

Highlights

Scaling Laws for Aerodynamic Loads and Acoustics of Wall-Mounted Plates at Different Deflection Angles

Owen Parnis¹, David Angland

- Porosity-based blockage correction method for bluff bodies tested in Kevlar test sections.
- Aerodynamic force scaling law for wall-mounted flat plates.
- Scaling law differs from existing laws for inclined plates in freestream.
- Quantification of maximum errors in aerodynamic loads scaling law compared to experimental data.
- Scaling law for integrated acoustic intensity determined as a function of velocity and projected frontal area.
- Acoustic scaling with projected area reveals two distinct scaling regimes depending on the deflection angle ranges.

¹Corresponding Author. E-mail address: o.parnis@soton.ac.uk

Scaling Laws for Aerodynamic Loads and Acoustics of Wall-Mounted Plates at Different Deflection Angles

Owen Parnis¹

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO167QF, United Kingdom

David Angland

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO167QF, United Kingdom

Abstract

Inclined flat plates mounted on horizontal surfaces have applications in the aerospace, renewable energy and automotive sectors. While previous studies have examined how aspect ratio and proximity to a mounting surface affect aerodynamic loads on a plate, a systematic investigation of scaling laws for aerodynamic loads and acoustics is lacking. This paper establishes scaling relationships for the aerodynamic loads and the flow-induced noise generated by a wall-mounted flat plate inclined to the flow. Wind tunnel experiments were conducted using a Kevlar-walled test section, with a wall-mounted flat plate deflected between 10° and 90° across various Reynolds numbers. A correction method based on the bluff body blockage corrections of Maskell and calibrated using open test section wind tunnel data is presented in this work to account for solid and wake blockage effects in the Kevlar test section experiments. For aerodynamic loads, the normalised normal force coefficient collapses when scaled with projected frontal area, converging to a fixed value of the drag coefficient at 90°. This provides a simple predictive methodology for the aerodynamic loads with maximum errors of $\Delta C_D = 0.073$ and $\Delta C_L = 0.081$. The scaling law presented in this work is unique for wall-mounted flat plates and differs for flat plates in freestream. Aeroacoustic analysis reveals broadband noise without coherent vortex shedding. The noise scales approximately, but not perfectly, with the sixth power of velocity. The slight variations in the value of the velocity exponent at different deflection angles highlight that it does not simply scale as a compact dipole but other effects are

¹Corresponding Author. E-mail address: o.parnis@soton.ac.uk

present, including non-compactness and edge scattering effects. The acoustic scaling with projected area exhibits different behaviour at low and high deflection angles. At low deflection angles, the plate is partially immersed in the boundary layer, reducing the acoustic intensity variation with deflection angle. At higher deflection angles ($> 30^\circ$), the acoustic intensity scaled with the projected area to a power of 1.2 again indicating additional sources besides the scaling of pure compact dipole sources.

Keywords: Wall-mounted flat plate; Kevlar-walled hybrid test section; Wind tunnel experiments; Aerodynamic load scaling, Aeroacoustic scaling; Dipole sources; Horseshoe vortex; Ground edge vortex; Boundary layer.

1. Introduction

Flat plates at different angles of incidence have been studied extensively in the field of aerodynamics to characterise two- and three-dimensional bodies [1, 2, 3, 4, 5, 6]. The aerodynamic performance of flat plates can be primarily determined by the angle of incidence (deflection), δ_{fp} , of the plate with respect to the freestream, which strongly influences the drag characteristics [7]. At low incidence angles, the drag is dominated by the viscous forces, whereas at larger incidence angles, pressure drag becomes dominant. The transition between these two regimes is highly dependent on the plate's aspect ratio (AR) [8] defined as the span-to-chord ratio of the plate (b/c).

Early work presented by Fage and Johansen [9] on two-dimensional flat plates in freestream identified two regimes in the variation of the normal force coefficient, C_N , with incidence in the direction of the freestream velocity. At low incidence angles ($< 9^\circ$), C_N increases rapidly. Above 9° , the rate of increase diminishes, reaching a plateau at high incidence angles ($> 80^\circ$) corresponding to the drag coefficient of a plate normal to the flow.

Subsequent studies investigated the three-dimensional effects for flat plates up to an aspect ratio of 5 [10, 11, 12], highlighted that reducing the aspect ratios yields lower normal force coefficients, corresponding to a reduction in the drag coefficients, C_D , at large incidence angles. This three-dimensional effect stems from edge vortices originating along the spanwise edges of the plate. For low aspect ratios, these vortices extend toward the plate's mid-span section [13]. The lower pressure along the downstream base region, compared to the freestream, induces inward flow deflection from the edges towards the centreline, resulting in increased average base pressure, C_{pb} , near the edges.

Experimental research conducted for flat plates and cambered plane wings [8, 14, 15] up to an aspect ratio of 8 along the pre-stall region of the plate, highlighted an in-

28 crease in the lift curve slope, with an increase in aspect ratio. The plates exhibited
29 a more linear lift slope for $AR > 1.25$ as a result of a reduction in the influence of
30 the induced velocity along the suction surfaces, generating additional lift as a result
31 of the influence of the edge vortices. Gutierrez-Castillo et al. [15] proposed a semi-
32 empirical correlation for the prediction of the lift curve slope as a function of the
33 aspect ratio and Reynolds number. The correlation is based on Prandtl's lifting line,
34 but includes the influence of Reynolds number, and is capable of predicting lift up
35 to pre-stall angles of incidence.

36 Recent studies have considered the influence of ground proximity on the aerody-
37 namic load characteristics of inclined three-dimensional plates. Pieris et al. [6] and
38 Ortiz et al. [7] highlighted that proximity effects are particularly pronounced near the
39 angle corresponding to maximum lift. However, the sensitivity is highly dependent
40 on the aspect ratio of the plate and the direction of plate deflection. Pieris et al. [6]
41 highlighted that ground proximity did not fundamentally change the loading trends
42 with respect to the deflection angle compared to the freestream case. It was shown
43 that plates having an aspect ratio of 2 and deflected in the direction of the freestream
44 velocity vector showed negligible differences to the freestream results, irrespective of
45 the proximity ratio between the leading edge of the plate and the ground.

46 In many practical applications, such as aircraft spoilers [16], photovoltaic panels
47 [17, 18], and deflector plates on automobiles [19], plates are wall-mounted rather
48 than in the freestream. Wall-mounted flat plate aerodynamics is more complex due
49 to additional governing parameters, including the ratio of incoming boundary layer
50 thickness to plate chord (δ/c), the plate deflection angle (δ_{fp}), the aspect ratio (AR),
51 the yaw angle relative to freestream (ψ), and the clearance ratio defined as the height
52 of the plate's leading edge above the mounted planar surface (g/c) [8, 7, 13, 20].

53 Parnis and Angland [16] defined the flow topology around a wall-mounted inclined
54 flat plate spoiler at a deflection angle of 30° using numerical simulations. The flow
55 topology in terms of the Q-criterion iso-volume representation is shown in Fig. 1.
56 The presence of the plate generates an adverse pressure gradient upstream, causing
57 the incoming boundary layer to separate and form a horseshoe vortex structure that
58 wraps around the inclined plate, moving downstream toward the trailing edge of the
59 mounting plate. The strength of this horseshoe vortex depends on the deflection
60 angle of the inclined plate. Additionally, two ground-edge vortices are generated
61 from the side-edges of the inclined plate. These are located inboard of the horseshoe
62 vortex and rotate in the opposite direction.

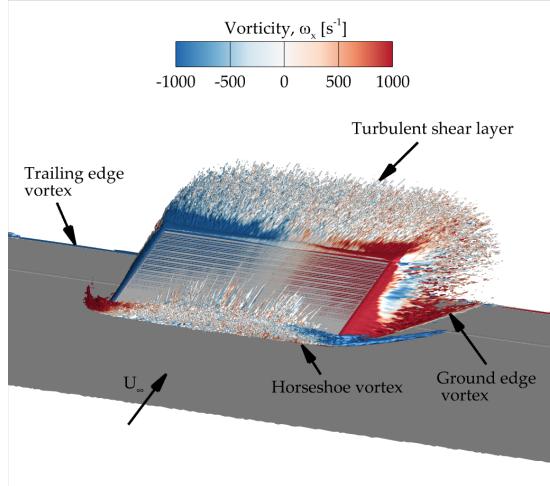


Figure 1: Flow topology for a wall-mounted flat plate on a non-lifting surface at a deflection angle of $\delta_{fp} = 30^\circ$, highlighting the main vortical structures generated by the inclined plate [16].

63 Acoustic scaling laws for wall-mounted bodies have mainly been developed for
 64 cylindrical and prismatic geometries [21, 22, 23, 24]. Building upon Curle's acoustic
 65 analogy [25], Phillips [26] demonstrated for two-dimensional cylinders that the mean
 66 square acoustic pressure radiated by the body is predominantly governed by lift
 67 fluctuations and exhibits a U_∞^6 velocity scaling, characteristic of a dipole-like source.
 68 The scaling has been confirmed for both wall-mounted geometries, including cylinders
 69 [21, 27] and prisms [24]. Maruta and Kanagawa [28] extended the analysis to the
 70 flow-induced noise of flat plates in freestream at large angles of incidence, where
 71 the largely separated wake induces unsteady pressure fluctuations. However, noise
 72 scaling with the deflection angle of wall-mounted flat plates remains lacking.

73 The flow topology around wall-mounted bodies exhibits complex three-dimensional
 74 fluid phenomena. Acoustic research conducted for wall-mounted spoiler plates by
 75 Parnis and Angland [16] showed that the acoustic sources for a wall-mounted flat
 76 plate can be characterised by the pressure fluctuations due to the upstream horse-
 77 shoe vortex, the ground edge vortices and the turbulent wake. For a deflection angle
 78 of $\delta_{fp} = 30^\circ$, the ground edge vortices and the flat plate side-edge were found to
 79 be the dominant acoustic noise source, in particular at high frequencies. The up-
 80 stream horseshoe vortex is analogous to those seen in junction flows of wall-mounted
 81 prisms [29], formed due to upstream boundary layer separation due to the adverse
 82 pressure gradient induced by the inclined flat plate, whose strength is dependent
 83 on the deflection angle of the flat plate. This upstream separation vortex structure
 84 induces unsteady wall pressure fluctuations along the separated region, reaching a

85 maximum intensity at flow reattachment lines [30]. These substantial on-surface
86 pressure fluctuations contribute to the formation of an additional broadband noise
87 source upstream of the body along the base mounting plate [22, 23, 31].

88 While aerodynamic scaling laws for freestream plates are well established [6, 7, 9, 10, 11],
89 no equivalent scaling framework exists for wall-mounted inclined plates, where ad-
90 dditional wall-induced effects influence the aerodynamic and noise characteristics of
91 the inclined plate. This knowledge gap motivates the present study, which aims
92 to establish scaling relationships for aerodynamic loads and far-field acoustics of a
93 wall-mounted inclined flat plate with a fixed aspect ratio. This work examines how
94 aerodynamic loads and aerodynamically generated noise varies with deflection an-
95 gle, projected frontal area, and freestream velocity to provide both design guidance
96 and insight into the flow-acoustic mechanisms of these commonly used industrial
97 geometries.

98 The paper is structured as follows. Firstly, the experimental methodology is
99 presented, describing the wall-mounted flat plate wind tunnel model used and the
100 experimental acquisition methods. Since the experiments were performed in a Kevlar
101 test section, a correction method is introduced and calibrated with experimental data
102 to correct the aerodynamic forces for solid and wake blockage. The results section
103 investigates the scaling relationship of the aerodynamic loads and far-field acoustics
104 for the baseline wall-mounted inclined flat plate with an aspect ratio of 2.3 as a
105 function of flat plate deflection angle, δ_{fp} . The acoustic relationship is determined
106 as a function of the integrated acoustic intensity, L_I , for variations in projected area
107 and freestream velocity.

108 2. Experimental Approach

109 The experiments were conducted at the anechoic wind tunnel facility at the Uni-
110 versity of Southampton (SotonAWT). The tunnel is an open jet, closed return wind
111 tunnel with a nozzle cross-section of 0.75 m \times 1 m. In an empty test section, the
112 maximum freestream velocity of the tunnel is approximately 80 m/s. The anechoic
113 chamber is fitted with acoustic wedges and is anechoic down to a frequency of 250
114 Hz. These wind tunnel experiments were conducted at a freestream velocity up to
115 70 m/s.

116 2.1. Kevlar-Walled Hybrid Test Section

117 The experiments were performed in a hybrid Kevlar test section shown in Fig.
118 2. The reason for choosing this configuration of wind tunnel over the open jet
119 configuration was to minimise the effect of wake deflection on the background noise.

120 The background noise is typically measured with an empty test section. The flat
121 plate model deflected the open jet depending on the deflection angle of the plate.
122 This jet then interacted differently with the collector of the wind tunnel, depending
123 on the deflection angle, resulting in some uncertainties of the background noise levels,
124 especially at low frequencies. In order to minimise these uncertainties, a Kevlar test
125 section was used, which constrains the deflected wake and behaves more like a closed
126 wall test section while still allowing acoustic waves to propagate through the Kevlar
127 panels, albeit with some attenuation. However, the effect of the Kevlar test section
128 is to introduce some solid and wake blockage effects on the aerodynamic forces.
129 Force data was also collected in an 3/4th open test section configuration in order to
130 be able to quantify the effect of wake confinement on the aerodynamic forces. The
131 aerodynamic corrections, done to correct for the solid and wake blockage, are based on
132 the bluff body corrections done in closed test section wind tunnels, firstly introduced
133 by Maskell [32] and later expanded on by Hackett [33]. These are extended, in this
134 work, to account for the permeability of the Kevlar test section.

135 The hybrid Kevlar test section, shown in Fig. 2, extends the nozzle of the open-
136 jet wind tunnel using tensioned acoustic-permeable Kevlar panels in place of solid
137 walls. The test section's structure is made of an aluminium skeleton connected to the
138 existing nozzle of the open jet wind tunnel. This maintains the internal dimensions of
139 the nozzle. The length of the test section is 2.3 m allowing for a small gap between the
140 test section and the collector. Custom-designed panels support plain-weave Kevlar
141 cloth (0.12 mm thickness, 61 g/cm² specific weight) tensioned at 1500 N/m. Acoustic
142 corrections were implemented to account for the influence of the Kevlar test section
143 on the results. Acoustic corrections are based on work done by Devenport et al.
144 [34], and have been implemented to correct for acoustic transmission loss through
145 the tensioned Kevlar material and through the thin boundary layer growing along
146 the Kevlar panels.

147 *2.2. Wall-Mounted Inclined Flat Plate Model Configuration*

148 The finite span, wall-mounted flat plate rectangular model was constructed from
149 a thin steel plate with a chord of $c = 106$ mm and a span $b = 247$ mm. The aspect
150 ratio of the plate is equal to 2.3. The thickness of the plate is $t = 6$ mm. In addition,
151 no edge rounding was performed on the flat plate's sharp edges.

152 To analyse the effects of deflection along the direction of the incoming flow stream,
153 two brackets were connected to the base region of the downstream face of the flat plate
154 at a spanwise location of $\pm 0.22b$ from the flat plate's centre line. The brackets were
155 designed to minimise any aerodynamic interference occurring with the downstream
156 flow field of the plate. To allow for aerodynamic load transfer from the plate to the

Figure 2: Kevlar-walled hybrid test section.

157 load cell, the brackets were connected to a mounting block fixed on the inertial frame
158 of the wind tunnel structure. The plate was deflected through a deflection angle, δ_{fp}
159 between 10° and 90° at 10° intervals. The angles were positively located using pre-
160 manufactured holes along a mounting block, providing good repeatability for the
161 deflection angle of the flat plate. The flat plate model schematic is shown in Fig. 3,
162 with the deflection angle, δ_{fp} , measured between the flat plate (deflected in the same
163 direction as the freestream velocity vector) and the base mounting plate. The test
164 was conducted at freestream velocities of 40 m/s to 70 m/s. These correspond to a
165 Reynolds number between 2.9×10^5 and 5.1×10^5 based on the chord length of the
166 plate.

167 The model was mounted on a base plate positioned in the upstream section of the
168 Kevlar test section as shown in Fig. 4. The plate's leading edge was flush-mounted
169 with the nozzle flange, with tensioned Kevlar panels installed along the remaining
170 sides of the test section, allowing for acoustic measurements to be done along the
171 overhead arc. The flat plate was located 702 mm downstream of the beginning of
172 the Kevlar test section (dimension x_{LE} in Fig. 3).

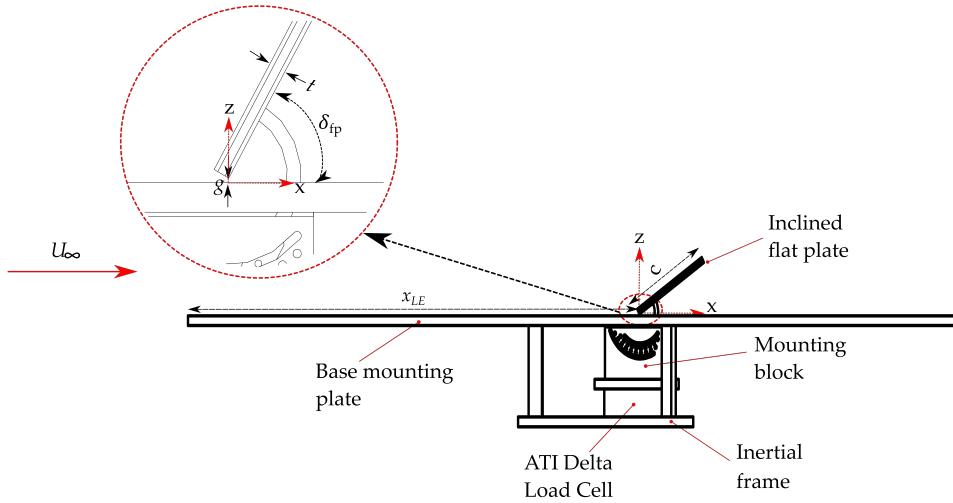


Figure 3: Wall-mounted flat plate model schematic.

173 A small gap was designed between the leading edge of the flat plate and the
 174 base plate. This was done to ensure that all the aerodynamic loads on the flat
 175 plate were fully transferred to the load cell. The gap size, g , between the leading
 176 edge and the base plate varied with the deflection angle of the flat plate model
 177 up to a maximum gap ratio of $g/c = 0.032$. The height of the gap was measured
 178 using a feeler gauge at three different locations along the span of the flat plate
 179 model and then averaged. The boundary layer thickness ratio at the position of
 180 the flat plate's leading edge is equal to δ/g of 14, and a boundary layer thickness
 181 to chord ratio δ/c , equal to 0.26. The presence of the inclined flat plate introduces
 182 an adverse pressure gradient upstream of it as a function of the deflection angle.
 183 Such an adverse pressure thickens the boundary layer upstream of the flat plate.
 184 As a result, the gap is immersed significantly within the boundary layer, where the
 185 velocities are significantly lower than the freestream velocity. In the design of the
 186 experimental setup, numerical simulations were performed to aid the design of the
 187 setup. Simulations were performed both with and without the hinge gap present.
 188 These showed that the effect of this small gap on the aerodynamic loads was very
 189 small (less than the experimental uncertainty in the loads). The effect on the acoustic
 190 measurements will be discussed later.

191 2.3. Acquisition Methodology

192 Force and acoustic measurements were conducted to analyse the scaling laws at
193 different deflection angles and velocities. Aerodynamic loads and moments exerted on
194 the model were measured using an ATI Delta 6-component transducer [35] connected
195 to the inertial frame of the wind tunnel. The direction of the lift and drag forces were
196 along the positive z and x axes, respectively, according to the coordinate axis shown
197 in Fig. 3. Measurements were taken at a sampling rate of 1 kHz. The dynamic
198 pressure used in the calculation of the force coefficients was acquired using a Furness
199 controls FCO332-4W differential transducer, having an uncertainty less than $\pm 0.5\%$
200 of the measured reading. The freestream dynamic pressure in the test section was
201 determined using the pressure differential between two static ring measurements
202 along the nozzle contraction. The differential pressure was calibrated with respect
203 to the dynamic pressure measured at 0.5 m downstream of the nozzle [36]. The
204 experimental uncertainty of the aerodynamic loads was assessed by calculating the
205 Type A and Type B uncertainties [37]. These uncertainties are shown in the key
206 plots as a function of deflection angles and Re number.

207 Acoustic measurements of the flow-induced noise generated by the inclined flat
208 plate for a given Re number and deflection angle were conducted using an overhead
209 far-field microphone array. A total of ten GRAS 1/4" 46BE microphones were used.
210 The constant current power, free-field microphones are capable of resolving a fre-
211 quency range from 4 Hz to 80 kHz, with a dynamic range of 35 dB (A) to 160 dB
212 and a sensitivity of 3.6 mV/Pa. The microphone setup is shown in Fig. 4.

213 Ten microphones were set up along the overhead arc of the model to capture a
214 polar arc for angles between 67° and 113° , where $\theta = 90^\circ$ corresponds to the location
215 directly above the flat plate's leading edge. The vertical distance (z) between the
216 model's coordinate system, highlighted in Fig. 2, and the overhead microphone
217 was approximately $z = 1.33$ m. To account for the directivity of the flow-induced
218 noise source, the scaling measurements presented were calculated as a function of
219 the integrated acoustic intensity from all the microphones along the overhead arc.
220 The physical locations of the microphones with respect to the model coordinate axis
221 specified in Fig. 2 are provided in Appendix A in Table A.1.

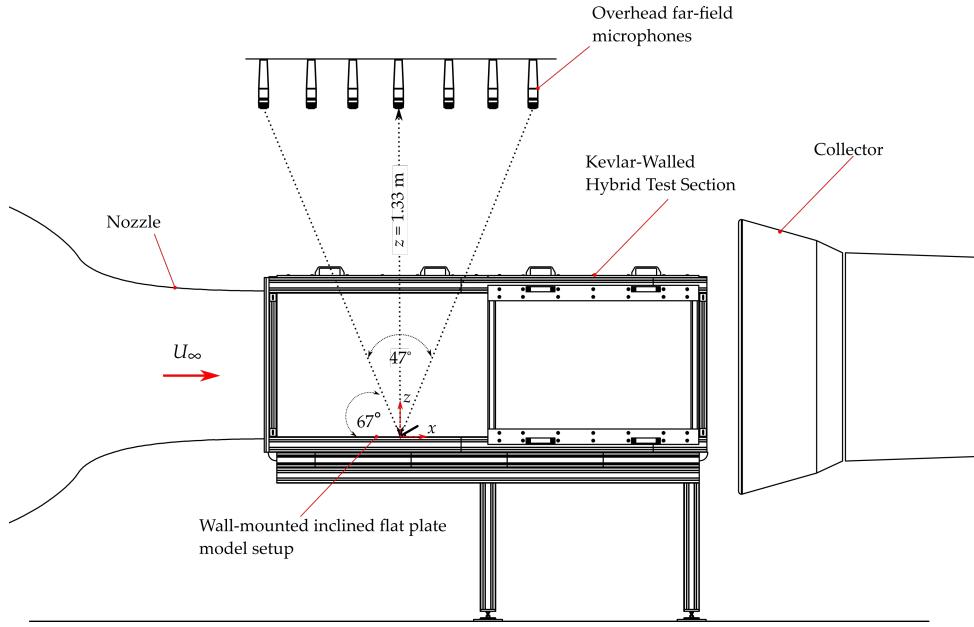


Figure 4: Experimental setup schematic, including the Kevlar-walled hybrid test section, showing the physical location of the overhead far-field microphone array.

222 3. Aerodynamic Loads and Scaling for a Wall-mounted Inclined Flat Plate

223 This section analyses the aerodynamic loads and scaling behaviour of an inclined
 224 flat plate mounted on a flat surface. The investigation has two primary objectives.
 225 The first is to provide an understanding of how the loads of a wall-mounted flat plate
 226 vary as a function of deflection angle and the second is to establish a simple scaling
 227 law for predicting the drag and lift coefficients of an inclined wall-mounted flat plate
 228 that can be used for preliminary engineering design work.

229 The section is structured in three parts. The first addresses the aerodynamic
 230 corrections implemented to account for solid body and wake blockage generated by
 231 the inclined flat plate at varying deflection angles when tested in a hybrid kevlar test
 232 section. The blockage correction is presented for $Re = 4.3 \times 10^5$, corresponding to
 233 $U_\infty = 60$ m/s. The second examines the aerodynamic characteristics in terms of the
 234 normal force coefficient, C_N and the normalised normal force coefficient, C_N^* , where
 235 normalisation is performed relative to the projected area for a given deflection angle.
 236 The final part introduces a simple scaling law to predict the aerodynamic coefficients
 237 of a wall-mounted flat plate where pressure forces dominate.

238 3.1. Aerodynamic Test Section Blockage Correction

239 When the model blockage ratio between the projected area of the model and the
240 test section approaches values of $\approx 5\%$, the aerodynamic coefficients obtained from
241 wind tunnel testing of wall-mounted bodies require correction to account for solid
242 body and wake blockage effects. This section details the methodology to correct the
243 aerodynamic measurements obtained in the Kevlar-walled hybrid test section. The
244 correction approach combines established bluff body blockage theories with specific
245 adaptations to account for the permeability of the Kevlar walls, calculated uniquely
246 through optimising agreement with measurements done in an open-test section con-
247 figuration.

248 Test section blockage corrections for Kevlar hybrid test sections have primarily
249 been developed for lifting bodies, as presented by Devenport et al. [34, 38]. In these
250 applications, solid-wall interference corrections derived from two-dimensional thin
251 airfoil theory for closed test sections [39] have been applied to correct on-surface
252 pressure distributions for lifting wings and determine the effective angle of attack
253 corresponding to free-flight conditions. To account for the porosity of the Kevlar
254 panels, a porosity factor, Ω , is introduced as a multiplier to the solid body correction
255 constant, ε_{solid} , as shown in Eq. 1 (assuming rigid porous walls (i.e., negligible wall
256 deflection) [40]). Since the blockage constant for a solid test section exceeds that for
257 a porous section (assuming small wall deflections), the porosity ratio for a Kevlar
258 test section $\Omega < 1$.

$$\varepsilon_{porous} = \Omega \varepsilon_{solid} . \quad (1)$$

259 Compared to a rigid closed test section, the hybrid test section with permeable
260 Kevlar panels behaves as an intermediate open/closed configuration. The perme-
261 ability of the panels allows some transpiration through the panels. The resulting
262 pressure difference across the Kevlar panels may also cause the panels to deflect.
263 These deflections can be substantial for certain model geometries, resulting in local
264 variations of the test section cross-sectional area. Consequently, the porosity fac-
265 tor may diverge significantly from values typically associated with rigid closed wind
266 tunnel walls [34, 38]. As a result, no universal Ω exists for a given hybrid test sec-
267 tion geometry, necessitating empirical determination of the correction factor for each
268 model configuration and test condition.

269 For bluff body geometries, such as wall-mounted flat plates, the lifting-body cor-
270 rection methodology cannot be used. This is due to the assumption of predominantly
271 attached flow on the wind tunnel model. A wall-mounted flat plate generates a large
272 separated wake that expands as it convects downstream, constrained by the dimen-
273 sions of the test section. This necessitates the application of both solid body and

274 wake blockage corrections. For bluff bodies in solid closed test sections, corrections
 275 are based on the analysis presented by Maskell [32] and later expanded by Hackett
 276 [33] to include the impact of wake distortion.

277 The methodology presented by Maskell [32], presents a dynamic pressure correc-
 278 tion formulation as shown in Eq. 2.

$$\frac{q_c}{q_u} = \frac{C_{D_u}}{C_{D_{M_1}}} = 1 + \varepsilon_{solid} C_{D_u} (S/C) . \quad (2)$$

279 In Eq. 2, C_{D_u} , represents the measured pressure drag, q_u the measured dynamic
 280 pressure, q_c the corrected dynamic pressure, and $C_{D_{M_1}}$ is the corrected drag coefficient
 281 based on the single-stage Maskell Equation. The correction incorporates the model
 282 blockage ratio in terms of the model's projected area, S and the test section cross-
 283 section area, C . For flat plates, the bluff body blockage constant, ε_{solid} for a solid
 284 closed test section can be estimated using Eq. 3, where AR represents the projected
 285 aspect ratio of the plate at a given deflection angle (defined in Eq. 4). Since the
 286 profile drag of wall-mounted plates is dominated by pressure drag, C_{D_u} is considered
 287 equivalent to the drag coefficient measured directly in the hybrid test section.

$$\varepsilon = 0.96 + 1.94 \exp(-0.06AR) . \quad (3)$$

$$AR = \frac{b}{c \sin \delta_{fp}} . \quad (4)$$

288 Hackett [33] expanded Maskell's analysis by decomposing the correction into two
 289 components: blockage-induced incremental velocity (correction of the incoming dy-
 290 namic pressure) and a drag increment due to wake distortion due to wake constraint
 291 effects (based on assumptions established in [32]). This decomposition enables more
 292 accurate drag correction [40]. The resulting two-step version of Maskell's analysis
 293 yielding $C_{D_{M_2}}$ is presented in Eq. 5.

$$C_{D_{M_2}} = \frac{C_{D_u} + \Delta C_{DM}}{q_c/q_u} = \frac{C_{D_u} + \Delta C_{DM}}{1 + \varepsilon_{solid}(C_{D_{M_1}} - \Delta C_{DM})(S/C)} . \quad (5)$$

294 In Eq. 5, $C_{D_{M_2}}$ represents the corrected drag coefficient derived from the extended
 295 two-step Maskell analysis, and ΔC_{DM} denotes the drag increment attributable to
 296 wake distortion. A closed form of the equation of the drag increment, ΔC_{DM} is
 297 presented in Eq. 6.

$$\Delta C_{DM} = \frac{C_{Du}}{(1 + \varepsilon_{solid} C_{Du}(S/C))} + \left[\frac{C_{Du}}{2\varepsilon_{solid} C_{Du}(S/C)} \right] \left[1 - \sqrt{1 + 4\varepsilon_{solid} C_{Du}(S/C)} \right]. \quad (6)$$

298 The lift coefficient correction C_{L_c} (expressed in Eq. 7) is applied solely based on
 299 the dynamic pressure correction of the incoming flow field, as determined by Eq. 2.
 300 It is important to note that this formulation to determine the C_{L_c} only addresses
 301 solid and wake blockage through dynamic pressure correction, but does not account
 302 for lift interference and streamline curvature errors induced by flow containment by
 303 the hybrid test section walls [41].

$$C_{L_c} = \frac{C_{L_u}}{q_c/q_u}. \quad (7)$$

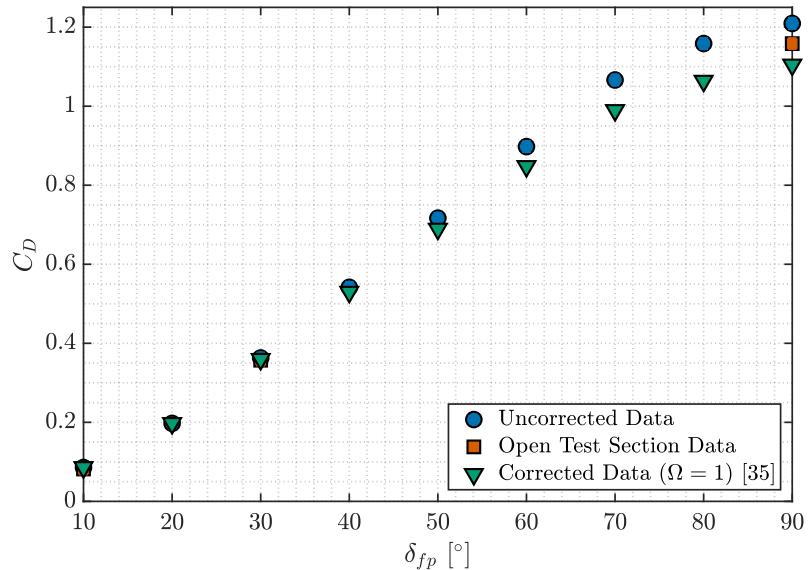


Figure 5: Comparison of drag coefficient (C_D) as a function of deflection angle (δ_{fp}) at $Re = 4.3 \times 10^5$. ● uncorrected data measured in the hybrid test section, ■ data measured in an open test section, ▼ corrected results using Eq. 5 [33] with a porosity factor $\Omega = 1$.

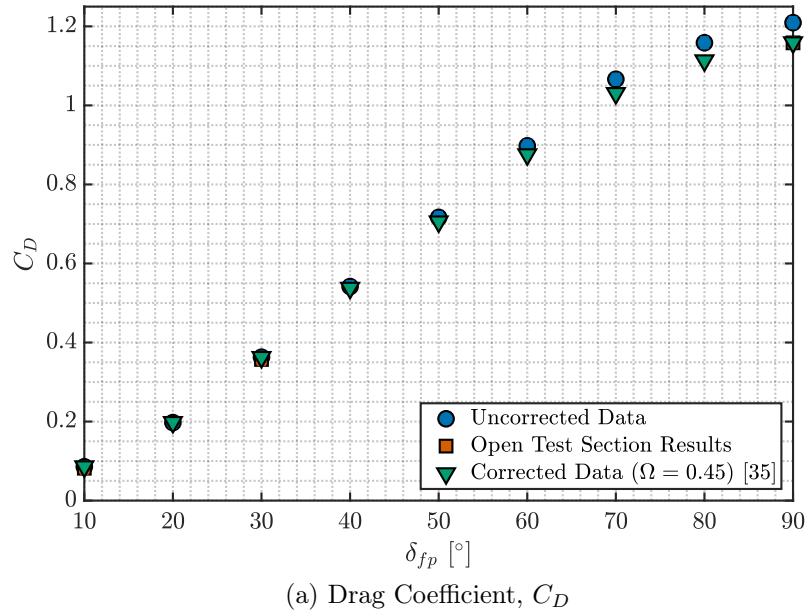
304 Figure 5 presents a comparison of the uncorrected and corrected drag coefficients
 305 calculated using the correction method described by Eq. 5, as a function of deflection
 306 angle, δ_{fp} , at $Re = 4.3 \times 10^5$. Since blockage correction varies with the projected
 307 aspect ratio (defined in Eq. 4), the correction magnitude is small for deflection angles

308 below $\delta_{fp} = 40^\circ$, becoming progressively greater at larger angles where the blockage
309 ratio between model and test section area increases. This results in a maximum
310 correction of $\Delta C_D = -0.12$ at a deflection angle of $\delta_{fp} = 90^\circ$.

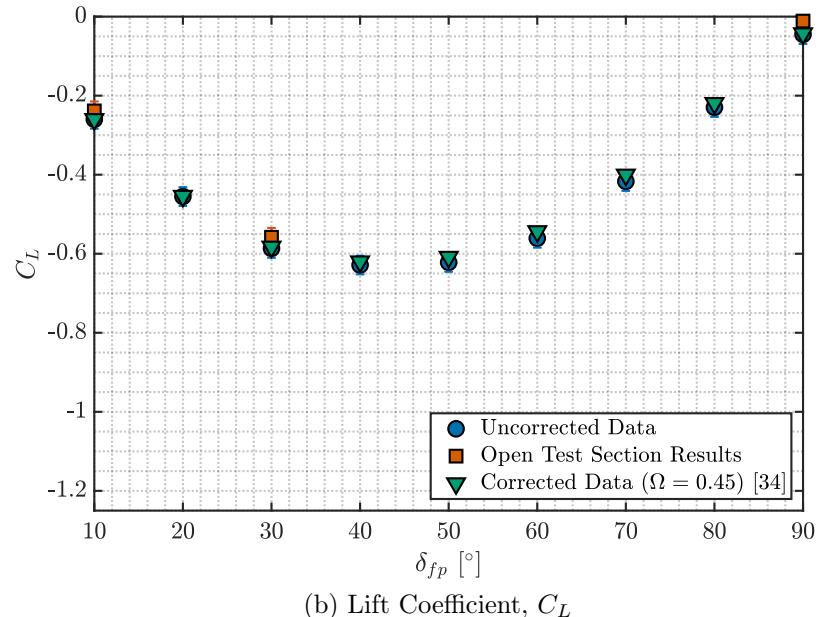
311 To assess the validity of the blockage correction calculated, Fig. 5 compares
312 the corrected C_D results calculated in the Kevlar hybrid test section with those
313 obtained for a similar configuration tested in an open test section configuration,
314 where the model was flush mounted to the nozzle of the open jet wind tunnel, forming
315 a 3/4th open test section. Ewald [40] highlighted that the measurements in open test
316 sections typically exhibit minimal blockage effects compared to closed test sections,
317 and hence open test section results can be used as a representative data set to assess
318 the influence of the permeability of the test section.

319 The open test section dataset comprises a subset of drag coefficient, C_D mea-
320 surements at three distinct deflection angles of $\delta_{fp} = 10^\circ$, 30° and 90° . Comparison
321 between these measurements and the corrected hybrid test section data reveals that
322 the implemented blockage correction over-corrects at high deflection angles, while
323 showing good agreement at low deflection angles where blockage effects are minimal.
324 The over-correction at large deflection angles can be attributed to using a porosity
325 factor of $\Omega = 1$, suggesting that the walls of the test section are completely solid.
326 This is not the case for the permeable Kevlar panels.

327 In this work, the porosity factor, Ω , is calculated using a similar methodology
328 that Devenport et al. [38] used for lifting bodies, but with two unique differences
329 due to the bluff body investigated in this work. The first is that the correction is
330 based on the bluff body blockage corrections of Maskell [32]. The second is that open
331 test section experimental data is used to determine the porosity factor, Ω , instead of
332 numerical simulations for a lifting wing in free-field conditions. The porosity factor,
333 Ω , corrects for the difference between the drag measured in a hybrid test section
334 and that obtained, for a similar configuration, measured in an open test section.
335 While theoretically the value of the porosity factor constant will be different for
336 every deflection angle, consistent with Devenport et al. [34], a single value is used
337 for this study. Hence, the calibration of this constant was done for a deflection angle
338 of $\delta_{fp} = 90^\circ$, which showed the largest deviation from the open test section results.
339 Due to the decrease in projected frontal area as the deflection angle reduces, the
340 blockage correction becomes less significant at lower deflection angles. Considering
341 Eq. 2, the value of Ω can be calculated by equating the corrected drag coefficient,
342 $C_{D_{M1}}$ to the measured drag coefficient at $\delta_{fp} = 90^\circ$ in an open test section, $C_{D_{open}}$.
343 The final equation is expressed in Eq. 8.



(a) Drag Coefficient, C_D



(b) Lift Coefficient, C_L

Figure 6: Comparison of the drag coefficient and lift coefficient as a function of deflection angle (δ_{fp}) at $Re = 4.3 \times 10^5$. ● uncorrected data as measured in the hybrid test section, ■ data measured in an open test section, ▼ corrected results using a porosity factor $\Omega = 0.45$.

$$\frac{C_{D_u}}{C_{D_{open}}} = 1 + \Omega \varepsilon_{solid} C_{D_u}(S/C) . \quad (8)$$

344 In Eq. 8, C_{D_u} is the uncorrected drag coefficient measured in the hybrid test
 345 section, ε_{solid} is the solid body correction, S is the model's projected area, and C is
 346 the test section cross-section area. This result yields a porosity factor of $\Omega = 0.45$,
 347 which aligns with values reported in literature for lifting wings where wall deflections
 348 were limited [38]. Figure 6(a) demonstrates that drag forces corrected using this
 349 porosity factor show excellent agreement with the open test section dataset, at all
 350 three different deflection angles where open test section data was available. The
 351 agreement in the lift force is not as good between the open test section results and
 352 the corrected hybrid test section results as shown in Fig. 6(b). The corrected data
 353 is closer to the open test section data than the uncorrected data, but still under-
 354 predicts it slightly. The current methodology only addresses solid and wake blockage
 355 through a dynamic pressure correction, but does not account for lift interference and
 356 streamline curvature errors induced by flow containment [41]. This is a limitation of
 357 the proposed method.

358 *3.2. Reynolds Number Scaling for Inclined Flat Plates*

359 The influence of the Reynolds Number, Re , on the aerodynamic performance of
 360 the inclined plate across various deflection angles is shown for the corrected drag
 361 coefficient, C_D and lift coefficient, C_L results in Figs. 7(a) and 7(b), respectively. A
 362 representative subset of the deflection angle range studied is presented. All of the
 363 deflection angles follow a similar trend.

364 Hoerner [13] found that the drag coefficient for flat plates in freestream was inde-
 365 pendent of Reynolds number. This behaviour was attributed to the fixed separation
 366 points along the edges of the inclined plate. The independence with Reynolds number
 367 is seen in the force data for a wall-mounted flat plate in Fig. 7(a) and Fig. 7(b) for
 368 most deflection angles. There are slight deviations in both lift and drag at the lowest
 369 Reynolds numbers for some specific deflection angles, e.g. at a deflection angle of
 370 90° . However, these deviations are within the uncertainty in the force measurements,
 371 which increase at lower Reynolds numbers. Therefore, within the experimental un-
 372 certainty of the force data, both the lift and drag are approximately independent of
 373 Reynolds number for this wall-mounted case, similar to what is seen for flat plates
 374 in freestream.

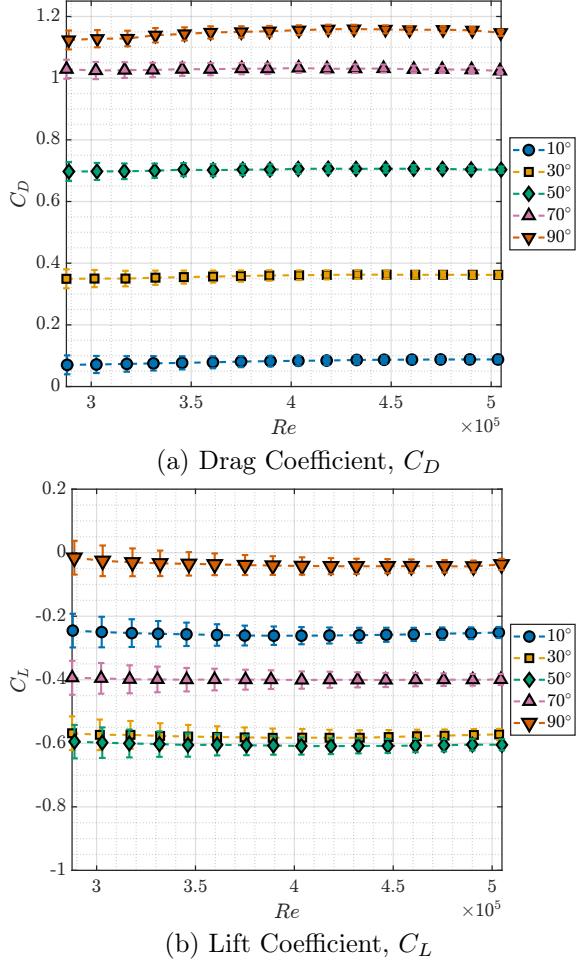


Figure 7: Variation of the aerodynamic load coefficients with Re number based on chord length, as a function of flat plate deflection angle, δ_{fp} .

375 3.3. Aerodynamic Load Scaling Analysis

376 One of the objectives of this work is to define aerodynamic scaling laws for a wall-
377 mounted flat plate inclined in the direction of the freestream flow as a function of
378 the deflection angle, δ_{fp} . Figure 8 illustrates a schematic of the force decomposition
379 acting on the inclined plate configuration, where the lift force, L , acts perpendicular
380 to the freestream velocity and the drag force, D , acts parallel to it. In reality,
381 due to the pressure difference, the flat plate produces downforce. Fig. 8 presents a
382 generalised force decomposition applicable to various flat plate geometries at different
383 ground clearances. To quantify the impact of deflection angle on aerodynamic loads,

384 the scaling analysis is conducted in terms of normal force, N , which is calculated as
 385 a function of the drag and lift force components acting on the inclined flat plate and
 386 directly measured by the load cell.

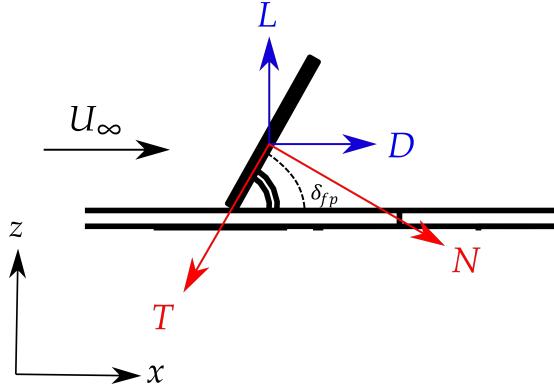


Figure 8: Generalised schematic of the force decomposition of the lift, L and drag, D forces and the normal, N and tangential, T forces acting on an inclined wall-mounted flat plate.

387 The equations relating normal and tangential forces to the lift and drag forces
 388 produced by the inclined flat plate are given in Eq. 9 and Eq. 10. As discussed later,
 389 the tangential force, T , generated by the plate was found to be negligible compared
 390 to the normal forces for the wall-mounted configuration.

$$N = D \sin(\delta_{fp}) - L \cos(\delta_{fp}) , \quad (9)$$

$$T = -D \cos(\delta_{fp}) - L \sin(\delta_{fp}) . \quad (10)$$

391 The aerodynamic normal force coefficient C_N , as a function of the deflection angle
 392 is shown in Fig. 9(a). Results were calculated for a reference planform area, A_{ref} ,
 393 which was a constant for each deflection angle. The reference area, equal to the
 394 product of chord and span of the model ($c \times b = 0.026 \text{ m}^2$) was used to calculate C_N
 395 according to Eq. 11.

$$C_N = \frac{N}{(q_\infty \times A_{ref})} . \quad (11)$$

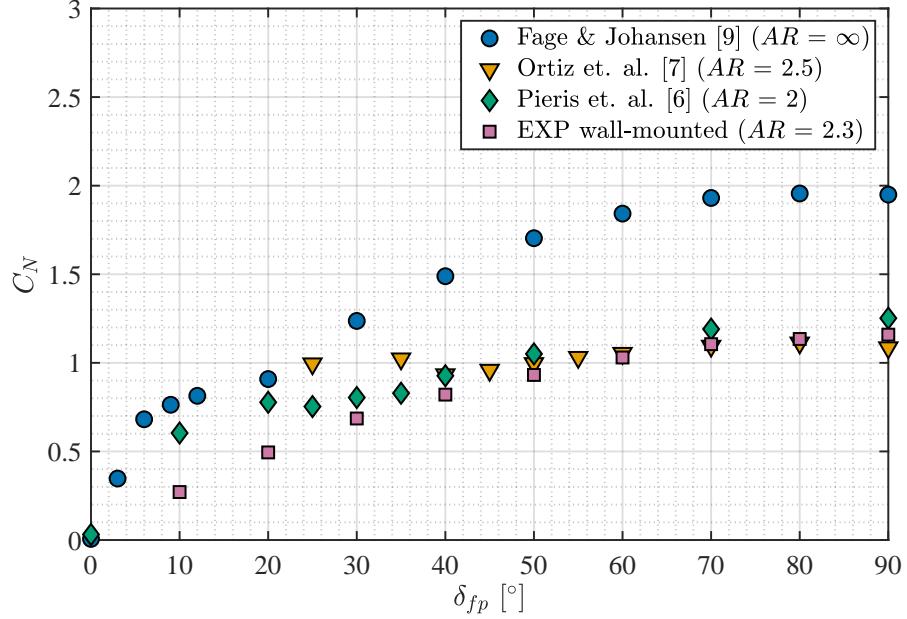
396 The results (Fig. 9(a)) show an increase of the normal force coefficient with in-
 397 creasing deflection angle approaching a value which is a maximum at $C_N = 90^\circ$.
 398 These findings are compared with published data for 2D inclined flat plates in
 399 freestream [9] and 3D inclined flat plates, with similar aspect ratios, in freestream

[6, 7]. Although the aspect ratios of the 3D flat plates differ slightly, Fail et al. [20] demonstrated that for normal low-aspect-ratio plates in freestream, changes in aerodynamic performance (drag, base pressure and recirculation bubble length) are small for aspect ratios up to 10. The data for the wall-mounted case collapses with the freestream plate values in literature (for similar aspect ratios $AR \approx 2$) at deflection angles $\delta_{fp} > 30^\circ$. For lower deflection angles, where the C_L becomes dominant in the C_N equation (Eq. 9), the experimental data for the wall-mounted plate shows lower C_N values than those reported in literature for plates in freestream. This discrepancy arises from the fundamentally different lift generation mechanisms for both the wall-mounted cases and the freestream cases at low deflection angles ($\delta_{fp} \leq 30^\circ$). Another important distinction between the wall-mounted and freestream configurations is the presence of the base mounting plate that constrains the growth of the wake compared to the freestream case. In spite of these differences, at a deflection angle of 90° , the differences in normalised normal force coefficient, C_N^* , are relatively small.

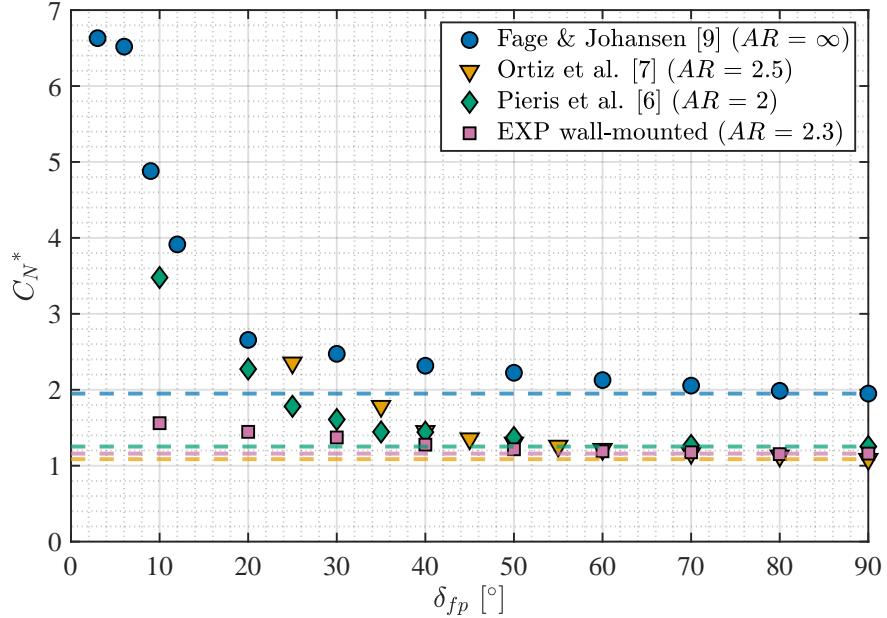
For an inclined plate in freestream, the flat plate behaves similar to a thin airfoil, with lift generated by the pressure difference between the suction side (downstream face) and the pressure side (upstream face). At low to moderate angles of attack, the flow separating at the leading edge of the plate typically reattaches on the suction surface, producing negative lift or downforce [6]. In contrast, for a wall-mounted inclined plate, the leading edge is immersed in the upstream boundary layer, resulting in substantially reduced flow velocity through the gap between the mounting surface and the leading edge compared to freestream velocity. As a result the downstream face of the inclined flat plate is exposed to the base pressure of the massively separated flow downstream of the plate. Consequently, this leads to smaller lift magnitudes for the wall-mounted configurations. While, the normal force coefficient for a wall-mounted plate was similar to the values for plates in freestream at high deflection angles (for plates with similar aspect ratios), the main differences occurred at low deflection angles due to the changes in the lift force discussed above.

When comparing the wall-mounted experimental data with that for a 2D inclined plate ($AR = \infty$) in freestream from literature, a similar trend is observed at low deflection angle as shown in Fig. 9(a) where larger values of normal force are generated at low deflection angles. The difference in the plateau value of the C_N at high deflection angles between the 2D plate in freestream and the wall-mounted 3D plate is due to the increase in the C_D with increasing AR [42].

To assess the scaling behaviour of aerodynamic loads for the wall-mounted plate, a normalised normal force coefficient, C_N^* was calculated with respect to the projected frontal area, A_{proj} for each deflection angle (defined in Eq. 13). This normalisation



(a) Normal force coefficient, C_N .



(b) Normalised normal force coefficient, C_N^* based on the projected frontal area. Dotted line represents the maximum value of C_N^* , i.e. C_N^* at 90° .

Figure 9: Normal force coefficient, C_N and the normalised normal force coefficient, C_N^* for a wall-mounted inclined flat plate as a function of deflection angle at $Re = 4.3 \times 10^5$. Results are compared with data from literature for inclined flat plates in freestream for a 2D case [9] and similar aspect ratios in freestream $AR \approx 2$ [6, 7].

438 approach was implemented to evaluate how the projected area influences aerody-
 439 namic loads on the flat plate model. The normalised coefficient, C_N^* is calculated
 440 using Eq. 12.

$$C_N^* = \frac{N}{(q_\infty \times A_{\text{proj}})} , \quad (12)$$

441 where,

$$A_{\text{proj}} = c \times b \times \sin(\delta_{fp}) . \quad (13)$$

442 Figure 9(b) demonstrates the collapse of the normalised normal force coefficient
 443 data when scaled with the projected frontal area. For deflection angles above the
 444 stall angle, where the downforce begins to decrease ($\delta_{fp} \geq 40^\circ$), the experimental
 445 data converges to an approximately constant C_N^* value equal to that observed at a
 446 deflection angle of $\delta_{fp} = 90^\circ$. This convergence is represented by the dashed trend-
 447 line in Fig. 9(b) for each dataset. This value corresponds to the maximum drag
 448 coefficient obtained when the plate is normal to the flow at a deflection angle of 90° .
 449 A similar collapse is observed for the freestream plate data in literature with similar
 450 aspect ratios at high deflection angles.

451 For deflection angles below 30° , the data diverges from the maximum C_N^* value
 452 (shown by the dashed line in Fig. 9(b)). Since the downforce generated by wall-
 453 mounted flat plates at low deflection angles is substantially smaller than that gener-
 454 ated in freestream conditions, the difference between the C_N^* values at low deflec-
 455 tion angles and the maximum value at $\delta_{fp} = 90^\circ$ remains below $C_N^* < 0.4$. This
 456 behaviour is different to that observed for flat plates in freestream. Since the nor-
 457 malised normal force coefficient C_N^* , varies so little for the wall-mounted case, it is
 458 possible to propose a scaling model for the lift and drag forces on wall-mounted flat
 459 plate configurations. The same scaling model cannot be used for plates in freestream
 460 due to the differences in C_N^* at low deflection angles, resulting from the larger lift
 461 forces generated by plates in freestream, as discussed previously.

462 To develop a prediction method for wall-mounted flat plates, and assuming neg-
 463 ligible viscous forces compared to pressure forces (and thus negligible C_T), the aero-
 464 dynamic loads of a flat plate inclined at a given deflection angle can be predicted
 465 using the following procedure. First by substituting the value of the C_D at $\delta_{fp} = 90^\circ$
 466 in Eq. 14 the value of the predicted normal force coefficient, $C_{N_{\text{pred}}}$ is determined.

$$C_{N_{\text{pred}}} = C_N^* \sin(\delta_{fp}) = C_{D_{\text{meas}(90^\circ)}} \sin(\delta_{fp}) , \quad (14)$$

467 Subsequently, as the tangential force (C_T) is assumed to be negligible, the dimen-
 468 sionless tangential force equation (Eq. 10) can be written as,

$$C_T = 0 = -C_{D_{\text{pred}}} \cos(\delta_{\text{fp}}) - C_{L_{\text{pred}}} \sin(\delta_{\text{fp}}) , \quad (15)$$

469 Solving for the predicted lift coefficient gives,

$$C_{L_{\text{pred}}} = -\frac{C_{D_{\text{pred}}}}{\tan(\delta_{\text{fp}})} . \quad (16)$$

470 Substituting the predicted lift coefficient (Eq. 16) into the dimensionless form of
471 the normal force equation (Eq. 9) gives the following relationship for the predicted
472 normal force coefficient,

$$C_{N_{\text{pred}}} = C_{D_{\text{pred}}} \sin(\delta_{\text{fp}}) - \left(-\frac{C_{D_{\text{pred}}}}{(\tan \delta_{\text{fp}})} \right) \cos(\delta_{\text{fp}}) . \quad (17)$$

473 Noting that $C_{N_{\text{pred}}}$ is simply calculated using Eq. 14 and the drag force at a deflection
474 angle of 90° , the predicted drag can be solved as follows,

$$C_{D_{\text{pred}}} = \frac{C_{N_{\text{pred}}}}{\sin(\delta_{\text{fp}}) + \frac{\cos(\delta_{\text{fp}})}{\tan(\delta_{\text{fp}})}} = C_{N_{\text{pred}}} \sin(\delta_{\text{fp}}) . \quad (18)$$

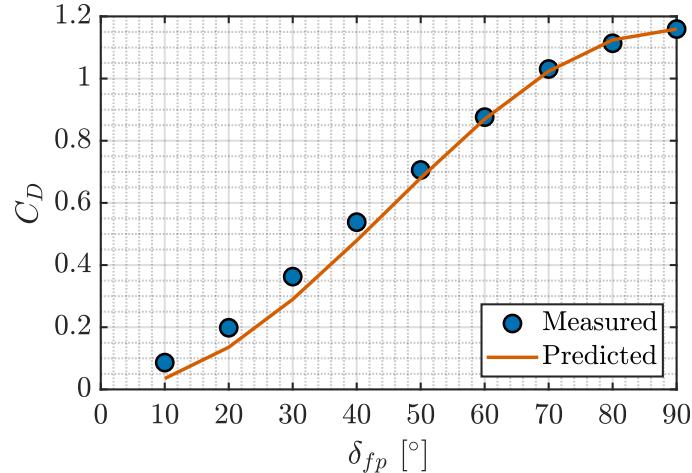
475 Substituting the result of Eq. 18 in Eq. 16, $C_{L_{\text{pred}}}$ can be simplified as shown in Eq.
476 19.

$$C_{L_{\text{pred}}} = -\frac{C_{N_{\text{pred}}} \sin(\delta_{\text{fp}})}{\tan(\delta_{\text{fp}})} = -C_{N_{\text{pred}}} \cos(\delta_{\text{fp}}) . \quad (19)$$

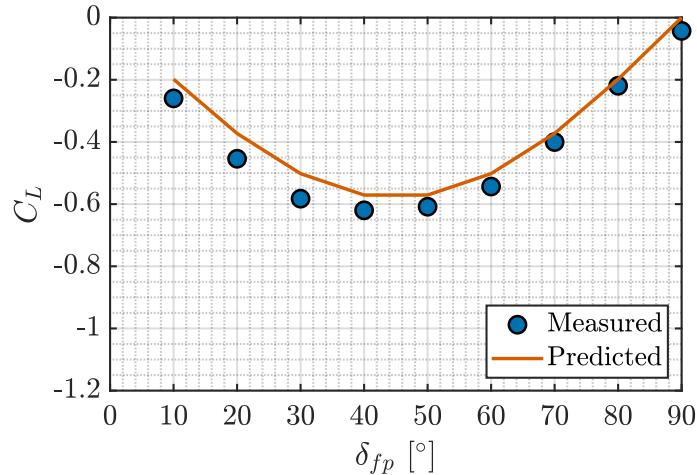
477 The procedure is to calculate the predicted normal force using Eq. 14 and the
478 drag force at a deflection angle of 90° . The predicted drag, $C_{D_{\text{pred}}}$, is estimated using
479 Eq. 18. Finally the predicted lift, $C_{L_{\text{pred}}}$ is estimated using Eq. 19.

480 The results of the force scaling laws are shown in Fig. 10. The scaling relationship
481 demonstrates good agreement between the measured and the predicted values, with
482 maximum absolute errors of $\Delta C_D \leq 0.073$ and $\Delta C_L \leq 0.081$ across the calculated
483 angle range. It is important to note that the scaling law is only for wall-mounted flat
484 plates. It can also be used for plates in freestream for high deflection angles beyond
485 stall ($\delta_{fp} > 40^\circ$), where the normalised normal force coefficient, C_N^* collapses with
486 the drag coefficient, C_D at a deflection angle of 90° . However, for low deflection
487 angles ($\delta_{fp} \leq 40^\circ$), plates in freestream generate higher lift, leading to the measured
488 C_N^* values to be significantly larger than those calculated using the method proposed
489 above.

490 This scaling law provides designers with a practical method to estimate the aero-
491 dynamic performance of wall-mounted inclined plates with aspect ratios $AR > 1.5$,



(a) Drag Coefficient, C_D .



(b) Lift Coefficient, C_L .

Figure 10: Comparison between the measured and the predicted aerodynamic coefficients as a function of deflection angle at a $Re = 4.3 \times 10^5$.

492 by requiring only the drag coefficient of the plate at $\delta_{fp} = 90^\circ$. Such an approach
 493 is particularly valuable during preliminary design stages when rapid assessment of
 494 various configurations is needed without requiring extensive computational or exper-
 495 imental resources.

496 **4. Far-field Acoustic Scaling for Wall-mounted Flat Plates**

497 The previous section detailed how the aerodynamic forces on a wall-mounted
498 flat plate varied with Reynolds number and deflection angle. A scaling law was
499 proposed for how the aerodynamic forces varied as a function of deflection angle.
500 For some engineering applications, the noise generated by wall-mounted flat plates is
501 also an important design consideration. The goal of this section is to provide acoustic
502 scaling laws. A similar structure to the previous section is followed here. Firstly, the
503 acoustics generated by the inclined wall-mounted flat plate are analysed for various
504 deflection angles and Reynolds numbers. For the aerodynamic loads analysis, a
505 scaling relationship existed that can approximate the aerodynamic loads for a flat
506 plate at a given deflection angle with the projected frontal area of the flat plate.
507 The second part of this section is to determine similar scaling laws for the far-field
508 acoustics for wall-mounted flat plates. There are two different scaling laws for the
509 acoustics. The first relationship is with respect to the freestream velocity, U_∞ , and
510 the second is as a function of the projected frontal area of the plate. Consequently,
511 the conclusions from the two scaling relationships can be used to provide initial
512 estimates of the noise generated by the wall-mounted inclined flat plates, but also to
513 give an insight into the noise sources responsible for the far-field noise.

514 The spectrum of a wall-mounted flat plate is broadband in nature and does not
515 contain discrete narrowband tones [16]. Due to the shear layer of opposite sign
516 vorticity being inhibited from forming due to the mounting plate, there is no coherent
517 bluff body vortex shedding in the wake. This is also consistent with the findings for
518 plates adjacent to bounding surfaces placed normal to the flow [43]. Therefore, only
519 one-third octave band data is presented here. The acoustic data was processed using
520 a Hamming windowing function with 75% overlap at a sampling frequency of 25.6
521 kHz and an FFT block size of 4096.

522 The noise generated by the flat plate has a directivity. Plates in freestream
523 typically have a dipole directivity pattern [28]. The normal force on the flat plate
524 varies with deflection angle and therefore the dipole axis also rotates as a function of
525 deflection angle. This consequently alters the direction of maximum sound radiation.
526 These changes in directivity mean that measurements taken at a fixed microphone
527 location may give inconsistent scaling laws due to the changes in directivity for
528 different deflection angles.

529 To account for the changes in directivity of the noise source at different deflection
530 angles, the scaling was done in terms of the integrated sound intensity level, $L_{I\text{int}}$,
531 obtained by integrating the acoustic intensity from $67^\circ \leq \theta \leq 113^\circ$ in the arc shown
532 in Fig. 4. Due to the limited number of microphones, the true source power level
533 cannot be determined, and hence some directivity characteristics of the noise source

534 may still not be fully captured. However, the integrated acoustic intensity is more
 535 robust than simply taking fixed microphone positions, as some directivity effects are
 536 included.

537 The quantity presented in the analysis is the integral of the acoustic intensity
 538 over the range of polar angles measured, assuming a homogenous medium and that
 539 the wave fronts lie normal to the microphone arc plane.

$$L_{I \text{ int}} = 10 \log_{10} \left(\sum_{i=1}^{i=10} \left(p_i^2 / (\rho a) \right) \frac{\Delta S_i}{1 \times 10^{-12}} \right) . \quad (20)$$

540 In Eq. 20, ρ is the density, a is the speed of sound, p_i is the acoustic pressure
 541 measured at each microphone, i is the microphone index, and ΔS_i is the surface area
 542 of the microphone arc shown in Fig. 4.

543 One-third octave spectra of the integrated acoustic intensity for different flat plate
 544 deflection angles are presented in Fig. 11. These measurements are obtained at Re
 545 $= 4.3 \times 10^5$ (corresponding to $U_\infty = 60$ m/s). The flow around a wall-mounted flat
 546 plate is characterised by an arch-type broadband wake without any coherent vortex
 547 shedding. There is a horseshoe vortex that originates upstream of the flat plate and
 548 wraps around both sides of the flat plate. Inboard of the horseshoe vortex, there
 549 is a pair of ground vortices with the opposite sign vorticity to the horseshoe vortex
 550 [16]. This flow topology is shown in Fig. 1. The noise sources have previously been
 551 identified to be the broadband bluff body wake, the horseshoe vortex, as well as the
 552 ground edge vortices and the flat plate side-edges [16]. The upstream separation
 553 bubble and consequent horseshoe vortex formation will vary with deflection angle.

554 The spectra can be divided into three distinct frequency regimes, as highlighted
 555 in Fig. 11. Regime I encompasses frequencies below 1 kHz. In general, an increase
 556 in noise generated by the flat plate is observed with increasing deflection angle, with
 557 up to 11 dB difference between the lowest and highest deflection angles in the low
 558 frequency regime (below 1 kHz). However, the change in noise with deflection angles
 559 varies as a function of frequency. Numerical simulations done by Parnis and Angland
 560 [16] for a wall-mounted flat plate at $\delta_{fp} = 30^\circ$ revealed that low-frequency noise is
 561 dominated by the pressure fluctuations on the base mounting plate as a result of the
 562 flow field generated by the deflected flat plate. The noise contribution from pressure
 563 fluctuations on the flat plate surface itself was found to peak at approximately 1.25
 564 kHz. This corresponds to Regime II, spanning $1 \text{ kHz} \leq f \leq 3 \text{ kHz}$. Regime III
 565 contains the higher frequencies above 3 kHz.

566 As previously discussed, there was a small hinge gap between the mounting base-
 567 plate and the inclined flat plate in order to measure the aerodynamic forces (Fig. 3).
 568 Supplementary experiments were performed to see the effect of this gap on the acous-

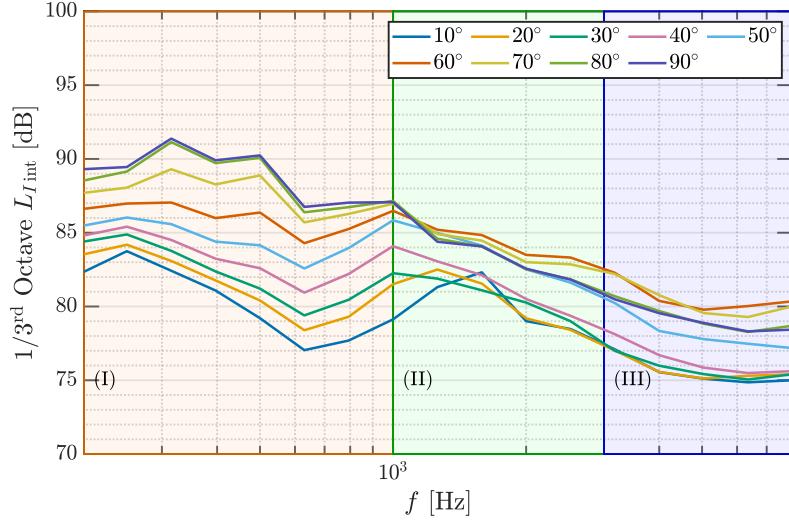


Figure 11: Integrated acoustic intensity (defined in Eq. 20) as a function of deflection angle (δ_{fp}) at $Re = 4.3 \times 10^5$.

tic measurements by blocking this gap with tape (data omitted here for brevity). At deflection angles $\delta_{fp} > 20^\circ$, there was an excellent agreement between the spectra, over the whole frequency range measured, suggesting this small gap immersed in the boundary layer was not a significant source of noise. At the smallest deflection angles ($\delta_{fp} < 20^\circ$), there was some additional noise generated from 1 kHz to 5 kHz by the flow through the small gap. Outside of this particular frequency range, the agreement was very good for the acoustic spectra with and without the gap. This additional gap noise can be seen in the integrated acoustic intensity data in Fig. 11 for $\delta_{fp} = 10^\circ$, centred around a one-third octave band of 1.25 kHz.

4.1. Acoustic Scaling as a Function of Velocity

An analysis of the acoustic scaling with respect to freestream velocity was conducted to assess the noise source mechanisms of an inclined wall-mounted flat plate. The integrated acoustic intensity was plotted as a function of $10 \log_{10}(U_\infty)$ to determine how the integrated acoustic intensity scales with freestream velocity as a function of deflection angle. For a simple compact dipole source, the acoustic intensity should scale as U_∞^6 [44]. This analysis was integrated across the entire frequency range. The experiments were conducted in the Kevlar-walled hybrid test section specifically to reduce the additional background facility noise that changed with deflection angle when the deflected flat plate's wake interacted with the wind tunnel

588 collector, as explained previously. Results for deflection angles ranging from 10° to
 589 90° in 20° increments are presented in Fig. 12. Not all deflection angles are included
 590 to improve the clarity of the figure. The trend is similar at the other deflection
 591 angles.

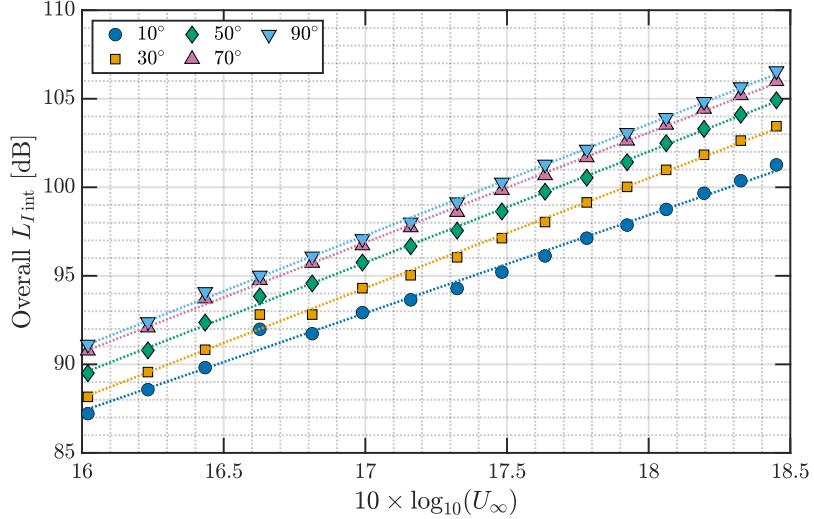


Figure 12: Freestream velocity scaling plot for the overall integrated acoustic intensity for different deflection angles ($10^\circ \leq \delta_{fp} \leq 90^\circ$).

592 Linear regression analysis was performed for each deflection angle to quantify the
 593 acoustic velocity scaling. Table 1 summarises the velocity scaling exponent, n_{U_∞} , as a
 594 function of deflection angle. As discussed above, the theoretical value for the velocity
 595 scaling exponent is 6 for a pure compact dipole. The slope of these regression lines
 596 for the wall-mounted flat plate varies approximately but not perfectly with U_∞^6 . The
 597 imperfect collapse suggests that the noise generation mechanism for a wall-mounted
 598 flat plate is more complex than a simple dipole source, as the velocity exponent varies
 599 as a function of deflection angle.

600 At low deflection angles ($\delta_{fp} \leq 20^\circ$), the velocity exponent is less than 6. The
 601 theoretical value for the velocity exponent for a pure edge scattering source is 5.
 602 Therefore, the noise source mechanism is a mixture of pure dipole and edge scattering.

603 This behaviour changes as the deflection angle increases and a stronger separation
 604 bubble forms upstream of the flat plate. For higher deflection angles ($\delta_{fp} > 30^\circ$), the
 605 velocity exponent is slightly higher than the expected value for a pure compact dipole
 606 source. This is attributed to the turbulence modification along the upstream surface
 607 of the flat plate due to the additional impingement of the upstream separation bubble

Table 1: Variation of the velocity scaling exponent, n_{U_∞} as a function of deflection angle, δ_{fp} from 10° to 90° .

δ_{fp} [°]	n_{U_∞}
10	5.5
20	5.9
30	6.2
40	6.3
50	6.3
60	6.2
70	6.2
80	6.2
90	6.3

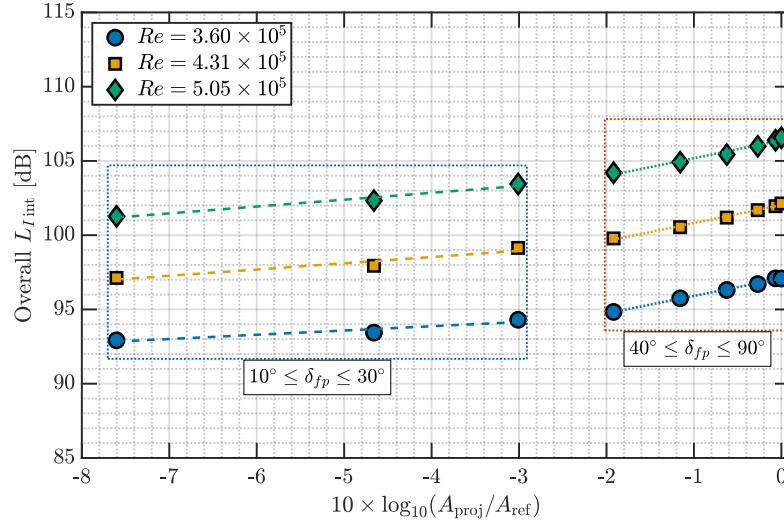
on the upstream face of the inclined flat plate. Similar behaviour was observed by Sundeep et al. [45] for square obstructions in a turbulent boundary layer where the height of the obstacle was larger than the incoming boundary layer. Due to the complexity of the flow topology and resultant acoustic sources for wall-mounted flat plates, i.e. horseshoe vortex and ground edge vortices (shown in Fig 1), the scaling with velocity is not a simple compact dipole source.

4.2. Acoustic Scaling with respect to the Projected Area

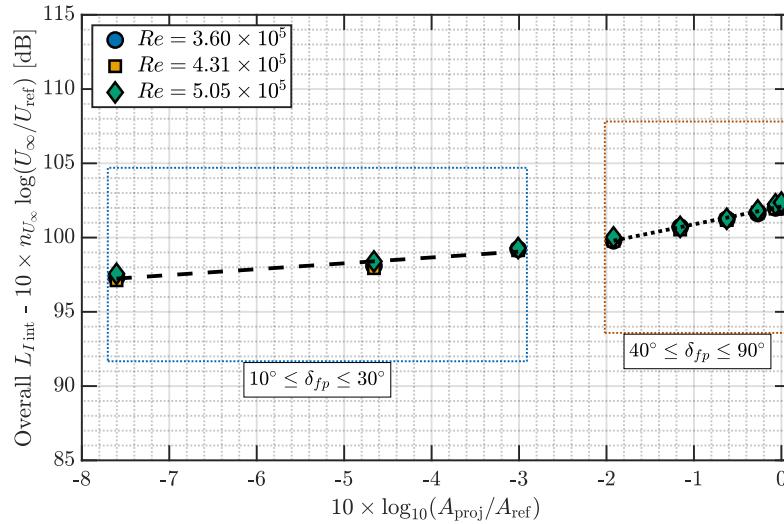
To analyse the influence of the deflection angle on the flow-induced noise from wall-mounted flat plates, the integrated acoustic intensity was plotted as a function of $10 \log_{10}(A_{\text{proj}}/A_{\text{ref}})$, where A_{proj} is the projected frontal area and A_{ref} is the planform area. Since this ratio is proportional to $\sin(\delta_{fp})$, the analysis provides an insight into how the integrated acoustic intensity scales with deflection angle. For a simple compact dipole source, the acoustic intensity should scale as a function of area to the power of unity [44]. In this case, the projected frontal area is used as this is the quantity that varies with deflection angle. Similar to the velocity scaling analysis presented above, the scaling with projected area is expected to differ slightly from the theoretical value for a simple compact dipole due to the additional acoustic sources, non-compactness effects, edge scattering etc. The scaling analysis presented here will quantify this.

The integrated intensity spectra shown in Fig. 11 demonstrate that the scaling relationship for wall-mounted flat plates is not trivial and depends on both the frequency regime and the deflection angle of the flat plate. The velocity scaling in Section 4.1 identified that the noise source, while exhibiting scaling close to a dipole,

631 is in reality a mixture of sources and the velocity scaling was dependent on the
 632 deflection angle.



(a) Projected area scaling for overall integrated acoustic intensity as a function of different Re numbers.



(b) Projected area scaling for the overall integrated acoustic intensity normalised to a reference velocity, $U_{\text{ref}} = 60$ m/s ($Re = 4.31 \times 10^5$).

Figure 13: Projected area scaling for overall integrated acoustic intensity.

633 Performing area scaling across the overall frequency range (shown in Fig. 13(a))

634 reveals two distinct scaling laws. One is for low deflection angles ($10^\circ \leq \delta_{fp} \leq 30^\circ$)
 635 and other is for higher deflection angles ($40^\circ \leq \delta_{fp} \leq 90^\circ$). Linear regressions were
 636 performed separately within each deflection angle range to determine the scaling
 637 exponent as a function of projected area. The corresponding slope variations across
 638 Re numbers are summarised in Table 2.

Table 2: Projected area scaling exponent, n_A over the entire frequency range as a function of Re number and δ_{fp} .

Re	$10^\circ \leq \delta_{fp} \leq 30^\circ$	$40^\circ \leq \delta_{fp} \leq 90^\circ$
3.6×10^5	0.3	1.2
4.3×10^5	0.4	1.2
5.1×10^5	0.5	1.2

639 For the overall frequency range, the regression slope, n_A , demonstrates a clear
 640 difference between high and low deflection angles. At higher deflection angles ($\delta_{fp} \geq$
 641 40°), n_A is approximately equal to 1.2. This is close to the theoretical value of unity
 642 expected for a simple compact dipole source. However, just like the velocity scaling
 643 determined previously, it is more complicated than a simple dipole scaling law.

644 In contrast, at lower deflection angles ($\delta_{fp} \leq 30^\circ$), the scaling exponent reduces
 645 significantly to approximately 0.4 at $U_\infty = 60$ m/s. This deviation from dipole-like
 646 scaling is due to more of the plate being immersed in the boundary layer compared
 647 to when it is at higher deflection angles. This changes the scaling with respect to
 648 the projected area and explains why there was only a relatively weak dependency
 649 on projected area at low deflection angles. The evidence that the lowest flat plate
 650 deflection angles are influenced by being immersed in the boundary layer is also shown
 651 in the scaling exponent data in Table 2 for different Reynolds numbers. At deflection
 652 angles above 40° the scaling exponent with projected area is 1.2 and does not change
 653 with Reynolds number. Conversely, at low deflection angles, where the height of the
 654 boundary layer relative to the projected height of the plate is greater, the scaling
 655 exponent varies much more. The boundary layer is a function of the Reynolds number
 656 and therefore is expected to have a greater effect on the low deflection angles. This
 657 difference in behaviour between low and high deflection angles was also seen in the
 658 aerodynamic force data, where the normalised normal force coefficient (C_N^*) (shown
 659 in Fig. 9(b)) approached a limiting value at high deflection angles, but deviated
 660 significantly from this limiting value at deflection angles less than 30° .

661 To see how the velocity normalised data scaled, Fig. 13(b) shows the overall $L_{I\text{int}}$
 662 values normalised by velocity using the scaling law values previously determined and

663 referenced to $U_{\text{ref}} = 60$ m/s (equivalent to $Re = 4.31 \times 10^5$). The velocity scaling
664 exponent n_{U_∞} , was varied for each deflection angle, using the values tabulated in
665 Table 1. The results demonstrate a good collapse of the three datasets, confirming
666 the two distinct scaling relationships observed in Fig. 13(a). Linear regression
667 analysis, over the two defined angle ranges, reveals that for higher deflection angles
668 ($40^\circ \leq \delta_{fp} \leq 90^\circ$), $n_A \approx 1.2$, consistent with values obtained for scaling at
669 each individual Reynolds number. For smaller deflection angles ($10^\circ \leq \delta_{fp} \leq 30^\circ$),
670 the collapse is not as good, due to the Reynolds number dependencies in this angle
671 regime previously discussed. The value was $n_A \approx 0.4$, which lies in the mid range of
672 the values previously presented in Table 1 for each Reynolds numbers.

673 **5. Conclusions**

674 This work investigated scaling laws for the aerodynamic loads and aeroacoustic
675 noise of wall-mounted inclined flat plates for different deflection angles ranging
676 from 10° to 90° . The experiments were conducted in a hybrid Kevlar-walled test
677 section, which offered significant advantages over traditional open-jet configurations
678 for acoustic measurements by constraining the wake expansion downstream of the
679 flat plate and reducing background noise due to the interaction of the wake with the
680 collector in an open test section wind tunnel, and increasing the signal-to-noise ratio.
681 This was particularly important at high flat plate deflection angles.

682 While advantageous for acoustic measurements, the use of a Kevlar test section
683 necessitated aerodynamic corrections for solid body and wake blockage effects. A
684 procedure based on a correction method for lifting wings in a Kevlar test section
685 was extended for bluff body flows. It differed in two key aspects. The first is that
686 the correction was based on the bluff body blockage corrections of Maskell. The
687 second was that the porosity factor was calculated by optimising agreement with
688 experimental open jet data where blockage effects were negligible. The optimum
689 value of this porosity factor, determined experimentally, was $\Omega = 0.45$ for the inclined
690 plate at a deflection of $\delta_{fp} = 90^\circ$. This is consistent with previous findings in
691 literature for lifting wings in Kevlar test sections.

692 The normalised normal force coefficient exhibits a good collapse when scaled
693 with the projected frontal area. For deflection angles above 50° , the normalised
694 normal force coefficient converges to a value equal to the drag coefficient of the
695 plate at a deflection angle of 90° . For deflection angles below $\delta_{fp} = 30^\circ$, a slightly
696 worse agreement was observed. However, due to the wall-mounted flow topology, the
697 downforce generated at these angles is smaller than that generated in freestream,
698 resulting in only small variations from the maximum value at $\delta_{fp} = 90^\circ$. This scaling
699 behaviour applies to flat plates where the pressure forces dominate. It provides a
700 simple predictive method requiring only knowledge of the normal drag coefficient at
701 $\delta_{fp} = 90^\circ$. Due to the difference in the lift mechanism generated between plates
702 in freestream and wall-mounted plates, this scaling relationship does not apply to
703 plates in freestream. The defined scaling relationship demonstrated good agreement
704 between the measured and predicted aerodynamic loads, with maximum absolute
705 errors of $\Delta C_D \leq 0.073$ and $\Delta C_L \leq 0.081$ across the deflection angle range.

706 The analysis of the flow-induced noise by an inclined wall-mounted flat plate
707 revealed a non-trivial scaling relationship, which suggests a more complex noise gen-
708 eration which varies across different deflection angles and frequency ranges. The
709 noise generated by a wall-mounted flat plate is broadband in nature without distinct
710 low-frequency peaks corresponding to coherent bluff body vortex shedding. The ra-

711 diated noise scales approximately but not perfectly with the sixth power of velocity,
712 consistent with dipole characteristics. However, the exact velocity exponent varied
713 with the deflection angle. At lower deflection angles ($\delta_{fp} \leq 20^\circ$), the exponent was
714 less than six, indicating a mixture of dipole and edge scattering sources. At higher
715 deflection angles ($\delta_{fp} \geq 30^\circ$), slightly higher velocity exponents were observed, consis-
716 tent with other findings in the literature for wall-mounted square obstacles partially
717 immersed in a turbulent boundary layer.

718 Projected area scaling for the noise revealed two distinct scaling relationships
719 corresponding to low ($10^\circ \leq \delta_{fp} \leq 30^\circ$) and high ($40^\circ \leq \delta_{fp} \leq 90^\circ$) deflection
720 angles. For the overall frequency range, the integrated acoustic intensity at higher
721 deflection angles scaled with an exponent approximately equal to 1.2. While this is
722 close to the theoretical dipole scaling value of unity, it exceeds it, indicating a more
723 complex scaling relationship. Previous work has identified the acoustic sources for
724 a wall-mounted flat plate to be associated with the broadband bluff body wake, the
725 horseshoe vortex, as well as the ground edge vortices and the flat plate side-edges.
726 These sources do not scale simply with the projected area of the flat plate. At lower
727 deflection angle, the exponent reduced significantly to 0.4, with variations across
728 different Reynolds numbers as a greater proportion of the flat plate was immersed
729 in the boundary layer.

730 6. CRediT authorship contribution statement

731 **Owen Parnis:** Writing – original draft, Visualisation, Validation, Data curation,
732 Formal analysis, Investigation, Methodology, Software. Conceptualization. **David**
733 **Angland:** Writing – review and editing, Conceptualization, Formal analysis, Fund-
734 ing acquisition, Project administration, Supervision.

735 7. Acknowledgements

736 This work was sponsored in part by the research project INnoVative dEsign of iN-
737 stalled airframe componeNts for aircraft nOise Reduction (INVENTOR), which has
738 received funding from the European Union’s Horizon 2020 research and innovation
739 program under grant agreement No. 860538.

740 **Appendix A. Microphone Location**

Table A.1: Microphone locations with respect to the model axis shown in Fig. 3.

Microphone	x (m)	y (m)	z (m)
1	-0.602	-0.21	1.343
2	-0.452	-0.21	1.341
3	-0.302	-0.21	1.339
4	-0.152	-0.21	1.337
5	-0.002	-0.21	1.335
6	0.148	-0.21	1.333
7	0.298	-0.21	1.331
8	-0.413	0	1.344
9	0	0	1.337
10	0.305	0	1.333

741 **References**

- 742 [1] Abernathy F.H, Flow Over an Inclined Plate, *Journal of Fluid Engineering, Transections of the ASME* 84 (1962) 380–388. doi:10.1115/1.3657331.
- 743
- 744 [2] B. Wick, Study of the subsonic forces and moments on an inclined plate of infinite span, Technical Report, National Advisory Committee for Aeronautics, 745 1954.
- 746
- 747 [3] J. Chen, Y. Feng, Strouhal numbers of inclined flat plates, *Journal of Wind Engineering and Industrial Aerodynamics* 61 (1996) 99–112. doi:10.1016/0167-748 6105(96)00044-X.
- 749
- 750 [4] K. Taira, T. Colonius, Three-dimensional flows around low-aspect-ratio flat-751 plates wings at low Reynolds numbers., *Journal of Fluid Mechanics* 623 (2009) 752 187–207. doi:10.1017/S0022112008005314.
- 753
- 754 [5] A. Hemmati, D. Wood, R. Martinuzzi, On simulating the flow past a normal thin flat plate, *Journal of Wind Engineering and Industrial Aerodynamics* 174 (2018) 170–187. doi:10.1016/j.jweia.2017.12.026.
- 755
- 756 [6] S. Pieris, S. Yarusevych, S. Peterson, Flow development over inclined flat plates in ground effect and relation to aerodynamic loads., *Physics of Fluids* 34 (2022). 757 doi:10.1063/5.0102406.
- 758

- 759 [7] X. Ortiz, D. Rival, D. Wood, Forces and moments on flat plates of small aspect
760 ratio with Application to PV wind loads and small wind turbine blades, *Energies*
761 8 (2015) 2438–2453. doi:10.3390/en8042438.
- 762 [8] G. Torres, T. Mueller, Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds
763 Numbers., *AIAA Journal* 42 (2004) 865–873. doi:10.2514/1.12330.
- 764 [9] A. Fage, F. Johansen, On the Flow of Air behind an Inclined Flat Plate of Infi-
765 nite Span., *Proceedings of the Royal Society of London. Series A. Mathematical*
766 *and Physical Sciences* 147 (1927) 170–197.
- 767 [10] O. Flachsbart, Messungen an ebenen und gewölbten platten, *Ergebnisse der*
768 *AVA* IV (1932).
- 769 [11] J. Holmes, C. Letchford, N. Lin, Investigations of plate-type windborne debris
770 - part ii: Computed trajectories., *Journal of Wind Engineering and Industrial*
771 *Aerodynamics* 94 (2005).
- 772 [12] M. Mizoguchi, Y. Yamaguchi, Aerodynamic characteristics of rectangular flat
773 plate wings in low reynolds number flows, *Journal of the Japan Society for*
774 *Aeronautical and Space Sciences* 60 (2012) 121–127. In Japanese with English
775 abstract.
- 776 [13] S. Hoerner, *Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag*
777 and *Hydrodynamic Resistance*, first ed., Hoerner, S.F, New Jersey, 1965.
- 778 [14] A. Pelletier, T. J. Mueller, Low reynolds number aerodynamics of low-aspect-
779 ratio, thin/flat/cambered-plate wings, *Journal of Aircraft* 37 (2000) 825–832.
780 doi:10.2514/2.2676.
- 781 [15] P. Gutierrez-Castillo, J. Aguilar-Cabello, S. Alcalde-Morales, L. Parras, C. del
782 Pino, On the lift curve slope for rectangular flat plate wings at moderate
783 reynolds number, *Journal of Wind Engineering & Industrial Aerodynamics*
784 208 (2021) 104459. doi:10.1016/j.jweia.2020.104459.
- 785 [16] O. Parnis, D. Angland, Numerical Simulation of the Aerodynamics and Acous-
786 tic of a Wall-Mounted Spoiler, *AIAA Journal* (2025). doi:10.2514/1.J064906,
787 articles in Advance.
- 788 [17] A. Aly, G. Bitsuamlak, Aerodynamics of ground-mounted solar panels: Test
789 model scale effects, *Journal of Wind Engineering and Industrial Aerodynamics*
790 123 (2013) 250–260. doi:10.1016/j.jweia.2013.07.007.

- 791 [18] K. Strobel, D. Banks, Effects of vortex shedding in arrays of long inclined
792 flat plates and ramifications for ground-mounted photovoltaic arrays, *Journal*
793 of Wind Engineering and Industrial Aerodynamics 133 (2014) 146–149.
794 doi:10.1016/j.jweia.2014.06.013.
- 795 [19] A. Capone, G. Romano, Investigation on the effect of horizontal and
796 vertical deflectors on the near-wake of a square-back car model, *Journal*
797 of Wind Engineering & Industrial Aerodynamics 185 (2019) 57–64.
798 doi:10.1016/j.jweia.2018.12.011.
- 799 [20] R. Fail, J. Lawford, R. Eyre, Low-speed-experiments on the wake characteristics
800 of flat plates normal to an air stream., Aeronautical Research Council, reports
801 and memoranda 310 (1959).
- 802 [21] W. F. King, E. Pfizenmaier, An experimental study of sound generated by flows
803 around cylinders of different cross-section, *Journal of Sound and Vibration* 328
804 (2009) 318–337. doi:10.1016/j.jsv.2009.07.034.
- 805 [22] D. J. Moreau, C. J. Doolan, Flow-induced sound of wall-mounted finite length
806 cylinders, *AIAA Journal* 51 (2013) 2493–2502. doi:10.2514/1.J052391.
- 807 [23] R. Porteous, D. J. Moreau, C. J. Doolan, A review of flow-induced noise from
808 finite wall-mounted cylinders, *Journal of Fluids and Structures* 51 (2014) 240–
809 254. doi:10.1016/j.jfluidstructs.2014.08.012.
- 810 [24] Y. Wang, D. Thompson, Z. Hu, Effects of aspect ratio on flow and noise from
811 cuboids, in: 25th AIAA/CEAS Aeroacoustics Conference, 2019, 2019.
- 812 [25] N. Curle, The influence of solid boundaries upon aerodynamic sound, *Proceedings*
813 of the Royal Society of London. Series A. Mathematical and Physical
814 Sciences 231 (1955) 505–514. doi:10.1098/rspa.1955.0191.
- 815 [26] O. Phillips, The intnesity of aeolian tones., *Journal of Fluid Mechanics* (1956).
- 816 [27] R. Porteous, C. J. Doolan, D. J. Moreau, Directivity pattern of flow-induced
817 noise from a wall-mounted, finite length circular cylinder, in: *Proceedings of*
818 *Acoustics*, 2013.
- 819 [28] Y. Maruta, F. Kanagawa, Separated flow noise of a flat plate at large attack
820 angles., in: *AIAA 7th Aeroacoustic Conference*, 1815. doi:10.2514/6.1981-2050.

- 821 [29] S. Becker, H. Lienhart, F. Durast, Flow around three-dimensional obstacles in
822 boundary layers., *Journal of Wind Engineering and Industrial Aerodynamics* 90
823 (2002) 265–279.
- 824 [30] J. Agui, J. Andreopoulos, Experimental investigation of a three dimensional
825 boundary layer flow in the vicinity of an upright wall mounted cylinder, in:
826 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1990.
- 827 [31] S. Becker, C. Hahn, M. Kaltenbacher, R. Lerch, Flow-induced sound of wall-
828 mounted cylinders with different geometries, *AIAA Journal* 46 (2008) 2265–
829 2281. doi:10.2514/1.34865.
- 830 [32] E. Maskell, A theory of the blockage effects on bluff bodies and stalled wings in
831 a closed wind tunnel., 1963.
- 832 [33] J. Hackett, Tunnel Induced Gradients and Their Effect on Drag, *AIAA Journal*
833 (1996) 2575–2581. doi:10.2514/3.13441.
- 834 [34] W. Devenport, R. Burdisso, A. Borgoltz, P. Ravetta, M. Barone, K. Brown,
835 M. Morton, The kevlar-walled anechoic wind tunnel., *Journal of Sound and*
836 *Vibration* 332 (2013) 3971–3991. doi:10.1016/j.jsv.2013.02.043.
- 837 [35] ATI Industrial Automation, Six-Axis Force/Torque Sensor System, Installation
838 and Operation Manual, 2021.
- 839 [36] Z. Ivanova, D. Angland, Southampton Anechoic Wind Tunnel (SotonAWT)
840 Aerodynamic and Acoustic Characterisation, in: 28th AIAA/CEAS Aeroacous-
841 tics Conference, 2022. doi:10.2514/6.2022-2854.
- 842 [37] JCGM, Evaluation of measurement data — Guide to the expres-
843 sion of uncertainty in measurement, Sèvres, France, 2008. URL:
844 <http://www.bipm.org/en/committees/jc/jcgm>, first edition, corrected
845 version 2010.
- 846 [38] W. Devenport, R. Burdisso, A. Borgoltz, P. Ravetta, M. Barone, Aerodynamic
847 and acoustic corrections for a kevlar-walled anechoic wind tunnel., in: 16th
848 AIAA/CEAS Aeroacoustics Conference, 2010. doi:10.2514/6.2010-3749.
- 849 [39] H. Allen, W. Vincenti, Wall Interference in a Two-Dimensional-Flow Wind
850 Tunnel, with Consideration of the Effect of Compressibility, Technical Report
851 NACA-TR-3423, NACA, 1944.

- 852 [40] B. Ewald (Ed.), Wind Tunnel Wall Correction, number 336 in AGARD Advisory
853 Group for Aerospace Research and Development, RTO/NATO, 1998. AGARD-
854 AG-336.
- 855 [41] R. Joppa, Wind Tunnel Interference Factors for High-Lift Wings in Closed Wind
856 Tunnels, Nasa Contractor Report NASA CR-2191, 1973.
- 857 [42] R. Fail, T. Owen, R. Eyre, Preliminary Low Speed Wind Tests
858 on Flat Plates and Air Brakes, Technical Report, 1956. URL:
859 <http://naca.central.cranfield.ac.uk/reports/arc/cp/0251.pdf>.
- 860 [43] K. W. Everitt, Normal Flat Plate Close To a Large Plane Surface., Aeronautical
861 Quarterly 33 (1982) 90–104. doi:10.1017/s0001925900009318.
- 862 [44] Theory of Vortex Sound, 1st ed., Cambridge University Press, 2003.
- 863 [45] S. Sundeep, H. Bu, Z. Zhong, X. Zhang, An experimental study of aerodynamic
864 noise from large obstructions in turbulent boundary layer flows, Physics of
865 Fluids 34 (2022). doi:10.1063/5.0080426.