The University of Southampton
University of Southampton Institutional Repository

Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity

Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity
Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity
The distribution of abundance amongst species with similar ways of life is a classical problem in ecology. The unified neutral theory of biodiversity, due to Hubbell, states that observed population dynamics may be explained on the assumption of per capita equivalence amongst individuals. One can thus dispense with differences between species, and differences between abundant and rare species: all individuals behave alike in respect of their probabilities of reproducing and death. It is a striking fact that such a parsimonious theory results in a non-trivial dominancediversity curve (that is, the simultaneous existence of both abundant and rare species) and even more striking that the theory predicts abundance curves that match observations across a wide range of ecologies. This paper introduces the untb package of R routines, for numerical simulation of ecological drift under the unified neutral theory. A range of visualization, analytical, and simulation tools are provided in the package and these are presented with examples in the paper.
15pp
Hankin, R.K.S.
296864a6-e423-44b6-ad0e-25422c913540
Hankin, R.K.S.
296864a6-e423-44b6-ad0e-25422c913540

Hankin, R.K.S. (2007) Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity. Journal of Statistical Software, 22 (12), 15pp.

Record type: Article

Abstract

The distribution of abundance amongst species with similar ways of life is a classical problem in ecology. The unified neutral theory of biodiversity, due to Hubbell, states that observed population dynamics may be explained on the assumption of per capita equivalence amongst individuals. One can thus dispense with differences between species, and differences between abundant and rare species: all individuals behave alike in respect of their probabilities of reproducing and death. It is a striking fact that such a parsimonious theory results in a non-trivial dominancediversity curve (that is, the simultaneous existence of both abundant and rare species) and even more striking that the theory predicts abundance curves that match observations across a wide range of ecologies. This paper introduces the untb package of R routines, for numerical simulation of ecological drift under the unified neutral theory. A range of visualization, analytical, and simulation tools are provided in the package and these are presented with examples in the paper.

This record has no associated files available for download.

More information

Published date: September 2007

Identifiers

Local EPrints ID: 50708
URI: http://eprints.soton.ac.uk/id/eprint/50708
PURE UUID: 823c9939-00ba-4ba5-9d01-315a5ded77db

Catalogue record

Date deposited: 13 Mar 2008
Last modified: 07 Jan 2022 22:30

Export record

Contributors

Author: R.K.S. Hankin

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×