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Abstract
The article introduces chained designators, like “my buddy’s boss’s buddy”, into epis-
temic logic and gives a sound and complete axiomatization of a knowledge modality
parameterized by such designators. It also studies the expressive power of the proposed
modality.
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1 Introduction

A designator is a term or an expression used to pick out an object in the world. It can
be a proper name, a common name, a definite description, a pronoun, etc. A designator
can be used in a rigid way or a non-rigid way. When a designator is non-rigid, it can
be non-rigid in different senses.

In the sense of world non-rigidity, a non-rigid designator is a term that does not
designate the same object in all possible worlds. This is in contrast with a rigid des-
ignator [1, 2], which refers to the same object in all possible worlds, regardless of
whether the knowledge that the referred object is the same is a priori or a posteriori.
For example, Hesperus, which refers to a heavenly body visible in the evening, and
Phosphorus, which refers to a heavenly body visible in the morning, both rigidly des-
ignate Venus [1]. On the contrary, the definite description “the tallest person in the
room” is considered a non-rigid designator because it does not necessarily refer to the
same individual in all possible worlds [1].

In addition to world non-rigidity, where a designator picks out different objects in
different possible worlds, the designator can be non-rigid in other senses. For example,
the referent of a non-rigid designator may change with time [3]. We call this temporal
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non-rigidity. As an example, “the President of the United States” refers to Joseph
Biden in 2024 and to Donald Trump in 2026.

In this article, we introduce agentic non-rigidity. We adopt a view that an individ-
ual’s identity or role is not fixed and can change depending on the context. Agentically
non-rigid designators capture the context dependent feature of terms that describe
social connections between individuals, such as “parent”, “boss”, or “buddy”. When
we say “agent A’s boss”, agent A is the context and “boss” is the agentically non-rigid
designator. The referent of an agentically non-rigid designator changes depending on
which agent is using it to designate a referent. Suppose that “A”(Alice), “B”(Brittany),
“C”(Chris), and “D”(Doug) are agents in a given world.1 As an example, see Fig. 1,
Alice is the “boss” of Chris and Doug, and the “buddy” of Brittany. Chris and Doug
are the “buddy” of each other. Agentic non-rigidity appears in designators “boss” and
“buddy” as follows. The individual whom Chris refers to as the “boss” is Alice, which
is different from the individual whom Brittany refers to as the “boss”. Similarly, the
individual whomChris refers to as the “buddy” is Doug, whereas the individual whom
Brittany refers to as the “buddy” is Alice. In this example, we assume the world and
time are fixed so that we do not consider non-rigidity in the sense of world or time.

In real life, we may refer to a person through a chain of social connections. For
example, in Fig. 1, Chris may refer to Brittany as his “boss’s buddy”. This exam-
ple shows that an agentically non-rigid designator can be constructed out of multiple
atomic designators, capturing single social connections. We refer to this type of agen-
tically non-rigid designators as chained designators.

Chained designators are common in natural and programming languages. In lin-
guistics, constructions like “the buddy of Chris’ boss” are called possessive chains [4].
As a programming language example, consider C structure Agent that has variables
boss and buddy of type Agent. If Chris is a variable of type Agent, then one
can write Chris.boss.buddy. MISRA software development guidelines for the
C programming language use the term chained designators for such expressions [5].

In traditional logical systems, the sentence “in world w, agent Alice is sick” can be
formally expressed by the statement

w � Alice is sick.

1 Note that we see A, B, C, and D as agents instead of designators in this example. To make our example
easier to follow, we call agents A as Alice, B as Brittany, C as Chris, and D as Doug. Alternatively, the
reader can think about Alice, Brittany, Chris, and Doug as rigid designators.
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Different from traditional logical systems, Prior [6] proposed egocentric logic to cap-
ture properties of agents rather than possible worlds. For example, using his approach,
“Alice is sick” can be expressed by the statement

A � sick.

In addition to describing the properties of a given agent, egocentric logics can express
properties of the agents that are somehow related to the given agent. For example, the
logic of friendship uses modality F to talk about properties of an agent’s friends [7, 8].
In this logic, statement A � F(poor)means “all friends of agent A are poor”. The same
modality is also used in [9, 10]. In the egocentric logic of preferences, modal formula
Lϕ means that the agent “likes those who have property ϕ” [11]. This modality (as
well as F) can be nested. For example, the statement A � LL(poor) means “agent A
likes those who like the poor”.

In this work, we use modality @ to express the properties of others. Modality
@ takes a designator as a subscript and expresses properties of a person whom the
given agent refers to by that designator [12]. For example, by using modality @ and
an atomic agentically non-rigid designator, we can convey the information “Alice is
sick” through agent Chris’s social connection using the statement

C � @boss(sick).

We may use the designator ε to represent the context agent themselves, where ε

designates agents by an empty (sequence of) social connection. The designator ε can
be seen as a empty string. For example, the statement

C � @ε(sick).

means “Chris is sick”. Moreover, with a chained designator, we may express “Brittany
is sick” through Chris’s social connections by statement

C � @boss,buddy(sick).

Modality @ can be nested as well. The statement above can be rewritten as

C � @boss@buddy(sick)

while maintaining the same meaning.
In addition to expressing the properties of agents, in this work, we also use

agentically non-rigid designators in knowledge modalities. To do this, Grove and
Halpern [13] combined the traditional and egocentric approach by placing a world
parameter and an agent parameter on the left-hand side of “�” to express a property
of agent C in a world w. For example, the statement

w,C � @boss@buddy(sick)
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means that Brittany is sick in world w. In the philosophy of language, this type of
semantics is known as Two-Dimensional(2D) semantics [14, 15]. 2D semantics are
used to discuss topics such as the social character of meanings [16], a priori neces-
sity [17], formalization of epistemic 2D semantics [18], and contents of speech and
thoughts [19]. Kaplan [14] used 2D-semantics framework to explain rules for context-
dependent referent, such as “I”, “you”, “he”, “here”, “now”, “tomorrow”, and “actual”.
In our settings, the agent on the left-hand side of � is called the context because the
referents of the designators used in a statement depend on such agent’s social connec-
tions. Seligman, Liu, and Girard [7, 8] use modality K to represent “knowledge about
yourself” in the 2D setting. For example, the statement w,C � K(sick) means that
Chris knows that he (himself) is sick.

In this article, we consider epistemicmodalities subscriptedwith designators. There
aremanyways to interpret suchmodalities in the 2Dsetting. For example, the statement

w,C � Kboss“Buddy is sick”.

can be interpreted in at least three different ways:

1. Chris’s boss knows that Chris’s boss’s buddy is sick.
2. Chris knows that Chris’s boss’s buddy is sick.
3. Chris’s boss knows that Chris’s buddy is sick.

In this article, we use three modalities with subscripts to represent these three
different interpretations. Unlike in [12] and [13], a subscript of these modalities can
be not only an atomic designator but also a chained designator.

The first interpretation talks about the referent’s self-knowledge. We use modality
[�] to represent it and the statement becomes

w,C � [�]boss(“Buddy is sick”).

Modality [�]ε with the empty designator ε is equivalent to the “knowledge about
yourself” modality K mentioned before. Modality [�] with an atomic designator,
such as [�]boss, was discussed by Grove and Halpern [13, 20]. Modality [�] with a
chained designator, introduced in this article, can be expressed through modality @
and “knowledge about yourself” modality:

[�]boss,buddyϕ = @boss@buddyKϕ.

The second interpretation talks about the context’s knowledge about the referent.
We capture this interpretation by modality [�]. Then, the interpretation is expressed
by the statement

w,C � [�]boss(“Buddy is sick”).

Similar to modality [�]ε, modality [�]ε with the empty designator ε, is equivalent to
modality K. The modality [�] with a chained designator is also expressible through
modalities @ and K. For example, [�]boss,buddy is equivalent to K@boss@buddy.
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The third interpretation talks about the referent’s knowledge about the context. We
formalize this interpretation with modality [�]. Then, the third interpretation can be
written as the statement

w,C � [�]boss(“Buddy is sick”).

Note that this modality is able to define modalities K, [�], and [�]. For example,
Kϕ is equivalent to [�]εϕ, [�]boss,buddyϕ is equivalent to @boss@buddy[�]εϕ, and
[�]boss,buddy is equivalent to [�]ε@boss@buddyϕ.

Modalities [�], [�], and [�] can be combined with each other. For example, the
statement

w,C � [�]boss[�]buddy(sick)
means that Chris’s boss (Alice) knows that Chris’s buddy (Doug) knows that Doug is
sick. More examples can be found in Table 1.

The conceptual contribution of this article is the incorporation of the chained desig-
nators into the knowledge modalities. The technical contribution has three parts. First,
we discover that the expressive powers of the three knowledge modalities mentioned
above are not equal. In Section 4, we show that our knowledge modality [�] is not
expressible through any combination of modalities @, [�], and [�], but modalities
[�], and [�] are expressible through modalities [�] and @. This shows that modality
[�] is expressibly more powerful than the other two knowledge modalities. Hence, in
our work, we mainly talk about modality [�].

Second, we observe that modality [�] with a chained designator is not expressible
through [�] with atomic designators, but modality @ with a chained designator is
equivalent to nested @ with atomic designators. This is because chained designators
on modality @ are expressible through nesting the same modality with just a single
atomic designator. For example,@boss,buddy is equivalent to@boss@buddy. However, in
Section 5, we show that modality [�]with chained designators is expressively stronger
than the same modality with just a single atomic designator.

Third, in Sections 6 and 7, we give a sound and complete axiomatization of the
interplay between modalities [�] and @. This axiomatization includes a very non-
trivial Insertion inference rule. Note that we do not axiomatize modalities [�] and [�]

Table 1 Statements are placed on the left and their meanings are placed on the right

[�]boss[�]buddy(sick) Alice knows that Doug knows that Chris is sick

[�]boss[�]buddy(sick) Alice knows that Chris knows that Doug is sick

[�]boss[�]buddy(sick) Alice knows that Doug knows that he is sick

[�]boss[�]buddy(sick) Chris knows that Brittany knows that Alice is sick

[�]boss[�]buddy(sick) Chris knows that Alice knows that Brittany is sick

[�]boss[�]buddy(sick) Chris knows that Brittany knows that she is sick

[�]boss[�]buddy(sick) Alice knows that Brittany knows that Alice is sick

[�]boss[�]buddy(sick) Alice knows that Alice knows that Brittany is sick

[�]boss[�]buddy(sick) Alice knows that Brittany knows that Brittany is sick

To make the table easier to read and understand, we leave out “w,C �” on the left of each statement
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because, as we will show in Section 4, they are definable through modalities [�] and
@.

Before presenting these three parts, in Section 2, we give a definition of the class
of models that we use to specify the semantics of our formal system. In Section 3, we
formally present our semantics.

2 Epistemic Models with Extensions

In this section, we define the class of models that will be used to give the semantics of
our logical system. Throughout the article, we assume a fixed set of atomic designators
� and a fixed nonempty set of atomic propositions. In our introductory example, the
set � consists of atomic designators “boss” and “buddy”.

Definition 1 A tuple (W ,A,∼, e, π) is a epistemic model with extensions if

1. W is a set of “worlds”,
2. A is a set of “agents”,
3. ∼a is an “indistinguishibility” equivalence relation on setW for each agent a ∈ A,
4. ed is an “extension” function that assigns an agent ed(a) ∈ A to each agent a ∈ A

for each atomic designator d ∈ �,
5. π(p) ⊆ W × A for each atomic proposition p.

Generally speaking, sets W and A can be empty.
The extension function ed(a) specifies the referent agent to whom the context agent

a refers by atomic designator d. In our introductory example, eboss(C) = A.
Note that, unlike traditional modal logic, the value of the valuation function π(p)

is a set of pairs. This is because under 2D-semantics each statement, including atomic
propositions, captures a property of a given agent in a given state.

By a (chained) designator, wemean an arbitrary finite (possibly empty) sequence of
atomic designators. The set of all designators is denoted by �∗. To keep the notations
more compact, we often write a sequence (d1, d2, . . . , dk) ∈ �∗ as d1, d2, . . . , dk or
even d1d2 . . . dk .

Definition 2 For any designator d1d2 . . . dk ∈ �∗, the extension function êd1d2...dk is
defined as follows: êd1d2...dk (a) = edk (edk−1(. . . (ed1(a)) . . . )).

For instance, êboss, buddy (C) = B and êbuddy,boss(C) = A. Note that êε(a) = a for any
agent a ∈ A (recall that ε denotes the empty sequence).

The next lemma follows from Definition 2.

Lemma 1 êτ (êσ (a)) = êστ (a) for any designators τ, σ ∈ �∗.

3 Syntax and Semantics

In this section, we give the formal syntax and semantics of our logical system. Even
though modalities [�] and [�] are expressible through modalities [�] and @, we
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include them in the language for now to provide a more general definition. The lan-
guage � of the system is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | @dϕ | [�]σ ϕ | [�]σ ϕ | [�]σ ϕ,

where p is a propositional variable, d ∈ � is an atomic designator, and σ ∈ �∗
is a chained designator. We read @dϕ as “the referent of an atomic designator d
has property ϕ”. Note that we do not include modality @σ for an arbitrary chained
designator σ as a primitive construction our language because a formula @d1,...,dkϕ

would be equivalent to the formula @d1 . . .@dkϕ. However, throughout the rest of
the article, we use @d1,...,dkϕ as an abbreviation for the formula @d1 . . .@dkϕ. For a
given context, we read [�]σ ϕ as “the referent of chained designator σ knows ϕ about
the context”. We read [�]σ ϕ as “the referent of chained designator σ knows ϕ about
the referent themselves”. We read [�]σ ϕ as “the context knows ϕ about the referent
of the chained designator σ”.

We assume the implication →, the conjunction ∧, the biconditional ↔, and the
constant true 
 are defined through the negation and the disjunction in the standard
way. For any finite set of formulae ϕ1, …, ϕk , by

∧
i ϕi we denote the formula ϕ1 ∧

· · · ∧ ϕk . As usual, if k = 0, then
∧

i ϕi is the constant 
.

Definition 3 For any world w ∈ W and any agent a ∈ A of an epistemic model
(W ,A,∼, e, π) with extensions and any formula ϕ ∈ �, the satisfaction relation
w, a � ϕ is defined as follows:

1. w, a � p, if (w, a) ∈ π(p),
2. w, a � ¬ϕ, if w, a � ϕ,
3. w, a � ϕ ∨ ψ , if w, a � ϕ or w, a � ψ ,
4. w, a � @dϕ, if w, ed(a) � ϕ,
5. w, a � [�]σ ϕ, if u, a � ϕ for each world u ∈ W such that w ∼êσ (a) u.
6. w, a � [�]σ ϕ, if u, êσ (a) � ϕ for each world u ∈ W such that w ∼êσ (a) u,
7. w, a � [�]σ ϕ, if u, êσ (a) � ϕ for each world u ∈ W such that w ∼a u.

As mentioned earlier, the type of semantics given in Definition 3 is often called
2D-semantics. In general, 2D-semantics defines the meaning of a statement based on
the possible world w and some other information. That other information could be
index [21], counterfactualworld [15], possibleworld [19], or scenario [18]. In our case,
the other information is an agent a, and we call it context. We give a polynomial-time
model checking algorithm for the above semantics in the appendix.

The next lemma follows from Definition 2 and item 4 of Definition 3.

Lemma 2 w, a � @σ ϕ iff w, êσ (a) � ϕ for any designator σ ∈ �∗.

The next two definitions introduce the notions used in our undefinability results.

Definition 4 For any epistemic model with extensions, let the truth set of a formula
ϕ ∈ � be defined as

�ϕ� = {(w, a) ∈ W × A | w, a � ϕ}.
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Note that, technically, the value of �ϕ� depends on the choice of the epistemic model
with extensions. However, we do not list the model parameter explicitly since its value
will always be clear from the context.

Definition 5 Formulae ϕ,ψ ∈ � are semantically equivalent if �ϕ� = �ψ� for each
epistemic model with extensions.

Alternatively, formulae ϕ,ψ ∈ � are semantically equivalent when w, a � ϕ iff
w, a � ψ for each worldw and each agent a of each epistemic model with extensions.

4 Undefinability of [�] through [�], [�] and@

The theorems below follow from Definitions 3, 4, and 5.

Theorem 1 (definability) For any formula ϕ ∈ � and any d ∈ �, the formula
[�]d1...dkϕ is semantically equivalent to formula @d1...dk [�]εϕ.
Theorem 2 (definability) For any formula ϕ ∈ � and any d ∈ �, the formula
[�]d1...dkϕ is semantically equivalent to formula [�]ε@d1...dkϕ.

In the rest of this section, we prove that modality [�] cannot be defined through
modalities [�], [�], and @. These would imply that [�] is the most expressive out
of the three epistemic modalities we consider. Usually, the undefinability results in
modal logic are obtained using the bisimulation technique. However, it is not clear
how bisimulation can be used in our 2D setting. Instead, use the recently proposed
“truth set algebra” technique [22].

To prove the undefinability, let us consider an epistemic model with extensions that
has three worlds, w, u and v, as well as two agents a and b. We describe the technique
as we present the proof. The indistinguishability relation is represented in Fig. 2.

Furthermore, assume that agents a and b both refer to agent a as “fella”: efella(a) =
efella(b) = a. Without loss of generality, suppose that “fella” is the only atomic
designator in language �. Finally, let π(p) = {(w, b), (u, b)}.

By a truth set we mean an arbitrary subset of W × A = {w, u, v} × {a, b}. We
visualize the truth sets using 3 × 2 diagrams like the one depicted at the right-most
position in Fig. 3. Rows in this diagram are labeled by worlds and columns by agents.
The cell is colored gray if the corresponding pair of the world and the agent belongs
to the truth set. The diagram in our example represents truth set R = {(w, b)}. We
also consider truth sets S1, S2, S3, and S4 shown on the left of the same figure.

Lemma 3 For any formula ϕ ∈ � and any chained designator σ ∈ {fella}∗, if �ϕ� ∈
{S1, S2, S3, S4}, then �[�]σ ϕ�, �[�]σ ϕ�, �@fellaϕ� ∈ {S1, S2, S3, S4}.
Proof We start the proof with the following observation:

Claim 1 If �ϕ� = S2 and σ �= ε, then �[�]σ ϕ� = S1.

Fig. 2 Indistinguishability
relations between worlds
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Fig. 3 Towards undefinability of [�] modality, efella(a) = efella(b) = a, u ∼a v. We assume σ �= ε

Proof of Claim The assumption �ϕ� = S2, see Fig. 3, implies that

w, a � ϕ u, a � ϕ v, a � ϕ.

Recall that efella(a) = efella(b) = a. Hence êσ (a) = a by the assumption σ �= ε of
the claim. Thus,

w, êσ (g) � ϕ u, êσ (g) � ϕ v, êσ (g) � ϕ

for any agent g ∈ {a, b}. Hence, by item 7 of Definition 3,

w, g � [�]σ ϕ u, g � [�]σ ϕ v, g � [�]σ ϕ.

Thus, �[�]σ ϕ� = S1, see Fig. 3. �

Claim 2 If �ϕ� = S2, then �[�]εϕ� = S2.

Proof of Claim The assumption �ϕ� = S2, see Fig. 3, implies that

w, a � ϕ u, a � ϕ v, a � ϕ

w, b � ϕ u, b � ϕ v, b � ϕ.

By Definition 2, eε(a) = a and eε(b) = b. Thus,

w, eε(a) � ϕ u, eε(a) � ϕ v, eε(a) � ϕ

w, eε(b) � ϕ u, eε(b) � ϕ v, eε(b) � ϕ.

Hence, by item 7 of Definition 3,

w, a � [�]εϕ u, a � [�]εϕ v, a � [�]εϕ

and, because agent b can distinguish any two of the worlds w, u, and v,

w, b � [�]εϕ u, b � [�]εϕ v, b � [�]εϕ.
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Thus, �[�]εϕ� = S2, see Fig. 3. �

In Fig. 3, we visualize Claim 1 by the labels on the directed arrow from set S2 to

set S1 and Claim 2 by the labels from set S2 to itself. Note that the two above claims
are two out of 4 × 5 = 20 different facts forming the statement of the lemma. The
proofs of the other 18 facts are similar. In Fig. 3, we show the labels for each of these
proofs. �

Lemma 4 �ϕ� ∈ {S1, S2, S3, S4} for any formula ϕ ∈ � that does not contain modal-
ities [�].
Proof We prove the statement of the lemma by induction on the structural com-
plexity of formula ϕ. Suppose that ϕ is a propositional variable p. Recall that
π(p) = {(w, b), (u, b)}. Thus, by item 1 of Definition 3, we have x, b � ϕ iff
x ∈ {w, u}. Hence, �ϕ� = {(w, b), (u, b)} by Definition 4. Therefore, �ϕ� = S2, see
Fig. 3.

Suppose that the formula ϕ has the form ¬ψ . Then, by Definition 4 and item 2
of Definition 3, the set �ϕ� is the complement of the set �ψ�. Note that �ψ� ∈
{S1, S2, S3, S4} by the induction hypothesis. Observe that the complement of each
truth set in the family {S1, S2, S3, S4} belongs to the same family. For example, the
complement of set S2 is set S3, see Fig. 3. Hence, �ϕ� ∈ {S1, S2, S3, S4}.

Suppose that formula ϕ has the form ψ1 ∨ψ2. Then, by Definition 4, and item 3 of
Definition 3, the set �ϕ� is the union of the sets �ψ1� and �ψ2�. Observe that, by the
induction hypothesis, �ψ1�, �ψ2� ∈ {S1, S2, S3, S4}. Also, note that the union of any
two truth sets in the family {S1, S2, S3, S4} belongs to the same family. For example,
the union of sets S2 and S3 is set S4, see Fig. 3. Hence, �ϕ� ∈ {S1, S2, S3, S4}.

Finally, suppose that formula ϕ has one of the following three forms: �[�]σ ψ�,
�[�]σ ψ�, or �@fellaψ�. Note that �ψ� ∈ {S1, S2, S3, S4} by the induction hypothesis.
Therefore, �ϕ� ∈ {S1, S2, S3, S4} by Lemma 3. �

Lemma 5 �[�]fella p� /∈ {S1, S2, S3, S4}.
Proof Since (w, a), (u, a), (v, a) /∈ π(p), we have

w, a � p u, a � p v, a � p

by item 1 of Definition 3. Thus, by item 5 of Definition 3,

w, a � [�]fella p u, a � [�]fella p v, a � [�]fella p. (1)

Since (w, b) ∈ π(p) and (v, b) /∈ π(p),

w, b � p v, b � p (2)

by item 1 of Definition 3. Recall that efella(b) = a. Then, because w �a u, w �a v,
and u ∼a v,

w �efella(b) u w �efella(b) v u ∼efella(b) v.
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Thus, by item 5 of Definition 3 and Eq. 2,

w, b � [�]fella p u, b � [�]fella p v, b � [�]fella p. (3)

Hence, followed from Eqs. 1 and 3, by Definition 4, we have �[�]fella p� = R as
shown in Fig. 3. Therefore, �[�]fella p� /∈ {S1, S2, S3, S4}. �


The next theorem follows from the two previous lemmas and Definition 5.

Theorem 3 (undefinability) Formula [�]fella p is not semantically equivalent to any
formula that uses only modalities [�], [�], and @.

Hence,wehave shown thatmodality [�] have the strongest expressive power among
the three epistemic modalities we introduced. In the following sections, we only study
modality [�] and ignore modalities [�] and [�].

5 Necessity of Chained Designators

In this section, through our introductory example, we show that knowledge modality
with a chained designator [�]d1...dkϕ is not expressible through any combinations of
modalities with atomic designators [�]d1ϕ, . . . , [�]dkϕ, [�]εϕ, @d1ϕ, . . . , or @dkϕ.
Suppose that our epistemic model with extensions has three worlds: w, u, and v. The
indistinguishibility relations for Alice (A), Brittany (B), Chris (C), and Doug (D) are
shown in Fig. 4. Suppose that Chris is sick in worlds u and v, but not in world w.
Alice, Brittany, and Doug are not sick in any worlds of u, v, or w. Let propositional
variable p denote the property “is sick”. In other words, w,C � p and u,C � p
as well as v,C � p. Also, x, y � p for any world x ∈ {w, u, v} and any agent
y ∈ {A, B, D}. Since we have shown in the previous section that modalities [�] and
[�] can be defined through modalities [�] and @, we define a language �0 obtained
by removing modalities [�] and [�] from the language �. Without loss of generality,
in this section, we suppose that p is the only propositional variable in language �0.

Lemma 6 x1, y � ϕ iff x2, y � ϕ for any formula ϕ ∈ �0, any worlds x1, x2 ∈
{w, u, v}, and any agent y ∈ {A, B}.
Proof We prove the statement of the lemma by induction on the structural complexity
of formula ϕ. If ϕ is a propositional variable p, then x1, y � ϕ and x2, y � ϕ because
neither Alice nor Brittany is sick in either of the worlds in our model.

If formula ϕ is a negation or disjunction, then the statement of the lemma follows
from the induction hypothesis and item 2 or item 3 of Definition 3 in the standard way.

Suppose that formula ϕ has the form @dψ . By Fig. 1, ed(y) ∈ {A, B}. Note that,
by induction hypothesis, x1, ed(y) � ψ iff x2, ed(y) � ψ . Then, x1, y � @dψ iff
x2, y � @dψ by item 4 of Definition 3. Therefore, x1, y � ϕ iff x2, y � ϕ.

Fig. 4 Indistinguishability
relations between worlds
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Suppose that formula ϕ has the form [�]σ ψ .
(⇒) : Assume that x1, y � [�]σ ψ . Consider any world x ′ ∈ {w, u, v} such that
x2 ∼êσ (y) x

′. By item 5 of Definition 3, it suffices to show that x ′, y � ψ . Note that
x1 ∼êσ (y) x1. Then, by item 5 of Definition 3, the assumption x1, y � [�]σ ψ implies
that x1, y � ψ . Therefore, x ′, y � ψ by the induction hypothesis.

The other direction can be proved in a similar way. �

Lemma 7 u, y � ϕ iff v, y � ϕ for any agent y ∈ {C, D} and any formula ϕ that uses
only modalities @boss,@buddy, [�]boss, [�]buddy, and [�]ε.
Proof We prove the statement of the lemma by induction on the structural complexity
of formula ϕ. If ϕ is propositional variable p, then

(i) u,C � ϕ and v,C � ϕ,
(ii) u, D � ϕ and v, D � ϕ

because Chris is sick in world u and v and Doug is sick in neither of these two worlds.
If formula ϕ is a negation or a disjunction, then the statement of the lemma follows
from the induction hypothesis and either item 2 or item 3 of Definition 3.

Suppose that formula ϕ has the form @buddyψ . Note that u, ebuddy(y) � ψ iff
v, ebuddy(y) � ψ by the induction hypothesis. By Fig. 1, ebuddy(y) ∈ {C, D}. Hence,
u, y � @buddyψ iff v, y � @buddyψ by item 4 of Definition 3.

Suppose that formula ϕ has the form @bossψ . Note that u, eboss(y) � ψ iff
v, eboss(y) � ψ by Lemma 6 because eboss(y) = A. Hence, u, y � @bossψ iff
v, y � @bossψ by item 4 of Definition 3.

Finally, suppose that formulaϕ has the form [�]σ ψ , whereσ is either the designator
“boss”, designator “body”, or ε. Then, êσ (y) ∈ {A,C, D} by the assumption y ∈
{C, D} of the lemma, see Fig. 1. Observe that agents A, C , and D cannot distinguish
worlds u and v, see Fig. 4. Therefore, u, y � [�]σ ψ iff v, y � [�]σ ψ by item 5 of
Definition 3. �

Lemma 8 u,C � [�]boss,buddy p and v,C � [�]boss,buddy p.
Proof Note that u ∼B w. Thus, u ∼êboss,buddy(C) w because êboss,buddy(C) = B. Then,
u,C � [�]boss,buddy p by item 5 of Definition 3 because w,C � p.

To prove v,C � [�]boss,buddy p, let us consider any world v′ ∈ {w, u, v} such that
v ∼êboss,buddy(C) v′. By item 5 of Definition 3, it suffices to prove that v′,C � p. The
assumption v ∼êboss,buddy(C) v′ implies v ∼B v′ because êboss,buddy(C) = B. Then,
v = v′, see Fig. 4. Hence, it suffices to show that v,C � p, which is true because
Chris is sick in world v. �


The last two lemmas together imply the following undefinability result.

Theorem 4 The formula [�]boss,buddy p is not semantically equivalent to any formula
containing only modalities @boss, @buddy, [�]boss, [�]buddy, and [�]ε.

Hence, we have shown thatmodality [�]with a chained designator [�]d1...dkϕ is not
expressible through any combination of modalities with atomic designators [�]d1ϕ,
. . . , [�]dkϕ, [�]εϕ, @d1ϕ, . . . , and @dkϕ.
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6 Axioms

In the next two sections, we provide a sound and complete axiomatization of the
interplay between modalities [�] and @. In addition to propositional tautologies in
language �0, the axioms of our logical system are:

1. Truth: [�]σ ϕ → ϕ,
2. Distributivity: @d(ϕ ∨ ψ) ↔ (@dϕ ∨ @dψ),
3. Negation: ¬@dϕ ↔ @d¬ϕ.

For any sign z ∈ {+,−}, by [�]zσ ϕ we denote the formula [�]σ ϕ if z = “+” and
the formula ¬[�]σ ϕ if z = “–”. We write � ϕ and say that formula ϕ is a theorem if
formula ϕ is provable from the axioms of our logical system using the Modus Ponens,

ϕ, ϕ → ψ

ψ

the Necessitation,
ϕ

@dϕ

and the Insertion

∧
i @αi [�]ziβi ϕi → @σ ψ ∀i (αiβi = στ)

∧
i @αi [�]ziβi ϕi → @σ [�]τψ

inference rules. We call the last rule “Insertion” because it inserts modality [�]τ in the
conclusion of the implication. In the Insertion rule, στ represents the concatenation
of two (chained) designator strings σ and τ . Below is an example of how this rule is
used.

@buddy@boss¬[�]εϕ1 ∧ [�]buddy, bossϕ2 → @buddyψ

@buddy@boss¬[�]εϕ1 ∧ [�]buddy, bossϕ2 → @buddy[�]bossψ
In this example, α1 = (buddy, boss), β1 = ε, α2 = ε, β2 = (buddy, boss), σ =
(buddy) τ = (boss). Observe that the application of the rule is valid because α1β1 =
α2β2 = στ .

In addition to the unary relation � ϕ, we also consider binary relation X � ϕ. By
definition, X � ϕ is true if the formula ϕ is derivable from the theorems of our logical
system using the Modus Ponens inference rule only. Note that statements ∅ � ϕ and
� ϕ are equivalent. We say that set X is consistent if X � ¬
. The proof of the next
standard lemma can be found in the appendix.

Lemma 9 (deduction) If �, ϕ � ψ , then � � ϕ → ψ .

Lemma 10 (Lindenbaum)Any consistent set of formulae can be extended to amaximal
consistent set of formulae.

Proof The standard proof of Lindenbaum’s lemma applies here [23, Proposition
2.14]. �
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Next, we prove the soundness of our logical system.

Theorem 5 (soundness) If � ϕ, then w, a � ϕ for each world w and each agent a of
each epistemic model with extensions.

The soundness of the axioms and the Modus Ponens inference rule is straightfor-
ward. The soundness of the Insertion inference rule is proven in Lemma 12. We start
with an auxiliary property which is used in the proof of that lemma.

Lemma 11 w, a � [�]zβϕ iff u, a � [�]zβϕ for any w, u ∈ W such that w ∼êβ(a) u.

Proof By item 2 of Definition 3, it suffices to show that w, a � [�]βϕ iff u, a �
[�]βϕ. Furthermore, without loss of generality, it suffices to prove that the statement
w, a � [�]βϕ implies u, a � [�]βϕ. Indeed, the assumptionw, a � [�]βϕ by item 5
of Definition 3, implies that v, a � ϕ for each world v ∈ W such that w ∼êβ(a) v.
Hence, the assumption w ∼êβ(a) u of the lemma implies that v, a � ϕ for each world
v ∈ W such that u ∼êβ(a) v. Therefore, u, a � [�]βϕ by item 5 of Definition 3. �

Lemma 12 For any formulae ϕ1, . . . , ϕn, ψ ∈ �0 and any chained designators
α1, . . . , αn, β1, . . . , βn, σ, τ ∈ �∗ such that αiβi = στ for each i ≤ n, if

u, b �
∧

i

@αi [�]ziβi ϕi → @σ ψ (4)

for each world u and each agent b of each epistemic model with extensions, then

w, a �
∧

i

@αi [�]ziβi ϕi → @σ [�]τψ

for each world u and each agent a of each epistemic model with extensions.

Proof Consider an arbitraryworldw ∈ W and an arbitrary agent a ∈ A of an epistemic
model with extensions (W ,A,∼, e, π). Suppose that for each i ≤ n,

w, a � @αi [�]ziβi ϕi . (5)

Observe that, by Definition 3, it suffices to show that w, a � @σ [�]τψ . Then, by
Lemma 2, it suffices to prove thatw, êσ (a) � [�]τψ . Next, consider anyworld u ∈ W
such that

w ∼êτ (êσ (a)) u. (6)

By item 5 of Definition 3, it suffices to show u, êσ (a) � ψ .

Claim 3 u, a � @αi [�]ziβi ϕi for each i ≤ n.

Proof of Claim By Lemma 2, Eq. 5 implies that

w, êαi (a) � [�]ziβi ϕi . (7)
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The assumption αiβi = στ of the lemma, by the definition of function ê, implies that

êβi (êαi (a)) = êαiβi (a) = êστ (a) = êτ (êσ (a)).

Then, w ∼êβi (êαi (a)) u by Eq. 6. Hence, it follows that u, êαi (a) � [�]ziβi ϕi by Eq. 7

and Lemma 11. Therefore, u, a � @αi [�]ziβi ϕi by Lemma 2. �

Towards the proof of the lemma, note that, by the above claim, Eq. 4 of the lemma

(for b = a) implies u, a � @σ ψ . Therefore, u, êσ (a) � ψ by Lemma 2. �

Below, we establish several auxiliary lemmas that will be used later in the proof of

completeness.

Lemma 13 � @d1d2...dnϕ ∨ @d1d2...dn¬ϕ.

Proof We prove the statement by induction on n. If n = 0, then the formula is a
propositional tautology. Suppose that n > 0. Then, � @d2...dnϕ ∨ @d2...dn¬ϕ by
the induction hypothesis. Thus, � @d1(@d2...dnϕ ∨ @d2...dn¬ϕ) by the Necessitation
inference rule. Therefore, by the Distributivity axiom and theModus Ponens inference
rule, we have � @d1@d2...dnϕ ∨ @d1@d2...dn¬ϕ. �

Lemma 14 � ¬@d1d2...dn¬ϕ ∨ ¬@d1d2...dnϕ.

Proof We prove the statement by induction on n. If n = 0, then the formula is a
propositional tautology. Suppose that n > 0. Then,� ¬@d2...dn¬ϕ∨¬@d2...dnϕ by the
induction hypothesis. Thus, � @d1(¬@d2...dn¬ϕ ∨ ¬@d2...dnϕ) by the Necessitation
inference rule. Hence, by the Distributivity axiom and the Modus Ponens inference
rule, we have� @d1¬@d2...dn¬ϕ∨@d1¬@d2...dnϕ. Therefore, by the Negation axiom
and the laws of propositional reasoning, � ¬@d1@d2...dn¬ϕ ∨ ¬@d1@d2...dnϕ. �

Lemma 15 � ¬@d1d2...dnϕ ↔ @d1d2...dn¬ϕ.

Lemma 15 follows from the two lemmas above by propositional reasoning.

Lemma 16 � ¬@d1d2...dn (ψ ∨ χ) ∨ (@d1d2...dnψ ∨ @d1d2...dnχ).

Proof We prove this statement by induction on n. The formula is a propositional
tautology if n = 0. Suppose that n > 0. Then, by the induction hypothesis,

� ¬@d2...dn (ψ ∨ χ) ∨ (@d2...dnψ ∨ @d2...dnχ).

Thus, by the Necessitation inference rule,

� @d1(¬@d2...dn (ψ ∨ χ) ∨ (@d2...dnψ ∨ @d2...dnχ)).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

� @d1¬@d2...dn (ψ ∨ χ) ∨ @d1(@d2...dnψ ∨ @d2...dnχ).
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Hence, by the Negation axiom and propositional reasoning,

� ¬@d1@d2...dn (ψ ∨ χ) ∨ @d1(@d2...dnψ ∨ @d2...dnχ).

Therefore,

� ¬@d1@d2...dn (ψ ∨ χ) ∨ (@d1@d2...dnψ ∨ @d1@d2...dnχ)

by the Distributivity axiom and propositional reasoning. �

Lemma 17 � @d1d2...dn (ψ ∨ χ) ↔ (@d1d2...dnψ ∨ @d1d2...dnχ).

Lemma 17 follows from the two lemmas above by propositional reasoning.

Lemma 18 � @d1d2...dn (ψ ∨ χ) ∨ ¬(@d1d2...dnψ ∨ @d1d2...dnχ).

Proof We prove this statement by induction on n. The formula is a propositional
tautology if n = 0. Suppose that n > 0. Then, by the induction hypothesis,

� @d2...dn (ψ ∨ χ) ∨ ¬(@d2...dnψ ∨ @d2...dnχ).

Hence, by the Necessitation inference rule,

� @d1(@d2...dn (ψ ∨ χ) ∨ ¬(@d2...dnψ ∨ @d2...dnχ)).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

� @d1@d2...dn (ψ ∨ χ) ∨ @d1¬(@d2...dnψ ∨ @d2...dnχ).

Thus, by the Negation axiom and propositional reasoning,

� @d1@d2...dn (ψ ∨ χ) ∨ ¬@d1(@d2...dnψ ∨ @d2...dnχ).

Therefore, � @d1@d2...dn (ψ ∨ χ) ∨ ¬(@d1@d2...dnψ ∨ @d1@d2...dnχ) by the Dis-
tributivity axiom and propositional reasoning. �

Lemma 19 � ¬@d1d2...dn [�]τψ ∨ @d1d2...dnψ.

Proof We prove this statement by induction on n. If n = 0, the formula follows
from the Truth axiom by propositional reasoning. Suppose that n > 0. Then, by
the induction hypothesis, � ¬@d2...dn [�]τψ ∨@d2...dnψ . Thus, by the Neccessitation
inference rule,� @d1(¬@d2...dn [�]τψ∨@d2...dnψ). Then, by theDistributivity axiom
and theModus Ponens inference rule, � @d1¬@d2...dn [�]τψ ∨@d1@d2...dnψ . There-
fore, by the Negation axiom and propositional reasoning, � ¬@d1@d2...dn [�]τψ ∨
@d1@d2...dnψ . �

Lemma 20 � @σ [�]τψ → @σ ψ .

Proof The formula [�]τψ → ψ is an instance of the Truth axiom. Then,� ¬[�]τψ ∨
ψ by propositional reasoning. Hence, � @σ (¬[�]τψ ∨ ψ) by the Necessitation
inference rule. Then, � @σ ¬[�]τψ ∨ @σ ψ by Lemma 17. Thus, � ¬@σ [�]τψ ∨
@σ ψ by Lemma 15. Therefore, by propositional reasoning,� @σ [�]τψ → @σ ψ . �


123



Epistemic Logic with Agentically Non-rigid Designators

7 Completeness

As usual in the proofs of completeness, at the center of the proof is a “truth” lemma.
In our case, it is Lemma 23. In classical modal logic, the truth lemma usually states
that w � ϕ iff ϕ ∈ w. Since, in this article, we used 2D-semantics, we had to modify
the truth lemma as seen in Lemma 23. This way to modify the truth lemma for 2D-
semantics was suggested by Sano [24]. In the current work, we extend his approach
from single designators to chained designators.

Definition 6 W is the set of all maximal consistent sets of formulae.

In traditional modal logic, each agent designator corresponds to an agent in the
canonical model. To handle chained designators, we define agents as sequences of
designators. Intuitively, our canonical model contains agent Protos (“first”) and other
agents related to Protos through chained designators. The empty sequence ε is Protos.
The single-element sequence (boss) is Protos’ boss. The sequence (boss, buddy) is the
buddy of Protos’ boss.

Definition 7 A is the set of all finite sequences of designators.

In canonical models for classical modal logics, two worlds are defined to be indis-
tinguishable by an agent a if they contain the same [�]a-formulae. In our model, for
example, formula @boss[�]buddyϕ means that “Protos’ boss’ buddy” knows ϕ about
Proto’s boss. Thus, the same formula must be true in all worlds that the agent “Protos’
boss’ buddy” cannot distinguish from the current world. We capture this intuition in
the definition below:

Definition 8 w ∼σ u if @α[�]βϕ ∈ w iff @α[�]βϕ ∈ u for any α, β such that
αβ = σ .

Intuitively, extension function espouse maps the agent “Protos’ boss’ buddy” to
the agent “Protos’ boss’ buddy’s spouse”. In other words, espouse(boss, buddy) =
(boss, buddy, spouse). This explains the next definition.

Definition 9 ed(σ ) = σd.

The next lemma is proven by induction on the length of sequence τ using Defini-
tions 2 and 9.

Lemma 21 êτ (σ ) = στ .

The next definition specifies valuation π in a way that guarantees that Lemma 23
is true for propositional variables.

Definition 10 π(p) = {(w, σ ) | @σ p ∈ w} for each propositional variable p.

To improve readability, we prove the key step in Lemma 23 as a separate lemma
below.

Lemma 22 If @σ [�]τψ /∈ w, then @σ ψ /∈ u for some world u ∈ W such that
w ∼στ u.
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Proof Consider the set of formulae

u− ={¬@σ ψ} ∪ {@α[�]zβχ |@α[�]zβχ ∈ w, αβ = στ }. (8)

Claim 4 Set u− is consistent.

Proof of Claim Suppose the opposite, then there are formulae

@α1 [�]z1β1χ1, . . . ,@αm [�]zmβmχm ∈ w (9)

such that αiβi = στ for each i ≥ 1 and

@α1 [�]z1β1χ1, . . . ,@αm [�]zmβmχm � @σ ψ.

Thus, by Lemma 9 and propositional reasoning,

�
∧

i

@αi [�]ziβi χi → @σ ψ.

Then, by the Insertion inference rule,

�
∧

i

@αi [�]ziβi χi → @σ [�]τψ.

Hence w � @σ [�]τψ by Eq. 9 and propositional reasoning. Then, @σ [�]τψ ∈ w

because w is a maximal consistent set of formulae, which contradicts the assumption
@σ [�]τψ /∈ w of the lemma. �

By Lemma 10, set u− can be extended to a maximal consistent u.

Claim 5 w ∼στ u.

Proof of Claim Consider any α, β such that αβ = στ . By Definition 8, it suffices to
show that @α[�]βϕ ∈ w if and only if @α[�]βϕ ∈ u.
(⇒) : Suppose @α[�]βϕ ∈ w. Therefore, @α[�]βϕ ∈ u− ⊆ u by Eq. 8.
(⇐) : Suppose @α[�]βϕ /∈ w. Then, ¬@α[�]βϕ ∈ w because set w is max-
imal. Thus, w � @α¬[�]βϕ by Lemma 15 and propositional reasoning. Hence,
@α¬[�]βϕ ∈ w because set w is maximal. In other words, @α[�]−β ϕ ∈ w. There-

fore, @α[�]−β ϕ ∈ u− ⊆ u by Eq. 8. Then, @α¬[�]βϕ ∈ u. Thus, u � ¬@α[�]βϕ

by Lemma 15 and propositional reasoning. Therefore, @α[�]βϕ /∈ u because set u is
maximal. �


To conclude the proof of the lemma, observe that ¬@σ ψ ∈ u− ⊆ u. Therefore,
@σ ψ /∈ u because set u is consistent. �

Lemma 23 w, σ � ϕ iff@σ ϕ ∈ w.
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Proof Weprove the lemma by induction on the structural complexity of formulaϕ. Ifϕ
is a propositional variable, then the statement of the lemma follows fromDefinition 10
and item 1 of Definition 3.

Suppose formula ϕ has the form¬ψ . The statementw, σ � ¬ψ is equivalent to the
statement w, σ � ψ by item 2 of Definition 3. The latter statement, by the induction
hypothesis, is equivalent to@σ ψ /∈ w. The last statement is equivalent to@σ ¬ψ ∈ w

by Lemma 15 because w is a maximal consistent set.
Suppose formula ϕ has the formψ∨χ . The statementw, σ � ψ∨χ is equivalent to

the disjunction of the statementsw, σ � ψ andw, σ � χ by item 3 of Definition 3. By
the induction hypothesis, the statements in the disjunction are equivalent to@σ ψ ∈ w

and @σ χ ∈ w. By Lemma 17, the disjunction of the last two statements is equivalent
to @σ (ψ ∨ χ) ∈ w because w is a maximal consistent set.

Suppose formula ϕ has the form @dψ . The statement w, σ � @dψ is equivalent
to the statement w, ed(σ ) � ψ by item 4 of Definition 3. By Definition 9, the latter
statement is equivalent to w, σd � ψ . By induction hypothesis, the new statement is
equivalent to @σdψ ∈ w. The last statement is equivalent to @σ@dψ ∈ w by the
definition of @ notation.

Suppose formula ϕ has the form [�]τψ .
(⇐) : Assume @σ [�]τψ ∈ w. Consider any world u ∈ W such that w ∼êτ (σ ) u. By
item 5 of Definition 3, it suffices to show u, σ � ψ . By Lemma 21, the assumption
w ∼êτ (σ ) u impliesw ∼στ u. Then,@σ [�]τψ ∈ u byDefinition 8 and the assumption
@σ [�]τψ ∈ w. Thus, @σ ψ ∈ u by Lemma 20 and because set u is maximal. Hence,
u, σ � ψ by the induction hypothesis.
(⇒) : Assume @σ [�]τψ /∈ w. Then, by Lemma 22, there exists a world u ∈ W
such that w ∼στ u and @σ ψ /∈ u. Thus, u, σ � ψ by the induction hypothesis.
By Lemma 21, the statement w ∼στ u implies w ∼êτ (σ ) u. Therefore, we have
w, σ � [�]τψ by item 5 of Definition 3 and statement u, σ � ψ . �


Theorem 6 (strong completeness) If X � ϕ, then there is a world w and an agent a of
an epistemic model with extensions such that w, a � χ for each formula χ ∈ X and
w, a � ϕ.

Proof Suppose that X � ϕ. Then, set X ∪ {¬ϕ} is consistent. Let w be any maximal
consistent extension of this set. Such a set exists by Lemma 10. Then, @εχ ∈ w for
each χ ∈ X and @¬ϕ ∈ w. Thus, w, ε � χ for each χ ∈ X and w, ε � ¬ϕ by
Lemma 23. Therefore, w, ε � ϕ by item 2 of Definition 3. �


8 Conclusion

Agentically non-rigid designators refer to a referent through a sequence of social
connections of the context. They are helpful in describing a complicated structure of
relations between multiple agents. When such a designator is composed of a chain of
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social connections, we call it a “chained designator”. The concept of chained desig-
nators was inspired by both natural and programming languages. We studied chained
designators in knowledge statements and considered three kinds of knowledge modal-
ities: the referent’s self-knowledge about the context [�], the context’s knowledge
about the referent [�], and the referent’s knowledge about the context [�]. Among
these three knowledge modalities, modality [�] is not definable through the modality
@ and modalities [�] and [�], but modalities [�] and [�] can be defined through
modality [�] and@.Then, chained designatorswere proved to enhance the expressive-
ness of knowledge statements compared to statements using just atomic designators.
Lastly, we provided a sound and complete epistemic logic with knowledge modality
[�] that utilizes chained designators.

AModel Checking Algorithm

In this section, we propose a model checking algorithm for our logical system. The
algorithm decides if a statement of the formw, a � ϕ holds for a worldw ∈ W and an
agent a ∈ A of a given model, and a formula ϕ ∈ �. This algorithm assumes that the
setW of worlds, the setA of agents, and the set� of atomic designators are finite. Let
ϕ1, ϕ2, . . . , ϕn be the list of all subformulae of formula ϕ ordered in non-decreasing
order of sizes. Note that ϕn is formula ϕ. The algorithm pre-computes the Boolean
value sat[u, b, i] of the statement u, b � ϕi for each world u ∈ W , each agent b ∈ A,
and each i ≤ n.

Lemma 24 The algorithm in Fig. 5 has polynomial time complexity.

Proof The algorithm has three nested “for” loops with five cases that correspond to
formula ϕi having different forms. For the cases where ϕi is an atomic proposition, a
negation, or an implication, the time complexity is constant. In the case where formula
ϕi has the form@dϕ j , byDefinition 1 item4, the time complexity is also polynomial. In
the case where formula ϕi has the form [←]σ ϕ j , by Definition 2, checking u ∼êσ (b) u

′
takes polynomial time. Thus, accounting for the “for” loop inside this case, it also has
polynomial time complexity. Therefore, considering checking all cases within the
three nested “for” loops, the algorithm has a polynomial time complexity. �


This next lemma can be proven by induction on i using Definition 3.

Lemma 25 u, b � ϕi iff sat[u, b, i] = true for each world u ∈ W, each agent b ∈ A,
and each i ≤ n.

Since ϕn is formula ϕ, by Lemma 25, the model checking algorithm shown in Fig. 5
assigns the Boolean value true to sat[w, a, i] if and only if formula ϕ is satisfied in
world w with agent a. By Lemma 24, this model checking algorithm has polynomial
time complexity.

123



Epistemic Logic with Agentically Non-rigid Designators

Fig. 5 Model checking algorithm

B Proof of Lemma 9

Proof Suppose that sequenceψ1, . . . , ψn is a proof from set � ∪{ϕ} and the theorems
of our logical system that uses the Modus Ponens inference rule only. In other words,
for each k ≤ n, either

1. � ψk , or
2. ψk ∈ �, or
3. ψk is equal to ϕ, or
4. there are i, j < k such that formula ψ j is equal to ψi → ψk .

It suffices to show that � � ϕ → ψk for each k ≤ n. We prove this by induction on k
through considering the four cases above separately.
Case 1: � ψk . Note that ψk → (ϕ → ψk) is a propositional tautology, and thus, is an
axiom of our logical system. Hence, � ϕ → ψk by the Modus Ponens inference rule.
Therefore, � � ϕ → ψk .
Case 2: ψk ∈ �. Note again that ψk → (ϕ → ψk) is a propositional tautology, and
thus, is an axiom of our logical system. Therefore, by the Modus Ponens inference
rule, � � ϕ → ψk .
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Case 3: formulaψk is equal toϕ. Thus,ϕ → ψk is a propositional tautology. Therefore,
� � ϕ → ψk .
Case 4: formula ψ j is equal to ψi → ψk for some i, j < k. Thus, by the induction
hypothesis, � � ϕ → ψi and � � ϕ → (ψi → ψk). Note that formula (ϕ →
ψi ) → ((ϕ → (ψi → ψk)) → (ϕ → ψk)) is a propositional tautology. Therefore,
� � ϕ → ψk by applying the Modus Ponens inference rule twice. �
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