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Abstract

Human action recognition (HAR) encompasses the task of monitoring human activities
across various domains, including but not limited to medical, educational, entertainment,
visual surveillance, video retrieval, and the identification of anomalous activities. Over
the past decade, the field of HAR has witnessed substantial progress by leveraging con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs) to effectively
extract and comprehend intricate information, thereby enhancing the overall performance
of HAR systems. Recently, the domain of computer vision has witnessed the emergence of
Vision Transformers (ViTs) as a potent solution. The efficacy of Transformer architecture
has been validated beyond the confines of image analysis, extending their applicability to
diverse video-related tasks. Notably, within this landscape, the research community has
shown keen interest in HAR, acknowledging its manifold utility and widespread adoption
across various domains. However, HAR remains a challenging task due to variations in
human motion, occlusions, viewpoint differences, background clutter, and the need for
efficient spatio-temporal feature extraction. Additionally, the trade-off between computa-
tional efficiency and recognition accuracy remains a significant obstacle, particularly with
the adoption of deep learning models requiring extensive training data and resources. This
article aims to present an encompassing survey that focuses on CNNs and the evolution of
RNNs to ViTs given their importance in the domain of HAR. By conducting a thorough
examination of existing literature and exploring emerging trends, this study undertakes a
critical analysis and synthesis of the accumulated knowledge in this field. Additionally, it
investigates the ongoing efforts to develop hybrid approaches. Following this direction,
this article presents a novel hybrid model that seeks to integrate the inherent strengths of
CNNs and ViTs.
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1 Introduction

Human action recognition (HAR) focuses on the classification of the specific actions exhib-
ited within a given video. On the other hand, action detection and segmentation focus on
the precise localisation or extraction of individual instances of actions from video content
(Ulhagq et al. 2022). The capacity of deep learning models to effectively capture the spatial
and temporal complexities inherent in video representations plays a vital role in the recogni-
tion and understanding of actions.

Over the preceding decade, a considerable amount of research has been dedicated to the
thorough investigation of action recognition, resulting in an extensive collection of review
articles and survey papers addressing the topic (Pareek and Thakkar 2021; Sun et al. 2022;
Kong and Fu 2022). However, it is worth noting that a predominant focus of these scholarly
works has been placed on the examination and evaluation of convolutional neural networks
(CNNs) and traditional machine learning models within the realm of action recognition.

The advent of Transformer architecture (Vaswani et al. 2017) has sparked a paradigm
shift in deep learning. By employing a multi-head self-attention layer, the Transformer
model computes sequence representations by effectively aligning words within the sequence
with other words in the same sequence (Ulhaq et al. 2022). This approach outperforms
traditional convolutional and recursive operations in terms of representation quality while
utilizing fewer computational resources. As a consequence, the Transformer architecture
diverges from conventional convolutional and recursive methods, favoring a more focused
utilization of multiple processing nodes. The incorporation of multi-head attention allows
the Transformer model to collectively learn a range of representations from diverse perspec-
tives through the collaboration of multiple attention layers. Inspired by Transformers, many
natural language processing (NLP) tasks have achieved remarkable performance, reaching
human-level capabilities, as exemplified by models such as GPT (Brown et al. 2020) and
BERT (Devlin et al. 2019).

The remarkable achievements of Transformers in handling sequential data, particularly
in the domain of NLP, have prompted the exploration and advancement of Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) (a special Transformer for computer vision tasks).
ViTs have demonstrated comparable or even superior performance compared to CNNs in
the context of image recognition tasks, especially when operating on vast datasets such as
ImageNet (Han et al. 2022; Lin et al. 2022; Khan et al. 2022). This observation signifies a
noteworthy shift in the field, wherein ViTs possess the potential to supplant the established
dominance of CNNs in computer vision, mirroring the displacement witnessed in the case
of recurrent neural networks (RNNs) (Ulhaq et al. 2022). The achievements of Transformer
models have engendered considerable scholarly interest within the computer vision research
community, prompting rigorous exploration of their efficacy in pure computer vision tasks.

The natural progression in the advancement of ViTs has led to the logical exploration of
video recognition tasks. Unlike image recognition, video recognition focuses on the com-
plex challenge of identifying and understanding events within video sequences, including
the recognition of human actions. Consequently, there is a compelling need for a recent
review that comprehensively examines the state-of-the-art research including ViTs and
hybrid models in addition to CNNs and RNNs for HAR. Such a review would serve as a
crucial guiding resource to shape the future research directions with Transformer and CNN-
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Transformer hybrid architectures beside CNNs which previously were seen as unique and
influential models for HAR. The main contributions of this paper are as follows.

e We present a thorough review of the CNNs, RNNs and ViTs. This review examines
the evolution from traditional methods to the latest advancements in neural network
architectures.

We present an extensive examination of existing literature related to HAR.

o We propose a novel hybrid model integrating the strengths of CNNs and ViTs. In ad-
dition, we provide a detailed performance comparison of the proposed hybrid model
against existing models. The analysis highlights the model’s efficacy in handling com-
plex HAR tasks with improved accuracy and efficiency.

e We also discuss emerging trends and the future direction of HAR technologies, empha-
sizing the importance of hybrid models in enhancing the interpretability and robustness
of HAR systems.

These contributions enrich the understanding of the current state and future prospects of
HAR, proposing innovative approaches and highlighting the importance of integrating dif-
ferent neural network architectures to advance the field.

The paper is structured as follows. Section 2 delves into the background, covering foun-
dational concepts and technologies crucial to HAR, including CNNs, RNNs and ViTs,
highlighting the chronological evolution of HAR deep learning technologies. Section 3
thoroughly reviews related HAR works with a brief discussion. A novel hybrid model com-
bining CNNs and ViTs is proposed in Sect. 4, including the details of the experimental setup
and the results. Section 5 discusses the challenges and their implications for future direc-
tions in HAR. Finally, Sect. 6 concludes the paper.

2 Background

This section provides a chronological and technical overview of three fundamental types
of neural networks: CNNs, RNNs, and Transformers. CNNs, introduced in the late 1980 s,
revolutionized image processing by leveraging local connectivity and shared weights to
efficiently detect spatial hierarchies in data. As the field progressed, RNNs emerged in the
1990 s, addressing the need for modeling sequential data through their ability to maintain
temporal dependencies across sequences. The advent of Transformers in 2017 marked a
paradigm shift by utilizing self-attention mechanisms to capture global relationships in data
more effectively, thereby enhancing performance in a wide array of tasks beyond sequen-
tial data. This background section will delve into the technical intricacies and evolutionary
trajectory of these architectures, highlighting their contributions and transitions in the realm
of deep learning.

2.1 CNNs
The evolution of CNNs has been remarkable since their introduction in the 1980 s. Origi-

nally, CNNs were designed to process static images, primarily focusing on spatial recog-
nition tasks such as object and pattern recognition. The initial idea was to build layers of
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convolutional filters that would apply various operations to the image to extract features like
edges, textures, and shapes. This structure proved highly effective for tasks like image clas-
sification, object detection, image segmentation and more in computer vision.

The Neocognitron (Fukushima 1980), developed by Kunihiko Fukushima, presented an
early example of neural networks incorporating convolutional operations for image pro-
cessing, setting the foundations for subsequent progress. Later, Yann LeCun and collabora-
tors introduced LeNet-5 (LeCun et al. 1998), a key architecture designed for handwritten
digit recognition, showcasing the effectiveness of convolutional layers in pattern recog-
nition tasks. The progress of CNNs reached a turning point in the mid-2010 s with the
introduction of models like AlexNet (Krizhevsky et al. 2012), showcasing their potential in
image classification tasks. Alongside architectural innovations, this milestone was achieved
thanks to access to large datasets, notably, ImageNet (Deng et al. 2009), and computational
improvements, including the rise of graphics processing units (GPUs) for parallel comput-
ing. Large-scale datasets provided the diversity and complexity necessary for training deep
networks, while enhanced computational power accelerated the training of sophisticated
CNN architectures.

The architectural enhancements, large datasets, and increased computational capabilities
helped CNNs to be a cornerstone in deep learning methodologies, extending their appli-
cations beyond image processing to various domains. Notable architectures like VGGNet
(Simonyan and Zisserman 2014a), distinguished by its uniform design and small convolu-
tional filters, GoogLeNet (Szegedy et al. 2015), with its inception modules for capturing
features at different scales efficiently, and ResNet (He et al. 2016), which introduced resid-
ual learning for training very deep networks, have further enriched the landscape of CNNs.

2.1.1 Spatio-temporal CNNs

As CNNs excelled in spatial tasks, researchers began exploring their potential in handling
temporal data, such as video and time-series analysis. The challenge was to incorporate the
dimension of time into the inherently spatial architecture of CNNs. To address this task,
spatio-temporal CNNs were developed. These networks extend traditional CNN architec-
tures by adding a temporal component to analyze dynamic behaviors across time frames.
Several approaches have been utilized and main types are as follows.

3D convolution involves extending the 2D kernels to 3D, allowing the network to per-
form convolution across both spatial and temporal dimensions. This approach is directly
applied to video data where the third dimension represents time (Hara et al. 2018; Tran et al.
2015). The two-stream CNNs involve running two parallel CNN streams: one for spatial
processing of individual frames and another for temporal processing, usually of optical flow,
which captures motion between frames (Simonyan and Zisserman 2014a; Feichtenhofer
etal. 2016). RNNs with CNNs aim to combine CNNs for spatial processing with RNNs like
long short-term memory (LSTM) or gated recurrent unit (GRU) to handle temporal depen-
dencies. This hybrid model leverages CNNs’ ability to extract spatial features and RNNs’
capacity to manage temporal sequences effectively (Yue-Hei Ng et al. 2015; Donahue et al.
2015).
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2.2 From vanilla RNN to attention-based transformers

This section explores the evolution from RNNs to the Transformers, highlighting the pro-
gression in handling time series and sequence data. Initially, RNNs were the go-to deep
learning technique for managing temporal tasks, effectively capturing sequential dependen-
cies. However, the development of Transformers marked a significant leap forward, driven
by a series of iterative improvements and optimizations that built upon the limitations of
RNNSs. Transformers, with their focus on NLP, introduced a novel attention mechanism
that allows for more efficient and scalable processing of sequential data. By examining the
foundational RNN techniques and the subsequent enhancements leading to the Transformer
architecture, this section elucidates the transformative journey from traditional RNN mod-
els to the sophisticated attention-based frameworks that now dominate the field.

We firstly establish common notations for RNN architectures including vanilla RNNs,
LSTM and GRU to streamline discussions in subsequent sections. In these architectures,
each iteration involves a cell that sequentially processes an input embedding x; € R"=
and retains information from the previous sequence through the hidden state h;_; € R™»
using weight matrices W € R"»*™» and U € R™*"=. The W -like matrices encompass
all weights related to hidden-to-hidden connections, while U-like matrices encompass all
weight matrices related to input-to-hidden connections. Additionally, bias terms are rep-
resented by b-like vectors. Each cell produces a new hidden state h; € R™" as its output.
More details about symbols and variables used in this section are given in Table 1.

2.2.1 Vanilla RNNs

Vanilla RNNs (Rumelhart et al. 1985; Jordan 1986) lack the presence of a cell state, rely-
ing solely on the hidden states as the primary means of memory retention within the RNN
framework. The hidden state h; is subsequently updated and propagated to the subsequent
cell, or alternatively, depending on the specific task at hand, it can be employed to generate
a prediction. Figure 1a illustrates the internal mechanisms of an RNN and a mathematical
description of it given as

h; = tanh(Wh;_1 + Uz, + b), (1)

where tanh is the activation function.

Vanilla RNNs effectively incorporate short-term dependencies of temporal order and
past inputs in a meaningful manner. However, they are characterized by certain limitations.
Firstly, due to their intrinsic sequential nature, RNNs pose challenges in parallelized com-
putations (Graves et al. 2013). Consequently, this limitation can impose restrictions on the
overall speed and scalability of the network. Secondly, when processing lengthy sequences,
the issue of exploding or vanishing gradients may arise, thereby impeding the stable training
of the network (Bengio et al. 1994).

2.2.2 LSTM
Hochreiter and Schmidhuber (1997) introduced the LSTM cell as a solution to address the

issue of long-term dependencies and to mitigate the challenge of interdependencies among
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Table 1 List of mathematical symbols and variables used in Sect. 2

Symbol Definition

x; € R*= Input embedding at time ¢

hy € R™r Hidden state at time ¢

W € R™*hXnh Weight matrix for hidden-to-hidden connections
U € R*h X7z Weight matrix for input-to-hidden connections
beR" Bias vector

iy € R™h Output of the sigmoid activation function at time # in the input gate in LSTM cell
ot € R Output of the output gate at time ¢ in LSTM cell
ct € R™h Cell state at time ¢ in LSTM cell

¢t € R™h Candidate cell state at time 7 in LSTM cell

z¢ € R"h Output of the update gate in GRU at time ¢

ry € R Output of the reset gate in GRU at time ¢

h: € R Candidate hidden state in GRU at time ¢

W € R Xmh Weight matrix for forget gate in LSTM cell

Uj € RPhXne Weight matrix for forget gate input in LSTM cell
by e R Bias for forget gate in LSTM cell

W, € R*"hXnh Weight matrix for input gate in LSTM cell

U; € R X" Weight matrix for input gate input in LSTM cell
b; € R Bias for input gate in LSTM cell

W, € RhXnh Weight matrix for output gate in LSTM cell

U, € RhXna Weight matrix for output gate input in LSTM cell
b, € R Bias for output gate in LSTM cell

Wz € R Xnn Weight matrix for candidate cell state in GRU cell
Us € RnhXne Weight matrix for candidate cell state input in GRU cell
bz € R™n Bias for candidate cell state in GRU cell

W, € RrhXnn Weight matrix for update gate in GRU cell

U, € R"h XNz Weight matrix for update gate input in GRU cell
b, € R™"r Bias for update gate in GRU cell

W, € R"hXnh Weight matrix for reset gate in GRU cell

U, € R"hXnz Weight matrix for reset gate input in GRU cell
b, € R"n Bias for reset gate in GRU cell

W, € R X7n
Uj € RhXna
bj, € R

dip €N

Q € R=xdk
K € RM= %k
V € RneXdg
X € Rrexde
We ¢ Ré=xdk
WK c Rdmxdk
WV c Rdwxdk
A € RneXdv
Q; € R"= ¥ dk

Weight matrix for candidate hidden state in GRU cell
Weight matrix for candidate hidden state input in GRU cell
Bias for candidate hidden state in GRU cell
Dimension of the keys

A set of query vectors

A set of key vectors

A set of value vectors

Input matrix (sequence of embeddings)

Weight matrix for queries

Weight matrix for keys

Weight matrix for values

Attention output

Query matrix for the i-th attention head
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Table 1 (continued)

Symbol Definition

K, € Rrexdg Key matrix for the i-th attention head

V,; € Rnaxdg Value matrix for the i-th attention head

W? € Rda X dg Weight matrix for queries in the i-th attention head
Wf( € Rz Xdk Weight matrix for keys in the i-th attention head
W:/ € Rz xdy Weight matrix for values in the i-th attention head
A; € RraXdy Attention output for the i-th attention head

Forget  Input Output Reset Update

I :l%f e

l ht

Tt

(a) Vanilla RNN (b) LSTM (c) GRU

Fig. 1 Various types of RNN cells

successive steps (Hochreiter and Schmidhuber 1997). LSTM architecture incorporates a
distinct component known as the cell state ¢; € R™*, illustrated in Fig. 1b. Analogous to a
freeway, this cell state facilitates the smooth flow of information, ensuring that it can readily
traverse without undergoing significant alterations.

Gers et al. (2000) made modifications to the initial LSTM architecture by incorporating a
forget gate within the cell structure. The mathematical expressions describing this modified
LSTM cell are derived from its inner connections. Hence, the LSTM cell can be formally
represented based on the depicted interconnections as follows.

e Forget gate decides what information should be thrown away or kept from the cell state
with the equation

fi=0(Wishiy +Usz; + by), )
where f; € R™ is the output of the forget gate and o is the sigmoid activation function.

e Input gate determines which new information is added to the cell state with two activa-
tion functions defined as

it = o(Wihi_1 + Uz + by), 3)
where ¢, € R™* is the output of the sigmoid activation function; and

C; = tanh(Wght_l +Uzx: + ba), “)
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where ¢; € R™" is known as candidate value. After obtaining ¢; and &, we can update the
cell state with

co=fi1O0c1+1 O, (5)
where ¢;—1 € R™" is the previous cell state and © is the Hadamard operator.

e Output gate determines the next hidden state based on the cell state and output gate’s
activity

o =o(Wohi 1 + U,z + b,), (6)

where o; € R™" is the output of the output gate. Finally the updated hidden state,

ht = tanh(ct) ® o (7)

is fed to the next iteration.

To enable selective information retention, LSTM employs three distinct gates. The first
gate, known as the forget gate, examines the previous hidden state h;_; and the current
input x;. It generates a vector f; containing values between 0 and 1, determining the por-
tion of information to discard from the previous cell state ¢;—;. The second gate, referred to
as the input gate, follows a similar process to the forget gate. However, instead of discard-
ing information, it utilizes the output ¢; to determine the new information to be stored in
the cell state based on a candidate cell state ¢;. Lastly, the output gate employs the output
o, to filter the updated cell state c;, thereby transforming it into the new hidden state h;.
The LSTM cell exhibits superior performance in retaining both long-term and short-term
memory compared to the vanilla RNN cell. However, this advantage comes at the expense
of increased complexity.

2.2.3 GRU

The LSTM cell surpasses the learning capability of the conventional recurrent cell, yet the
additional number of parameters escalates the computational load. Consequently, to address
this concern, Chung et al. (2014) introduced the GRU, see Fig. 1c. GRU demonstrates com-
parable performance to LSTM while offering a more computationally efficient design with
fewer weights. This is achieved by merging the cell state and the hidden state into “reset
state" resulting in a simplified architecture. Furthermore, GRU combines the forget and
input gates into an “update gate", contributing to a more streamlined computational process.
For further elaboration, GRU cell incorporates two essential gates. The first gate is the reset
gate, which examines the previous hidden state h;_; and the current input ;. It generates a
vector r; containing values between 0 and 1, determining the extent to which past informa-
tion in h;_; should be disregarded. The second gate is the update gate, which governs the
selection of information to either retain or discard when updating the new hidden state hy,
based on the value of 7;.

Based on the depicted information in Fig. lc, the mathematical expressions governing
the behavior of the GRU cell can be expressed as follows.
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o Update gate decides how much of the past information needs to be passed along with
2t = U(tht—l + Uzmt + bz)7 (8)

where z; € R™" is the output of the update gate. The output of the reset gate r, € R™" is
obtained by

re =0c(W,hi—1 +U,x; + b,). 9
A candidate activation for the subsequent step is
hy = tanh(Wj,(r; © hy_1) + Ujzs + by) (10)
where ilt € R,

e The final activation is a blend of the previous hidden state and the candidate activation,
weighted by the update gate, i.e.,

hi=zOh +(1—z)0h_, (11)

where h; € R™" is the updated hidden state. This mechanism allows the GRU to effectively
retain or replace old information with new information.

2.2.4 Types of RNNs

RNNs were created with an internal memory mechanism that allows them to store and
use information from previous outputs. This unique trait enables RNNs to retain important
contextual information over time, enabling reasoned decision-making based on past results.
There are four types of popular RNN variants that each serve different purposes across a
variety of applications, see Fig. 2. For simplicity, z; and y; respectively represent the input
and output with¢ = 1, ..., ¢ in Fig. 2.

The one-to-one is considered the simplest form of RNNs, where a single input corre-
sponds to a single output. It operates with fixed input and output sizes, functioning similarly
to a standard neural network. One-to-many represents a specific category of RNNs that is
characterized by its ability to produce multiple outputs based on a single input provided to
the model. This type of RNN is particularly useful in applications like image captioning,
where a fixed input size results in a series of data outputs. Many-to-one RNNs merge a

y‘1 ) t Y1 Y2 Yt Yt

| ANiR.F | ] ‘ |

1 1 1 T2 Tt r1 T2 Tt
(a) One-to-one  (b) One-to-many (c) Many-to-many (d) Many-to-one
Fig. 2 Types of RNN structures based on input—output pairs. Here «; and y;, ¢ = 1,. .., ¢, represent the

input and output, respectively
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sequence of inputs into a single output through a series of hidden layers that learn relevant
features. An illustrative instance of this RNN type is sentiment analysis, where the model
analyzes a sequence of text inputs and produces a single output indicating the sentiment
expressed in the text.

Many-to-many RNNs are employed to generate a sequence of output data from a
sequence of input units. It can be categorized into two subcategories: equal size and unequal
size. In the equal size subcategory, the input and output layers have the same size, see
many-to-many architecture in Fig. 2c. Several research efforts have emerged to tackle the
limitation of the fixed-size input—output sequences in machine translation tasks, as they fail
to adequately represent real-world requirements. The unequal size subcategory can handle
different sizes of inputs and outputs. A practical application of the unequal size subcategory
can be observed in machine translation. In this scenario, the model generates a sequence of
translated text outputs based on a sequence of input sentences. Unequal size subcategory
employs an encoder-decoder architecture, where the encoder adopts the many-to-one archi-
tecture, and the decoder adopts the one-to-many architecture. One notable contribution in
this area was made by Kalchbrenner and Blunsom (2013), who pioneered the approach of
mapping the entire input sentence to a vector. This work is related to the study conducted
by Cho et al. (2014), although the latter was specifically utilized to refine hypotheses gen-
erated by a phrase-based system (Sutskever et al. 2014). In this architecture, the encoder
component plays a crucial role in transforming the inputs into a singular vector, commonly
referred to as the context. This context vector, typically with a length of 256, 512 or 1024,
encapsulates all the pertinent information detected by the encoder from the input sentence,
which serves as the translation target, see Fig. 3a. Subsequently, this vector is passed on to
the decoder, which generates the corresponding output sequence. It is important to note that
both the encoder and decoder components in this architecture are RNNs. Different from
Fig. 3a, b gives the encoder-decoder architecture with attention which will be introduced in
the next section.

2.2.5 Attention

The evolution of attention mechanisms in neural networks represents a significant advance-
ment in the field of deep learning, particularly in tasks related to NLP and machine trans-
lation. Initially introduced by Graves (2013), the concept of attention mechanisms was
designed to enhance the model’s ability to focus on specific parts of the input sequence when
generating an output, mimicking the human ability to concentrate on particular aspects of a

ho ho ht
— l 4

zo—> RNN sos—> RNN To—> RNN ap sos — RNN

: (*) len\' ca I—t)

r1— RNN “ RNN xr1— —— RNN
() DA

(R,?N)—neos Tt— RNN (IEN/\' eos

i

xt —> RNN
(a) Without attention (b) With attention
Fig. 3 Sequence-to-sequence RNN with and without the attention mechanism. Here a5, = 1,. .., t, are

the attention weights
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task. This foundational work laid the groundwork for subsequent developments in attention
mechanisms, providing a mechanism for models to dynamically assign importance to dif-
ferent parts of the input data.

Building on Graves’ initial concept, Bahdanau et al. (2014) introduced the additive atten-
tion mechanism, which was specifically designed to improve machine translation. This
approach computes the attention weights through a feed-forward neural network, allowing
the model to consider the entire input sequence and determine the relevance of each part
when translating a segment. This additive form of attention significantly improved the per-
formance of sequence-to-sequence models by enabling a more nuanced understanding and
alignment between the input and output sequences (Sutskever et al. 2014). Following this,
Luong et al. (2015) proposed the multiplicative attention mechanism, also known as dot-
product attention, which simplifies the computation of attention weights by calculating the
dot product between the query and all keys. This method not only streamlined the attention
mechanism but also offered improvements in computational efficiency and performance
in various NLP tasks, marking a pivotal moment in the evolution of attention mechanisms
from their inception to more sophisticated and efficient variants.

The central idea of the attention mechanism is to shift focus from the task of learning
a single vector representation for each sentence. Instead, it adopts a strategy of selectively
attending to particular input vectors in the input sequence, guided by assigned attention
weights. This strategy enables the model to dynamically allocate its attention resources to
the most pertinent segments of the sequence, thereby improving its capacity to process and
comprehend the information more efficiently (Brauwers and Frasincar 2021).

One possible explanation for the improvement is that the attention layer created memo-
ries associated with the context pattern rather than memories associated with the input itself,
relieving pressure on the RNN model structure’s weights and causing the model memory to
be devoted to remembering the input rather than the context pattern (Hu et al. 2018).

2.2.6 Self-attention

To this point, attention mechanisms in sequence-transformation models have primarily
relied on complex RNNS, featuring an encoder and a decoder, the most successful models
in language translation yet. However, Vaswani et al. (2017) introduced a simple network
architecture known as the Transformer, see Fig. 4, which exclusively utilized attention
mechanism, eliminating the need for RNNs. They introduced a novel attention mechanism
called self-attention, which is also known as KQV-attention (Key, Query, and Value). This
attention mechanism subsequently gained prominence as a central component within the
Transformer architecture. The attention mechanism stands out due to its ability to provide
Transformers with an extensive long-term memory. In the Transformer model, it becomes
possible to focus on all previously generated tokens.

The embedding layer in a Transformer model is the initial stage where input tokens are
transformed into dense vectors, capturing semantic information about each token’s meaning
and context within the text. These embeddings serve as the foundation for subsequent lay-
ers to process and understand the relationships between words in the input sequence (Dar
et al. 2022).

Self-attention is a mechanism that allows an input sequence to process itself in a way
that each position in the sequence can attend to all positions within the same sequence.
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Output
Probabilities
Add & Norm MatMul
Feed Forward AIERER T
Attention
SoftMax
_— )
—> Add & Norm
Masked Mask (opt.)
‘ Multi-Head Multi-Head
Attention Attention T
~— ] — Scale
Positional Positional
—_— e————
Encoding Encoding T
Inputs Outputs T T
(shifted right) Q K \Y

(a) Transformer (b) Self-Attention

Fig. 4 Transformer architecture and its self-attention mechanism (adapted from Vaswani et al. 2017)

This mechanism is a cornerstone of the Transformer architecture, which has revolutionized
NLP and beyond by enabling models to efficiently handle sequences of data with complex
dependencies. The purpose of self-attention is to compute a representation of each element
in a sequence by considering the entire sequence, thereby capturing the contextual relation-
ships between elements regardless of their positional distance from each other. This ability
to capture both local and global dependencies makes self-attention particularly powerful
for tasks such as machine translation, text summarization, and sequence prediction, where
understanding the context and the relationship between words or elements in a sequence is
crucial (Vaswani et al. 2017).

The mathematical formulation of self-attention involves several key steps. First, a set of
query vectors @ = X W<, a set of key vectors K = XWX and a set of value vectors
V = XWYV are calculated through linear transformations of the input sequence, where X
is the input matrix representing embeddings of tokens in a sequence, and W< WX and
WYV are weight matrices for queries, keys, and values, respectively. The attention scores are
then calculated by taking the dot product of the query vector with all key vectors, followed
by scaling the result by the inverse square root of the dimension of the keys (say v/di) to
avoid overly large values. These scores are then passed through a softmax function to obtain
the attention weights, which represent the importance of each element’s contribution to the
output. Finally, the output say A is computed as a weighted sum of the value vectors, i.e.,

T

A(Q, K, V) = softmax( Q

e W (12)
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This process allows the model to dynamically focus on different parts of the input sequence,
enabling the extraction of rich contextual information from the sequence.

2.2.7 Multi-head-attention

Multi-head attention is an extension of the self-attention mechanism designed to allow the
model to jointly attend the information from different representation subspaces at different
positions (Vaswani et al. 2017). Instead of performing a single attention function, it runs the
attention mechanism multiple times in parallel. The outputs of these independent attention
computations are then concatenated and linearly transformed into the expected dimension.
The mathematical formulation of the multi-head attention can be described in the following
steps. First, for the i-th self-attention head, find

Qi=XW¢ K,=XWEK Vv,=xW/, (13)

and then compute

Ai(Q;, K;,V;) = softmax (%) V.. (14)

The multi-head attention is obtained by concatenating all A;(Q;, K;, V).

The multi-head attention mechanism enables the model to capture different types of infor-
mation from different positions of the input sequence. By processing the sequence through
multiple attention “heads", the model can focus on different aspects of the sequence, such
as syntactic and semantic features, simultaneously. This capability enhances the model’s
ability to understand and represent complex data, making multi-head attention a powerful
component of Transformer-based architectures (Devlin et al. 2019).

2.3 From transformer to vision transformer

The journey from the inception of the Transformer model to the development of the ViT
marks a pivotal advancement in deep learning, showcasing the adaptability of models ini-
tially designed for sequence data processing to the realm of image analysis. This transition
underscores a significant shift in approach, from conventional image processing techniques
to more sophisticated sequence-based methodologies.

Introduced by Vaswani et al. (2017) through the seminal paper “Attention Is All You
Need", the Transformer model revolutionized NLP by leveraging self-attention mecha-
nisms. This innovation allowed for the processing of sequences of data without the reliance
on recurrent layers, facilitating unprecedented parallelization and significantly reducing
training times for large datasets. The Transformer’s success in NLP sparked curiosity about
its potential applicability across different types of data, including images, setting the stage
for a transformative adaptation.

The adaptation of Transformers for image data pivoted on a novel concept: treating
images not as traditional 2D arrays of pixels but as sequences of smaller and discrete image
patches. This approach, however, faced computational challenges due to the self-attention
mechanism’s quadratic complexity with respect to input length. The breakthrough came
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with the introduction of the ViT by Dosovitskiy et al. (2020), which applied the Transformer
architecture directly to images, see Fig. 5. By dividing an image into fixed-size patches and
processing these patches as if they were tokens in a text sequence, ViT was able to capture
complex relationships between different parts of an image using the Transformer’s encoder.

The operational mechanics of ViT begin with the division of an input image into fixed-
size patches, each of which is flattened and linearly transformed into a vector, effectively
converting the 2D image into a 1D sequence of embeddings. To account for the lack of
inherent positional awareness within the Transformer architecture, positional embeddings
are added to these patch embeddings, ensuring the model retains spatial information. The
sequence of embeddings is then processed through the Transformer encoder, which consists
of layers of multi-head self-attention and feed-forward neural networks, allowing the model
to dynamically weigh the importance of each patch relative to others for a given task.

For tasks like image classification, the output from the Transformer encoder is passed
through a classification head, often utilizing a learnable “class token" appended to the
sequence of patch embeddings for this purpose. The model is trained on large datasets using
backpropagation and, during inference, processes images through these steps to predict their
classes.

The ViT not only demonstrates exceptional performance on image classification tasks,
often surpassing CNNs when trained on extensive datasets, but also highlights the Trans-
former architecture’s capacity to capture the global context within images. Despite its
advantages, ViT’s reliance on substantial computational resources for training and its need
for large datasets to achieve optimal performance present challenges. Nonetheless, the
development of ViT signifies a significant milestone in the application of sequence process-
ing models to the field of computer vision, opening new avenues for research and practical
applications.

The original ViT, designed for static image processing, divides images into patches
and interprets these as sequences, leveraging the Transformer’s self-attention mechanism
to understand complex spatial relationships. Extending this model to action recognition

[ \

| Class F—— MLP Head
|
/ |

Transformer Encoder

ez —) 0§ 0 Q0 DE

Linear Projection of Flattened Patches

. D N O

Fig.5 The ViT architecture (adapted from Dosovitskiy et al. 2020)
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involves adapting it to analyze video frames sequentially to capture both spatial and tem-
poral relationships. Several works attempted to adapt ViT in action recognition task using
different methods as below.

Temporal dimension integration. The integration of the temporal dimension is a funda-
mental step in adapting ViT for action recognition. Traditional ViT models process images
as a series of patches, treating them essentially as sequences for the self-attention mecha-
nism to analyze spatial relationships. By extending this concept to include the temporal
dimension, the models can now treat videos as sequences of frame patches over time. This
allows the models to capture the evolution of actions across frames. The work by Bertasius
et al. (2021) highlights the potential of incorporating temporal information into Transform-
ers, marking a significant advancement in video analysis capabilities.

Spatio-temporal embeddings. To effectively capture the dynamics of actions within vid-
eos, adapted ViT models generate spatiotemporal embeddings. This involves extending the
traditional positional embeddings used in ViTs to also include temporal positions, thereby
creating embeddings that account for both spatial and temporal information within video
sequences. The discussion by Arnab et al. (2021) on the creation of these spatio-temporal
embeddings showcases the method’s effectiveness in enhancing the model’s understanding
of action dynamics across both space and time.

Multi-head self-attention across time. The extension of self-attention mechanisms to
analyze relationships between patches not just within individual frames but also across dif-
ferent frames is crucial for recognizing actions over time. This approach enables the model
to identify relevant features and changes across the video sequences, facilitating a deeper
understanding of motion and the progression of actions. The exploration by Bertasius et al.
(2021) of this concept demonstrates how Transformers can be effectively adapted to capture
the temporal dynamics of actions, a key aspect of video analysis.

2.3.1 Autoencoders in HAR

Autoencoders, particularly sequence-to-sequence architectures, have been instrumental in
capturing complex temporal dynamics in HAR tasks. In the context of RNN-based mod-
els, autoencoders have been utilized to effectively learn compressed representations of
input sequences through the encoder-decoder framework. By mapping input sequences to a
latent representation and reconstructing them from that compressed state, autoencoders are
capable of learning essential features while discarding irrelevant information. This ability
has been particularly valuable for HAR applications involving noise reduction, anomaly
detection, and feature extraction. As Transformer-based models gained popularity, autoen-
coders evolved to leverage attention mechanisms for improved performance. Transformer-
based encoders, such as ViTs and their derivatives, apply self-attention mechanisms within
the encoder framework to enhance the extraction of spatial and temporal features. Unlike
traditional RNN-based autoencoders, which process sequences sequentially, Transformer-
based encoders can simultaneously process all input elements, enabling them to capture
long-range dependencies more effectively. This parallel processing capability significantly
improves training efficiency and enhances the ability to model complex temporal relation-
ships. The transition from RNN-based to ViTs has marked a substantial improvement in
HAR performance, particularly in handling large-scale datasets and learning rich hierarchi-
cal representations.

@ Springer



387 Page 16 of 44 K. Alomar et al.

3 Literature review

This section briefly recalls the most commonly used deep learning-based HAR approaches.
3.1 CNN-based approaches in HAR

This section recalls the most prominent CNN-based approaches in HAR based on the model
type (i.e., the two-stream CNN, 3D CNN, and RNNs with CNNs), organized chronologically.

Deep learning was still in its early stages in 2012, and CNNs or RNNs had not yet gained
significant popularity in the field of HAR. The focus was primarily on traditional machine
learning approaches, such as support vector machines (Cortes and Vapnik 1995), and hand-
crafted features, such as histogram of oriented gradients (Dalal and Triggs 2005) and histo-
gram of optical flow (Barron et al. 1994). A few studies did, nevertheless, start looking into
neural networks for action recognition.

In 2014, the use of CNNSs in action recognition was at a pivotal stage, marking a shift
from hand-crafted feature-based methods to deep learning approaches. The key points of
the use of CNNs in action recognition at that period of time are the following. (I) Emer-
gence of deep learning: deep learning, particularly CNNs, had started to dominate image
classification tasks, thanks to their ability to learn feature representations directly from raw
pixel data. This success in static images paved the way for applying CNNs to video data
for action recognition. (I1) Challenges in video data: unlike 2D images, videos incorporate
a third dimension which represents the temporal patterns, making action recognition more
complex. CNNs had to be adapted to not only recognize spatial patterns but also capture
motion information over time dimension. (III) Datasets and benchmarks: the adoption of
large-scale video datasets like UCF-101 (Soomro et al. 2012) and HMDB-51 (Kuehne et al.
2011) became more common. These datasets provided diverse sets of actions and were large
enough to train deep networks. The performance on these benchmarks has been becoming
a key measure of progress for action recognition models. (IV) Transfer learning: due to
the computational expense of training CNNs from scratch and the relatively smaller size
of video datasets compared to image datasets, transfer learning became a popular strat-
egy. Networks pre-trained on large image datasets like ImageNet (Deng et al. 2009) were
fine-tuned on video frames for action recognition tasks. (V) Computational constraints:
despite the promise of CNNs, computational constraints were a significant challenge. Train-
ing deep networks required significant GPU power, and processing video data with CNNs
was resource-intensive. This limited the complexity of the models that could be trained and
the size of the datasets that could be used.

3.1.1 Two-stream CNNs

Simonyan and Zisserman (2014a) presented an innovative approach to recognize actions in
video sequences by using a two-stream CNN architecture. This approach divides the task
into two distinct problems: recognizing spatial features from single frames and capturing
temporal features across frames. The spatial stream CNN processes static visual informa-
tion, while the temporal stream CNN handles motion by analyzing optical flow. The model
was tested on benchmark datasets like UCF-101 and HMDB-51, where it achieved state-
of-the-art results, showcasing the effectiveness of this two-stream method. The novelty of
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this work lies in the separation of motion and appearance features, which allows for more
specialized networks that can better capture the complexities of video-based action recogni-
tion. The success of this model has made a significant impact on the field, influencing many
future research directions in video understanding. Consequently, numerous methods have
been proposed to enhance the the two-stream model (Wang et al. 2015; Feichtenhofer et al.
2016; Wang et al. 2016; Peng et al. 2018; Wang et al. 2017).

In 2016, building on the the two-stream CNN, Feichtenhofer et al. (2016) focused on
improving the two-stream CNN by exploring various fusion strategies for combining spa-
tial and temporal streams, resulting in better performance on the UCF-101 and HMDB-51
datasets. By enhancing fusion techniques, this work addressed the limitations of the initial
two-stream model, leading to more effective integration of spatial and temporal informa-
tion. Wang et al. (2016) introduced temporal segment networks (TSN). This work aimed
to capture long-range temporal structures for action recognition, achieving significant
improvements on the UCF-101 and HMDB-51 datasets by dividing videos into segments
for comprehensive analysis. The introduction of TSN extended the temporal analysis capa-
bilities of the two-stream CNN, enabling the capture of long-range dependencies.

In 2017, derived from the two-stream CNN, Cosmin Duta et al. (2017) proposed a
three-stream method by using spatio-temporal vectors, with locally max-pooled features to
enhance performance. Tested on the UCF-101 and HMDB-51 datasets, the approach dem-
onstrated improved recognition accuracy by efficiently capturing spatio-temporal dynamics.
In 2018, the efficient convolutional network for online video understanding (ECO) was
introduced by Zolfaghari et al. (2018), combining the two-stream CNN approach with light-
weight 3D CNNss, and focusing on efficiency and real-time processing, with high efficiency
and competitive accuracy demonstrated on the Kinetics and UCF-101 datasets.

Feichtenhofer et al. (2019) introduced the SlowFast network which processes video data
at varying frame rates to capture both spatial semantics and motion dynamics, achieving
state-of-the-art results on the Kinetics-400 and Charades datasets. By introducing different
temporal resolutions, this work innovated on the two-stream concept, capturing fine and
coarse temporal details. Wang et al. (2018a) expanded on their previous work with TSN,
developing a multi-stream approach that incorporated RGB, optical flow, and warped opti-
cal flow streams to model long-range temporal structures more effectively. This approach
achieved state-of-the-art results by capturing both spatial and temporal information across
various time scales. In 2021, temporal difference networks (TDN) were introduced by Wang
et al. (2021a), leveraging the multi-stream CNN with a focus on capturing motion dynamics
efficiently. Using the UCF-101 and HMDB-51 datasets, TDN achieved notable improve-
ments by effectively modeling temporal differences. By emphasizing temporal differences,
this work advanced the ability of the two-stream CNN to capture motion dynamics more
effectively. Hussain et al. (2023) presented a novel approach for HAR in low-light and
complex environments. It integrates a lightweight CNN for enhancing low-light frames,
YOLOvV7-Tiny for human detection, and a dual-stream network combining CNN and trans-
former features. These features are processed using a custom Optimized Parallel Sequential
Temporal Network (OPSTN) with squeeze-and-excitation attention for efficient recogni-
tion. The model achieved superior performance on HMDBS51, UCF50, and YouTube Action
datasets, outperforming many existing state-of-the-art methods.

Table 2 presents the works discussed in this section that utilized two or more stream
CNNs approaches.

@ Springer



387 Page 18 of 44 K. Alomar et al.

3.1.2 3D CNN-based approaches

The foundational work conducted by Ji et al. (2012) introduced 3D CNNs for HAR, dem-
onstrating their effectiveness in capturing spatio-temporal features on the KTH and UCF-
101 datasets and outperforming traditional 2D CNNs. The work paved the way for further
research on enhancing 3D convolutional models. Tran et al. (2015) introduced C3D, a
generic 3D CNN for spatio-temporal feature learning, achieving state-of-the-art perfor-
mance on the Sports-1 M and UCF-101 datasets and highlighting the scalability and effec-
tiveness of 3D convolutions. Building on the work by Ji et al. (2012), C3D demonstrated

Table 2 qu—stream CNN-based Paper Model Dataset Novelty
approaches in HAR Simonyan Two-stream UCF-101, Introduced the two-

and CNN HMDB-51 stream architecture

Zisserman separating spatial

(2014a) and temporal streams
for effective action
recognition

Feich- Two-stream UCF-101, Explored various fusion

tenhofer ~ CNN HMDB-51 strategies to combine

et al. spatial and temporal

(2016) streams, and improved
performance

Wang Two-stream UCF-101, Introduced TSN to cap-

etal. CNN + TSN HMDB-51 ture long-range temporal

(2016) structures by dividing
videos into segments

Cos- Three- UCF-101, Proposed a three-stream

min Duta ~ Stream HMDB-51 method using spatio-

et al. CNN temporal vectors with

(2017) locally max-pooled
features for enhanced
performance

Zol- Two-stream  Kinetics, Combined the two-

faghari CNN+3D UCF-101 stream CNN with

etal. CNN lightweight 3D CNNs

(2018) for efficient real-time
processing

Feich- Two-stream  Kinetics-400,  Introduced SlowFast

tenhofer ~CNN + Charades networks processing

etal. SlowFast video data at varying

(2019) frame rates to capture
both spatial and motion
dynamics

Wang CNN-RNN, UCFI101, Expanded on TSN by

etal. (Multi- HMDBS1 developing a multi-

(2018a) stream TSN) stream approach that
incorporated RGB,

optical flow, and warped
optical flow streams to
model long-range tem-
poral structures more

effectively
Wang Multi- Something- Introduced TDN focus-
et al. stream CNN Something V1  ing on capturing motion
(2021a) + TDN and V2 dynamics efficiently

@ Springer



CNNs, RNNs and Transformers in human action recognition: a survey and... Page 19 of 44 387

the potential of 3D CNNs across diverse datasets, influencing subsequent research in 3D
CNNS. Varol et al. (2017) introduced long-term temporal convolutions to capture extended
motion patterns. This work improved the accuracy on the UCF-101 and HMDB-51 datas-
ets and emphasized the importance of long-term motion information. Moreover, this study
extended the temporal scope of 3D CNNSs, highlighting the need for capturing long-term
motion for accurate action recognition. In the same year, Qiu et al. (2017) proposed pseudo-
3D residual networks (P3D), which combined 2D and 3D convolutions to balance the accu-
racy and computational complexity. This work achieved competitive performance on the
Kinetics and UCF-101 datasets. Moreover, P3D networks offered a more efficient approach
by blending 2D and 3D convolutions, further refining the capabilities of 3D CNNs. Addi-
tionally, Carreira and Zisserman (2017) introduced 13D by inflating 2D convolutions to 3D,
achieving significant improvements on the Kinetics dataset by leveraging ImageNet pre-
training, thereby setting new performance benchmarks. I3D bridged the gap between 2D
and 3D CNNs, demonstrating the benefits of transfer learning in 3D convolutional models.

Hara et al. (2018) evaluated the scalability of 3D CNNs with increased data and model
sizes, demonstrating that deeper 3D CNNs can achieve better performance on the Kinet-
ics and UCF-101 datasets, paralleling the success of 2D CNNs on ImageNet. This study
emphasized the need for larger datasets and deeper models in 3D convolutional research,
highlighting the potential of 3D CNNs to retrace the historical success of 2D CNNs. Build-
ing on these insights, Diba et al. (2017) introduced a new temporal 3D ConvNet architecture
with enhanced transfer learning capabilities, demonstrating superior performance on the
UCF-101 and HMDB-51 datasets through architectural innovations and effective transfer
learning. This work underscored the importance of architectural innovation and transfer
learning, pushing the boundaries of 3D CNN performance and further advancing the field
of action recognition. Tran et al. (2018) further contributed by conducting a comprehensive
analysis of spatio-temporal convolutions, highlighting the benefits of factorizing 3D con-
volutions into separate spatial and temporal components, achieving state-of-the-art results
on the Kinetics and UCF-101 datasets. This dissection provided insights that informed sub-
sequent model designs and optimizations. In the same year, Xie et al. (2018) explored the
trade-offs between speed and accuracy in spatio-temporal feature learning, proposing effi-
cient 3D CNN variants that balance computational cost and recognition performance on
the Kinetics and UCF-101 datasets. Their work highlighted the practical considerations of
deploying 3D CNNs, emphasizing the need to balance speed and accuracy, thereby refining
the approach to spatio-temporal feature learning. Additionally, Wang et al. (2018b) intro-
duced non-local neural networks to capture long-range dependencies, demonstrating that
non-local operations significantly improve the modeling of complex temporal relationships
and enhance action recognition performance on the Kinetics and Something-Something
datasets. By integrating non-local operations, this study advanced the ability of 3D CNNs
to capture complex temporal patterns, further pushing the boundaries of spatio-temporal
modeling.

Feichtenhofer et al. (2019) introduced SlowFast Networks, a novel approach that pro-
cesses video at different frame rates to capture both slow and fast motion dynamics, and
achieved state-of-the-art results on the Kinetics-400 and Charades datasets. This innova-
tion highlighted the importance of capturing varied motion dynamics for improved video
recognition. In the same year, Tran et al. (2019) presented channel-separated convolu-
tional networks (CSN), which reduced computational complexity by separating convolu-
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tions by channel, demonstrating efficiency without sacrificing accuracy on the Kinetics and
Sports-1 M datasets. This approach contributed to the development of more computation-
ally feasible models. Concurrently, Ghadiyaram et al. (2019) leveraged large-scale weakly-
supervised pre-training on video data, significantly boosting performance on the 1G-65 M
and Kinetics datasets and underscoring the potential of massive datasets in enhancing 3D
CNN capabilities. Additionally, Kopuklu et al. (2019) proposed resource-efficient 3D CNNs
using depthwise separable convolutions and achieved competitive accuracy with signifi-
cantly reduced computational requirements on the Kinetics-400 and UCF-101 datasets. This
work emphasized the importance of optimizing 3D CNNs for computational efficiency, fur-
ther advancing the field of action recognition.

Feichtenhofer (2020) proposed X3D, a family of efficient video models by expanding
architectures along multiple axes. It achieved state-of-the-art performance with reduced
model complexity on the Kinetics-400 and Charades datasets. X3D highlighted the sig-
nificance of model efficiency in balancing performance and computational demands. In the
same year, Li et al. (2020) introduced an efficient 3D CNN with a temporal attention mecha-
nism and achieved high accuracy with efficient computation by focusing on salient temporal
features on the Kinetics-400 and UCF-101 datasets. This work demonstrated the potential of
selectively focusing on important temporal features to enhance the efficiency and accuracy
of 3D CNN:ss, further advancing the field of action recognition.

Table 3 presents the works discussed in this section that utilized 3D CNN approaches.

3.1.3 CNN-RNN-based approaches

The integration of CNNs and RNNs for HAR was significantly advanced by the work of
Donahue et al. (2015), who introduced long-term recurrent convolutional networks (LRCN).
This approach effectively combined the spatial feature extraction capabilities of CNNs with
the temporal dynamics modeling of LSTMs, demonstrating substantial improvements in
action recognition tasks on datasets like UCF-101 and HMDB-51. Building on this foun-
dation, Yue-Hei Ng et al. (2015) extended the application of deep networks to video clas-
sification by integrating deep CNNs with LSTMs to handle longer video sequences. Their
method, tested on the Sports-1 M and UCF-101 datasets, highlighted the importance of
capturing extended temporal dependencies for improved performance in complex video
classification tasks. Further pushing the boundaries, Srivastava et al. (2015) explored unsu-
pervised learning of video representations using LSTMs. By leveraging LSTMs to learn
spatio-temporal features without labeled data, their approach demonstrated effective video
representation learning on the UCF-101 dataset, showcasing the versatility and potential of
CNN-RNN architectures in both supervised and unsupervised learning scenarios for HAR.

The development of CNN-RNN architectures for HAR saw significant advancements in
2016. Wu et al. (2015) proposed a hybrid deep learning framework that modeled spatial-
temporal clues by combining CNNs for spatial feature extraction with RNNs for temporal
sequence modeling. Their approach, tested on the UCF-101 and HMDB-51 datasets, dem-
onstrated substantial improvements in video classification accuracy. Additionally, Li et al.
(2016) expanded the application of CNN-RNN architectures to real-time scenarios with
their approach for online human action detection using joint classification-regression RNNs.
Combining CNNs for spatial features and RNNs for temporal dynamics, their method, tested
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Table 3 3D CNN-based approaches in HAR

Paper Model Dataset Novelty

Jietal. 3D UCF-101, HMDB-51 Introduced 3D CNNs for HAR, effectively capturing

(2012) CNN spatio-temporal features and outperforming 2D CNNs

Tran et al. 3D Sports-1 M, UCF-101 Introduced C3D, a generic 3D CNN for spatio-tem-

(2015) CNN poral feature learning, and achieved state-of-the-art
performance

Varol etal. 3D UCF-101, HMDB-51 Introduced long-term temporal convolutions to cap-

(2017) CNN ture extended motion patterns, and improved accuracy

Qiu et al. 3D Kinetics, UCF-101 Proposed P3D networks combining 2D and 3D

(2017) CNN convolutions, balancing accuracy and computational
complexity

Carreira and 3D Kinetics Introduced I3D by inflating 2D convolutions to 3D,

Zisserman ~ CNN leveraging ImageNet pre-training for significant

(2017) improvements

Haraetal. 3D Kinetics, UCF-101 Evaluated the scalability of 3D CNNs with increased

(2018) CNN data and model sizes, and showed parallels to 2D
CNN success

Dibaetal. 3D UCF-101, HMDB-51 Introduced a new temporal 3D ConvNet architecture

(2017) CNN with enhanced transfer learning capabilities

Tran et al. 3D Kinetics, UCF-101 Conducted a comprehensive analysis of spatio-

(2018) CNN temporal convolutions, and highlighted the benefits of
factorizing 3D convolutions

Xie et al. 3D Kinetics, UCF-101 Explored speed-accuracy trade-offs in spatio-temporal

(2018) CNN feature learning, and proposed efficient 3D CNN
variants

Wang etal. 3D Kinetics, Introduced non-local operations to capture long-range

(2018b) CNN  Something-Something dependencies, and improved modeling of complex
temporal relationships

Feichten- 3D Kinetics-400, Charades Proposed SlowFast networks to process video at

hoferetal. CNN different frame rates, capturing both slow and fast

(2019) motion dynamics

Tranetal. 3D Kinetics, Sports-1 M Introduced CSN to reduce computational complexity

(2019) CNN without sacrificing accuracy

Ghadiyaram 3D 1G-65 M, Kinetics Leveraged large-scale weakly-supervised pre-training

etal. (2019) CNN on video data, and significantly boosted performance

Kopuklu 3D Kinetics-400, UCF-101 Proposed resource-efficient 3D CNNs using depthwise

etal. (2019) CNN separable convolutions, and achieved competitive ac-
curacy with reduced computational requirements

Feichten- 3D Kinetics-400, Charades Proposed X3D, a family of efficient video models by

hofer (2020) CNN expanding architectures along multiple axes

Lietal. 3D Kinetics-400, UCF-101 Introduced a temporal attention mechanism to en-

(2020) CNN hance efficiency and accuracy in 3D CNNs

on the J-HMDB and UCF-101 datasets, achieved notable improvements in accuracy and
efficiency, showcasing the practicality of CNN-RNN models in real-time action detection.
Building on these advancements, 2017 and 2018 witnessed further refinements and
innovations in CNN-RNN architectures for HAR. Li et al. (2018) introduced VideoLSTM,
integrating convolutions, attention mechanisms and optical flow within a recurrent frame-
work, and demonstrating improved performance on the UCF101 and HMDBS51 datasets.
Carreira and Zisserman (2017) made a significant contribution with the two-stream Inflated
3D ConvNet (I3D), which inflated 2D CNN architectures into 3D and combined them with
RNNs for temporal modeling. The model was evaluated on the Kinetics dataset, as well as
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UCF101 and HMDBS51. Ullah et al. (2017) proposed a novel architecture combining CNNs
with bi-directional LSTMs, effectively utilizing both spatial and temporal information from
video sequences and showing superior performance on the UCF-101 and HMDB-51 datas-
ets. In 2020, in the realm of human activity recognition using sensor data, Xia et al. (2020)
proposed an LSTM-CNN architecture that effectively captured both temporal dependencies
and local feature patterns, showing improved accuracy on the WISDM, UCI HAR, and
OPPORTUNITY datasets. Similarly, Mutegeki and Han (2020) developed a CNN-LSTM
approach for smartphone sensor-based activity recognition, demonstrating high accuracy
on the UCI HAR dataset and further validating the effectiveness of combining CNNs and
RNNS for processing time-series data in activity recognition tasks.

Recent advancements in HAR have leveraged sophisticated CNN-RNN architectures
to enhance performance and reduce computational complexity. Muhammad et al. (2021)
introduced an attention-based LSTM network combined with dilated CNN features, and
significantly improved the recognition accuracy on the UCF-101 and HMDB-51 datasets by
capturing essential spatial features through dilated convolutions and temporal patterns with
attention mechanisms. Building on this, Malik et al. (2023) focused on multiview HAR;
utilizing a CNN-LSTM architecture to cascade pose features, they achieved high accuracy
(94.4% on the MCAD dataset and 91.67% on the IXMAS dataset) while reducing the com-
putational load by targeting pose data rather than entire images.

In 2024, Hussain et al. (2024c) proposed a Human-Centric Attention with Deep Multi-
scale Feature Fusion Framework aimed at improving HAR within the Internet of Medical
Things (IoMT). Their approach involves a combination of MobileNetV3 and a redesigned
bidirectional LSTM integrated with Sequential Multihead Attention to enhance long-range
temporal dependencies. Their model achieved impressive accuracy on both healthcare and
general HAR datasets, outperforming existing methods. Another work done by Hussain
et al. (2024a) developed an Al-driven behavior biometrics framework utilizing a Dynamic
Attention Fusion Unit (DAFU) and Temporal-Spatial Fusion (TSF) network. Their approach
integrated Echo-ConvLSTM to enhance accuracy and robustness in recognizing complex
activities. This model demonstrated superior performance across multiple public HAR
datasets.

Table 4 presents the works discussed in this section that utilized CNN-RNN approaches.

3.2 ViT-based approaches in HAR

In 2020, the ViT was conceptualized and introduced in the academic domain through the
paper authored by Dosovitskiy et al. (2020). The ViT marked a paradigm shift in still image
recognition methodologies, applying the Transformer model, predominantly known for its
success in NLP, to the realm of computer vision. The application of ViTs in action recogni-
tion, a more specific and complex task within the field of computer vision, followed the
initial introduction of ViT. Specifically, in 2021 and beyond, subsequent research and pub-
lications have explored and expanded the use of ViTs for action recognition tasks, demon-
strating their efficacy in capturing spatial-temporal features within video data. They employ
attention mechanisms to minimize redundant information and to model interactions over
long distances in both space and time (Koot et al. 2021). The adaptation of ViT to action
recognition signifies the model’s versatility and its potential for broader applications in
computer vision beyond static image analysis.
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Table 4 CNN-RNN-based approaches in HAR

Paper Model Dataset Novelty

Donahue =~ CNN-RNN, (LRCN) UCF-101, HMDB-51 Combined CNNs for spatial feature

et al. extraction with LSTMs for temporal

(2015) dynamics

Yue- CNN-RNN Sports-1 M, UCF-101 Integrated deep CNNs with LSTMs to

Hei Ng handle longer video sequences, captur-

etal. ing extended temporal dependencies

(2015)

Srivas- CNN-RNN, (Unsupervised UCF-101 Explored unsupervised learning of

tavaetal. LSTM) video representations using LSTMs,

(2015) leveraging spatiotemporal features

Wuetal. CNN-RNN UCF-101, HMDB-51 Modeled spatial-temporal clues by com-

(2015) bining CNNs for spatial features with
RNNs for temporal sequence modeling

Lietal. CNN-RNN J-HMDB, UCF-101  Applied CNN-RNN architectures to

(2016) real-time scenarios for online human

action detection
Lietal. CNN-RNN (VideoLSTM) UCF-101, HMDB-51 Integrated convolutions, attention

(2018) mechanisms, and optical flow within a
recurrent framework

Car- 3D CNN-RNN Kinetics, UCF101, Inflated 2D CNN architectures into 3D,

reira and HMDBS51 and combined them with RNNs for tem-

Zisserman poral modeling

(2017)

Ullah et al. CNN-RNN, UCF101, HMDB51  Combined CNNs with bi-directional

(2017) (CNN-BILSTM) LSTMs to utilize both spatial and tem-
poral information

Xiaetal. CNN-RNN WISDM, UCI, Captured both temporal dependencies

(2020) OPPORTUNITY and local feature patterns for human
activity recognition using sensor data

Mutegeki ~ CNN-RNN ucI Developed a CNN-LSTM approach for

and Han smartphone sensor-based activity recog-

(2020) nition, and demonstrated high accuracy

Muham- CNN-RNN, UCF-101, HMDB-51 Improved recognition accuracy with

madetal. (CNN-Attention-LSTM) attention-based LSTM network com-

(2021) bined with dilated CNN features

Malik et al. CNN-RNN MCAD, IXMAS Achieved high accuracy in multiview

(2023) HAR by cascading pose features using a

CNN-LSTM architecture

Recent advancements in action recognition have seen a significant shift towards ViT,
highlighting their efficacy in video understanding tasks. Arnab et al. (2021) introduced
ViViT, extending the vision Transformer architecture to handle video sequences. They dem-
onstrated its potential on datasets like Kinetics-400 and Something-Something-V2, marking
a substantial improvement in video action recognition capabilities. Building on this, Ber-
tasius et al. (2021) proposed a space-time Transformer that models temporal information
innovatively, and achieved competitive results on similar datasets. The efficiency of multi-
scale ViTs was further illustrated by Fan et al. (2021), who showed that such architectures
could effectively capture fine-grained video details and enhance classification performance
on comprehensive video datasets. Moreover, Liu et al. (2022) presented the Swin Trans-
former, utilizing a shifted window mechanism to model long-range dependencies more effi-
ciently, and leading to significant improvements in action recognition accuracy. Together,
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these works underscore the transformative impact of ViTs in advancing the field of HAR.
Additionally, Wang et al. (2021b) introduced ActionCLIP, leveraging the CLIP model for
enhanced video action recognition on multiple standard video datasets, including Kinet-
ics-400 and HMDB-51. This novel approach integrated visual and linguistic representations.

Chen and Ho (2022) introduced Mm-ViT, a multi-modal video Transformer designed for
compressed video action recognition, and demonstrated high performance by leveraging
multi-modal inputs on compressed video datasets such as HACS and UCF101. Sharir et al.
(2021) explored the extension of ViT to video data, showing its potential in capturing tem-
poral dynamics effectively across several standard video datasets, including Kinetics-400
and HMDB-51. Furthermore, Xing et al. (2023) developed SVFormer, a semi-supervised
video Transformer that leverages both labelled and unlabeled data to bridge the gap between
supervised and unsupervised learning, and achieved significant improvements in action
recognition tasks on various standard HAR datasets such as Kinetics-400 and UCF101.
Together, these works underscore the transformative impact of ViTs in advancing the field
of HAR.

In 2024, Hussain et al. (2024e¢) proposed a Hybrid Transformer Framework aimed at effi-
cient HAR on consumer electronics devices. Their method involves using a MobileNetV3
model for extracting salient contextual features from each video frame. These features are
then passed to a Sequential Residual Transformer Network (SRTN) designed to effectively
learn long-range temporal dependencies. The SRTN’s temporal multi-head self-attention
module and residual strategy enhance the extraction of discriminative features while dis-
carding irrelevant information. This approach achieved high accuracy on challenging HAR
datasets, e.g. 96.64% on UCF101, 76.14% on HMDBS51, and 97.31% on UCF50.

While our study primarily focuses on the ViT model due to its significant impact on
HAR, we acknowledge that several other Transformer architectures have been developed
and applied to HAR and related tasks. Notable examples include Swin Transformers (Chen
and Mo 2023) (which introduce hierarchical feature representations using shifted windows
to enhance computational efficiency), Timesformer (Bertasius et al. 2021) (which factor-
izes spatio-temporal attention for video understanding), and Motion Transformers (Shi et al.
2022) (which explicitly model motion dynamics). Furthermore, hybrid transformer models,
such as CNN-Transformer architectures (Reda et al. 2023; Leong et al. 2022), have been
explored to balance local feature extraction with global context modelling. In contrast, our
model proposes a hybrid CNN-VIiT architecture, focusing on combining CNNs for spatial
features with ViTs for spatiotemporal reasoning. Leong et al. (2022) integrated a 3D CNN
with a Transformer Encoder and optionally a cross-modal video-text attention module to
enhance fine-grained action recognition using textual class descriptions. The model Con-
ViViT (Reda et al. 2023) used a CNN to preprocess RGB videos into a 128-channel rep-
resentation, followed by a Transformer with factorized self-attention to model spatial and
temporal features efficiently.

HAR plays a pivotal role in advancing various domains beyond conventional activity
recognition. For instance, the work in Hussain et al. (2024d) introduced a novel framework
utilising attention-inspired sequential temporal convolution networks (STCN) to enhance
HAR in industrial surveillance systems. This framework demonstrated the application of
HAR in monitoring worker interactions with industrial devices, thereby contributing to
improved safety, operational efficiency, and anomaly detection within industrial settings.
Furthermore, in the domain of Sports Action Recognition (SAR), the study in Hussain et al.

@ Springer



CNNs, RNNs and Transformers in human action recognition: a survey and... Page 25 of 44 387

(2024f) presented the Cricket Excited Actions (CEA) dataset, providing a comprehensive
benchmark for analyzing complex multi-person activities in cricket matches. By enabling
accurate recognition of cricket-specific actions, this dataset supports advancements in both
sports analytics and commercial entertainment, bridging the gap between academia and
real-world applications. These contributions highlight the broader applicability of HAR
techniques in enhancing efficiency and safety across diverse fields.

More notable works incorporated include a novel slow-fast tubelet processing frame-
work for efficient action recognition in infrared-based scenarios, demonstrating superior
performance on benchmark datasets NTURGB-D 120 and InfAR (Munsif et al. 2024b).
Additionally, a contextual-motion coalescence network (CMCNet) was proposed for robust
action representation in dark environments by synergistically integrating contextual visual
features and temporal optical flow learning modules (Munsif et al. 2024a). Hussain et al.
(2022) proposed a CNN-free approach combining ViT (ViT-Base-16) for spatial feature
extraction with a multilayer LSTM network to capture long-range temporal dependencies.
This method addresses challenges like occlusion, low resolution, and varying viewpoints
in surveillance environments. Evaluated on UCF50 and HMDBS51 datasets, the model
achieved strong performance with 96.14% accuracy on UCF50 and 73.71% on HMDBS5I1,
surpassing many state-of-the-art methods.

Table 5 presents the works discussed in this section that utilized ViTs.

3.3 CNN-VIT hybrid architectures

The integration of ViTs with CNNs has significantly advanced HAR tasks. Yin and Yin
(2024) proposed a two-stream hybrid CNN-Transformer network (THCT-Net), which dem-
onstrated enhanced generalization ability and convergence speed on the NTU RGB+D data-
set by combining CNNs for low-level context sensitivity and Transformers for capturing
global information. Following this, Shan et al. (2021) applied a similar hybrid model to
driver action recognition, leveraging multi-view data to achieve high accuracy through the
integration of CNNs for spatial feature extraction and Transformers for temporal dependen-
cies. Mazzeo et al. (2022) extended this approach by integrating 3D CNNs with Transform-
ers for late temporal modeling, and achieved substantial improvements in action recognition
accuracy on the HMDB-51 and UCF101 datasets. Moreover, Chen and Mo (2023) pro-
posed Swin-Fusion, which combines Swin Transformers with CNN-based feature fusion to
achieve state-of-the-art performance on datasets like Kinetics-400 and Something-Some-
thing-V2, demonstrating the robustness and superior performance of hybrid models in HAR
tasks.

Djenouri and Belbachir (2023) proposed a hybrid visual Transformer model that inte-
grates CNNs and Transformers for efficient and accurate human activity recognition. They
demonstrated its capability on datasets like Kinetics-400 and UCF101, and showed that
the hybrid approach leverages the local feature extraction of CNNs with the global context
modeling of Transformers. Following this, Surek et al. (2023) provided a comprehensive
review of deep learning approaches for video-based human activity recognition, emphasiz-
ing the potential of hybrid models. This review underscored the effectiveness of such hybrid
models in capturing both spatial and temporal features from video data, and evaluated on
various human activity datasets including NTU RGB+D and UTD-MHAD. Ahmadabadi
et al. (2023) explored the use of knowledge distillation techniques to enhance the perfor-
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Table 5 ViT-based approaches Paper Model Dataset Novelty
in HARs Amab  ViViT Kinetics-400, Extended

et al. Something-Something-V2  ViT to

(2021) video
sequences

Ber- Space-Time Kinetics-400 Innovative

tasius Transformer temporal

et al. information

(2021) modeling

Fan Multiscale ViT  Kinetics-400, Efficient

etal. Something-Something-V2  capture

(2021) of fine-
grained
video
details

Liu Swin Kinetics-400, Shifted

et al. Transformer Something-Something-V2  window

(2022) mechanism
for long-
range de-
pendency
modeling

Wang ActionCLIP Kinetics-400, HMDB-51 Leveraged

et al. CLIP for

(2021b) enhanced
video
action
recognition

Chen Mm-ViT HACS, UCF101 Multi-

and Ho modal

(2022) inputs for
compressed
video
action
recognition

Sharir  ViT Kinetics-400, HMDB-51  Applied

et al. ViT to

(2021) video data

Xing SVFormer Kinetics-400, UCF101 Semi-

et al. supervised

(2023) learning
for action
recognition

mance of hybrid CNN-Transformer models. Their approach was validated on datasets such
as HMDB-51 and Kinetics-400, showing significant improvements in HAR by effectively
transferring knowledge from complex models to more efficient ones. Together, these works
highlight the evolving landscape of hybrid models in human activity recognition, showcas-
ing their robustness and efficiency in handling complex video data. Hussain et al. (2024b)
proposed a dual-stream framework for robust HAR in surveillance videos. It used a shot
segmentation module trained on a custom lowlight dataset to filter and enhance frames.
Spatial and motion features are extracted using ViT-B16 and FlowNet2, then processed with
a Parallel BILSTM and dual stream multi-head attention. The model achieved high accuracy
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on benchmark datasets: 78.63% (HMDBS51), 96.02% (UCF101), and 98.88% (YouTube
Actions) (Table 6).
Table 3 presents the works discussed in this section that utilized CNN-ViT approaches.

3.4 Discussion

In the field of HAR, the choice of models — whether CNN-based, ViT-based, or a hybrid of
CNN and ViT - significantly influences the outcome and efficiency of the task. CNN-based
models are particularly adept at extracting local features due to their convolutional nature
(LeCun et al. 2015), making them highly effective in pattern recognition within images and
videos. Their computational efficiency is a boon for real-time applications (Howard et al.
2017), and their robustness to input variations is notable (Simonyan and Zisserman 2014b).
However, CNNs often struggle with global contextual understanding (Szegedy et al. 2015)
and are prone to overfitting. Moreover, their ability to model long-range temporal depen-
dencies (Karpathy et al. 2014), which is crucial in action recognition, is somewhat limited.

ViT-based models, in contrast, excel in capturing global dependencies (Carion et al. 2020;
Dosovitskiy et al. 2020), thanks to their self-attention mechanism. This attribute makes them
particularly suited for understanding complex actions that require a broader view beyond
local features. ViTs are scalable with data, benefiting significantly from larger datasets, and
are flexible in processing inputs of various sizes (Touvron et al. 2021). The adaptability in
processing various input sizes is a byproduct of the patch-based approach and the global
receptive field of the ViTs. However, these models are computationally more intensive and
require substantial training data to achieve optimal performance (Khan et al. 2022). Unlike
CNNs, ViTs are not as efficient in extracting detailed local features, which can be a critical
drawback in certain action recognition scenarios. For more clarification, a detailed explana-
tion of the ViViT model including its capabilities and limitations was introduced by Arnab
et al. (2021). ViViT is a pure Transformer-based model designed specifically for video rec-
ognition tasks. It applies a spatio-temporal attention mechanism to process video frames as a
sequence of patches, enabling it to capture both spatial and temporal information effectively.
While ViViT has demonstrated impressive performance on datasets like Kinetics-400 and
Something-Something-V2, it faces challenges related to computational complexity and the
requirement for large-scale training data.

Hybrid models that combine CNNs and ViTs aim to harness the strengths of both archi-
tectures. They offer the local feature extraction capabilities of CNNs along with the global
context awareness of ViTs, potentially providing a more balanced approach to action rec-
ognition. These models can be more efficient and versatile, adapting well to a range of
tasks. However, this combination brings its own challenges, including increased architec-
tural complexity, higher resource demands, and the need for careful tuning to balance the
contributions of both CNN and ViT components. The choice among these models depends
on the specific requirements of the action recognition task, such as the available computa-
tional resources, the nature and size of the dataset, and the types of actions that need to be
recognized.

For a summary of the advantages and disadvantages of these three architectural varia-
tions, see Table 7.
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Table 6 CNN-ViT hybrid ap- Paper ~ Model Datase Novelty
proaches in HARs Yin and The two-stream NTU RGB+D Combined
Yin hybrid CNN- CNNs and
(2024)  Transformer network Transformers
(THCT-Net) for improved
generaliza-
tion and
convergence
speed
Shan Multi-view vision Custom driver action Leveraged
et al. Transformer datasets multi-view
(2021) data for spa-

tial and tem-
poral feature

integration
Mazzeo 3D HMDB-51, UCF101 Integrated
et al. CNN-Transformer 3D CNNs
(2022) with Trans-
formers for
late temporal
modeling
Chen Swin-Fusion Kinetics-400, Combined
and Mo Something-Some- Swin Trans-
(2023) thing-V2 formers with
CNN-based
feature
fusion for
state-of-
the-art
performance
Dj- Hybrid visual Kinetics-400, Efficient
enouri  Transformer UCF101 and accurate
and human
Bel- activity
bachir recognition
(2023) leveraging
strengths of
CNNs and
Transformers
Surek  Various deep learn- NTU RGB+D, Comprehen-
et al. ing models including UTD-MHAD sive review
(2023)  hybrid models highlighting
the potential
of hybrid
models
Ah- Hybrid HMDB-51, Knowledge
mad- CNN-Transformer Kinetics-400 distillation
abadi from CNN-
et al. Transformer
(2023) models for
enhanced
performance
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4 Proposed CNN-ViT hybrid architecture

In this section, we present our proposed CNN-VIT architecture for HAR, leveraging the
benefits of both approaches described in previous sections, see Fig. 6. The architecture
incorporates a TimeDistributed layer with a CNN backbone, followed by a ViT model to
classify actions in video sequences.

Spatial component. Let X be a collection of N frames, i.e., ¥ = {X;},. The CNN back-
bone (i.e. MobileNet in (Howard et al. 2017)) in the TimeDistributed layer (see Fig. 6) pro-
cesses the indifivual frames X; and outputs the spatial features vector v; = pg(X;) € RL,
where pg is the CNN model (e.g. MobileNet or VGG16) with parameters in 6§ wrapped by
the TimeDistributed layer.

Temporal component. In the proposed hybrid CNN-ViT model,iT is engineered to pro-
cess the sequence of the N spatial features vectors, i.e., {vi}ﬁil, where each v; represents
a distinct frame of the input video clip, see Fig. 6. Afterwards, the ViT block outputs a final
representation z, which is then fed into the softmax layer to classify the action in the video.
In detail, the Transformer encoder is designed to process a sequence of vectors, each repre-
senting one frame, and aggregate information into a single vector for classification.

In the proposed ViT-only model in Fig. 7 for the purpose of comparison, each vector
represents a distinct patch. These vectors are first linearly projected into a high-dimensional

Table 7 Capability comparison Criteria ViT-based ~ CNN-based Hybrid
between Transformer-based, Models
CNN-based, and hybrid models Advaniaoes
in HARSs ges
Excel at capturing global v v
dependencies
Scalable with data v v
Flexible in processing v v
various input sizes
Adept at extracting local v v
features
Computationally efficient v
Robust to input variations v v
Efficient and versatile v
Adapts well to a range of v
tasks

Disadvantages

Computationally intensive v v
Requires substantial train- v/ v
ing data

Limited global contextual v

understanding

Prone to overfitting v

Limited in modeling long- v
range dependencies

Architectural complexity
Higher resource demands
Need for careful tuning

SSENENEN

Balancing contributions of
both components can be
challenging
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Fig.6 The hybrid CNN-ViT architecture for HARs

space, facilitating the model’s ability to learn complex patterns within the data. To ensure
the model captures the sequential nature of the input, positional encodings are added to
these embeddings. The core of the ViT consists of two layers, each comprising a multi-head
self-attention mechanism and a feed-forward network. The self-attention mechanism allows
the model to weigh the importance of different patches relative to each other, while the feed-
forward network, utilizing an exponential linear unit (ELU) activation function, processes
each position independently to capture global context. The ViT is designed to aggregate the
information from all vectors and positional encodings into a single [CLS] token, which is
prepended to the input sequence. The output vector associated with this [CLS] token, after
propagation through the Transformer layers, serves as a comprehensive representation of
the entire input, suitable for downstream classification tasks.

4.1 Experiments

The goal of the presented experiments is not necessarily to produce a model that outper-
forms the state-of-the-art models in the HAR field. Rather, the aim is to conduct a compari-
son among the CNN, ViT-only, and hybrid models to give further insights.

The Royal Institute of Technology in 2004 unveiled the KTH dataset, a significant and
publicly accessible dataset for action recognition (Schuldt et al. 2004). The KTH dataset
was chosen here for its balanced representation of spatial and temporal features. Renowned
as a benchmark dataset, it encompasses six types of actions: walking, jogging, running,
boxing, hand-waving, and hand-clapping. The dataset features performances by 25 different
individuals, introducing a diversity in execution. Additionally, the environment for each
participant’s actions was deliberately altered, including settings such as outdoors, outdoors
with scale changes, outdoors with clothing variations, and indoors. The KTH dataset com-
prises 2,391 video sequences, all recorded at 25 frames per second using a stationary camera
against uniform backgrounds.

Six experiments were conducted, with each of the aforementioned models trained on
three different lengths of frame sequences. Care was taken to avoid pre-training in order
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Fig. 7 The ViT-only architecture for HARs

ViT Class

to ensure the neutrality of the results. The TransNet model by Alomar and Cai (2023) was
adopted to represent the CNN model, and the ViT model was depicted in Fig. 7. For the spa-
tial component of the hybrid model, we employed the spatial component of TransNet; and
for the temporal component, we employed the same ViT model that we used in the ViT-only
model. We constructed our model utilizing Python 3.6, incorporating the Keras deep learn-
ing framework, OpenCV for image processing, matplotlib, and the scikit-learn library. The
training and test were performed on a computer equipped with an Intel Core i7 processor, an
NVidia RTX 2070 graphics card, and 64GB of RAM.

4.1.1 Results and discussion

Table 8 presents the quantitative results of the three distinct models, i.e., CNN, ViT-only,
and a hybrid model on the KTH dataset, focusing on three different context lengths, i.e.,
short (12 frames), medium (18 frames), and long (24 frames). The results from these experi-
ments provide insightful revelations into the efficacy of each model under different temporal
contexts. More details are given below.

The CNN model exhibited a decrease in accuracy as the frame length increased, record-
ing 94.35% for 12 frames, 93.91% for 18 frames, and 93.49% for 24 frames. This descend-
ing trend suggests that CNN may struggle with processing longer sequences where temporal
dynamics become more complex, potentially leading to challenges such as overfitting or
difficulties in temporal feature retention over extended durations.

In contrast, the ViT model demonstrated an improvement in performance with longer
sequences, achieving accuracy of 92.44% for 12 frames, 92.82% for 18 frames, and 93.69%
for 24 frames. This ascending pattern supports the notion that ViT architectures, with their
inherent self-attention mechanisms, are well-suited to managing longer sequences. The abil-
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Table 8 Experimental results of different models on the KTH Dataset using three different context lengths

Context length CNN-based ViT-only Hybrid Hybrid, ..

12 frames 94.35 £ 0.41 92.44 £0.16 94.12 £ 0.05 96.34 £ 0.03
18 frames 93.91 £0.32 92.82 £0.07 94.56 £0.10 97.13 £0.04
24 frames 93.49 £0.24 93.69 £ 0.08 95.78 £ 0.60 97.89 £ 0.05

In particular, the hybrid model was trained without pre-training, whereas Hybrid,,, is for the hybrid
model pre-trained on ImageNet. Every experiment was repeated over five runs to ensure robust statistical
evaluation

ity of ViTs to assign varying degrees of importance to different parts of the sequence likely
contributes to their enhanced performance on longer input frames.

The hybrid CNN-ViT model showcased the highest and continuously improving accu-
racy rates across all frame lengths: 94.12% for 12 frames, 94.56% for 18 frames, and an
impressive 95.78% for 24 frames. Moreover, the pre-trained hybrid model showcased the
same trend, with the best accuracy achieved. This type of model synergistically combines
CNN’s robust spatial feature extraction capabilities with ViT’s efficient handling of tempo-
ral relationships via self-attention. The results from this model indicate that such a hybrid
approach is particularly effective in capturing the complexities of action recognition tasks
in video sequences, especially as the sequence length increases.

These findings underscore the potential advantages of hybrid neural network architec-
tures in video-based action recognition tasks, particularly for handling longer sequences
with complex interactions. The superior performance of the hybrid CNN-ViT model sug-
gests that integrating the spatial acuity of CNNs with the temporal finesse of ViTs can lead
to more accurate and reliable recognition systems. Future work could explore the scalability
of these models to other datasets, their computational efficiency, and their robustness against
variations in video quality and scene dynamics. Additionally, further research might inves-
tigate the optimal balance of CNN and ViT components within hybrid models to maximize
both performance and efficiency.

To complete the comparison, Table 9 shows that the impressive 97.89% accuracy
achieved by the presented CNN-VIT hybrid model on the KTH dataset places it promi-
nently among state-of-the-art models for HAR. This performance is notably superior when
compared to earlier benchmarks reported in the literature such as Geng and Song (2016)
with 92.49% and Arunnehru et al. (2018) with 94.90%. Our model utilizes an ImageNet-
pre-trained MobileNet (Howard et al. 2017) as the CNN backbone in the spatial component,
which enhances its robust feature extraction capabilities. Combined with the dynamic atten-
tion mechanisms of ViT, it can thereby enhance both the spatial and temporal processing
of video sequences. Furthermore, our hybrid model not only surpasses other contemporary
approaches like Liu et al. (2020) (91.93%) and Lee et al. (2021) (89.40%), but also shows
competitive/superior performance against some of the highest accuracy in the field, such
as Jaouedi et al. (2020) (96.30%) and Basha et al. (2022) (96.53%). Even in comparison to
the high benchmark set by Sahoo et al. (2020) (97.67%), our hybrid model demonstrates a
marginal but significant improvement, underscoring the efficacy of integrating CNN with
ViT. This integration not only facilitates more nuanced feature extraction across both spatial
and sequential dimensions but also adapts more dynamically to the varied contexts inherent
in video data, making it a potent solution for realistic action recognition scenarios.

On the whole, the integration of CNN with ViT is particularly advantageous for enhanc-
ing feature extraction capabilities and focusing on relevant segments dynamically through
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Table 9 Comparison of the Methods Venue Accuracy
proposed hybrid model with the =20 g0 e ICCSAE °16 92.49
state-of-the-art models on the
KTH dataset Arunnehru et al. (2018) RoSMa ’18 94.90
Abdelbaky and Aly (2020) ITCE 20 87.52
Jaouedi et al. (2020) KSUCI journal *20 96.30
Liu et al. (2020) JATHC 20 91.93
Sahoo et al. (2020) TETCI *20 97.67
Lee et al. (2021) CVF 21 89.40
Basha et al. (2022) MTA journal 22 96.53
Ye and Bilodeau (2023) CVF 23 90.90
Ours - 97.89
Table 10 The t-statistic values Context CNN-based _ Vit-only _Hybrid _ Hybrid,,
tfl‘l’; tt}}‘lfe‘:‘;gilfe;?fable Bacross 15 s 18 frames | 6.52 19.75 5112 70.19
12 vs. 24 frames 14.22 37.67 134.33 141.14
18 vs. 24 frames 6.59 58.14 301.23 73.14

the attention mechanisms of ViTs. This not only helps in improving accuracy but also in
making the model more adaptable to varied video contexts, a key requirement for action
recognition in realistic scenarios. This comparative advantage suggests that hybrid models
are paving the way for future explorations in HAR, combining the best of convolutional and
ViT-based architectures for improved performance and efficiency.

4.1.2 Statistical significance analysis

In this section, we present the statistical significance analysis used to evaluate the perfor-
mance of the proposed model in comparison with benchmark models. The analysis here
employs two statistical methods: the paired-samples t-test (see Algorithm 1 in Appendix)
and the one-sample t-test (see Algorithm 2 in Appendix) (Montgomery and Runger 2020;
Devore 2000). The symbols and variables used in Algorithms 1 and 2 are summarized in
Table 12 in Appendix.

The paired-samples t-test algorithm evaluates different individual models in Table 8
whether there is a significant difference of the performance of a model between two related
contexts among the total three contexts (i.e., 12, 18, and 24 frames). Applying Algorithm 1
on the quantitative results in Table 8, we obtain the t-statistic values 5, given in Table 10
and the p-values p,, given in Table 11 for each model on paired contexts. For the paired-sam-
ples t-test, the null hypothesis (H o) posited that no significant difference exists between
two contexts for each model. The alternative hypothesis (/1) suggested that a significant
difference existed between two contexts for each model. The results in Table 11 demon-
strates statistically significant differences across all contexts for each model, with p-values
lower than the adjusted significance level «, using the Bonferroni correction.

The one-sample t-test algorithm is used here to evaluate whether there is a significant
difference between the performance of the proposed model and the mean performance of the
benchmark models in Table 9. In this test, the null hypothesis (H,o) assumes that the per-
formance of the proposed model is not significantly different from the mean performance of
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Table 11 The two-tailed 5% Context CNN-based ViT-only  Hybrid Hybrid,,,
p-value for the models in Table 8 12 vs. 18 3 5 —7 7
across the three contexts . 2.95 x 10733.94 x 10758.85 x 10772.47 x 10
frames
12vs. 24 1.45 x 107%2.97 x 10761.84 x 10~81.51 x 108
frames
18 vs. 24 2.76 x 10735.24 x 10777.31 x 10~19.09 x 107
frames

the benchmark models in Table 9. The alternative hypothesis (H,;) posits that a significant
difference does exist. By applying Algorithm 2 on the data in Table 9, we obtain a p-value
of p, = 0.0034, which is significantly lower than the commonly accepted significance level
of 0.05. As a result, we reject the null hypothesis. This finding indicates that the perfor-
mance difference between the proposed model and the state-of-the-art models is statistically
significant. Consequently, we can conclude with 95% confidence that the proposed model
outperforms the current state-of-the-art models for the HAR task under consideration. This
result highlights the effectiveness of the proposed model in advancing the field.

5 Challenges and future directions

The field of HAR faces several formidable challenges that stem from the inherent complex-
ity of interpreting human movements within diverse and dynamic environments. One of
the primary obstacles is the variability in human actions themselves, which can differ sig-
nificantly in speed, scale, and execution from one individual to another (Pareek and Thak-
kar 2021). This variability necessitates the development of sophisticated models capable of
generalizing across a wide range of actions without sacrificing accuracy (Nayak et al. 2021).
Additionally, the presence of complex backgrounds and environments further complicates
the task of HAR. Systems must be adept at isolating and recognizing human actions against
a backdrop of potentially distracting or obstructive elements, which can vary from the bus-
tling activity of a city street to the unpredictable conditions of outdoor settings (Wang and
Schmid 2013; He et al. 2016).

HAR systems furthermore must navigate the fine line between inter-class similarity and
intra-class variability, where actions that are similar to each other (such as running versus
jogging) require nuanced differentiation, while the same action can appear markedly differ-
ent when performed by different individuals or under varying circumstances (Gong et al.
2020; Zhu and Yang 2018). The challenge of temporal segmentation adds another layer of
complexity, as accurately determining the start and end of an action within a continuous
video stream is crucial for effective recognition (Zolfaghari et al. 2018). Coupled with the
need for computational efficiency to process video data in real-time and the difficulties asso-
ciated with obtaining large, accurately annotated datasets, these challenges underscore the
multifaceted nature of HAR (Caba Heilbron et al. 2015). Addressing these issues is critical
for advancing the field and enhancing the practical applicability of HAR systems in real-
world applications, from surveillance and security to healthcare and entertainment.

The motivation behind this work has been driven by the compelling need to bridge the
existing gaps between the spatial feature extraction capabilities inherent in CNNs and the
dynamic temporal processing strengths found in ViTs (Arnab et al. 2021). Through the
introduction of a novel hybrid model, an attempt has been made to leverage the synergistic
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potential of these technologies, thereby enhancing the accuracy and efficiency of HAR sys-
tems in capturing the complex spatial-temporal dynamics of human actions.

Looking forward, a promising future for HAR is envisioned, particularly through the
development of hybrid and integrated models. It is believed that the potential of these
models extends beyond immediate performance improvements, inspiring new directions
for research within the field. It is anticipated that future studies will focus on optimizing
these hybrid architectures, aiming to make them more scalable and adaptable to real-world
applications across various domains such as surveillance, healthcare, and interactive media.
Furthermore, the exploration of self-attention mechanisms and the adaptation of large-scale
pre-training strategies from ViTs are seen as exciting prospects for HAR. These approaches
are expected to lead to the development of more sophisticated models capable of under-
standing and interpreting human actions with unprecedented accuracy and nuance.

The integration of CNNs and ViTs into hybrid CNN-ViT models presents a promis-
ing avenue for overcoming the challenges faced by HAR systems. These hybrid models
capitalize on the strengths of both architectures: the local feature extraction capabilities
of CNNs and the global context understanding of ViTs. Future developments could focus
on enhancing model adaptability to generalize across diverse actions, improving the isola-
tion of human actions from complex backgrounds through advanced attention mechanisms,
and developing nuanced differentiation techniques for closely related actions (Carion et al.
2020). Innovations in model architecture, alongside the application of transfer learning and
few-shot learning techniques, could significantly reduce the variability challenge in human
actions.

Moreover, addressing the temporal segmentation challenge requires the integration of
specialized temporal modules and sequence-to-sequence models to accurately determine
the start and end of an action within continuous video streams. Computational efficiency
remains paramount for real-time processing, necessitating ongoing efforts in model opti-
mization and the exploration of synthetic data generation to mitigate the difficulties associ-
ated with obtaining large and accurately annotated datasets. Customizable hybrid CNN-ViT
models that can be tailored for specific applications, from surveillance to healthcare, will
ensure that these advancements not only push the boundaries of academic research but also
enhance practical applicability in real-world scenarios. Through these concerted efforts,
hybrid CNN-ViT models are poised to make significant contributions to the field of HAR,
offering innovative solutions to its multifaceted challenges.

This work has highlighted the importance of continued innovation and cross-disciplin-
ary collaboration in the advancement of HAR technologies. By integrating insights from
computer vision, machine learning, and domain-specific knowledge, it is hoped that HAR
systems will not only become more efficient and accurate but also more responsive to the
complexities and variances of human behavior in natural environments. As the field moves
forward, the focus is set on pushing the boundaries of what is possible in HAR, with the aim
of creating systems that enhance human-computer interaction and contribute positively to
society through various applications.
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6 Conclusions

This survey provides a comprehensive overview of the current state of HAR by examining
the roles and advancements of CNNs, RNNs, and ViTs. It delves into the evolution of these
architectures, emphasizing their individual contributions to the field. The introduction of a
hybrid model that combines the spatial processing capabilities of CNNs with the temporal
understanding of ViTs represents a methodological advancement in HAR. This model aims
to address the limitations of each architecture when used in isolation, proposing a unified
approach that potentially enhances the accuracy and efficiency of action recognition tasks.
The paper identifies key challenges and opportunities within HAR, such as the need for
models that can effectively integrate spatial and temporal information from video data. The
exploration of hybrid models, as suggested, offers a pathway for future research, particu-
larly in improving model performance on complex video datasets. The discussion encour-
ages further investigation into optimizing these hybrid architectures and exploring their
applicability across various domains. This work sets a foundation for future studies to build
upon, aiming to push the boundaries of what is currently achievable in HAR and to explore
new applications of these technologies in real-world scenarios.
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Table 12 List of symbols and
variables used in the paired-
samples t-test (i.e., Algorithm 1)
and one-sample t-test (i.e.,
Algorithm 2)

Symbol Definition

c14 Performance of a model in the first context (i.e., 12
frames) of the i-th run in the paired-samples test

Cco; Performance of a model in the second context (i.e.,
18 frames) of the i-th run in the paired-samples test

c3i Performance of a model in the third context (i.e.,
24 frames) of the i-th run in the paired-samples test

Np Number of paired observations (i.e., the number of
runs) in the paired-samples t-test

d; Differences between paired observations
(c1; — c24) in the paired-samples t-test

d Mean of the differences between paired observa-
tions in the paired-samples t-test

Sdp Standard deviation of the differences in the paired-
samples t-test

tsp t-statistic value for the paired-samples t-test

dsp Degrees of freedom for the paired-samples t-test,
calculated as np — 1

Dp Two-tailed p-value for the paired-samples t-test

Ne Number of comparisons for the paired-samples t-
test (i.e., 12 vs. 18, 12 vs. 24, and 18 vs. 24 frames)

m; Performance of the state-of-the-art i-th model used
in the one-sample t-test

No Population size, i.e., the number of state-of-the-art
models

o Mean performance of the state-of-the-art models

Sdo Standard deviation of the performance of the state-
of-the-art models

tso t-statistic value for the one-sample t-test

dfo Degrees of freedom for the one-sample t-test,
calculated as no, — 1

Do Two-tailed p-value for the one-sample t-test

mp Observed performance of the proposed model in
the one-sample t-test

« Significance level for hypothesis testing, typically
set at 0.05

Qg Adjusted significance level using the Bonferroni

correction
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Appendix A: Statistical significance analysis methods

This appendix presents two statistical significance analysis methods: the paired-samples
t-test and the one-sample t-test (Montgomery and Runger 2020; Devore 2000) in Algo-
rithms 1 and 2, respectively. The symbols and variables used in Algorithms 1 and 2 are
summarized in Table 12.

Algorithm 1 processes the data in Table 8 from five experimental runs for each model
across two contexts out of the total three contexts. It pairs the results from the first run of
each context, followed by pairing the results from the second run of each context, continu-
ing in this manner until all five runs have been paired. The algorithm then computes the
two-tailed p-value, denoted as p,,, for the paired-samples t-test. Algorithm 2 utilizes the
performance results of the state-of-the-art models along with the performance result of the
proposed model from Table 9. The algorithm then computes the two-tailed p-value, denoted
as p,, for the one-sample t-test.

1: Input: The model performance on two different frame contexts: (¢14,¢2;), where ¢ = 1,2,...,n, with
n, =5 (experimental runs); the number of comparisons n. = 3; and the significance level a = 0.05.

2: Output: Two-tailed p-value p,,.

: Calculate the differences between the paired observations:

@w

di =c1i—ca, 1=1,2,...,n

4: Compute the mean of the differences:

o
Q
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6: Calculate the t-statistic value:

7. Determine the degrees of freedom:

dfp:npfl.

8: Calculate the two-tailed p-value:
Pp = 2 X ff:p(‘tw‘vdfp)n
where the f,, function uses a statistical t-distribution table/software (e.g., the SciPy library and Python
programming language) to find the critical t-value corresponding to the calculated t-statistic (¢5p) and
degrees of freedom (dyp).
9: Apply the Bonferroni correction:
g = a/ne,
where n, is the number of comparisons and n. = 3 for the case in Table 8.
10: if p, < , then
11: Reject the null hypothesis (Hyyo), i.e., there is a significant difference.
12: else
13: Fail to reject the null hypothesis, i.e., there is not enough evidence to suggest a significant difference.
14: end if

Algorithm 1 Paired-samples t-test algorithm
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1: Input: Performance results of state-of-the-art models: m, mo, ..., my,, ; the performance result of the
proposed model: m,,; and the significance level a = 0.05.

2: Output: Two-tailed p-value p,.

3: Compute the population mean:

No

o =

4: Compute the population standard deviation:

iy (mi — o)

Sdo = —_— .

ne — 1
5: Calculate the t-statistic:
to = Mp — Ho
: Sdo/ Vo
6: Determine the degrees of freedom:
do =mn, — 1.

7: Calculate the two-tailed p-value:
Po =2 X fco(‘tsol-,dfo);
where the f., function uses a statistical t-distribution table/software (e.g., the SciPy library and Python
programming language) to find the critical t-value corresponding to the calculated t-statistic (ts,) and
degrees of freedom (dy,).
8: if p, < a then

9: Reject the null hypothesis (Hyp), i.e., there is a significant difference.

10: else

11: Fail to reject the null hypothesis, i.e., there is not enough evidence to suggest a significant difference.
12: end if
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