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Abstract
Human action recognition (HAR) encompasses the task of monitoring human activities 
across various domains, including but not limited to medical, educational, entertainment, 
visual surveillance, video retrieval, and the identification of anomalous activities. Over 
the past decade, the field of HAR has witnessed substantial progress by leveraging con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs) to effectively 
extract and comprehend intricate information, thereby enhancing the overall performance 
of HAR systems. Recently, the domain of computer vision has witnessed the emergence of 
Vision Transformers (ViTs) as a potent solution. The efficacy of Transformer architecture 
has been validated beyond the confines of image analysis, extending their applicability to 
diverse video-related tasks. Notably, within this landscape, the research community has 
shown keen interest in HAR, acknowledging its manifold utility and widespread adoption 
across various domains. However, HAR remains a challenging task due to variations in 
human motion, occlusions, viewpoint differences, background clutter, and the need for 
efficient spatio-temporal feature extraction. Additionally, the trade-off between computa-
tional efficiency and recognition accuracy remains a significant obstacle, particularly with 
the adoption of deep learning models requiring extensive training data and resources. This 
article aims to present an encompassing survey that focuses on CNNs and the evolution of 
RNNs to ViTs given their importance in the domain of HAR. By conducting a thorough 
examination of existing literature and exploring emerging trends, this study undertakes a 
critical analysis and synthesis of the accumulated knowledge in this field. Additionally, it 
investigates the ongoing efforts to develop hybrid approaches. Following this direction, 
this article presents a novel hybrid model that seeks to integrate the inherent strengths of 
CNNs and ViTs.

Keywords  Human action recognition · Convolutional neural networks · Recurrent neural 
networks · Vision transformers · Deep learning · Video classification
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1  Introduction

Human action recognition (HAR) focuses on the classification of the specific actions exhib-
ited within a given video. On the other hand, action detection and segmentation focus on 
the precise localisation or extraction of individual instances of actions from video content 
(Ulhaq et al. 2022). The capacity of deep learning models to effectively capture the spatial 
and temporal complexities inherent in video representations plays a vital role in the recogni-
tion and understanding of actions.

Over the preceding decade, a considerable amount of research has been dedicated to the 
thorough investigation of action recognition, resulting in an extensive collection of review 
articles and survey papers addressing the topic (Pareek and Thakkar 2021; Sun et al. 2022; 
Kong and Fu 2022). However, it is worth noting that a predominant focus of these scholarly 
works has been placed on the examination and evaluation of convolutional neural networks 
(CNNs) and traditional machine learning models within the realm of action recognition.

The advent of Transformer architecture (Vaswani et al. 2017) has sparked a paradigm 
shift in deep learning. By employing a multi-head self-attention layer, the Transformer 
model computes sequence representations by effectively aligning words within the sequence 
with other words in the same sequence (Ulhaq et  al. 2022). This approach outperforms 
traditional convolutional and recursive operations in terms of representation quality while 
utilizing fewer computational resources. As a consequence, the Transformer architecture 
diverges from conventional convolutional and recursive methods, favoring a more focused 
utilization of multiple processing nodes. The incorporation of multi-head attention allows 
the Transformer model to collectively learn a range of representations from diverse perspec-
tives through the collaboration of multiple attention layers. Inspired by Transformers, many 
natural language processing (NLP) tasks have achieved remarkable performance, reaching 
human-level capabilities, as exemplified by models such as GPT (Brown et al. 2020) and 
BERT (Devlin et al. 2019).

The remarkable achievements of Transformers in handling sequential data, particularly 
in the domain of NLP, have prompted the exploration and advancement of Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) (a special Transformer for computer vision tasks). 
ViTs have demonstrated comparable or even superior performance compared to CNNs in 
the context of image recognition tasks, especially when operating on vast datasets such as 
ImageNet (Han et al. 2022; Lin et al. 2022; Khan et al. 2022). This observation signifies a 
noteworthy shift in the field, wherein ViTs possess the potential to supplant the established 
dominance of CNNs in computer vision, mirroring the displacement witnessed in the case 
of recurrent neural networks (RNNs) (Ulhaq et al. 2022). The achievements of Transformer 
models have engendered considerable scholarly interest within the computer vision research 
community, prompting rigorous exploration of their efficacy in pure computer vision tasks.

The natural progression in the advancement of ViTs has led to the logical exploration of 
video recognition tasks. Unlike image recognition, video recognition focuses on the com-
plex challenge of identifying and understanding events within video sequences, including 
the recognition of human actions. Consequently, there is a compelling need for a recent 
review that comprehensively examines the state-of-the-art research including ViTs and 
hybrid models in addition to CNNs and RNNs for HAR. Such a review would serve as a 
crucial guiding resource to shape the future research directions with Transformer and CNN-
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Transformer hybrid architectures beside CNNs which previously were seen as unique and 
influential models for HAR. The main contributions of this paper are as follows.

	● We present a thorough review of the CNNs, RNNs and ViTs. This review examines 
the evolution from traditional methods to the latest advancements in neural network 
architectures.

	● We present an extensive examination of existing literature related to HAR.
	● We propose a novel hybrid model integrating the strengths of CNNs and ViTs. In ad-

dition, we provide a detailed performance comparison of the proposed hybrid model 
against existing models. The analysis highlights the model’s efficacy in handling com-
plex HAR tasks with improved accuracy and efficiency.

	● We also discuss emerging trends and the future direction of HAR technologies, empha-
sizing the importance of hybrid models in enhancing the interpretability and robustness 
of HAR systems.

These contributions enrich the understanding of the current state and future prospects of 
HAR, proposing innovative approaches and highlighting the importance of integrating dif-
ferent neural network architectures to advance the field.

The paper is structured as follows. Section 2 delves into the background, covering foun-
dational concepts and technologies crucial to HAR, including CNNs, RNNs and ViTs, 
highlighting the chronological evolution of HAR deep learning technologies. Section  3 
thoroughly reviews related HAR works with a brief discussion. A novel hybrid model com-
bining CNNs and ViTs is proposed in Sect. 4, including the details of the experimental setup 
and the results. Section 5 discusses the challenges and their implications for future direc-
tions in HAR. Finally, Sect. 6 concludes the paper.

2  Background

This section provides a chronological and technical overview of three fundamental types 
of neural networks: CNNs, RNNs, and Transformers. CNNs, introduced in the late 1980 s, 
revolutionized image processing by leveraging local connectivity and shared weights to 
efficiently detect spatial hierarchies in data. As the field progressed, RNNs emerged in the 
1990 s, addressing the need for modeling sequential data through their ability to maintain 
temporal dependencies across sequences. The advent of Transformers in 2017 marked a 
paradigm shift by utilizing self-attention mechanisms to capture global relationships in data 
more effectively, thereby enhancing performance in a wide array of tasks beyond sequen-
tial data. This background section will delve into the technical intricacies and evolutionary 
trajectory of these architectures, highlighting their contributions and transitions in the realm 
of deep learning.

2.1  CNNs

The evolution of CNNs has been remarkable since their introduction in the 1980 s. Origi-
nally, CNNs were designed to process static images, primarily focusing on spatial recog-
nition tasks such as object and pattern recognition. The initial idea was to build layers of 
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convolutional filters that would apply various operations to the image to extract features like 
edges, textures, and shapes. This structure proved highly effective for tasks like image clas-
sification, object detection, image segmentation and more in computer vision.

The Neocognitron (Fukushima 1980), developed by Kunihiko Fukushima, presented an 
early example of neural networks incorporating convolutional operations for image pro-
cessing, setting the foundations for subsequent progress. Later, Yann LeCun and collabora-
tors introduced LeNet-5 (LeCun et al. 1998), a key architecture designed for handwritten 
digit recognition, showcasing the effectiveness of convolutional layers in pattern recog-
nition tasks. The progress of CNNs reached a turning point in the mid-2010  s with the 
introduction of models like AlexNet (Krizhevsky et al. 2012), showcasing their potential in 
image classification tasks. Alongside architectural innovations, this milestone was achieved 
thanks to access to large datasets, notably, ImageNet (Deng et al. 2009), and computational 
improvements, including the rise of graphics processing units (GPUs) for parallel comput-
ing. Large-scale datasets provided the diversity and complexity necessary for training deep 
networks, while enhanced computational power accelerated the training of sophisticated 
CNN architectures.

The architectural enhancements, large datasets, and increased computational capabilities 
helped CNNs to be a cornerstone in deep learning methodologies, extending their appli-
cations beyond image processing to various domains. Notable architectures like VGGNet 
(Simonyan and Zisserman 2014a), distinguished by its uniform design and small convolu-
tional filters, GoogLeNet (Szegedy et al. 2015), with its inception modules for capturing 
features at different scales efficiently, and ResNet (He et al. 2016), which introduced resid-
ual learning for training very deep networks, have further enriched the landscape of CNNs.

2.1.1  Spatio-temporal CNNs

As CNNs excelled in spatial tasks, researchers began exploring their potential in handling 
temporal data, such as video and time-series analysis. The challenge was to incorporate the 
dimension of time into the inherently spatial architecture of CNNs. To address this task, 
spatio-temporal CNNs were developed. These networks extend traditional CNN architec-
tures by adding a temporal component to analyze dynamic behaviors across time frames. 
Several approaches have been utilized and main types are as follows.

3D convolution involves extending the 2D kernels to 3D, allowing the network to per-
form convolution across both spatial and temporal dimensions. This approach is directly 
applied to video data where the third dimension represents time (Hara et al. 2018; Tran et al. 
2015). The two-stream CNNs involve running two parallel CNN streams: one for spatial 
processing of individual frames and another for temporal processing, usually of optical flow, 
which captures motion between frames (Simonyan and Zisserman 2014a; Feichtenhofer 
et al. 2016). RNNs with CNNs aim to combine CNNs for spatial processing with RNNs like 
long short-term memory (LSTM) or gated recurrent unit (GRU) to handle temporal depen-
dencies. This hybrid model leverages CNNs’ ability to extract spatial features and RNNs’ 
capacity to manage temporal sequences effectively (Yue-Hei Ng et al. 2015; Donahue et al. 
2015).
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2.2  From vanilla RNN to attention-based transformers

This section explores the evolution from RNNs to the Transformers, highlighting the pro-
gression in handling time series and sequence data. Initially, RNNs were the go-to deep 
learning technique for managing temporal tasks, effectively capturing sequential dependen-
cies. However, the development of Transformers marked a significant leap forward, driven 
by a series of iterative improvements and optimizations that built upon the limitations of 
RNNs. Transformers, with their focus on NLP, introduced a novel attention mechanism 
that allows for more efficient and scalable processing of sequential data. By examining the 
foundational RNN techniques and the subsequent enhancements leading to the Transformer 
architecture, this section elucidates the transformative journey from traditional RNN mod-
els to the sophisticated attention-based frameworks that now dominate the field.

We firstly establish common notations for RNN architectures including vanilla RNNs, 
LSTM and GRU to streamline discussions in subsequent sections. In these architectures, 
each iteration involves a cell that sequentially processes an input embedding xt ∈ Rnx  
and retains information from the previous sequence through the hidden state ht−1 ∈ Rnh  
using weight matrices W ∈ Rnh×nh  and U ∈ Rnh×nx . The W -like matrices encompass 
all weights related to hidden-to-hidden connections, while U -like matrices encompass all 
weight matrices related to input-to-hidden connections. Additionally, bias terms are rep-
resented by b-like vectors. Each cell produces a new hidden state ht ∈ Rnh  as its output. 
More details about symbols and variables used in this section are given in Table 1.

2.2.1  Vanilla RNNs

Vanilla RNNs (Rumelhart et al. 1985; Jordan 1986) lack the presence of a cell state, rely-
ing solely on the hidden states as the primary means of memory retention within the RNN 
framework. The hidden state ht is subsequently updated and propagated to the subsequent 
cell, or alternatively, depending on the specific task at hand, it can be employed to generate 
a prediction. Figure 1a illustrates the internal mechanisms of an RNN and a mathematical 
description of it given as

	 ht = tanh(W ht−1 + Uxt + b),� (1)

where tanh is the activation function.
Vanilla RNNs effectively incorporate short-term dependencies of temporal order and 

past inputs in a meaningful manner. However, they are characterized by certain limitations. 
Firstly, due to their intrinsic sequential nature, RNNs pose challenges in parallelized com-
putations (Graves et al. 2013). Consequently, this limitation can impose restrictions on the 
overall speed and scalability of the network. Secondly, when processing lengthy sequences, 
the issue of exploding or vanishing gradients may arise, thereby impeding the stable training 
of the network (Bengio et al. 1994).

2.2.2  LSTM

Hochreiter and Schmidhuber (1997) introduced the LSTM cell as a solution to address the 
issue of long-term dependencies and to mitigate the challenge of interdependencies among 
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Symbol Definition
xt ∈ Rnx Input embedding at time t
ht ∈ Rnh Hidden state at time t
W ∈ Rnh×nh Weight matrix for hidden-to-hidden connections

U ∈ Rnh×nx Weight matrix for input-to-hidden connections
b ∈ Rnh Bias vector
it ∈ Rnh Output of the sigmoid activation function at time t in the input gate in LSTM cell
ot ∈ Rnh Output of the output gate at time t in LSTM cell
ct ∈ Rnh Cell state at time t in LSTM cell
c̃t ∈ Rnh Candidate cell state at time t in LSTM cell
zt ∈ Rnh Output of the update gate in GRU at time t
rt ∈ Rnh Output of the reset gate in GRU at time t

h̃t ∈ Rnh Candidate hidden state in GRU at time t

W f ∈ Rnh×nh Weight matrix for forget gate in LSTM cell

Uf ∈ Rnh×nx Weight matrix for forget gate input in LSTM cell
bf ∈ Rnh Bias for forget gate in LSTM cell
W i ∈ Rnh×nh Weight matrix for input gate in LSTM cell

U i ∈ Rnh×nx Weight matrix for input gate input in LSTM cell
bi ∈ Rnh Bias for input gate in LSTM cell
W o ∈ Rnh×nh Weight matrix for output gate in LSTM cell

Uo ∈ Rnh×nx Weight matrix for output gate input in LSTM cell
bo ∈ Rnh Bias for output gate in LSTM cell
W c̃ ∈ Rnh×nh Weight matrix for candidate cell state in GRU cell

U c̃ ∈ Rnh×nx Weight matrix for candidate cell state input in GRU cell
bc̃ ∈ Rnh Bias for candidate cell state in GRU cell
W z ∈ Rnh×nh Weight matrix for update gate in GRU cell

Uz ∈ Rnh×nx Weight matrix for update gate input in GRU cell
bz ∈ Rnh Bias for update gate in GRU cell
W r ∈ Rnh×nh Weight matrix for reset gate in GRU cell

Ur ∈ Rnh×nx Weight matrix for reset gate input in GRU cell
br ∈ Rnh Bias for reset gate in GRU cell
W h̃ ∈ Rnh×nh Weight matrix for candidate hidden state in GRU cell

U h̃ ∈ Rnh×nx Weight matrix for candidate hidden state input in GRU cell
bh̃ ∈ Rnh Bias for candidate hidden state in GRU cell
dk ∈ N Dimension of the keys

Q ∈ Rnx×dk A set of query vectors

K ∈ Rnx×dk A set of key vectors

V ∈ Rnx×dk A set of value vectors

X ∈ Rnx×dx Input matrix (sequence of embeddings)

W Q ∈ Rdx×dk Weight matrix for queries

W K ∈ Rdx×dk Weight matrix for keys

W V ∈ Rdx×dk Weight matrix for values

A ∈ Rnx×dv Attention output

Qi ∈ Rnx×dk Query matrix for the i-th attention head

Table 1  List of mathematical symbols and variables used in Sect. 2

1 3

  387   Page 6 of 44



CNNs, RNNs and Transformers in human action recognition: a survey and…

successive steps (Hochreiter and Schmidhuber 1997). LSTM architecture incorporates a 
distinct component known as the cell state ct ∈ Rnh , illustrated in Fig. 1b. Analogous to a 
freeway, this cell state facilitates the smooth flow of information, ensuring that it can readily 
traverse without undergoing significant alterations.

Gers et al. (2000) made modifications to the initial LSTM architecture by incorporating a 
forget gate within the cell structure. The mathematical expressions describing this modified 
LSTM cell are derived from its inner connections. Hence, the LSTM cell can be formally 
represented based on the depicted interconnections as follows.

	● Forget gate decides what information should be thrown away or kept from the cell state 
with the equation 

	 f t = σ(W f ht−1 + Uf xt + bf ),� (2)

 where f t ∈ Rnh  is the output of the forget gate and σ is the sigmoid activation function.

	● Input gate determines which new information is added to the cell state with two activa-
tion functions defined as 

	 it = σ(W iht−1 + U ixt + bi),� (3)

 where it ∈ Rnh  is the output of the sigmoid activation function; and 

	 c̃t = tanh(W c̃ht−1 + U c̃xt + bc̃),� (4)

Fig. 1  Various types of RNN cells

 

Symbol Definition
Ki ∈ Rnx×dk Key matrix for the i-th attention head

V i ∈ Rnx×dk Value matrix for the i-th attention head

W Q
i ∈ Rdx×dk Weight matrix for queries in the i-th attention head

W K
i ∈ Rdx×dk Weight matrix for keys in the i-th attention head

W V
i ∈ Rdx×dk Weight matrix for values in the i-th attention head

Ai ∈ Rnx×dv Attention output for the i-th attention head

Table 1  (continued) 
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 where c̃t ∈ Rnh  is known as candidate value. After obtaining it and c̃t, we can update the 
cell state with 

	 ct = f t ⊙ ct−1 + it ⊙ c̃t,� (5)

 where ct−1 ∈ Rnh  is the previous cell state and ⊙ is the Hadamard operator.

	● Output gate determines the next hidden state based on the cell state and output gate’s 
activity 

	 ot = σ(W oht−1 + Uoxt + bo),� (6)

 where ot ∈ Rnh  is the output of the output gate. Finally the updated hidden state, 

	 ht = tanh(ct) ⊙ ot� (7)

 is fed to the next iteration.
To enable selective information retention, LSTM employs three distinct gates. The first 
gate, known as the forget gate, examines the previous hidden state ht−1 and the current 
input xt. It generates a vector f t containing values between 0 and 1, determining the por-
tion of information to discard from the previous cell state ct−1. The second gate, referred to 
as the input gate, follows a similar process to the forget gate. However, instead of discard-
ing information, it utilizes the output it to determine the new information to be stored in 
the cell state based on a candidate cell state c̃t. Lastly, the output gate employs the output 
ot to filter the updated cell state ct, thereby transforming it into the new hidden state ht. 
The LSTM cell exhibits superior performance in retaining both long-term and short-term 
memory compared to the vanilla RNN cell. However, this advantage comes at the expense 
of increased complexity.

2.2.3  GRU

The LSTM cell surpasses the learning capability of the conventional recurrent cell, yet the 
additional number of parameters escalates the computational load. Consequently, to address 
this concern, Chung et al. (2014) introduced the GRU, see Fig. 1c. GRU demonstrates com-
parable performance to LSTM while offering a more computationally efficient design with 
fewer weights. This is achieved by merging the cell state and the hidden state into “reset 
state" resulting in a simplified architecture. Furthermore, GRU combines the forget and 
input gates into an “update gate", contributing to a more streamlined computational process. 
For further elaboration, GRU cell incorporates two essential gates. The first gate is the reset 
gate, which examines the previous hidden state ht−1 and the current input xt. It generates a 
vector rt containing values between 0 and 1, determining the extent to which past informa-
tion in ht−1 should be disregarded. The second gate is the update gate, which governs the 
selection of information to either retain or discard when updating the new hidden state ht, 
based on the value of rt.

Based on the depicted information in Fig. 1c, the mathematical expressions governing 
the behavior of the GRU cell can be expressed as follows.
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	● Update gate decides how much of the past information needs to be passed along with 

	 zt = σ(W zht−1 + Uzxt + bz),� (8)

 where zt ∈ Rnh  is the output of the update gate. The output of the reset gate rt ∈ Rnh  is 
obtained by 

	 rt = σ(W rht−1 + U rxt + br).� (9)

 A candidate activation for the subsequent step is 

	 h̃t = tanh(W h̃(rt ⊙ ht−1) + U h̃xt + bh̃)� (10)

 where h̃t ∈ Rnh .

	● The final activation is a blend of the previous hidden state and the candidate activation, 
weighted by the update gate, i.e., 

	 ht = zt ⊙ h̃t + (1 − zt) ⊙ ht−1� (11)

 where ht ∈ Rnh  is the updated hidden state. This mechanism allows the GRU to effectively 
retain or replace old information with new information.

2.2.4  Types of RNNs

RNNs were created with an internal memory mechanism that allows them to store and 
use information from previous outputs. This unique trait enables RNNs to retain important 
contextual information over time, enabling reasoned decision-making based on past results. 
There are four types of popular RNN variants that each serve different purposes across a 
variety of applications, see Fig. 2. For simplicity, xi and yi respectively represent the input 
and output with i = 1, . . . , t in Fig. 2.

The one-to-one is considered the simplest form of RNNs, where a single input corre-
sponds to a single output. It operates with fixed input and output sizes, functioning similarly 
to a standard neural network. One-to-many represents a specific category of RNNs that is 
characterized by its ability to produce multiple outputs based on a single input provided to 
the model. This type of RNN is particularly useful in applications like image captioning, 
where a fixed input size results in a series of data outputs. Many-to-one RNNs merge a 

Fig. 2  Types of RNN structures based on input–output pairs. Here xi and yi, i = 1, . . . , t, represent the 
input and output, respectively

 

1 3

Page 9 of 44    387 



K. Alomar et al.

sequence of inputs into a single output through a series of hidden layers that learn relevant 
features. An illustrative instance of this RNN type is sentiment analysis, where the model 
analyzes a sequence of text inputs and produces a single output indicating the sentiment 
expressed in the text.

Many-to-many RNNs are employed to generate a sequence of output data from a 
sequence of input units. It can be categorized into two subcategories: equal size and unequal 
size. In the equal size subcategory, the input and output layers have the same size, see 
many-to-many architecture in Fig. 2c. Several research efforts have emerged to tackle the 
limitation of the fixed-size input–output sequences in machine translation tasks, as they fail 
to adequately represent real-world requirements. The unequal size subcategory can handle 
different sizes of inputs and outputs. A practical application of the unequal size subcategory 
can be observed in machine translation. In this scenario, the model generates a sequence of 
translated text outputs based on a sequence of input sentences. Unequal size subcategory 
employs an encoder-decoder architecture, where the encoder adopts the many-to-one archi-
tecture, and the decoder adopts the one-to-many architecture. One notable contribution in 
this area was made by Kalchbrenner and Blunsom (2013), who pioneered the approach of 
mapping the entire input sentence to a vector. This work is related to the study conducted 
by Cho et al. (2014), although the latter was specifically utilized to refine hypotheses gen-
erated by a phrase-based system (Sutskever et al. 2014). In this architecture, the encoder 
component plays a crucial role in transforming the inputs into a singular vector, commonly 
referred to as the context. This context vector, typically with a length of 256, 512 or 1024, 
encapsulates all the pertinent information detected by the encoder from the input sentence, 
which serves as the translation target, see Fig. 3a. Subsequently, this vector is passed on to 
the decoder, which generates the corresponding output sequence. It is important to note that 
both the encoder and decoder components in this architecture are RNNs. Different from 
Fig. 3a, b gives the encoder-decoder architecture with attention which will be introduced in 
the next section.

2.2.5  Attention

The evolution of attention mechanisms in neural networks represents a significant advance-
ment in the field of deep learning, particularly in tasks related to NLP and machine trans-
lation. Initially introduced by Graves (2013), the concept of attention mechanisms was 
designed to enhance the model’s ability to focus on specific parts of the input sequence when 
generating an output, mimicking the human ability to concentrate on particular aspects of a 

Fig. 3  Sequence-to-sequence RNN with and without the attention mechanism. Here αi, i = 1, . . . , t, are 
the attention weights
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task. This foundational work laid the groundwork for subsequent developments in attention 
mechanisms, providing a mechanism for models to dynamically assign importance to dif-
ferent parts of the input data.

Building on Graves’ initial concept, Bahdanau et al. (2014) introduced the additive atten-
tion mechanism, which was specifically designed to improve machine translation. This 
approach computes the attention weights through a feed-forward neural network, allowing 
the model to consider the entire input sequence and determine the relevance of each part 
when translating a segment. This additive form of attention significantly improved the per-
formance of sequence-to-sequence models by enabling a more nuanced understanding and 
alignment between the input and output sequences (Sutskever et al. 2014). Following this, 
Luong et al. (2015) proposed the multiplicative attention mechanism, also known as dot-
product attention, which simplifies the computation of attention weights by calculating the 
dot product between the query and all keys. This method not only streamlined the attention 
mechanism but also offered improvements in computational efficiency and performance 
in various NLP tasks, marking a pivotal moment in the evolution of attention mechanisms 
from their inception to more sophisticated and efficient variants.

The central idea of the attention mechanism is to shift focus from the task of learning 
a single vector representation for each sentence. Instead, it adopts a strategy of selectively 
attending to particular input vectors in the input sequence, guided by assigned attention 
weights. This strategy enables the model to dynamically allocate its attention resources to 
the most pertinent segments of the sequence, thereby improving its capacity to process and 
comprehend the information more efficiently (Brauwers and Frasincar 2021).

One possible explanation for the improvement is that the attention layer created memo-
ries associated with the context pattern rather than memories associated with the input itself, 
relieving pressure on the RNN model structure’s weights and causing the model memory to 
be devoted to remembering the input rather than the context pattern (Hu et al. 2018).

2.2.6  Self-attention

To this point, attention mechanisms in sequence-transformation models have primarily 
relied on complex RNNs, featuring an encoder and a decoder, the most successful models 
in language translation yet. However, Vaswani et al. (2017) introduced a simple network 
architecture known as the Transformer, see Fig.  4, which exclusively utilized attention 
mechanism, eliminating the need for RNNs. They introduced a novel attention mechanism 
called self-attention, which is also known as KQV-attention (Key, Query, and Value). This 
attention mechanism subsequently gained prominence as a central component within the 
Transformer architecture. The attention mechanism stands out due to its ability to provide 
Transformers with an extensive long-term memory. In the Transformer model, it becomes 
possible to focus on all previously generated tokens.

The embedding layer in a Transformer model is the initial stage where input tokens are 
transformed into dense vectors, capturing semantic information about each token’s meaning 
and context within the text. These embeddings serve as the foundation for subsequent lay-
ers to process and understand the relationships between words in the input sequence (Dar 
et al. 2022).

Self-attention is a mechanism that allows an input sequence to process itself in a way 
that each position in the sequence can attend to all positions within the same sequence. 
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This mechanism is a cornerstone of the Transformer architecture, which has revolutionized 
NLP and beyond by enabling models to efficiently handle sequences of data with complex 
dependencies. The purpose of self-attention is to compute a representation of each element 
in a sequence by considering the entire sequence, thereby capturing the contextual relation-
ships between elements regardless of their positional distance from each other. This ability 
to capture both local and global dependencies makes self-attention particularly powerful 
for tasks such as machine translation, text summarization, and sequence prediction, where 
understanding the context and the relationship between words or elements in a sequence is 
crucial (Vaswani et al. 2017).

The mathematical formulation of self-attention involves several key steps. First, a set of 
query vectors Q = XW Q, a set of key vectors K = XW K , and a set of value vectors 
V = XW V  are calculated through linear transformations of the input sequence, where X  
is the input matrix representing embeddings of tokens in a sequence, and W Q,W K , and 
W V  are weight matrices for queries, keys, and values, respectively. The attention scores are 
then calculated by taking the dot product of the query vector with all key vectors, followed 
by scaling the result by the inverse square root of the dimension of the keys (say 

√
dk) to 

avoid overly large values. These scores are then passed through a softmax function to obtain 
the attention weights, which represent the importance of each element’s contribution to the 
output. Finally, the output say A is computed as a weighted sum of the value vectors, i.e.,

	
A(Q, K, V ) = softmax(QK⊤

√
dk

)V .� (12)

Fig. 4  Transformer architecture and its self-attention mechanism (adapted from Vaswani et al. 2017)
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This process allows the model to dynamically focus on different parts of the input sequence, 
enabling the extraction of rich contextual information from the sequence.

2.2.7  Multi-head-attention

Multi-head attention is an extension of the self-attention mechanism designed to allow the 
model to jointly attend the information from different representation subspaces at different 
positions (Vaswani et al. 2017). Instead of performing a single attention function, it runs the 
attention mechanism multiple times in parallel. The outputs of these independent attention 
computations are then concatenated and linearly transformed into the expected dimension. 
The mathematical formulation of the multi-head attention can be described in the following 
steps. First, for the i-th self-attention head, find

	 Qi = XW Q
i , Ki = XW K

i , V i = XW V
i ,� (13)

and then compute

	
Ai(Qi, Ki, V i) = softmax

(
QiK

⊤
i√

dk

)
V i.� (14)

The multi-head attention is obtained by concatenating all Ai(Qi, Ki, V i).
The multi-head attention mechanism enables the model to capture different types of infor-

mation from different positions of the input sequence. By processing the sequence through 
multiple attention “heads", the model can focus on different aspects of the sequence, such 
as syntactic and semantic features, simultaneously. This capability enhances the model’s 
ability to understand and represent complex data, making multi-head attention a powerful 
component of Transformer-based architectures (Devlin et al. 2019).

2.3  From transformer to vision transformer

The journey from the inception of the Transformer model to the development of the ViT 
marks a pivotal advancement in deep learning, showcasing the adaptability of models ini-
tially designed for sequence data processing to the realm of image analysis. This transition 
underscores a significant shift in approach, from conventional image processing techniques 
to more sophisticated sequence-based methodologies.

Introduced by Vaswani et  al. (2017) through the seminal paper “Attention Is All You 
Need", the Transformer model revolutionized NLP by leveraging self-attention mecha-
nisms. This innovation allowed for the processing of sequences of data without the reliance 
on recurrent layers, facilitating unprecedented parallelization and significantly reducing 
training times for large datasets. The Transformer’s success in NLP sparked curiosity about 
its potential applicability across different types of data, including images, setting the stage 
for a transformative adaptation.

The adaptation of Transformers for image data pivoted on a novel concept: treating 
images not as traditional 2D arrays of pixels but as sequences of smaller and discrete image 
patches. This approach, however, faced computational challenges due to the self-attention 
mechanism’s quadratic complexity with respect to input length. The breakthrough came 
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with the introduction of the ViT by Dosovitskiy et al. (2020), which applied the Transformer 
architecture directly to images, see Fig. 5. By dividing an image into fixed-size patches and 
processing these patches as if they were tokens in a text sequence, ViT was able to capture 
complex relationships between different parts of an image using the Transformer’s encoder.

The operational mechanics of ViT begin with the division of an input image into fixed-
size patches, each of which is flattened and linearly transformed into a vector, effectively 
converting the 2D image into a 1D sequence of embeddings. To account for the lack of 
inherent positional awareness within the Transformer architecture, positional embeddings 
are added to these patch embeddings, ensuring the model retains spatial information. The 
sequence of embeddings is then processed through the Transformer encoder, which consists 
of layers of multi-head self-attention and feed-forward neural networks, allowing the model 
to dynamically weigh the importance of each patch relative to others for a given task.

For tasks like image classification, the output from the Transformer encoder is passed 
through a classification head, often utilizing a learnable “class token" appended to the 
sequence of patch embeddings for this purpose. The model is trained on large datasets using 
backpropagation and, during inference, processes images through these steps to predict their 
classes.

The ViT not only demonstrates exceptional performance on image classification tasks, 
often surpassing CNNs when trained on extensive datasets, but also highlights the Trans-
former architecture’s capacity to capture the global context within images. Despite its 
advantages, ViT’s reliance on substantial computational resources for training and its need 
for large datasets to achieve optimal performance present challenges. Nonetheless, the 
development of ViT signifies a significant milestone in the application of sequence process-
ing models to the field of computer vision, opening new avenues for research and practical 
applications.

The original ViT, designed for static image processing, divides images into patches 
and interprets these as sequences, leveraging the Transformer’s self-attention mechanism 
to understand complex spatial relationships. Extending this model to action recognition 

Fig. 5  The ViT architecture (adapted from Dosovitskiy et al. 2020)
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involves adapting it to analyze video frames sequentially to capture both spatial and tem-
poral relationships. Several works attempted to adapt ViT in action recognition task using 
different methods as below.

Temporal dimension integration. The integration of the temporal dimension is a funda-
mental step in adapting ViT for action recognition. Traditional ViT models process images 
as a series of patches, treating them essentially as sequences for the self-attention mecha-
nism to analyze spatial relationships. By extending this concept to include the temporal 
dimension, the models can now treat videos as sequences of frame patches over time. This 
allows the models to capture the evolution of actions across frames. The work by Bertasius 
et al. (2021) highlights the potential of incorporating temporal information into Transform-
ers, marking a significant advancement in video analysis capabilities.

Spatio-temporal embeddings. To effectively capture the dynamics of actions within vid-
eos, adapted ViT models generate spatiotemporal embeddings. This involves extending the 
traditional positional embeddings used in ViTs to also include temporal positions, thereby 
creating embeddings that account for both spatial and temporal information within video 
sequences. The discussion by Arnab et al. (2021) on the creation of these spatio-temporal 
embeddings showcases the method’s effectiveness in enhancing the model’s understanding 
of action dynamics across both space and time.

Multi-head self-attention across time. The extension of self-attention mechanisms to 
analyze relationships between patches not just within individual frames but also across dif-
ferent frames is crucial for recognizing actions over time. This approach enables the model 
to identify relevant features and changes across the video sequences, facilitating a deeper 
understanding of motion and the progression of actions. The exploration by Bertasius et al. 
(2021) of this concept demonstrates how Transformers can be effectively adapted to capture 
the temporal dynamics of actions, a key aspect of video analysis.

2.3.1  Autoencoders in HAR

Autoencoders, particularly sequence-to-sequence architectures, have been instrumental in 
capturing complex temporal dynamics in HAR tasks. In the context of RNN-based mod-
els, autoencoders have been utilized to effectively learn compressed representations of 
input sequences through the encoder-decoder framework. By mapping input sequences to a 
latent representation and reconstructing them from that compressed state, autoencoders are 
capable of learning essential features while discarding irrelevant information. This ability 
has been particularly valuable for HAR applications involving noise reduction, anomaly 
detection, and feature extraction. As Transformer-based models gained popularity, autoen-
coders evolved to leverage attention mechanisms for improved performance. Transformer-
based encoders, such as ViTs and their derivatives, apply self-attention mechanisms within 
the encoder framework to enhance the extraction of spatial and temporal features. Unlike 
traditional RNN-based autoencoders, which process sequences sequentially, Transformer-
based encoders can simultaneously process all input elements, enabling them to capture 
long-range dependencies more effectively. This parallel processing capability significantly 
improves training efficiency and enhances the ability to model complex temporal relation-
ships. The transition from RNN-based to ViTs has marked a substantial improvement in 
HAR performance, particularly in handling large-scale datasets and learning rich hierarchi-
cal representations.
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3  Literature review

This section briefly recalls the most commonly used deep learning-based HAR approaches.

3.1  CNN-based approaches in HAR

This section recalls the most prominent CNN-based approaches in HAR based on the model 
type (i.e., the two-stream CNN, 3D CNN, and RNNs with CNNs), organized chronologically.

Deep learning was still in its early stages in 2012, and CNNs or RNNs had not yet gained 
significant popularity in the field of HAR. The focus was primarily on traditional machine 
learning approaches, such as support vector machines (Cortes and Vapnik 1995), and hand-
crafted features, such as histogram of oriented gradients (Dalal and Triggs 2005) and histo-
gram of optical flow (Barron et al. 1994). A few studies did, nevertheless, start looking into 
neural networks for action recognition.

In 2014, the use of CNNs in action recognition was at a pivotal stage, marking a shift 
from hand-crafted feature-based methods to deep learning approaches. The key points of 
the use of CNNs in action recognition at that period of time are the following. (I) Emer-
gence of deep learning: deep learning, particularly CNNs, had started to dominate image 
classification tasks, thanks to their ability to learn feature representations directly from raw 
pixel data. This success in static images paved the way for applying CNNs to video data 
for action recognition. (II) Challenges in video data: unlike 2D images, videos incorporate 
a third dimension which represents the temporal patterns, making action recognition more 
complex. CNNs had to be adapted to not only recognize spatial patterns but also capture 
motion information over time dimension. (III) Datasets and benchmarks: the adoption of 
large-scale video datasets like UCF-101 (Soomro et al. 2012) and HMDB-51 (Kuehne et al. 
2011) became more common. These datasets provided diverse sets of actions and were large 
enough to train deep networks. The performance on these benchmarks has been becoming 
a key measure of progress for action recognition models. (IV) Transfer learning: due to 
the computational expense of training CNNs from scratch and the relatively smaller size 
of video datasets compared to image datasets, transfer learning became a popular strat-
egy. Networks pre-trained on large image datasets like ImageNet (Deng et al. 2009) were 
fine-tuned on video frames for action recognition tasks. (V) Computational constraints: 
despite the promise of CNNs, computational constraints were a significant challenge. Train-
ing deep networks required significant GPU power, and processing video data with CNNs 
was resource-intensive. This limited the complexity of the models that could be trained and 
the size of the datasets that could be used.

3.1.1  Two-stream CNNs

Simonyan and Zisserman (2014a) presented an innovative approach to recognize actions in 
video sequences by using a two-stream CNN architecture. This approach divides the task 
into two distinct problems: recognizing spatial features from single frames and capturing 
temporal features across frames. The spatial stream CNN processes static visual informa-
tion, while the temporal stream CNN handles motion by analyzing optical flow. The model 
was tested on benchmark datasets like UCF-101 and HMDB-51, where it achieved state-
of-the-art results, showcasing the effectiveness of this two-stream method. The novelty of 
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this work lies in the separation of motion and appearance features, which allows for more 
specialized networks that can better capture the complexities of video-based action recogni-
tion. The success of this model has made a significant impact on the field, influencing many 
future research directions in video understanding. Consequently, numerous methods have 
been proposed to enhance the the two-stream model (Wang et al. 2015; Feichtenhofer et al. 
2016; Wang et al. 2016; Peng et al. 2018; Wang et al. 2017).

In 2016, building on the the two-stream CNN, Feichtenhofer et al. (2016) focused on 
improving the two-stream CNN by exploring various fusion strategies for combining spa-
tial and temporal streams, resulting in better performance on the UCF-101 and HMDB-51 
datasets. By enhancing fusion techniques, this work addressed the limitations of the initial 
two-stream model, leading to more effective integration of spatial and temporal informa-
tion. Wang et al. (2016) introduced temporal segment networks (TSN). This work aimed 
to capture long-range temporal structures for action recognition, achieving significant 
improvements on the UCF-101 and HMDB-51 datasets by dividing videos into segments 
for comprehensive analysis. The introduction of TSN extended the temporal analysis capa-
bilities of the two-stream CNN, enabling the capture of long-range dependencies.

In 2017, derived from the two-stream CNN, Cosmin  Duta et  al. (2017) proposed a 
three-stream method by using spatio-temporal vectors, with locally max-pooled features to 
enhance performance. Tested on the UCF-101 and HMDB-51 datasets, the approach dem-
onstrated improved recognition accuracy by efficiently capturing spatio-temporal dynamics. 
In 2018, the efficient convolutional network for online video understanding (ECO) was 
introduced by Zolfaghari et al. (2018), combining the two-stream CNN approach with light-
weight 3D CNNs, and focusing on efficiency and real-time processing, with high efficiency 
and competitive accuracy demonstrated on the Kinetics and UCF-101 datasets.

Feichtenhofer et al. (2019) introduced the SlowFast network which processes video data 
at varying frame rates to capture both spatial semantics and motion dynamics, achieving 
state-of-the-art results on the Kinetics-400 and Charades datasets. By introducing different 
temporal resolutions, this work innovated on the two-stream concept, capturing fine and 
coarse temporal details. Wang et al. (2018a) expanded on their previous work with TSN, 
developing a multi-stream approach that incorporated RGB, optical flow, and warped opti-
cal flow streams to model long-range temporal structures more effectively. This approach 
achieved state-of-the-art results by capturing both spatial and temporal information across 
various time scales. In 2021, temporal difference networks (TDN) were introduced by Wang 
et al. (2021a), leveraging the multi-stream CNN with a focus on capturing motion dynamics 
efficiently. Using the UCF-101 and HMDB-51 datasets, TDN achieved notable improve-
ments by effectively modeling temporal differences. By emphasizing temporal differences, 
this work advanced the ability of the two-stream CNN to capture motion dynamics more 
effectively. Hussain et  al. (2023) presented a novel approach for HAR in low-light and 
complex environments. It integrates a lightweight CNN for enhancing low-light frames, 
YOLOv7-Tiny for human detection, and a dual-stream network combining CNN and trans-
former features. These features are processed using a custom Optimized Parallel Sequential 
Temporal Network (OPSTN) with squeeze-and-excitation attention for efficient recogni-
tion. The model achieved superior performance on HMDB51, UCF50, and YouTube Action 
datasets, outperforming many existing state-of-the-art methods.

Table 2 presents the works discussed in this section that utilized two or more stream 
CNNs approaches.
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3.1.2  3D CNN-based approaches

The foundational work conducted by Ji et al. (2012) introduced 3D CNNs for HAR, dem-
onstrating their effectiveness in capturing spatio-temporal features on the KTH and UCF-
101 datasets and outperforming traditional 2D CNNs. The work paved the way for further 
research on enhancing 3D convolutional models. Tran et  al. (2015) introduced C3D, a 
generic 3D CNN for spatio-temporal feature learning, achieving state-of-the-art perfor-
mance on the Sports-1 M and UCF-101 datasets and highlighting the scalability and effec-
tiveness of 3D convolutions. Building on the work by Ji et al. (2012), C3D demonstrated 

Paper Model Dataset Novelty
Simonyan 
and 
Zisserman 
(2014a)

Two-stream 
CNN

UCF-101, 
HMDB-51

Introduced the two-
stream architecture 
separating spatial 
and temporal streams 
for effective action 
recognition

Feich-
tenhofer 
et al. 
(2016)

Two-stream 
CNN

UCF-101, 
HMDB-51

Explored various fusion 
strategies to combine 
spatial and temporal 
streams, and improved 
performance

Wang 
et al. 
(2016)

Two-stream 
CNN + TSN

UCF-101, 
HMDB-51

Introduced TSN to cap-
ture long-range temporal 
structures by dividing 
videos into segments

Cos-
min Duta 
et al. 
(2017)

Three-
Stream 
CNN

UCF-101, 
HMDB-51

Proposed a three-stream 
method using spatio-
temporal vectors with 
locally max-pooled 
features for enhanced 
performance

 Zol-
faghari 
et al. 
(2018)

Two-stream 
CNN + 3D 
CNN

Kinetics, 
UCF-101

Combined the two-
stream CNN with 
lightweight 3D CNNs 
for efficient real-time 
processing

Feich-
tenhofer 
et al. 
(2019)

Two-stream 
CNN + 
SlowFast

Kinetics-400, 
Charades

Introduced SlowFast 
networks processing 
video data at varying 
frame rates to capture 
both spatial and motion 
dynamics

Wang 
et al. 
(2018a)

CNN-RNN, 
(Multi-
stream TSN)

UCF101, 
HMDB51

Expanded on TSN by 
developing a multi-
stream approach that 
incorporated RGB, 
optical flow, and warped 
optical flow streams to 
model long-range tem-
poral structures more 
effectively

Wang 
et al. 
(2021a)

Multi-
stream CNN 
+ TDN

Something-
Something V1 
and V2

Introduced TDN focus-
ing on capturing motion 
dynamics efficiently

Table 2  Two-stream CNN-based 
approaches in HAR
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the potential of 3D CNNs across diverse datasets, influencing subsequent research in 3D 
CNNs. Varol et al. (2017) introduced long-term temporal convolutions to capture extended 
motion patterns. This work improved the accuracy on the UCF-101 and HMDB-51 datas-
ets and emphasized the importance of long-term motion information. Moreover, this study 
extended the temporal scope of 3D CNNs, highlighting the need for capturing long-term 
motion for accurate action recognition. In the same year, Qiu et al. (2017) proposed pseudo-
3D residual networks (P3D), which combined 2D and 3D convolutions to balance the accu-
racy and computational complexity. This work achieved competitive performance on the 
Kinetics and UCF-101 datasets. Moreover, P3D networks offered a more efficient approach 
by blending 2D and 3D convolutions, further refining the capabilities of 3D CNNs. Addi-
tionally, Carreira and Zisserman (2017) introduced I3D by inflating 2D convolutions to 3D, 
achieving significant improvements on the Kinetics dataset by leveraging ImageNet pre-
training, thereby setting new performance benchmarks. I3D bridged the gap between 2D 
and 3D CNNs, demonstrating the benefits of transfer learning in 3D convolutional models.

Hara et al. (2018) evaluated the scalability of 3D CNNs with increased data and model 
sizes, demonstrating that deeper 3D CNNs can achieve better performance on the Kinet-
ics and UCF-101 datasets, paralleling the success of 2D CNNs on ImageNet. This study 
emphasized the need for larger datasets and deeper models in 3D convolutional research, 
highlighting the potential of 3D CNNs to retrace the historical success of 2D CNNs. Build-
ing on these insights, Diba et al. (2017) introduced a new temporal 3D ConvNet architecture 
with enhanced transfer learning capabilities, demonstrating superior performance on the 
UCF-101 and HMDB-51 datasets through architectural innovations and effective transfer 
learning. This work underscored the importance of architectural innovation and transfer 
learning, pushing the boundaries of 3D CNN performance and further advancing the field 
of action recognition. Tran et al. (2018) further contributed by conducting a comprehensive 
analysis of spatio-temporal convolutions, highlighting the benefits of factorizing 3D con-
volutions into separate spatial and temporal components, achieving state-of-the-art results 
on the Kinetics and UCF-101 datasets. This dissection provided insights that informed sub-
sequent model designs and optimizations. In the same year, Xie et al. (2018) explored the 
trade-offs between speed and accuracy in spatio-temporal feature learning, proposing effi-
cient 3D CNN variants that balance computational cost and recognition performance on 
the Kinetics and UCF-101 datasets. Their work highlighted the practical considerations of 
deploying 3D CNNs, emphasizing the need to balance speed and accuracy, thereby refining 
the approach to spatio-temporal feature learning. Additionally, Wang et al. (2018b) intro-
duced non-local neural networks to capture long-range dependencies, demonstrating that 
non-local operations significantly improve the modeling of complex temporal relationships 
and enhance action recognition performance on the Kinetics and Something-Something 
datasets. By integrating non-local operations, this study advanced the ability of 3D CNNs 
to capture complex temporal patterns, further pushing the boundaries of spatio-temporal 
modeling.

Feichtenhofer et al. (2019) introduced SlowFast Networks, a novel approach that pro-
cesses video at different frame rates to capture both slow and fast motion dynamics, and 
achieved state-of-the-art results on the Kinetics-400 and Charades datasets. This innova-
tion highlighted the importance of capturing varied motion dynamics for improved video 
recognition. In the same year, Tran et  al. (2019) presented channel-separated convolu-
tional networks (CSN), which reduced computational complexity by separating convolu-
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tions by channel, demonstrating efficiency without sacrificing accuracy on the Kinetics and 
Sports-1 M datasets. This approach contributed to the development of more computation-
ally feasible models. Concurrently, Ghadiyaram et al. (2019) leveraged large-scale weakly-
supervised pre-training on video data, significantly boosting performance on the IG-65 M 
and Kinetics datasets and underscoring the potential of massive datasets in enhancing 3D 
CNN capabilities. Additionally, Kopuklu et al. (2019) proposed resource-efficient 3D CNNs 
using depthwise separable convolutions and achieved competitive accuracy with signifi-
cantly reduced computational requirements on the Kinetics-400 and UCF-101 datasets. This 
work emphasized the importance of optimizing 3D CNNs for computational efficiency, fur-
ther advancing the field of action recognition.

Feichtenhofer (2020) proposed X3D, a family of efficient video models by expanding 
architectures along multiple axes. It achieved state-of-the-art performance with reduced 
model complexity on the Kinetics-400 and Charades datasets. X3D highlighted the sig-
nificance of model efficiency in balancing performance and computational demands. In the 
same year, Li et al. (2020) introduced an efficient 3D CNN with a temporal attention mecha-
nism and achieved high accuracy with efficient computation by focusing on salient temporal 
features on the Kinetics-400 and UCF-101 datasets. This work demonstrated the potential of 
selectively focusing on important temporal features to enhance the efficiency and accuracy 
of 3D CNNs, further advancing the field of action recognition.

Table 3 presents the works discussed in this section that utilized 3D CNN approaches.

3.1.3  CNN-RNN-based approaches

The integration of CNNs and RNNs for HAR was significantly advanced by the work of 
Donahue et al. (2015), who introduced long-term recurrent convolutional networks (LRCN). 
This approach effectively combined the spatial feature extraction capabilities of CNNs with 
the temporal dynamics modeling of LSTMs, demonstrating substantial improvements in 
action recognition tasks on datasets like UCF-101 and HMDB-51. Building on this foun-
dation, Yue-Hei Ng et al. (2015) extended the application of deep networks to video clas-
sification by integrating deep CNNs with LSTMs to handle longer video sequences. Their 
method, tested on the Sports-1  M and UCF-101 datasets, highlighted the importance of 
capturing extended temporal dependencies for improved performance in complex video 
classification tasks. Further pushing the boundaries, Srivastava et al. (2015) explored unsu-
pervised learning of video representations using LSTMs. By leveraging LSTMs to learn 
spatio-temporal features without labeled data, their approach demonstrated effective video 
representation learning on the UCF-101 dataset, showcasing the versatility and potential of 
CNN-RNN architectures in both supervised and unsupervised learning scenarios for HAR.

The development of CNN-RNN architectures for HAR saw significant advancements in 
2016. Wu et al. (2015) proposed a hybrid deep learning framework that modeled spatial-
temporal clues by combining CNNs for spatial feature extraction with RNNs for temporal 
sequence modeling. Their approach, tested on the UCF-101 and HMDB-51 datasets, dem-
onstrated substantial improvements in video classification accuracy. Additionally, Li et al. 
(2016) expanded the application of CNN-RNN architectures to real-time scenarios with 
their approach for online human action detection using joint classification-regression RNNs. 
Combining CNNs for spatial features and RNNs for temporal dynamics, their method, tested 
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on the J-HMDB and UCF-101 datasets, achieved notable improvements in accuracy and 
efficiency, showcasing the practicality of CNN-RNN models in real-time action detection.

Building on these advancements, 2017 and 2018 witnessed further refinements and 
innovations in CNN-RNN architectures for HAR. Li et al. (2018) introduced VideoLSTM, 
integrating convolutions, attention mechanisms and optical flow within a recurrent frame-
work, and demonstrating improved performance on the UCF101 and HMDB51 datasets. 
Carreira and Zisserman (2017) made a significant contribution with the two-stream Inflated 
3D ConvNet (I3D), which inflated 2D CNN architectures into 3D and combined them with 
RNNs for temporal modeling. The model was evaluated on the Kinetics dataset, as well as 

Table 3  3D CNN-based approaches in HAR
Paper Model Dataset Novelty
Ji et al. 
(2012)

3D 
CNN

UCF-101, HMDB-51 Introduced 3D CNNs for HAR, effectively capturing 
spatio-temporal features and outperforming 2D CNNs

Tran et al. 
(2015)

3D 
CNN

Sports-1 M, UCF-101 Introduced C3D, a generic 3D CNN for spatio-tem-
poral feature learning, and achieved state-of-the-art 
performance

Varol et al. 
(2017)

3D 
CNN

UCF-101, HMDB-51 Introduced long-term temporal convolutions to cap-
ture extended motion patterns, and improved accuracy

Qiu et al. 
(2017)

3D 
CNN

Kinetics, UCF-101 Proposed P3D networks combining 2D and 3D 
convolutions, balancing accuracy and computational 
complexity

Carreira and 
Zisserman 
(2017)

3D 
CNN

Kinetics Introduced I3D by inflating 2D convolutions to 3D, 
leveraging ImageNet pre-training for significant 
improvements

Hara et al. 
(2018)

3D 
CNN

Kinetics, UCF-101 Evaluated the scalability of 3D CNNs with increased 
data and model sizes, and showed parallels to 2D 
CNN success

Diba et al. 
(2017)

3D 
CNN

UCF-101, HMDB-51 Introduced a new temporal 3D ConvNet architecture 
with enhanced transfer learning capabilities

Tran et al. 
(2018)

3D 
CNN

Kinetics, UCF-101 Conducted a comprehensive analysis of spatio-
temporal convolutions, and highlighted the benefits of 
factorizing 3D convolutions

Xie et al. 
(2018)

3D 
CNN

Kinetics, UCF-101 Explored speed-accuracy trade-offs in spatio-temporal 
feature learning, and proposed efficient 3D CNN 
variants

Wang et al. 
(2018b)

3D 
CNN

Kinetics, 
Something-Something

Introduced non-local operations to capture long-range 
dependencies, and improved modeling of complex 
temporal relationships

Feichten-
hofer et al. 
(2019)

3D 
CNN

Kinetics-400, Charades Proposed SlowFast networks to process video at 
different frame rates, capturing both slow and fast 
motion dynamics

Tran et al. 
(2019)

3D 
CNN

Kinetics, Sports-1 M Introduced CSN to reduce computational complexity 
without sacrificing accuracy

Ghadiyaram 
et al. (2019)

3D 
CNN

IG-65 M, Kinetics Leveraged large-scale weakly-supervised pre-training 
on video data, and significantly boosted performance

Kopuklu 
et al. (2019)

3D 
CNN

Kinetics-400, UCF-101 Proposed resource-efficient 3D CNNs using depthwise 
separable convolutions, and achieved competitive ac-
curacy with reduced computational requirements

Feichten-
hofer (2020)

3D 
CNN

Kinetics-400, Charades Proposed X3D, a family of efficient video models by 
expanding architectures along multiple axes

Li et al. 
(2020)

3D 
CNN

Kinetics-400, UCF-101 Introduced a temporal attention mechanism to en-
hance efficiency and accuracy in 3D CNNs
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UCF101 and HMDB51. Ullah et al. (2017) proposed a novel architecture combining CNNs 
with bi-directional LSTMs, effectively utilizing both spatial and temporal information from 
video sequences and showing superior performance on the UCF-101 and HMDB-51 datas-
ets. In 2020, in the realm of human activity recognition using sensor data, Xia et al. (2020) 
proposed an LSTM-CNN architecture that effectively captured both temporal dependencies 
and local feature patterns, showing improved accuracy on the WISDM, UCI HAR, and 
OPPORTUNITY datasets. Similarly, Mutegeki and Han (2020) developed a CNN-LSTM 
approach for smartphone sensor-based activity recognition, demonstrating high accuracy 
on the UCI HAR dataset and further validating the effectiveness of combining CNNs and 
RNNs for processing time-series data in activity recognition tasks.

Recent advancements in HAR have leveraged sophisticated CNN-RNN architectures 
to enhance performance and reduce computational complexity. Muhammad et al. (2021) 
introduced an attention-based LSTM network combined with dilated CNN features, and 
significantly improved the recognition accuracy on the UCF-101 and HMDB-51 datasets by 
capturing essential spatial features through dilated convolutions and temporal patterns with 
attention mechanisms. Building on this, Malik et al. (2023) focused on multiview HAR; 
utilizing a CNN-LSTM architecture to cascade pose features, they achieved high accuracy 
(94.4% on the MCAD dataset and 91.67% on the IXMAS dataset) while reducing the com-
putational load by targeting pose data rather than entire images.

In 2024, Hussain et al. (2024c) proposed a Human-Centric Attention with Deep Multi-
scale Feature Fusion Framework aimed at improving HAR within the Internet of Medical 
Things (IoMT). Their approach involves a combination of MobileNetV3 and a redesigned 
bidirectional LSTM integrated with Sequential Multihead Attention to enhance long-range 
temporal dependencies. Their model achieved impressive accuracy on both healthcare and 
general HAR datasets, outperforming existing methods. Another work done by Hussain 
et al. (2024a) developed an AI-driven behavior biometrics framework utilizing a Dynamic 
Attention Fusion Unit (DAFU) and Temporal-Spatial Fusion (TSF) network. Their approach 
integrated Echo-ConvLSTM to enhance accuracy and robustness in recognizing complex 
activities. This model demonstrated superior performance across multiple public HAR 
datasets.

Table 4 presents the works discussed in this section that utilized CNN-RNN approaches.

3.2  ViT-based approaches in HAR

In 2020, the ViT was conceptualized and introduced in the academic domain through the 
paper authored by Dosovitskiy et al. (2020). The ViT marked a paradigm shift in still image 
recognition methodologies, applying the Transformer model, predominantly known for its 
success in NLP, to the realm of computer vision. The application of ViTs in action recogni-
tion, a more specific and complex task within the field of computer vision, followed the 
initial introduction of ViT. Specifically, in 2021 and beyond, subsequent research and pub-
lications have explored and expanded the use of ViTs for action recognition tasks, demon-
strating their efficacy in capturing spatial-temporal features within video data. They employ 
attention mechanisms to minimize redundant information and to model interactions over 
long distances in both space and time (Koot et al. 2021). The adaptation of ViT to action 
recognition signifies the model’s versatility and its potential for broader applications in 
computer vision beyond static image analysis.
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Recent advancements in action recognition have seen a significant shift towards ViT, 
highlighting their efficacy in video understanding tasks. Arnab et  al. (2021) introduced 
ViViT, extending the vision Transformer architecture to handle video sequences. They dem-
onstrated its potential on datasets like Kinetics-400 and Something-Something-V2, marking 
a substantial improvement in video action recognition capabilities. Building on this, Ber-
tasius et al. (2021) proposed a space-time Transformer that models temporal information 
innovatively, and achieved competitive results on similar datasets. The efficiency of multi-
scale ViTs was further illustrated by Fan et al. (2021), who showed that such architectures 
could effectively capture fine-grained video details and enhance classification performance 
on comprehensive video datasets. Moreover, Liu et al. (2022) presented the Swin Trans-
former, utilizing a shifted window mechanism to model long-range dependencies more effi-
ciently, and leading to significant improvements in action recognition accuracy. Together, 

Table 4  CNN-RNN-based approaches in HAR
Paper Model Dataset Novelty
Donahue 
et al. 
(2015)

CNN-RNN, (LRCN) UCF-101, HMDB-51 Combined CNNs for spatial feature 
extraction with LSTMs for temporal 
dynamics

Yue-
Hei Ng 
et al. 
(2015)

CNN-RNN Sports-1 M, UCF-101 Integrated deep CNNs with LSTMs to 
handle longer video sequences, captur-
ing extended temporal dependencies

Srivas-
tava et al. 
(2015)

CNN-RNN, (Unsupervised 
LSTM)

UCF-101 Explored unsupervised learning of 
video representations using LSTMs, 
leveraging spatiotemporal features

Wu et al. 
(2015)

CNN-RNN UCF-101, HMDB-51 Modeled spatial-temporal clues by com-
bining CNNs for spatial features with 
RNNs for temporal sequence modeling

Li et al. 
(2016)

CNN-RNN J-HMDB, UCF-101 Applied CNN-RNN architectures to 
real-time scenarios for online human 
action detection

Li et al. 
(2018)

CNN-RNN (VideoLSTM) UCF-101, HMDB-51 Integrated convolutions, attention 
mechanisms, and optical flow within a 
recurrent framework

Car-
reira and 
Zisserman 
(2017)

3D CNN-RNN Kinetics, UCF101, 
HMDB51

Inflated 2D CNN architectures into 3D, 
and combined them with RNNs for tem-
poral modeling

Ullah et al. 
(2017)

CNN-RNN, 
(CNN-BiLSTM)

UCF101, HMDB51 Combined CNNs with bi-directional 
LSTMs to utilize both spatial and tem-
poral information

Xia et al. 
(2020)

CNN-RNN WISDM, UCI, 
OPPORTUNITY

Captured both temporal dependencies 
and local feature patterns for human 
activity recognition using sensor data

Mutegeki 
and Han 
(2020)

CNN-RNN UCI Developed a CNN-LSTM approach for 
smartphone sensor-based activity recog-
nition, and demonstrated high accuracy

Muham-
mad et al. 
(2021)

CNN-RNN, 
(CNN-Attention-LSTM)

UCF-101, HMDB-51 Improved recognition accuracy with 
attention-based LSTM network com-
bined with dilated CNN features

Malik et al. 
(2023)

CNN-RNN MCAD, IXMAS Achieved high accuracy in multiview 
HAR by cascading pose features using a 
CNN-LSTM architecture
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these works underscore the transformative impact of ViTs in advancing the field of HAR. 
Additionally, Wang et al. (2021b) introduced ActionCLIP, leveraging the CLIP model for 
enhanced video action recognition on multiple standard video datasets, including Kinet-
ics-400 and HMDB-51. This novel approach integrated visual and linguistic representations.

Chen and Ho (2022) introduced Mm-ViT, a multi-modal video Transformer designed for 
compressed video action recognition, and demonstrated high performance by leveraging 
multi-modal inputs on compressed video datasets such as HACS and UCF101. Sharir et al. 
(2021) explored the extension of ViT to video data, showing its potential in capturing tem-
poral dynamics effectively across several standard video datasets, including Kinetics-400 
and HMDB-51. Furthermore, Xing et al. (2023) developed SVFormer, a semi-supervised 
video Transformer that leverages both labelled and unlabeled data to bridge the gap between 
supervised and unsupervised learning, and achieved significant improvements in action 
recognition tasks on various standard HAR datasets such as Kinetics-400 and UCF101. 
Together, these works underscore the transformative impact of ViTs in advancing the field 
of HAR.

In 2024, Hussain et al. (2024e) proposed a Hybrid Transformer Framework aimed at effi-
cient HAR on consumer electronics devices. Their method involves using a MobileNetV3 
model for extracting salient contextual features from each video frame. These features are 
then passed to a Sequential Residual Transformer Network (SRTN) designed to effectively 
learn long-range temporal dependencies. The SRTN’s temporal multi-head self-attention 
module and residual strategy enhance the extraction of discriminative features while dis-
carding irrelevant information. This approach achieved high accuracy on challenging HAR 
datasets, e.g. 96.64% on UCF101, 76.14% on HMDB51, and 97.31% on UCF50.

While our study primarily focuses on the ViT model due to its significant impact on 
HAR, we acknowledge that several other Transformer architectures have been developed 
and applied to HAR and related tasks. Notable examples include Swin Transformers (Chen 
and Mo 2023) (which introduce hierarchical feature representations using shifted windows 
to enhance computational efficiency), Timesformer (Bertasius et al. 2021) (which factor-
izes spatio-temporal attention for video understanding), and Motion Transformers (Shi et al. 
2022) (which explicitly model motion dynamics). Furthermore, hybrid transformer models, 
such as CNN-Transformer architectures (Reda et al. 2023; Leong et al. 2022), have been 
explored to balance local feature extraction with global context modelling. In contrast, our 
model proposes a hybrid CNN-ViT architecture, focusing on combining CNNs for spatial 
features with ViTs for spatiotemporal reasoning. Leong et al. (2022) integrated a 3D CNN 
with a Transformer Encoder and optionally a cross-modal video-text attention module to 
enhance fine-grained action recognition using textual class descriptions. The model Con-
ViViT (Reda et al. 2023) used a CNN to preprocess RGB videos into a 128-channel rep-
resentation, followed by a Transformer with factorized self-attention to model spatial and 
temporal features efficiently.

HAR plays a pivotal role in advancing various domains beyond conventional activity 
recognition. For instance, the work in Hussain et al. (2024d) introduced a novel framework 
utilising attention-inspired sequential temporal convolution networks (STCN) to enhance 
HAR in industrial surveillance systems. This framework demonstrated the application of 
HAR in monitoring worker interactions with industrial devices, thereby contributing to 
improved safety, operational efficiency, and anomaly detection within industrial settings. 
Furthermore, in the domain of Sports Action Recognition (SAR), the study in Hussain et al. 
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(2024f) presented the Cricket Excited Actions (CEA) dataset, providing a comprehensive 
benchmark for analyzing complex multi-person activities in cricket matches. By enabling 
accurate recognition of cricket-specific actions, this dataset supports advancements in both 
sports analytics and commercial entertainment, bridging the gap between academia and 
real-world applications. These contributions highlight the broader applicability of HAR 
techniques in enhancing efficiency and safety across diverse fields.

More notable works incorporated include a novel slow-fast tubelet processing frame-
work for efficient action recognition in infrared-based scenarios, demonstrating superior 
performance on benchmark datasets NTURGB-D 120 and InfAR (Munsif et  al. 2024b). 
Additionally, a contextual-motion coalescence network (CMCNet) was proposed for robust 
action representation in dark environments by synergistically integrating contextual visual 
features and temporal optical flow learning modules (Munsif et al. 2024a). Hussain et al. 
(2022) proposed a CNN-free approach combining ViT (ViT-Base-16) for spatial feature 
extraction with a multilayer LSTM network to capture long-range temporal dependencies. 
This method addresses challenges like occlusion, low resolution, and varying viewpoints 
in surveillance environments. Evaluated on UCF50 and HMDB51 datasets, the model 
achieved strong performance with 96.14% accuracy on UCF50 and 73.71% on HMDB51, 
surpassing many state-of-the-art methods.

Table 5 presents the works discussed in this section that utilized ViTs.

3.3  CNN-ViT hybrid architectures

The integration of ViTs with CNNs has significantly advanced HAR tasks. Yin and Yin 
(2024) proposed a two-stream hybrid CNN-Transformer network (THCT-Net), which dem-
onstrated enhanced generalization ability and convergence speed on the NTU RGB+D data-
set by combining CNNs for low-level context sensitivity and Transformers for capturing 
global information. Following this, Shan et  al. (2021) applied a similar hybrid model to 
driver action recognition, leveraging multi-view data to achieve high accuracy through the 
integration of CNNs for spatial feature extraction and Transformers for temporal dependen-
cies. Mazzeo et al. (2022) extended this approach by integrating 3D CNNs with Transform-
ers for late temporal modeling, and achieved substantial improvements in action recognition 
accuracy on the HMDB-51 and UCF101 datasets. Moreover, Chen and Mo (2023) pro-
posed Swin-Fusion, which combines Swin Transformers with CNN-based feature fusion to 
achieve state-of-the-art performance on datasets like Kinetics-400 and Something-Some-
thing-V2, demonstrating the robustness and superior performance of hybrid models in HAR 
tasks.

Djenouri and Belbachir (2023) proposed a hybrid visual Transformer model that inte-
grates CNNs and Transformers for efficient and accurate human activity recognition. They 
demonstrated its capability on datasets like Kinetics-400 and UCF101, and showed that 
the hybrid approach leverages the local feature extraction of CNNs with the global context 
modeling of Transformers. Following this, Surek et al. (2023) provided a comprehensive 
review of deep learning approaches for video-based human activity recognition, emphasiz-
ing the potential of hybrid models. This review underscored the effectiveness of such hybrid 
models in capturing both spatial and temporal features from video data, and evaluated on 
various human activity datasets including NTU RGB+D and UTD-MHAD. Ahmadabadi 
et al. (2023) explored the use of knowledge distillation techniques to enhance the perfor-
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mance of hybrid CNN-Transformer models. Their approach was validated on datasets such 
as HMDB-51 and Kinetics-400, showing significant improvements in HAR by effectively 
transferring knowledge from complex models to more efficient ones. Together, these works 
highlight the evolving landscape of hybrid models in human activity recognition, showcas-
ing their robustness and efficiency in handling complex video data. Hussain et al. (2024b) 
proposed a dual-stream framework for robust HAR in surveillance videos. It used a shot 
segmentation module trained on a custom lowlight dataset to filter and enhance frames. 
Spatial and motion features are extracted using ViT-B16 and FlowNet2, then processed with 
a Parallel BiLSTM and dual stream multi-head attention. The model achieved high accuracy 

Paper Model Dataset Novelty
Arnab 
et al. 
(2021)

ViViT Kinetics-400, 
Something-Something-V2

Extended 
ViT to 
video 
sequences

Ber-
tasius 
et al. 
(2021)

Space-Time 
Transformer

Kinetics-400 Innovative 
temporal 
information 
modeling

Fan 
et al. 
(2021)

Multiscale ViT Kinetics-400, 
Something-Something-V2

Efficient 
capture 
of fine-
grained 
video 
details

Liu 
et al. 
(2022)

Swin 
Transformer

Kinetics-400, 
Something-Something-V2

Shifted 
window 
mechanism 
for long-
range de-
pendency 
modeling

Wang 
et al. 
(2021b)

ActionCLIP Kinetics-400, HMDB-51 Leveraged 
CLIP for 
enhanced 
video 
action 
recognition

Chen 
and Ho 
(2022)

Mm-ViT HACS, UCF101 Multi-
modal 
inputs for 
compressed 
video 
action 
recognition

Sharir 
et al. 
(2021)

ViT Kinetics-400, HMDB-51 Applied 
ViT to 
video data

Xing 
et al. 
(2023)

SVFormer Kinetics-400, UCF101 Semi-
supervised 
learning 
for action 
recognition

Table 5  ViT-based approaches 
in HARs
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on benchmark datasets: 78.63% (HMDB51), 96.02% (UCF101), and 98.88% (YouTube 
Actions) (Table 6).

Table 3 presents the works discussed in this section that utilized CNN-ViT approaches.

3.4  Discussion

In the field of HAR, the choice of models – whether CNN-based, ViT-based, or a hybrid of 
CNN and ViT – significantly influences the outcome and efficiency of the task. CNN-based 
models are particularly adept at extracting local features due to their convolutional nature 
(LeCun et al. 2015), making them highly effective in pattern recognition within images and 
videos. Their computational efficiency is a boon for real-time applications (Howard et al. 
2017), and their robustness to input variations is notable (Simonyan and Zisserman 2014b). 
However, CNNs often struggle with global contextual understanding (Szegedy et al. 2015) 
and are prone to overfitting. Moreover, their ability to model long-range temporal depen-
dencies (Karpathy et al. 2014), which is crucial in action recognition, is somewhat limited.

ViT-based models, in contrast, excel in capturing global dependencies (Carion et al. 2020; 
Dosovitskiy et al. 2020), thanks to their self-attention mechanism. This attribute makes them 
particularly suited for understanding complex actions that require a broader view beyond 
local features. ViTs are scalable with data, benefiting significantly from larger datasets, and 
are flexible in processing inputs of various sizes (Touvron et al. 2021). The adaptability in 
processing various input sizes is a byproduct of the patch-based approach and the global 
receptive field of the ViTs. However, these models are computationally more intensive and 
require substantial training data to achieve optimal performance (Khan et al. 2022). Unlike 
CNNs, ViTs are not as efficient in extracting detailed local features, which can be a critical 
drawback in certain action recognition scenarios. For more clarification, a detailed explana-
tion of the ViViT model including its capabilities and limitations was introduced by Arnab 
et al. (2021). ViViT is a pure Transformer-based model designed specifically for video rec-
ognition tasks. It applies a spatio-temporal attention mechanism to process video frames as a 
sequence of patches, enabling it to capture both spatial and temporal information effectively. 
While ViViT has demonstrated impressive performance on datasets like Kinetics-400 and 
Something-Something-V2, it faces challenges related to computational complexity and the 
requirement for large-scale training data.

Hybrid models that combine CNNs and ViTs aim to harness the strengths of both archi-
tectures. They offer the local feature extraction capabilities of CNNs along with the global 
context awareness of ViTs, potentially providing a more balanced approach to action rec-
ognition. These models can be more efficient and versatile, adapting well to a range of 
tasks. However, this combination brings its own challenges, including increased architec-
tural complexity, higher resource demands, and the need for careful tuning to balance the 
contributions of both CNN and ViT components. The choice among these models depends 
on the specific requirements of the action recognition task, such as the available computa-
tional resources, the nature and size of the dataset, and the types of actions that need to be 
recognized.

For a summary of the advantages and disadvantages of these three architectural varia-
tions, see Table 7.
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Paper Model Datase Novelty
Yin and 
Yin 
(2024)

The two-stream 
hybrid CNN-
Transformer network 
(THCT-Net)

NTU RGB+D Combined 
CNNs and 
Transformers 
for improved 
generaliza-
tion and 
convergence 
speed

Shan 
et al. 
(2021)

Multi-view vision 
Transformer

Custom driver action 
datasets

Leveraged 
multi-view 
data for spa-
tial and tem-
poral feature 
integration

Mazzeo 
et al. 
(2022)

3D 
CNN-Transformer

HMDB-51, UCF101 Integrated 
3D CNNs 
with Trans-
formers for 
late temporal 
modeling

Chen 
and Mo 
(2023)

Swin-Fusion Kinetics-400, 
Something-Some-
thing-V2

Combined 
Swin Trans-
formers with 
CNN-based 
feature 
fusion for 
state-of-
the-art 
performance

Dj-
enouri 
and 
Bel-
bachir 
(2023)

Hybrid visual 
Transformer

Kinetics-400, 
UCF101

Efficient 
and accurate 
human 
activity 
recognition 
leveraging 
strengths of 
CNNs and 
Transformers

Surek 
et al. 
(2023)

Various deep learn-
ing models including 
hybrid models

NTU RGB+D, 
UTD-MHAD

Comprehen-
sive review 
highlighting 
the potential 
of hybrid 
models

Ah-
mad-
abadi 
et al. 
(2023)

Hybrid 
CNN-Transformer

HMDB-51, 
Kinetics-400

Knowledge 
distillation 
from CNN-
Transformer 
models for 
enhanced 
performance

Table 6  CNN-ViT hybrid ap-
proaches in HARs
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4  Proposed CNN-ViT hybrid architecture

In this section, we present our proposed CNN-ViT architecture for HAR, leveraging the 
benefits of both approaches described in previous sections, see Fig.  6. The architecture 
incorporates a TimeDistributed layer with a CNN backbone, followed by a ViT model to 
classify actions in video sequences.

Spatial component. Let X  be a collection of N frames, i.e., X = {Xi}N
i=1. The CNN back-

bone (i.e. MobileNet in (Howard et al. 2017)) in the TimeDistributed layer (see Fig. 6) pro-
cesses the indifivual frames Xi and outputs the spatial features vector vi = pθ(Xi) ∈ RL, 
where pθ is the CNN model (e.g. MobileNet or VGG16) with parameters in θ wrapped by 
the TimeDistributed layer.

Temporal component. In the proposed hybrid CNN-ViT model,iT is engineered to pro-
cess the sequence of the N spatial features vectors, i.e., {vi}N

i=1, where each vi represents 
a distinct frame of the input video clip, see Fig. 6. Afterwards, the ViT block outputs a final 
representation z, which is then fed into the softmax layer to classify the action in the video. 
In detail, the Transformer encoder is designed to process a sequence of vectors, each repre-
senting one frame, and aggregate information into a single vector for classification.

In the proposed ViT-only model in Fig. 7 for the purpose of comparison, each vector 
represents a distinct patch. These vectors are first linearly projected into a high-dimensional 

Criteria ViT-based CNN-based Hybrid 
Models

Advantages
Excel at capturing global 
dependencies

✓ ✓

Scalable with data ✓ ✓
Flexible in processing 
various input sizes

✓ ✓

Adept at extracting local 
features

✓ ✓

Computationally efficient ✓
Robust to input variations ✓ ✓
Efficient and versatile ✓
Adapts well to a range of 
tasks

✓

Disadvantages
Computationally intensive ✓ ✓
Requires substantial train-
ing data

✓ ✓

Limited global contextual 
understanding

✓

Prone to overfitting ✓
Limited in modeling long-
range dependencies

✓

Architectural complexity ✓
Higher resource demands ✓
Need for careful tuning ✓
Balancing contributions of 
both components can be 
challenging

✓

Table 7  Capability comparison 
between Transformer-based, 
CNN-based, and hybrid models 
in HARs
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space, facilitating the model’s ability to learn complex patterns within the data. To ensure 
the model captures the sequential nature of the input, positional encodings are added to 
these embeddings. The core of the ViT consists of two layers, each comprising a multi-head 
self-attention mechanism and a feed-forward network. The self-attention mechanism allows 
the model to weigh the importance of different patches relative to each other, while the feed-
forward network, utilizing an exponential linear unit (ELU) activation function, processes 
each position independently to capture global context. The ViT is designed to aggregate the 
information from all vectors and positional encodings into a single [CLS] token, which is 
prepended to the input sequence. The output vector associated with this [CLS] token, after 
propagation through the Transformer layers, serves as a comprehensive representation of 
the entire input, suitable for downstream classification tasks.

4.1  Experiments

The goal of the presented experiments is not necessarily to produce a model that outper-
forms the state-of-the-art models in the HAR field. Rather, the aim is to conduct a compari-
son among the CNN, ViT-only, and hybrid models to give further insights.

The Royal Institute of Technology in 2004 unveiled the KTH dataset, a significant and 
publicly accessible dataset for action recognition (Schuldt et al. 2004). The KTH dataset 
was chosen here for its balanced representation of spatial and temporal features. Renowned 
as a benchmark dataset, it encompasses six types of actions: walking, jogging, running, 
boxing, hand-waving, and hand-clapping. The dataset features performances by 25 different 
individuals, introducing a diversity in execution. Additionally, the environment for each 
participant’s actions was deliberately altered, including settings such as outdoors, outdoors 
with scale changes, outdoors with clothing variations, and indoors. The KTH dataset com-
prises 2,391 video sequences, all recorded at 25 frames per second using a stationary camera 
against uniform backgrounds.

Six experiments were conducted, with each of the aforementioned models trained on 
three different lengths of frame sequences. Care was taken to avoid pre-training in order 

Fig. 6  The hybrid CNN-ViT architecture for HARs
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to ensure the neutrality of the results. The TransNet model by Alomar and Cai (2023) was 
adopted to represent the CNN model, and the ViT model was depicted in Fig. 7. For the spa-
tial component of the hybrid model, we employed the spatial component of TransNet; and 
for the temporal component, we employed the same ViT model that we used in the ViT-only 
model. We constructed our model utilizing Python 3.6, incorporating the Keras deep learn-
ing framework, OpenCV for image processing, matplotlib, and the scikit-learn library. The 
training and test were performed on a computer equipped with an Intel Core i7 processor, an 
NVidia RTX 2070 graphics card, and 64GB of RAM.

4.1.1  Results and discussion

Table 8 presents the quantitative results of the three distinct models, i.e., CNN, ViT-only, 
and a hybrid model on the KTH dataset, focusing on three different context lengths, i.e., 
short (12 frames), medium (18 frames), and long (24 frames). The results from these experi-
ments provide insightful revelations into the efficacy of each model under different temporal 
contexts. More details are given below.

The CNN model exhibited a decrease in accuracy as the frame length increased, record-
ing 94.35% for 12 frames, 93.91% for 18 frames, and 93.49% for 24 frames. This descend-
ing trend suggests that CNN may struggle with processing longer sequences where temporal 
dynamics become more complex, potentially leading to challenges such as overfitting or 
difficulties in temporal feature retention over extended durations.

In contrast, the ViT model demonstrated an improvement in performance with longer 
sequences, achieving accuracy of 92.44% for 12 frames, 92.82% for 18 frames, and 93.69% 
for 24 frames. This ascending pattern supports the notion that ViT architectures, with their 
inherent self-attention mechanisms, are well-suited to managing longer sequences. The abil-

Fig. 7  The ViT-only architecture for HARs
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ity of ViTs to assign varying degrees of importance to different parts of the sequence likely 
contributes to their enhanced performance on longer input frames.

The hybrid CNN-ViT model showcased the highest and continuously improving accu-
racy rates across all frame lengths: 94.12% for 12 frames, 94.56% for 18 frames, and an 
impressive 95.78% for 24 frames. Moreover, the pre-trained hybrid model showcased the 
same trend, with the best accuracy achieved. This type of model synergistically combines 
CNN’s robust spatial feature extraction capabilities with ViT’s efficient handling of tempo-
ral relationships via self-attention. The results from this model indicate that such a hybrid 
approach is particularly effective in capturing the complexities of action recognition tasks 
in video sequences, especially as the sequence length increases.

These findings underscore the potential advantages of hybrid neural network architec-
tures in video-based action recognition tasks, particularly for handling longer sequences 
with complex interactions. The superior performance of the hybrid CNN-ViT model sug-
gests that integrating the spatial acuity of CNNs with the temporal finesse of ViTs can lead 
to more accurate and reliable recognition systems. Future work could explore the scalability 
of these models to other datasets, their computational efficiency, and their robustness against 
variations in video quality and scene dynamics. Additionally, further research might inves-
tigate the optimal balance of CNN and ViT components within hybrid models to maximize 
both performance and efficiency.

To complete the comparison, Table  9 shows that the impressive 97.89% accuracy 
achieved by the presented CNN-ViT hybrid model on the KTH dataset places it promi-
nently among state-of-the-art models for HAR. This performance is notably superior when 
compared to earlier benchmarks reported in the literature such as Geng and Song (2016) 
with 92.49% and Arunnehru et al. (2018) with 94.90%. Our model utilizes an ImageNet-
pre-trained MobileNet (Howard et al. 2017) as the CNN backbone in the spatial component, 
which enhances its robust feature extraction capabilities. Combined with the dynamic atten-
tion mechanisms of ViT, it can thereby enhance both the spatial and temporal processing 
of video sequences. Furthermore, our hybrid model not only surpasses other contemporary 
approaches like Liu et al. (2020) (91.93%) and Lee et al. (2021) (89.40%), but also shows 
competitive/superior performance against some of the highest accuracy in the field, such 
as Jaouedi et al. (2020) (96.30%) and Basha et al. (2022) (96.53%). Even in comparison to 
the high benchmark set by Sahoo et al. (2020) (97.67%), our hybrid model demonstrates a 
marginal but significant improvement, underscoring the efficacy of integrating CNN with 
ViT. This integration not only facilitates more nuanced feature extraction across both spatial 
and sequential dimensions but also adapts more dynamically to the varied contexts inherent 
in video data, making it a potent solution for realistic action recognition scenarios.

On the whole, the integration of CNN with ViT is particularly advantageous for enhanc-
ing feature extraction capabilities and focusing on relevant segments dynamically through 

Table 8  Experimental results of different models on the KTH Dataset using three different context lengths
Context length CNN-based ViT-only Hybrid Hybridpre

12 frames 94.35 ± 0.41 92.44 ± 0.16 94.12 ± 0.05 96.34 ± 0.03
18 frames 93.91 ± 0.32 92.82 ± 0.07 94.56 ± 0.10 97.13 ± 0.04
24 frames 93.49 ± 0.24 93.69 ± 0.08 95.78 ± 0.60 97.89 ± 0.05
In particular, the hybrid model was trained without pre-training, whereas Hybridpre is for the hybrid 
model pre-trained on ImageNet. Every experiment was repeated over five runs to ensure robust statistical 
evaluation
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the attention mechanisms of ViTs. This not only helps in improving accuracy but also in 
making the model more adaptable to varied video contexts, a key requirement for action 
recognition in realistic scenarios. This comparative advantage suggests that hybrid models 
are paving the way for future explorations in HAR, combining the best of convolutional and 
ViT-based architectures for improved performance and efficiency.

4.1.2  Statistical significance analysis

In this section, we present the statistical significance analysis used to evaluate the perfor-
mance of the proposed model in comparison with benchmark models. The analysis here 
employs two statistical methods: the paired-samples t-test (see Algorithm 1 in Appendix) 
and the one-sample t-test (see Algorithm 2 in Appendix) (Montgomery and Runger 2020; 
Devore 2000). The symbols and variables used in Algorithms 1 and 2 are summarized in 
Table 12 in Appendix.

The paired-samples t-test algorithm evaluates different individual models in Table  8 
whether there is a significant difference of the performance of a model between two related 
contexts among the total three contexts (i.e., 12, 18, and 24 frames). Applying Algorithm 1 
on the quantitative results in Table 8, we obtain the t-statistic values tsp given in Table 10 
and the p-values pp given in Table 11 for each model on paired contexts. For the paired-sam-
ples t-test, the null hypothesis (Hp0) posited that no significant difference exists between 
two contexts for each model. The alternative hypothesis (Hp1) suggested that a significant 
difference existed between two contexts for each model. The results in Table 11 demon-
strates statistically significant differences across all contexts for each model, with p-values 
lower than the adjusted significance level αa using the Bonferroni correction.

The one-sample t-test algorithm is used here to evaluate whether there is a significant 
difference between the performance of the proposed model and the mean performance of the 
benchmark models in Table 9. In this test, the null hypothesis (Ho0) assumes that the per-
formance of the proposed model is not significantly different from the mean performance of 

Context CNN-based Vit-only Hybrid Hybridpre

12 vs. 18 frames 6.52 19.75 51.12 70.19
12 vs. 24 frames 14.22 37.67 134.33 141.14
18 vs. 24 frames 6.59 58.14 301.23 73.14

Table 10  The t-statistic values 
for the models in Table 8 across 
the three contexts

 

Methods Venue Accuracy
Geng and Song (2016) ICCSAE ’16 92.49
Arunnehru et al. (2018) RoSMa ’18 94.90
Abdelbaky and Aly (2020) ITCE ’20 87.52
Jaouedi et al. (2020) KSUCI journal ’20 96.30
Liu et al. (2020) JAIHC ’20 91.93
Sahoo et al. (2020) TETCI ’20 97.67
Lee et al. (2021) CVF ’21 89.40
Basha et al. (2022) MTA journal ’22 96.53
Ye and Bilodeau (2023) CVF ’23 90.90
Ours - 97.89

Table 9  Comparison of the 
proposed hybrid model with the 
state-of-the-art models on the 
KTH dataset
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the benchmark models in Table 9. The alternative hypothesis (Ho1) posits that a significant 
difference does exist. By applying Algorithm 2 on the data in Table 9, we obtain a p-value 
of po = 0.0034, which is significantly lower than the commonly accepted significance level 
of 0.05. As a result, we reject the null hypothesis. This finding indicates that the perfor-
mance difference between the proposed model and the state-of-the-art models is statistically 
significant. Consequently, we can conclude with 95% confidence that the proposed model 
outperforms the current state-of-the-art models for the HAR task under consideration. This 
result highlights the effectiveness of the proposed model in advancing the field.

5  Challenges and future directions

The field of HAR faces several formidable challenges that stem from the inherent complex-
ity of interpreting human movements within diverse and dynamic environments. One of 
the primary obstacles is the variability in human actions themselves, which can differ sig-
nificantly in speed, scale, and execution from one individual to another (Pareek and Thak-
kar 2021). This variability necessitates the development of sophisticated models capable of 
generalizing across a wide range of actions without sacrificing accuracy (Nayak et al. 2021). 
Additionally, the presence of complex backgrounds and environments further complicates 
the task of HAR. Systems must be adept at isolating and recognizing human actions against 
a backdrop of potentially distracting or obstructive elements, which can vary from the bus-
tling activity of a city street to the unpredictable conditions of outdoor settings (Wang and 
Schmid 2013; He et al. 2016).

HAR systems furthermore must navigate the fine line between inter-class similarity and 
intra-class variability, where actions that are similar to each other (such as running versus 
jogging) require nuanced differentiation, while the same action can appear markedly differ-
ent when performed by different individuals or under varying circumstances (Gong et al. 
2020; Zhu and Yang 2018). The challenge of temporal segmentation adds another layer of 
complexity, as accurately determining the start and end of an action within a continuous 
video stream is crucial for effective recognition (Zolfaghari et al. 2018). Coupled with the 
need for computational efficiency to process video data in real-time and the difficulties asso-
ciated with obtaining large, accurately annotated datasets, these challenges underscore the 
multifaceted nature of HAR (Caba Heilbron et al. 2015). Addressing these issues is critical 
for advancing the field and enhancing the practical applicability of HAR systems in real-
world applications, from surveillance and security to healthcare and entertainment.

The motivation behind this work has been driven by the compelling need to bridge the 
existing gaps between the spatial feature extraction capabilities inherent in CNNs and the 
dynamic temporal processing strengths found in ViTs (Arnab et  al. 2021). Through the 
introduction of a novel hybrid model, an attempt has been made to leverage the synergistic 

Context CNN-based ViT-only Hybrid Hybridpre

12 vs. 18 
frames

2.95 × 10−3 3.94 × 10−5 8.85 × 10−7 2.47 × 10−7

12 vs. 24 
frames

1.45 × 10−4 2.97 × 10−6 1.84 × 10−8 1.51 × 10−8

18 vs. 24 
frames

2.76 × 10−3 5.24 × 10−7 7.31 × 10−102.09 × 10−7

Table 11  The two-tailed 5% 
p-value for the models in Table 8 
across the three contexts
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potential of these technologies, thereby enhancing the accuracy and efficiency of HAR sys-
tems in capturing the complex spatial-temporal dynamics of human actions.

Looking forward, a promising future for HAR is envisioned, particularly through the 
development of hybrid and integrated models. It is believed that the potential of these 
models extends beyond immediate performance improvements, inspiring new directions 
for research within the field. It is anticipated that future studies will focus on optimizing 
these hybrid architectures, aiming to make them more scalable and adaptable to real-world 
applications across various domains such as surveillance, healthcare, and interactive media. 
Furthermore, the exploration of self-attention mechanisms and the adaptation of large-scale 
pre-training strategies from ViTs are seen as exciting prospects for HAR. These approaches 
are expected to lead to the development of more sophisticated models capable of under-
standing and interpreting human actions with unprecedented accuracy and nuance.

The integration of CNNs and ViTs into hybrid CNN-ViT models presents a promis-
ing avenue for overcoming the challenges faced by HAR systems. These hybrid models 
capitalize on the strengths of both architectures: the local feature extraction capabilities 
of CNNs and the global context understanding of ViTs. Future developments could focus 
on enhancing model adaptability to generalize across diverse actions, improving the isola-
tion of human actions from complex backgrounds through advanced attention mechanisms, 
and developing nuanced differentiation techniques for closely related actions (Carion et al. 
2020). Innovations in model architecture, alongside the application of transfer learning and 
few-shot learning techniques, could significantly reduce the variability challenge in human 
actions.

Moreover, addressing the temporal segmentation challenge requires the integration of 
specialized temporal modules and sequence-to-sequence models to accurately determine 
the start and end of an action within continuous video streams. Computational efficiency 
remains paramount for real-time processing, necessitating ongoing efforts in model opti-
mization and the exploration of synthetic data generation to mitigate the difficulties associ-
ated with obtaining large and accurately annotated datasets. Customizable hybrid CNN-ViT 
models that can be tailored for specific applications, from surveillance to healthcare, will 
ensure that these advancements not only push the boundaries of academic research but also 
enhance practical applicability in real-world scenarios. Through these concerted efforts, 
hybrid CNN-ViT models are poised to make significant contributions to the field of HAR, 
offering innovative solutions to its multifaceted challenges.

This work has highlighted the importance of continued innovation and cross-disciplin-
ary collaboration in the advancement of HAR technologies. By integrating insights from 
computer vision, machine learning, and domain-specific knowledge, it is hoped that HAR 
systems will not only become more efficient and accurate but also more responsive to the 
complexities and variances of human behavior in natural environments. As the field moves 
forward, the focus is set on pushing the boundaries of what is possible in HAR, with the aim 
of creating systems that enhance human-computer interaction and contribute positively to 
society through various applications.
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6  Conclusions

This survey provides a comprehensive overview of the current state of HAR by examining 
the roles and advancements of CNNs, RNNs, and ViTs. It delves into the evolution of these 
architectures, emphasizing their individual contributions to the field. The introduction of a 
hybrid model that combines the spatial processing capabilities of CNNs with the temporal 
understanding of ViTs represents a methodological advancement in HAR. This model aims 
to address the limitations of each architecture when used in isolation, proposing a unified 
approach that potentially enhances the accuracy and efficiency of action recognition tasks. 
The paper identifies key challenges and opportunities within HAR, such as the need for 
models that can effectively integrate spatial and temporal information from video data. The 
exploration of hybrid models, as suggested, offers a pathway for future research, particu-
larly in improving model performance on complex video datasets. The discussion encour-
ages further investigation into optimizing these hybrid architectures and exploring their 
applicability across various domains. This work sets a foundation for future studies to build 
upon, aiming to push the boundaries of what is currently achievable in HAR and to explore 
new applications of these technologies in real-world scenarios.
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Symbol Definition
c1i Performance of a model in the first context (i.e., 12 

frames) of the i-th run in the paired-samples test
c2i Performance of a model in the second context (i.e., 

18 frames) of the i-th run in the paired-samples test
c3i Performance of a model in the third context (i.e., 

24 frames) of the i-th run in the paired-samples test
np Number of paired observations (i.e., the number of 

runs) in the paired-samples t-test
di Differences between paired observations 

(c1i − c2i) in the paired-samples t-test
d̄ Mean of the differences between paired observa-

tions in the paired-samples t-test
sdp Standard deviation of the differences in the paired-

samples t-test
tsp t-statistic value for the paired-samples t-test
dfp Degrees of freedom for the paired-samples t-test, 

calculated as np − 1
pp Two-tailed p-value for the paired-samples t-test
nc Number of comparisons for the paired-samples t-

test (i.e., 12 vs. 18, 12 vs. 24, and 18 vs. 24 frames)
mi Performance of the state-of-the-art i-th model used 

in the one-sample t-test
no Population size, i.e., the number of state-of-the-art 

models
µo Mean performance of the state-of-the-art models
sdo Standard deviation of the performance of the state-

of-the-art models
tso t-statistic value for the one-sample t-test
dfo Degrees of freedom for the one-sample t-test, 

calculated as no − 1
po Two-tailed p-value for the one-sample t-test
mp Observed performance of the proposed model in 

the one-sample t-test
α Significance level for hypothesis testing, typically 

set at 0.05
αa Adjusted significance level using the Bonferroni 

correction

Table 12  List of symbols and 
variables used in the paired-
samples t-test (i.e., Algorithm 1) 
and one-sample t-test (i.e., 
Algorithm 2)
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Appendix A: Statistical significance analysis methods

This appendix presents two statistical significance analysis methods: the paired-samples 
t-test and the one-sample t-test (Montgomery and Runger 2020; Devore 2000) in Algo-
rithms  1 and 2, respectively. The symbols and variables used in Algorithms 1 and 2 are 
summarized in Table 12.

Algorithm 1 processes the data in Table 8 from five experimental runs for each model 
across two contexts out of the total three contexts. It pairs the results from the first run of 
each context, followed by pairing the results from the second run of each context, continu-
ing in this manner until all five runs have been paired. The algorithm then computes the 
two-tailed p-value, denoted as pp, for the paired-samples t-test. Algorithm 2 utilizes the 
performance results of the state-of-the-art models along with the performance result of the 
proposed model from Table 9. The algorithm then computes the two-tailed p-value, denoted 
as po, for the one-sample t-test.

Algorithm 1  Paired-samples t-test algorithm
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