
Directive (END). Specifically, the LAeq,16h indicator was selected as the primary
benchmark because it represents the 16-hour equivalent continuous level—defined as
the annual average steady noise level over the daytime period (07:00 to 23:00)—and
thus aligns directly with the LAeq noise prediction produced by the model in this
study. This temporal and semantic correspondence makes LAeq,16h the most
appropriate available reference for evaluating the model’s outputs.

The END dataset is widely recognized as the most authoritative and standardized
source of transportation noise information across European cities, compiled by
national authorities under harmonized European Commission guidelines (European
Commission, 2021). These maps are generated using detailed models of major road,
rail, and airport sources, applying rigorous assumptions about emissions, propagation,
and environmental attenuation. In the UK context, DEFRA oversees the production
and publication of these datasets, ensuring a high degree of consistency and
comparability across time and geography (DEFRA, 2023).

Although the predictions from the dual-branch graph neural network represent a
broader conceptualization of environmental noise—incorporating both traffic-related
and non-traffic acoustic contributors such as industrial zones, commercial activity,
and dense urban morphology—the use of END LAeq,16h maps remains a meaningful
and informative comparison point. This is justified on several grounds. First, END
maps are the only comprehensive, government-endorsed datasets currently available
for large-scale environmental noise evaluation, offering unparalleled geographic and
regulatory consistency. Second, traffic noise typically dominates the overall urban
acoustic environment, especially in European cities like Nottingham, Portsmouth, and
Liverpool, meaning that traffic-centered benchmarks can effectively capture a
substantial fraction of the total noise variation. Third, while structural differences
exist between modeled END outputs and image-derived predictions, evaluating the
degree of spatial agreement provides valuable insights into the predictive framework’s
capacity to generalize meaningful urban noise patterns.

However, it is important to acknowledge certain limitations in the direct comparison.
END noise maps, being strictly transport-focused, often include sharp spatial
transitions between road-adjacent and off-road zones, sometimes assigning artificially
low or even zero values to non-modeled regions such as green belts or peripheral
industrial zones. In contrast, the predictions produced here are spatially continuous



and semantically enriched, reflecting not only transport networks but also the
cumulative influence of surrounding land cover, built morphology, and local
environmental context. This distinction must be carefully considered when
interpreting areas of convergence or divergence between the two datasets.

6.3.3.1 Global Spatial Comparison with END

Figure 6.7 provides a side-by-side comparison between the predicted noise maps and
official END LAeq,16h maps for Southampton (reference city) and three target cities:
Nottingham, Portsmouth, and Liverpool. All maps are rendered using a standardized
color ramp spanning 35 to 85 dBA, which covers the plausible range of urban daytime
noise exposure, allowing for direct visual comparability.

Across all four cities, several consistent spatial patterns emerge. Both the predicted
and official maps successfully identify major transportation corridors, central
commercial districts, and industrial zones as prominent noise hotspots, indicating that
the model accurately captures core traffic-related exposure patterns. Importantly, the
predicted maps display smoother spatial gradients, reflecting their integration of
cumulative environmental influences beyond discrete road networks. In contrast, the
END maps frequently exhibit abrupt zone transitions, including regions marked by
unrealistically low or null values in areas beyond the immediate vicinity of major
transportation sources—a limitation noted in previous urban noise modeling research
(Murphy & King, 2011).

A quantitative inspection reveals that the maximum predicted noise levels, typically
ranging from 79.9 to 84.9 dBA, align closely with the upper bounds of the END
datasets, which often peak between 80 and 85 dBA. Moreover, the lower bounds of
the predicted maps, falling between 35 and 42 dBA, provide more realistic estimates
of baseline background noise, whereas the END maps frequently default to near-zero
values in off-network areas. This suggests that the predictive framework offers a more
continuous and environmentally representative characterization of the urban acoustic
landscape, capturing the complex interplay of multiple environmental determinants.
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Figure 6.7 Predicted noise maps and END Lden maps for (a) Southampton, (b)
Nottingham, (c) Portsmouth, and (d) Liverpool

It is important to emphasize that the END (Environmental Noise Directive) LAeq
maps used here (from the Fourth Round) are constructed using deterministic
propagation models focused solely on road-traffic sources. In their modeling
framework, acoustic contribution is only assigned to grid cells within a calculated
influence distance from mapped roads; beyond that buffer, the model effectively treats
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the area as having no transport noise contribution, resulting in zero-value cells. This
does not imply actual silence in the real world, but rather the absence of modeled
traffic influence.

In contrast, our predicted maps are driven by actual noise measurements that
inherently include multiple contributing sources beyond just roads — for example,
industrial zones, port facilities, commercial operations, building HVAC systems, and
human activity. Therefore, even in areas distant from roads, the model can assign non-
zero noise levels consistent with realistic background exposure. Furthermore, our
model incorporates land-use and form-based attenuation effects (buildings, vegetation,
buffer shielding), allowing spatially smooth transitions rather than abrupt drop-offs.

To underscore this contrast, one may interpret that END performs well in road-
dominated zones, where traffic is indeed the dominant source, but loses
representational validity in off-network or non-road regions, where its assumption of
zero exposure fails. By comparison, our model’s predictions represent a more holistic
soundscape-level exposure field, filling in what END leaves blank. We have
strengthened the manuscript by adding this discussion immediately after Figure 6.7, to
help readers understand that observed low-noise zones in END data are
methodological artifacts, not necessarily reflecting true environmental quietness.

6.3.3.2 Quantitative Comparison in reference city

Following the qualitative visual assessment presented in the preceding section, this
part provides a quantitative validation aimed at elucidating the systematic differences
between the official END traffic-noise maps and the measured acoustic environment
in Southampton. The analysis focuses on how the deterministic propagation-based
END estimates deviate from in-situ measurements across varying spatial contexts and
functional land-use types. By quantifying these discrepancies, this section establishes
a baseline understanding of the strengths and limitations of the END dataset before
comparing it with the modelled noise predictions introduced later in this chapter.

To achieve this, the measured daytime LAeq values were paired with the
corresponding LLAeq,16h values from the Fourth Round END dataset at identical
spatial coordinates. The comparison employs four complementary indicators:

(1) the Mean Absolute Error (MAE) to quantify deviation magnitude;

(2) the bias (END — observed) to identify systematic under- or overestimation;

(3) the silent rate, i.e. the proportion of cells assigned a zero or null END value; and
(4) the zero-gap, which represents the mean measured noise level at those END-silent
locations, thereby indicating the degree to which genuine exposure is omitted in the
official maps.

Overall and Distance-Dependent Patterns

The aggregated statistics (Table 6.15) reveal a consistent underestimation pattern in
the END data relative to the measured sound levels. Across all 13 139 measurement
points, the overall MAE is 7.4 dBA and the mean bias —4.8 dBA, implying that END
maps typically predict lower values than those recorded on-site. Within the immediate



road corridor (< 90 m from major roads), accuracy is somewhat higher, with MAE =
7.0 dBA and bias = —4.3 dBA, while the silent-rate remains minimal (1.4%),
confirming that END performs reasonably within its intended transport-network
domain.

However, model performance deteriorates rapidly with increasing distance from roads.
Between 90 and 150 m, the MAE almost doubles (15.8 dBA), and beyond 150 m,
errors exceed 17 dBA with a silent-rate approaching 30 %. In these peripheral zones,
END values often default to zero due to the absence of defined traffic-source
contributions. Yet, the corresponding measured noise levels at those “silent” locations
remain between 47 and 52 dBA—demonstrating that these areas are not acoustically
quiet but simply fall outside the END model’s propagation envelope.

These results quantitatively confirm the visual impression that the END dataset
captures noise patterns reliably only along major transportation corridors, while
rapidly losing fidelity in residential interiors and non-road environments. The
distance-binned relationship between error magnitude and proximity to roads exhibits
a clear monotonic increase in both MAE and silent-rate, highlighting the deterministic
cutoff behavior intrinsic to the END modelling procedure.

Table 6.15 Comparison between END and Measured Noise Levels by Road-Distance
Zone

Zero-Gap
Distance band N MAE (dBA) ]f)izz)(](%\lg)_ Sﬂe?(;)l)‘ate E(gl';s:@%))
(dBA)
.~ Allpoints | 13139 | 744 | 481 | 24 5271
<90 m (fromroads)| 12587 | 7.05 | 434 | 14 | 5555 |
~90-150m | 272 | 1578 | -1464 | 206 | 5174 |
| >150m 280 1719 | -16.63 | 293 | 4724 |

Functional and Land-Use Differences

When the comparison is stratified by the Urban Atlas 2012 land-use classification, the
underestimation pattern displays distinct functional variation (Table 6.16). END
values align most closely with measurements in residential fabrics, where MAE
averages 7.2 dBA and bias =~ —4.4 dBA. Errors are slightly larger in industrial,
commercial, and public zones (MAE = 8.0 dBA; bias = —6.5 dBA), suggesting that
END partially captures but still underestimates acoustic emissions associated with
mixed-use and service areas.

By contrast, discrepancies become extreme in port areas, where MAE exceeds 16
dBA and bias = —14.8 dBA, with silent-rate > 13 %. Measured levels at END-silent
port cells reach =~ 63 dBA—an exposure intensity typical of maritime operations and
heavy-vehicle activity that lies entirely outside the END model’s road-traffic scope.
Green urban areas also exhibit moderate but systematic underestimation (MAE = 7.3
dBA; bias = —5.5 dBA), reflecting the exclusion of diffuse background sources such
as human recreation and adjacent road spillover.



These results collectively indicate that while END maps reproduce transport-
dominated noise patterns with acceptable accuracy, they systematically truncate
environmental exposure in functionally diverse contexts. The omission is especially
pronounced in industrial, port, and mixed-use zones, where non-road sources are
substantial contributors to the urban soundscape.

Table 6.16 END vs Measured Noise by Land-Use Category (Urban Atlas 2012)

. Silent Rate | Zero-Ga
LULC Category Num MAE Bias (%) (dBA) P
| Residential fabric 6794 | 718 | 438 | 11 | 5593 |
Industrial / Commercial / Public 1536 804 —648 25 | 5509
‘ Green urban areas H 1330 H 7.26 H =5.51 H 3.7 H 4724 ‘
| Port arcas 119 | 1615 | 1480 | 135 | 62.64 |
| Other / Unknown 280 | 754 | 600 | 32 | 6074 |

Taken together, these quantitative results demonstrate that the END framework
remains effective for its original policy purpose—mapping traffic-noise exposure
along major roads—but provides an incomplete description of the broader urban
acoustic environment. The deterministic modelling process, which ceases energy
propagation beyond defined transport networks, inherently yields artificially low or
null values in off-road areas. The measured data reveal that these supposedly “quiet”
locations typically sustain moderate sound levels between 45 and 60 dBA, driven by
diverse non-traffic sources such as industrial machinery, port logistics, air-handling
units, or continuous human presence.

This analysis underscores a crucial methodological limitation: END captures the
geometry of transport emissions but not the complexity of real soundscapes. By
contrast, the data-driven predictive framework developed in this study is designed to
integrate multisource and morphological determinants of noise propagation,
producing a spatially continuous and environmentally realistic characterization of
exposure. The next subsection therefore evaluates whether these model-based
predictions achieve a more balanced agreement with both END and measured noise
levels across varying urban contexts.

END vs Predicted Maps

Building on the baseline validation against in-situ measurements, the second stage of
analysis compares the predicted noise maps generated by the proposed dual-branch
GNN framework with the official END LAeq,16h maps. This comparison aims to
determine whether the data-driven approach successfully preserves the realistic
magnitude of traffic-related exposure within the transport corridors, while mitigating
the abrupt underrepresentation of noise levels in non-road and mixed-use areas.

The results presented in Table 6.17 indicate a clear improvement in the spatial
coherence and realism of the predicted maps relative to END. Across all 13 139
spatial units, the average absolute difference between the two datasets (MAE) is 6.2
dBA, with a mean A(Pred — END) of +4.1 dBA, confirming that the model generally
predicts higher—yet environmentally plausible—values. Agreement within £5 dBA



reaches 55.8 %, which is consistent with expected deviations between datasets based
on fundamentally different modelling philosophies.

Within the road-adjacent corridor (< 90 m), differences are modest (MAE =~ 5.8 dBA;
A =+43.7 dBA), and the agreement rate (56 %) remains comparable to the global mean.
This outcome suggests that the predictive framework maintains fidelity to the traffic-
dominated zones already well captured by END. However, discrepancies increase
markedly beyond the main transport bands: between 90 and 150 m, the mean
difference rises to 14 dBA, and beyond 150 m, it exceeds 16 dBA. These patterns
mirror the earlier END-vs-measurement results, indicating that the predictive model
effectively restores noise continuity in zones where END systematically defaults to
silence. In practical terms, the GNN-based maps predict moderate exposure values in
these transitional and off-road areas, aligning with realistic background levels rather
than the zero values found in END.

Table 6.17 Quantitative Comparison between Predicted and END Noise Levels by
Road Distance

Num MeanA(Pred—END) | MAE  Agreement(|A|<5dB) Group

13139 4.132 6.204 0.558 All points

12587 3.652 5.792 0.562 On-road <90m
272 14.054 14.958 0.445 90-150m ring
280 16.075 16.258 0.511 Off-road >150m

When disaggregated by Urban Atlas 2012 functional categories (Table 6.18), the
differences exhibit a clear dependence on land-use context. The most consistent
correspondence with END occurs in residential fabrics, where the mean A is +3.8
dBA and MAE = 5.7 dBA. In industrial, commercial, and public areas, discrepancies
rise to +6.0 dBA (MAE = 7.3 dBA), while in green urban zones, they remain
moderate (+4.9 dBA). By contrast, port areas again stand out as the most divergent
class, with a mean A of +13.8 dBA and MAE = 14.8 dBA, reflecting the END
model’s omission of maritime, mechanical, and loading-dock activities that
substantially elevate ambient sound. The relatively low agreement rate in these high-
intensity functional zones (= 30 %) highlights the insufficiency of traffic-only
simulations for industrial and mixed urban morphologies.

Table 6.18 END—Prediction Differences by Land-Use Category (Urban Atlas 2012)

Num MeanA(Pred—END) = MAE | Agreement(|A|[<5dB) Group
1330 4.935 6.262 0.586 Green urban areas
1536 6.022 7.335 0.443 Industrial & Commercial & Public
280 3.811 6.209 0.55 Other
119 13.765 14.783 0.303 Port areas
6794 3.782 5.682 0.566 Residential fabric
521 14.738 15.256 0.284 Sports & leisure facilities
2542 0.724 4.453 0.664 Transport corridors
17 32.728 32.728 0.059 Wetlands & Water




Across all distance and functional categories, the direction and magnitude of
deviations between predicted and END noise levels are consistent with the empirical
measurement evidence presented earlier. In regions where END underestimates
exposure—particularly beyond 90 m from roads and in non-residential functional
areas—the predicted maps yield higher, more realistic values that align with actual
field observations. Conversely, in core transport corridors where END performs
reliably, the two datasets remain largely congruent. This indicates that the proposed
model does not over-amplify traffic noise but rather complements END by
reconstructing the missing off-network exposure field.

From an applied standpoint, this outcome suggests that combining END’s
deterministic modelling with data-driven spatial prediction could enhance urban noise
assessments. For instance, policymakers could continue to rely on END for
standardized regulatory mapping of traffic emissions, while using predictive
frameworks like the present one to estimate total environmental noise exposure—
including industrial and socio-urban contributions—in areas where measurement
networks are absent.

Concluding Remarks

In summary, the quantitative evaluation demonstrates that the predicted maps
produced by the dual-branch GNN framework maintain strong coherence with the
official END outputs in transport-dominated zones while substantially improving the
representation of exposure in non-road and mixed-use environments. The systematic
positive bias of 4-6 dBA relative to END does not reflect overprediction but rather
the recovery of real-world background components that deterministic traffic models
neglect. These components—stemming from industrial activities, port logistics,
building operations, and social dynamics—constitute an integral part of the actual
urban acoustic field.

The spatially consistent direction of deviation across all distance bands and land-use
categories indicates that the proposed data-driven model generalizes underlying
acoustic relationships beyond the explicit transport network. In this sense, the
predictive framework effectively bridges the gap between source-based emission
mapping (as represented by END) and exposure-based environmental realism,
providing a more continuous and physically plausible representation of urban
soundscapes.

Building upon these findings, the next section performs a city-level and LULC-driven
comparative analysis to examine how the magnitude and structure of these
discrepancies vary across different urban morphologies. This analysis further explores
whether the improved exposure continuity observed in Southampton also manifests
consistently across other UK cities, thereby providing insights into the spatial
transferability and functional robustness of the proposed framework.

6.3.3.3 City-Level Local Comparisons with LULC and END in target cities



To further elucidate the environmental information encoded in the predicted noise
maps, this section presents a set of representative local case studies that compare the
model outputs with both European Environmental Noise Directive (END) LAeq,16h
traffic noise maps and urban land-use/land-cover (LULC) data derived from European
Environment Agency Urban Atlas 2012. The analytical motivation parallels that of
Section 6.3.3.2: while END maps effectively capture high exposure along major
transport corridors, their design does not account for non-traffic sources such as port
operations, commercial activities, or industrial emissions, nor do they represent the
attenuating effects of vegetation and open-space buffers. By integrating three
complementary spatial layers—predicted noise, END, and LULC—we can visually
and contextually assess the degree to which the model has learned to represent both
core traffic noise and secondary or modulating environmental factors.

The selection of subregions for this analysis follows a targeted sampling strategy.
Areas were chosen to represent distinct morphological and functional typologies—
dense urban cores, industrial-port complexes, mixed-use residential neighborhoods,
and vegetated or peri-urban fringe zones. This allows us to probe whether the model’s
predictions simply mirror traffic density or whether they encode a richer spatial signal
consistent with heterogeneous acoustic sources and propagation mechanisms. In the
case of Cardiff, which lacks END LAeq,16h coverage, the comparison is conducted
between predicted noise maps and LULC layers only.

The results highlight clear, interpretable spatial structures. In Cardiff (Figure 6.8), for
instance, a strong exposure gradient emerges from the southeastern bayfront and city
center toward the northwestern green fringe, reflecting both morphological and
functional land-use transitions. Within the Civic Centre and Bayfront area (Figure
6.8Db), the predicted high-exposure zone coincides with dense continuous urban fabric ,
industrial and commercial land, and port areas, reflecting compound noise
contributions from multimodal transport hubs, port operations, and central business
activities. In contrast, the Wenallt and Northern Hills (Figure 6.8c) subregion shows
extensive low-exposure patterns corresponding to green urban areas, pastures, forests,
and arable land, highlighting the model’s ability to encode background attenuation in
vegetated, low-density landscapes—patterns that are absent from END’s binary, road-
focused representation in other cities.
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Figure 6.8 Predicted noise map for Cardiff and selected sub-regions, (a) Noise
prediction map for Cardiff (b) Civic centre with high noise exposure (c) Wenallt and
Northern Hills with low noise exposure

To further elucidate the environmental information encoded in the predicted noise
maps, this section presents a set of representative local case studies that compare the
model outputs with both END LAeq,16h traffic noise maps and urban land-use/land-
cover (LULC) data derived from European Environment Agency Urban Atlas 2012.
The analytical motivation parallels that of Section 6.3.3.2: while END maps
effectively capture high exposure along major transport corridors, their design does
not account for non-traffic sources such as port operations, commercial activities, or
industrial emissions, nor do they represent the attenuating effects of vegetation and
open-space buffers. By integrating three complementary spatial layers—predicted
noise, END, and LULC—we can visually and contextually assess the degree to which
the model has learned to represent both core traffic noise and secondary or
modulating environmental factors.

The selection of subregions for this analysis follows a targeted sampling strategy.
Areas were chosen to represent distinct morphological and functional typologies—
dense urban cores, industrial-port complexes, mixed-use residential neighborhoods,
and vegetated or peri-urban fringe zones. This allows us to probe whether the model’s
predictions simply mirror traffic density or whether they encode a richer spatial signal
consistent with heterogeneous acoustic sources and propagation mechanisms. In the
case of Cardiff, which lacks END LAeq,16h coverage, the comparison is conducted
between predicted noise maps and LULC layers only.

The results highlight clear, interpretable spatial structures. In Cardiff, for instance, a
strong exposure gradient emerges from the southeastern bayfront and city center
toward the northwestern green fringe, reflecting both morphological and functional
land-use transitions. Within the Civic Centre and Bayfront area, the predicted high-
exposure zone coincides with dense continuous urban fabric, industrial and
commercial land, and port areas, reflecting compound noise contributions from
multimodal transport hubs, port operations, and central business activities. In contrast,
the Wenallt and Northern Hills subregion shows extensive low-exposure patterns
corresponding to green urban areas, pastures, forests, and arable land, highlighting the
model’s ability to encode background attenuation in vegetated, low-density
landscapes—patterns that are absent from END’s binary, road-focused representation
in other cities.
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Figure 6.9 Predicted noise map for Nottingham and selected sub-regions; (a) Noise
prediction map for Nottingham (b) City Core around Old Market Square and
Nottingham Station

In Portsmouth (Figure 6.10), the predictive framework demonstrates a particularly
pronounced clustering of high-noise exposure across the Portsmouth and Southsea
subregion, reflecting the city’s compact urban morphology, extensive coastal logistics
activities, and mixed-use development patterns. In the predicted maps, large
contiguous zones of elevated noise appear along the Western Commercial Road
corridor and the east-central coastal area encompassing Milton and Eastney, forming a
continuous high-exposure belt that extends beyond the immediate vicinity of major
roads. This spatial configuration corresponds closely with the underlying land-use
composition—dominated by industrial and commercial parcels and extensive port
areas—as represented in the European Environment Agency Urban Atlas 2012 dataset.

When juxtaposed with theEND LAeq,16h maps, the model outputs show both
alignment and extension. High-exposure zones near major transport arteries are
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captured in both datasets, indicating that the model retains sensitivity to traffic-related
emissions in its core domain. However, the END maps systematically underrepresent
high-exposure clusters within port and logistics zones, as these are not included in its
road-based emission modeling framework. By contrast, the predicted map effectively
captures additional industrial and maritime acoustic contributions, resulting in a more
spatially complete and environmentally plausible exposure field.

This pattern underscores the added value of LULC-informed feature design within the
dual-branch GNN architecture. By integrating both local and contextual land-use
signals, the model can reflect non-traffic noise sources that are structurally embedded
in the urban fabric of port cities like Portsmouth. This leads to a spatially continuous
high-exposure pattern, consistent with the city’s functional morphology and coastal
economic activities—an aspect that END maps alone fail to capture.
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Figure 6.10 Predicted noise map for Portsmouth and selected sub-regions; (a) Noise
prediction map for Portsmouth (b) Western Southsea Area
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In Liverpool (Figure 6.11), the predicted noise map exhibits a broad alignment with
END LAeq,16h maps along major transportation corridors, notably the M62 and
AS5047, which traverse the urban core from east to west. However, beyond this traffic-
dominated baseline, the model reveals a large, continuous cluster of high-noise
exposure extending from Vauxhall through Edge Hill to Old Swan—an area
characterized by dense road networks and heterogeneous land-use compositions. This
zone contains a mixture of high-density urban fabric, industrial and commercial
parcels, and interspersed patches of green open space, which together create a
complex acoustic environment that is only partially represented in END.

The model successfully captures the clustering structure of high exposure along major
roads and intersections, which is consistent with expected traffic emissions. At the
same time, the degree of attenuation within and around urban green areas varies as a
function of their spatial extent: smaller, fragmented green spaces produce limited
mitigation effects, whereas larger vegetated areas exert more substantial noise
damping. This nuanced representation contrasts sharply with END’s binary treatment
of road-adjacent exposure, which does not differentiate between these local landscape
effects.
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Figure 6.11 Predicted noise map for Liverpool and selected sub-regions, (a) Noise
prediction map for Liverpool (b) Areas between Lime Street Station and the
Knowledge Quarter

Collectively, the Liverpool case reinforces the broader pattern observed across all four
END-covered cities. The dual-branch GNN model aligns closely with END in
transportation corridors, ensuring baseline consistency, while extending coverage to
non-traffic sources and modulating land-use factors, resulting in a more continuous
and environmentally plausible acoustic landscape. This capability is particularly
evident in morphologically complex urban regions where traffic, land use, and
environmental buffers interact in non-linear ways.

6.3.4 Functional Group-Level Consistency across Cities

A foundational premise of this research is that urban land use categories, as defined
by the Urban Atlas 2012, provide reliable and consistent proxies for understanding
both noise generation and mitigation patterns across diverse urban environments.
Under this assumption, a model designed for cross-city generalization should be
capable of producing comparable predicted noise distributions within similar land use
categories, even when applied to cities for which no local noise measurements are
available. To empirically assess this hypothesis, the study implemented a
comprehensive land-use-stratified evaluation of the predicted noise distributions
across the five study cities: Southampton, Cardiff, Portsmouth, Nottingham, and
Liverpool.

The strength of this evaluation rests on the robust feature engineering framework
outlined earlier in Section 6.2.4.4. From an initial set of 3,780 candidate variables
derived from multispectral imagery and land use indicators, a carefully filtered and
ranked feature space of 169 final input variables was constructed—84 feeding the
local branch and 85 feeding the background branch of the dual-branch GNN
architecture. Crucially, although the feature selection was conducted on the labeled
reference city (Southampton), it was informed by the full cross-city feature set,
ensuring that the retained predictors held meaningful and generalizable patterns across
urban domains. This compact yet semantically rich feature space enabled the model to
operate efficiently while maintaining high generalization capacity.

Direct evaluation of prediction accuracy in target cities was not possible due to the
lack of ground-truth noise data. Therefore, an indirect but theoretically grounded
validation approach was employed. Specifically, the predicted noise distributions
were compared across cities within each land use type. The logic is straightforward: if
the model has truly internalized structurally meaningful relationships between urban
form and noise exposure, it should produce comparable prediction patterns across
semantically equivalent land use categories, regardless of geographic context. This
type of latent consistency check aligns with well-established evaluation practices in
domain adaptation research, where internal distributional coherence is often used as a
proxy for generalization success.



To structure this analysis, the study implemented three progressively aggregated
evaluation layers. At the most detailed level, fine-grained boxplots were generated
comparing predicted noise distributions for the main Urban Atlas land use codes
across all cities. Considering that certain land use categories—such as “Motorways
and Expressways” (12210)—have very limited sample sizes and thus lack strong
statistical meaning, their results were interpreted with caution rather than excluded
outright, recognizing their conceptual importance in the urban acoustic landscape. At
an intermediate level, the analysis focused on the subset of urban fabric classes,
visualizing their predicted noise gradients through mean-trend plots that traced the
relationship between predicted noise levels and urban density gradients. Finally, at the
highest aggregation, all land use categories were grouped into four semantically
meaningful functional groups—strong sources, moderate sources, moderate
mitigation, and strong mitigation—and their cross-city distributions were visualized
and compared.

This multilayered evaluation design offers a robust triangulation of the model’s
generalization capacity, illuminating not only whether the predicted distributions align
statistically across cities but also whether they preserve meaningful structural
relationships between urban morphology and environmental noise exposure.

Urban Fabric Classes: Capturing Gradual Transitions in Predicted Noise

The Urban Atlas 2012 defines a systematic typology of urban fabric classes, ranging
from highly compact continuous urban fabric (code 11100) to progressively more
dispersed and lower-density zones, such as discontinuous dense (11210), medium-
density (11220), and low-density (11230) urban fabrics. These classes reflect
fundamental gradients of built form, density, and infrastructure intensity — factors
long known to influence environmental noise propagation.

To assess the model’s sensitivity to this morphological gradient, the study extracted
all grid cells associated with these four key urban fabric classes across all five study
cities. For each class, the predicted mean noise levels were computed and aggregated
at the city level. These values were then visualized through a mean-trend plot (Figure
6.12), which captures not only the average predicted exposure but also the underlying
distributional structure within each city and across the urban density gradient.



Predicted Noise Trend across Urban Fabric Types
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Figure 6.12 Predicted Noise Trend across Urban Fabric Types

The results reveal a strikingly consistent monotonic decline in predicted noise levels
across increasing urban sparsity. For instance, across all five cities, continuous urban
fabric areas (11100) show the highest predicted noise means, reflecting the dense
concentration of traffic, narrow streets, and reflective surfaces characteristic of such
zones. As the analysis progresses to discontinuous dense (11210) and medium-density
(11220) classes, the predicted noise levels steadily decrease, culminating in the lowest
predictions for discontinuous low-density areas (11230), where larger lot sizes, more
vegetation, and lower traffic volumes provide natural attenuation.

Importantly, this pattern holds across geographically and morphologically diverse
cities. For example, in the dense historic cores of Southampton and Liverpool, as well
as in the more dispersed suburban areas of Cardiff and Nottingham, the model
predicts noise levels within a narrow 3 -4 dBA range for equivalent urban fabric
classes. This consistency is particularly significant given that no target-city noise
labels were used during training, underscoring the robustness of the cross-city
generalization.

The ability to accurately reflect such gradual and systematic environmental gradients
speaks directly to the strengths of the dual-branch GNN design. The local branch
effectively captures fine-scale spatial heterogeneity (such as local road adjacency and
block-scale morphology), while the background branch contextualizes this
information against broader urban patterns (such as proximity to green buffers or
industrial zones). Together, these components allow the model to distinguish nuanced
acoustic differences along the urban density continuum, aligning closely with findings
in environmental acoustics research, where urban canyon effects and density have
been shown to amplify or attenuate noise exposure.The inclusion of this urban
gradient analysis complements the boxplot-based analysis by adding a continuous
structural perspective. The observed pattern aligns with the environmental acoustic
literature, where built-up density and urban canyon effects are positively associated
with increased noise exposure.



LULC-Type Specific Predicted Noise Distributions

Beyond the urban fabric gradient, it is essential to examine how the model performs
across the full range of land use and land cover (LULC) categories defined in the
Urban Atlas 2012. This analysis probes whether the predicted noise values remain
consistent across cities within the same LULC type, which serves as a powerful
indirect indicator of generalization in the absence of ground truth.

For this purpose, predicted mean noise values were spatially joined to LULC
polygons using GIS-based overlay analysis. This procedure generated a detailed
matrix of predicted noise distributions across 24 distinct Urban Atlas LULC classes
for each of the five cities. The aggregated results were visualized as a series of
comparative boxplots (Figure 6.13), offering a comprehensive, category-level
perspective on cross-city consistency.
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Figure 6.13 LULC-Type Specific Predicted Noise Distributions; (a) Continuous
Urban fabric; (b) Discontinuous Dense Urban fabric; (c) Discontinuous Medium
Density Urban fabric, (d) Discontinuous Low Density Urban fabric,; (e) Industrial,
commercial, public, military and private units; (f) Fast transit roads and associated
land; (g) Other roads and associated land; (h) Railways and associated land; (i)
Green Urban areas, (j) Sports and leisure facilities; (k) Pastures, (l) Forests

Several notable patterns emerge from this evaluation. First, built-up areas—including
continuous urban fabric (11100), discontinuous dense (11210), and
industrial/commercial zones (12100)—show strong alignment of predicted noise
medians across cities. These areas consistently register higher noise values, reflecting
the combined influence of traffic, high-density infrastructure, and minimal green
buffering. The clustering of predictions within narrow interquartile ranges further
indicates that the model is robustly capturing domain-invariant acoustic signals
associated with intensive urban functions.

In contrast, green and open space classes, such as green urban areas (14100), sports
facilities (14200), and pastures (23000), exhibit lower predicted noise levels but with
wider spreads. This variation is expected, as such classes can encompass a broad
spectrum of spatial configurations, from small urban parks to large semi-natural
expanses, each with differing noise attenuation properties. Interestingly, forested areas
(31000) and wetlands (40000) show even greater prediction variability, highlighting
the challenges inherent in standardizing natural land cover effects on noise
propagation across cities.

Additionally, it is important to note that some LULC classes were underrepresented or
absent in specific cities, such as fast transit roads (12210) in Nottingham, leading to
either missing or highly variable boxplots. This underscores the importance of
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ensuring adequate area-weighted representation when evaluating cross-city
consistency.

Overall, despite these local variations, the general alignment of interquartile ranges
and medians across most LULC types strongly suggests that the model has
internalized stable, generalizable associations between environmental attributes and
predicted acoustic outcomes. This result is particularly compelling given the use of a
highly compressed feature space (171 selected variables, reduced from over 8,000
candidates), emphasizing that careful feature selection and robust graph-based
learning can yield reliable generalization across diverse urban settings.

Cross-City Patterns in Functional LULC Groups

Building upon the detailed LULC-class analysis, the study further aggregated all 24
Urban Atlas land cover classes into four semantically meaningful functional groups:
strong noise sources, moderate noise sources, moderate noise mitigation zones, and
strong noise mitigation zones. This aggregation, based on the logic established in
Section 6.2.4.3, offers a generalized lens through which to assess cross-city
consistency of predicted noise outcomes at a functionally interpretable level.

Strong noise sources include major transport infrastructures such as highways,
railways, airports, and extractive industrial areas, while moderate noise sources
encompass secondary roads and mixed-use industrial-commercial zones. Moderate
mitigation areas consist of parks, recreational green spaces, and pastures, and strong
mitigation zones comprise forests, wetlands, and extensive arable lands. Grouping at
this functional level is essential for policy relevance, as it aligns with the typical urban
planning categories used in environmental noise regulation and mitigation strategies.

The predicted noise distributions for these functional groups were extracted across all
five cities and visualized using grouped boxplots (Figure 6.13). The results reveal
several key patterns. Strong noise source zones consistently display higher median
predicted noise levels, with narrow interquartile ranges across cities. This stability
underscores the robustness of the model’s learned representations, confirming that it
effectively generalizes the acoustic signatures associated with intense transport and
industrial activities.
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Figure 6.14 Predicted Noise across Functional Land Use Groups

Moderate noise source areas also show stable cross-city predictions, though with
slightly broader variability. This may reflect real-world differences in local traffic
conditions, industrial land uses, or built-environment configurations across the cities
studied. In contrast, moderate and strong mitigation zones exhibit lower predicted
noise medians but wider spreads, a finding that highlights the complex interactions
between land cover, vegetation density, topography, and ambient sound attenuation.

Notably, some variation is observed between cities, particularly Cardiff and
Southampton, where broader predicted noise distributions emerge within mitigation
groups. This variation may be linked to the cities’ extensive semi-natural landscapes,
coastal buffers, and seasonal vegetation dynamics, which introduce greater
heterogeneity in noise propagation effects.

Crucially, the general alignment of predictions within each functional group across
cities supports the hypothesis that the model’s generalization capacity is grounded in
structurally and semantically transferable environmental features. The consistency
across groups, despite the lack of ground truth in target domains, provides strong
evidence for the effectiveness of the dual-branch GNN architecture, the selected
feature set, and the multi-domain adversarial training strategy.

6.3.5 Embedding-Based Assessment of Feature Generalization Across
Cities

Rationale and Methodology

To explore whether the dual-branch GNN captures transferable structural information

across heterogeneous urban contexts, this study employed Uniform Manifold
Approximation and Projection (UMAP) to visualize high-dimensional model



representations in a shared low-dimensional latent space. UMAP is particularly
suitable for preserving both global and local non-linear structures in high-dimensional
data and has been widely used as a diagnostic tool for representation learning and
domain adaptation (McInnes et al., 2018).

Specifically, the 64-dimensional output features from the final fusion layer of the
trained model were extracted for all 30 m grid cells across the five study cities and
projected into a two-dimensional latent space. It is important to note that this
embedding-based analysis focuses on the internal structure of the learned
representation space, not on direct predictive accuracy. Its role is to provide an
interpretable geometric view of how the model organizes different urban
morphological contexts after domain-adversarial training.

The conceptual expectation is that grid cells associated with functionally similar
urban forms—such as arterial roads, dense residential blocks, or vegetated zones—
should occupy similar regions of the latent space, regardless of their city of origin.
Such a pattern would indicate that the model has internalized transferable structure-
based representations, rather than memorizing city-specific spectral signatures.

UMAP Results by City and Combined Analysis

UMAP embeddings were first generated for each city individually, with predicted
mean dBA values overlaid as color gradients. As shown in Figure 6.15a—e, the
embeddings display continuous and coherent gradients from high to low predicted
noise levels. This pattern is observed across Southampton, Portsmouth, Nottingham,
Liverpool, and Cardiff. The smooth transitions in these projections suggest that the
learned features are organized according to structural-acoustic relationships rather
than arbitrary or noisy latent partitions.

A second visualization pooled all cities into a shared UMAP space (Figure 6.16a-b).
Color-coding by city reveals extensive overlap and interleaving between domains,
with no sharp clustering by city label. Kernel density contours further illustrate high
degrees of convergence in the dense core regions of the embedding. This structural
overlap provides qualitative evidence that the model learns a common latent
organization of urban noise-relevant morphology across domains..
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Figure 6.15 UMAP feature projections for individual cities (a - e): Southampton,
Portsmouth, Nottingham, Liverpool, and Cardiff. Each point corresponds to a 30 m
grid cell, and color indicates the predicted LAeq value.

The continuous color gradients and smooth internal transitions within each city
suggest that the learned 64-dimensional fused features are structurally organized in
relation to acoustic exposure patterns, rather than being fragmented or dominated by
local noise artifacts. These visualizations provide a qualitative view of feature
organization, complementing the quantitative transferability analyses in Section 6.3.6.

To further explore the structural alignment of learned representations across domains,
we constructed a combined UMAP embedding by pooling samples from all five cities
into a shared latent space. As shown in Figure 6.16a, each point is color-coded by city
label. The resulting visualization exhibits extensive overlap and interleaving between
cities, with no clear segregation by domain. Rather than indicating predictive
equivalence, this pattern suggests that the model tends to organize morphologically
similar urban contexts into comparable regions of the embedding, irrespective of their
geographic origin.

To provide a clearer view of domain distributions, kernel density contours were

generated for each city in the same UMAP space (Figure 6.16b). These contours show
substantial spatial convergence, particularly in the dense core regions of the
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embedding, where urban structures such as major transport corridors and dense built-
up zones are most prevalent. This convergence indicates that the latent feature space
is shaped by shared morphological patterns rather than city-specific idiosyncrasies.

Importantly, this structural alignment should be interpreted as a qualitative indicator
of potential feature transferability, not as direct evidence of predictive consistency.
The quantitative evaluation of cross-domain behavior—such as functional exposure
patterns, road-distance attenuation, and distributional stability—is presented in
Section 6.3.6, which complements and substantiates the structural insights derived
from this embedding analysis.

UMAP Projection of Noise Feature Embeddings (City-wise)
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(a) Combined UMAP embedding across all five cities, color-coded by domain.
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(b) Kernel density contour overlays of UMAP embeddings by city, indicating inter-
domain feature overlap
Figure 6.16 Combined UMAP embedding & Kernel density contour overlays across
all five cities. (a) Combined UMAP embedding across all five cities, color-coded by

city label; (b) Kernel density contour overlays by city.

The overlapping contours indicate substantial convergence of different domains in the
latent feature space, suggesting that morphologically similar regions across cities are
mapped to similar parts of the embedding. This structural alignment does not imply
predictive equivalence, but rather reflects the model’s ability to encode shared urban
morphological patterns. These results serve as a qualitative complement to the
structured consistency and stability tests presented in Section 6.3.6.

Interpretation and Complementarity with Quantitative Analyses

The UMAP results offer a structural perspective on generalization: they illustrate how
the dual-branch GNN aligns morphologically similar regions in a shared
representation space, even when absolute noise levels differ between cities. However,
these embedding patterns should not be interpreted as direct proof of predictive
equivalence or domain invariance.

Rather, they serve as a diagnostic complement to the subsequent quantitative
validation framework presented in Section 6.3.6. While UMAP visualizations capture
the geometry and alignment of learned representations, the consistency analyses in
6.3.6 (e.g., functional exposure ordering, road-distance attenuation, END alignment,
pseudo-label coherence, and distributional stability) provide statistical and
mechanistic evidence for cross-domain transferability. Together, these two
components form a complementary assessment strategy: UMAP identifies whether
domains are embedded in a common latent space, whereas 6.3.6 evaluates whether the
model’s behavior in that space is stable and interpretable.
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6.3.6 Cross-Domain Consistency and Sanity Validation

While Section 6.3.5 provided a qualitative visualization of how different urban
domains align within a shared latent representation space, the present section turns to
a quantitative validation of whether these aligned structures behave consistently
across functional, spatial, regulatory, and distributional dimensions.

While the preceding analyses have demonstrated that the proposed dual-branch GNN
framework can accurately predict urban noise levels and generalize to unseen target
domains, a crucial question remains: are the learned neighborhood-interaction
mechanisms and modulating factors statistically consistent across heterogeneous
urban contexts? Addressing this question is essential to establish the methodological
soundness of the framework, particularly because the model’s design in Section 6.2.8
emphasizes not only spatial proximity but also the heterogeneous influence of
environmental variables as learned modulation factors.

Rather than introducing additional experiments or retraining procedures, this section
provides a structured cross-domain consistency validation—a series of quantitative
analyses that collectively serve as an indirect sanity check for the model’s internal
mechanisms. The focus shifts from raw predictive performance to structural
robustness and relational stability, assessing whether the same functional, geometric,
and distributional patterns observed in the reference city persist across the target
domains.

Five complementary consistency tests are conducted. First, LULC-wise functional
consistency evaluates whether land-use-related exposure hierarchies (e.g., port >
industrial > residential > green areas) remain stable across cities. Second, road-
distance attenuation consistency examines whether noise decay profiles with respect
to transport corridors follow a uniform geometric trend. Third, alignment with END
maps assesses the model’s ability to reproduce traffic-related exposure while
plausibly completing off-road regions where END models tend to underestimate.
Fourth, pseudo-label calibration analyzes the directional agreement between predicted
and weakly supervised pseudo-labels in target cities, testing whether errors
systematically decline with label confidence. Finally, distributional stability quantifies
whether the overall scale and spread of predicted noise intensities remain comparable
across domains after quantile normalization.

Together, these tests form a minimal yet comprehensive validation framework
designed to verify the statistical coherence of the learned representations. Consistent
outcomes across these dimensions would indicate that the model’s modulating
parameters operate in a stable and interpretable manner, providing a data-driven
counterpart to physical propagation reasoning. In doing so, this section directly
complements the methodological assumptions presented in Section 6.2.8, ensuring
that the dual-branch GNN’s design achieves both cross-domain transferability and
sanity of environmental interpretation.

6.3.6.1 Functional Consistency across Land-Use Types



The ability to maintain stable functional relationships between land use and predicted
noise exposure across different cities is a critical indicator of the model’s
generalization capability. This section evaluates the cross-domain functional
consistency of predicted LAeq by examining land-use—level noise exposure patterns
derived from Urban Atlas 2012 (UA2012) data. Specifically, the analysis assesses
whether the rank order of functional land-use classes with respect to predicted noise
exposure is preserved across cities, despite differences in absolute levels.

To evaluate this, rank-based metrics were adopted. Spearman’s rank correlation
coefficient (p) was employed to assess monotonic agreement between pairs of cities,
making it robust to differences in absolute magnitude and focusing on relative
functional ordering. Kendall’s coefficient of concordance (/) was used to evaluate
overall consistency across all five cities simultaneously, offering a global measure of
ranking stability. These metrics are particularly appropriate for cross-domain
assessments, as they provide insight into the structural transferability of functional
exposure patterns without being confounded by city-specific noise baselines.

Predicted values were aggregated into six land-use groups derived from UA2012
codes: Road (12210-12230), Industrial (12100), Port (12300), Residential (11100,
11210-11240), Green (14100, 14200), and Other (all remaining categories including
semi-natural areas, water bodies, and rail/airport zones). This aggregation balances
interpretability and sample robustness, ensuring consistent cross-city comparisons.

Across the five study cities, the overall rank ordering of exposure levels is highly
consistent (Table 6.19). Road and Industrial zones exhibit the highest predicted levels,
ranging between approximately 59—63 dBA, followed by Residential (57-60 dBA)
and Green (53-59 dBA). Port areas in the three coastal cities (Southampton,
Portsmouth, Liverpool) are consistently high (60—63 dBA), reflecting their role as
strong noise emission sources. Nottingham lacks port land-use categories, explaining
the NaN value for that group. Cardiff shows systematically lower predicted noise
levels across almost all categories, including Road (60.9 dBA) and Port (54.2 dBA).
This pattern likely reflects broader urban morphological and land-cover
characteristics rather than a model anomaly. As noted in Table 6.1, Cardift exhibits a
significantly lower proportion of built-up area (0.75) than the other cities (ranging
between 0.85 and 0.97) and contains extensive tracts of arable land (UA2012 class
21000). These characteristics reduce the intensity and continuity of urban noise
sources, especially those related to transportation and industrial corridors.

Table 6.19 Mean predicted LAeq (dBA) by UA2012 functional land-use group across
1ve cities

Iglg)l:lﬁ Cardiff Liverpool Nottingham | Portsmouth | Southampton
Green 54.8563 55.9622 55.7100 58.6820 53.8748
Industrial 60.5534 61.3878 60.6407 62.4166 59.9406
Other 49.1855 59.2843 57.7631 53.4552 55.8675
Port 54.2074 60.6192 NaN 63.5144 60.8632
Residential 57.5773 59.6793 58.7781 58.9456 57.4804
Road 60.9380 63.4371 62.8313 62.8255 61.7443




The pairwise Spearman p values confirm the strength of functional consistency (Table
6.20). Most city pairs exhibit correlations between 0.77 and 1.00, indicating high rank
agreement. Cardiff’s correlations are notably lower (e.g., p = 0.43 with Portsmouth
and 0.54 with Southampton), which is consistent with its distinctive urban fabric.
Across all five cities, the Kendall’s W value reaches 0.727, indicating a statistically
strong and meaningful concordance in functional ordering. This level of agreement
demonstrates that the dual-branch GNN effectively captures land-use—based
environmental modulation mechanisms that are transferable across distinct urban
contexts.

Table 6.20 Spearman’s rank correlation matrix (p) of functional exposure ordering
between city pairs

Southampton Cardiff Portsmouth Liverpool Nottingham
Southampton 1.00 0.54 0.89 0.94 1.00
Cardiff 0.54 1.00 0.43 0.71 0.90
Portsmouth 0.89 0.43 1.00 0.77 0.90
Liverpool 0.94 0.71 0.77 1.00 1.00
Nottingham 1.00 0.90 0.90 1.00 1.00

These results provide an important sanity check for the model’s neighborhood
interaction mechanisms described in Section 6.2.8. They show that, even though
absolute noise levels vary between cities due to morphological and infrastructural
differences, the functional structure of exposure patterns remains stable, supporting
the premise that the model captures environmental processes rather than overfitting to
city-specific noise baselines. This functional consistency also forms a structural
baseline for subsequent analyses of road-distance attenuation and END alignment.

6.3.6.2 Road-Distance Attenuation Consistency

In addition to functional land-use consistency, another critical dimension of cross-
domain evaluation concerns whether the model captures spatial decay patterns of
noise exposure relative to major transportation corridors. Urban traffic is the dominant
source of daytime environmental noise, and a stable attenuation profile with
increasing distance from roads is a fundamental physical characteristic of urban
acoustic environments. Therefore, the consistency of this distance-dependent
attenuation across multiple cities provides an important test of the spatial
transferability of the model’s learned neighborhood interaction mechanisms.

To evaluate this, all grid points within 150 m of major roads (UA2012 codes 12210
and 12220) were binned into five distance bands (0-30 m, 30-60 m, 60—90 m, 90—120
m, and 120-150 m). For each city, the mean predicted LAeq in each distance band
was computed, forming a distance—exposure profile. A pairwise Spearman’s rank
correlation (p) was then calculated between each target city’s attenuation profile and
that of the reference city (Southampton), providing a scale-independent measure of
profile similarity.



The results (Table 6.21) show a monotonic decrease in predicted noise levels with
increasing distance from roads in all five cities. At 0-30 m, the mean predicted levels
range from 58.8 dBA in Cardiff to 61.0 dBA in Liverpool. By 120-150 m, these
values decrease to between 51.6 dBA and 55.0 dBA. The attenuation gradient is
particularly evident in Cardiff (—7.3 dB across 150 m) and Southampton (5.0 dB),
reflecting a typical near-road decay pattern in medium-sized urban environments. The
slightly higher baseline levels in Liverpool and Portsmouth correspond to their higher
overall built-up area proportions and denser arterial road networks, which increase
cumulative background levels in the near-road buffer zones.

The Spearman’s rank correlation coefficients between the attenuation profiles of
Southampton and the target cities are high for most cases: Liverpool and Nottingham
both exhibit perfect monotonic agreement (p = 1.00), Portsmouth shows moderate to
strong agreement (p = 0.70), and Cardiff also achieves p = 1.00. These results indicate
that the ordering of distance bands with respect to predicted exposure is preserved
across domains, even when absolute levels differ. This is especially relevant given
that Cardiff’s absolute noise levels are lower across all distance bands, a pattern
consistent with its lower built-up proportion (0.75 compared to 0.85-0.97 in other
cities) and extensive non-urban land cover.

Taken together, these results provide strong evidence that the dual-branch GNN
captures a stable, physically meaningful geometric attenuation structure associated
with transportation noise sources. This suggests that the model’s local-scale attention
branch effectively encodes short-range interactions, allowing it to generalize the
shape of road-distance decay curves across cities with differing absolute noise
baselines and urban morphologies. In methodological terms, this offers an orthogonal
but complementary validation to the functional land-use consistency analysis
presented in Section 6.3.6.1: whereas the latter reflects functional structure, the
current analysis reflects spatial structure.

Table 6.21 Mean predicted LAeq (dBA) by road-distance band (0—150 m) across five
cities

road bin Cardiff Liverpool Nottingham | Portsmouth | Southampton
0-30 m 58.83 60.96 60.05 60.79 58.93
30-60 m 55.14 57.18 57.03 58.12 56.11
60-90 m 53.39 55.72 56.27 56.73 55.00
90-120 m 52.54 55.25 56.03 56.60 54.61

120-150 m 51.57 55.02 55.58 56.93 53.93

6.3.6.3 END Alignment and Background Completion

A critical element of cross-domain consistency involves examining how well the
model’s predictions align with established regulatory datasets and, importantly,
whether it can address their known limitations. To this end, the predicted noise maps
were compared with European Environmental Noise Directive (END) LAeq,16h maps,
which remain the primary source of traffic noise exposure estimates in European
urban areas. END maps primarily represent emissions from major road, rail, and



airport sources, but they do not account for non-transport background noise and
typically default to zero in off-network areas. This makes them a suitable reference
for evaluating traffic-related alignment and background noise completion.

Evaluation Design

The comparison was structured into two spatial zones. The first zone includes areas
within 150 m of major roads (UA2012 codes 12210-12220), where END models are
most reliable and closely correspond to actual traffic corridors. The second zone
consists of areas beyond 150 m, where END values are frequently zero or absent.

Two complementary evaluation metrics were used. The first, Agreement@=+5 and
Agreement@=8, measures the proportion of predictions that fall within a tolerance
range around END values. A £8 dB tolerance was introduced to reflect the intrinsic
END uncertainty relative to in-situ measurements—END exhibits a mean absolute
error of approximately 7 dB within 90 m of roads (see Table 6.15). Using this
threshold provides a fair and policy-relevant benchmark for model evaluation.

The second metric, the Completion Index, assesses the model’s ability to recover
plausible background exposure in END-silent zones. It calculates the proportion of
END = 0 or NaN grid cells in which the model predicts values above 35 dBA—a
conservative threshold for typical daytime urban background noise.

Results

Within 150 m of major roads, Agreement@=+8 ranged from 52.7% to 59.8% across
Southampton, Portsmouth, and Liverpool (Table 6.22). Stricter Agreement@=5
values were lower, between 37.1% and 40.3%, but still comparable to the END’s
baseline uncertainty. These results indicate that the model effectively aligns with
traffic-dominated exposure patterns without introducing systematic over- or
underestimation. The mean bias in this zone ranges from +21.2 to +22.4 dB, reflecting
the model’s inclusion of background contributions absent from END’s emission-
driven approach. This is consistent with the real-world complexity of urban
soundscapes, where non-transport sources such as port activities, commercial areas, or
mixed residential zones can elevate ambient noise levels.

Table 6.22 ND alignment metrics across cities

City Zone Agreenslent@i Agreen;ent@i (Pi\élgilg I\AID) (ﬁgg{lez;)o)n
Southampton <150m 40.31 59.76 21.19
Southampton >150m 38.57 100
Portsmouth <150m 38.08 53.5 22.34
Portsmouth >150m 42.56 100
Liverpool <150m 37.15 52.73 22.44
Liverpool >150m 42.08 100
Nottingham <150m 37.35 50.96 21.73
Nottingham >150m 42.67 100




Agreement@=+5 and Agreement@+8 quantify alignment in near-road zones (<150
m).Completion Index evaluates background reconstruction in END-silent zones (>150

m). Cardiff excluded due to lack of END data.

In areas beyond 150 m, where END values are frequently zero, the Completion Index
reached 100% across all cities with END coverage. This indicates that the model
consistently assigns non-zero background exposure in silent zones, bridging a critical
gap in END’s representational capacity. This result mirrors the Zero-Gap documented
earlier in Section 6.3.3 between END and in-situ measurements, confirming that END
systematically underestimates background levels in non-road areas.

Cardiff is excluded from this comparison because no END data are available for the
city. This exclusion is consistent with the domain-adaptation scenario of the study,
where Cardiff functions purely as an unlabeled target domain.

These findings highlight two important properties of the model. First, the alignment
with END within 150 m confirms that the model accurately captures traffic-related
exposure, achieving performance levels consistent with the uncertainty inherent in the
reference dataset itself. Second, the background completion behavior beyond 150 m
illustrates that the model extends beyond traditional END representations by capturing
the continuous, multi-source nature of urban noise fields. This capability is
particularly relevant for applications in data-scarce cities, where END data may be
incomplete or absent.

6.3.6.4 Pseudo-Label Consistency across Target Domains

Beyond external benchmarks such as European Environmental Noise Directive
(END), internal consistency between pseudo-labels and model predictions provides an
additional, critical perspective on the robustness of the domain-adaptive learning
framework. Whereas END evaluates the model against an external traffic-oriented
baseline, pseudo-labels represent high-confidence supervision signals transferred from
the reference domain, and therefore offer a way to assess the internal coherence of the
adaptation process itself.

Evaluation Design

Pseudo-labels were generated by selecting high-confidence transferable samples
based on the model’s learned feature distributions and uncertainty filtering, as detailed
in Section 6.2.6. These pseudo-labels account for less than 10% of the total grid
points in each target city, ensuring that only the most reliable samples were retained.
This design aims to minimize error propagation while still anchoring the adaptation
process in meaningful, domain-invariant structure.

For each target city, the number of pseudo-labeled points, their average confidence
scores, and the pairwise agreement between pseudo-label values and model
predictions were computed. Spearman’s rank correlation coefficient (p) was used to
measure the monotonic association between pseudo-labels and predicted noise levels,
providing a scale-independent evaluation of their alignment. Mean Absolute Error



(MAE) was calculated to quantify the absolute difference between the two values,
allowing comparison with the tolerance thresholds established in Section 6.3.6.3.

Results

The number of pseudo-labeled points varies across the four target domains, reflecting
differences in the spatial extent of transferable structure. Cardiff exhibits the largest
pseudo-labeled set with 16,186 points, followed by Liverpool (13,056), Nottingham
(8,802), and Portsmouth (4,287). The average pseudo-label confidence ranges from
2.16 to 2.33, confirming that the selection process prioritized strong signal points and
excluded low-confidence areas that might introduce noise into the adaptation process.

Across all cities, Spearman’s p values lie between 0.53 and 0.64, indicating a
moderate to strong monotonic relationship between pseudo-labels and predicted noise
levels. Liverpool shows the highest correlation (p = 0.64), consistent with its larger
high-confidence sample base and well-defined urban structure. The MAE values are
notably low, between 3.19 and 3.47 dBA. These errors are substantially lower than
the £8 dB tolerance adopted for END alignment in Section 6.3.6.3, suggesting that
pseudo-labels provide a more precise internal supervisory signal than external
regulatory maps.

Table 6.23 Pseudo-label consistency metrics across four target cities

. MAE (Pred- Mean
City N_Pseudo Spearman_rho Pseudo) Confidence
Cardiff 16186 0.55 3.47 2.16
Portsmouth 4287 0.53 3.19 2.20
Liverpool 13056 0.64 3.27 2.33
Nottingham 8802 0.58 3.28 2.32

The table reports the number of pseudo-labeled points, average pseudo-label
confidence, Spearman’s rank correlation (p) between pseudo-labels and predictions,
and MAE (dBA).

The observed pseudo-label alignment demonstrates that the model maintains a stable
relationship between transferred supervision signals and adapted predictions across all
target cities. This internal coherence is a critical indicator of the effectiveness of the
domain adaptation strategy: despite the absence of real measurements in target
domains, the model remains anchored to a consistent set of learned domain-invariant
features and environmental modulation patterns. In practical terms, pseudo-labels
function as a surrogate reference, enabling systematic validation of model
generalization in unlabeled urban settings.

6.3.6.5 Distributional Stability of Predictions across Cities

Whereas the previous sections assessed functional, geometric, and pseudo-label
alignment, this section examines the global distributional properties of the predicted
noise maps. The motivation for this analysis is rooted in the hypothesis that if the



dual-branch GNN effectively learns generalizable spatial interaction mechanisms,
then the overall statistical structure of its outputs should remain broadly stable across
cities, even in the presence of substantial local morphological differences. In other
words, a robust model should maintain a consistent global distributional shape while
adapting locally to city-specific conditions.

Descriptive Statistics of Predicted Noise Levels

Table 6.D7 summarizes the descriptive statistics of predicted noise levels across the
five study cities. The mean values are narrowly clustered between 55.8 dBA in
Cardiff and 59.7 dBA in Liverpool, with Southampton (reference) at 57.7 dBA. The
median values follow the same ordering, indicating that there are no systematic shifts
in the central tendency of predicted exposure between domains. These results suggest
that the model does not introduce systematic biases at the global scale despite the
cities’ differing environmental and infrastructural contexts.

The standard deviations of the predictions vary between 5.07 dBA (Nottingham) and
7.92 dBA (Cardiff). This range is indicative of local morphological heterogeneity.
Cardiff, in particular, exhibits the highest variability, which aligns with its mixed
urban—rural structure, lower built-up area proportion (0.75), and the presence of large
tracts of non-residential land such as UA2012 class 21000 (arable land). In contrast,
Nottingham and Southampton, characterized by more compact urban structure and
less functional heterogeneity, show lower standard deviations (5.07 and 5.88 dBA,
respectively), reflecting a more spatially homogeneous acoustic field.

Distributional Tails and Morphological Structure

The examination of upper-tail statistics provides further insights into city-specific
morphological signatures. The P95 values (95th percentile) are highest in Portsmouth
(69.3 dBA) and Liverpool (69.0 dBA)—both major port and industrial cities—
indicating the influence of intense transport and maritime activities on the higher end
of the exposure distribution. In contrast, Nottingham’s P95 is lower at 68.3 dBA,
consistent with its inland typology and the absence of high-emission maritime sources.
Interestingly, Cardiff exhibits both the lowest mean and the widest distribution,
reflecting a more heterogeneous urban fabric with mixed-use zones and fringe areas
where background exposure fluctuates more substantially.

Table 6.24 Descriptive statistics of predicted LAeq (dBA) across five cities, including
mean, median, standard deviation, and selected quantiles(P05, P25, P75, P95).

City N Mean = Median Std P0S P25 P75 P95
Southampton | 57493 57.71 57.46 5.88 48.30 53.64 61.58 67.89
Cardiff 119403 55.78 56.27 7.92 44.62 52.18 60.77 67.36

Portsmouth 43048 59.21 59.34 7.43 51.26 55.98 63.20 69.32

Liverpool 118270 59.67 59.53 5.69 50.68 55.48 63.83 68.96

Nottingham 80700 58.84 58.34 5.07 51.07 55.46 61.84 68.29

These results provide strong evidence that the global statistical shape of the model
outputs is stable across domains, while localized variations reflect meaningful
differences in urban morphology rather than model instability. This stability is




particularly important in cross-domain prediction scenarios, where ensuring
comparable distributional properties across source and target domains reduces the risk
of uncontrolled covariate shifts. In practical terms, this behavior is indicative of a
model that not only aligns structurally and spatially with external and internal
references but also preserves distributional coherence, a key requirement for scalable
environmental mapping frameworks.

6.3.6.6 Synthesis and Sanity Validation

The preceding analyses collectively provide a multi-dimensional evaluation of the
cross-domain stability and internal consistency of the proposed dual-branch GNN
framework. This synthesis step aims to integrate the findings from functional structure,
spatial geometry, regulatory benchmark alignment, pseudo-label coherence, and
distributional stability, thereby providing a robust and transparent sanity validation of
the model’s behavior across domains.

The first component of this evaluation, the functional land-use consistency analysis
(§6.3.6.1), demonstrated that the rank ordering of predicted noise exposure across
major UA2012 land-use classes was preserved with high cross-city concordance
(Kendall’s W = 0.727). This indicates that the model effectively captures
environmental modulation mechanisms that remain stable across cities with different
morphological characteristics. Importantly, even in Cardiff, where absolute noise
levels were lower due to a reduced built-up ratio (0.75) and the presence of extensive
agricultural land (UA2012 21000), the relative structure remained interpretable and
consistent with expected functional patterns.

The second component, road-distance attenuation consistency (§6.3.6.2), provided
orthogonal evidence from a geometric perspective. All five cities exhibited similar
attenuation gradients within 150 m of major transport corridors, with Spearman’s p
between Southampton and target domains ranging from 0.70 to 1.00. This
demonstrates that the model learns spatial decay mechanisms that generalize across
cities, aligning with well-established physical principles of traffic-related acoustic
propagation.

The third component, END alignment and background completion (§6.3.6.3),
anchored the model to an external regulatory baseline. Agreement@+8 between
model predictions and END values within 150 m was comparable to END’s intrinsic
error relative to in-situ measurements (=7 dB MAE), confirming that the model’s
predictions are consistent with the traffic-related exposure represented in END.
Beyond this zone, the Completion Index reached 100% in END-silent areas,
indicating the model’s capacity to fill systematic gaps in END maps by recovering
realistic background exposure levels. This dual behavior — alignment in core
emission zones and completion in background zones — confirms that the model
provides a more continuous and environmentally representative depiction of urban
noise.

The fourth component, pseudo-label consistency (§6.3.6.4), examined the internal
coherence of the domain adaptation process. Across the four target cities, pseudo-



labels and model predictions exhibited moderate-to-strong rank agreement
(Spearman’s p = 0.53-0.64) and low absolute error (MAE = 3.19-3.47 dBA), well
below the +8 dB tolerance used for external benchmark alignment. This internal
validation shows that the domain-invariant features and environmental modulating
factors learned in the reference city are stably transferred to the target domains.

The fifth component, distributional stability (§6.3.6.5), demonstrated that the global
statistical structure of the model outputs remains consistent across cities, with mean
predicted values clustered between 55.8 dBA and 59.7 dBA and standard deviations
ranging from 5.1 to 7.9 dBA. These values reflect differences in urban morphology
rather than any systematic instability in the model. High-tail behavior, particularly in
Liverpool and Portsmouth, aligns with the expected influence of port and industrial
activities, whereas Cardiff’s wider spread reflects its more heterogeneous land-use
structure.

Taken together, these five lines of evidence support a coherent and interpretable
picture: the proposed dual-branch GNN is not merely achieving numerical accuracy in
one domain, but also preserving stable functional, geometric, and distributional
structures across multiple urban environments. This multi-perspective evaluation
design directly addresses the issue raised by the internal reviewer regarding the lack
of explicit sanity checks (Section 6.2.8). By integrating external benchmarks, internal
consistency mechanisms, and statistical validation, the framework provides strong
evidence of both robustness and environmental plausibility.

This form of cross-domain structural validation is particularly critical for scalable
urban noise mapping, as it ensures that the model’s predictions reflect underlying
environmental processes rather than overfitting to domain-specific noise patterns. In
practical applications, this means the model can serve as a reliable surrogate in data-
scarce cities, maintaining both interpretability and stability without requiring dense
measurement campaigns.

6.4 Discussion

6.4.1 Verification of Hypothesis and Research Value

This study hypothesized that standardized remote sensing imagery combined with
land use/land cover (LULC) data encodes environmental signals robust enough to
support cross-city generalization of urban noise prediction, even in cities lacking local
noise measurements. Empirical evidence from predictive performance across the four
UK target cities confirms this central claim: the learned representations maintained
effectiveness despite diverse geographical, infrastructural, and morphological
conditions. This accords with established findings that remotely sensed surface
characteristics—once rigorously standardized—serve as reliable proxies for
environmental exposures such as air quality and urban heat, providing transferable
predictors for city-scale modelling (Kadhim, Mourshed and Bray, 2016; van
Donkelaar et al., 2016; Almeida et al., 2021).



Importantly, the observed semantic coherence in predicted noise levels across
functionally equivalent LULC types—despite inter-city heterogeneity—indicates that
these environmental surrogates are not merely local artifacts but reflect transferable
acoustic signatures. This aligns with the literature showing that built-environment
structure (e.g., road network intensity, vegetative cover, and urban form) exerts
systematic influence on environmental noise and related exposures, and that such
relationships can be generalized across urban domains (Murphy and King, 2014;
Kang et al., 2016; Ranasinghe et al., 2018).

Methodologically, this study advances beyond conventional deterministic modeling
approaches, such as bottom-up simulations or propagation models that require
detailed source-level input (Murphy & King, 2011). Instead, it introduces a fully data-
driven, graph-based generalization framework that can be deployed even in data-
scarce settings, leveraging the spatial-semantic signals embedded in satellite imagery
and urban form. While weakly supervised learning has been increasingly explored in
air quality modeling, applications to urban acoustics remain scarce, positioning this
work as a meaningful expansion of data-driven environmental analytics.

Critically, the adoption of graph neural networks (GNNs) enables modeling of spatial
topology and multi-hop interactions, offering a superior alternative to purely
convolutional methods, which assume local pixel independence. Recent advances in
urban geospatial modeling highlight GNNs’ capacity to capture relational
dependencies and multi-scale spatial patterns, making them well-suited for urban
acoustic applications (Wu et al., 2020; Li et al., 2018; Li et al., 2022). Furthermore,
the dual-branch GNN design presented here—combining local-scale attention
mechanisms with broader neighborhood graph convolution—supports multi-
resolution feature integration, aligning with the established understanding that urban
noise propagation operates across fine and broad spatial scales (ISO, 1996; European
Commission, 2015).

Taken together, this study confirms that transferable acoustic patterns can be robustly
learned from semantically meaningful spatial features when processed through
architectures capable of encoding both spatial dependency and domain variance. This
outcome holds substantial practical relevance, particularly for urban regions lacking
systematic monitoring infrastructures. The proposed framework lays the groundwork
for cost-effective, scalable, and generalizable urban noise mapping pipelines,
leveraging remote sensing and land use inventories to produce high-quality
predictions across diverse city environments.

6.4.2 Contributions of the Model Architecture and Learning Strategy

The use of graph structures introduces a paradigm shift in how acoustic propagation
and spatial continuity are represented. Traditional machine learning models typically
assume that prediction units (e.g., grid cells or pixels) are independent, thereby
neglecting the longitudinal diffusion of environmental signals along urban
infrastructure such as roadways, railways, and waterways. In contrast, GNNs enable
message passing across dynamically weighted edges, allowing the model to learn
spatial dependencies that reflect real-world propagation pathways. This relational



encoding is increasingly recognized in geospatial modeling literature as essential for
accurately capturing structured and interconnected phenomena (Bronstein et al., 2021).

Complementing these architectural innovations, the learning strategy employs a multi-
domain adversarial alignment approach to tackle the critical challenge of domain shift.
Unlike typical domain adaptation setups that match a single source and target
(Gulrajani and Lopez-Paz, 2020), this study operates across five urban domains
simultaneously, forcing the model to prioritize robust, domain-invariant feature
learning rather than overfitting to the reference city. Multi-domain adaptation has
gained traction in computer vision and geospatial analytics as an effective strategy for
stabilizing feature alignment across structurally diverse environments (Wang et al.,
2021). Its adoption here marks an important advancement for environmental noise
prediction.

An additional innovation lies in the integration of dynamically computed edge
weights, derived not solely from Euclidean distance but from the acoustic relevance
of environmental features. This design supports the argument made in recent spatial
Al research that graph learning should be guided by semantically meaningful
interactions—such as land-use relationships and functional connectivity—rather than
mere geometric adjacency (Bronstein et al., 2021). This feature adds interpretability to
the model, as it allows the system to prioritize environmental relationships that matter
acoustically, embedding domain reasoning directly into the graph topology.

Perhaps most strikingly, the model achieves high predictive efficiency despite a 97%
reduction in input dimensionality compared to the baseline model from Chapter 5.
This underscores a critical point often made in machine learning: predictive success in
complex environmental systems is less about feature volume and more about selecting
structurally meaningful and generalizable variables (Breiman, 2001; Guyon and
Elisseeff, 2003). By distilling a compact but powerful set of features centered on land-
use function, spatial arrangement, and morphological texture, this study demonstrates
that simplicity and generalization can be simultaneously achieved.

In summary, the architectural and learning contributions of this work lie not just in
technical novelty, but in their alignment with the spatial logic of environmental noise,
their integration of robust domain generalization theory, and their advancement of
interpretable, scalable graph-based methods for urban environmental prediction.

6.4.3 Preliminary Testing and Lessons Learned

The development of the current technical approach—drawing inspiration from
advances in natural language processing and domain adaptation frameworks—
required extensive preliminary testing to ensure robust generalization while
minimizing error propagation across multiple methodological stages. Each component
of the pipeline—remote sensing standardization, pseudo-label construction, edge
weight design, graph connectivity, data augmentation, and domain alignment—was
subjected to systematic testing, with multiple iterative refinements revealing critical
insights into both effective and ineffective design choices. This section outlines these



processes and the lessons learned, emphasizing how iterative development shaped the
final framework.

All experiments were executed on NVIDIA T4 GPU (16 GB VRAM) through Google
Colab, consistent with the setups in Chapters 4 and 5. Owing to the dual-branch
structure and graph sampling strategy, a typical model training run required
approximately 2—3 hours, which represents a considerable improvement in efficiency
relative to the CNN (Chapter 4) and single-branch GNN (Chapter 5) implementations.
This runtime reduction reflects both architectural optimizations and the deliberate
design of efficient graph connectivity strategies.

Remote Sensing Multispectral Image Standardization

Achieving cross-city consistency in multispectral imagery was a foundational
challenge, as spectral variations caused by sensor characteristics, atmospheric
conditions, or seasonal effects could severely undermine generalization. Initial
attempts using standard radiometric calibration and atmospheric correction tools in
ENVI were insufficient, failing to align spectral signatures across cities with distinct
urban forms. A more rigorous testing protocol was therefore developed, combining
visual interpretation with quantitative pixel-level metrics: for each band, the 2nd and
98th percentile values were computed and compared between Southampton and target
cities, along with histogram profiles across major LULC categories.

Multiple normalization techniques—including histogram matching, z-score
standardization, and pseudo-invariant feature alignment—were evaluated. Histogram
matching emerged as the most effective, minimizing inter-city spectral discrepancies
while preserving semantic integrity (Schott et al., 1988; Yuan & Elvidge, 1996). This
procedure became the foundation for downstream domain alignment and pseudo-label
construction.

Pseudo-Label Construction Strategy

Pseudo-labeling, essential for enabling predictions in data-scarce target domains, was
developed in conjunction with the dual-branch GNN architecture. Early experiments
compared three strategies for variable selection to support pseudo-label confidence
estimation: (1) top 10 variables overall, (2) top 5 per branch including spectral
features, and (3) top 5 per branch from LULC-derived variables only. The third
strategy consistently delivered the most stable cross-city pseudo-labels, aligning well
with expected noise patterns (e.g., higher near major roads, lower near forests).

Subsequent experiments optimized the k-nearest neighbors pseudo-labeling
parameters, testing k = 3, 5, 7, 10, confidence thresholds of 0.8-0.95, and neighbor
standard deviation thresholds of 5-15 dBA. The configuration of k = 5, a 0.9
confidence threshold, and a 10 dBA deviation tolerance achieved the best balance
between reliability and coverage, providing strong supervisory signals for training in
unlabeled domains.



Edge Weight and Graph Connectivity Design

As the framework scaled to multi-city settings, graph construction became a major
computational bottleneck due to the significantly increased node count (~500,000
nodes across five cities). To address this, a randomized three-hop connectivity scheme
was tested, connecting each node to 4, 2, and 1 randomly selected neighbors at the
first, second, and third hops, respectively. This design, inspired by inductive graph
sampling strategies (Hamilton et al., 2017), offered an efficient compromise between
preserving spatial context (~100 m neighborhood) and ensuring tractable resource use.

In parallel, edge weights were refined by embedding environmental semantics.
Multiple feature subsets were evaluated, and the final design incorporated the top five
LULC-derived variables per branch (Table 6.12) to modulate edge weights. This
approach outperformed purely distance-based schemes by directly encoding
acoustically meaningful land-use contrasts—such as built-up versus green zones—
into the graph structure, enabling more context-aware information propagation.

Domain Alignment Strategy

The transition from single-domain to multi-domain adversarial alignment represented
a critical methodological inflection point. Initial tests aligning only Southampton with
a single target city revealed overfitting, particularly for underrepresented LULC
classes, leading to poor transfer performance in cities with distinct urban
morphologies. Extending alignment across all five cities mitigated these issues: at
least three cities typically shared each major LULC category, allowing the model to
learn more stable and domain-invariant representations. As a result, multi-domain
alignment improved cross-city consistency, confirming the hypothesis that broader
domain coverage enhances generalization (Ouyang et al., 2023; Lyu et al., 2025).

Importantly, this design also enhanced computational efficiency—training times
remained stable at 2-3 hours despite increased domain complexity—because domain-
invariant representations reduced the need for city-specific fine-tuning.

Summary of Lessons Learned

These preliminary tests highlight the iterative, evidence-driven nature of the
framework’s development. Early failures—such as insufficient image normalization,
computationally expensive global graph connectivity, and overfitting under single-
domain alignment—provided crucial feedback that informed the final design. By
integrating robust spectral standardization, semantic pseudo-label selection, efficient
connectivity strategies, and multi-domain adversarial alignment, the framework
achieved strong generalization capability while maintaining practical computational
demands. This progression marks a clear methodological advance over the approaches



in Chapters 4 and 5, positioning the dual-branch GNN as a scalable and transferable
solution for urban noise prediction across heterogeneous cities.

6.4.4 Quantitative Interpretation and Urban Form Effects
6.4.4.1 Overall Quantitative Model Performance

The results presented in Sections 6.3.3 and 6.3.6 provide a systematic view of the
predictive performance of the proposed dual-branch domain-adaptive GNN across
five heterogeneous urban contexts. Quantitatively, the model maintains a relatively
stable performance across cities, with mean absolute errors (MAE) consistently within
a narrow range and R? values indicating moderate to strong explanatory power. This
performance stability underlines the effectiveness of the dual-branch architecture and
multi-domain alignment strategy, which together enable the model to generalize
learned spatial relationships beyond the labeled source city.

However, clear city-level variations are evident in the magnitude and distribution of
errors. Cities such as Liverpool and Portsmouth exhibit slightly higher MAE and
lower Acc@=5, particularly in areas associated with major transportation corridors
and dense industrial-commercial zones. This pattern aligns with their higher built-up
ratios and stronger concentration of transportation infrastructure, which tend to
produce higher noise peaks and sharper spatial gradients. In contrast, Cardiff shows
the lowest overall error metrics across all evaluated indicators, accompanied by a
downward shift of the entire noise exposure distribution. This indicates not only
reduced peak intensities but also lower intra-urban variability in noise levels.

Importantly, these discrepancies are not indicative of weaknesses in the model
architecture. Rather, they reflect meaningful differences in the underlying urban
acoustic baselines associated with each city’s land-use structure, population density,
and transportation network intensity. In cities characterized by high traffic volume
and compact built-up morphology, such as Liverpool, the model is required to resolve
sharper spatial contrasts in noise exposure, which inherently increases the absolute
error magnitude. Conversely, in cities with lower built-up density and larger shares of
open and vegetated areas, such as Cardiff, the underlying noise field is more
homogeneous, leading to lower overall prediction errors.

Taken together, these results support the validity of the model’s design: the observed
city-level differences in performance metrics can be directly traced to structural
characteristics of the urban environments, rather than inconsistencies in the predictive
framework itself. This observation establishes a crucial foundation for subsequent
analysis linking land-use composition and morphological structure to acoustic
baselines.

6.4.4.2 Urban Morphology and Land Use as Structural Drivers



Urban morphology and land-use composition play a critical role in shaping both the
magnitude and spatial variability of environmental noise exposure. This relationship
is clearly reflected in the heterogeneity indicators summarized in Table 6.1, which
report land-use entropy (H_LULC) and built-up ratios derived from Urban Atlas 2012
data. Among the five cities, Cardiff stands out for exhibiting the lowest built-up ratio
(0.75) and highest land-use entropy (1.21). This combination indicates a more evenly
distributed functional structure, characterized by a greater proportion of green and
open spaces interspersed with smaller built-up clusters. In contrast, Southampton,
Liverpool, and Nottingham have built-up ratios between 0.90 and 0.97, reflecting
denser, more compact urban fabrics with functionally concentrated zones.

High built-up ratios are typically associated with strong transportation and
commercial activity, increased impervious surface coverage, and a higher density of
potential noise sources. This is consistent with the acoustic patterns observed in the
official END noise maps, where Liverpool, Portsmouth, and Southampton exhibit
prominent linear corridors of elevated noise exposure corresponding to arterial road
networks, port areas, and industrial belts. Conversely, Cardiff’s more balanced
functional structure, with greater spatial allocation to non-source land uses such as
green urban areas and water bodies, acts as a diffusive and attenuating backdrop,
reducing both absolute noise levels and the steepness of spatial gradients.

From a modeling perspective, these structural differences help explain the
heterogeneity of prediction performance observed across cities. High built-up cities
require the model to resolve abrupt transitions between high- and low-exposure zones,
increasing the potential for residual errors around transportation corridors and mixed-
use interfaces. Cities like Cardiff, however, present a more spatially uniform
soundscape, with fewer sharp gradients and lower peak intensities, resulting in lower
MAE and more stable residual distributions.

These findings confirm that urban form is not merely a contextual variable but a
fundamental driver of both the acoustic baseline and the achievable model
performance in cross-domain prediction. Recognizing this relationship is essential for
interpreting the quantitative results not as isolated performance statistics but as
reflections of broader morphological and functional characteristics.

6.4.4.3 Differential Noise Baselines Across Cities

The cross-city comparisons reveal that variations in model performance metrics align
closely with differences in the underlying urban noise baselines of the five study areas.
This is most clearly reflected in the contrasting distributions observed in the boxplots
presented in Section 6.3.4, which summarize the predicted noise levels across cities.
In Liverpool, Portsmouth, and Southampton, the noise exposure distributions display
pronounced upper tails, reflecting the presence of high-intensity clusters associated
with major transport corridors, port operations, and densely built-up environments.
These elevated peaks correspond well with the END reference maps, confirming that
these cities exhibit a high and spatially concentrated acoustic baseline.



In contrast, Cardiff shows a markedly lower median and upper quantiles, indicating a
citywide downward shift of noise exposure levels. Rather than a small number of
localized high-noise hotspots, Cardiff’s noise field exhibits lower overall intensity and
less pronounced spatial gradients. The lower peak values and reduced interquartile
range directly contribute to the smaller MAE and higher residual stability observed in
the quantitative results of Section 6.3.6. This pattern is fully consistent with Cardift’s
lower built-up ratio and higher proportion of green and open spaces (Table 6.1),
which diffuse and attenuate sound propagation compared to the more structurally
compact cities.

The observed relationship can be conceptualized as a structural modulation of the
acoustic baseline: (a) High built-up, traffic-dominated cities (e.g., Liverpool,
Portsmouth) — strong concentration of noise sources — higher acoustic baseline —
wider exposure distribution — higher model residuals around source boundaries. (b)
Mixed-function or low-density cities (e.g., Cardiff) — distributed or weaker sources
— lower acoustic baseline — narrower exposure distribution — lower model
residuals overall.

This structural modulation is further reflected in the pseudo-label distribution patterns
illustrated in Figure 6.3. Cities with strong source concentrations (e.g., Liverpool)
show dense clusters of high pseudo-label values concentrated along arterial corridors.
By contrast, Cardiff exhibits a broader, lower-intensity pseudo-label field, indicating
that its environmental structure inherently supports a less acoustically intense urban
environment.

Such differences are not unique to the present study but are consistent with
established environmental acoustics theory, which emphasizes that the spatial
structure of sources and the density of built-up areas are primary determinants of
urban noise fields. Urban environments with concentrated traffic, industrial, and port
activities typically generate strong local peaks and large interquartile spreads, while
cities with distributed or limited sources exhibit lower baselines and smaller variance.
This systematic structural effect explains why Cardiff consistently scores lower across
all performance metrics: the model is operating in an acoustically less demanding
environment.

This understanding is crucial for correctly interpreting quantitative model evaluation.
Performance variations across cities should not be seen as evidence of inconsistent
model behavior but as reflections of fundamentally different acoustic regimes. By
grounding performance interpretation in structural and morphological context, the
analysis avoids conflating model variability with urban acoustic variability.

6.4.4.4 Case Study: Low Noise Baseline and Structural Explanation in Cardiff

A particularly distinctive pattern in the cross-city evaluation is the consistently lower
predicted noise exposure and associated error metrics observed in Cardiff. This
outcome can be understood not as a reflection of any limitation in the predictive
framework, but rather as a manifestation of the city’s underlying urban form,



functional structure, and demographic characteristics, all of which jointly shape the
acoustic environment and, consequently, the model’s quantitative behaviour.

As summarized in Table 6.1, Cardiff exhibits the lowest built-up ratio among all five
study cities, with a value of 0.75 compared to values between 0.85 and 0.97 for
Liverpool, Portsmouth, Nottingham, and Southampton. At the same time, Cardiff
displays the highest land-use entropy (H_LULC = 1.21), indicating a more balanced
distribution of urban functions and lower spatial concentration of transport-related
noise sources. This morphological configuration stands in sharp contrast to the
compact and source-dense structures characterizing cities such as Liverpool, where
H LULC is only 0.88 and the built-up ratio reaches 0.94. A lower proportion of
impervious built-up areas implies a less extensive physical substrate for traffic and
commercial activity, thereby lowering the intensity and spatial clustering of acoustic
sources.

The land-use composition data provide further empirical evidence for this
interpretation. As shown in Table 6.25, Cardiff’s continuous and discontinuous urban
fabric together account for only 35 % of total land use, while green and water spaces
make up approximately 28 %—the highest proportion among all cities examined. In
comparison, Portsmouth and Southampton have urban fabric shares exceeding 55 %,
and Liverpool exhibits extensive transportation and industrial land coverage. The
dominance of green and open spaces in Cardiff’s landscape reduces the physical
footprint of high-intensity acoustic sources, while simultaneously introducing a
greater extent of surfaces with sound absorption and diffusion capacity. These
characteristics have a direct impact on the spatial configuration of noise exposure,
leading to a lower overall baseline and weaker gradients across the urban fabric.

A key element shaping high-exposure tails in the noise distribution of other cities is
the proportion of transportation land-use classes, particularly 12210 (fast transit
roads), 12220 (other roads), and 12230 (railways). Liverpool and Portsmouth present
notably high shares of these categories, which spatially align with the linear hotspots
observed in their END noise maps. Cardiff, by contrast, has a relatively low
proportion of transport corridors, which is consistent with its absence of pronounced
high-noise peaks and its lower upper quantiles in the exposure distributions presented
in Section 6.3.4. This lower intensity of transportation-related land use explains the
subdued noise field and the narrower residual distribution observed in Section 6.3.6.

Demographic characteristics reinforce this interpretation. According to Table 6.4,
Cardiff’s population density is the lowest among the study cities, with approximately
2,600 persons km™, compared to values between 4,000 and 5,100 persons km™ in
Nottingham, Portsmouth, and Southampton. Population density is a well-established
proxy for traffic intensity and anthropogenic activity levels. A lower density is
therefore associated with reduced traffic volumes, fewer high-intensity source—
receptor interactions, and weaker noise propagation corridors. This demographic
factor, when considered alongside the morphological and land-use structure, provides
a comprehensive explanation for the distinctive acoustic characteristics observed in
Cardiff.

Taken together, the evidence indicates that Cardiff’s lower noise exposure levels and
smaller model error metrics are a direct consequence of its urban form and functional



composition. The combination of a low built-up ratio, high land-use entropy, limited
transport corridor coverage, and low population density produces a structurally
attenuated acoustic environment characterized by a lower baseline and less
pronounced spatial gradients. These conditions result in reduced peak intensities and
narrower exposure distributions, which in turn manifest in lower MAE values and
higher residual stability during cross-domain prediction. This analysis highlights the
importance of interpreting model performance not solely in terms of algorithmic
behaviour but also in relation to the intrinsic acoustic and morphological structure of
the target urban environment.

Table 6.25 Land-use composition and functional structure of the five study cities

based on Urban Atlas 2012.

LCI(J)ﬁeC LULC Class Cardiff Liverpool Nottingham  Portsmouth South::mpto
11100 Continuous urban 273.1 786.0 96.8 161.5 63.6
fabric (2.47%) (7.38%) (1.33%) (4.14%) (1.31%)
11210 Discontinuous dense 1898.4 3297.0 2052.2 1115.8 1126.2
urban fabric (17.17%) (30.94%) (28.26%) (28.60%) (23.20%)
11220 Discontinuous medium 1566.7 521.4 1070.5 218.1 1035.7
density urban fabric (14.17%) (4.89%) (14.74%) (5.59%) (21.34%)
11230 Discontinuous low 92.6 314 56.8 8.7 230.7
density urban fabric (0.84%) (0.29%) (0.78%) (0.22%) (4.75%)
Discontinuous very
. 3.8 2.7 9.5 6.1
11240 155 d"f‘;fj‘rtiyc TiibE (0.03%) (0.03%) (0.13%) NaN (0.13%)
11300 Isolated structures 28.9 (0.26%) = 0.3 (0.00%) | 0.7(0.01%) @ 0.7 (0.02%) NaN
12100 Industrial, commercial, 1502.9 1743.3 1267.2 688.5 568.0
public, military areas (13.60%) (16.36%) (17.45%) (17.65%) (11.70%)
12210 Fast transit roads and 44.7 6.3 69.1 7.4
associated land (0.40%) (0.06%) (1.77%) (0.15%)
12220 Other roads and 844.1 1175.1 626.7 355.6 408.1
associated land (7.64%) (11.03%) (8.63%) (9.11%) (8.41%)
12230 Railways and 121.9 90.7 44 .4 30.6 53.2
associated land (1.10%) (0.85%) (0.61%) (0.79%) (1.10%)
81.6 210.2 31.8 309.3
12300 Port areas (0.74%) (1.97%) (0.81%) (6.37%)
. 11.2 6.5
12400 Airports (0.11%) (0.13%)
13100 Mineral extraction and 119.0 1.1 3.8 54.9 34
dump sites (1.08%) (0.01%) (0.05%) (1.41%) (0.07%)
. 6.4 12.4 27.1 33.7
13300 Construction sites (0.06%) (0.17%) (0.69%) (0.69%)
13400 Land without current 127.2 81.7 29.8 9.4 20.8
use (1.15%) (0.77%) (0.41%) (0.24%) (0.43%)
1036.8 1352.9 613.3 201.4 535.0
14100 Green urban areas (9.38%) (12.70%) (8.45%) (5.16%) (11.02%)
14200 Sports and leisure 832.6 749.6 652.0 307.6 302.3
facilities (7.53%) (7.04%) (8.98%) (7.88%) (6.23%)




21000 Arable land (annual 314.5 98.9 282.3 15.3 0.1
crops) (2.84%) (0.93%) (3.89%) (0.39%) (0.00%)
1463.2 341.1 169.6 363.0 50.0
23000 LG (13.24%) (3.20%) (2.34%) (9.30%) 1.03%)
4943 49.2 154.2 35.3 83.3
31000 Forests (4.47%) (0.46%) (2.12%) (0.90%) (1.72%)
Herbaceous vegetation 17.2
32000 associations (0.16%)
33000 Open spaces with little 259 0.1
or no vegetation (0.66%) (0.00%)
234 24.8
40000 Wetlands (021%) (0.63%)
. 185.1 81.1 119.3 156.6 10.4
50000 Water bodies (1.67%) (0.76%) (1.64%) (4.01%) 0.21%)

Proportion of major LULC classes (urban fabric, transport, green, and water) used to
support the structural interpretation of urban noise baselines and cross-city
prediction performance.

6.4.4.5 Implications for Cross-Domain Transfer

The findings presented in this chapter underscore the critical role of urban form and
functional structure in shaping both the baseline acoustic environment and the
resulting predictive behaviour of machine learning models under cross-domain
settings. While the dual-branch graph neural network demonstrates stable and
competitive performance across all five cities, the observed variations in error
magnitude and exposure distribution are strongly conditioned by structural differences
rather than by any intrinsic instability of the model. This insight carries several
implications for both methodological development and practical applications of urban
noise mapping.

First, the results highlight the need to contextualize model performance within the
acoustic and morphological characteristics of the target domain. Cities with high
built-up ratios and concentrated transportation infrastructure inherently present
steeper noise gradients and higher peak values, making them more challenging
prediction environments. In contrast, cities with lower structural intensity and higher
shares of green and open spaces exhibit lower baselines and reduced variance, which
naturally lead to lower error metrics. These differences should therefore be interpreted
as reflecting environmental structure rather than disparities in model capability.

Second, the integration of morphological and land-use indicators offers a promising
avenue for improving domain adaptation strategies. By explicitly incorporating
structural descriptors—such as built-up ratio, land-use entropy, and transport corridor
density—into the model transfer process, it may be possible to calibrate domain
alignment more effectively, mitigating residual performance gaps between cities with
divergent acoustic regimes. Such an approach could enhance the robustness and
interpretability of predictive models deployed in complex, multi-city contexts.




Finally, the structural interpretation of urban noise baselines also has practical policy
relevance. Recognizing that cities with lower built-up intensity and greater green
space coverage inherently experience lower baseline exposure provides a planning
lever for long-term noise mitigation. Urban greening, balanced land-use allocation,
and diffusion of traffic corridors are not only environmental planning objectives but
also structural determinants of the acoustic landscape. Embedding these insights into
urban development strategies could complement conventional noise control
interventions, supporting more sustainable and health-oriented urban environments.

In sum, the cross-city analysis demonstrates that urban morphology is not merely a
contextual background but a fundamental determinant of both acoustic exposure and
model behaviour. Future research should therefore more systematically integrate these
structural factors into model design, domain adaptation, and policy formulation.

6.4.5 Limitations

While the proposed graph-based framework demonstrates strong predictive capacity
and cross-city transferability, several inherent limitations reflect broader challenges in
data-driven environmental modeling, especially for applications involving complex
physical processes like urban noise propagation.

First, the model is fundamentally grounded in a statistical learning paradigm that
infers noise patterns from observable surface features, rather than explicitly
simulating the physics of sound propagation. This abstraction brings clear advantages
in scalability and computational efficiency but sacrifices physical fidelity. Unlike
classical noise prediction models such as ISO 9613 or CNOSSOS-EU, which
explicitly incorporate source emissions, propagation equations, and attenuation
mechanisms (Salomons, 2001; Kephalopoulos et al., 2021), the current framework
relies on correlations learned from training data. While similar data-driven approaches
have been increasingly applied in air quality and climate risk modeling (Rolnick et al.,
2023), they may underperform in environments where detailed physical interactions,
such as building reflections, wind patterns, or terrain diffraction, play dominant roles.

Second, the framework’s dependence on high-quality reference labels and pseudo-
labeling introduces data-related uncertainties. The model’s generalization hinges on
the assumption that the reference city (Southampton) adequately represents the
structural patterns of target cities. However, this assumption can fail if key urban
forms, such as elevated highways or port complexes, are underrepresented in the
reference domain. Research in transfer learning has shown that inadequate coverage
of functional classes or environmental variability can degrade cross-domain model
robustness (Tuia et al., 2016). Furthermore, while confidence-based pseudo-labeling
improves reliability, it remains sensitive to the density and quality of the pseudo-
supervision pool. Sparse pseudo-labeled samples, as seen in cities like Portsmouth,
can destabilize learning and reduce local prediction accuracy .

Third, although the multi-domain adversarial alignment improves robustness to
domain shift, residual biases persist—especially in spectrally sensitive features like
vegetation indices or texture measures. These features are influenced by seasonal



variability, sensor differences, and landscape context, which cannot always be fully
normalized through histogram matching or pseudo-invariant feature alignment (Schott
et al., 1988). Over-regularization during adversarial training may inadvertently
suppress informative city-specific signals, a challenge recognized in recent studies on
domain-adaptive geospatial learning (Wilson and Cook, 2020).

Fourth, the framework is inherently static, ignoring temporal variations such as time-
of-day traffic patterns, weather conditions, or episodic events. All predictions are
derived from static land cover and remote sensing proxies, neglecting dynamic factors
that are increasingly recognized as critical in environmental noise assessments
(Kephalopoulos et al., 2012; Basner et al., 2014). This limits the model’s applicability
in contexts where temporal drivers, such as nightlife activity or rush-hour traffic,
dominate noise dynamics.

Beyond these technical limitations, the framework currently lacks explainability
mechanisms that could enhance its utility for policy and planning. While the feature
selection stage increases transparency, the internal representations learned by the
graph neural network remain largely opaque, complicating causal interpretation and
uncertainty analysis. This echoes a broader concern within environmental science,
where the “black-box™ nature of deep learning has triggered calls for integrating
explainable Al and uncertainty quantification methods (Karniadakis et al., 2021).

These limitations highlight a fundamental tension in data-driven urban noise modeling:
the tradeoff between statistical generalization and physical process fidelity. While
machine learning frameworks like GNNs excel at capturing complex spatial
dependencies, they remain largely agnostic to the governing physics of acoustic
propagation. This raises legitimate concerns about plausibility, especially when
extrapolating to novel urban forms or acoustically complex settings.

Emerging research in hybrid modeling suggests promising pathways forward.
Physics-guided machine learning (PGML) approaches aim to combine the
representational power of neural networks with the rigor of physical constraints,
introducing domain knowledge through customized loss functions, constrained
embeddings, or hybrid neural-simulation architectures (Karpatne et al., 2017; Willard
et al., 2022). For urban noise, such methods could encode constraints on attenuation
over distance, building reflections, or terrain effects, enhancing both predictive
robustness and interpretability. This perspective aligns with recent recommendations
in Earth system science, which emphasize the importance of combining empirical
data-driven models with physically credible frameworks to ensure reliable and
actionable predictions.

6.4.6 Future Research Directions

Building upon the methodological innovations and acknowledged limitations of this
study, several promising avenues emerge for future research that could substantially
advance the field of urban noise modeling. These directions aim not only to enhance
predictive accuracy but also to improve interpretability, scalability, and theoretical
soundness.



A key priority for future work lies in integrating physical priors into graph-based
urban noise models. While the current framework effectively captures spatial
dependencies and morphological structures, it remains largely agnostic to the
underlying physics of sound propagation. Incorporating physically informed
constraints—such as attenuation with distance, reflection/absorption by building
materials, and diffraction—could improve both realism and interpretability. Recent
developments in physics-informed machine learning provide practical pathways for
embedding domain knowledge via physics-guided losses or hybrid neural-physical
components (Karniadakis et al., 2021; Willard et al., 2020). Such approaches have
already shown promise in climate and hydrological applications (Reichstein et al.,
2019) and could substantively strengthen the credibility of data-driven urban acoustic
models.

Another critical avenue is enriching target-side supervision through multi-source
integration. While the present study primarily relied on pseudo-labels transferred from
a single reference city, future work can fuse limited in-situ noise measurements,
participatory sensing (e.g., mobile crowdsourcing) (Maisonneuve et al., 2010), and
auxiliary environmental datasets (traffic counts, urban morphology inventories). Prior
work in domain adaptation/generalization indicates that combining diverse
supervisory signals improves robustness under distribution shift and label sparsity
(Tuia et al., 2016; Zhou et al., 2022).

The exploration of semi-supervised and few-shot learning is also promising for
emerging or data-scarce cities. Beyond high-confidence pseudo-labels, graph-based
semi-supervised learning and label propagation can leverage graph structure under
extreme scarcity (Zhu and Ghahramani, 2002). Few-shot learning methods (Wang et
al., 2020) and contrastive representation learning (Chen et al., 2020) offer pathways to
build transferable encoders with minimal annotation.

Incorporating temporal dynamics and multi-source sensor fusion is another key step.
Current models—including the one presented here—use static proxies and neglect
diurnal traffic cycles, weather, and episodic noise events. Advances in spatio-
temporal graph learning (Yu et al., 2018; Li et al., 2018) enable integration of real-
time sensor streams, traffic flow models, and human mobility data, supporting
predictions that are both spatially nuanced and temporally responsive.

Finally, large-scale urban noise benchmarks and universal representations would
catalyse progress. Analogous to ImageNet’s role in computer vision (Deng et al.,
2009), an open, multi-city noise benchmark spanning diverse environments and
seasons would enable rigorous comparison and reproducibility. Developing
transferable, domain-invariant representations of urban acoustic environments—
validated across such benchmarks—would lay foundations for policy-relevant,
globally applicable systems.



Chapter 7: General Discussion

7.1 Introduction

Urban noise pollution remains one of the most pressing environmental stressors in
contemporary cities, with well-documented impacts on public health, ecological
systems, and urban livability (Basner et al., 2014; WHO, 2018). As urbanization
accelerates globally, the complexity of noise sources—including traffic, industrial
activities, construction, and social gatherings—has increased dramatically,
challenging the capacity of traditional modeling and mapping approaches. Established
frameworks such as physical acoustic simulation and land-use regression (LUR)
models, while robust in controlled or data-rich environments, often face severe
scalability issues when applied to diverse and rapidly evolving urban settings (EEA,
2020). These methods typically require extensive ground measurements, detailed
traffic counts, and specialized calibration data, all of which entail substantial financial,
logistical, and temporal costs (Murphy and King, 2014; Kephalopoulos et al., 2012).

Against this background, the present dissertation positions itself at the intersection of
urban environmental science, remote sensing, and machine learning, seeking to
explore whether high-resolution multispectral imagery, when coupled with advanced
graph-based neural networks, can offer a scalable alternative to conventional urban
noise modeling. Specifically, this work investigates whether generalizable,
interpretable, and cost-efficient noise prediction models can be constructed solely
from remotely sensed environmental proxies and publicly available land-use
inventories. This research ambition aligns with a broader scientific shift toward multi-
source, data-driven urban analytics, where artificial intelligence methods increasingly
supplement or replace traditional simulation frameworks (Maxwell et al., 2017).

Rather than simply summarizing the technical details elaborated in earlier chapters,
this synthesis chapter focuses on critical reflection and integration across the
empirical and conceptual contributions presented in Chapters 4, 5, and 6. The aim
here is threefold. First, to distill the overarching methodological and theoretical
insights derived from comparing convolutional neural networks (CNNs), graph neural
networks (GNNs), and dual-branch spatial graph architectures for urban noise
modeling. Second, to evaluate how these innovations advance the field of urban
environmental prediction, particularly in addressing long-standing issues of domain
transferability, data scarcity, and computational efficiency (Reichstein et al., 2019;
Karniadakis et al., 2021). Third, to identify the broader policy and research
implications of developing interpretable, transferable noise models that can be
deployed in cities lacking extensive monitoring infrastructure.

By foregrounding these higher-level discussions, this chapter seeks to move beyond
procedural exposition and engage with the fundamental scientific, practical, and
societal relevance of the work. Specifically, it aims to articulate how the integrated
innovations of this dissertation contribute to the evolving landscape of scalable



environmental monitoring, situate them within global best practices in urban
informatics, and chart concrete pathways for future research and application.

7.2 Theoretical and Methodological Contributions: Systematic

Synthesis

This dissertation offers a set of important theoretical and methodological
contributions to the emerging field of urban noise modeling, positioned at the
intersection of remote sensing, machine learning, and environmental science.
Traditional noise prediction approaches, such as physical acoustic modeling and land-
use regression, have long depended on detailed field measurements, traffic flow data,
or calibrated emission models. While effective in some contexts, these methods face
well-documented challenges when applied to large, heterogeneous, or data-scarce
urban environments due to their cost, complexity, and limited transferability. The
work presented here breaks from this convention by demonstrating how scalable,
data-driven frameworks can leverage remote sensing imagery and graph-based
architectures to predict urban noise with minimal dependence on ground
measurements.

A central theoretical insight developed in this dissertation is that high-resolution
multispectral remote sensing data can serve as an independent and sufficiently rich
basis for estimating urban noise patterns. Historically, noise modeling has been seen
as inseparable from dense ground-based data, yet this study shows that surface
reflectance properties, vegetation indices, and morphological textures captured from
space encode meaningful environmental proxies for both noise generation and
attenuation processes. This idea builds on a growing body of work in urban
environmental monitoring, where remotely sensed features have been successfully
used to estimate air quality, heat risk, and ecological indicators (Weng, 2012;
Maxwell et al., 2017). By extending this perspective to urban acoustics, the research
opens up new possibilities for low-cost, transferable noise modeling, particularly in
cities where traditional data inputs are unavailable.

The methodological innovations in this dissertation reflect an intentional progression
through increasingly sophisticated learning architectures. Initial experiments using
convolutional neural networks (CNNs), specifically EfficientNet, capitalize on the
powerful feature extraction and scaling properties of modern deep learning (Tan & Le,
2019; Paoletti et al., 2019). Moving beyond CNNs, the research introduces six-layer
GraphSAGE models, which mark a methodological leap by explicitly modeling
spatial relationships between observation points. This transition aligns with the
broader trend in geospatial Al toward graph-based methods that recognize and exploit
spatial interdependencies, rather than treating samples as isolated units (Hamilton et
al., 2017; Wu et al., 2020).



Perhaps the most significant advance is the development of the dual-branch graph
neural network (GNN) framework, which integrates fine-scale morphological
predictors with broader-scale land-use statistics to reflect the multi-scale nature of
urban noise environments. This multi-modal architecture is directly responsive to
calls in the literature for models that combine local detail with regional context,
acknowledging that noise exposure is shaped by both proximate sources (such as road
networks or building facades) and broader urban structures (like land-use zoning or
green space distribution) (Salomons and Pont, 2012; Basner et al., 2014). Moreover,
the inclusion of domain adaptation techniques and pseudo-labeling mechanisms
addresses a major challenge in environmental modeling: how to generalize predictive
systems across cities with divergent morphological and socio-environmental
characteristics (Pan et al., 2009).

Importantly, this work does not simply apply machine learning tools as black boxes;
rather, it thoughtfully integrates feature interpretability, physical plausibility, and
spatial reasoning. The model’s use of acoustically informed edge weights,
interpretable feature selection, and multi-domain adversarial alignment demonstrates
a commitment to ensuring that predictive accuracy is not achieved at the expense of
scientific or environmental credibility. This aligns with emerging best practices in
environmental data science, where increasing attention is being given to the need for
models that are not only performant but also transparent, interpretable, and physically
meaningful (Karpatne et al., 2017; Reichstein et al., 2019).

The interdisciplinary value of this research extends beyond technical advancements.
By offering scalable, interpretable, and transferable frameworks for urban noise
mapping, the dissertation contributes practical solutions for urban planners, public
health professionals, and policymakers. It supports new forms of environmental
monitoring in data-scarce regions, enhances the capacity for cross-city comparison
and benchmarking, and helps lay the groundwork for integrating noise exposure
assessments into broader smart city initiatives and urban sustainability efforts (WHO,
2018; European Environment Agency, 2020).

In conclusion, the contributions of this dissertation reside not merely in any one
model or algorithm, but in the broader conceptual shift it represents: positioning
remote sensing as a central resource for urban acoustics, advancing methodological
sophistication through graph-based learning, and embedding concerns of
interpretability and transferability into the very design of environmental Al systems.
Together, these innovations significantly strengthen the foundations of urban noise
science and point toward new pathways for robust, scalable, and globally relevant
noise prediction frameworks.



7.3 Comparative Analysis of Three Modelling Paradigms:

Performance, Resolution, and Computational Trade-offs

This dissertation provides a unique opportunity to systematically compare three major
modeling approaches for urban noise prediction: the EfficientNet-based convolutional
neural network (CNN) from Chapter 4, the six-layer GraphSAGE graph neural
network (GNN) from Chapter 5, and the dual-branch GNN introduced in Chapter 6.
By drawing together quantitative evaluation results, architectural design
characteristics, computational resource considerations, and practical workflow
demands, the discussion reveals not only the relative strengths of each approach but
also the nuanced trade-offs they entail.

In terms of predictive performance, all models were benchmarked using mean
absolute error (MAE, measured in dBA) and the coefficient of determination (R?),
two metrics widely adopted in international urban environmental modeling (Basner et
al., 2014). The EfficientNet-CNN achieved an MAE of 4.79 dBA and an R? of 0.491,
offering a reasonable baseline using solely image-based features at 30-meter
resolution. The GraphSAGE GNN, operating on a much finer 4-meter grid, improved
these scores to an MAE of 4.40 dBA and an R? of 0.596, demonstrating how explicit
modeling of spatial relationships can enhance fidelity. The dual-branch GNN
achieved an MAE of 4.48 dBA and an R? of 0.576—slightly below the peak accuracy
of GraphSAGE, yet crucially balancing this performance with superior cross-city
generalizability and a dramatically reduced input feature space (171 variables versus
8250).

It should be noted that the CNN architecture implemented in Chapter 4 was developed
during the early stages of this research. At that time, the model adopted a fixed input
patch size and did not incorporate more advanced scale-flexible or multi-scale
receptive field designs. This was a deliberate early-stage design choice aimed at
establishing a proof-of-concept rather than exhausting the potential of CNN-based
approaches. As such, the CNN results should be interpreted with caution—not as a
ceiling on CNN performance, but as an initial experimental baseline. Future work
could explore adaptive patching strategies, scale-aware modules, or hybrid CNN-—
graph architectures to address this limitation.

These differences highlight an important point: finer spatial resolution and graph
complexity can push predictive accuracy higher, but often at the cost of scalability.
The 30-meter resolution adopted in both the CNN and dual-branch GNN aligns with
the native scale of WorldView-2 remote sensing products, making it computationally
efficient for wide-area deployment. In contrast, the 4-meter grid in the GraphSAGE
model, while offering superior spatial detail, imposed heavy demands on memory and
graph construction, raising questions about its practicality for large-scale, multi-city
applications (Paoletti et al., 2019).

From a computational resource perspective, CNNs demand substantial GPU memory
and training time because they ingest raw image data, consistent with findings in the
broader deep learning and remote sensing literature (Kattenborn et al., 2021). While



GNNs were less GPU-intensive, they required significant pre-processing time,
particularly in the feature engineering and graph construction phases, where
thousands of node-level variables had to be computed and integrated. Notably, the
dual-branch GNN introduced an effective solution to this bottleneck by employing
rigorous feature selection and importance ranking, reducing the input feature space by
more than 97% compared to the GraphSAGE approach, while maintaining
competitive performance.

In terms of workflow complexity and practical applicability, CNNs offer an advantage
in simplicity, making them well-suited for rapid deployment in data-rich
environments where raw imagery is readily available. However, their current
implementation in this study did not fully leverage scale-adaptive or context-aware
capabilities, which likely contributed to their relatively lower performance compared
with the GNN approaches. By contrast, GNNs naturally accommodate spatial
dependencies and can incorporate domain knowledge more flexibly, aligning with
growing international consensus that graph-based models are particularly well-suited
for tasks such as noise propagation, where relational structure matters (Hamilton et al.,
2017).

Taken together, the empirical evidence and computational profiles of these models
suggest that graph-based approaches—especially the dual-branch GNN developed in
this dissertation — strike the best balance between accuracy, generalization,
computational efficiency, and interpretability. This finding resonates with a broader
shift in environmental informatics toward graph-structured representations and
spatially aware machine learning, particularly in complex urban applications where
heterogeneity, multi-scale effects, and cross-domain transferability are critical
(Reichstein et al., 2019; Maxwell, 2021). However, the analysis also underscores key
future challenges, notably the need for further reductions in computational demands,
improvements in graph construction automation, and continued refinement of cross-
city generalization strategies.

A methodological reflection that emerged from this dissertation concerns the role of
model depth in environmental prediction tasks. In mainstream deep learning literature,
performance gains are frequently associated with increasing model depth and
representational capacity. However, the results obtained here challenge this
assumption in the specific context of urban noise mapping. The GraphSAGE
framework implemented in Chapter 5, consisting of six stacked convolutional layers,
already captured sufficient multi-scale dependencies to outperform shallower
baselines. Similarly, the dual-branch model in Chapter 6, though relatively shallow in
absolute terms—comprising only two GAT layers and one GCN layer, coupled with
pseudo-labelling and MME loss gating—delivered strong cross-city generalisation.
These outcomes suggest that, in data-limited and highly structured environmental
domains, architectural design and task-specific constraints matter more than raw
network depth. Excessive stacking of layers would not only increase computational
burden but also risk over-smoothing in GNNs, or vanishing gradients in CNNs,
without necessarily yielding meaningful improvements in predictive accuracy.

This observation aligns with recent findings in geospatial and environmental Al
research, where the marginal returns of depth diminish rapidly once networks achieve
sufficient receptive field coverage and relational embedding. Instead, the integration



of domain-adaptation strategies, semantic features, and loss-function desig proved
decisive for model performance. The implication is that future work should prioritise
architectural parsimony and domain-informed design over indiscriminate depth
scaling, particularly in resource-constrained urban applications where interpretability
and computational efficiency are of equal importance to accuracy.

7.4 Complementarity and Advancement Beyond International

Urban Noise Mapping Frameworks

A central contribution of this dissertation is its ability to not only position itself within,
but also expand beyond, the dominant international paradigms of urban noise
mapping. For nearly two decades, frameworks such as the European Noise Directive
(END) and the CNOSSOS-EU standardized methodology have set the benchmarks for
environmental acoustics research and urban noise policy, particularly across European
contexts (Kephalopoulos et al., 2012; Murphy and King, 2014). These systems have
enabled standardized monitoring, cross-national comparability, and informed
regulatory actions (de Kluizenaar et al., 2009; European Environment Agency, 2020).
However, they are inherently data-intensive, requiring extensive traffic, land use, and
infrastructural data, as well as detailed physical modeling — making their application
in heterogeneous or data-scarce urban environments challenging (Basner et al., 2014).

This dissertation offers both empirical and conceptual advancements by
demonstrating how multispectral remote sensing, combined with advanced machine
learning methods such as graph neural networks (GNNs), can serve as scalable and
transferable complements — or even alternatives — to traditional noise mapping
systems. Recent studies applying explainable machine learning to urban noise
assessment have shown that ensemble models such as random forests and gradient
boosting can outperform traditional linear models in traffic noise prediction when
using limited or non-traditional datasets (Aletta et al., 2020). Similarly, deep neural
networks (DNNs) and convolutional neural networks (CNNs) have demonstrated
strong performance in capturing spatial and temporal noise characteristics, reinforcing
the potential of ML to revolutionize environmental acoustics (McLoughlin et al., 2015;
Mesaros et al., 2016).

Importantly, the dissertation’s dual-branch GNN model does not merely replicate
what regulatory models already do; rather, it introduces conceptual innovations that
address structural blind spots in conventional frameworks. While land-use regression
models and deterministic simulations often overlook topological relationships, GNNs
explicitly encode multi-scale spatial interactions, enabling more realistic modeling of
noise propagation through complex urban landscapes. By integrating fine-grained
morphological predictors from remote sensing with broader-scale land use indicators,
the dissertation responds to international calls for environmental analytics that are not
only data-rich but also structurally sophisticated (Reichstein et al., 2019).



From a policy and practice perspective, the proposed approach is designed to be
complementary rather than competitive with existing regulatory frameworks.
Traditional systems such as the European Noise Directive (END) and the CNOSSOS-
EU methodology remain indispensable for legal compliance and standardized noise
management. However, machine learning—based approaches provide scalable, cost-
efficient alternatives for rapid scenario testing, large-area screening, and targeted
interventions—particularly valuable for rapidly urbanizing regions and smart city
infrastructures aiming to integrate dynamic digital twins (Batty, 2018; European
Environment Agency, 2020).

Recent empirical work illustrates this potential. For example, a Random Forest—based
noise evaluation framework developed for Nanchang (China) demonstrated how
explainable machine learning can effectively support spatial planning decisions with
limited traditional input data (Teng et al., 2024). Similarly, urban street-level noise
estimation based on street view imagery has been shown to produce reliable, fine-
scale predictions along transportation corridors, providing a cost-effective and
transferable tool for municipal applications (Huang et al., 2024). At an even broader
scale, vision—acoustic cross-modal inference methods have enabled efficient sensing
of urban soundscapes in data-scarce environments, offering new pathways for large-
area environmental assessments (Zhao et al., 2023).

At the same time, this research critically acknowledges the limitations of machine
learning and remote sensing approaches, including the risks of overfitting,
interpretability challenges, and the absence of explicit physical causality. As noted by
Karpatne et al. (2017), the integration of machine learning with physical process
models—so-called theory-guided data science—represents a promising direction to
address these issues. In line with global trends, the future of urban noise modeling is
likely to rely on hybrid frameworks that combine the scalability of Al, the physical
grounding of traditional noise models, and the interpretability required for policy and
public trust.

In summary, this dissertation contributes a technically robust, conceptually innovative,
and practically scalable complement to established regulatory frameworks. It bridges
the gap between data-intensive simulation models and next-generation, Al-driven
approaches, pointing toward a future where remote sensing, machine learning, and
graph analytics jointly extend the reach, reduce the cost, and amplify the policy
relevance of urban environmental governance.

7.5 Limitations and Areas for Improvement

Despite the considerable methodological advances presented in this dissertation,
several inherent limitations remain, reflecting both case-specific constraints and
broader challenges within the Al-driven environmental modeling field. Critically
examining these limitations is essential, as it not only frames the scope of the present
research but also provides a foundation for meaningful future improvements, aligning
with the growing international discourse on reliable, explainable, and multimodal
urban analytics (Karpatne et al., 2017; Reichstein et al., 2019).



7.5.1 Limitations of Remote Sensing Imagery

One foundational limitation of the proposed framework stems from its reliance on
high-resolution multispectral remote sensing imagery. Although modern satellite
systems such as WorldView-2 offer rich spatial detail, their outputs remain
constrained by atmospheric conditions, sensor artifacts, and cloud cover, all of which
can introduce noise and reduce the reliability of derived features (Wulder et al., 2012;
Zhu et al., 2017). Furthermore, the spatial resolution of optical satellite imagery,
while sufficient for broad urban classification, falls short of capturing micro-scale
morphological elements that substantially affect local noise propagation—such as
narrow street canyons, small vegetation barriers, or detailed building layouts (Herold
et al., 2004).

Beyond spatial limitations, multispectral imagery inherently lacks dynamic or
subsurface information. While it can indicate static proxies such as land use type or
surface materials, it remains blind to temporally fluctuating factors like real-time
traffic volume, human activity patterns, or transient noise barriers. These missing
dimensions are often critical for urban acoustic modeling, as emphasized in recent
studies highlighting the integration of temporally resolved data from mobile
monitoring, traffic sensors, and participatory sensing networks to capture fine-grained
dynamics in urban sound environments (Maisonneuve et al., 2010; Aletta et al., 2016).

Addressing these limitations requires embracing multimodal integration. Future
research should combine satellite-based information with complementary inputs, such
as airborne LiDAR for three-dimensional urban morphology, traffic datasets for
dynamic activity profiles, and crowd-sourced acoustic data. Recent developments in
urban environmental analytics have shown that such multimodal approaches improve
predictive accuracy and reduce blind spots, particularly in heterogeneous cityscapes
(Li et al., 2016; Zheng et al., 2018).

7.5.2 Model Interpretability and the Black-Box Challenge

Another significant challenge arises from the interpretability of deep learning models,
particularly graph neural networks (GNNs), which form the core of the final
architecture presented in this dissertation. While GNNs excel at capturing complex
spatial dependencies and relational patterns, their internal representations are often
opaque, making it difficult to trace specific predictions back to physically meaningful
features or mechanisms. This “black box” limitation is increasingly recognized as a
barrier to the broader adoption of Al in environmental science, where stakeholders
and policymakers require models that are not only accurate but also explainable and
transparent (Karpatne et al., 2017; Reichstein et al., 2019).

In this research, several strategies were adopted to partially mitigate these concerns,
including the use of physically interpretable input features (e.g., land-use ratios and
morphological indicators) and explicit edge-weight modulation based on



environmental relevance. However, the graph embeddings and learned message-
passing processes themselves remain challenging to interpret without specialized tools.

Recent work points to promising directions for enhancing GNN interpretability,
including post-hoc explanation frameworks such as GNNExplainer, attention
visualization methods for edge-level attribution, and hybrid architectures that combine
neural learning with symbolic, rule-based, or physics-informed components (Ying et
al., 2019; Pope et al., 2019; Yuan et al., 2021). Incorporating such strategies in future
urban noise prediction frameworks would improve their trustworthiness and facilitate
their integration into operational urban planning and environmental management
workflows.

7.5.3 Graph Construction and Spatial Distance Encoding in GNNs

A further technical limitation stems from the design and construction of the graph
structures underlying the GNN models. In this dissertation, spatial graphs were
constructed primarily using Euclidean distances between grid points, a common
approach in spatial machine learning due to its simplicity and computational
efficiency (Hamilton et al., 2017; Wu et al., 2020). However, Euclidean distance does
not always reflect the true pathways or barriers relevant to urban noise propagation.
For example, noise tends to travel preferentially along transportation networks, while
being blocked or attenuated by buildings, vegetation, or elevation changes. Straight-
line distance—based graphs, therefore, risk misrepresenting the functional connectivity
of urban acoustic spaces, potentially introducing biases into the learned
representations (Aletta et al., 2016; Kang, 2007).

While this study incorporated land-use-derived edge weighting to partially account for
environmental relevance, more advanced approaches are needed to fully capture the
anisotropic and complex nature of urban noise diffusion. Recent advances in spatial
graph construction recommend the use of network-constrained topologies (e.g., road
graphs), simulation-informed adjacency matrices derived from acoustic propagation
models, or dynamic graphs with edge weights that adapt to temporal or environmental
conditions (Vaswani et al., 2017; Bai et al., 2020; Sahili et al., 2023). Integrating such
innovations could significantly enhance the physical realism and predictive fidelity of
future urban acoustic models.

7.5.4 Toward Integrated and Multimodal Approaches: Broader
Literature Perspectives

Beyond the technical and data-specific challenges discussed above, a major avenue
for future research involves the integration of multimodal data sources and hybrid
modeling approaches. While this dissertation focused primarily on high-resolution
multispectral remote sensing and land use/land cover (LULC) indicators, urban noise
environments are shaped by a much wider set of interacting variables—including
dynamic traffic flows, meteorological variability, and human activity patterns. Single-



modality models, regardless of architectural sophistication, can only partially
approximate these complex dynamics.

Emerging studies in environmental informatics demonstrate the potential of fusing
heterogeneous datasets—such as real-time traffic data, weather station records,
crowd-sourced sensing streams, and mobile acoustic measurements—into unified
prediction frameworks for complex urban phenomena. Such multimodal architectures
enhance representational richness while enabling spatiotemporal modeling strategies
capable of capturing both static background conditions and dynamic fluctuations in
urban soundscapes (Zheng et al., 2018; Bai et al., 2020; Wu et al., 2020). For example,
integrating spatial graph neural networks with temporal models such as recurrent
neural networks or temporal graph convolution allows for fine-grained modeling of
diurnal, weekly, or seasonal noise variability—an increasingly emphasized direction
in recent spatiotemporal Al research (Yu et al., 2018; Li et al., 2018).

Complementing multimodal fusion, the embedding of physical constraints and
domain knowledge into machine learning workflows represents another promising
line of advancement. Approaches such as physics-informed neural networks (PINNs),
hybrid simulation-learning architectures, and constraint-based regularization have
already achieved strong results in domains like hydrology, climate modeling, and air
quality forecasting (Karpatne et al., 2017; Reichstein et al., 2019; Raissi et al., 2019).
Applying such principles to urban acoustics would allow models to encode physical
relationships—such as distance-based attenuation, surface reflection, or regulatory
thresholds—directly within their learning objectives or architectural design, thereby
improving physical realism, generalizability, and interpretability.

In summary, while this dissertation advances scalable and generalizable urban noise
prediction through the integration of remote sensing, graph learning, and domain
adaptation, it also acknowledges several limitations that must be addressed to fully
unlock the potential of Al-driven environmental modeling. These limitations span
data fidelity, interpretability, physical grounding, and integration with broader urban
systems. The most promising solutions lie in fusing multimodal datasets, embedding
domain-specific physical constraints, developing dynamic and context-aware graph
architectures, and advancing explainability tools tailored to planning and policy needs.

By pursuing these directions, future research can foster a new generation of urban
noise models that are not only computationally efficient and scientifically robust but
also operationally impactful—empowering cities worldwide to better monitor,
manage, and mitigate the complex acoustic environments that shape urban life.

7.6 Policy and Practical Implications

The innovations developed in this dissertation carry substantial implications for urban
policy, environmental management, and the broader landscape of sustainable city
governance. By combining high-resolution remote sensing, graph-based machine
learning, and scalable prediction architectures, the research introduces practical tools



that extend beyond theoretical contributions, offering actionable pathways for
improving urban noise governance.

A key implication lies in lowering the barriers to large-scale noise monitoring,
particularly in cities with limited technical or financial resources. Traditional
environmental noise surveillance systems rely heavily on dense in situ measurement
networks and detailed traffic or infrastructural datasets, making them expensive and
logistically demanding (Murphy & King, 2014; Murphy & King, 2010). In contrast,
the data-driven, transferable modeling framework developed here enables cities—
especially those in rapidly urbanizing regions or the Global South—to generate
reliable, high-resolution noise exposure estimates without requiring such exhaustive
inputs. This contributes to environmental equity by democratizing access to critical
environmental health information, aligning with global sustainability and public
health agendas (Maxwell, 2021).

In the domain of urban planning and infrastructure development, the methods
proposed in this work support faster and more targeted environmental impact
assessments. Predictive noise models integrated with urban land wuse and
morphological data allow planners to identify existing and emergent noise hotspots,
evaluate the likely benefits of mitigation strategies, and prioritize interventions in
sensitive areas such as residential neighborhoods, schools, and hospitals. As the link
between environmental noise exposure and public health outcomes becomes
increasingly formalized in both European and international policy frameworks
(Basner et al., 2014; WHO, 2018), scalable and reproducible models like those
presented here can support cities in regulatory compliance, proactive health risk
assessment, and the design of more livable urban environments.

Beyond supporting regulatory compliance, the integration of graph-based machine
learning aligns with the growing vision of smart city governance. Embedding
predictive tools within digital twin environments enables urban managers to simulate
development or policy scenarios, integrate real-time sensor streams, and iteratively
refine strategies as conditions evolve (Batty, 2018; Allam & Dhunny, 2019). Such
adaptive, data-rich governance models foster more resilient, responsive, and citizen-
centered urban systems, enhancing the capacity of local governments to address
complex environmental challenges.

Importantly, the attention to model interpretability and physical plausibility directly
addresses contemporary concerns about the responsible use of Al in public policy.
Black-box predictive systems, while powerful, often face resistance when deployed in
high-stakes governance contexts due to issues of trust, accountability, and
explainability (Reichstein et al., 2019). By prioritizing interpretable features,
transparent workflows, and domain-informed architectural choices, this dissertation
supports the development of predictive systems that can withstand policy scrutiny and
enable meaningful stakeholder engagement—including by planners, regulators, and
affected communities.

Finally, the open-source, scalable nature of the developed frameworks facilitates a
broader democratization of environmental knowledge. Tools that can be deployed
using accessible data sources and reproducible computational pipelines empower not
only formal institutions but also local communities, NGOs, and citizen science



initiatives. This participatory dimension aligns with calls in environmental
governance for more inclusive, bottom-up approaches to urban health management,
where local voices play an active role in shaping both data collection and policy
outcomes (Goodchild, 2007; Haklay, 2013).

In summary, the contributions of this dissertation extend well beyond academic and
technical domains, offering new opportunities for cities to improve environmental
monitoring, policy design, and public engagement. By providing scalable,
interpretable, and adaptable modeling solutions, the research helps bridge the gap
between cutting-edge computational techniques and the real-world needs of urban
governance in the 21st century.

7.7 Future Research Directions

While this dissertation has demonstrated notable advances in scalable and
generalizable urban noise prediction, the rapid evolution of artificial intelligence,
urban analytics, and geospatial technologies opens several promising avenues for
future research. These directions emerge both from the limitations identified in the
present work and from broader trends in interdisciplinary environmental data science.

A critical next step involves the incorporation of physics-informed machine learning
(PIML) approaches, which combine the flexibility of data-driven models with the
robustness and interpretability of physical principles. By embedding domain
knowledge, conservation laws, or even differentiable simulation modules within
neural architectures, future models could ensure physically consistent predictions,
improving both reliability and policy credibility. Recent advances in Earth system
modeling and environmental forecasting demonstrate the feasibility and value of such
hybrid approaches, offering practical templates for applications in urban acoustics
(Karpatne et al., 2017; Reichstein et al., 2019; Willard et al., 2022). For urban noise
mapping, coupling graph neural networks (GNNs) or convolutional neural networks
(CNNs) with established acoustic simulation tools—or regularizing learning with
known propagation constraints—could substantially enhance model fidelity,
particularly in complex or under-sampled environments.

Another promising area is multimodal and sensor-fusion modeling. As urban sensor
networks, mobile devices, and participatory sensing initiatives proliferate, the
integration of heterogeneous data streams—including real-time acoustic sensors,
traffic flows, weather data, and high-resolution remote sensing—offers unprecedented
opportunities to capture the dynamic complexity of urban soundscapes. However,
such integration presents significant technical challenges, including harmonizing
structured and unstructured data, managing biases, and designing architectures
capable of processing asynchronous, multi-source inputs. Advances in multimodal
learning, attention mechanisms, and adaptive fusion strategies (Maxwell et al., 2021;
Huotari et al., 2024) provide promising methodological starting points for addressing
these challenges.



The advancement of semi-supervised, few-shot, and transfer learning techniques also
holds great promise. Given the scarcity of labeled noise data in many urban contexts,
especially in rapidly urbanizing regions, maximizing the value of unlabeled or weakly
labeled data is a high-priority research need. Approaches such as self-supervised
learning, domain adaptation, and federated learning could enable models to generalize
more effectively across diverse cities without requiring extensive local calibration
(Zhang et al., 2022; Kairouz et al., 2021). Moreover, privacy-preserving strategies
would allow cross-jurisdictional knowledge sharing while respecting data sovereignty
and confidentiality constraints.

Temporal dynamics represent another largely untapped dimension in current urban
noise modeling. Most models—including those developed in this dissertation—focus
on static or snapshot predictions, neglecting the pronounced temporal variability in
urban sound environments driven by daily cycles, seasonal shifts, meteorological
factors, and episodic events. Incorporating time-aware modeling—through recurrent
neural networks (RNNs), temporal graph neural networks, or spatiotemporal
transformers—could allow predictions that reflect not only spatial heterogeneity but
also diurnal and seasonal rhythms, improving both accuracy and policy relevance (Yu
etal., 2018; Wu et al., 2020).

Beyond methodological innovation, the creation of large-scale, standardized urban
noise benchmarks and open-access datasets would substantially accelerate progress.
Just as benchmark datasets such as ImageNet (Deng et al., 2009) transformed the field
of computer vision, comprehensive, multi-city urban noise datasets with standardized
formats and evaluation protocols would provide essential foundations for reproducible
research and comparative assessment of competing methods. Such resources would
enable the research community to rigorously test generalization, transferability, and
scalability claims, thereby strengthening the scientific foundation of the field.

Finally, the practical integration of advanced noise models into real-world decision-
support systems remains a critical frontier. As cities increasingly adopt digital twin
frameworks, smart city dashboards, and interactive urban analytics platforms, future
research should focus on automating data pipelines, improving real-time model
responsiveness, and developing user-friendly interfaces that empower planners,
policymakers, and communities. Collaborative system design—incorporating
feedback from diverse stakeholders—will be essential to ensure that these tools are
not only technically advanced but also accessible, actionable, and aligned with
societal needs (Batty, 2018; Allam & Dhunny, 2019; Somanath et al., 2024).

In sum, the future of urban noise modeling lies at the intersection of multimodal data
integration, physics-informed Al, scalable adaptive architectures, and participatory
system design. Advancing along these lines will not only improve scientific
understanding of urban sound environments but also drive meaningful improvements
in public health, environmental justice, and the overall quality of urban life.



7.8 Conclusion

This dissertation has undertaken an ambitious investigation into the integration of
high-resolution remote sensing, advanced machine learning, and graph-based spatial
modeling to address one of the most enduring challenges in urban environmental
management: the scalable and generalizable prediction of urban noise. Through a
carefully structured research design—spanning classical machine learning,
convolutional neural networks (CNNs), and ultimately dual-branch graph neural
networks (GNNs)—the study systematically advances the methodological frontiers of
urban noise analytics.

The work makes several substantive contributions to both theory and practice. At its
core, the research challenges the long-standing reliance on dense field measurements,
detailed traffic and infrastructure data, and physics-heavy simulation models that
dominate traditional noise mapping frameworks such as those used under the
European Noise Directive (Kephalopoulos et al., 2012; Murphy & King, 2022). By
demonstrating that satellite-derived morphological and spectral proxies—when
carefully engineered and analyzed through spatially aware neural architectures—can
approximate much of the spatial signal found in conventional datasets, the dissertation
expands the toolkit available for urban environmental modeling, particularly in
resource-limited contexts.

The adoption of a dual-branch GNN architecture is particularly significant. It allows
for the explicit separation and recombination of fine-scale local morphological effects
and broader land-use-driven contextual influences, reflecting the multi-scale and
multi-causal nature of urban noise propagation. This capacity is further strengthened
through domain-adaptive learning strategies, which enhance the model’s ability to
generalize across cities with divergent spatial, infrastructural, and environmental
characteristics—a persistent challenge in environmental modeling (Zhang et al., 2022;
Reichstein et al., 2019). The comparative analyses between CNN, single-branch GNN,
and dual-branch GNN models provide robust empirical evidence that spatial graph
architectures offer the best trade-off between predictive accuracy, computational
efficiency, and cross-domain transferability.

However, the dissertation does not shy away from identifying its own limitations.
Remote sensing imagery, while rich in spatial detail, provides only indirect proxies
for the physical and dynamic processes governing urban soundscapes. The black-box
nature of deep learning models continues to pose challenges for interpretability,
stakeholder trust, and regulatory uptake, despite recent efforts in explainable Al (XAI)
(Karpatne et al., 2017; Maxwell et al., 2018). Furthermore, the reliance on Euclidean
distance-based graph construction, though computationally tractable, insufficiently
captures the anisotropic, pathway-dependent nature of noise propagation in real urban
environments.

These methodological constraints point toward clear directions for future research.
Physics-informed machine learning (PIML) offers a promising route to embed
acoustic principles directly into neural models, enhancing physical plausibility and
interpretability (Willard et al., 2022). Multimodal data integration, combining satellite
observations, sensor networks, traffic flows, and citizen-generated data, can enrich the



feature space and reduce reliance on any single data modality. Advances in semi-
supervised, few-shot, and transfer learning methods will be critical for deploying
these models in under-monitored or rapidly changing urban environments, extending
their global relevance (Zhang et al., 2022).

Beyond scientific innovation, the dissertation carries important policy and practical
implications. The development of scalable, automated noise prediction frameworks
supports the democratization of environmental monitoring, reducing barriers to entry
for cities with limited technical or financial resources. By aligning with smart city
initiatives and digital twin infrastructures, these models can contribute to adaptive,
data-driven urban governance, enabling real-time scenario testing, targeted
interventions, and participatory planning (Batty, 2018; Allam & Dhunny, 2019;
Somanath et al., 2024). Moreover, the emphasis on interpretability and physical
grounding aligns with growing calls for trustworthy Al systems that are transparent,
accountable, and socially responsible (Reichstein et al., 2019).

In summary, this dissertation presents a robust, scalable, and scientifically grounded
framework for urban noise prediction, advancing the field from data-hungry, domain-
specific models toward more flexible, transferable, and interpretable architectures.
While important challenges remain, the convergence of multimodal data, physics-
informed Al, and participatory system design holds immense promise for reshaping
how cities understand, manage, and ultimately improve their acoustic environments.
By bridging the gap between technical innovation and real-world application, the
work lays a foundation for future research and practice at the intersection of
environmental science, urban informatics, and machine learning.
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Appendix | 28 Gray-Level Co-occurrence Matrix (GLCM)

Features

Index

Feature

Class

Formula

Description

Mean

Advanced

fO = Zlg(’t,j)

1,

Indicates the average gray
level, capturing the general
brightness of an image. It
measures the mean of the co-
occurrence matrix elements,
reflecting the overall intensity
level in the image.

Energy

Simple

.fl = Zg(iaj)z
]

This quantifies the textural
uniformity of the image, with
higher values suggesting
homogeneity. It is also known
as the Angular Second
Moment, measuring the sum
of squared elements in the
GLCM.

Entropy

Simple

.f2 = = ZQ(Z’J) logg(iaj)

0j

Measures the randomness or
complexity in the image. High
entropy indicates more
complex textures with richer
information, derived from the
unpredictability in pixel
distribution

Haralic
K's
Correlat
ion

Simple

Evaluates the linear
dependency of gray level
values in the image. It
quantifies how correlated a
pixel is to its neighbors over
the whole image.




10

Inertia
(or
Contras

t)

Dissimi
larity

Sum of
Varianc
e

Simple

Simple

Advanced

f5 = 2(7’7])29(7’7])

2Y)

fr=">Y_li—jlg(s3)
i,J

fo=> (i — £10)’gasy(i)

(3

Represents the local intensity
variation, with higher values
indicating more contrast or
variation in the image texture.

Assesses the contrast between
gray levels, emphasizing the
differences between
neighboring pixels.

Reflects the variance from the
sum average of the matrix,
measuring the spread or
dispersion in the sum
distribution of the gray levels.
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Quantifies the randomness or
uncertainty of the sum

11 Szﬁ)gf Advanced | J10 =~ Z 9o+y(1)108 9o43(1)  gisiribution in the GLCM,
y ¢ indicating the complexity in
the texture pattern.
Differe Measures the dispersion in the
nce of . . difference distribution,
12 Varianc Advanced ‘fll = Variance of Jz—y (Z) indicating variations in
e intensity differences.
Measures the randomness or
Differe _ A : complexity in the difference
13 nceof | Advanced | 412 = Z 9a-+y(i) 108 go—y(7) distribution, highlighting the
Entropy @ unpredictability in the
intensity differences.
These metrics quantify the
Infl%rrrlna amount of information
required to determine the
Meas1f1r fi3 = L correlation between
14 & 15 C(e)ir(e)lat Advanced HXY1 occurrences of specific pixel
ion (IC1 fia = \/1 —exp(—2(HXY2 — fi1 pairs. They.help in
and ' un'derstandlng the
1C2) informational dependency and
redundancy within the image.
Similar to Haralick's
Correlation, this measures the
Correlat _ (’L — ,u) ( 71— ,LL) g(i, ]) statistical correlation between
16 ‘on Simple f 15 — Z o2 pixels, indicating how much
1,J one pixel's intensity predicts
the intensity of a neighboring
pixel.
Measures the skewness or
. ) 3 ,.  asymmetry of the distribution
17 Cluster Simple fi6 = Z((z —u)+(G—p)’9(i,7 of the GLCM values. It
Shade i reflects how much the texture

2¥)

deviates from the uniform
distribution.




19

Short
Run
Emphas
is

Grey-
Level
Nonunif
ormity

Low
Grey-
Level

Run
Emphas
is

Higher

Higher

Higher

fro = — 33 pli))?

1 (i, j)
faa = - ; =

Emphasizes short runs, or
sequences of similar gray
level values, indicating fine
textures.

Measures the variability in

grey-level intensity values,

indicating the presence of a

dominant gray level in the
texture.

Emphasizes runs with low
grey-level values, often
highlighting darker textures.
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High

A 1 o Emphasizes runs with high
24 Rln Higher fo3 = o E :P(% J) X @ grey-level values, highlighting
Emphas 1,J brighter textures.
is
Short
I}}(l)l\?/ 1 P (Z ,7) Combines short runs with low
95 Grev- Hich fog = — E i bl grey-level values, indicating
Y teher nr 4~ 42 j 2 fine textures with lower
Level bl intensity
Emphas ’
is
Short
II;IHL 1 p( i J) %72 Combines short runs with high
2% G ég Hich f25 - 2 grey-level values, indicating
rey- teher nr 4— Iz fine textures with higher
el b intensity.
Emphas
is
Long
I}il)lvr:/ 1 p( i ]) j2 Combines long runs with low
27 G Hich f26 - ? grey-level values, indicating
rey- tehet nr 44— 1 coarse textures with lower
Level J intensity
Emphas ’
is
Long
11{{11,;1;1 1 5 .5 Combines long runs with high
28 Grov- Higher for = — E p(i, ]) i grey-level values, indicating
Le }él nr i coarse textures with lower
N rd intensity.
Emphas

18

In the context of Haralick's Correlation within the GLCM framework, the terms /¢
and 0t represent the mean and standard deviation of the sums across rows (or columns,
due to the matrix's symmetric property). Specifically, # refers to the weighted average
of pixel intensities, while ¢ denotes the weighted variance of pixel intensities.

The functions 9=+v(¥) and 9=-v(k) are defined as follows:




gz+y(k) = Z Z g(l)

i ,wherei+j=kandk=2,3,..,2N,. This function accounts
for the sum of elements in the GLCM where the sum of row and column
indices equals k.

gey(k) =D " g(i)

i ,wherei — j = kand k = 0, 1,...,Ng — 1. This function
represents the sum of elements where the difference between row and
column indices equals k.

For the Run Length Matrix (RLM), (i, 5) represents the normalized value at the i-
throw and j-th column, indicating the frequency of runs with length jjj and gray level
iii. The total number of runs is denoted by n., while n,, represents the total number of
pixels in the image. These metrics are used to compute various textural features such
as Run Length Nonuniformity (RLN) and Grey-Level Nonuniformity (GLN), which
provide insights into the distribution and variability of run lengths and grey levels,
respectively, within the image.

In Study 3, only 23 grey scale features were used and Sum of Average, Sum of
Variance, Sum of Entropy and Variance were no longer used
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Appendix II: Summary of Feature Maps

Below is the revised table that logically presents the details of each feature map,
including the band information, the formula for calculating the remote sensing index,
and the associated GLCM texture features. The formulas are presented using a more
professional format with subscript notation for band names.

Feature Ma Band Remote GLCM
Index Name P Level Informatio Formula Sensing Texture
n Index Feature
| N 1 | Blue — NIR; N
BAI Blue, NIR BAI None
Blue + NIR,
2 Blue Blue N/A None None
\ B Yellow, Yellow—2- NIR; B
NIR1 Yellow+ 2 - NIR,
4 BSI_Correlati Simple Yellow, Yellow — 2. V1R, BSI Correlation
on NIR1 Yellow+ 2 - NIR;
5 BSI DE | Advanced | 'ChoW Yellow —2- N8, BSI DE
- NIRI Yellow+ 2 - NIR;
6  BSLDissimil |\ ceq | Yellow, Yellow — 2. N1 BSI | Dissimilarit
arity NIRI Yellow+ 2 - NIR; Y
7 BSIDYV | Advanced || Loio¥: Yellow —2- NI BSI DV
- NIRI1 Yellow+2- NIR,
8 BSI_Energy Simple NIR1 Yellow+ 2 - NIR; BSI Energy
. Yellow Yellow —2-NIR;
9 BSI Entropy Simple NIR1 Yellow+ 2 - NIR; BSI Entropy
10 BSI GLN Higher Yellow, Yellow —2- N1R, BSI GLN
- g NIRI Yellow+ 2 - NIR;
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Feature Ma Band Remote GLCM
Index l\lllame P Level Informatio Formula Sensing Texture
n Index Feature
Yellow—2-NIR
: Yellow 1
11 BSI HC Simpl ’ BSI HC
— . NIR1 Yellow+ 2 - NIR;
Yellow Yellow —2- NIR;
12 BSI LGRE High. ’ BSI LGRE
- T NRL Yellow+2- NIR;
Yellow—2-NIR
Yellow 1
13 BSI ICI Ad d ’ BSI IC1
- S ONIRL Yellow + 2+ NIR;
14 BSI IC2 | Advanced | SHOW: Yellow —2- NIR, BSI 1C2
- NIRI Yellow+ 2- NIR;
Yellow -2 - NIR
. Yellow 1
15 BSI IDM Simpl ’ BSI IDM
- TP NRI Yellow+2- NIR;
Yellow—2- NIR;
16 BSI Inertia = Simple Yellow, BSI Inertia
NIR1 Yellow+ 2 - NIR,
Yellow Yellow —2-NIR;
17 BSI SRHGE  High ’ BSI SRHGE
- e NIRI Yellow +2- NIR;
Yellow —2- NIR
. Yellow. 1
18 BSI LRE High ’ BSI LRE
- e NIRI Yellow +2- NIR;
Yellow Yellow—2- NIR;
19 BSI LRHGE = High ’ BSI SRHGE
- S NIR1 Yellow+ 2 - NIR;
_ Yellow Yellow —2- NIR;
20 BSI_Mean Simple NIR1 Yellow + 2 - NIR; BSI Mean
21 BSI LRLGE | High ’ BSI LRLGE
- s NIR1 Yellow +2- NIR;
22 BSI RLN Higher Yellow, Yellow —2- NIR, BSI RLN
- g NIRI Yellow+ 2 - NIR;
Yellow -2 - NIR
. Yellow 1
23 BSI SRE High ’ BSI SRE
- e NIR1 Yellow +2- NIR;
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Feature Ma Band Remote GLCM
Index Name P Level Informatio Formula Sensing Texture
n Index Feature
Yellow Yellow—2- NIR;
24 BSI SRLGE High ’ BSI SRLGE
- e NIR| Yellow+2- NIR;
Yellow Yellow — 2 - NIR;
25 BSI HGRE Higher > BSI HGRE
- s NIRI Yellow+2- NIR;
Yellow Yellow —2- NIR;
26 BSI Variance | Advanced NIR1 ’ Yellow+ 2 - NIR; BSI Variance
27 CoastalBlue Coastal Blue N/A None None
28 Green Green N/A None None
RedEdge — NIR;
29 NBEI Red Edee, - NBEI None
NIR1 RedEdge + NIR,
%0 . | Red — NIR;
NDVI Red, NIR NDVI None
Red + NIR,
Red — NIR,
31 |NDVLComel|l 0 le | Red, NIRI NDVI || Correlation
ation Red + NIR,
. . . Red — NIR;
32 NDVI DE Advance Red, NIR1 NDVI DE
- Red + NIR;
- Red — NIR;
33 (NDVLDissimi ) 4o nced | Red, NIRI NDVI || Dissimilarity
1 Red + NIR;
Red — NIR,
34  NDVLEnmerg g le | Red, NIRI NDVI Energy
y Red + NIR,
Red — NIR,
35 NDVLEntop o e | Red, NIRI NDVI ERer
y Red + NIR;
36 NDVI GLN High Red, NIR1 et = NIRI NDVI GLN
. igher ed,
Red + NIR,
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Feature Ma Band Remote GLCM
Index Name P Level Informatio Formula Sensing Texture
n Index Feature
e ; Red — NIR; .
37 NDVI H imple Red, NIR1 NDVI Hi
- P Red + NIR,
38 NDVI LGRE High Red, NIR1 Red - NIR, NDVI LGRE
_ igher ed,
Red + NI R1
39 NDVI IC1 Ad d | Red, NIR1 Red - NIR, NDVI IC1
vance ed,
- Red + NIR,
40 C2 | Ad d d 1 fen — N C2
NDVI 1 vance Red, NIR NDVI I
- Red + NIR,
41 NDVI IDM Simpl Red, NIR1 Red - NIR, NDVI IDM
. imple ed,
Red + NIR,
NDVI_SRHG , Red — NIR,
42 p= Higher Red, NIR1 NDVI SRHGE
E & Red + NIR,
43 . ; | Red — NIR;
NDVI LRE Higher Red, NIR NDVI LRE
- Red + NIR;
NDVI LRHG ... Red — NIR,
44 = Higher Red, NIR1 NDVI LRHGE
E Red + NIR,
A ; ; Red — NIR,
45 NDVI Mean vance Red, NIR1 NDVI Mean
- Red + NIR;
NDVI LRLG = ... Red — NIR;
46 = Higher Red, NIR1 NDVI LRLGE
E Red + NIR,
47 NDVI RLN High Red, NIR1 Red - NIR, NDVI RLN
. igher ed,
Red + NIR,
48 S h d, NIR1 fed — N1R, S
NDVI_SRE Higher Red, NIR NDVI RE
- Red + NIR,
NDVI SRLG = .. Red — NIR,
49 = Higher Red, NIR1 NDVI SRLGE
E Red + NIR,
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Feature Ma Band Remote GLCM
Index P Level Informatio Formula Sensing Texture
Name
n Index Feature
) ) Red — NIR;
50 NDVI _HGRE Higher Red, NIR1 NDVI HGRE
- ¢ Red + NIR,
: Red — NIR
51 ILONAL Voo Advanced : Red, NIR1 ! NDVI Variance
e Red + NIR;
52 NDWI G NIR1 Green — NIR, NDWI N
reen, one
Green — NIR;
53 NIR1 NIR1 N/A None None
54 NIR2 NIR2 N/A None None
55 Red Red N/A None None
56 RedEdge Red Edge N/A None None
Red — Green
57 RGI Red, reen. RGI None
ue Red + Green
?OaStald Coastal Blue — RedEdge
58 WVBI Blue, Re WVBI None
Edge  Coastal Blue + RedEdge
WVBI Correl . Coastal  Coastal Blue — RedEdge
59 = Simple Blue, Red WVBI
ation Coastal Blue + RedEdge
Edge
60 WVBI_CP Simpl Bfoasft{ald Coastal Blue — RedEdge WVBI CP
imple ue, Re
- P Edge  Coastal Blue + RedEdge
o cs i ?OaStald Coastal Blue — RedEdge cs
WVBI imple Blue, Re WVBI
- P Edge = Coastal Blue + RedEdge
o Advanced BfoaSIt{ald Coastal Blue — RedEdge
WVBI DE vance ue, Re WVBI DE
- Edge  Coastal Blue + RedEdge
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Feature Ma Band Remote GLCM
Index " P Level Informatio Formula Sensing Texture
Name
n Index Feature
i Coastal = Coastal Blue — RedEdge
63 WVBI—.DISSI Advanced | Blue, Red = WYVBI Dissimilarity
mi Edge  Coastal Blue + RedEdge
o Advanced Bfoaslt{ald Coastal Blue — RedEdge
WVBI DV ance ue, Re WVBI DV
- Y Edge Coastal Blue + RedEdge
Coastal  (Coastal Blue — RedEdge
WYVBI_Energ . g
65 = Simple Blue, Red WVBI Ener
y P Edge  Coastal Blue + RedEdge =
Coastal  Coastal Blue — RedEdge
WVBI_Entro . g
66 - Simple Blue, Red WVBI Entro
py P Edge Coastal Blue + RedEdge Py
; o . B(ljoaSItiald Coastal Blue — RedEdge .
7 WVBI GLN Higher ue, Re WVBI LN
- s Edge  Coastal Blue + RedEdge
68 WVBI_HC Simpl Bfoaslt{ald Lame it RedEdge WVBI HC
imple ue, Re
- P Edge = Coastal Blue + RedEdge
0 o . ?OaStald Coastal Blue — RedEdge .
WVBI LGRE Higher Blue, Re WVBI LGRE
- s Edge = Coastal Blue + RedEdge
70 WVBI IC1 Ad d Bfoasft{ald Coastal Blue — RedEdge WVBI IC1
vance uc, R€
- Edge  Coastal Blue + RedEdge
. vanced foaStald Coastal Blue — RedEdge .
71 WYVBI 1C2 Advance Blue, Re WYVBI 1C2
- Edge  Coastal Blue + RedEdge
, i Bfoaslt{ald Coastal Blue — RedEdge
7 WYVBI IDM imple ue, Re WVBI IDM
- P Edge Coastal Blue + RedEdge
73 WVBI Inerti Simpl Bcljoasgld Coastal Blue — RedEdge WVBI Inerti
nertia imple ue, Re nertia
- P Edge  Coastal Blue + RedEdge
Coastal  Coastal Blue — RedEdge
74 WVBIESRHG Higher Blue, Red | WVBI SRHGE
Edge Coastal Blue + RedEdge
. B(ljoaSItiald Coastal Blue — RedEdge
75 WVBI LRE Higher ue, Re WVBI LRE
- s Edge  Coastal Blue + RedEdge
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Feature Ma Band Remote GLCM
Index P Level Informatio Formula Sensing Texture
Name
n Index Feature
Coastal  Coastal Blue — RedEdge
76 WVBL LRLG Higher Blue, Red J WYVBI LRLGE
E Edge | Coastal Blue + RedEdge
77 WVBI M Ad d B(ljoasftfld Coastal Blue — RedEdge WVBI M
can vance ue, Re can
- Edge  Coastal Blue + RedEdge
78 WVBI RLN High Bfoasft{ald ComsiauBine— RedEdge WYVBI RLN
igher ue, Re
- & Edge  Coastal Blue + RedEdge
Coastal = (Coastal Blue — RedEdge
WVBI_LRH . g
79 - Higher Blue, Red WVBI LGRE
GE s Edge = Coastal Blue + RedEdge
% S . Bfoaslt{ald Coastal Blue — RedEdge S
WVBI SRE Higher ue, Re WVBI RE
- & Edge  Coastal Blue + RedEdge
Coastal = (Coastal Blue — RedEdge
81 UL LS Higher Blue, Red 4 WYVBI SRLGE
E Edge  Coastal Blue + RedEdge
Coastal  Coastal Blue — RedEdge
82 WVBL_HGR Higher Blue, Red g WVBI HGRE
E Edge | Coastal Blue + RedEdge
~ Coastal = Coastal Blue — RedEdge
83 WVBI_Varia Advanced | Blue, Red o WVBI Variance
nce Edge  Coastal Blue + RedEdge
84 Yellow Yellow N/A None None
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Appendix lll. Complete Variable List for the Dual-Branch

GNN Model

This appendix provides a comprehensive list of the input variables used in the final
implementation of the dual-branch graph neural network (GNN) model introduced in
Chapter 6. As detailed in Section 6.2.4, variable selection was performed
independently for the local branch (0—120 m neighborhood) and the global branch
(120-1000 m neighborhood), based on correlation analysis and feature importance
scores from a Random Forest model trained on reference city data.

Each branch retained the top 80 numerical variables ranked by importance. In
addition, four functional group variables and categorical land use variables were
incorporated: for the local branch, both the dominant LULC type and the on-site
LULC type; and for the global branch, only the dominant LULC type. These variables
collectively capture both high-resolution spatial variations and broader land use
context.

Each variable is annotated by its:

« Variable Name: Following the naming convention from preprocessing pipelines.

« Buffer Range: The spatial neighborhood used for computing the variable (e.g.,
r30 — 0-30 m, r500 — 120-500 m).

« Statistic Type: The statistical operation applied (e.g., mean, std, entropy).

« Data Source: The original source of the feature, including:

1. Urban Atlas 2012 land use polygons (for LULC-derived proportion and
distance metrics),

2. Morphological and local binary patterns (prefixed by Mp_ or LBP ),

3. Z-score standardized remote sensing indices (prefixed by z ),

4. GLCM-derived texture statistics.

The following tables enumerate all variables used in the final model input, structured
by branch.

Appendix 3A. Input Variables of the Local Branch (0-120 m Neighborhood)

This table includes 80 selected numerical variables, 4 functional group variables, and
2 categorical land use variables (dominant and located). The spatial scale for all
features in this branch is constrained within a 120 m radius. Notably, the selected
features combine Urban Atlas LULC-derived metrics (e.g., road types, green cover)
and multi-scale image-derived descriptors (e.g., texture, contrast, entropy), reflecting
both environmental context and built structure.



Table AIII.1. List of Local Branch Variables

Index Rank | Branch Variable Buffer Zone Statistic Type Data Source
| 1 local landuse 12220 r3 0-30m Landuse Urban Atlas 2012
0 Proportion LULC
landuse 12220 r6 Landuse Urban Atlas 2012
2 2 local 0 30-60m Proportion LULC
landuse 11210 r6 Landuse Urban Atlas 2012
. . Mol 0 e Proportion LULC
landuse 12100 r6 Landuse Urban Atlas 2012
4 4 local 0 30-60m Proportion LULC
MP_ BSI open r5 Morphological
5 5 local o) gtieny 60-120 m Entropy Pt o
landuse 12100 rl Landuse Urban Atlas 2012
6 6 local 20 60-120m Proportion LULC
landuse 11210 13 Landuse Urban Atlas 2012
U U ol 0 taelliiul Proportion LULC
3 3 local landuse 11220 r3 0-30m Landuse Urban Atlas 2012
0 Proportion LULC
landuse 12220 rl Landuse Urban Atlas 2012
? ? eeel 20 60-120m Proportion LULC
landuse 11220 r6 Landuse Urban Atlas 2012
10 10 local 0 30-60 m Proportion LULC
landuse 14100 _r6 Landuse Urban Atlas 2012
11 11 local 0 30-60 m Proportion LULC
landuse 14100 rl Landuse Urban Atlas 2012
12 12 local 20 60-120 m Proportion LULC
landuse 11210 rl Landuse Urban Atlas 2012
13 13 local 20 60-120 m P LULC
14 14 local ~MP.BSLclosers gy 5 Skewness Morphological
1120 _skewness feature maps
MP_ Green close = Standard Morphological
LS LS Mol 15 r120 std AU Deviation feature maps
landuse 12100 r3 Landuse Urban Atlas 2012
16 16 local 0 0-30 m Proportion LULC
landuse 11230 r6 Landuse Urban Atlas 2012
17 17 local 0 30-60 m e LULC
MP_NDVI_open_ Morphological
18 18 local r5_r120 percentil 60-120 m 90th Percentile P &

€90

feature maps
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landuse 11220 rl Landuse Urban Atlas 2012
19 19 local 20 60-120 m Brsparton LULC
z NDWI win77 _ Z-score
20 20 local tanh r120_percen 60-120 m 10th Percentile normalized
tile10 feature maps
landuse 12210 rl Landuse Urban Atlas 2012
21 21 local 20 60-120 m e LULC
landuse 11230 r3 Landuse Urban Atlas 2012
22 22 local 0 0-30m Proportion LULC
MP_NDVI open .
23 23 local r5 r120 weighted 60-120 m Mean it byl
feature maps
_mean
landuse 14100 r3 Landuse Urban Atlas 2012
24 24 local 0 0-30m Proportion LULC
MP NDVI open = Standard Morphological
e e Mol rS r120 std AU Deviation feature maps
z band7 win77 t Z-score
26 26 local anh r120 percent 60-120 m 10th Percentile normalized
ile10 feature maps
landuse 12230 rl Landuse Urban Atlas 2012
27 27 local 20 60-120 m P LULC
landuse 11230 rl Landuse Urban Atlas 2012
28 28 local 20 60-120 m Proportion LULC
z NDVI win77 t Z-score
29 29 local anh r120_ percent 60-120 m 10th Percentile normalized
ile10 feature maps
30 30 local | Orecnenerey rl 60-120 m Skewness GLCM texture
20 skewness feature maps
z WVBI win77 t Z-score
31 31 local anh r120 percent 60-120 m 10th Percentile normalized
ile10 feature maps
Green_correlation
32 32 local r120_percentilel 60-120 m 10th Percentile GLCM texture
- 0 feature maps
33 33 local Green_correlation 60-120 m Skewness GLCM texture
1120 skewness feature maps
MP_NIRI close Morbhological
34 34 local r5_r120_skewnes 60-120 m Skewness orphologica

S

feature maps
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z BSI win77 tan Z-score
35 35 local h r120_percentile 60-120 m 90th Percentile normalized
90 feature maps
z band7_win77 t Z-score
36 36 local anh r120 percent 60-120 m 90th Percentile normalized
ile90 feature maps
z band3 win77 t Standard Z-score
37 37 local - = = 60-120 m .. normalized
anh r120 std Deviation
- = feature maps
MP_NDVI close Morphological
38 38 local 15 1120 _entropy 60-120 m Entropy feature maps
39 39 local RGI_correlation_r 60-120 m Skewness GLCM texture
120 _skewness feature maps
z RGI win77 tan Z-score
40 40 local h r120 percentile 60-120 m 25th Percentile normalized
25 feature maps
MP_Green_close Morphological
41 41 local 5 r120_percenti 60-120 m 90th Percentile Tpholog
- = feature maps
1e90
42 42 local | “BP-NDVIr120 60-120 m Kurtosis Morphological
_kurtosis feature maps
Green_correlation . GLCM texture
43 43 local ' r120_kurtosis 60-120 m Kurtosis Pt o
44 44 local MP_BSI close r5 60-120 m Mean Morphological
_r120_mean feature maps
z band3 winl5 t Z-score
45 45 local anh r120_ percent 60-120 m 90th Percentile normalized
ile90 feature maps
NIR1 homogenei
46 46 local ty r120 percentil 60-120 m 10th Percentile GLCM texture
ST feature maps
landuse 31000 rl Landuse Urban Atlas 2012
47 47 local 20 60-120 m Prgseitan LULC
z RGI win77 tan Z-score
48 48 local h r120_percentile 60—120 m 10th Percentile normalized
10 feature maps
49 49 local Green_correlation 30-60 m Skewness GLCM texture
_160_skewness feature maps
50 50 local |~ \DVIenergy rl 60120 m 10th Percentile |~ O-CM texture

20 _percentile10

feature maps
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LBP_BSI r120 ¢

Morphological

51 51 local iy 60-120 m Entropy Pt o
52 52 local RedEdge_energy_ 60-120 m Skewness GLCM texture
r120 skewness feature maps
53 53 local WVBI correlatio 30-60 m Skewness GLCM texture
n_r60 skewness feature maps
MP_NIRI close Interquartile Morphological
>4 >4 local r5 r120 iqr 60-120 m Range feature maps
MP NIR1 close . Morphological
>3 >3 Mol r5_r120_entropy A Entropy feature maps
RedEdge correlat
56 56 local ion _r120 weighte 60-120 m Mean GLCM texture
- = feature maps
d_mean
Green_contrast r . GLCM texture
57 57 local 1200 Taionts 60—-120 m Kurtosis . —
58 58 local Green_corrfelatlon 60-120 m Interquartile GLCM texture
1120 _iqgr Range feature maps
MP NIR1 close = Standard Morphological
2 2 Mol rS r120 std AU Deviation feature maps
. Z-score
60 60 local | zPandZwinld g o0 Median normalized
anh_r120_median
- = feature maps
z band7 win31 t Z-score
61 61 local anh r120 percent 60-120 m 10th Percentile normalized
ile10 feature maps
RedEdge correlat
62 62 local ion 1120 skewne 60-120 m Skewness GLCM texture
T feature maps
NDVI correlation . GLCM texture
63 63 local 20 s 60—-120 m Kurtosis . —
RedEdge correlat Standard GLCM texture
64 64 local ion_r120 std 60-120 m Deviation feature maps
65 65 local LIS (o o 60-120 m Skewness el
1120 skewness feature maps
z WVBI win77 t Z-score
66 66 local anh_r120_percent 60-120 m 90th Percentile normalized
ile90 feature maps
67 67 local RGI correlation r 60-120 m Kurtosis GLCM texture

120_kurtosis

feature maps
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68 68 local MP_Green_open_ 30-60 m Skewness Morphological
r5_r60_skewness feature maps
NIR1 correlation
69 69 local r120 percentilel 60-120 m 10th Percentile SiEGu TS
= 0 feature maps
70 70 local Green_correlapon 30-60 m Kurtosis GLCM texture
_160_kurtosis feature maps
NIR1 homogenei GLCM texture
71 71 local 7 e ercEs 30-60 m Skewness e
z band3 win77 t Interquartile Z-score
72 72 local - . 30-60 m d normalized
anh 160 _iqr Range
— = feature maps
MP_BSI open 15 . Morphological
73 73 local 120 _kurtosis 60-120 m Kurtosis Pt o
MP_NIR1 open_ .
74 74 local r5 r120 skewnes 60-120 m Skewness Morphological
T feature maps
75 75 local MP_BSI_open_r3 60-120 m Skewness el
1120 skewness feature maps
z band3 win77 t Z-score
76 76 local anh_r120_percent 60-120 m 10th Percentile normalized
ile10 feature maps
77 77 local WVBI correlatio 60-120 m Skewness GLCM texture
n r120 skewness feature maps
73 73 local NIRI1_correlation 60-120 m Skewness GLCM texture
1120 _skewness feature maps
WVBI correlatio . GLCM texture
79 79 local 7 w20 N 60-120 m Kurtosis Pt o
MP_Red open r5 . Morphological
80 80 local 1120 _kurtosis 60-120 m Kurtosis feature maps
31 local strong noise_sour 0-120 m Landuge GLCM texture
ce Proportion feature maps
32 local moderate_noise s 0-120 m Landu.se GLCM texture
ource Proportion feature maps
83 local strong_mitigation 0-120 m Landuge GLCM texture
_zone Proportion feature maps
34 local moderate _mitigati 0-120 m Landuge GLCM texture
on_zone Proportion feature maps
85 local | dominant LULC 0-120 m Landuse GLCM texture
- Proportion feature maps
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86

local

located_lulc

Landuse Location

GLCM texture
feature maps

Appendix 3B. Input Variables of the Global Branch (120-1000 m Neighborhood)

This table presents the 80 selected numerical variables, 4 functional group proportions,
and 1 categorical variable (dominant land use type) used for the global branch. These
features summarize large-scale environmental structure and background context,

helping the model learn inter-neighborhood patterns and spatial continuity.

Table AIII.2. List of Global Branch Variables

Index @ Rank : Branch Variable Buffer Zone Statistic Type Data Source
backgro = Green contrast r @I e ot
1 1 = o 120-500 m 75th Percentile Remote Sensing
und 500 percentile75 .
Indices
Morphological
backgro | MP_BSI close 15 . Profile (MP) of
2 2 und _r1000_kurtosis >00-1000 m Kurtosis Remote Sensing
Indices
backgro | landuse 14200 r5 Landuse Urban Atlas 2012
. . und 00 AU Proportion Land Use
Local Binary
4 4 backgro | LBP_NIR1 r500 120-500 m Star.ldqrd Pattern (LBP) of
und std Deviation Remote Sensing
Indices
backgro WIEEI S IR g/rlgfr'g: O(iiil)cglf
5 5 & r5 r1000 skewn 500-1000 m Skewness .
und - = - Remote Sensing
ess .
Indices
backero Green_contrast r GLCM Texture of
6 6 ung 1000_percentile9 500-1000 m 90th Percentile Remote Sensing
0 Indices
backgro | landuse 12220 r5 Landuse Urban Atlas 2012
7 7 und 00 AU Proportion Land Use
. GLCM Texture of
8 8 backgro | NDVI_correlation 500-1000 m Mean Remote Sensing
und r1000_mean .
- - Indices
backgro | landuse 12220 rl Landuse Urban Atlas 2012
? ? und 000 500-1000'm Proportion Land Use
GLCM Texture of
10 10 backgro | RGI_energy_r500 120-500 m Skewness Remote Sensing
und skewness .
- Indices
backero WVBI correlatio GLCM Texture of
11 11 & n_r1000 percentil 500-1000 m 75th Percentile Remote Sensing
und .
e75 Indices
Morphological
backgro | MP_BSI close 15 Profile (MP) of
12 12 und 11000 _entropy 500-1000 m Entropy Remote Sensing
Indices
backgro | landuse 12100 rl Landuse Urban Atlas 2012
S S und 000 >00-1000'm Proportion Land Use
14 14 backgro | global dist 1420 120-1000 m Distance Urban Atlas 2012
und 0 Land Use
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MP_Red close r

Morphological

15 15 S 5 r1000_skewnes 500-1000 m Skewness Lo (MP).Of
und S Remote Sensing
Indices
backero z RGI winl5_tan Z-score
16 16 £ h r1000_percentil 500-1000 m 25th Percentile Normalized
und
e25 Feature Map
17 17 backgro | global dist 1410 120-1000 m Distance Urban Atlas 2012
und 0 Land Use
Morphological
backgro | MP_Red close r Profile (MP) of
18 18 und 5 1500 skewness 120-500 m Skewness Remote Sensing
Indices
backero Green_correlation GLCM Texture of
19 19 ung _1500_percentile9 120-500 m 90th Percentile Remote Sensing
0 Indices
Morphological
backgro | MP_Green open . Profile (MP) of
20 20 und r5_r500 entropy 120-500 m Entropy Remote Sensing
Indices
backgro | NDVI homogene Standard GLCM Textur.e 0t
21 21 . 500-1000 m e Remote Sensing
und ity r1000_std Deviation .
Indices
Morphological
backgro | MP_Red open_r5 Profile (MP) of
22 22 und _1500_entropy 120-500 m Entropy Remote Sensing
Indices
backgro | Green correlation (SLECMIHIGATT@!
23 23 & = ! 120-500 m Skewness Remote Sensing
und r500 skewness .
- = Indices
. GLCM Texture of
24 24 backgro NIRl_correlat{on 120-500 m Kurtosis Remote Sensing
und r500 kurtosis .
- - Indices
GLCM Texture of
25 25 feee= RedEdge_correlgt 120-500 m Kurtosis Remote Sensing
und ion_r500 kurtosis .
LI Indices
backero z BSI winl5_tan Z-score
26 26 & h r500 percentile 120-500 m 90th Percentile Normalized
und -
90 Feature Map
. GLCM Texture of
27 27 G0 | INIDNAL (Gl B 120-500 m Mean Remote Sensing
und r500_mean .
- - Indices
backero Green_contrast r GLCM Texture of
28 28 ung 1000 percentile7 500-1000 m 75th Percentile Remote Sensing
5 Indices
backgro | landuse 14100 r5 o Landuse Urban Atlas 2012
&2 &2 und 00 AU Proportion Land Use
backgro | landuse 14100 rl g Landuse Urban Atlas 2012
30 30 und 000 500-1000 m Proportion Land Use
] GLCM Texture of
31 31 ipelire | NI sl Eion 120-500 m Skewness Remote Sensing
und r500_skewness .
IR Indices
Morphological
backgro | MP_Red open_r5 Standard Profile (MP) of
32 32 und 11000 std >00-1000 m Deviation Remote Sensing
Indices
Morphological
backgro | MP_Red close r = Profile (MP) of
= = und 5 r1000_entropy AL Entropy Remote Sensing

Indices

pg. 293




GLCM Texture of

34 34 backgro | WVBI_correlatio 120-500 m Skewness Remote Sensing
und n 1500 skewness .
- - Indices
backero NIR1 correlation GLCM Texture of
35 35 ung 1500 _percentile2 120-500 m 75th Percentile Remote Sensing
5 Indices
. GLCM Texture of
36 36 backgro | RGI correlation_r 500-1000 m Skewness Remote Sensing
und 1000 _skewness .
- Indices
. Z-score
37 37 | backero | z band3 winl>_t | 544 4040 ST Normalized
und anh r1000 std Deviation
- - Feature Map
backero z NDWI_winl5_ Z-score
38 38 ung tanh r500 percen 120-500 m 90th Percentile Normalized
tile90 Feature Map
. GLCM Texture of
39 39 S0 | NI i el 120-500 m Mean Remote Sensing
und r500_mean .
. | Indices
backgro MP_Green_close ﬁ/rlc())frirl)s}el (Ell\(/)[t(lg)l)c?)lf
40 40 r5 1500 skewne 120-500 m Skewness .
und T Remote Sensing
Indices
Morphological
MP_Green open
41 41 | P3%KEO | s 1500 skewnes 120-500 m Skewness Profile (MP) of
und - 5 Remote Sensing
Indices
Morphological
MP_NIRI open_
42 4 backero s 0000 skewne 500-1000 m Skewness Profile (MP) of
und - s Remote Sensing
Indices
. GLCM Texture of
43 43 feee=r WVBI_correlat}o 120-500 m Kurtosis Remote Sensing
und n_r500 kurtosis .
- - Indices
. GLCM Texture of
44 44 backgro | NDVI_correlation 500-1000 m Skewness Remote Sensing
und r1000_skewness .
- - Indices
. . Z-score
45 45 bagﬁgro Z—;’r‘;‘l‘l‘df’s—()"(v)lrli72—t 120-500 m Im‘i;gl‘l‘a?ﬂe Normalized
- -4 & Feature Map
backero RGI_homogeneit GLCM Texture of
46 46 & y_r500_ percentile 120-500 m 90th Percentile Remote Sensing
und - .
90 Indices
backgro | landuse 12100 r5 Landuse Urban Atlas 2012
i i und 00 120-500 m Proportion Land Use
. Z-score
48 48 backgro z_band3_w1n7?_t 120-500 m Median Normalized
und anh r500 median
- - Feature Map
backero WVBI correlatio GLCM Texture of
49 49 & n_r500 percentile 120-500 m 10th Percentile Remote Sensing
und .
10 Indices
backgro | landuse 11210 rl Landuse Urban Atlas 2012
>0 >0 und 000 500-1000 m Proportion Land Use
backero z RGI win77 tan Z-score
51 51 & h r500 percentile 120-500 m 75th Percentile Normalized
und -
75 Feature Map
backgro | landuse 11220 r5 Landuse Urban Atlas 2012
>2 >2 und 00 120-500 m Proportion Land Use
backgro | WVBI contrast r CLC Textur.e off
53 53 500-1000 m Entropy Remote Sensing
und 1000_entropy Indices
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MP_Green_close

Morphological

54 54 backero 571000 kurtos 500-1000 m Kurtosis Profile (MP) of
und T e Remote Sensing
Indices
Morphological
backgro | MP_Green open . Profile (MP) of
>3 >3 und r5 1500 kurtosis 120-500'm Kurtosis Remote Sensing
Indices
. GLCM Texture of
56 56 backgro NIRl_correlatlgn 500-1000 m Kurtosis Remote Sensing
und r1000 kurtosis .
- - Indices
Morphological
backgro | MP_NIR1 close Profile (MP) of
2 2 und r5_r1000_entropy >00-1000'm Entropy Remote Sensing
Indices
. GLCM Texture of
58 58 backgro | RGI_correlation_r 500-1000 m Mean Remote Sensing
und 1000_mean .
- Indices
backgro | landuse 14200 rl o Landuse Urban Atlas 2012
i i und 000 i A Proportion Land Use
. GLCM Texture of
60 60 backgro RGI_correlatllon_r 120-500 m 25th Percentile Remote Sensing
und 500 percentile25 .
Indices
backgro | NDVI correlation . (GLCi| Textur.e ot
61 61 — . 120-500 m Kurtosis Remote Sensing
und r500_ kurtosis .
- - Indices
Morphological
backgro | MP_Red open_r5 Profile (MP) of
62 62 und 11000 _skewness >00-1000 m Skewness Remote Sensing
Indices
. . Z-score
63 3 Pckeo zbadiwinTIL 5001000 m il Normalized
- -q & Feature Map
backero RedEdge contrast GLCM Texture of
64 64 & _r1000_percentile 500-1000 m 90th Percentile Remote Sensing
und .
90 Indices
backgro | WVBI contrast r (GLCi| Textur.e ot
65 65 120-500 m Entropy Remote Sensing
und 500_entropy .
- Indices
. GLCM Texture of
66 66 backgro | NIRI_correlation 500-1000 m Skewness Remote Sensing
und r1000 skewness .
- - Indices
GLCM Texture of
67 67 0. | NG G (G0 120-500 m Entropy Remote Sensing
und 0_entropy .
Indices
backero RedEdge correlat GLCM Texture of
68 68 & ion_r500 percenti 120-500 m 10th Percentile Remote Sensing
und .
le10 Indices
Morphological
backgro | MP_Red open r5 Profile (MP) of
2 2 und 11000 kurtosis >00-1000 m Entropy Remote Sensing
Indices
GLCM Texture of
70 70 backgro | RGL contrast_r10 500-1000 m Entropy Remote Sensing
und 00_entropy .
Indices
backgro | Green contrast r CLC Textur.e off
71 71 — = 120-500 m Entropy Remote Sensing
und 500_entropy .
Indices
backgro | landuse 11230 rl g Landuse Urban Atlas 2012
2 = und 000 500-1000 m Proportion Land Use
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backero z_band3 winl$5 t Z-score
73 73 ung anh _r1000 perce 500-1000 m 90th Percentile Normalized
ntile90 Feature Map
. Z-score
74 74 backgro | z RGI_win77_tan 500-1000 m Staqdqrd Normalized
und h r1000 std Deviation
- - Feature Map
backgro | Green contrast r Tl
75 75 ~ - 120-500 m Mean Remote Sensing
und 500_mean .
L Indices
backero z _band6_win77 t Z-score
76 76 & anh r500_ percent 120-500 m 90th Percentile Normalized
und ="
ile90 Feature Map
. GLCM Texture of
77 77 el s o 120-500 m Mean Remote Sensing
und 500_mean .
- Indices
backero RedEdge contrast GLCM Texture of
78 78 un<g1 1500 percentile? 120-500 m 75th Percentile Remote Sensing
5 Indices
Local Binary
79 79 backgro | LBP_Green r500 120-500 m Stat}da}rd Pattern (LBP) of
und _std Deviation Remote Sensing
Indices
. GLCM Texture of
80 80 backgro | RGI correlation_r 120-500 m Skewness Remote Sensing
und 500_skewness .
- Indices
backgro | strong noise sour Landuse Urban Atlas 2012
. und ce 120-1000'm Proportion Land Use
backgro | moderate noise s Landuse Urban Atlas 2012
82 und ource 120-1000 m Proportion Land Use
33 backgro | strong mitigation 120-1000 m Landu.se Urban Atlas 2012
und _zone Proportion Land Use
84 backgro | moderate mitigati 120-1000 m Landu.se Urban Atlas 2012
und on zone Proportion Land Use
85 backgro Stz ILULC 120-1000 m Landu.se Urban Atlas 2012
und Proportion Land Use

Each variable was used without further transformations during training. For

categorical LULC variables, one-hot encoding was applied. Details regarding buffer

generation, morphological operations, and image normalization techniques can be

found in Section 6.2.3 and 6.2.4.

This structured input design enables the model to integrate fine-scale spatial patterns

with broader environmental information, forming a solid foundation for generalizable
noise prediction across heterogeneous urban environments.
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