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Abstract

In this work, we develop a method for nonconvex, nonsmooth bi-level opti-
mization and we introduce Binno, a first order method that leverages prox-
imal constructions together with carefully designed descent conditions and
variational analysis. Within this framework, Binno provably enforces a de-
scent property for the overall objective surrogate associated with the bi-level
problem. Each iteration performs blockwise proximal-gradient updates for
the upper and the lower problems separately and then forms a calibrated,
block-diagonal convex combination of the two tentative iterates. A line-
search selects the combination weights to enforce simultaneous descent of
both level-wise objectives, and we establish conditions guaranteeing the ex-
istence of such weights together with descent directions induced by the asso-
ciated proximal-gradient maps. We also apply Binno in the context of sparse
low-rank factorization, where the upper level uses elementwise ℓ1 penalties
and the lower level uses nuclear norms, coupled via a Frobenius data term.
We test Binno on synthetic matrix and a real traffic-video dataset, attaining
lower relative reconstruction error and higher peak signal-to-noise ratio than
some standard methods.
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1. Introduction

Bi-level optimization problems consist of two nested optimization tasks
organized in a hierarchical structure. The upper-level problem determines
variables that influence the lower-level problem. A solution of a bi-level
problem is optimal with respect to (wrt) both levels, but under a hierar-
chy: the upper-level decision anticipates and guides the optimal response of
the lower level. Such optimization settings naturally arise in decision sci-
ence and learning problems, where dependencies exist between two coupled
optimization processes [1–3].

In this paper, we are interested in the following bi-level problem

argmin
x∈Rn,y∈Rm

{
ψ1(x,y) := f1(x) + g1(y) +H(x,y)

}
s.t. (x,y) ∈ argmin

x∈Rn,y∈Rm

{
ψ2(x,y) := f2(x) + g2(y) +H(x,y)

}
,

(1)

where the upper level problem concerns the minimization of a non-convex
nonsmooth function ψ1 : Rn × Rm → (−∞,+∞] with

• f1 : Rn → (−∞,+∞] and g1 : Rm → (−∞,+∞] are convex, proper and
lower semicontinuous functions;

• H : Rn × Rm → R a C1 function block-wise (with respect to one variable
at a time).

Referring to (1), we note that the lower level problem has the same structure
as the upper level one, with f2 ̸= f1 and g2 ̸= g1. Problem (1) with ψ2 = 0
frequently arises in machine learning scenario, where two variables x and y
are governed by regularizers f1 and g1 that encode constraints or feasible
regions. A classic example arises when these functions represent indicator
functions of half-space constraints [4, 5].

For convex inner problems and strongly convex (often smooth) outer ob-
jectives, first-order bi-level methods with provable rates are available. A
prominent line is the Sequential Averaging Method (SAM) and its bi-level
specialization BiG-SAM, which view bi-level optimization as a fixed-point se-
lection problem and average a proximal-gradient step for the inner composite
with a (contractive) gradient step for the outer objective; sublinear O(1/k)
rates are known under standard Lipschitz/strong-convexity assumptions [6].
Recent variants relax projections, incorporate inertial or conditional-gradient
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updates, or target “simple" convex bi-level problems [7, 8]. However, two im-
portant gaps remain: (i) most analyses assume convexity (often strong con-
vexity) and smoothness at the outer level; (ii) existing SAM-type schemes
average one upper-level step with one inner fixed-point map, while block-
structured, composite, possibly nonconvex models with explicit proximal
treatment at both levels have received less attention, as far as we known.

Motivated by Proximal Alternating Linearized Minimization (PALM) for
nonconvex, nonsmooth single-level composites [9], we propose a bi-level gen-
eralization that executes blockwise proximal-gradient updates for both levels
and then forms a calibrated convex combination of the upper- and lower-
driven iterates to steer the sequence toward an upper-level preferred solution
within the lower-level solution set. This design preserves the modularity and
per-block simplicity of proximal methods while embedding bi-level guidance
directly into the iteration.

1.1. Contribution and Paper Organization
In this paper, we propose a bi-level generalization of PALM to solve Prob-

lem (1) that we call Binno (Bi-level nonconvex nonsmooth optimization). In
particular, in section 2 we give notations and auxiliary results that are needed
for the forthcoming sections. We detail the proposed method Binno and some
theoretical considerations in section 3. We apply Binno in a matrix factoriza-
tion problem in section 4 where a sparse low-rank representation is required
from a data matrix. section 5, explains numerical experiments comparing
Binno to standard methods in sparse low-rank applications on synthetic and
real datasets.

2. Background and mathematical tools

This work relies on the mathematical tools detailed below.

Proximal gradient update. In optimization problems, in the form of (1) with
ψ2 = 0, the proximal gradient method [4, 10, 11] is a widely used solution
approach. It aims to solve optimization problems in this form:

argmin
x∈Rn

p(x) + q(x) (2)

where p : Rn → R is convex, differentiable, L-smooth (gradient is L-Lipschitz)
and q : Rn → R ∪ {+∞} is convex, proper and lower semicontinuous. The
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proximal gradient update run iterations rules as:

xk+1 = proxν
q

(
xk − ν∇p(xk)

)
,

where k ∈ N is iteration, ν > 0 is stepsize, and proxν
q : Rn → Rn is the

proximal operator defined as

proxν
q (x) := argmin

ξ∈Rn

{
q(ξ)+

1

2ν
∥ξ−x∥22

}
,Mνf := min

ξ∈Rn

{
q(ξ)+

1

2ν
∥ξ−x∥22

}
,

with Mνf is the Moreau envelope associated to f . Under certain assumptions
on p, q, ν (see [11]), the sequence {xk}k∈N produced by proximal gradient
update converges to a global minimizer of the Problem (2).

The following lemma is useful later.

Lemma 1 (Theorem 12.30, [12]). If f is convex, proper and lower semi-
continuous, then Mνf ∈ C1 and for all x ∈ Rn, we have ∇Mνf = 1

ν
(x −

proxνf (x)). Consequently, its gradient is 1/ν Lipschitz continuous.

We use G to denote the proximal gradient map of the proximal gradient
operator. For problem (2), let ∂q denotes a subgradient of function q, then

x+ = proxν
q (x− ν∇p(x)) = x− νG(x)

G(x) = 1
ν

(
x− proxν

q (x− ν∇p(x))
)

∈ ∇p(x) + ∂q(x− νG(x)).

Proximal Alternating Linearized Minimization (PALM). Since the structure
of each level of our Problem 1, we recall PALM algorithm [9]. It considers

argmin
x∈Rn,y∈Rm

f(x) + g(y) +H(x,y),

that is Problem (1) without the bi-level structure and with functions f, g,H
as described previously. The PALM algorithm performs the proximal gradi-
ent update alternatively on each subproblems of (1) as follow:

xk+1 = proxν
f

(
xk − ν∇xH(xk,yk)

)
, yk+1 = proxν

g

(
yk − ν∇yH(xk+1,yk)

)
.

Sequential Averaging Method (SAM). Consider the problem

min
x

{
φ(x) = f(x) + g(x)

}
, (3)
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with f smooth function (Lipschitz gradient Lf ) and g proper, lower semicon-
tinuous, convex function. Consider a nonexpansive map T : Rn → Rn and a
contraction S : Rn → Rn, SAM generates the sequence

xk = αk S(xk−1) + (1− αk)T (xk−1), with αk ∈ (0, 1], αk ↓ 0,
∑
k

αk = ∞,

and converges to a point x⋆ ∈ Fix(T ) := {x ∈ Rn : T (x) = x}. Also, it
satisfies the variational inequality ⟨x⋆−S(x⋆), x−x⋆⟩ ≥ 0 for all x ∈ Fix(T );
thus x⋆ is the fixed point according to S. In a bi-level context, for the inner
problem as (3) and outer problem minx∈X⋆ ω(x), with ω strongly convex,
smooth, and ∇ω is Lω-Lipschitz, define the ProxGrad map

T (x) = proxt
g

(
x− t∇f(x)

)
, t ∈

(
0, 1/Lf

]
,

which is nonexpansive and satisfies Fix(T ) = X⋆, the solution set of the inner
problem. For the outer problem, set the contraction

S(x) = x− s∇ω(x), s ∈
(
0,

2

Lω + σ

]
.

With these choices, SAM is to:

yk = proxt
g

(
xk−1 − t∇f(xk−1)

)
,

zk = xk−1 − s∇ω(xk−1),

xk = αkzk + (1− αk)yk,

and the iterates converge to x⋆ ∈ X⋆ solving the bi-level task via the first-
order optimality condition ⟨∇ω(x⋆), x− x⋆⟩ ≥ 0, for all x ∈ X⋆.

3. The proposed method Binno

The idea of Binno is to iteratively and alternatively update each block of
the variables by approximately solve each single-level subproblem using prox-
imal gradient update, and then using a convex combination of the updated
sequences from each single-level. In particular, starting from initial guess
(x0,y0), at each iteration k ∈ N, we perform a PALM step (see Section 2) on
the upper level problem, with a subscript u, using proximal gradient update
obtaining (xu,yu). Similarly, we perform the PALM step on the lower level
problem (with a subscript l), obtaining (xl,yl). Then we get (xk+1,yk+1)
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by a convex combination of (xu,yu) and (xl,yl). Fig.1 depicts a flow chart
of the evolution of the sequence highlighting some issues that emerge (with
question marks). We let x̃ be the gradient-only update of x (i.e., before
applying the prox operator). Performing a simply convex combination, like
in SAM, is not appropriate in this setting. Some problems are:

1. As f1 ̸= f2, the upper- and lower-level of x target different proximal maps,
so xu and xl generally point toward distinct fixed points. This discrepancy
complicates both the analysis and the effect of their averaging.

2. As g1 ̸= g2, the updates of y are conditionally computed from different x
iterates (yu uses xu while yl uses xl). This cross-level coupling induces
potentially conflicting descent directions and a more intricate dynamic for
y.

yk

xk x̃ xu

ỹ yu

GD f1

GD

g1

yk

xk x̃ xl

ỹ yl

GD f2

GD

g2
yk+1

xk+1

?

?

?

?

Figure 1: The structure of Binno. GD stands for gradient descent. In this work, our goal
is to answer how to deal with question mark.

3.1. Theory of Binno
At each iteration k, we perform the following.

1. At the upper level subproblem, we perform a proximal gradient descent
(ProxGrad) step on xk while yk is held fix

xu = proxν
f1

(
xk − ν∇xH(xk,yk)

)
, (4)

where ν > 0 is a stepsize and proxν
f1

is the prox operator of function f1
under parameter ν. This step is performed at the upper level, so we name
it xu with a subscript u.
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2. At the upper level subproblem, we perform a ProxGrad step on yk while
x is held fixed at the most recent value xu

yu = proxν
g1

(
yk − ν∇yH(xu,yk)

)
. (5)

3. At the lower level subproblem, we perform a ProxGrad step on xk while
yk is held fix

xl = proxν
f2

(
xk − ν∇xH(xk,yk)

)
. (6)

4. At the lower level subproblem, we perform a ProxGrad step on yk while
x is held fixed at the most recent value xl

yl = proxν
g2

(
yk − ν∇yH(xl,yk)

)
. (7)

5. We obtain the solution (xk+1,yk+1) by performing convex combination of
(xu,yu) and (xl,yl), mathematically as(

xk+1

yk+1

)
=

(
α 0
0 β

)(
xu

yu

)
+

(
1− α 0
0 1− β

)(
xl

yl

)
, (8)

with α, β are some real constants to be determined.

Algorithm 1 summarizes each steps in a pseudo-code.

Algorithm 1: Binno for Problem (1)
1 Initialization: x0 ∈ Rn and y0 ∈ Rm

2 for k = 1, 2, ... do
3 Upper-level update: Get (xu,yu) from (xk,yk) by (4), (5).
4 Lower-level update: Get (xℓ,yℓ) from (xk,yk) by (6), (7).
5 Convex combination: Get (xk+1,yk+1) by combining (xu,yu)

and (xℓ,yℓ) by (8).

We use a line search scheme for obtaining α, β such that we have simul-
taneous descent conditions on both ψ1 and ψ2:

ψ1(xk+1,yk+1) ≤ ψ1(xk,yk) and ψ2(xk+1,yk+1) ≤ ψ2(xk,yk).
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Remark. Using the proximal gradient map (see section 2), we have

xk+1 = αxu + (1− α)xl

= α proxνf1
(
xk − ν∇xH(xk,yk)

)
+(1− α)proxνf2

(
xk − ν∇xH(xk,yk)

)
= α

(
xk − νGu(xk)

)
+ (1− α)

(
xk − νGl(xk)

)
= xk − ν

(
αGu(xk) + (1− α)Gl(xk)

)
= xk − νdx with dx = αGu(xk) + (1− α)Gl(xk).

yk+1 = βyu + (1− β)yl

= β proxνg1
(
yk − ν∇yH(xu,yk)

)
+(1− β)proxνg2

(
yk − ν∇yH(xl,yk)

)
= β

(
yk − νGu(yk)

)
+ (1− β)

(
yk − νGl(yk)

)
= yk − ν

(
βGu(yk) + (1− β)Gl(yk)

)
= yk − νdy with dy = βGu(yk) + (1− β)Gl(yk).

where
Gu(xk) =

1
ν

(
xk − proxνf1

(
xk − ν∇xH(xk,yk)

))
,

Gl(xk) =
1
ν

(
xk − proxνf2

(
xk − ν∇xH(xk,yk)

))
,

Gu(yk) =
1
ν

(
yk − proxνg1

(
yk − ν∇yH(xu,yk)

))
,

Gl(yk) =
1
ν

(
yk − proxνg2

(
yk − ν∇yH(xl,yk)

))
.

Moreover, dx and dy are descent directions:

for upper level wrt x if
〈
∂ψ1(xk,yk), dx

〉
< 0

⇐⇒
〈
∂f1(xk) +∇xH(xk,yk), dx

〉
< 0,

for upper level wrt y if
〈
∂ψ1(xu,yk), dy

〉
< 0

⇐⇒
〈
∂g1(yk) +∇yH(xu,yk), dy

〉
< 0,

for lower level wrt x if
〈
∂ψ2(xk,yk), dx

〉
< 0

⇐⇒
〈
∂f2(xk) +∇xH(xk,yk), dx

〉
< 0,

for lower level wrt y if
〈
∂ψ2(xl,yk), dy

〉
< 0

⇐⇒
〈
∂g2(yk) +∇yH(xl,yk), dy

〉
< 0.

Thus, to solve the question mark in Figure 1, we have to prove the fol-
lowing theorem which provides the existence of (α, β) satisfying the descent
conditions on both ψ1, ψ2.
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Theorem 1. In the setting of Problem (1), there exists α ∈ [0, 1], β ∈ [0, 1]
that the following conditions hold〈

∂f1(xk) +∇xH(xk,yk), αGu(xk) + (1− α)Gl(xk)
〉
< 0〈

∂f2(xk) +∇xH(xk,yk), αGu(xk) + (1− α)Gl(xk)
〉
< 0,〈

∂g1(yk) +∇yH(xu,yk), βGu(yk) + (1− β)Gl(yk)
〉
< 0,〈

∂g2(yk) +∇yH(xl,yk), βGu(yk) + (1− β)Gl(yk)
〉
< 0,

with
Gu(xk) =

1
ν

(
xk − proxνf1

(
xk − ν∇xH(xk,yk)

))
,

Gl(xk) =
1
ν

(
xk − proxνf2

(
xk − ν∇xH(xk,yk)

))
,

Gu(yk) =
1
ν

(
yk − proxνg1

(
yk − ν∇yH(xu,yk)

))
,

Gl(yk) =
1
ν

(
yk − proxνg2

(
yk − ν∇yH(xl,yk)

))
.

To prove Theorem 1, we need some preliminary results.

Lemma 2. Let z be convex, proper, lower semicontinuous function, and
x0 ∈ int (dom z). Then ∂z(x0) is a nonempty bounded set, i.e. there exists
a constant c such that ∥∂z(x0)∥ ≤ c.

Proof. If z is closed and convex function, then ∂z(x0) is a nonempty bounded
set [13, Theorem 3.1.15]. As a proper convex function is closed if and only if
it is lower semi-continuous, we get the result.

Lemma 3. Under the assumptions and settings of Theorem 1, we have∣∣〈∂f1(xk),G∆(xk)
〉∣∣ < c1∥G∆(xk)∥,

∣∣〈∂f2(xk),G∆(xk)
〉∣∣ < c2∥G∆(xk)∥,∣∣〈∂g1(yk),G∆(yk)

〉∣∣ < c3∥G∆(yk)∥,
∣∣〈∂g2(yk),G∆(yk)

〉∣∣ < c4∥G∆(yk)∥,

where G∆ ∈ {Gu,Gl} and c1, c2, c3, c4 are constants for functions f1, f2, g1, g2
respectively, as in Lemma 2.

Proof. We prove the lemma for f1. By Cauchy-Schwarz inequality:∣∣〈∂f1(xk),G∆(xk)
〉∣∣ ≤ ∥∂f1(xk)∥ ∥G∆(xk)∥

lemma 2

≤ c1∥G∆(xk)∥.

The rest is similar for f2, g1, g2 with their respective constants c2, c3, c4.
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Lemma 4. Under the assumptions and settings of Theorem 1, given the
bi-smooth constants L1, L2 for the gradient of H referred to x and y, respec-
tively, then the following holds:∣∣〈∇xH(xk,yk),G∆(xk)

〉∣∣ < L1∥G∆(xk)∥,∣∣〈∇yH(x∆,yk),G∆(yk)
〉∣∣ < L2∥G∆(yk)∥, x∆ ∈ {xu,xl}.

Proof. We prove the lemma for x. As H is bi-differentiable and bi-smooth,
it implies ∥∇xH(xk,yk)∥ ≤ L1. By the Cauchy-Schwarz inequality∣∣∣〈∇xH(xk,yk),G∆(xk)

〉∣∣∣ ≤ ∥∇xH(xk,yk)∥ ∥G∆(xk)∥ ≤ L1∥G∆(xk)∥.

The proof for y is similar with ∇yH(x∆,yk) and its respective bi-smooth
constants L2.

Lemma 5. Under the assumptions and settings of Theorem 1, then ∥G∆(xk)∥
and ∥G∆(yk)∥ are bounded, where G∆ ∈ {Gu,Gl}.

Proof. We prove the lemma for Gu(xk); the rest is similar. The prox operator
is a contraction,

∥proxf (s)− proxf (z)∥ ≤ ∥s− z∥.

Take f = f1 and choosing s = xk and z = xk − ν∇xH(xk,yk)) we have∥∥∥proxν
f1
(xk)−proxν

f1

(
xk − ν∇xH(xk,yk)

)∥∥∥ ≤ ∥ν∇xH(xk,yk)∥
H smooth

≤ νL1.

(9)
Then

∥Gu(xk)∥

=
∥∥∥1
ν

(
xk − proxν

f1
(xk) + proxν

f1
(xk)− proxν

f1

(
xk − ν∇xH(xk,yk)

))∥∥∥
≤ 1

ν

[
∥xk − proxν

f1
(xk)∥+

∥∥∥proxν
f1
(xk)− proxν

f1

(
xk − ν∇xH(xk,yk)

)∥∥∥]
(9)
≤ 1

ν

[
∥xk − proxν

f1
(xk)∥+ νL1

]
=

1

ν
∥xk − proxν

f1
(xk)∥︸ ︷︷ ︸

=∥∇Mνf1
(xk)∥

+L1

lemma 1

≤ 1

ν
+ L1.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. We focus on xk, for yk the proof is similar. First we
have 〈

∂f1(xk) +∇xH(xk,yk), αGu(xk) + (1− α)Gl(xk)
〉

= α
〈
∂f1(xk) +∇xH(xk,yk), Gu(xk)

〉︸ ︷︷ ︸
:=q1

+(1− α)
〈
∂f1(xk) +∇xH(xk,yk), Gl(xk)

〉
,〈

∂f2(xk) +∇xH(xk,yk), αGu(xk) + (1− α)Gl(xk)
〉

= α
〈
∂f2(xk) +∇xH(xk,yk), Gu(xk)

〉
+(1− α)

〈
∂f2(xk) +∇xH(xk,yk), Gl(xk)

〉︸ ︷︷ ︸
:=q2

.

The terms q1 is negative since Gu(xk) is a descent directions for the upper
problem ψ1, disregarding the lower problem. It is similar for q2 < 0.

For the other parts, we have:〈
∂f1(xk),Gl(xk)

〉
+
〈
∇xH(xk,yk),Gl(xk)

〉
≤

∣∣〈∂f1(xk),Gl(xk)
〉∣∣+ ∣∣〈∇xH(xk,yk),Gl(xk)

〉∣∣
lemma 3,4

≤ c1∥Gl(xk)∥+ L1∥Gl(xk)∥

= (c1 + L1)∥Gl(xk)∥
lemma 5

≤ (c1 + L1)
(1
ν
+ L1

)
.

Then exists k1 := (c1 + L1)
(
1
ν
+ L1

)
such that〈

∂f1(xk) +∇xH(xk,yk), Gl(xk)
〉
≤ k1.

Similarly, exists k2 := (c2 + L1)
(
1
ν
+ L1

)
such that〈

∂f2(xk) +∇xH(xk,yk), Gu(xk)
〉
≤ k2.

Finally, let ∇xHk = ∇xH(xk,yk) we have

α
〈
∂f1(xk) +∇xHk, Gu(xk)

〉
+ (1− α)

〈
∂f1(xk) +∇xHk, Gl(xk)

〉
≤ αq1 + (1− α)k1,

α
〈
∂f2(xk) +∇xHk, Gu(xk)

〉
+ (1− α)

〈
∂f2(xk) +∇xHk, Gl(xk)

〉
≤ αk2 + (1− α)q2.

Similarly for y and β we have
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• for the upper problem: let q3 :=
〈
∂g1(yk) + ∇yH(xu,yk),Gu(yk)

〉
and

k3 := (c3 + L2)
(
1
ν
+ L2

)
, then〈

∂g1(yk) +∇yH(xu,yk), βGu(yk) + (1− β)Gl(yk)
〉

= β
〈
∂g1(yk) +∇yH(xu,yk),Gu(yk)

〉
+(1− β)

〈
∂g1(yk) +∇yH(xu,yk),Gl(yk)

〉
≤ βq3 + (1− β)k3.

• for the lower problem: let q4 :=
〈
∂g2(yk) + ∇yH(xl,yk),Gl(yk)

〉
and

k4 := (c4 + L2)
(
1
ν
+ L2

)
, then〈

∂g2(yk) +∇yH(xl,yk), βGu(yk) + (1− β)Gl(yk)
〉

= β
〈
∂g2(yk) +∇yH(xl,yk),Gu(yk)

〉
+(1− β)

〈
∂g2(yk) +∇yH(xl,yk),Gl(yk)

〉
≤ βk4 + (1− β)q4.

Lastly, we join everything considering ℓi = |qi| for i = 1, . . . , 4

α(−ℓ1 − k1) ≤ −k1 =⇒ 0 ≤ k1
ℓ1 + k1

≤ α ≤ 1; (10a)

α(ℓ2 + k2) ≤ ℓ2 =⇒ 0 ≤ α ≤ ℓ2
ℓ2 + k2

≤ 1; (10b)

β(−ℓ3 − k3) ≤ −k3 =⇒ 0 ≤ k3
ℓ3 + k3

≤ β ≤ 1. (10c)

β(ℓ4 + k4) ≤ ℓ4 =⇒ 0 ≤ β ≤ ℓ4
ℓ4 + k4

≤ 1. (10d)

The range for α, β gives the descent conditions in the theorem hold.

4. Application to Sparse Low Rank Factorization

In this section, we consider a sparse low rank Factorization (SLRF) prob-
lem [14] constructed as bi-level problem in (1).

Given a matrix M ∈ Rm×n
+ , we aim to solve:

argmin
X∈Rm×r

Y ∈Rr×n

λ1∥X∥1 + λ2∥Y ∥1 +
1

2
∥XY −M∥2F

s.t. (X,Y ) ∈ argmin
X∈Rm×r

Y ∈Rr×n

γ1∥X∥∗ + γ2∥Y ∥∗ +
1

2
∥XY −M∥2F ,

(SLRF)

12



where ∥ · ∥1 is the elementwise ℓ1-norm, ∥ · ∥F is the F-norm and ∥ · ∥∗ is the
nuclear norm. The functions in (SLRF) according to (1) are f1 : Rm×r → R,
f1(X) = λ1∥X∥1, f2 : Rm×r → R, f2(X) = λ2∥X∥∗, g1 : Rr×n → R,
g1(Y ) = γ1∥Y ∥1, g2 : Rr×n → R, g2(Y ) = γ2∥Y ∥∗, H : Rm×r × Rr×n → R,
H(X,Y ) = 1

2
∥XY −M∥2F . We solve the problem with Binno method using

the following steps.

X-update. We solve the the upper level subproblem in (SLRF), performing
a ProxGrad step on Xk while Y is held fix at the recent value

Xu = proxν
f1

(
Xk − ν∇XH(Xk,Y )

)
.

At the lower level subproblem (SLRF), we perform a ProxGrad step on Xk

while Y is held fix at the recent value

Xl = proxν
f2

(
Xk − ν∇XH(Xk,Y )

)
.

We obtain Xk+1 by performing convex combination of Xu and Xl, mathe-
matically as Xk+1 = αXu + (1− α)Xl.

Y-update. We solve the upper level subproblem in (SLRF), performing a
ProxGrad step on Yk while X is held fix at the recent value

Yu = proxν
g1

(
Yk − ν∇YH(Xu,Yk)

)
.

At the lower level subproblem (SLRF), we perform a ProxGrad step on Yk

while X is held fix at the recent value

Yl = proxν
g2

(
Yk − ν∇YH(Xl,Yk)

)
.

We obtain Yk+1 by performing convex combination of Yu and Yl, mathemat-
ically as Yk+1 = βYu + (1− β)Yl.

Algorithm 2 summarizes the previous steps for solving problem (SLRF)
with Binno.

4.1. Useful Theoretical Results
We first list some useful theoretical results for this section for generic

matrices.

Proposition 1. For f1 : Rm×r → R being the element-wise ℓ1 norm, then
∥S∥2 ≤ λ1

√
mr for any S ∈ ∂f1.
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Algorithm 2: Binno for (SLRF) Problem
Input: M ∈ Rm×n,r

1 Inizialization: X0 ∈ Rm×r;Y0 ∈ Rr×n for k = 1, 2, ... do
2 Update for X:
3 Upper-level update: Xu

k = proxν
f1

(
Xk−1− ν∇XH(Xk−1,Yk−1)

)
4 Lower-level update: X l

k = proxν
f2

(
Xk−1 − ν∇XH(Xk−1,Yk−1)

)
5 Finding range for α according to section 4.2
6 Convex combination: Xk = αXu

k + (1− α)X l
k

7 Update for Y :
8 Upper-level update: Y u

k = proxν
g1

(
Yk−1 − ν∇YH(Xu

k ,Yk−1)
)

9 Lower-level update: Y l
k = proxν

g2

(
Yk−1 − ν∇YH(X l

k,Yk−1)
)

10 Finding range for β according to section 4.3
11 Convex combination: Yk = βY u

k + (1− β)Y l
k

Output: X ∈ Rm×r, Y ∈ Rr×n

Proof. The function f1(X) = λ1∥X∥1 = λ1
∑

ij |xij| is not differentiable at
xij = 0 but subdifferentiable:

∂∥X∥1 =

{
P ∈ Rm×r : pij ∈

{
sign xij if xij ̸= 0;

p ∈ [−1, 1] if xij = 0.

}
.

Let S ∈ λ1∂∥X∥1 be any element of the subdifferential. Then ∥S∥2 ≤
∥S∥F =

√∑
ij

s2ij ≤
√∑

ij

|sij|2 = λ1
√
mr.

Proposition 2. For f2 : Rm×r → R as the nuclear norm, then ∥S∥2 ≤ 2γ1
for any S ∈ ∂f2.

Proof. Let X ∈ Rm×r, the nuclear norm ∥X∥∗ =
∑r

i=1 σi(X) is not dif-
ferentiable but subdifferentiable. Consider the SVD X = UΣV ⊤ with
k = rank(X), U ∈ Rm×k, Σ = Diag(σi(X)) ∈ Rk×k and V ∈ Rr×k, the
subdifferential of ∥X∥∗ is [15]

∂∥X∥∗ =
{
UV ⊤ +W

∣∣ W ∈ Rm×r, U⊤W = 0, WV = 0, ∥W ∥2 ≤ 1
}
.

We show ∥∂f2(X)∥2 ≤ c2 in lemma 3. Let S ∈ γ1∂∥X∥∗, so ∥S∥2 =
γ1∥UV ⊤ +W ∥2 ≤ γ1

(
∥UV ⊤∥2 + ∥W ∥2

)
≤ γ1(1 + 1) = 2γ1.
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Lemma 6. For the elementwise matrix ℓ1-norm and a matrix X ∈ Rm×r,
then

∥∥X − proxνλ1∥·∥1(X)
∥∥
2
≤ νλ1

√
mr.

Proof. The operator proxν
λ1∥·∥1 is the soft-thresholding operator [11], thus

[
X − proxν

λ1∥·∥1(X)
]
ij
=


νλ1 if Xij < νλ1,

Xij if |Xij| ≤ νλ1,

−νλ1 if Xij < −νλ1.

So
∥∥∥X−proxν

λ1∥·∥1(X)
∥∥∥
2
≤

∥∥∥X−proxν
λ1∥·∥1(X)

∥∥∥
F
≤
√∑

ij

(νλ1)2 = νλ1
√
mr.

Lemma 7. For the nuclear norm, then
∥∥X − proxνγ1∥·∥∗(X)

∥∥
2
≤ γ1ν.

Proof. Consider the nuclear norm, then proxν
γ1∥·∥∗ as

proxν
γ1∥·∥∗(X) = argmin

A
γ1ν∥A∥∗ +

1

2
∥A−X∥2 = SVTγ1ν(X)

is the Singular Value Thresholding (SVT) by the Von Neumann inequality[16].
The SVT of X SV D

= UΣV ⊤ is SVTγ1ν(X) = UDγ1ν(Σ)V ⊤, with Dγ1ν(Σ) =
Diag

(
[σi − γ1ν]+

)
is the soft-thresholded Σ with σi as the singular values of

X and [a]+ = max{a, 0}. Then,∥∥X − SVTγ1ν(X)
∥∥
2
=

∥∥U(
Σ−Dγ1ν(Σ)

)
V ⊤

∥∥
2

= ∥Σ−Dγ1ν(Σ)∥2
= max

i

∣∣σi − [σi − γ1ν]+
∣∣.

We have two cases

• Case 1 σi > γ1ν: then
∣∣σi− [σi−γ1ν]+

∣∣ = ∣∣σi− (σi−γ1ν)
∣∣ = |γ1ν| = γ1ν.

• Case 2 σi ≤ γ1ν: then
∣∣σi − [σi − γ1ν]+

∣∣ = ∣∣σi − 0
∣∣ = |σi| = σi ≤ γ1ν .

Thus ∥X − SVTγ1ν(X)∥2 ≤ γ1ν.

Lemma 8. For H : Rm×r × Rr×n → R defined as 1
2
∥M − XY ∥2F , the bi-

smooth constant wrt X is L1 = ∥Y Y ⊤∥2 and wrt Y is L2 = ∥X⊤X∥2.

Proof. The constants are L1 = ∥∇2
XH(X,Y )∥ = ∥Y Y ⊤∥2, the spectral

norm of Y Y ⊤, and L2 = ∥∇2
YH(X,Y )∥ = ∥X⊤X∥2.
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4.2. Finding the constant α
Here, the results are for any X and Y according to the iteration structure

in Algorithm 2. To find constants in (10a) and (10b) we need to find

k1 = (c1 + L1)
(
1/ν + L1

)
; l1 =

∣∣∣〈∂f1(X) +∇XH(X,Y ),Gu(X)
〉∣∣∣;

k2 = (c2 + L1)
(
1/ν + L1

)
; l2 =

∣∣∣〈∂f2(X) +∇XH(X,Y ),Gl(X)
〉∣∣∣;

where c1, c2 are as in Lemma 3 for f1 and f2 respectively; L1 is the bi-smooth
constant for H wrt X. In particular, we have c1 = λ1

√
mr for proposition 1,

c2 = 2γ1 for proposition 2, and L1 = ∥Y Y ⊤∥2 for lemma 8. To find the
values l1 and l2, we have the following propositions.

Proposition 3. For l1 = q1 = ⟨∂f1(X) +∇XH(X,Y ),Gu(X)⟩, we have

l1 = |q1| ≤ (λ1
√
mr + ∥Y Y ⊤∥2)2.

Proof. l1 = |q1| =
∣∣∣⟨∂f1(X) +∇XH(X,Y ), Gu(X)⟩

∣∣∣
l1 ≤

∣∣⟨∂f1(X),Gu(X)⟩
∣∣+ ∣∣⟨∇XH(X,Y ),Gu(X)⟩

∣∣
lemma 3,lemma 4

≤ (c1 + L1)∥Gu(X)∥2
lemma 5

≤ (c1 + L1)
(1
ν

∥∥∥X − proxν
λ1∥·∥1(X)

∥∥∥
2
+ L1

)
lemma 6

≤ (c1 + L1)(λ1
√
mr + L1)

proposition 1
= (c1 + L1)

2 lemma 8
=

(
λ1
√
mr + ∥Y Y ⊤∥2

)2
.

Proposition 4. For q2 = ⟨∂f2(X) +∇XH(X,Y ),Gl(X)⟩, we have

l2 = |q2| ≤ (γ1 + ∥Y Y ⊤∥2)(2γ1 + ∥Y Y ⊤∥2).

Proof. l2 = |q2| =
∣∣∣⟨∂f2(X),Gl(X)⟩+ ⟨∇XH(X,Y ),Gl(X)⟩

∣∣∣,
l2 ≤ |⟨∂f2(X),Gl(X)⟩|+ |⟨∇XH(X,Y ),Gl(X)⟩|

lemma 3,lemma 4

≤ (c2 + L1)∥Gl(X)∥2
lemma 5

≤ (c2 + L1)
(1
ν

∥∥∥X − proxν
γ1∥·∥∗(X)

∥∥∥
2
+ L1

)
lemma 7

≤ (c2 + L1)(γ1 + L1)
proposition 2

= (2γ1 + L1)(γ1 + L1)
lemma 8

= (γ1 + ∥Y Y ⊤∥2)(2γ1 + ∥Y Y ⊤∥2).
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Theorem 2. According to 10a and 10b, α should respect the condition

0 ≤ 1/ν + ∥Y Y ⊤∥2
λ1
√
mr + 1/ν + 2∥Y Y ⊤∥2

≤ α ≤ γ1 + ∥Y Y ⊤∥2
γ1 + 1/ν + 2∥Y Y ⊤∥2

≤ 1;

with ν ≥ 1√
(∥Y Y ⊤∥2 + γ1)(∥Y Y ⊤∥2 + λ1

√
mr)− ∥Y Y ⊤∥2

.

Proof.

(10a), (10b) =⇒


k1

l1 + k1
≤ α ≤ 1;

α ≤ l2
l2 + k2

≤ 1.

⇐⇒


(c1 + L1)

(
1/ν + L1

)
(c1 + L1)2 + (c1 + L1)

(
1/ν + L1

) ≤ α ≤ 1;

α ≤ (c2 + L1)(γ1 + L1)

(c2 + L1)(γ1 + L1) + (c2 + L1)
(
1/ν + L1

) ≤ 1;

⇐⇒


1/ν + L1

c1 + 2L1 + 1/ν
≤ α ≤ 1;

α ≤ γ1 + L1

γ1 + 2L1 + 1/ν
≤ 1;

⇐⇒ 1/ν + L1

λ1
√
mr + 1/ν + 2L1

≤ γ1 + L1

γ1 + 1/ν + 2L1

Let x = 1/ν, the above expression can be converted to, after some algebra,
as x2+2L1x−

(
γ1L1+ γ1c1+L1c1

)
. We have ax2+ bx− c ≤ 0 for a > 0, b ≥

0, c > 0, hence

x =
−b±

√
b2 + 4c

2
= ±

√
(L1 + γ1)(L1 + λ1

√
mr)− L1.

As ν ≥ 0 we take the positive root

0 ≤ 1

ν
≤

√
(L1 + γ1)(L1 + λ1

√
mr)− L1.

Hence ν ≥ 1√
(L1 + γ1)(L1 + λ1

√
mr)− L1

, which gives the expression in

the theorem.
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4.3. Finding the constant β
Similar to α, we have the following for β. To find constants in (10c) and

(10d) we need to find

k3 =
(
c3 + L2(Xu)

)(
1/ν + L2(Xu)

)
,

l3 =
∣∣〈∂g1(Yk) +∇YH(Xu,Yk),Gu(Yk)

〉∣∣;
k4 =

(
c4 + L2(Xl)

)(
1/ν + L2(Xl)

)
,

l4 =
∣∣〈∂g2(Yk) +∇YH(Xl,Yk),Gl(Yk)

〉∣∣;
where c3, c4 the constants for g1 and g2 respectively as in lemma 3; L2(X∆)
is the bi-smooth constant for H wrt Y computed wrt X∆ ∈ {Xu,Xl}. In
particular, we have c3 = λ2

√
rn by proposition 1, c4 = 2γ2 by proposition 2,

and L2 = ∥X∆X
⊤
∆∥2 by lemma 8. In this subsection, we underlying the

subscript only where its necessary, to avoid confusion.
Now we can find the values l3 and l4.

Proposition 5. For q3 =
〈
∂g1(Yk) +∇YH(Xu,Yk),Gu(Yk)

〉
, we have

l3 = |q3| ≤ (λ2
√
rn+ ∥X⊤

u Xu∥2)2.

Proof. l3 = |q3| =
∣∣∣〈∂g1(Yk) +∇YH(Xu,Yk),Gu(Yk)

〉∣∣∣.
l3 ≤

∣∣〈∂g1(Yk),Gu(Yk)
〉∣∣+ ∣∣〈∇YH(Xu,Yk),Gu(Yk)

〉∣∣
lemma 3,lemma 8

≤ (c3 + L2(Xu))∥Gu(Yk)∥2
lemma 5

≤ (c3 + L2(Xu))
(1
ν

∥∥∥Yk − proxν
∥·∥1(Yk)

∥∥∥
2
+ L2(Xu)

)
lemma 6

≤ (c3 + L2(Xu))(λ2
√
rn+ L2(Xu))

proposition 1
= (c3 + L2(Xu))

2
lemma 8

≤ (λ2
√
rn+ ∥X⊤

u Xu∥2)2.

Proposition 6. For q4 = ⟨∂g2(Yk) +∇YH(Xl,Yk),Gl(Yk)⟩, we have

l4 = |q4| ≤ (2γ2 + ∥X⊤
l Xl∥2)(γ2 + ∥X⊤

l Xl∥2).
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Proof. l4 = |q4| =
∣∣∣〈∂g2(Yk) +∇YH(Xl,Yk),Gl(Yk)

〉∣∣∣.
l4 ≤

∣∣〈∂g2(Yk),Gl(Yk)
〉∣∣+ ∣∣〈∇YH(Xl,Yk),Gl(Yk)

〉∣∣
lemma 3,lemma 8

≤ (c4 + L2(Xl))∥Gl(Yk)∥2
lemma 5

≤ (c4 + L2(Xl))
(1
ν

∥∥∥Yk − proxν
∥·∥∗(Yk)

∥∥∥
2
+ L2(Xl)

)
lemma 7

≤ (c4 + L2(Xl))(γ2 + L2(Xl))
proposition 2

≤ (2γ2 + L2(Xl))(γ2 + L2(Xl))
lemma 8

= (2γ2 + ∥X⊤
l Xl∥2)(γ2 + ∥X⊤

l Xl∥2).

Theorem 3. According to 10c and 10d, β should respect the condition

0 ≤ 1/ν + ∥X⊤
u Xu∥2

λ2
√
rn+ 1/ν + 2∥X⊤

u Xu∥2
≤ β ≤ γ2 + ∥X⊤

l Xl∥2
γ2 + 1/ν + 2∥X⊤

l Xl∥2
≤ 1;

with ν ≥ 2√
N2 + 4

(
λ2γ2

√
rn+ γ2∥X⊤

u Xu∥2 + ∥X⊤
l Xl∥2λ2

√
rn

)
−N

where

N = ∥X⊤
l Xl∥2 + ∥X⊤

u Xu∥2.

Proof.

(10c), (10d) ⇒


k3

l3 + k3
≤ β ≤ 1;

β ≤ l4
l4 + k4

≤ 1.

⇐⇒



(c3 + L2(Xu))
(1
ν
+ L2(Xu)

)
(c3 + L2(Xu))2 + (c3 + L2(Xu))

(1
ν
+ L2(Xu)

) ≤ β ≤ 1;

β≤ (c4 + L2(Xl))(γ2 + L2(Xl))

(c4 + L2(Xl))(γ2 + L2(Xl)) + (c4 + L2(Xl))
(1
ν
+ L2(Xl)

) ≤ 1;

⇐⇒


1/ν + L2(Xu)

c3 + 2L2(Xu) + 1/ν
≤ β ≤ 1;

β ≤ γ2 + L2(Xl)

γ2 + 2L2(Xl) + 1/ν
≤ 1.
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⇐⇒ 1/ν + L2(Xu)

λ2
√
rn+ 2L2(Xu) + 1/ν

≤ γ2 + L2(Xl)

γ2 + 1/ν + 2L2(Xl)

Let x = 1/ν, the above expression can be converted to, after some algebra,
as

x2 +
(
L2(Xl) + L2(Xu)

)
x−

(
λ2γ2

√
rn+ γ2L2(Xu) + L2(Xl)λ2

√
rn

)
≤ 0.

We have ax2+bx−c ≤ 0 for a > 0, b ≥ 0, c > 0, so x = (−b±
√
b2 + 4c)/2. Let

D = b2+4c =
(
L2(Xl)+L2(Xu)

)2
+4

(
λ2γ2

√
rn+γ2L2(Xu)+L2(Xl)λ2

√
rn

)
,

we have:

x =
−
(
L2(Xl) + L2(Xu)

)
±
√
D

2

ν ≥ 0
=⇒ 0 ≤ 1

ν
≤

√
D −

(
L2(Xl) + L2(Xu)

)
2

So ν ≥ 2√
N2 + 4

(
λ2γ2

√
rn+ γ2∥X⊤

u Xu∥2 + ∥X⊤
l Xl∥2λ2

√
rn

)
−N

.

Remark. (Numerical stability) The value ν has the form

ν =
1√

(a+ c)(a+ b)− a
,

which may lead to catastrophic cancellation in numerical analysis. To remove
catastrophic cancellation, we implement ν as

ν =

√
(a+ c)(a+ b) + a

ab+ ac+ bc
.

5. Numerical Experiments

We evaluate the performance of our algorithm on synthetic and real
datasets, comparing the accuracy, fidelity, and efficiency of Binno with re-
spect to other SLRF algorithms. All the experiments were conducted in
MATLAB 2024b and executed on a machine with an i7 octa-core processor
and 16GB of RAM1. Below, we detail the algorithms chosen for comparison,
the datasets, the metrics, and the results.

We compare Binno against three different methods:

1The code is available at https://github.com/flaespo/Binno.git.
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• Nonnegative Matrix Factorization (NMF) with sparse matrix (NMFLS)[17]

• Non-smooth/Adaptive Augmented Lagrangian Algorithm (NSA) [18] in
two versions.

NMFLS employs a standard NMF routine with the classical Lee-Seung mul-
tiplicative updates for the Frobenius norm [19]. While, NSA implements the
Alternating Direction Method of Multipliers (ADMM) [12, 20] scheme for the
NP-hard robust principal component analysis (RPCA) problem obtained by
solving a convex optimization problem, namely the robust principal compo-
nent pursuit (RPCP). The scheme is based on partial SVD for the low-rank
update and entrywise soft-thresholding for the sparse update, with identical
stopping rules. Compared to the first version, the second implementation is a
lighter refactor that preserves the core NSA/ADMM iteration. It streamlines
the parameterization (consolidating the threshold expression), initializes the
partial SVD with a smaller warm start to reduce early computational over-
head, and replaces the optional post hoc denoising with more fine-grained
per-iteration diagnostics [21, 22]. For the comparison algorithms, we use the
codes from the LRSLibrary [23]2.

5.1. Dataset
The synthetic dataset is generated as a rectangular data matrix M ∈

R100×80 designed to exhibit a low-rank, sparse structure perturbed by mild
noise. Specifically, two latent factors X ∈ R100×5 and Y ∈ R5×80 are sampled
so that approximately 30% of their entries are nonzero, with nonzero values
drawn from a standard normal distribution. Their product M⋆ = XY serves
as the clean signal and has nominal rank r = 5. To model measurement
imperfections, we add small, entrywise independent Gaussian perturbations
with standard deviation 0.01, yielding the observed matrix M = M⋆ +N .
This construction provides a controlled testbed in which the ground-truth
low-rank structure and sparsity pattern are known while observations remain
realistically noisy.

The real dataset is a traffic video database, consisting of 254 video se-
quences of highway traffic in Seattle, collected from a single stationary traffic
camera over two days [24, 25]. The database contains a variety of traffic

2a MATLAB suite of low-rank and sparse decomposition methods https://github.
com/andrewssobral/lrslibrary/tree/master/algorithms
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patterns and weather conditions. Each video was recorded in color with a
resolution of 320 x 240 pixels with between 42 to 52 frames at 10 fps. Each
sequence (clip) was converted to grayscale, resized to 80 x 60 pixels, and then
clipped to a 48 x 48 window over the area with the most total motion. The
fixed viewpoint makes the sequences well suited to low-rank/sparse modeling
of background-foreground dynamics and related video decomposition tasks.3

5.2. Metrics
We compare Binno with respect to NMFLS, NSA-v1, and NSA-v2 in

terms of Peak signal-to-noise ratio (PSNR), reconstruction error, and com-
putational time. These metrics jointly assess fidelity, structure-preserving
accuracy, and efficiency. Reconstruction error as Frobenius-norm relative
error, computed with

Err = ∥M −L∥F/∥M∥F ,

where M is the observed matrix and L its estimate low-rank. This quan-
tity, standard in low-rank modeling and RPCA, serves as a concise proxy
for overall reconstruction quality [26]. PSNR quantifies the fidelity of a re-
construction by comparing the maximum representable signal level to the
average power of the reconstruction error, and is reported on a logarith-
mic (decibel) scale to accommodate wide dynamic ranges. It is widely used
for quantitative comparisons in image/video reconstruction and compression
[27]. Operationally, PSNR is computed from the mean squared error (MSE)
between the reference and the reconstructed data, smaller MSE yields larger
PSNR, according to

PSNR = 10 log10

(
MAX2

MSE

)
.

where MAX denotes the peak representable value.

5.3. Results
In the following, we report results on synthetic and real datasets and

observe consistent qualitative trends across the two settings. Fig.2 summa-
rizes the synthetic setup and its ground truth: sparse factors X and Y with

3This dataset can be found in https://github.com/andrewssobral/lrslibrary/
tree/master/dataset/trafficdb.
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prescribed sparsity levels and their product M = XY , perturbed by small
additive noise and the convergence of the objective bi-level functions ψ1 and
ψ2 with respect to iterates for this case. This construction provides a con-
trolled testbed in which the target low-rank sparse structure is known and
can be visually inspected alongside quantitative criteria in Table 1.

Table 1: Evalueted metrics for synthetic dataset.
Method Time Reconstruction error
Binno 0.093 0.0135

NMFLS 0.102 1.0412
NSA-v1 0.169 0.3259
NSA-v2 0.065 0.3259
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Figure 2: Synthetic experiment: (left) sparse factors and resulting matrix; (right) Objec-
tive bi-level functions convergence with respect to iterate.

Fig.3 illustrates the convergence behavior of the two objective functions
ψ1 and ψ2 of our bi-level problem (1) across iterations for the real dataset.
Also in this case, the plot shows a stable decrease consistent with the descent
safeguards built into the algorithmic design (proximal-gradient blocks and
calibrated averaging).

Fig.4 reports a representative clip from the dataset: we show the original
frames and their noisy observations, together with the recovered low-rank
component L and sparse component S for each method under comparison.
Qualitatively, all methods produce visually comparable decompositions. To
assess robustness across diverse dynamics, examples for six distinct clips are
provided in Fig.5, which displays the corresponding low-rank reconstructions
and sparse supports for all baselines and for Binno.
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Figure 3: Objective bi-level function convergence wrt iterates for the real dataset.

Original Observed

(a)
BINNO: L NMF: L NSA v1: L NSA v2: L

BINNO: |S| NMF: |S| NSA v1: |S| NSA v2: |S|

(b)

Figure 4: (a) Original clip (clip 5 as example) and its noisy observation; (b) Low-rank L
and sparse S matrices into which the observed matrix is decomposed for all the tested
algorithms.

Finally, table 2 summarizes the quantitative results across clips. While
Binno incurs slightly higher time on average, it achieves the lowest recon-
struction error and the highest PSNR. We report PSNR and relative error
as mean±standard deviation over clips; Binno attains the best scores on all
evaluated sequences.
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BINNO: L NMF: L NSA v1: L NSA v2: L

BINNO: |S| NMF: |S| NSA v1: |S| NSA v2: |S|

Figure 5: Low-rank L and sparse S matrices into which the observed matrix is decomposed
for all the tested algorithms, for 6 different clips.

Table 2: Mean±std of the evalueted metrics computed over all clips.
Method Time Reconstruction error PSNR
Binno 4.092±0.3615 0.0663±0.0012 35.16±1.36

NMFLS 3.0769±1.4457 0.0680±0.0025 34.27±1.34
NSA-v1 0.1754±0.05 0.0982±0.0094 28.43±1.53
NSA-v2 0.1903±0.05 0.0982±0.0094 28.43±1.53

6. Conclusion

In this paper, we propose a new approach to solving non-convex and
non-smooth bi-level optimization problems. We introduce a novel algorithm,
called Binno, which is grounded in solid theoretical considerations based
on the use of proximal point methods, descent conditions, and variational
properties of the involved functions. This framework allows Binno to preserve
the descent property of the overall solution of the problem.

We also present a practical application of our theoretical method to the
sparse low-rank approximation problem, which frequently arises in real-world
scenarios where one seeks to extract meaningful information from large data
matrices while maintaining a sparse representation.

Experiments on both synthetic and real datasets demonstrate the effec-
tiveness of Binno compared to several state-of-the-art algorithms in this field,
showing the power of Binno outperforms traditional methods.
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