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Abstract

Effective airfoil geometry optimization requires exploring a diverse range of designs using as few design variables as possible. This
study introduces AirDbM, a Design-by-Morphing (DbM) approach specialized for airfoil optimization that systematically reduces
design-space dimensionality. AirDbM selects an optimal set of 12 baseline airfoils from the UIUC airfoil database, which contains
over 1600 shapes, by sequentially adding the baseline that most increases the design capacity. With these baselines, AirDbM recon-
structs 99% of the database with a mean absolute error below 0.005, which matches the performance of a previous DbM approach that
used more baselines. In multi-objective aerodynamic optimization, AirDbM demonstrates rapid convergence and achieves a Pareto
front with a greater hypervolume than that of the previous larger-baseline study, where new Pareto-optimal solutions are discovered
with enhanced lift-to-drag ratios at moderate stall tolerances. Furthermore, AirDbM demonstrates outstanding adaptability for re-
inforcement learning (RL) agents in generating airfoil geometry when compared to conventional airfoil parameterization methods,

implying the broader potential of DbM in machine learning-driven design.
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Nomenclature

Alphabets and greek letters

Arbitrary airfoil shape

i-th baseline airfoil shape

Airfoil chord length (m)

Speed of sound (m s71)

Drag force exerted on an airfoil per unit span (N m1)

Lift force exerted on an airfoil per unit span (N m~1)

Morphed airfoil shape

Design-by-Morphing shape normalization factor

Airfoil shape similarity measure

Freestream flow speed (m s7?)

wi:  Design-by-Morphing weight factor with respect to the ith
baseline

X Horizontal Cartesian coordinate

y: Vertical Cartesian coordinate

a:  Airfoil angle of attack (%)

as:  Airfoil stall angle, the first local maximum of & with respect
tol (%)

Aa: Stall tolerance, the range of « between as and the maximum
1/d point (°)

: Fluid kinematic viscosity (m? s?)
p:  Fluid density (kg m~3)

cuozyzTRL B

Dimensionless groups

Cq:  Drag coefficient, 2d/(pU%c)

G Lift coefficient, 21/(pU%c)

Re:  Reynolds number based on airfoil chord length, Uc/v
Ma: Mach number, U/cs

1. Introduction

In aerodynamic design, airfoil shape optimization remains a fun-
damental and active challenge that requires the exploration of a
design space comprising diverse and valid airfoil configurations
(Drela, 1998; Lyu et al., 2015; Skinner & Zare-Behtash, 2018; Mar-
tins, 2022). Evaluating the performance of each design involves
analyzing multiple dynamic metrics (e.g. lift, drag, and stall angle)
across varying flight conditions (e.g. wind speed and angle of at-
tack), often demanding computationally intensive simulations to
identify optimal candidates. As in typical optimization processes,
the first step is to define a design space that captures a broad
range of airfoil shapes using a finite set of parameters, enabling
systematic exploration and refinement toward optimal solutions
(Sobester & Barrett, 2008; Masters et al., 2017).

A number of studies have explored airfoil shape parameteriza-
tion methods, including—but not limited to—PARSEC (Sobieczky,
1999), Class-Shape Transformation (CST;, Kulfan & Bussoletti,
2006), Hicks-Henne bump functions (Hicks & Henne, 1978), Bézier
curves (Gordon & Riesenfeld, 1974; Derksen & Rogalsky, 2010), or
Non-Uniform Rational B-Splines (NURBS) (Piegl & Tiller, 1996; Lep-
ine et al., 2000), which form the basis of Free-Form Deformation
(FFD; Sederberg & Parry, 1986). Recently, with advances in machine
learning, deep generative models have also been explored for air-
foil shape parameterization via nonlinear dimensionality reduc-
tion (Chen et al., 2020; Xie et al., 2024). Each method provides a sys-
tematic approach to achieving design flexibility based on distinct
mathematical principles. The choice of parameterization signifi-
cantly affects the diversity of airfoil shapes within the constructed
design space. If the global design space of airfoil shapes (repre-
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senting the maximum possible diversity) were known, the opti-
mal method would be the one that constructs this space with the
fewest parameters, thereby mitigating the curse of dimensionality
(Sobester & Barrett, 2008; Viswanath et al., 2011; Serani & Diez,
2024).

In general, the maximum level of design diversity is unattain-
able. Many aerodynamic and hydrodynamic shape design
problems—such as high-speed train aerodynamics (Oh et al,
2018), riblet surface design for drag reduction (Bai et al., 2016;
Lee et al., 2024), or hydrokinetic turbine draft tube optimization
(Sheikh et al., 2022)—even suffer from a lack of design diversity
for several reasons. First of all, these problems inherently involve
highly nonlinear dynamics in design evaluation, making the cor-
relation between geometry and performance non-intuitive and
difficult to predict. Additionally, many of the practical or commer-
cially adopted designs, often developed through costly trial-and-
error processes (because of the first reason), remain proprietary
and are not publicly available (Benjamin & Iaccarino, 2025). As
a result, design exploration in such problems is significantly re-
stricted by a lack of a rich, comprehensive, and centralized design
database, leaving room for novel designs that have yet to be ex-
plored.

In this respect, Design-by-Morphing (DbM) has been proposed
to offer a universal strategy to these challenges across different
design problems by enabling extensive design space exploration
based on a limited set of baseline designs (Oh et al., 2018; Sheikh
et al., 2022, 2023; Lee et al., 2024). Rather than relying on prede-
fined shape parameterizations which are mostly problem-specific
(e.g. PARSEC for airfoils), DbM generates intermediate forms by
morphing between selected baselines, facilitating the constraint-
free and continuous creation of new designs. The weight factors
assigned to the baselines replace traditional shape parameters,
meaning that the number of baselines determines the dimension-
ality of the design space. DbM also allows for extrapolative mor-
phing, wherein negative weight factors can be applied to some
or all baselines while handling non-feasible geometries (e.g. self-
intersections), which increases the ability to encompass novel
shapes to expand the design space beyond the interpolative mor-
phing of the baseline design set. Another major advantage of this
framework comes from its inherent interpretability; the weight
factors explicitly quantify the geometric influence of each base-
line airfoil, enabling intuitive design adjustments that are directly
comprehensible.

Although DbM offers clear theoretical advantages in design
space exploration, it is important to rigorously assess its practical
effectiveness in comparison to established shape parameteriza-
tion methods. The airfoil design and optimization problem serves
as an ideal benchmark for this purpose, given the availability of
several conventional airfoil shape parameterization techniques
that provide meaningful standards for comparison. Moreover, un-
like many other aerodynamic and hydrodynamic shape design
problems, airfoil design also benefits from a rich, publicly avail-
able database containing more than 1600 airfoil shapes as of now
(Selig, 2024). This extensive repository (hereinafter denoted as the
UIUC database), a result of over a century of modern airfoil de-
velopment (Bilstein, 1989; Anderson, 1997), offers a diverse set of
tested and proposed design alternatives. While the UIUC database
may not perfectly represent the global airfoil design space, its
breadth and diversity make it sufficiently comprehensive to be re-
garded as approximately global for practical purposes.

From this perspective, DbM for airfoil optimization was evalu-
ated in the authors’ previous study (Sheikh et al., 2023). DbM was
applied to reconstruct the entire UIUC database, with its perfor-

mance compared against PARSEC, NURBS, and the Hicks-Henne
approach. The results confirmed DbM’s competitiveness in airfoil
shape generation and demonstrated the importance of extrapola-
tive morphing in expanding the design space. However, in that
study, the baseline selection of 25 airfoil shapes relied on designer
judgment, raising questions about DbM’s sensitivity to baseline
selection (though partial mitigation was achieved through subset
analysis, variations across distinct baseline sets remained unex-
amined). Such manual curation risks unintended biases in design-
space coverage. Note that this concern arises specifically when
a diverse, representative baseline dataset exists (e.g. more than
hundreds of design points); in contexts lacking comprehensive
design sets (less than 10 design points), all existing designs can
simply be used as baselines for DbM (e.g. Sheikh et al., 2022).

Given the presence of comprehensive accessible designs, if
DbM is able to achieve the same design generation capacity with
their small subset, it can further benefit optimization by reducing
the dimensionality of the design space, resulting in more time-
efficient optimum search and faster convergence. We address this
issue by introducing a systematic baseline identification process
that mitigates designer bias while maximizing design-space rep-
resentativeness. Focusing on a specific case of DbM for airfoil de-
sign and optimization, the current study aims to provide the fol-
lowing contributions:

® Developing an effective approach to identify reduced baseline
sets for DbM while maintaining its airfoil design generation
capacity.

® Presenting an optimal baseline set for DbM with reduced
design-space dimensionality, which rivals the precedent with
a larger number of airfoil baselines.

® Quantifying improvements in airfoil shape design and opti-
mization using a new DbM with reduced design-space dimen-
sionality.

We first briefly revisit the application of DbM in 2D airfoil de-
sign, describing the details of morphing, the similarity measure
between airfoil shapes, and the airfoil reconstruction problem
with additional clarifications from our previous study. Several ap-
proaches for identifying optimal baseline selections (assuming
the global design space is represented by the UIUC database) are
then discussed, along with an analysis of which approach is the
most feasible given limited computing resources. Next, using the
baseline set revealed through this approach, example cases of
airfoil optimization are conducted with the objectives of maxi-
mizing the lift-to-drag ratio and stall angle tolerance, quantifying
convergence acceleration and solution enhancements. Finally, we
demonstrate DbM'’s adaptability in reinforcement learning envi-
ronments for airfoil geometry generation, enabling designers to
achieve faster learning rates and higher accuracy than conven-
tional airfoil parameterization methods.

2. Design-by-Morphing for Airfoil
Optimization

2.1. Formulation for airfoil morphing

In this section, we review and summarize the 2D airfoil design
process using DbM, which was described in Sheikh et al. (2023).
While the core procedure remains identical, we provide additional
details that were not thoroughly covered in the previous study to
enhance the robustness of this design technique. For this purpose,
we first outline the general steps of DbM before applying them
specifically to airfoil morphing.
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Figure 1: General flowchart of DbM to get a new design by morphing baseline shapes.
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Figure 2: Selig coordinate format for airfoil geometry of a unit chord
length (see Selig, 2024).

Figure 1 presents a generalized flowchart of DbM, outlining
the sub-processes involved in outputting a newly morphed design
from selected baselines, where the user specifies weight factors
for each baseline as input. This flowchart assumes that the base-
line designs have already been selected; the reduction of design-
space dimensionality (i.e. using fewer baselines) is not the focus
here but will be addressed later (Section 3).

In the pre-morphing stage, baseline shapes, originally defined
in geometric form, must be converted into a discrete numerical
representation in a consistent format to enable basic arithmetic
operations (e.g. addition and scalar multiplication) for compu-
tational processing. This concept is widely studied in computer
animation for object transformation, where various techniques
have been developed (Parent, 2012). We refer to this process as
discretization to emphasize the mapping of geometric shapes into
a consistent numerical form, such as control points or grids.

Next, the morphing stage consists of three sub-processes: (1)
blending, where the baseline shapes are combined according to the
input weight factors; (2) normalization, which scales the blended
shape to fit within typical scale of the problem; and (3) geomet-
ric feasibility check and correction, which adjusts and removes any
unphysical parts, mostly represented by self-intersections. If no
unphysical parts remain in the final shape, the process is com-
plete, and a new design is achieved. Notably, the overall pro-
cess resembles the metamorphosis of irregularly shaped (e.g. non-
rectangular) objects in computer graphics and, in 2D, several prac-
tical approaches to these general procedures have been consid-
ered and developed (Sederberg & Greenwood, 1992; van den Bergh
et al., 2002).

When it comes to airfoil morphing, one of the most widely used
formats for describing airfoil geometry is the Selig coordinate for-
mat, or simply the Selig format. Named after Selig, this format is
used to store airfoil data in a structured manner. As shown in Fig-
ure 2, it consists of a list of (x, y) coordinate pairs that define the
airfoil geometry non-dimensionalized by chord length c. The co-
ordinates are arranged sequentially, starting from the upper trail-

ing edge (x = x; = 1), following the upper surface toward the lead-
ing edge (x = x; = 0), and then continuing along the lower surface
back to the lower trailing edge (x = xr = 1). Using this format, any
arbitrary airfoil shape A can be represented as a parametric curve
with respect to a variable s, defined as

As) = (x(s), y(s)) 0<s=<2, 1)

where x(s) = |1 —s| and y(s) depends on the specific airfoil ge-
ometry (which thereby defines it). Discretizing s into equispaced
points s; for j=0, 1, ---, F,such that 0=sp <81 <--- <sp =2
with s; = 2j/F, we obtain A’s discrete numerical representation as
the following (F + 1)-dimensional vector (referred to as the Selig-
format vector henceforth):

A=[yls0) yis) -+ yise) | e B ©)

We assume that F is sufficiently large so that the airfoil’'s shape
is well preserved, with minimal loss of geometric detail between
consecutive discretized points. In practice, F = 200 is found to be
large enough to represent every airfoil in the UIUC database. In
Equation 2, y(so) = y(0) = y1, y(s2) = y(1) = y1, and y(s¢) =y(2) =
yr (in order for F/2 to be integer, let’s assume F to be even).

Given n baseline airfoil shapes By, By, -+ By, each can be ex-
pressed in Selig-format vector form as By, B, - - - By in RF*1, Since
these baseline shapes correspond one-to-one and RF*! is a vector
space thatis equipped with well-defined addition and scalar mul-
tiplication, we can formally define the process of airfoil morphing.
Topologically, the existence of a one-to-one mapping is ensured
by the homeomorphism of these shapes, which is a prerequisite
for performing DbM, as noted in Sheikh et al. (2023). Our previ-
ous study highlighted the homeomorphism of 2D closed shapes.
However, in consideration of the fact that the geometric represen-
tation an airfoil here is a closed curve asin Equation 1, the relevant
homeomorphism to be correctly highlighted should be that of a 1-
manifold with boundary, topologically equivalent to closed inter-
vals. For mathematical rigor, in the case of airfoils with zero trail-
ing edge thickness (y(0) — y(2) = 0), let zero be interpreted as al-
most zero (y(0) — y(2) = O%) to preserve the same homeomorphism
(by conceptually separating the endpoints).

Overall, morphing of the n baseline airfoil shapes with given
weight factors wq, wo, - -+, Wy € [—1, 1] is expressed as follows:

. 1<
M= f(N Ewiﬁi), ?3)

where N = N(wq, wa, - -+ , Wy) is @ normalization factor that scales
the blended shape, and F represents a set of adjustment opera-
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tions to correct unphysical geometries. A linear blending formula
is chosen as it represents the simplest form of blending. However,
the choice of blending is not necessarily limited to linear meth-
ods, and users may also explore nonlinear blending approaches.
Similarly, the normalization factor can be determined in various
ways, but we adhere to the original formulation

to maintain consistency with the original study for comparative
purposes. As for checking and correcting geometric feasibility, the
removal of self-intersections is essential. Additional treatments
may be applied depending on what design features users consider
unphysical (e.g. holes). In the present airfoil morphing process, we
focus solely on treating self-intersections. If no self-intersections
are present, F is the identity map. Otherwise, in general, we adopt
the self-intersection removal procedure for airfoil shapes as intro-
duced in section 2.2 of Sheikh et al. (2023), in which zero-thickness
points due to self-intersections are locally stiffened and then
smoothed. Starting with the Selig-format vector representation,
we can inexpensively detect self-intersections in an airfoil shape
using a simple sign-change checker. The detection algorithm is
presented in Algorithm 1.

Algorithm 1 Detect a self-intersecting airfoil shape given as a
Selig-format vector

[y(so) y(s1) ---

Require: A= y(sr) ]T where F is even (e.g, F =
200)

Ensure: True if A represents a self-intersecting shape, else False
A, <= [y(seo-1) -+ y(so) T // slice the first half of A, and flip it
A <= [y(seoe1) -+ yse) )T // slice the second half of A
Allocate b (integer array) of size F/2
fori < 1toF/2do

x & Ayfil - Ali]
blil & Sign of x (1 for positive values, -1 for negative values,
and 0 for zero)
end for
forj<1toF/2—-1do
if (b[j] * b[j+1] < 0) .OR. (b[j] == 0) then
return True
end if
end for
return False

// one-based indexing is assumed

2.2. Shape similarity measure

For two arbitrary airfoil shape geometries A; and A, in the para-
metric curve form with respect to s as in Equation 1, their similar-
ity, denoted as S(A1, Ay), can be quantified by measuring the mean
absolute error (MAE) between these two airfoils along the upper
and lower surfaces, respectively, and then summing the results.
That is,

1
s)ld d
SMM@z%W“> s)ds [ 1y1(s) — ya(s)lds .
b ds f1 ds
Upper curve Lower curve

where y1(s) and y»(s) are the y-coordinates of A4 (s) and A,(s), re-
spectively. Since both fol ds and ff ds evaluate to unity, Equation 5

simplifies to

2

(s, 42) = [ 1y2(5) ~ 2 (o). ©
Here, f02 (y1(s) — y2(s))ds = 0 is assumed to provide a consistent
vertical alignment. This formulation is equivalent to the airfoil
shape similarity measure (as MAE) proposed by Sheikh et al. (2023).
Itis important to note that various similarity measures can be de-
fined as long as they form a convergent series in which the simi-
larity value approaches a certain limit (mostly zero) as one shape
becomes identical to the other; Equation 6 evidently satisfies this
fundamental requirement.

Taking one step further from Sheikh et al. (2023), let us derive
a discretized formula that is effectively equivalent to Equation 6.
Considering an equispaced (F + 1)-point discretization of s, we use
numerical integration based on the trapezoidal rule to obtain an
approximate form of Equation 6, given by

F
S(A1, Ag) ~ % Z % (Iy1(sic1) — ya(siza)l + ly1(si) — y2(si)l)
i=1
F-1
= X pils)-yeb) d
+ 3 (173050 = y2lso)l + ya(se) = yaloe)).

For a more compact expression, we may factor the endpoint terms
into the summation by multiplying them by 2, resulting in

F
S'(A1, Ap) = Z Si)l- (®)
i=0
S’ can be interpreted as a modified version of S that places slightly
more weight on endpoint error evaluation. In the context of air-
foils, this adjustment emphasizes matching the trailing edge,
which can be rationalized since airfoil dynamics are consider-
ably influenced by edge geometries. The right-hand side of Equa-
tion 8 corresponds to the mean absolute difference between the
Selig-format vectors of .A; and A, (scaled by 2(F + 1)/F, or approx-
imately 2 when F is much greater than 1). Using the ¢'-norm no-
tation, we express the similarity measure for Selig-format vectors
as

S(A1, Ay) = ||A1

©)

which we use as the airfoil shape similarity measure that is effec-
tively equivalent to the integral form in Equation 6.

2.3. Airfoil reconstruction problem

Suppose that we aim to reconstruct a known airfoil shape, A;, us-
ing the DbM process with given n baseline shapes By, B, --- By.
It is additionally assumed that A, is distinct from each 5; for any
i=1, 2, ---, n; otherwise, the reconstruction is trivial. Recalling
Figure 1, DbM employs n input morphing weight factors, wi, wo,

-, Wy, to output a morphed airfoil shape M as shown in Equa-
tion 3. Defining the weight vector W = [w; w, --- wy]T € R", we can
formulate the problem of finding W as a single-objective optimiza-
tion problem with continuous variables in standard form:

argmin S'(M
w e R"

(W), A;) subject to

Wl <1, (10)

where || - | represents the £*°-norm.
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If there exists a set of m airfoil shapes to be reconstructed,
denoted as A;; fori=1, ---, m, solving the optimization prob-
lem in Equation 10 m times for each A, ; yields m weight vectors
Wopt,i- These weight vectors generate morphed shapes that best
approximate their respective target airfoil shapes. In each case,
the proximity of S'(M (Wepe). A ;) to zero indicates how accurately
the morphing of the n baseline shapes reconstructs A, ;. Conse-
quently, the sum of these similarity measures, denoted as St, i.e.

m
St=" S/ (M(Wopt), Ati). (11)
i=1
can serve as an indicator of the reconstruction capability of the
set of airfoil shape baselines, B, B, --- By, for the target airfoil
set, A, Arg, -+ Aim.

3. Baseline Shape Selection

The central challenge addressed in this section—and a pivotal
question for this study—is: How can we identify an optimal min-
imal set of baseline airfoil shapes that effectively represents the
diversity of a larger collection considered globally representative?
Selecting such a compact baseline set is conceptually analogous
to principal component analysis (PCA), where lower-dimensional
subspaces capture significant data variations (see Liet al., 2022, ex-
hibiting the use of PCA to the UIUC database). In our context, the
selected baseline airfoils serve a role similar to principal compo-
nents, enabling reconstruction of diverse airfoil designs through
weighted morphing.

However, DbM’s baseline selection process is distinct from PCA.
While PCA generates abstract principal components through lin-
ear combinations, DbM preserves original baseline airfoils as in-
terpretable building blocks. This approach maintains physical in-
tuition by allowing designers to work with recognizable geome-
tries rather than abstract eigencomponents whose meaning is
obscured by PCA’s rotational transformations. Furthermore, DbM
introduces essential non-linearities through geometric feasibility
corrections. Although linear blending is employed in this study (as
in Equation 3), the method permits extension to non-linear blend-
ing strategies, necessitating non-linear dimensionality reduction
approaches unlike PCA. This structural flexibility is to enhance
DbM’s design generation capabilities while preserving geometric

interpretability.
With these distinctions established, our objective is to identify
a minimal subset from the global airfoil set {A4, - - - , Ay} that min-

imizes the total reconstruction error S* Equation 11 when used as
DbM baselines. This maximizes the representational power of a
compact design space while maintaining DbM'’s core advantages
of physical interpretability and constrained dimensionality.

3.1. Description of problem

To improve the practicality of DbM for airfoil design and optimiza-
tion, we identify a set of baseline shapes that can effectively span
the diversity of possible airfoil geometries. In order to define and
quantify the coverage of the airfoil design space, it is necessary to
first establish a comprehensive target set that reasonably repre-
sents the global airfoil shape design space.

The UIUC airfoil database (Selig, 2024) provides a broad and di-
verse repository of airfoil geometries, accumulated through more
than a century of aerodynamic development. Given its scope, his-
torical depth, and inclusion of a multitude of tested, proposed and
optimized designs, the UIUC database can be regarded as approx-
imately global for practical purposes (while no finite database can

perfectly capture the infinite possibilities of airfoil geometries, we
affirm that the database serves as a sufficiently comprehensive
surrogate).

With the UIUC database taken as the global target set of air-
foil shapes to be reconstructed by the DbM framework, we frame
the identification of optimal baseline shapes as the problem of
finding a subset of airfoil shapes whose morphing combinations
can best approximate the entire UIUC database, thereby max-
imizing design-space coverage while minimizing design-space
dimensionality. Mathematically, we let the set of available air-
foil shapes in the UIUC database, after consistently discretiz-
ing them in the Selig-format vector form, be denoted by A =
{Abg1, Apeo, -+, Apem}, where m (or #A) is 1644 as of the
present collection. We seek to select a subset of n baselines, de-
noted as B = {B1, By, ---, By} C A, such that the reconstruction
capability measure St of B over A is minimized.

The corresponding optimization problem can be generally ex-
pressed as

min S* subjectto #B=n, (12)
where n is the number of baseline airfoil shapes allowed in B.
When n equals to m, the problem takes a trivial and global so-
lution, B = A (which evidently yields St = 0). Preferentially, n « m
to promote significant dimensionality reduction.

In Equation 12, n (or #B) acts as a control parameter balancing
the complexity and expressiveness of the design space. A larger
n increases the representational power but also the design-space
dimensionality, whereas a smaller n reduces the dimensionality
at the cost of the airfoil reconstruction capacity. Therefore, solv-
ing Equation 12 additionally aims to identify the smallest possi-
ble n (or equivalently, the most compact set of baselines) that still
achieves an acceptable level of reconstruction performance over
the database. However, determining the acceptability is mostly
done a posteriori; thus, in the subsequent discussion, we presume
that n is given, for example, n = 10.

3.2. Approaches for the subset selection

Using the concept of feature selection (Guyon & Elisseeff, 2003)
or, similarly, factor screening (Serani & Diez, 2024), we identify
the most influential elements among a large set of airfoil geome-
tries. In other words, each individual airfoil shape in A is treated
as a distinct feature that contributes to the construction of the
overall design space. Since not all airfoil shapes are essentially
unique—some may offer redundant contributions to the repre-
sentational capability—an effective selection process should aim
to retain only the most informative baselines in B while safely
eliminating superfluous ones.

3.2.1. Exhaustive search

The most straightforward approach to baseline subset selection is
to exhaustively compare all subsets. All possible combinations of
n baselines are enumerated from A, and each candidate subset is
evaluated based on its reconstruction capability measure St. The
subset that minimizes St is chosen as the optimal set.

For the UIUC database containing m = 1, 644 airfoil shapes,
the number of possible subsets of A for even modest values of
n becomes astronomical. For instance, selecting n = 10 baselines
would require evaluating approximately ('%:%) ~ 3.9 x 10”° candi-
date subsets. As each candidate subset’s evaluation towards S*
even necessitates solving Equation 10 m = 1, 644 times, such a
number is computationally infeasible to process.
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While exhaustive search guarantees identification of the glob-
ally optimal baseline sets for a given n, the combinatorial explo-
sion in the number of subsets renders this approach uncondi-
tionally impractical for any realistic subset size. Thus, alterna-
tive strategies that significantly reduce the computational burden
must be sought.

3.2.2. Backward search

One alternative is the backward search strategy. This method
starts with the entire database as the initial baseline set,i.e. B = A.
At each iteration, a single baseline is eliminated from B based on
its relative contribution to the overall reconstruction capability,
thereby reducing the size of the baseline set by one sequentially.

At the firstiteration, all m subsets of size (m — 1) are considered,
where solving Equation 12 requires only a single subordinate opti-
mization in Equation 10 for the eliminated airfoil of each subset.
For each candidate subset, we evaluate St, and the subset that
yields the smallest increase in St from its initial value (zero, when
B = A) is chosen. Then, in subsequent iterations, the elimination
decision is guided differently to reduce computational cost. After
solving Equation 10 for each target airfoil based on the current
baseline set, we compute the non-trivial morphing weight factors
assigned to each baseline. The baseline whose total contribution,
summed across all reconstructions, is then eliminated. In other
words, we sequentially remove the baseline that contributes least
to reconstructing the target airfoil set according to the absolute
sum of its weight factors. This process is repeated iteratively un-
til the number of remaining baselines reaches the desired subset
size n.

The total number of times the subordinate optimization for air-
foil reconstruction Equation 10, must be conducted throughout
the process is given by

m-n+1

m+ Yy k=%{m2+m(572n)+(n73)n},
k=2

when counting only non-trivial cases (where a target airfoil is not
included in the current baseline set). For m = 1, 644 and n = 10,
this amounts to approximately 1.3 x 10° optimal AirDbM weight
factor searches. While this backward search strategy is inherently
a greedy algorithm for solving Equation 12 (i.e. making local op-
timal choices at each elimination), it offers a computationally
tractable compromise between reconstruction accuracy and cost.
Despite substantially reducing the number of evaluations com-
pared to exhaustive search, this strategy still incurs a compu-
tational cost that nearly scales O(m?). As m increases, the total
number of subordinate optimizations becomes quadratically pro-
hibitive. In the present case with m = 1, 644, the total number of
evaluations remains an impractical computational burden.

3.2.3. Forward search

Another approach is the forward search strategy, which we ul-
timately adopt in this study. Unlike backward search, forward
search progressively builds the baseline set by sequentially adding
airfoil shapes from the full database. The process starts with an
empty set and, at each iteration, adds a single baseline that is ex-
pected to contribute most to improving the overall reconstruction
of A.

At the first iteration, all m subsets of size 1, or equivalently,
all m individual airfoils are considered. For each, solving Equa-
tion 12 simply requires summing the (m — 1) airfoil shape simi-
larity measures with respect to all other (m — 1) airfoils, without
any optimization, as no morphing needs to occur. The airfoil shape

that yields the smallest S* is selected as the first baseline element.
Then, in subsequent iterations, an airfoil shape that is least well
reconstructed via the current baseline set (i.e. the one with the
largest S’ value obtained from Equation 10) is added, until the de-
sired subset size n is reached.

Now, the total number of times Equation 10 must be non-
trivially solved is given by

n-1
(m—=k)=
k=2

m-2)2m—-n-1),

N —

as the first iteration with a single baseline shape does not in-
volve DbM weight optimization. For m = 1, 644 and n = 10, this
results in 13108 evaluations, which finally becomes a computa-
tionally tractable number. Moreover, each reconstruction is per-
formed with a low-dimensional input space because k <n <« m,
making the overall process significantly faster than the backward
search.

In addition to its computational tractability—since the num-
ber of evaluations scales linearly with the total database size m,
ie. O(m), given m »> n—forward search offers a practical advan-
tage for baseline selection. By sequentially adding baselines while
observing the progressive improvement in reconstruction perfor-
mance, it is possible to monitor how the design-space coverage
evolves, allowing for us to flexibly control over how the final sub-
set size n be based on the observed performance trends during
the search process, which is in line with the aim described in Sec-
tion 3.1.

3.3. Selected baselines

To solve the optimization problems involving different baseline
sets and target airfoils, as defined in Equation 10, a genetic al-
gorithm (GA) was employed using the Pymoo framework (Blank
& Deb, 2020) with Dask-based parallelization (Rocklin, 2015). Each
optimization run used a population size of 100 for up to 500 gen-
erations, with crossover and mutation operators set to simulated
binary crossover and polynomial mutation, respectively, as pro-
vided by default in the framework. Parallel evaluation across mul-
tiple Dask workers (32 in this study) significantly accelerated the
optimization process. Termination was based on convergence cri-
teria evaluated over a rolling window of 20 generations: variable-
space change (i.e. |AWpt [l between successive generations less
than 10~°) and objective-space change (i.e. AS' less than 10-%). We
warm-started each optimization by including the previously ob-
tained optimal weight vector (augmented with a zero morphing
weight factor for the newly added baseline) as one of the initial
population members when solving for the expanded baseline set.

Throughout the forward search strategy that is powered by GA,
the optimal baseline set of size n = 12 was identified, which are
presented in Table 1. The index indicates the order in which each
airfoil was added to the baseline set during the forward search.
Accordingly, an optimal baseline set of any smaller sizen < 12 can
be constructed by considering only the first n airfoils from this ta-
ble (that is, baselines #1 — #»). With these 12 baseline shapes, the
DbM approach successfully reconstructed all 1644 airfoil shapes
in the database with S’ (hereafter used interchangeably with MAE)
below 0.01. Figure 3 illustrates the comparison between the orig-
inal and DbM-reconstructed airfoil geometries for 10 airfoils se-
lected at equal rank intervals from the best to worst MAE. The
best-performing reconstruction, observed for Eppler E197, exem-
plifies the inherent redundancy within the database. The geome-
try is nearly similar to the first baseline shape, Eppler E195, albeit
with a slight variation in camber thickness, demonstrating that
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Table 1: DbM baseline airfoil shape set of size 12.

Airfoil Name

Index Geometry in the UTUC Database (Sclig, 2024)

B - — Eppler E195

- O

By O—0

- =

Wortman FX 79-W-660A

Gottingen 531

Eppler 864 Strut

Bs Q Roncz R1145MSM VariEze Canard Main
Bg T UIUC Chen
B Q Griffith 30% Suction
By O Selig $9104
By @ Althaus AH 93-W-480B
Bio C> Althaus AH 81-K-144 W-F KLAPPE
Bi1 Q Eppler E664 (Extended)
Bis S Saratov R/C Sailplane
Eppler E197 Selig S8037
MAE = 0.0002 MAE = 0.0012

e

Goettingen 407 Delft DU84-132V3
MAE = 0.0015 MAE = 0.0017

————

Eppler E858 Goettingen 147 (MVA H.6)
MAE = 0.0018 MAE = 0.0021

ANy,

NASA/AMES 63A108 MOD C NASA SC(2)-0012
MAE = 0.0024 MAE = 0.0027

-

Goettingen 481

e ——

Sikorsky SC1094R8

MAE = 0.0032 MAE = 0.0069
. R
—— Original  --—--- Reconstructed

Figure 3: Comparison of original (black solid line) and reconstructed
(red dashed line) airfoil geometries via DbM using the selected 12
baselines (see Table 1). The 10 airfoils displayed here are selected at
equal rank intervals from best to worst reconstruction based on the
MAE similarity metric (see Equation 9).
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Figure 4: Percentage of airfoils in the database that can be
reconstructed via DbM with an MAE below 0.005 for baseline set sizes
from 2 to 12 (see Table 1).

not all airfoil shapes represents truly unique design features. This
underscores the motivation for the current practice of dimension-
ality reduction.

On the other hand, in Figure 3, the worst reconstruction case
of Gottingen 481 reveals the limited coverage imposed by the re-
duced baseline set. There exists non-negligible deviation in shape,
particularly due to its pronounced curvature at the bottom sur-
face around the leading edge, which suggests that such a geomet-
ric feature is not fully taken into account by the current 12 base-
lines. In compliance with the forward search strategy, we could
additionally consider Gottingen 481 as a potential additional base-
line shape to better encompass such strongly curved airfoil shapes
within the design space, while increasing the design-space di-
mensionality by one. The decision to augment the baseline set
with such shapes should require a careful consideration of the
balance between design space diversity and the minimal design-
space dimensionality. This trade-off can be informed by analyzing
the trend of reconstruction convergence as the number of base-
line shapes increases.

The effectiveness of the selected 12 baseline shapes is sup-
ported by the convergence trend of the reconstruction rate, as vi-
sualized in Figure 4. This plot illustrates the percentage of airfoil
shapes in the database reconstructed within an MAE tolerance of
0.005 as the number of baseline shapes varies from 2 (i.e. baselines
#1- #2) to 12 (i.e. baselines #1-#12). This tolerance threshold is
chosen based on its previous use in Sheikh et al. (2023) and, as our
previous comparison plots demonstrate, it approximately marks
the level at which visually notable discrepancies between original
and reconstructed shapes become apparent (compare the second-
worst case (MAE = 0.0032) to the worst case (MAE = 0.0069) in Fig-
ure 3). As the number of baselines increases, the reconstruction
rate increases with a flattening of the curve beyond 10 baselines,
which indicates diminishing returns for further increases in di-
mensionality.

Moreover, with the selected set of 12 baselines, more than 98%
of airfoil shapes were reconstructed using DbM within an MAE tol-
erance of 0.005. This level of reconstruction matches the perfor-
mance reported in our previous DbM study on airfoil optimization
(Sheikh et al., 2023), which relied on 25 baseline shapes. Thus, the
current selection successfully achieves comparable reconstruc-
tion quality while reducing the design-space dimensionality by
more than half, from 25 to 12.

Given that the selected 12-baseline set almost entirely spans
the UIUC database design space, one might expect that randomly
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Table 2: Design capacity comparison across airfoil design
methods.

Overall MAE Percentage of Airfoils

Method (Mean + Std.) Reconstructed (MAE < 0.005)
CST 0.0012 + 0.0008 99.4%
AirDbM 0.0021 =+ 0.0009 99.3%
NURBS 0.0024 + 0.0019 91.6%
PARSEC 0.0032 + 0.0025 84.5%
Hicks-Henne 0.0053 £ 0.0035 58.7%

selecting 12 baselines could maintain reconstruction capacity
while bypassing the search cost, analogous to a change of basis in
linear vector spaces. However, DbM’s morphing process is inher-
ently nonlinear, so replacing shapes would not guarantee preser-
vation of space-spanning capability. To verify this, we tested three
randomly selected 12-baseline sets. Their successful reconstruc-
tion rates (MAE < 0.005) were significantly lower and inconsistent,
achieving only 75%, 66%, and 49%, respectively. These outcomes
confirm that a systematic search is essential to achieve both high
performance and consistency. In any case, users can bypass this
search process entirely and directly utilize the validated baseline
set provided in Table 1.

Lastly, it is worth recalling that the current baseline set se-
lection process assumes the UIUC database to be globally rep-
resentative. However, one can point out its limited coverage of
supersonic or hypersonic airfoils. Similar to the Gottingen 481
case, the DbM framework can readily accommodate baseline
augmentation when applications require non-inclusive or un-
derrepresented designs, such as diamond-shaped supersonic air-
foils (Jernell, 1974), which seamlessly expands the global design
space. This inherent adaptability demonstrates the framework’s
strength in accommodating unforeseen or novel designs.

3.4. Design capacity comparison

While design capacity comparisons of DbM against conventional
airfoil parameterization methods constituted the main theme of
our previous work (Sheikh et al., 2023), which confirmed DbM’s
competitiveness with methods specifically designed for airfoils,
we provide a brief comparison here again to evaluate the perfor-
mance of the present reduced 12-baseline DbM (henceforth de-
noted AirDbM to specify its application to airfoil design and opti-
mization and its reduced baseline set of 12 as defined in Table 1).

To assess AirDbM’s design capacity under reduced dimension-
ality constraints, we compared reconstruction performance using
a consistent number of design variables across all methods: 12
design variables for AirDbM, Hicks-Henne bump functions, class-
shape transformation (CST), and the parametric section (PAR-
SEC) method, with 13 variables for non-uniform rational B-splines
(NURBS) due toits formulation requirements. Implementation de-
tails are provided in Appendix A. The comparison was conducted
across all 1644 airfoils in the UIUC database using the same MAE
evaluation scheme as established in the earlier sections.

Table 2 presents the quantitative comparison results. AirDbM
shows competitive performance, achieving reconstruction qual-
ity comparable to CST while significantly outperforming NURBS,
PARSEC, and Hicks-Henne. This performance is particularly sig-
nificant given that conventional methods like NURBS and Hicks-
Henne experience substantial degradation in design coverage
when constrained to lower dimensionalities, compared to the
higher-dimensional cases (24-26 design variables) achieving 98%
reconstruction success reported in Sheikh et al. (2023). The supe-

rior performance of CST appears to come from its aerodynamic-
specific design principles, employing carefully crafted class and
shape functions with mathematical rigor tailored for airfoil appli-
cations (see Kulfan & Bussoletti, 2006). AirDbM’s comparable per-
formance is therefore noteworthy, considering its universal mor-
phing principle that remains applicable across diverse design do-
mains while maintaining high reconstruction fidelity under sig-
nificant dimensionality reduction.

To illustrate the practical implications of the design capac-
ity differences, Figure 5 presents reconstruction results for the
Wortman FX 79-W-660A airfoil, which represents the worst-
reconstructed case (i.e. highest summed MAE across all five meth-
ods). This result is primarily due to its unusually thick profile
which deviates from typical airfoil geometries. Although conven-
tional methods struggle with this unconventional shape, AirDbM
naturally overcomes this challenge by directly incorporating the
specific thick profile as its baseline (B;). The key strength of the
DbM framework lies in the ease of incorporating such novel de-
signs contributing to design diversity: regardless of how uncon-
ventional a target shape may be, it can be effectively utilized in
the design process with the cost of only a single design parame-
ter. Readers are encouraged to refer to a similar discussion in our
previous work regarding the reconstruction of a ‘mirrored’ airfoil
with flipped sharp and blunt edges (Sheikh et al., 2023, pp. 1447-
1448).

4. Performance Evaluation
4.1. Multi-objective airfoil optimization

We first incorporate AirDbM into an airfoil shape optimization
problem, optimizing the airfoil shape based on aerodynamic in-
formation obtained from a flow solver. Since the primary objec-
tive of this test study is to evaluate the computational efficiency
of the proposed DbM approach with reduced design-space dimen-
sionality, the focus is placed more on analyzing optimization per-
formance than on the optimal outcomes themselves. Accordingly,
we revisit the airfoil optimization setup from our previous work
(Sheikh et al., 2023) to investigate the optimization performance
under reduced design-space dimensionality, compared with the
previous 25-baseline case. It should be noted that multi-objective
optimization for airfoil dynamics has garnered increasing atten-
tion in recent years (e.g. Jing et al., 2023; Zhang et al., 2024; Jung &
Gu, 2024), further underscoring the practical utility of this work.

An airfoil with chord length ¢, subjected to a freestream flow of
speed U, fluid density p, and kinematic viscosity v (i.e. under the
Reynolds number condition Re = Uc/v), is characterized by two
key dynamic performance parameters: the lift coefficient C; and
the drag coefficient Cg, defined as

Ci(e) = 0% (13)
i) = 209, 019

where | and d represent the lift and drag forces per unit span, re-
spectively, both being functions of the airfoil’s angle of attack «.
The lift coefficient C () typically increases with « at low angles
until stall occurs, beyond which it decreases. The stall angle s
thus can be defined as the first local maximum of C; while in-
creasing « from 0°. Following Sheikh et al. (2023), we then consider
the optimization of the following two composite objectives based
on C; and Cy:

Ci(a)
Cale)’

(I/d)max = max (15)
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Figure 5: Reconstruction of Wortman FX 79-W-660A airfoil. Depicted are target (black solid line) versus reconstructed (red dashed line) airfoils for the
present 12-baseline DbM (AirDbM), Hicks-Henne, class-shape transformation (CST), non-uniform rational B-spline (NURBS), and parametric

section (PARSEC) methods.
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Figure 6: Airfoil performance with increasing angle of attack «, depicting changes in lift [ and drag d. The figure illustrates the design point for
maximum lift-to-drag ratio (I/d)max and the stall tolerance, quantified by the angle of attack range from the design point to the off-design limit of stall

at as.

Aa = max (O, as —argmax Ci(a) > R (16)
a Cd (Ol)

where first objective (I/d)max is the maximum lift-to-drag ratio un-
der the design operating condition (i.e. « associated with the max-
imum l/d), and the second A« quantifies the stall tolerance, rep-
resenting the angle of attack range for off-design operations. They
are illustrated in Figure 6.

These aerodynamic objectives are evaluated using XFOIL 6.99,
a widely-accepted inviscid/viscous zonal airfoil analysis program
(Drela, 1989) for quick initial design studies, at Re = 10° under in-
compressible flow conditions suitable for subsonic flows with neg-
ligible air density variation (Ma = U/cs < 1, where ¢s &~ 3 x 102 m/s
is the speed of sound). The low computational cost of this solver
enables direct exploration of the objective space (without the need
for a surrogate model). Accordingly, we use the MATLAB-based
non-dominated sorting genetic algorithm (NSGA-II) gamultiobj (Deb
et al., 2002), by taking each morphed airfoil shape M’s 12 DbM
weight factors (w1, --- ., Wwq2) asits genetic representation. The de-
tailed setup of the optimization is provided in Appendix B. Read-
ers are also recommended to refer to Sheikh et al. (2023, see Ap-
pendices A and B), which includes preliminary validation steps of
the setup we replicate here for the sake of comparison. For in-
stance, to ensure evaluation robustness, our XFOIL implementa-
tion employs convergence check strategies such as restarting with
fresh initial guesses and correctness verification through viscous-
inviscid drag coefficient comparison. These metrics and evalua-
tion procedures were validated against the reference XFOIL eval-
uation database (Airfoil Tools, 2025).

Before diving into the analysis of the results, it is pertinent
to distinguish expected behaviors from unusual improvements
when using the reduced baseline set. Generally, decreasing de-

sign variables should accelerate convergence, requiring fewer to-
tal generations. Our previous optimization with 25 baselines ran
for 3000 GA generations, and we anticipate the current one to take
fewer. However, faster convergence does not guarantee a supe-
rior or even equivalent Pareto front. Dimensionality reduction in-
evitably compacts the design space, likely leading in our case to
the minimal space encompassing the existing database. Conse-
quently, the common expectation is that the resulting Pareto front
will hardly outperform that from a larger baseline set (assuming
sufficient convergence). If the optimization with the reduced de-
sign space yields enhanced solutions that dominate prior Pareto-
optimal solutions, this would constitute a key improvement.

Figure 7 illustrates the progression of the hypervolume
indicator—a widely adopted metric in multi-objective optimiza-
tion for evaluating the quality of a set of non-dominated solu-
tions (i.e. solutions for which no objective can be improved with-
out degrading at least one other objective) (see Li & Yao, 2020;
Guerreiro et al., 2022)—throughout the GA generations for the cur-
rent optimization. In the present bi-objective context, the hyper-
volume of a set of non-dominated solutions ((I/d)max.1, A1), -,
((1/d)max.k, Acg) is defined as the total area of the following 2D
Pareto dominance region R:

R=|J i) eR 0= fi < (/d)maxi and 0 < o < A}

i=1, .k

(17)

where the origin (0, 0) is taken as the reference (nadir) point. The
observed evolutionary trend of the hypervolume in Figure 7, char-
acterized by a steep initial increase in hypervolume followed by a
more gradual convergence with sporadic leaps, is consistent with
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Figure 7: Hypervolume progression for the multi-objective airfoil
optimization using AirDbM, tracking the hypervolume with respect to
GA generations (solid black line), demonstrating improved Pareto front
quality. The dotted red line indicates the hypervolume from the prior
study with 25 baselines (see Sheikh et al., 2023, p. 1450).
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Figure 8: Pareto front comparison for airfoil optimization: AirDbM
(current) versus prior work (see Sheikh et al., 2023, p. 1450).

typical performance patterns reported in NSGA-II literature (e.g.
Steuler et al., 2020; Antoniou et al., 2020).

Notably, the hypervolume achieved by the current optimiza-
tion with 12 baselines surpasses the final hypervolume of 7592.57
in Sheikh et al. (2023), which utilized 25 baseline airfoils, at ap-
proximately the 850th generation. This milestone is achieved sig-
nificantly earlier than the 3000 generations run in the previous
study, underscoring the expedited convergence attributable to the
reduced design-space dimensionality. While the outperformance
in terms of the hypervolume indicator is a positive indication of
the efficacy of AirDbM in navigating the design space, it is impor-
tant to note that this is merely one measure of Pareto front quality.
Accordingly, a detailed comparison of the Pareto fronts, crucial for
understanding the specific trade-offs associated with the current,
more compact design space, should follow.

A direct comparison of the Pareto front obtained using the cur-
rent AirDbM approach after the 1000 GA generations against that
from Sheikh et al. (2023) is presented in Figure 8. AirDbM success-
fully identifies new non-dominated solutions achieving signifi-
cantly higher (I/d)max, particularly at moderate stall tolerances,

thereby dominating the prior Pareto front in this portion of the
objective space. Nonetheless, Figure 8 also reveals that the cur-
rent Pareto front does not extend to the same stall tolerance val-
ues achieved by the prior study, which found non-dominated so-
lutions approaching A« ~ 40°. This suggests that while the 12 se-
lected baselines enable efficient design exploration and yield im-
provements in certain regions, they may not possess the geomet-
ric diversity required to reproduce solutions at the extreme end of
the Awa spectrum previously accessible with 25 baselines.

The inability to reach these high A« solutions is further evi-
denced by attempts to reconstruct specific Pareto-optimal airfoils
from the prior study. For instance, when reconstructing the prior
optimal airfoil solution characterized by the highest A« using
AirDbM, the reconstruction resulted in MAE exceeding the 0.005
threshold, indicating significant discrepancies. Considering that
much finer geometric tolerances, on the order of 1074, e.g. Kulfan’s
wind-tunnel tolerance (Kulfan & Bussoletti, 2006; Masters et al.,
2017), are regarded as necessary to ensure the replication of aero-
dynamic performance, it is likely that the observed truncation in
the current Pareto front for high stall tolerance implies the bounds
imposed by the reduced geometric variability of the AirDbM de-
sign space. Nevertheless, given the substantial decrease in lift-
to-drag ratios typical in 3D wing applications (usually by an or-
der of magnitude), the enhanced Pareto front in (I/d)max found by
AirDbM can offer greater practical utility to offset 3D decrease.

Figure 9 showcases a selection of Pareto-optimal airfoil shapes
obtained from the current AirDbM optimization. Excluding clus-
tered solutions with minimal geometric differences from the pre-
sented one with (I/d)max = 77.86 and A« = 29.25°, we present
six representatives that capture the range of trade-offs between
(l/d)max and Ac.

The first three airfoils (top row) exhibit similar thin-profile
geometries, achieving high lift-to-drag ratios ((l/d)max = 300.00,
299.85, and 297.32) that represent improvements over our previ-
ous Pareto front. The A« variance among these airfoils falls within
the expected range for high (I/d)max optimal airfoil groups identi-
fied in our previous work. The fourth airfoil ((I/d)max = 242.56 and
Aa = 27.50°) demonstrates a thicker profile that achieves greater
stall tolerance at the expense of lift-to-drag ratio. This thickness-
induced performance trade-off is consistent with observations
from Sheikh et al. (2023).

The final two airfoils, while non-dominant compared to our
previous Pareto front, offer instructive insights into optimization
behavior. The fifth airfoil shares a geometric appearance similar to
the fourth, albeit slightly thicker, but exhibits a substantial perfor-
mance drop ((I/d)max = 77.86), implying the highly nonlinear na-
ture of aerodynamic performance. However, this can stem from
potential limitations in XFOIL’s solution accuracy—even when
converged, performances may represent physically irrelevant so-
lutions arising from the simplified modeling inherent to prelim-
inary design tools. The sixth airfoil presents a distinctly differ-
ent morphology: a spear-like sharp profile ((I/d)max = 10.08, Aa =
35.50°). This solution presumably represents a physically unreal-
istic configuration that emerges from XFOIL's inherent modeling
simplifications in preliminary aerodynamic analysis.

For readers interested in the physical aspects of optimal air-
foil designs resulting from this optimization, it should be care-
fully taken into account that, due to XFOIL's 2D nature that can-
not completely capture real-world 3D wing effects (e.g. tip ef-
fects, wakes, and spanwise separations), predicted (I/d)max and
Aa values can be excessively elevated compared to actual 3D
applications. While the scope of the current test study is lim-
ited to validating design-space dimensionality effectiveness, fu-
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Figure 9: A selection of airfoil shapes from AirDbM'’s Pareto front displayed in Figure 8, arranged in descending order of (I/d)max from top-left to bottom
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Figure 10: Reinforcement learning framework for airfoil geometry
generation ‘game, where the agent (designer) manipulates normalized
control inputs (tuning ‘knobs’) for a black-box airfoil shape generator.
The agent acts to generate an airfoil ‘guess’ without a priori insight into
the generator’s internal process, and receives a reward based on
similarity to the ‘target’ airfoil shape provided in the environment.

ture work will replace this preliminary-level solver with higher-
fidelity solvers directly solving the Navier-Stokes equations, such
as three-dimensional Reynolds-averaged Navier-Stokes (RANS)
simulations. This will enable detailed physics-based analysis of
solutions, building upon the framework robustness demonstrated
in the current study.

4.2. Airfoil geometry learning

Through our practice of dimensionality reduction in Section 3,
AirDbM has demonstrated a design capacity comparable to its
predecessor using a larger baseline set and achieves a design span
on par with or superior to several conventional airfoil parameteri-
zation methods with a consistent number of design variables. This
similar database reconstruction rate with significantly fewer de-
sign variables underscores its effectiveness.

Additionally, from a designer’s perspective, adaptability is con-
sidered as crucial as effectiveness. In this example, we assume
that adaptability across different methods could be assessed by
observing designers, initially unfamiliar with airfoil parameteri-
zation, while they iteratively generate shapes and improve their
learning in an empirical manner. However, using human designers
could present challenges in validating their level of unfamiliarity,
leading to uncontrollable biases in the evaluation.

Instead, a machine agent driven by recent advancements in rein-
forcement learning (or neuro-dynamic programming) algorithms
offers a compelling alternative to serve as an unbiased and ini-
tially ‘ignorant’ designer. Reinforcement learning (RL) enables an
agent to learn optimal behavior through trial-and-error interac-
tions within an environment by maximizing a reward signal (Bert-
sekas, 2019). It has seen increasing application in aerodynamic
design optimization problems demanding intelligence and expe-
rience (e.g. Huiet al,, 2021; Patel et al., 2024). In this study, we utilize
this framework for airfoil geometry generation, where the agent
plays a ‘game’ of guessing the control inputs for a black-box airfoil
shape generator to match the output airfoil shape with the given
target airfoil shape. Over multiple iterations, the agent gets empir-
ical knowledge about input-output relations, resulting in getting
a more similar guess to the target. The overall framework scheme
is illustrated in Figure 10.

The most important setup in this RL framework is that the
agentis completely unaware of the internal process of airfoil gen-
eration, thus the agent lacks a priori insight into it. To ensure
complete isolation, the agent does not directly control the de-
sign variables (which might imply knowledge of the airfoil gen-
eration method). Instead, it only manipulates normalized control
inputs, like tuning ‘knobs’ ranging from zero to one, that are lin-
early scaled to the design variables’ bounds. By maintaining a con-
sistent learning policy, we can then replace the airfoil parame-
terization method (airfoil shape generator) and assess the learn-
ing rate—how quickly the agent’s guesses converge towards the
target—over successive iterations (i.e. cumulative episodes).

It is noteworthy that exploring different RL approaches is be-
yond the scope of this study. We use the Gymnasium framework
(Towers et al., 2024), training a proximal policy optimization (PPO)
agent with a multi-layer perceptron (MLP) surrogate policy (Raf-
fin et al., 2021), optimizing a reward signal defined as the nega-
tively signed MAE of the guessed airfoil shape against a target
one provided in the environment. For details regarding the airfoil
parameterization methods used for comparison, adhering to 12
or 13 design variables—AirDbM, Hicks-Henne, CST, NURBS, and
PARSEC—and the RL setup, refer to Appendix A and Appendix C,
respectively.

In Figure 11, two representative outcomes of the airfoil geom-
etry generation ‘game’ are depicted: (A) NACA 2412 (thin airfoil)
and (B) Althaus AH 93-W-480B (thick airfoil). Particularly, the lat-
ter case is one of the baselines of AirDbM, which is depicted to
demonstrate the agent’s lack of a priori insight into the genera-

920z Arenuer gz uo 1sanb Aq 0691 2€8/801/L/€ |/910IME/apol/W0d"dno-olWapeo.//:Sd)y WOy papeojumoq



Journal of Computational Design and Engineering, 2026, 13(1), 108-124 | 119

Initial state <———- — Target ----- Guess
AirDbM Hicks-Henne CST NURBS PARSEC
Episode 10 Episode 10 Episode 10 Episode 10 Episode 10
Episode 100 Episode 100 Episode 100 Episode 100 Episode 100

A NACA 2412
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N
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B Althaus AH 93-W-480B

Figure 11: Comparison of geometry generation for (A) NACA 2412 and (B) Althaus AH-W-480B target shapes using various airfoil shape generators.
Starting from the same initial state, the guessed shapes (blue dashed line) after Episodes 10 and 100 are compared to the target airfoil (gray solid line)

for AirDbM, Hicks-Henne, CST, NURBS, and PARSEC.

tion process as intended—had the agent been aware of this fact,
it could have arrived at the target directly. During each episode,
the agent makes 100 attempts, iteratively refining its guess based
on the best outcome from previous cumulative episodes, which
gradually improves its control input tuning and ultimately results
in better predictions (comparing Episode 10 to Episode 100).

Compared against the other four conventional airfoil parame-
terization methods, AirDbM exhibits relatively fast convergence to
the target in these two representative cases. For instance, looking
into Episode 10 of the Althaus AH 93-W-480B environment (Fig-
ure 11 B), AirDbM’s guess, albeit slightly thin yet, already becomes
akin to the target airfoil shape, while the other guesses either are
still far from airfoil shapes (Hicks-Henne and CST) or suffer from
bloated leading edge curvature (NURBS and PARSEC). Despite the
agent’s unawareness, AirDbM inherently possesses the feature in-
formation of airfoils in the baselines. Therefore, for any weight
inputs, the resulting shape is likely to be an airfoil shape as it is
constructed by the mixture of the existing design features. In this
regard, PARSEC, which more explicitly carries airfoil design fea-
tures (since the design variables are directly geometric parame-
ters of airfoils), is expected to show fast convergence but it is pre-
sumably the method’s fundamental inferiority in reconstructing
airfoil shapes that limits the performance (see Sheikh et al., 2023,
p. 1447).

For quantitative and non-prejudiced evaluation, all 1644 target
airfoil shapesin the database were tested under the same learning
setup. A comprehensive comparison result is shown in Figure 12.
The trends of the best MAE measures achieved over cumulative

0.08 1
—— Design-by-Morphing (AirDbM)

==+ Hicks-Henne Functions (Hicks-Henne)
—-= Class-Shape Transformation (CST)

- Non-Uniform Rational B-Spline (NURBS)
==+ PARametric SECtion (PARSEC) ;

0.07 fi-

0.064

0.034}-i-*

0.02

Best Mean Absolute Error (MAE)
Achieved
o
o
3

0.01+

0.00+

Cumulative Number of Episodes

Figure 12: Quantitative evaluation of 5 airfoil shape generation
methods—AirDbM (the present DbM), Hicks-Henne, CST, NURBS and
PARSEC—illustrating average (solid line) and +0.25xstandard deviation
(shaded area) of best MAE achieved over cumulative episodes across all
1644 target airfoil shapes tested.

episodes are plotted with respect to the five airfoil shape genera-
tion methods under consideration, where the solid line is the aver-
age of the entire 1644 environment runs at each episode while the
shaded area represents +0.25x standard deviation (the factor of
0.25 is merely for visual clarity to minimize overlapping between
the shaded areas).

In line with the findings from the representative cases, AirDbM
overall exhibits the fastest decrease in the best MAE for ini-
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tial episodes, keeping the lead up to the long run (Episode 100).
PARSEC initially shows comparable decreasing rate in MAE with
AIrDbM, but as the episode accumulates, the performance gap
widens, ultimately remaining the worst performance. The other
three methods, Hicks-Henne, CST and NURBS, show relatively de-
cent decrease, but their performances gradually improve and in
the long run all arrive in between PARSEC and AirDbM.

Based on these results, it can be concluded that AirDbM, using
just 12 systematically selected baseline airfoils, not only matches
the reconstruction accuracy of conventional parameterizations
but also excels in adaptability and learning efficiency when inte-
grated with RL agents. In a full comparison across 1644 target air-
foils in the database, AirDbM enabled the agent—as an unbiased
designer of no prior knowledge—to achieve lower MAE and faster
convergence than all compared airfoil parameterization methods,
maintaining the same or a larger number of design variables.

5. Discussion

This study has successfully demonstrated an improved DbM ap-
proach, AirDbM, which significantly reduces design-space dimen-
sionality for airfoil design and optimization. By focusing on main-
taining design diversity through effective reconstruction of the
rich airfoil database, our study achieved a substantial reduction in
the number of baseline shapes required. The resulting AirDbM ap-
proach not only yielded benefits in multi-objective aerodynamic
optimization, such as accelerated convergence and even partial
enhancement of the Pareto-optimal solutions, as demonstrated
in our former example (Section 4.1), but also showed excellence
in airfoil shape generation compared to several conventional pa-
rameterization methods.

Nonetheless, it should be admitted that the dimensionality re-
duction in AirDbM primarily concentrated on the geometric feature
preservation. Although this approach ensures broad geometric
coverage, the aerodynamic optimization results suggest a trade-
off, as exemplified by the inability to reach the extreme stall toler-
ance values achieved previously with a larger baseline set. Such a
geometrically focused compact design space appears to limit the
exploration of more aerodynamically diverse or specialized design
candidates.

Thus, future developments of the DbM framework for airfoil de-
sign could possibly benefit from incorporating aerodynamic con-
siderations more directly into the baseline selection process. Be-
yond geometric diversity, selecting or augmenting baseline sets
with airfoils known for specific, superior aerodynamic character-
istics (e.g. high C; and low Cy) could allow the design space to bet-
ter support the exploration of dynamically advanced airfoil de-
signs. In particular, considering the reconstruction rate conver-
gence observed (see Figure 4), one may only choose the first 10
or 11 airfoils from the current baseline set and supplement the
remaining slots with designs proven for their aerodynamic merit,
creating a hybrid baseline set. This can also be supplemented by
additional dimensionality reduction efforts that preserve the es-
sential design space scope, such as employing n-sphere coordinate
variables for (n + 1) weight factor mapping, or pruning the design
space by leveraging internal problem symmetries (e.g. Lee et al,,
2024).

It is clear that the significant design-space dimensionality re-
duction achieved by AirDbM mitigates the curse of dimensionality.
The reduction in the number of design variables is crucial as it
opens up possibilities for integrating more computationally in-
tensive or higher-fidelity solvers into the efficacious optimization
loop. The current reliance on inexpensive solvers like XFOIL 6.99

facilitates rapid design exploration, but could be replaced or aug-
mented by, for example, RANS simulations or even experiments.
In this way, we could pave the way for optimizing more realistic, 3D
wing designs or tackling more complex aerodynamic phenomena
necessitating higher fidelity. Such an approach requires efficient
optimization algorithms with smaller data points of exploration
rather than large-sample algorithms like GA, such as those based
on Bayesian inference (e.g. Sheikh et al.,, 2022) or the use of PPO
agents explored in our latter example (Section 4.2), for sample ef-
ficiency.

The data-efficient, interpretable parameterization of AirDbM
(and DbM more broadly) reveals significant implications for ma-
chine learning-driven design. While deep generative models like
generative adversarial networks (GANs; e.g. Chen et al., 2020;
Wang et al., 2023; Xie et al., 2024) excel at synthesizing novel de-
signs through data-driven pattern recognition, they typically re-
quire thousands of training samples and lack inherent physical
constraints. DbM can address these issues by providing geometri-
cally consistent priors through systematic morphing of a base-
line set containing O(10') or perhaps fewer elements, generat-
ing physically plausible candidate designs that can seed and con-
strain GAN training. This symbiotic relationship enables genera-
tive models to focus on refining physical meaningful variations in
avoidance of suffering from hallucinations of non-feasible geom-
etry generations, leading to reduced training time while maintain-
ing design feasibility. To sum up, while recent machine learning-
driven methods (e.g. GANs and variational autoencoders, VAEs)
reduce latent-space dimensionality when large datasets are avail-
able, DbM begins with a few known baseline designs to span a
wide and physically relevant design space. These approaches im-
ply their synergistic relation: DbM is not a direct competitor to
these methods, but could rather be complementary.

6. Conclusions

We addressed the challenge of reducing design-space dimension-
ality in DbM for airfoil optimization by introducing AirDbM, an
DbM-based airfoil design approach with a systematically reduced
baseline set. Utilizing an effective forward search strategy, we
identified a compact yet highly representative set of 12 baseline
airfoils selected from the UIUC database of 1644 airfoils. This re-
duced setretained broad airfoil design capability, as demonstrated
inreconstruction tests where 98% of the database was reproduced
within an MAE of 0.005. This performance rivals—and, in terms of
dimensionality, surpasses—the previous DbM efforts that used 25
baselines, thereby achieving a substantial reduction in design pa-
rameters without compromising geometric diversity.

The efficacy of AirDbM was quantitatively demonstrated in
both multi-objective aerodynamic optimization using a GA and
airfoil geometry generation in the context of reinforcement learn-
ing. In aerodynamic shape optimization aimed at maximizing
both lift-to-drag ratio and stall tolerance, AirDbM achieved accel-
erated convergence. Its hypervolume indicator value surpassed
that of the earlier 25-baseline study in significantly fewer GA
generations. The resulting Pareto front identified new Pareto-
optimal solutions with enhanced lift-to-drag ratios, especially at
low to moderate stall tolerances. In a comparative study that em-
ploys machine agents as unbiased designers from a reinforce-
ment learning framework, AirDbM achieved faster convergence
and lower errors than several conventional airfoil parameteriza-
tion methods, while using a similar number of design variables.

These findings lay the groundwork for further advancements in
the DbM methodology for airfoil design and optimization. Future
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directions may include incorporating aerodynamic performance
criteria into the baseline selection process to create hybrid sets
that maintain geometric representativeness while targeting spe-
cific aerodynamic objectives. Additionally, the computational effi-
ciency gained from operating in a lower-dimensional design space
facilitates the integration of higher-fidelity solvers, paving the way
for a transition from 2D airfoil analysis to more realistic 3D wing
design applications. Such developments are anticipated to be syn-
ergistically combined with modern machine learning-driven gen-
erative design approaches for expedited optimization.
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Appendix A. Airfoil Design Methods

Throughout this work, we considered five distinct airfoil param-
eterization methods for comparison: AirDbM, Hicks-Henne, CST,
NURBS, and PARSEC, as detailed in Table Al. A key aspect of this
setup was the standardization of the dimensionality across these
methods. The DbM, Hicks-Henne, CST, and PARSEC methods are
configured to utilize 12 design variables. The NURBS parameter-
ization was slight exception, making use of 13 design variables;
this number was chosen to maintain the method’s parametric in-
tegrity while aligning it as closely as possible with the 12-design
variable target used by the other methods. This consistent dimen-
sionality facilitated a fair comparison of the different methods’
capabilities in airfoil geometry generation.
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Table A1l: Airfoil parameterization methods considered for comparison.

Method Design Variables (DVs)

Remarks

AirDbM w;: Morphing weight factors € [-1.0,1.0] (i=1, ---, 12)

Hicks-Henne pui: Upper bump powers € [1.0,4.0] (i=1, 2, 3)
a,i: Upper bump amplitudes € [-0.2,0.2] (i=1, 2, 3)
p1i: Lower bump powers € [1.0,4.0] (i=1, 2, 3)

a;;: Lower bump amplitudes € [-0.2,0.2] (i=1, 2, 3)

CST Ni: 1st class function exponent € (0.0, 2.0]

Nj,: 2nd class function exponent € (0.0, 2.0]

A, ;- Upper Bernstein coefficients € [-0.5,0.5] (i=1, ---,

Ag,: Upper trailing edge height € [-0.5,0.5]

Ay Lower Bernstein coefficients € [-0.5,0.5] (i=1, ---,

Ag&: Lower trailing edge height € [-0.5, 0.5]

NURBS x1: 1st control point’s x-coordinate € [0.0, 1.0]
y1: 1st control point’s y-coordinate € [—0.5, 0.5]
x,: 2nd control point’s x-coordinate € [-0.5, 0.5]
y2: 2nd control point’s y-coordinate € [—0.5, 0.5]
x3: 3rd control point’s x-coordinate € [0.0, 1.0]
y3: 3rd control point’s y-coordinate € [-0.5, 0.5]
Vieu: Upper trailing edge height € [—0.5, 0.5]
Vie1: Lower trailing edge height € [-0.5, 0.5]
w;: Control point weights € [0.1,5.0] (i=1, ---., 5)

—

~

W

PARSEC Ie: Upper leading edge radius € [0.0, 1.0]
x,: Upper crest’s x-coordinate € (0.0, 1.0)
yu: Upper crest’s y-coordinate € [—0.5, 0.5]
Vxxu: Upper crest curvature € [—0.5, 0.5]
1e1: Lower leading edge radius € [0.0, 1.0]
x: Lower crest’s x-coordinate € (0.0, 1.0)
y1: Lower crest’s y-coordinate € [—0.5, 0.5]
Vxx1: Lower crest curvature € [—0.5, 0.5]
Vie: Trailing edge mid-position € [—0.5, 0.5]
tie: Trailing edge thickness € [0.0, 1.0]

are: Trailing edge direction € [—n /4, /4]
Bre: Trailing edge wedge angle € [0, 7/2]

See Table 1 for the baselines

Base: flat plate; cosine-distributed bump points; see Hicks &
Henne (1978)

See Kulfan & Bussoletti (2006)

4)

4)

3rd-order B-spline with evenly distributed knots; see Piegl &
Tiller (1996)

See Sobieczky (1999)

Appendix B. Multi-Objective Airfoil
Optimization Setup

As detailed in Section 4.1, the multi-objective airfoil optimiza-
tion was conducted using the gamultiobj optimizer in MATLAB
(MathWorks, 2024), based on NSGA-II. The optimization aimed to
identify superior airfoil designs, each parameterized by 12 mor-
phing weight variables founded upon AirDbM that range from
—-1 to 1, with respect to lift-to-drag ratio as a primary design
point and stall tolerance as a robustness for off-design opera-
tion.

The optimizer was configured with a population size of 372
individuals and a maximum of 1000 generations. The evolution
of this population was driven by the following genetic opera-
tors: selection based on a tournament approach considering non-
domination rank and crowding distance (calculated in the objec-
tive or fitness function space), an intermediate crossover strategy
with a crossover fraction of 0.8, and an adaptive feasible mutation
scheme that introduces variations using randomly generated di-
rections adapting to the previous generation. Following the initial-
ization of Sheikh et al. (2023), the initial population was composed
by incorporating outcomes from two preliminary single-objective
GA runs (each with a population of 128 and run for 100 gener-
ations) for each of the design targets—Ilift-to-drag ratio and stall
tolerance. The remaining individuals of the initial population were
randomly distributed. A summary of these algorithmic parame-
ters is provided in Table B1.

Table B1: Details of the multi-objective GA used in this study.

Option Selection
Population size 372
Total generations 1000

Selection scheme
Crossover scheme

Binary tournament (Pareto fraction = 0.35)
Intermediate crossover (Crossover fraction
=0.8)

Adaptive feasible

Crowding distance in fitness function space

Mutation scheme
Distance measure of
individuals

At each generation, the XFOIL performance evaluations were
parallelized; this study utilized up to 128 cores to perform XFOIL
analyses concurrently for 128 airfoil samples, significantly reduc-
ing the overall duration of the optimization process.

Appendix C. Airfoil Geometry Learning
Setup

In Section 4.2, the airfoil geometry generation task was formu-
lated as a reinforcement learning problem and addressed using
a PPO agent. The PPO agent utilized an MLP for both the actor
and critic networks. Key hyperparameters for the PPO algorithm
included the learning rate of 0.0003, the number of steps per up-
date of 2048, the batch size of 64, the epochs per update of 10,
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the discount factor of 0.99, the generalized advantage estimator
(GAE) lambda of 0.95, the PPO clipping range of 0.2, the entropy co-
efficient of 0, and the value function coefficient of 0.5. Other PPO
parameters largely followed the default values as in the Stable-
Baselines3 library (v2.6.0) (Raffin et al., 2025).

The learning environment was configured for episodic tasks.
Each episode consisted of 100 steps. The observation space pro-

vided to the agent was the set of 12 or 13 normalized in-

puts ranging from 0.0 to 1.0. The reward at each step was cal-
culated as the negative of the MAE, incentivizing the agent
to produce airfoils more closely matching the target. Each
PPO model was trained for a total of 10000 steps (i.e. 100
episodes).
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