
Journal of Computational Design and Engineering , 2026, 13 , 108–124 

DOI: 10.1093/jcde/qwaf124 
Advance access publication date: 12 November 2025 

Research Article 

Airfoil optimization using Design-by-Morphing with 

minimized design-space dimensionality 

Sangjoon Lee 1 and Haris Moazam Sheikh 

2 , * 

1 Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA 

2 Department of Aeronautics and Astronautics, University of Southampton, Southampton SO17 1BJ, UK 
∗Correspondence: h.m.sheikh@soton.ac.uk 

Abstract 

Effective airfoil geometry optimization requires exploring a diverse range of designs using as few design variables as possible. This 
study introduces AirDbM, a Design-by-Morphing (DbM) approach specialized for airfoil optimization that systematically reduces 
design-space dimensionality. AirDbM selects an optimal set of 12 baseline airfoils from the UIUC airfoil database, which contains 
over 1600 shapes, by sequentially adding the baseline that most increases the design capacity. With these baselines, AirDbM recon- 
structs 99% of the database with a mean absolute error below 0.005, which matches the performance of a previous DbM approach that 
used more baselines. In multi-objective aerodynamic optimization, AirDbM demonstrates rapid convergence and achieves a Pareto 
front with a greater hypervolume than that of the previous larger-baseline study, where new Pareto-optimal solutions are discovered 

with enhanced lift-to-drag ratios at moderate stall tolerances. Furthermore, AirDbM demonstrates outstanding adaptability for re- 
inforcement learning (RL) agents in generating airfoil geometry when compared to conventional airfoil parameterization methods, 
implying the broader potential of DbM in machine learning-driven design. 
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omenclature 

lphabets and greek letters 

 : Arbitrary airfoil shape 

i : i -th baseline airfoil shape 
 : Airfoil chord length ( m ) 

s : Speed of sound ( m s−1 ) 
: Drag force exerted on an airfoil per unit span ( N m−1 ) 
: Lift force exerted on an airfoil per unit span ( N m−1 ) 

 : Morphed airfoil shape 
: Design-by-Morphing shape normalization factor 
 : Airfoil shape similarity measure 
: Freestream flow speed ( m s−1 ) 

i : Design-by-Morphing weight factor with respect to the i th
baseline 

 : Horizontal Cartesian coordinate 
 : Vertical Cartesian coordinate 
: Airfoil angle of attack ( ◦) 

s : Airfoil stall angle, the first local maximum of α with respect
to l ( ◦) 

α: Stall tolerance, the range of α between αs and the maximum
l/d point ( ◦) 

: Fluid kinematic viscosity ( m2 s−1 ) 
: Fluid density ( kg m−3 ) 

imensionless groups 

d : Drag coefficient, 2 d/ (ρU2 c ) 

l : Lift coefficient, 2 l/ (ρU2 c ) 
e : Reynolds number based on airfoil chord length, Uc/ν
a : Mach number, U/c
s 
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istribution, and reproduction in any medium, provided the original work is prope
. Introduction 

n aerodynamic design, airfoil shape optimization remains a fun-
amental and active challenge that requires the exploration of a
esign space comprising diverse and valid airfoil configurations

Drela, 1998 ; Lyu et al., 2015 ; Skinner & Zare-Behtash, 2018 ; Mar-
ins, 2022 ). Evaluating the performance of each design involves
nalyzing multiple dynamic metrics (e.g. lift, drag, and stall angle)
cross varying flight conditions (e.g. wind speed and angle of at-
ack), often demanding computationally intensive simulations to
dentify optimal candidates. As in typical optimization processes,
he first step is to define a design space that captures a broad
ange of airfoil shapes using a finite set of parameters, enabling
ystematic exploration and refinement toward optimal solutions
Sobester & Barrett, 2008 ; Masters et al., 2017 ). 

A number of studies have explored airfoil shape parameteriza-
ion methods, including—but not limited to—PARSEC (Sobieczky,
999 ), Class-Shape Transformation (CST; Kulfan & Bussoletti,
006 ), Hicks-Henne bump functions (Hicks & Henne, 1978 ), Bézier
urves (Gordon & Riesenfeld, 1974 ; Derksen & Rogalsky, 2010 ), or
on-Uniform Rational B-Splines (NURBS) (Piegl & Tiller, 1996 ; Lep-

ne et al., 2000 ), which form the basis of Free-Form Deformation
FFD; Sederberg & Parry, 1986 ). Recently, with advances in machine
earning, deep generative models have also been explored for air-
oil shape parameterization via nonlinear dimensionality reduc-
ion (Chen et al., 2020 ; Xie et al., 2024 ). Each method provides a sys-
ematic approach to achieving design flexibility based on distinct

athematical principles. The choice of parameterization signifi-
antly affects the diversity of airfoil shapes within the constructed
esign space. If the global design space of airfoil shapes (repre-
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rly cited.

https://doi.org/10.1093/jcde/qwaf124
http://orcid.org/0000-0002-2063-6298
https://orcid.org/0000-0002-3154-0494
mailto:h.m.sheikh@soton.ac.uk
https://creativecommons.org/licenses/by/4.0/


Journal of Computational Design and Engineering, 2026, 13(1), 108–124 | 109

 

m
a
s
t  

s  

j
s
a
a
s
a
h
d  

s

D  

t  

t  

e
i
t
r  

s  

l

 

s
b
w
p
t  

t  

m
b
a
m
c
d
r
a
t

2
O
2
I  

p  

W
d  

e  

w  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/13/1/108/8321690 by guest on 26 January 2026
senting the maximum possible diversity) were known, the opti- 
mal method would be the one that constructs this space with the 
fewest parameters, thereby mitigating the curse of dimensionality 
(Sobester & Barrett, 2008 ; Viswanath et al., 2011 ; Serani & Diez,
2024 ). 

In general, the maximum level of design diversity is unattain- 
able. Many aerodynamic and hydrodynamic shape design 

problems—such as high-speed train aerodynamics (Oh et al., 
2018 ), riblet surface design for drag reduction (Bai et al., 2016 ; 
Lee et al., 2024 ), or hydrokinetic turbine draft tube optimization 

(Sheikh et al., 2022 )—even suffer from a lack of design diversity 
for several reasons. First of all, these problems inherently involve 
highly nonlinear dynamics in design evaluation, making the cor- 
relation between geometry and performance non-intuitive and 

difficult to predict. Additionally, many of the practical or commer- 
cially adopted designs, often developed through costly trial-and- 
error processes (because of the first reason), remain proprietary 
and are not publicly available (Benjamin & Iaccarino, 2025 ). As 
a result, design exploration in such problems is significantly re- 
stricted by a lack of a rich, comprehensive, and centralized design 

database, leaving room for novel designs that have yet to be ex- 
plored. 

In this respect, Design-by-Morphing (DbM) has been proposed 

to offer a universal strategy to these challenges across different 
design problems by enabling extensive design space exploration 

based on a limited set of baseline designs (Oh et al., 2018 ; Sheikh 

et al., 2022 , 2023 ; Lee et al., 2024 ). Rather than relying on prede- 
fined shape parameterizations which are mostly problem-specific 
(e.g. PARSEC for airfoils), DbM generates intermediate forms by 
morphing between selected baselines, facilitating the constraint- 
free and continuous creation of new designs. The weight factors 
assigned to the baselines replace traditional shape parameters, 
meaning that the number of baselines determines the dimension- 
ality of the design space. DbM also allows for extrapolative mor- 
phing, wherein negative weight factors can be applied to some 
or all baselines while handling non-feasible geometries (e.g. self- 
intersections), which increases the ability to encompass novel 
shapes to expand the design space beyond the interpolative mor- 
phing of the baseline design set. Another major advantage of this 
framework comes from its inherent interpretability; the weight 
factors explicitly quantify the geometric influence of each base- 
line airfoil, enabling intuitive design adjustments that are directly 
comprehensible. 

Although DbM offers clear theoretical advantages in design 

space exploration, it is important to rigorously assess its practical 
effectiveness in comparison to established shape parameteriza- 
tion methods. The airfoil design and optimization problem serves 
as an ideal benchmark for this purpose, given the availability of 
several conventional airfoil shape parameterization techniques 
that provide meaningful standards for comparison. Moreover, un- 
like many other aerodynamic and hydrodynamic shape design 

problems, airfoil design also benefits from a rich, publicly avail- 
able database containing more than 1600 airfoil shapes as of now 

(Selig, 2024 ). This extensive repository (hereinafter denoted as the 
UIUC database), a result of over a century of modern airfoil de- 
velopment (Bilstein, 1989 ; Anderson, 1997 ), offers a diverse set of 
tested and proposed design alternatives. While the UIUC database 
may not perfectly represent the global airfoil design space, its 
breadth and diversity make it sufficiently comprehensive to be re- 
garded as approximately global for practical purposes. 

From this perspective, DbM for airfoil optimization was evalu- 
ated in the authors’ previous study (Sheikh et al., 2023 ). DbM was 
applied to reconstruct the entire UIUC database, with its perfor- 
ance compared against PARSEC, NURBS, and the Hicks-Henne 
pproach. The results confirmed DbM’s competitiveness in airfoil 
hape generation and demonstrated the importance of extrapola- 
ive morphing in expanding the design space. However, in that
tudy, the baseline selection of 25 airfoil shapes relied on designer
udgment, raising questions about DbM’s sensitivity to baseline 
election (though partial mitigation was achieved through subset 
nalysis, variations across distinct baseline sets remained unex- 
mined). Such manual curation risks unintended biases in design- 
pace coverage. Note that this concern arises specifically when 

 diverse, representative baseline dataset exists (e.g. more than 

undreds of design points); in contexts lacking comprehensive 
esign sets (less than 10 design points), all existing designs can
imply be used as baselines for DbM (e.g. Sheikh et al., 2022 ). 

Given the presence of comprehensive accessible designs, if 
bM is able to achieve the same design generation capacity with

heir small subset, it can further benefit optimization by reducing
he dimensionality of the design space, resulting in more time-
fficient optimum search and faster convergence. We address this 
ssue by introducing a systematic baseline identification process 
hat mitigates designer bias while maximizing design-space rep- 
esentativeness. Focusing on a specific case of DbM for airfoil de-
ign and optimization, the current study aims to provide the fol-
owing contributions: 

� Developing an effective approach to identify reduced baseline 
sets for DbM while maintaining its airfoil design generation 

capacity. 
� Presenting an optimal baseline set for DbM with reduced 

design-space dimensionality, which rivals the precedent with 

a larger number of airfoil baselines. 
� Quantifying improvements in airfoil shape design and opti- 

mization using a new DbM with reduced design-space dimen- 
sionality. 

We first briefly revisit the application of DbM in 2D airfoil de-
ign, describing the details of morphing, the similarity measure 
etween airfoil shapes, and the airfoil reconstruction problem 

ith additional clarifications from our previous study. Several ap- 
roaches for identifying optimal baseline selections (assuming 
he global design space is represented by the UIUC database) are
hen discussed, along with an analysis of which approach is the

ost feasible given limited computing resources. Next, using the 
aseline set revealed through this approach, example cases of 
irfoil optimization are conducted with the objectives of maxi- 
izing the lift-to-drag ratio and stall angle tolerance, quantifying 

onvergence acceleration and solution enhancements. Finally, we 
emonstrate DbM’s adaptability in reinforcement learning envi- 
onments for airfoil geometry generation, enabling designers to 
chieve faster learning rates and higher accuracy than conven- 
ional airfoil parameterization methods. 

. Design-by-Morphing for Airfoil 
ptimization 

.1. Formulation for airfoil morphing 

n this section, we review and summarize the 2D airfoil design
rocess using DbM, which was described in Sheikh et al. ( 2023 ).
hile the core procedure remains identical, we provide additional 

etails that were not thoroughly covered in the previous study to
nhance the robustness of this design technique. For this purpose,
e first outline the general steps of DbM before applying them

pecifically to airfoil morphing. 
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Figure 1: General flowchart of DbM to get a new design by morphing baseline shapes. 

Figure 2: Selig coordinate format for airfoil geometry of a unit chord 
length (see Selig, 2024 ). 
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Figure 1 presents a generalized flowchart of DbM, outlining
he sub-processes involved in outputting a newly morphed design
rom selected baselines, where the user specifies weight factors
or each baseline as input. This flowchart assumes that the base-
ine designs have already been selected; the reduction of design-
pace dimensionality (i.e. using fewer baselines) is not the focus
ere but will be addressed later (Section 3 ). 

In the pre-morphing stage, baseline shapes, originally defined
n geometric form, must be converted into a discrete numerical
epresentation in a consistent format to enable basic arithmetic
perations (e.g. addition and scalar multiplication) for compu-
ational processing. This concept is widely studied in computer
nimation for object transformation, where various techniques
ave been developed (Parent, 2012 ). We refer to this process as
iscretization to emphasize the mapping of geometric shapes into
 consistent numerical form, such as control points or grids. 

Next, the morphing stage consists of three sub-processes: (1)
lending , where the baseline shapes are combined according to the
nput weight factors; (2) normalization , which scales the blended
hape to fit within typical scale of the problem; and (3) geomet-
ic feasibility check and correction , which adjusts and removes any
nphysical parts, mostly represented by self-intersections. If no
nphysical parts remain in the final shape, the process is com-
lete, and a new design is achieved. Notably, the overall pro-
ess resembles the metamorphosis of irregularly shaped (e.g. non-
ectangular) objects in computer graphics and, in 2D, several prac-
ical approaches to these general procedures have been consid-
red and developed (Sederberg & Greenwood, 1992 ; van den Bergh
t al., 2002 ). 

When it comes to airfoil morphing, one of the most widely used
ormats for describing airfoil geometry is the Selig coordinate for-

at, or simply the Selig format. Named after Selig, this format is
sed to store airfoil data in a structured manner. As shown in Fig-
re 2 , it consists of a list of ( x , y ) coordinate pairs that define the
irfoil geometry non-dimensionalized by chord length c . The co-
rdinates are arranged sequentially, starting from the upper trail-
ng edge ( x = xI = 1 ), following the upper surface toward the lead-
ng edge ( x = xL = 0 ), and then continuing along the lower surface
ack to the lower trailing edge ( x = xT = 1 ). Using this format, any
rbitrary airfoil shape A can be represented as a parametric curve
ith respect to a variable s , defined as 

A (s ) ≡
(
x (s ) , y (s ) 

)
0 ≤ s ≤ 2 , (1)

here x (s ) ≡ | 1 − s | and y (s ) depends on the specific airfoil ge-
metry (which thereby defines it). Discretizing s into equispaced
oints s j for j = 0 , 1 , · · · , F , such that 0 = s0 < s1 < · · · < sF = 2
ith s j = 2 j/F , we obtain A ’s discrete numerical representation as

he following (F + 1) -dimensional vector (referred to as the Selig-
ormat vector henceforth): 

� A ≡
[ 

y (s0 ) y (s1 ) · · · y (sF ) 
] T 

∈ R
F+1 . (2)

e assume that F is sufficiently large so that the airfoil’s shape
s well preserved, with minimal loss of geometric detail between
onsecutive discretized points. In practice, F = 200 is found to be
arge enough to represent every airfoil in the UIUC database. In
quation 2 , y (s0 ) = y (0) = yI , y (sF/ 2 ) = y (1) = yL , and y (sF ) = y (2) =
T (in order for F/ 2 to be integer, let’s assume F to be even). 

Given n baseline airfoil shapes B1 , B2 , · · · Bn , each can be ex-
ressed in Selig-format vector form as � B1 , � B2 , · · · � Bn in R

F+1 . Since
hese baseline shapes correspond one-to-one and R

F+1 is a vector
pace that is equipped with well-defined addition and scalar mul-
iplication, we can formally define the process of airfoil morphing.
opologically, the existence of a one-to-one mapping is ensured
y the homeomorphism of these shapes, which is a prerequisite
or performing DbM, as noted in Sheikh et al. ( 2023 ). Our previ-
us study highlighted the homeomorphism of 2D closed shapes.
owever, in consideration of the fact that the geometric represen-

ation an airfoil here is a closed curve as in Equation 1 , the relevant
omeomorphism to be correctly highlighted should be that of a 1-
anifold with boundary, topologically equivalent to closed inter-

als. For mathematical rigor, in the case of airfoils with zero trail-
ng edge thickness ( y (0) − y (2) = 0 ), let zero be interpreted as al-
ost zero ( y (0) − y (2) = 0+ ) to preserve the same homeomorphism

by conceptually separating the endpoints). 
Overall, morphing of the n baseline airfoil shapes with given

eight factors w1 , w2 , · · · , wn ∈ [ −1 , 1] is expressed as follows: 

� M = F
( 

1 
N 

n ∑ 

i =1 

wi � Bi 

) 

, (3)

here N = N(w1 , w2 , · · · , wn ) is a normalization factor that scales
he blended shape, and F represents a set of adjustment opera-
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tions to correct unphysical geometries. A linear blending formula 
is chosen as it represents the simplest form of blending. However,
the choice of blending is not necessarily limited to linear meth- 
ods, and users may also explore nonlinear blending approaches.
Similarly, the normalization factor can be determined in various 
ways, but we adhere to the original formulation 

N =
n ∑ 

i =1 

wi (4) 

to maintain consistency with the original study for comparative 
purposes. As for checking and correcting geometric feasibility, the 
removal of self-intersections is essential. Additional treatments 
may be applied depending on what design features users consider 
unphysical (e.g. holes). In the present airfoil morphing process, we 
focus solely on treating self-intersections. If no self-intersections 
are present, F is the identity map. Otherwise, in general, we adopt 
the self-intersection removal procedure for airfoil shapes as intro- 
duced in section 2.2 of Sheikh et al. ( 2023 ), in which zero-thickness 
points due to self-intersections are locally stiffened and then 

smoothed. Starting with the Selig-format vector representation, 
we can inexpensively detect self-intersections in an airfoil shape 
using a simple sign-change checker. The detection algorithm is 
presented in Algorithm 1. 

Algorithm 1 Detect a self-intersecting airfoil shape given as a 
Selig-format vector 

Require: � A = [ y (s0 ) y (s1 ) · · · y (sF ) ] T where F is even (e.g., F = 

200 ) 
Ensure: True if � A represents a self-intersecting shape, else False 

� Au ⇐ [ y (sF/ 2 −1 ) · · · y (s0 ) ]T // slice the first half of � A , and flip it 

� Al ⇐ [ y (sF/ 2+1 ) · · · y (sF ) ]T // slice the second half of � A 

Allocate � b (integer array) of size F/ 2 
for i ⇐ 1 to F/ 2 do // one-based indexing is assumed 

x ⇐ � Au [i] - � Al [i] 
� b [i] ⇐ Sign of x (1 for positive values, -1 for negative values,

and 0 for zero) 
end for 
for j ⇐ 1 to F/ 2 − 1 do 

if (� b [j] * � b [j+1] < 0 ) .OR. (� b [j] == 0 ) then 

return True 

end if 
end for 
return False 

2.2. Shape similarity measure 

For two arbitrary airfoil shape geometries A1 and A2 in the para- 
metric curve form with respect to s as in Equation 1 , their similar- 
ity, denoted as S (A1 , A2 ) , can be quantified by measuring the mean 

absolute error (MAE) between these two airfoils along the upper 
and lower surfaces, respectively, and then summing the results.
That is, 

S (A1 , A2 ) ≡
∫ 1 

0 | y1 (s ) − y2 (s ) | ds ∫ 1 
0 ds ︸ ︷︷ ︸ 

Upper curve 

+
∫ 2 

1 | y1 (s ) − y2 (s ) | ds ∫ 2 
1 ds ︸ ︷︷ ︸ 

Lower curve 

, (5) 

where y1 (s ) and y2 (s ) are the y -coordinates of A1 (s ) and A2 (s ) , re- 
spectively. Since both 

∫ 1 ds and 

∫ 2 ds evaluate to unity, Equation 5 
0 1 
implifies to 

S (A1 , A2 ) =
∫ 2 

0 
| y1 (s ) − y2 (s ) | ds. (6) 

ere, 
∫ 2 

0 (y1 (s ) − y2 (s )) ds = 0 is assumed to pr ovide a consistent 
ertical alignment. This formulation is equivalent to the airfoil 
hape similarity measure (as MAE) proposed by Sheikh et al. ( 2023 ).
t is important to note that various similarity measures can be de-
ned as long as they form a convergent series in which the simi-

arity value approaches a certain limit (mostly zero) as one shape
ecomes identical to the other; Equation 6 evidently satisfies this
undamental requirement. 

Taking one step further from Sheikh et al. ( 2023 ), let us derive
 discretized formula that is effectively equivalent to Equation 6 .
onsidering an equispaced (F + 1) -point discretization of s , we use
umerical integration based on the trapezoidal rule to obtain an
pproximate form of Equation 6 , given by 

S (A1 , A2 ) � 

2 
F 

F ∑ 

i =1 

1 
2 

( | y1 (si −1 ) − y2 (si −1 ) | + | y1 (si ) − y2 (si ) |) 

= 

F−1 ∑ 

i =1 

2 
F 

| y1 (si ) − y2 (si ) | 

+ 1 
F 

( | y1 (s0 ) − y2 (s0 ) | + | y1 (sF ) − y2 (sF ) |) . 

(7) 

or a more compact expression, we may factor the endpoint terms
nto the summation by multiplying them by 2, resulting in 

S′ (A1 , A2 ) = 2 
F 

F ∑ 

i =0 

| y1 (si ) − y2 (si ) | . (8) 

′ can be interpreted as a modified version of S that places slightly
ore weight on endpoint error evaluation. In the context of air-

oils, this adjustment emphasizes matching the trailing edge,
hich can be rationalized since airfoil dynamics are consider- 
bly influenced by edge geometries. The right-hand side of Equa-
ion 8 corresponds to the mean absolute difference between the
elig-format vectors of A1 and A2 (scaled by 2(F + 1) /F , or approx-

mately 2 when F is much greater than 1). Using the �1 -norm no-
ation, we express the similarity measure for Selig-format vectors 
s 

S′ ( � A1 , � A2 ) = 2 
F 

∥∥ � A1 − � A2 
∥∥

1 , (9) 

hich we use as the airfoil shape similarity measure that is effec-
ively equivalent to the integral form in Equation 6 . 

.3. Airfoil reconstruction problem 

uppose that we aim to reconstruct a known airfoil shape, � At , us-
ng the DbM process with given n baseline shapes � B1 , � B2 , · · · � Bn .
t is additionally assumed that � At is distinct from each 

� Bi for any
 = 1 , 2 , · · · , n ; otherwise, the reconstruction is trivial. Recalling
igure 1 , DbM employs n input morphing weight factors, w1 , w2 ,
· · , wn , to output a morphed airfoil shape � M as shown in Equa-
ion 3 . Defining the weight vector � w ≡ [ w1 w2 · · · wn ]T ∈ R

n , we can
ormulate the problem of finding � w as a single-objective optimiza- 
ion problem with continuous variables in standard form: 

arg min 

� w ∈ Rn 

S′ ( � M ( � w ) , � At ) subject to ‖ � w ‖ ∞ 

≤ 1 , (10) 

here ‖ · ‖∞ 

represents the �∞ -norm. 
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If there exists a set of m airfoil shapes to be reconstructed,
enoted as � At,i for i = 1 , · · · , m , solving the optimization prob-

em in Equation 10 m times for each 

� At,i yields m weight vectors
� opt ,i . These weight vectors generate morphed shapes that best
pproximate their respective target airfoil shapes. In each case,
he proximity of S′ ( � M ( � wopt ,i ) , � At,i ) to zero indicates how accurately
he morphing of the n baseline shapes reconstructs � At,i . Conse-
uently, the sum of these similarity measures, denoted as S‡ , i.e. 

S‡ ≡
m ∑ 

i =1 

S′ ( � M ( � wopt ,i ) , � At,i ) , (11) 

an serve as an indicator of the reconstruction capability of the
et of airfoil shape baselines, � B1 , � B2 , · · · � Bn , for the target airfoil
et, � At, 1 , � At, 2 , · · · � At,m 

. 

. Baseline Shape Selection 

he central challenge addressed in this section—and a pivotal
uestion for this study—is: How can we identify an optimal min-

mal set of baseline airfoil shapes that effectively represents the
iversity of a larger collection considered globally representative?
electing such a compact baseline set is conceptually analogous
o principal component analysis (PCA), where lower-dimensional
ubspaces capture significant data variations (see Li et al., 2022 , ex-
ibiting the use of PCA to the UIUC database). In our context, the
elected baseline airfoils serve a role similar to principal compo-
ents, enabling reconstruction of diverse airfoil designs through
eighted morphing. 
However, DbM’s baseline selection process is distinct from PCA.
hile PCA generates abstract principal components through lin-

ar combinations, DbM preserves original baseline airfoils as in-
erpretable building blocks. This approach maintains physical in-
uition by allowing designers to work with recognizable geome-
ries rather than abstract eigencomponents whose meaning is
bscured by PCA’s rotational transformations. Furthermore, DbM
ntroduces essential non-linearities through geometric feasibility
orrections. Although linear blending is employed in this study (as
n Equation 3 ), the method permits extension to non-linear blend-
ng strategies, necessitating non-linear dimensionality reduction
pproaches unlike PCA. This structural flexibility is to enhance
bM’s design generation capabilities while preserving geometric

nterpretability. 
With these distinctions established, our objective is to identify

 minimal subset from the global airfoil set { A1 , · · · , Am 

} that min-
mizes the total reconstruction error S‡ Equation 11 when used as
bM baselines. This maximizes the representational power of a
ompact design space while maintaining DbM’s core advantages
f physical interpretability and constrained dimensionality. 

.1. Description of problem 

o improve the practicality of DbM for airfoil design and optimiza-
ion, we identify a set of baseline shapes that can effectively span
he diversity of possible airfoil geometries. In order to define and
uantify the coverage of the airfoil design space, it is necessary to
rst establish a comprehensive target set that reasonably repre-
ents the global airfoil shape design space. 

The UIUC airfoil database (Selig, 2024 ) provides a broad and di-
erse repository of airfoil geometries, accumulated through more
han a century of aerodynamic development. Given its scope, his-
orical depth, and inclusion of a multitude of tested, proposed and
ptimized designs, the UIUC database can be regarded as approx-

mately global for practical purposes (while no finite database can
erfectly capture the infinite possibilities of airfoil geometries, we
ffirm that the database serves as a sufficiently comprehensive
urrogate). 

With the UIUC database taken as the global target set of air-
oil shapes to be reconstructed by the DbM framework, we frame
he identification of optimal baseline shapes as the problem of
nding a subset of airfoil shapes whose morphing combinations
an best approximate the entire UIUC database, thereby max-
mizing design-space coverage while minimizing design-space
imensionality. Mathematically, we let the set of available air-
oil shapes in the UIUC database, after consistently discretiz-
ng them in the Selig-format vector form, be denoted by A ≡
� ADB , 1 , � ADB , 2 , · · · , � ADB ,m 

}
, where m (or # A ) is 1644 as of the

resent collection. We seek to select a subset of n baselines, de-
oted as B ≡ {

� B1 , � B2 , · · · , � Bn 
} ⊂ A , such that the reconstruction

apability measure S‡ of B over A is minimized. 
The corresponding optimization problem can be generally ex-

ressed as 

min 

B ⊆ A 

S‡ subject to # B = n, (12)

here n is the number of baseline airfoil shapes allowed in B .
hen n equals to m , the problem takes a trivial and global so-

ution, B = A (which evidently yields S‡ = 0 ). Preferentially, n � m
o promote significant dimensionality reduction. 

In Equation 12 , n (or # B ) acts as a control parameter balancing
he complexity and expressiveness of the design space. A larger
 increases the representational power but also the design-space
imensionality, whereas a smaller n reduces the dimensionality
t the cost of the airfoil reconstruction capacity. Therefore, solv-
ng Equation 12 additionally aims to identify the smallest possi-
le n (or equivalently, the most compact set of baselines) that still
chieves an acceptable level of reconstruction performance over
he database. However, determining the acceptability is mostly
one a posteriori ; thus, in the subsequent discussion, we presume
hat n is given, for example, n = 10 . 

.2. Approaches for the subset selection 

sing the concept of feature selection (Guyon & Elisseeff, 2003 )
r, similarly, factor screening (Serani & Diez, 2024 ), we identify
he most influential elements among a large set of airfoil geome-
ries. In other words, each individual airfoil shape in A is treated
s a distinct feature that contributes to the construction of the
verall design space. Since not all airfoil shapes are essentially
nique—some may offer redundant contributions to the repre-
entational capability—an effective selection process should aim
o retain only the most informative baselines in B while safely
liminating superfluous ones. 

.2.1. Exhaustive search 

he most straightforward approach to baseline subset selection is
o exhaustively compare all subsets. All possible combinations of
 baselines are enumerated from A , and each candidate subset is
valuated based on its reconstruction capability measure S‡ . The
ubset that minimizes S‡ is chosen as the optimal set. 

For the UIUC database containing m = 1 , 644 airfoil shapes,
he number of possible subsets of A for even modest values of
 becomes astronomical. For instance, selecting n = 10 baselines
ould require evaluating approximately ( 1644 

10 ) ≈ 3 . 9 × 1025 candi-
ate subsets. As each candidate subset’s evaluation towards S‡ 

ven necessitates solving Equation 10 m = 1 , 644 times, such a
umber is computationally infeasible to process. 
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While exhaustive search guarantees identification of the glob- 
ally optimal baseline sets for a given n , the combinatorial explo- 
sion in the number of subsets renders this approach uncondi- 
tionally impractical for any realistic subset size. Thus, alterna- 
tive strategies that significantly reduce the computational burden 

must be sought. 

3.2.2. Backward search 

One alternative is the backward search strategy. This method 

starts with the entire database as the initial baseline set, i.e. B = A .
At each iteration, a single baseline is eliminated from B based on 

its relative contribution to the overall reconstruction capability, 
thereby reducing the size of the baseline set by one sequentially. 

At the first iteration, all m subsets of size (m − 1) are considered,
where solving Equation 12 requires only a single subordinate opti- 
mization in Equation 10 for the eliminated airfoil of each subset.
For each candidate subset, we evaluate S‡ , and the subset that 
yields the smallest increase in S‡ from its initial value (zero, when 

B = A ) is chosen. Then, in subsequent iterations, the elimination 

decision is guided differently to reduce computational cost. After 
solving Equation 10 for each target airfoil based on the current 
baseline set, we compute the non-trivial morphing weight factors 
assigned to each baseline. The baseline whose total contribution,
summed across all reconstructions, is then eliminated. In other 
words, we sequentially remove the baseline that contributes least 
to reconstructing the target airfoil set according to the absolute 
sum of its weight factors. This process is repeated iteratively un- 
til the number of remaining baselines reaches the desired subset 
size n . 

The total number of times the subordinate optimization for air- 
foil reconstruction Equation 10 , must be conducted throughout 
the process is given by 

m +
m −n +1 ∑ 

k =2 

k = 1 
2 

{
m2 + m (5 − 2 n ) + (n − 3) n

}
, 

when counting only non-trivial cases (where a target airfoil is not 
included in the current baseline set). For m = 1 , 644 and n = 10 ,
this amounts to approximately 1 . 3 × 106 optimal AirDbM weight 
factor searches. While this backward search strategy is inherently 
a greedy algorithm for solving Equation 12 (i.e. making local op- 
timal choices at each elimination), it offers a computationally 
tractable compromise between reconstruction accuracy and cost. 

Despite substantially reducing the number of evaluations com- 
pared to exhaustive search, this strategy still incurs a compu- 
tational cost that nearly scales O(m2 ) . As m increases, the total 
number of subordinate optimizations becomes quadratically pro- 
hibitive. In the present case with m = 1 , 644 , the total number of 
evaluations remains an impractical computational burden. 

3.2.3. Forward search 

Another approach is the forward search strategy, which we ul- 
timately adopt in this study. Unlike backward search, forward 

search progressively builds the baseline set by sequentially adding 
airfoil shapes from the full database. The process starts with an 

empty set and, at each iteration, adds a single baseline that is ex- 
pected to contribute most to improving the overall reconstruction 

of A . 
At the first iteration, all m subsets of size 1, or equivalently,

all m individual airfoils are considered. For each, solving Equa- 
tion 12 simply requires summing the (m − 1) airfoil shape simi- 
larity measures with respect to all other (m − 1) airfoils, without 
any optimization, as no morphing needs to occur. The airfoil shape 
hat yields the smallest S‡ is selected as the first baseline element.
hen, in subsequent iterations, an airfoil shape that is least well
econstructed via the current baseline set (i.e. the one with the
argest S′ value obtained from Equation 10 ) is added, until the de-
ired subset size n is reached. 

Now, the total number of times Equation 10 must be non-
rivially solved is given by 

n −1 ∑ 

k =2 

(m − k ) = 1 
2 

(n − 2)(2 m − n − 1) , 

s the first iteration with a single baseline shape does not in-
olve DbM weight optimization. For m = 1 , 644 and n = 10 , this
esults in 13108 evaluations, which finally becomes a computa- 
ionally tractable number. Moreover, each reconstruction is per- 
ormed with a low-dimensional input space because k < n � m ,

aking the overall process significantly faster than the backward 

earch. 
In addition to its computational tractability—since the num- 

er of evaluations scales linearly with the total database size m ,
.e. O(m ) , given m � n —forward search offers a practical advan-
age for baseline selection. By sequentially adding baselines while 
bserving the progressive improvement in reconstruction perfor- 
ance, it is possible to monitor how the design-space coverage 

volves, allowing for us to flexibly control over how the final sub-
et size n be based on the observed performance trends during
he search process, which is in line with the aim described in Sec-
ion 3.1 . 

.3. Selected baselines 

o solve the optimization problems involving different baseline 
ets and target airfoils, as defined in Equation 10 , a genetic al-
orithm (GA) was employed using the Pymoo framework (Blank 
 Deb, 2020 ) with Dask -based parallelization (Rocklin, 2015 ). Each
ptimization run used a population size of 100 for up to 500 gen-
rations, with crossover and mutation operators set to simulated 

inary crossover and polynomial mutation, respectively, as pro- 
ided by default in the framework. Parallel evaluation across mul-
iple Dask workers (32 in this study) significantly accelerated the
ptimization process. Termination was based on convergence cri- 
eria evaluated over a rolling window of 20 generations: variable-
pace change (i.e. ‖ � � wopt ‖∞ 

between successive generations less 
han 10−6 ) and objective-space change (i.e. �S′ less than 10−8 ). We
arm-started each optimization by including the previously ob- 

ained optimal weight vector (augmented with a zero morphing 
eight factor for the newly added baseline) as one of the initial
opulation members when solving for the expanded baseline set.

Throughout the forward search strategy that is powered by GA,
he optimal baseline set of size n = 12 was identified, which are
resented in Table 1 . The index indicates the order in which each
irfoil was added to the baseline set during the forward search.
ccordingly, an optimal baseline set of any smaller size η < 12 can
e constructed by considering only the first η airfoils from this ta-
le (that is, baselines #1 – # η). With these 12 baseline shapes, the
bM approach successfully reconstructed all 1644 airfoil shapes 

n the database with S′ (hereafter used interchangeably with MAE) 
elow 0.01. Figure 3 illustrates the comparison between the orig-

nal and DbM-reconstructed airfoil geometries for 10 airfoils se- 
ected at equal rank intervals from the best to worst MAE. The
est-performing reconstruction, observed for Eppler E197, exem- 
lifies the inherent redundancy within the database. The geome- 
ry is nearly similar to the first baseline shape, Eppler E195, albeit
ith a slight variation in camber thickness, demonstrating that 
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Table 1: DbM baseline airfoil shape set of size 12. 

Figure 3: Comparison of original (black solid line) and reconstructed 
(red dashed line) airfoil geometries via DbM using the selected 12 
baselines (see Table 1 ). The 10 airfoils displayed here are selected at 
equal rank intervals from best to worst reconstruction based on the 
MAE similarity metric (see Equation 9 ). 

Figure 4: Percentage of airfoils in the database that can be 
reconstructed via DbM with an MAE below 0.005 for baseline set sizes 
from 2 to 12 (see Table 1 ). 
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ot all airfoil shapes represents truly unique design features. This
nderscores the motivation for the current practice of dimension-
lity reduction. 

On the other hand, in Figure 3 , the worst reconstruction case
f Gottingen 481 reveals the limited coverage imposed by the re-
uced baseline set. There exists non-negligible deviation in shape,
articularly due to its pronounced curvature at the bottom sur-
ace around the leading edge, which suggests that such a geomet-
ic feature is not fully taken into account by the current 12 base-
ines. In compliance with the forward search strategy, we could
dditionally consider Gottingen 481 as a potential additional base-
ine shape to better encompass such strongly curved airfoil shapes
ithin the design space, while increasing the design-space di-
ensionality by one. The decision to augment the baseline set
ith such shapes should require a careful consideration of the
alance between design space diversity and the minimal design-
pace dimensionality. This trade-off can be informed by analyzing
he trend of reconstruction convergence as the number of base-
ine shapes increases. 

The effectiveness of the selected 12 baseline shapes is sup-
orted by the convergence trend of the reconstruction rate, as vi-
ualized in Figure 4 . This plot illustrates the percentage of airfoil
hapes in the database reconstructed within an MAE tolerance of
.005 as the number of baseline shapes varies from 2 (i.e. baselines
1– #2) to 12 (i.e. baselines #1–#12). This tolerance threshold is
hosen based on its previous use in Sheikh et al. ( 2023 ) and, as our
revious comparison plots demonstrate, it approximately marks
he level at which visually notable discrepancies between original
nd reconstructed shapes become apparent (compare the second-
orst case (MAE = 0.0032) to the worst case (MAE = 0.0069) in Fig-
re 3 ). As the number of baselines increases, the reconstruction
ate increases with a flattening of the curve beyond 10 baselines,
hich indicates diminishing returns for further increases in di-
ensionality. 
Moreover, with the selected set of 12 baselines, more than 98%

f airfoil shapes were reconstructed using DbM within an MAE tol-
rance of 0.005. This level of reconstruction matches the perfor-
ance reported in our previous DbM study on airfoil optimization

Sheikh et al., 2023 ), which relied on 25 baseline shapes. Thus, the
urrent selection successfully achieves comparable reconstruc-
ion quality while reducing the design-space dimensionality by

ore than half, from 25 to 12. 
Given that the selected 12-baseline set almost entirely spans

he UIUC database design space, one might expect that randomly
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Table 2: Design capacity comparison across airfoil design 

methods. 

Method 
Overall MAE 
(Mean ± Std.) 

Percentage of Airfoils 
Reconstructed (MAE < 0.005) 

CST 0.0012 ± 0.0008 99.4% 

AirDbM 0.0021 ± 0.0009 99.3% 

NURBS 0.0024 ± 0.0019 91.6% 

PARSEC 0.0032 ± 0.0025 84.5% 

Hicks-Henne 0.0053 ± 0.0035 58.7% 

 

 

r  

s
s
c  

f
p
m
n

i
W
r  

o  

w
t
n
s  

D  

s
v  

t  

t  

p
w
1

4
4
W
p
f  

t  

o
s  

f  

w
(
u
p
o
t  

G
 

s  

R
k
t

w  

s  

T  

u
t  

c  

t
o

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/13/1/108/8321690 by guest on 26 January 2026
selecting 12 baselines could maintain reconstruction capacity 
while bypassing the search cost, analogous to a change of basis in 

linear vector spaces. However, DbM’s morphing process is inher- 
ently nonlinear, so replacing shapes would not guarantee preser- 
vation of space-spanning capability. To verify this, we tested three 
randomly selected 12-baseline sets. Their successful reconstruc- 
tion rates (MAE < 0.005) were significantly lower and inconsistent,
achieving only 75%, 66%, and 49%, respectively. These outcomes 
confirm that a systematic search is essential to achieve both high 

performance and consistency. In any case, users can bypass this 
search process entirely and directly utilize the validated baseline 
set provided in Table 1 . 

Lastly, it is worth recalling that the current baseline set se- 
lection process assumes the UIUC database to be globally rep- 
resentative. However, one can point out its limited coverage of 
supersonic or hypersonic airfoils. Similar to the Gottingen 481 
case, the DbM framework can readily accommodate baseline 
augmentation when applications require non-inclusive or un- 
derrepresented designs, such as diamond-shaped supersonic air- 
foils (Jernell, 1974 ), which seamlessly expands the global design 

space. This inherent adaptability demonstrates the framework’s 
strength in accommodating unforeseen or novel designs. 

3.4. Design capacity comparison 

While design capacity comparisons of DbM against conventional 
airfoil parameterization methods constituted the main theme of 
our previous work (Sheikh et al., 2023 ), which confirmed DbM’s 
competitiveness with methods specifically designed for airfoils, 
we provide a brief comparison here again to evaluate the perfor- 
mance of the present reduced 12-baseline DbM (henceforth de- 
noted AirDbM to specify its application to airfoil design and opti- 
mization and its reduced baseline set of 12 as defined in Table 1 ).

To assess AirDbM’s design capacity under reduced dimension- 
ality constraints, we compared reconstruction performance using 
a consistent number of design variables across all methods: 12 
design variables for AirDbM, Hicks–Henne bump functions, class- 
shape transformation (CST), and the parametric section (PAR- 
SEC) method, with 13 variables for non-uniform rational B-splines 
(NURBS) due to its formulation requirements. Implementation de- 
tails are provided in Appendix A . The comparison was conducted 

across all 1644 airfoils in the UIUC database using the same MAE 
evaluation scheme as established in the earlier sections. 

Table 2 presents the quantitative comparison results. AirDbM 

shows competitive performance, achieving reconstruction qual- 
ity comparable to CST while significantly outperforming NURBS, 
PARSEC, and Hicks-Henne. This performance is particularly sig- 
nificant given that conventional methods like NURBS and Hicks- 
Henne experience substantial degradation in design coverage 
when constrained to lower dimensionalities, compared to the 
higher-dimensional cases (24–26 design variables) achieving 98% 

reconstruction success reported in Sheikh et al. ( 2023 ). The supe- 
ior performance of CST appears to come from its aerodynamic-
pecific design principles, employing carefully crafted class and 

hape functions with mathematical rigor tailored for airfoil appli- 
ations (see Kulfan & Bussoletti, 2006 ). AirDbM’s comparable per-
ormance is therefore noteworthy, considering its universal mor- 
hing principle that remains applicable across diverse design do- 
ains while maintaining high reconstruction fidelity under sig- 

ificant dimensionality reduction. 
To illustrate the practical implications of the design capac- 

ty differences, Figure 5 presents reconstruction results for the 
ortman FX 79-W-660A airfoil, which represents the worst- 

econstructed case (i.e. highest summed MAE across all five meth-
ds). This result is primarily due to its unusually thick profile
hich deviates from typical airfoil geometries. Although conven- 

ional methods struggle with this unconventional shape, AirDbM 

aturally overcomes this challenge by directly incorporating the 
pecific thick profile as its baseline ( B2 ). The key strength of the
bM framework lies in the ease of incorporating such novel de-
igns contributing to design diversity: regardless of how uncon- 
entional a target shape may be, it can be effectively utilized in
he design process with the cost of only a single design parame-
er. Readers are encouraged to refer to a similar discussion in our
revious work regarding the reconstruction of a ‘mirrored’ airfoil 
ith flipped sharp and blunt edges (Sheikh et al., 2023 , pp. 1447–
448). 

. Performance Evaluation 

.1. Multi-objective airfoil optimization 

e first incorporate AirDbM into an airfoil shape optimization 

roblem, optimizing the airfoil shape based on aerodynamic in- 
ormation obtained from a flow solver. Since the primary objec-
ive of this test study is to evaluate the computational efficiency
f the proposed DbM approach with reduced design-space dimen- 
ionality, the focus is placed more on analyzing optimization per-
ormance than on the optimal outcomes themselves. Accordingly,
e revisit the airfoil optimization setup from our previous work 

Sheikh et al., 2023 ) to investigate the optimization performance 
nder reduced design-space dimensionality, compared with the 
revious 25-baseline case. It should be noted that multi-objective 
ptimization for airfoil dynamics has garnered increasing atten- 
ion in recent years (e.g. Jing et al., 2023 ; Zhang et al., 2024 ; Jung &
u, 2024 ), further underscoring the practical utility of this work. 
An airfoil with chord length c , subjected to a freestream flow of

peed U, fluid density ρ, and kinematic viscosity ν (i.e. under the
eynolds number condition Re = Uc/ν), is characterized by two 
ey dynamic performance parameters: the lift coefficient Cl and 

he drag coefficient Cd , defined as 

Cl (α) = 2 l(α) 
ρU2 c 

, (13) 

Cd (α) = 2 d(α) 
ρU2 c 

, (14) 

here l and d represent the lift and drag forces per unit span, re-
pectively, both being functions of the airfoil’s angle of attack α.
he lift coefficient Cl (α) typically increases with α at low angles
ntil stall occurs, beyond which it decreases. The stall angle αs 

hus can be defined as the first local maximum of Cl while in-
reasing α from 0◦. Following Sheikh et al. ( 2023 ), we then consider
he optimization of the following two composite objectives based 

n Cl and Cd : 

(l/d)max ≡ max 
α

Cl (α) 
Cd (α) 

, (15) 
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Figure 5: Reconstruction of Wortman FX 79-W-660A airfoil. Depicted are target (black solid line) versus reconstructed (red dashed line) airfoils for the 
present 12-baseline DbM (AirDbM), Hicks-Henne, class-shape transformation (CST), non-uniform rational B-spline (NURBS), and parametric 
section (PARSEC) methods. 

Figure 6: Airfoil performance with increasing angle of attack α, depicting changes in lift l and drag d. The figure illustrates the design point for 
maximum lift-to-drag ratio (l/d)max and the stall tolerance, quantified by the angle of attack range from the design point to the off-design limit of stall 
at αs . 
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�α ≡ max 
(

0 , αs − arg max 
α

Cl (α) 
Cd (α) 

)
, (16) 

here first objective (l/d)max is the maximum lift-to-drag ratio un-
er the design operating condition (i.e. α associated with the max-

mum l/d), and the second �α quantifies the stall tolerance, rep-
esenting the angle of attack range for off-design operations. They
re illustrated in Figure 6 . 

These aerodynamic objectives are evaluated using XFOIL 6.99,
 widely-accepted inviscid/viscous zonal airfoil analysis program
Drela, 1989 ) for quick initial design studies, at Re = 106 under in-
ompressible flow conditions suitable for subsonic flows with neg-
igible air density variation ( Ma = U/cs � 1 , where cs ≈ 3 × 102 m/s
s the speed of sound). The low computational cost of this solver
nables direct exploration of the objective space (without the need
or a surrogate model). Accordingly, we use the MATLAB-based
on-dominated sorting genetic algorithm (NSGA-II) gamultiobj (Deb
t al., 2002 ), by taking each morphed airfoil shape M ’s 12 DbM
eight factors (w1 , · · · , w12 ) as its genetic representation. The de-

ailed setup of the optimization is provided in Appendix B . Read-
rs are also recommended to refer to Sheikh et al. ( 2023 , see Ap-
endices A and B), which includes preliminary validation steps of
he setup we replicate here for the sake of comparison. For in-
tance, to ensure evaluation robustness, our XFOIL implementa-
ion employs convergence check strategies such as restarting with
resh initial guesses and correctness verification through viscous-
nviscid drag coefficient comparison. These metrics and evalua-
ion procedures were validated against the reference XFOIL eval-
ation database (Airfoil Tools, 2025 ). 

Before diving into the analysis of the results, it is pertinent
o distinguish expected behaviors from unusual improvements
hen using the reduced baseline set. Generally, decreasing de-
ign variables should accelerate convergence, requiring fewer to-
al generations. Our previous optimization with 25 baselines ran
or 3000 GA generations, and we anticipate the current one to take
ewer. However, faster convergence does not guarantee a supe-
ior or even equivalent Pareto front. Dimensionality reduction in-
vitably compacts the design space, likely leading in our case to
he minimal space encompassing the existing database. Conse-
uently, the common expectation is that the resulting Pareto front
ill hardly outperform that from a larger baseline set (assuming

ufficient convergence). If the optimization with the reduced de-
ign space yields enhanced solutions that dominate prior Pareto-
ptimal solutions, this would constitute a key improvement. 

Figure 7 illustrates the progression of the hypervolume
ndicator—a widely adopted metric in multi-objective optimiza-
ion for evaluating the quality of a set of non-dominated solu-
ions (i.e. solutions for which no objective can be improved with-
ut degrading at least one other objective) (see Li & Yao, 2020 ;
uerreiro et al., 2022 )—throughout the GA generations for the cur-

ent optimization. In the present bi-objective context, the hyper-
olume of a set of non-dominated solutions ((l/d)max , 1 , �α1 ) , · · · ,

((l/d)max ,k , �αk ) is defined as the total area of the following 2D
areto dominance region R : 

R =
⋃ 

i =1 , ··· , k 

{ 
( f1 , f2 ) ∈ R

2 
∣∣∣ 0 ≤ f1 ≤ (l/d)max ,i and 0 ≤ f2 ≤ �αi 

} 
, 

(17)

here the origin (0 , 0) is taken as the reference (nadir) point. The
bserved evolutionary trend of the hypervolume in Figure 7 , char-
cterized by a steep initial increase in hypervolume followed by a
ore gradual convergence with sporadic leaps, is consistent with



Journal of Computational Design and Engineering, 2026, 13(1), 108–124 | 117

Figure 7: Hypervolume progression for the multi-objective airfoil 
optimization using AirDbM, tracking the hypervolume with respect to 
GA generations (solid black line), demonstrating improved Pareto front 
quality. The dotted red line indicates the hypervolume from the prior 
study with 25 baselines (see Sheikh et al., 2023 , p. 1450). 

Figure 8: Pareto front comparison for airfoil optimization: AirDbM 

(current) versus prior work (see Sheikh et al., 2023 , p. 1450). 
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typical performance patterns reported in NSGA-II literature (e.g. 
Steuler et al., 2020 ; Antoniou et al., 2020 ). 

Notably, the hypervolume achieved by the current optimiza- 
tion with 12 baselines surpasses the final hypervolume of 7592.57 
in Sheikh et al. ( 2023 ), which utilized 25 baseline airfoils, at ap- 
proximately the 850th generation. This milestone is achieved sig- 
nificantly earlier than the 3000 generations run in the previous 
study, underscoring the expedited convergence attributable to the 
reduced design-space dimensionality. While the outperformance 
in terms of the hypervolume indicator is a positive indication of 
the efficacy of AirDbM in navigating the design space, it is impor- 
tant to note that this is merely one measure of Pareto front quality.
Accordingly, a detailed comparison of the Pareto fronts, crucial for 
understanding the specific trade-offs associated with the current, 
more compact design space, should follow. 

A direct comparison of the Pareto front obtained using the cur- 
rent AirDbM approach after the 1000 GA generations against that 
from Sheikh et al. ( 2023 ) is presented in Figure 8 . AirDbM success- 
fully identifies new non-dominated solutions achieving signifi- 
cantly higher (l/d)max , particularly at moderate stall tolerances, 
hereby dominating the prior Pareto front in this portion of the
bjective space. Nonetheless, Figure 8 also reveals that the cur-
ent Pareto front does not extend to the same stall tolerance val-
es achieved by the prior study, which found non-dominated so-

utions approaching �α ≈ 40◦. This suggests that while the 12 se-
ected baselines enable efficient design exploration and yield im- 
rovements in certain regions, they may not possess the geomet- 
ic diversity required to reproduce solutions at the extreme end of
he �α spectrum previously accessible with 25 baselines. 

The inability to reach these high �α solutions is further evi-
enced by attempts to reconstruct specific Pareto-optimal airfoils 
rom the prior study. For instance, when reconstructing the prior
ptimal airfoil solution characterized by the highest �α using 
irDbM, the reconstruction resulted in MAE exceeding the 0.005 

hreshold, indicating significant discrepancies. Considering that 
uch finer geometric tolerances, on the order of 10−4 , e.g. Kulfan’s
ind-tunnel tolerance (Kulfan & Bussoletti, 2006 ; Masters et al.,
017 ), are regarded as necessary to ensure the replication of aero-
ynamic performance, it is likely that the observed truncation in
he current Pareto front for high stall tolerance implies the bounds
mposed by the reduced geometric variability of the AirDbM de-
ign space. Nevertheless, given the substantial decrease in lift- 
o-drag ratios typical in 3D wing applications (usually by an or-
er of magnitude), the enhanced Pareto front in (l/d)max found by
irDbM can offer greater practical utility to offset 3D decrease. 
Figure 9 showcases a selection of Pareto-optimal airfoil shapes 

btained from the current AirDbM optimization. Excluding clus- 
ered solutions with minimal geometric differences from the pre- 
ented one with (l/d)max = 77 . 86 and �α = 29 . 25◦, we present
ix representatives that capture the range of trade-offs between 

l/d)max and �α. 
The first three airfoils (top row) exhibit similar thin-profile 

eometries, achieving high lift-to-drag ratios ( (l/d)max = 300 . 00 ,
99.85, and 297.32) that represent improvements over our previ- 
us Pareto front. The �α variance among these airfoils falls within
he expected range for high (l/d)max optimal airfoil groups identi- 
ed in our previous work. The fourth airfoil ( (l/d)max = 242 . 56 and
α = 27 . 50◦) demonstrates a thicker profile that achieves greater

tall tolerance at the expense of lift-to-drag ratio. This thickness-
nduced performance trade-off is consistent with observations 
rom Sheikh et al. ( 2023 ). 

The final two airfoils, while non-dominant compared to our 
revious Pareto front, offer instructive insights into optimization 

ehavior. The fifth airfoil shares a geometric appearance similar to
he fourth, albeit slightly thicker, but exhibits a substantial perfor-

ance drop ( (l/d)max = 77 . 86 ), implying the highly nonlinear na-
ure of aerodynamic performance. However, this can stem from 

otential limitations in XFOIL’s solution accuracy—even when 

onverged, performances may represent physically irrelevant so- 
utions arising from the simplified modeling inherent to prelim- 
nary design tools. The sixth airfoil presents a distinctly differ-
nt morphology: a spear-like sharp profile ( (l/d)max = 10 . 08 , �α =
5 . 50◦). This solution presumably represents a physically unreal-
stic configuration that emerges from XFOIL’s inherent modeling 
implifications in preliminary aerodynamic analysis. 

For readers interested in the physical aspects of optimal air-
oil designs resulting from this optimization, it should be care-
ully taken into account that, due to XFOIL’s 2D nature that can-
ot completely capture real-world 3D wing effects (e.g. tip ef-

ects, wakes, and spanwise separations), predicted (l/d)max and 

α values can be excessively elevated compared to actual 3D 

pplications. While the scope of the current test study is lim-
ted to validating design-space dimensionality effectiveness, fu- 
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Figure 9: A selection of airfoil shapes from AirDbM’s Pareto front displayed in Figure 8 , arranged in descending order of (l/d)max from top-left to bottom 

right. 

Figure 10: Reinforcement learning framework for airfoil geometry 
generation ‘game,’ where the agent (designer) manipulates normalized 
control inputs (tuning ‘knobs’) for a black-box airfoil shape generator. 
The agent acts to generate an airfoil ‘guess’ without a priori insight into 
the generator’s internal process, and receives a reward based on 
similarity to the ‘target’ airfoil shape provided in the environment. 
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ure work will replace this preliminary-level solver with higher-
delity solvers directly solving the Navier-Stokes equations, such
s three-dimensional Reynolds-averaged Navier-Stokes (RANS)
imulations. This will enable detailed physics-based analysis of
olutions, building upon the framework robustness demonstrated
n the current study. 

.2. Airfoil geometry learning 

hrough our practice of dimensionality reduction in Section 3 ,
irDbM has demonstrated a design capacity comparable to its
redecessor using a larger baseline set and achieves a design span
n par with or superior to several conventional airfoil parameteri-
ation methods with a consistent number of design variables. This
imilar database reconstruction rate with significantly fewer de-
ign variables underscores its effectiveness. 

Additionally, from a designer’s perspective, adaptability is con-
idered as crucial as effectiveness. In this example, we assume
hat adaptability across different methods could be assessed by
bserving designers, initially unfamiliar with airfoil parameteri-
ation, while they iteratively generate shapes and improve their
earning in an empirical manner. However, using human designers
ould present challenges in validating their level of unfamiliarity,
eading to uncontrollable biases in the evaluation. 
Instead, a machine agent driven by recent advancements in rein-
orcement learning (or neuro-dynamic programming) algorithms
ffers a compelling alternative to serve as an unbiased and ini-
ially ‘ignorant’ designer. Reinforcement learning (RL) enables an
gent to learn optimal behavior through trial-and-error interac-
ions within an environment by maximizing a reward signal (Bert-
ekas, 2019 ). It has seen increasing application in aerodynamic
esign optimization problems demanding intelligence and expe-
ience (e.g. Hui et al., 2021 ; Patel et al., 2024 ). In this study, we utilize
his framework for airfoil geometry generation, where the agent
lays a ‘game’ of guessing the control inputs for a black-box airfoil
hape generator to match the output airfoil shape with the given
arget airfoil shape. Over multiple iterations, the agent gets empir-
cal knowledge about input–output relations, resulting in getting
 more similar guess to the target. The overall framework scheme
s illustrated in Figure 10 . 

The most important setup in this RL framework is that the
gent is completely unaware of the internal process of airfoil gen-
ration, thus the agent lacks a priori insight into it. To ensure
omplete isolation, the agent does not directly control the de-
ign variables (which might imply knowledge of the airfoil gen-
ration method). Instead, it only manipulates normalized control
nputs, like tuning ‘knobs’ ranging from zero to one, that are lin-
arly scaled to the design variables’ bounds. By maintaining a con-
istent learning policy, we can then replace the airfoil parame-
erization method (airfoil shape generator) and assess the learn-
ng rate—how quickly the agent’s guesses converge towards the
arget—over successive iterations (i.e. cumulative episodes). 

It is noteworthy that exploring different RL approaches is be-
ond the scope of this study. We use the Gymnasium framework
Towers et al., 2024 ), training a proximal policy optimization (PPO)
gent with a multi-layer perceptron (MLP) surrogate policy (Raf-
n et al., 2021 ), optimizing a reward signal defined as the nega-
ively signed MAE of the guessed airfoil shape against a target
ne provided in the environment. For details regarding the airfoil
arameterization methods used for comparison, adhering to 12
r 13 design variables—AirDbM, Hicks–Henne, CST, NURBS, and
ARSEC—and the RL setup, refer to Appendix A and Appendix C ,
espectively. 

In Figure 11 , two representative outcomes of the airfoil geom-
try generation ‘game’ are depicted: (A) NACA 2412 (thin airfoil)
nd (B) Althaus AH 93-W-480B (thick airfoil). Particularly, the lat-
er case is one of the baselines of AirDbM, which is depicted to
emonstrate the agent’s lack of a priori insight into the genera-
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A

B

Figure 11: Comparison of geometry generation for (A) NACA 2412 and (B) Althaus AH-W-480B target shapes using various airfoil shape generators. 
Starting from the same initial state, the guessed shapes (blue dashed line) after Episodes 10 and 100 are compared to the target airfoil (gray solid line) 
for AirDbM, Hicks-Henne, CST, NURBS, and PARSEC. 

 

 

 

 

Figure 12: Quantitative evaluation of 5 airfoil shape generation 
methods—AirDbM (the present DbM), Hicks-Henne, CST, NURBS and 
PARSEC—illustrating average (solid line) and ±0 . 25 ×standard deviation 
(shaded area) of best MAE achieved over cumulative episodes across all 
1644 target airfoil shapes tested. 
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tion process as intended—had the agent been aware of this fact,
it could have arrived at the target directly. During each episode,
the agent makes 100 attempts, iteratively refining its guess based 

on the best outcome from previous cumulative episodes, which 

gradually improves its control input tuning and ultimately results 
in better predictions (comparing Episode 10 to Episode 100). 

Compared against the other four conventional airfoil parame- 
terization methods, AirDbM exhibits relatively fast convergence to 
the target in these two representative cases. For instance, looking 
into Episode 10 of the Althaus AH 93-W-480B environment (Fig- 
ure 11 B), AirDbM’s guess, albeit slightly thin yet, already becomes 
akin to the target airfoil shape, while the other guesses either are 
still far from airfoil shapes (Hicks-Henne and CST) or suffer from 

bloated leading edge curvature (NURBS and PARSEC). Despite the 
agent’s unawareness, AirDbM inherently possesses the feature in- 
formation of airfoils in the baselines. Therefore, for any weight 
inputs, the resulting shape is likely to be an airfoil shape as it is 
constructed by the mixture of the existing design features. In this 
regard, PARSEC, which more explicitly carries airfoil design fea- 
tures (since the design variables are directly geometric parame- 
ters of airfoils), is expected to show fast convergence but it is pre- 
sumably the method’s fundamental inferiority in reconstructing 
airfoil shapes that limits the performance (see Sheikh et al., 2023 ,
p. 1447). 

For quantitative and non-prejudiced evaluation, all 1644 target 
airfoil shapes in the database were tested under the same learning 
setup. A comprehensive comparison result is shown in Figure 12 .
The trends of the best MAE measures achieved over cumulative 
o  
pisodes are plotted with respect to the five airfoil shape genera-
ion methods under consideration, where the solid line is the aver-
ge of the entire 1644 environment runs at each episode while the
haded area represents ±0 . 25 × standard deviation (the factor of
.25 is merely for visual clarity to minimize overlapping between 

he shaded areas). 
In line with the findings from the representative cases, AirDbM

verall exhibits the fastest decrease in the best MAE for ini-
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ial episodes, keeping the lead up to the long run (Episode 100).
ARSEC initially shows comparable decreasing rate in MAE with
irDbM, but as the episode accumulates, the performance gap
idens, ultimately remaining the worst performance. The other

hree methods, Hicks-Henne, CST and NURBS, show relatively de-
ent decrease, but their performances gradually improve and in
he long run all arrive in between PARSEC and AirDbM. 

Based on these results, it can be concluded that AirDbM, using
ust 12 systematically selected baseline airfoils, not only matches
he reconstruction accuracy of conventional parameterizations
ut also excels in adaptability and learning efficiency when inte-
rated with RL agents. In a full comparison across 1644 target air-
oils in the database, AirDbM enabled the agent––as an unbiased
esigner of no prior knowledge––to achieve lower MAE and faster
onvergence than all compared airfoil parameterization methods,
aintaining the same or a larger number of design variables. 

. Discussion 

his study has successfully demonstrated an improved DbM ap-
roach, AirDbM, which significantly reduces design-space dimen-
ionality for airfoil design and optimization. By focusing on main-
aining design diversity through effective reconstruction of the
ich airfoil database, our study achieved a substantial reduction in
he number of baseline shapes required. The resulting AirDbM ap-
roach not only yielded benefits in multi-objective aerodynamic
ptimization, such as accelerated convergence and even partial
nhancement of the Pareto-optimal solutions, as demonstrated
n our former example (Section 4.1 ), but also showed excellence
n airfoil shape generation compared to several conventional pa-
ameterization methods. 

Nonetheless, it should be admitted that the dimensionality re-
uction in AirDbM primarily concentrated on the geometric feature
reservation. Although this approach ensures broad geometric
overage, the aerodynamic optimization results suggest a trade-
ff, as exemplified by the inability to reach the extreme stall toler-
nce values achieved previously with a larger baseline set. Such a
eometrically focused compact design space appears to limit the
xploration of more aerodynamically diverse or specialized design
andidates. 

Thus, future developments of the DbM framework for airfoil de-
ign could possibly benefit from incorporating aerodynamic con-
iderations more directly into the baseline selection process. Be-
ond geometric diversity, selecting or augmenting baseline sets
ith airfoils known for specific, superior aerodynamic character-

stics (e.g. high Cl and low Cd ) could allow the design space to bet-
er support the exploration of dynamically advanced airfoil de-
igns. In particular, considering the reconstruction rate conver-
ence observed (see Figure 4 ), one may only choose the first 10
r 11 airfoils from the current baseline set and supplement the
emaining slots with designs proven for their aerodynamic merit,
reating a hybrid baseline set. This can also be supplemented by
dditional dimensionality reduction efforts that preserve the es-
ential design space scope, such as employing n -sphere coordinate
ariables for (n + 1) weight factor mapping, or pruning the design
pace by leveraging internal problem symmetries (e.g. Lee et al.,
024 ). 

It is clear that the significant design-space dimensionality re-
uction achieved by AirDbM mitigates the curse of dimensionality .
he reduction in the number of design variables is crucial as it
pens up possibilities for integrating more computationally in-
ensive or higher-fidelity solvers into the efficacious optimization
oop. The current reliance on inexpensive solvers like XFOIL 6.99
acilitates rapid design exploration, but could be replaced or aug-
ented by, for example, RANS simulations or even experiments.

n this way, we could pave the way for optimizing more realistic, 3D
ing designs or tackling more complex aerodynamic phenomena
ecessitating higher fidelity. Such an approach requires efficient
ptimization algorithms with smaller data points of exploration
ather than large-sample algorithms like GA, such as those based
n Bayesian inference (e.g. Sheikh et al., 2022 ) or the use of PPO
gents explored in our latter example (Section 4.2 ), for sample ef-
ciency. 

The data-efficient, interpretable parameterization of AirDbM
and DbM more broadly) reveals significant implications for ma-
hine learning-driven design. While deep generative models like
enerative adversarial networks (GANs; e.g. Chen et al., 2020 ;
ang et al., 2023 ; Xie et al., 2024 ) excel at synthesizing novel de-

igns through data-driven pattern recognition, they typically re-
uire thousands of training samples and lack inherent physical
onstraints. DbM can address these issues by providing geometri-
ally consistent priors through systematic morphing of a base-
ine set containing O (101 ) or perhaps fewer elements, generat-
ng physically plausible candidate designs that can seed and con-
train GAN training. This symbiotic relationship enables genera-
ive models to focus on refining physical meaningful variations in
voidance of suffering from hallucinations of non-feasible geom-
try generations, leading to reduced training time while maintain-
ng design feasibility. To sum up, while recent machine learning-
riven methods (e.g. GANs and variational autoencoders, VAEs)
educe latent-space dimensionality when large datasets are avail-
ble, DbM begins with a few known baseline designs to span a
ide and physically relevant design space. These approaches im-
ly their synergistic relation: DbM is not a direct competitor to
hese methods, but could rather be complementary. 

. Conclusions 

e addressed the challenge of reducing design-space dimension-
lity in DbM for airfoil optimization by introducing AirDbM, an
bM-based airfoil design approach with a systematically reduced
aseline set. Utilizing an effective forward search strategy, we

dentified a compact yet highly representative set of 12 baseline
irfoils selected from the UIUC database of 1644 airfoils. This re-
uced set retained broad airfoil design capability, as demonstrated

n reconstruction tests where 98% of the database was reproduced
ithin an MAE of 0.005. This performance rivals—and, in terms of
imensionality, surpasses—the previous DbM efforts that used 25
aselines, thereby achieving a substantial reduction in design pa-
ameters without compromising geometric diversity. 

The efficacy of AirDbM was quantitatively demonstrated in
oth multi-objective aerodynamic optimization using a GA and
irfoil geometry generation in the context of reinforcement learn-
ng. In aerodynamic shape optimization aimed at maximizing
oth lift-to-drag ratio and stall tolerance, AirDbM achieved accel-
rated convergence. Its hypervolume indicator value surpassed
hat of the earlier 25-baseline study in significantly fewer GA
enerations. The resulting Pareto front identified new Pareto-
ptimal solutions with enhanced lift-to-drag ratios, especially at
ow to moderate stall tolerances. In a comparative study that em-
loys machine agents as unbiased designers from a reinforce-
ent learning framework, AirDbM achieved faster convergence

nd lower errors than several conventional airfoil parameteriza-
ion methods, while using a similar number of design variables. 

These findings lay the groundwork for further advancements in
he DbM methodology for airfoil design and optimization. Future
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directions may include incorporating aerodynamic performance 
criteria into the baseline selection process to create hybrid sets 
that maintain geometric representativeness while targeting spe- 
cific aerodynamic objectives. Additionally, the computational effi- 
ciency gained from operating in a lower-dimensional design space 
facilitates the integration of higher-fidelity solvers, paving the way 
for a transition from 2D airfoil analysis to more realistic 3D wing 
design applications. Such developments are anticipated to be syn- 
ergistically combined with modern machine learning-driven gen- 
erative design approaches for expedited optimization. 
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Table A1: Airfoil parameterization methods considered for comparison. 

Method Design Variables (DVs) Remarks 

AirDbM wi : Morphing weight factors ∈ [ −1 . 0 , 1 . 0] ( i = 1 , · · · , 12 ) See Table 1 for the baselines 

Hicks-Henne pu,i : Upper bump powers ∈ [1 . 0 , 4 . 0] ( i = 1 , 2 , 3 ) Base: flat plate; cosine-distributed bump points; see Hicks & 

Henne ( 1978 ) au,i : Upper bump amplitudes ∈ [ −0 . 2 , 0 . 2] ( i = 1 , 2 , 3 ) 
pl,i : Lower bump powers ∈ [1 . 0 , 4 . 0] ( i = 1 , 2 , 3 ) 
al,i : Lower bump amplitudes ∈ [ −0 . 2 , 0 . 2] ( i = 1 , 2 , 3 ) 

CST N1 : 1st class function exponent ∈ (0 . 0 , 2 . 0] See Kulfan & Bussoletti ( 2006 ) 
N2 : 2nd class function exponent ∈ (0 . 0 , 2 . 0] 
Au,i : Upper Bernstein coefficients ∈ [ −0 . 5 , 0 . 5] ( i = 1 , · · · , 4 ) 
�ξu : Upper trailing edge height ∈ [ −0 . 5 , 0 . 5] 
Al,i : Lower Bernstein coefficients ∈ [ −0 . 5 , 0 . 5] ( i = 1 , · · · , 4 ) 
�ξl : Lower trailing edge height ∈ [ −0 . 5 , 0 . 5] 

NURBS x1 : 1st control point’s x -coordinate ∈ [0 . 0 , 1 . 0] 3rd-order B-spline with evenly distributed knots; see Piegl & 

Tiller ( 1996 ) y1 : 1st control point’s y -coordinate ∈ [ −0 . 5 , 0 . 5] 
x2 : 2nd control point’s x -coordinate ∈ [ −0 . 5 , 0 . 5] 
y2 : 2nd control point’s y -coordinate ∈ [ −0 . 5 , 0 . 5] 
x3 : 3rd control point’s x -coordinate ∈ [0 . 0 , 1 . 0] 
y3 : 3rd control point’s y -coordinate ∈ [ −0 . 5 , 0 . 5] 
yte,u : Upper trailing edge height ∈ [ −0 . 5 , 0 . 5] 
yte,l : Lower trailing edge height ∈ [ −0 . 5 , 0 . 5] 
ωi : Control point weights ∈ [0 . 1 , 5 . 0] ( i = 1 , · · · , 5 ) 

PARSEC rle,u : Upper leading edge radius ∈ [0 . 0 , 1 . 0] See Sobieczky ( 1999 ) 
xu : Upper crest’s x -coordinate ∈ (0 . 0 , 1 . 0) 
yu : Upper crest’s y -coordinate ∈ [ −0 . 5 , 0 . 5] 
yxx,u : Upper crest curvature ∈ [ −0 . 5 , 0 . 5] 
rle,l : Lower leading edge radius ∈ [0 . 0 , 1 . 0] 
xl : Lower crest’s x -coordinate ∈ (0 . 0 , 1 . 0) 
yl : Lower crest’s y -coordinate ∈ [ −0 . 5 , 0 . 5] 
yxx,l : Lower crest curvature ∈ [ −0 . 5 , 0 . 5] 
yte : Trailing edge mid-position ∈ [ −0 . 5 , 0 . 5] 
tte : Trailing edge thickness ∈ [0 . 0 , 1 . 0] 
αte : Trailing edge direction ∈ [ −π/ 4 , π/ 4] 
βte : Trailing edge wedge angle ∈ [0 , π/ 2] 

Table B1: Details of the multi-objective GA used in this study. 

Option Selection 

Population size 372 
Total generations 1000 
Selection scheme Binary tournament (Pareto fraction = 0.35) 
Crossover scheme Intermediate crossover (Crossover fraction 

= 0.8) 
Mutation scheme Adaptive feasible 
Distance measure of 
individuals 

Crowding distance in fitness function space 
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Appendix B. Multi-Objective Airfoil 
Optimization Setup 

As detailed in Section 4.1 , the multi-objective airfoil optimiza- 
tion was conducted using the gamultiobj optimizer in MATLAB 

(MathWorks, 2024 ), based on NSGA-II. The optimization aimed to 
identify superior airfoil designs, each parameterized by 12 mor- 
phing weight variables founded upon AirDbM that range from 

−-1 to 1, with respect to lift-to-drag ratio as a primary design 

point and stall tolerance as a robustness for off-design opera- 
tion. 

The optimizer was configured with a population size of 372 
individuals and a maximum of 1000 generations. The evolution 

of this population was driven by the following genetic opera- 
tors: selection based on a tournament approach considering non- 
domination rank and crowding distance (calculated in the objec- 
tive or fitness function space), an intermediate crossover strategy 
with a crossover fraction of 0.8, and an adaptive feasible mutation 

scheme that introduces variations using randomly generated di- 
rections adapting to the previous generation. Following the initial- 
ization of Sheikh et al. ( 2023 ), the initial population was composed 

by incorporating outcomes from two preliminary single-objective 
GA runs (each with a population of 128 and run for 100 gener- 
ations) for each of the design targets—lift-to-drag ratio and stall 
tolerance. The remaining individuals of the initial population were 
randomly distributed. A summary of these algorithmic parame- 
ters is provided in Table B1 . 
At each generation, the XFOIL performance evaluations were 
arallelized; this study utilized up to 128 cores to perform XFOIL
nalyses concurrently for 128 airfoil samples, significantly reduc- 
ng the overall duration of the optimization process. 

ppendix C. Airfoil Geometry Learning 

etup 

n Section 4.2 , the airfoil geometry generation task was formu-
ated as a reinforcement learning problem and addressed using 
 PPO agent. The PPO agent utilized an MLP for both the actor
nd critic networks. Key hyperparameters for the PPO algorithm 

ncluded the learning rate of 0.0003, the number of steps per up-
ate of 2048, the batch size of 64, the epochs per update of 10,
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the discount factor of 0.99, the generalized advantage estimator 
(  

e  

p  

B
 

E  

vided to the agent was the set of 12 or 13 normalized in- 

p  

c  

t  

P  

e

R
©
u

r

GAE) lambda of 0.95, the PPO clipping range of 0.2, the entropy co-
fficient of 0, and the value function coefficient of 0.5. Other PPO
arameters largely followed the default values as in the Stable-
aselines3 library (v2.6.0) (Raffin et al., 2025 ). 

The learning environment was configured for episodic tasks.
ach episode consisted of 100 steps. The observation space pro-
eceived: July 3, 2025. Revised: October 21, 2025. Accepted: October 21, 2025 
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uts ranging from 0.0 to 1.0. The reward at each step was cal-
ulated as the negative of the MAE, incentivizing the agent
o produce airfoils more closely matching the target. Each
PO model was trained for a total of 10 000 steps (i.e. 100
pisodes). 
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