Sea urchins of Hong Kong: Corrections of misidentifications and an updated species list 1 2 CHIA-HSIN HSU^{1,*}, KAI-CHUN CHANG² 3 4 5 ¹School of Ocean and Earth Science, University of Southampton, Southampton, UK 6 National Oceanography Centre, European Way, Southampton SO14 3ZH, UK 7 (*C-H.Hsu*@*soton.ac.uk*; *https://orcid.org/0009-0007-2540-5660*) 8 9 ²Independent researcher No. 21, Lane 263, Section 2, Zhongzheng Road, Hukou Township, Hsinchu 303, Taiwan 10 (jeremychang387@gmail.com; https://orcid.org/0009-0006-8944-4522) 11 12 13 *corresponding author 14 The monograph by Yiu & Mah (2024) on the ecology and occurrences of echinoderms in 15 Hong Kong reported 25 echinoid species observed during more than 1500 SCUBA dives, 16 17 including 11 new species records. However, the identifications of five species are 18 problematic. The specimen identified as *Echinometra mathaei* (Blainville) (Figure 7, page 16) is the yet unnamed species Echinometra sp. A, which was discovered in the 1980s. The 19 20 specimens identified as *Pseudoboletia indiana* (Michelin) (Figure 15, page 25) are 21 Pseudoboletia maculata Troschel. The specimen identified as Brissus latecarinatus (Leske) 22 (Figure 18, page 28) is *Brissus agassizii* Döderlein. The specimen identified as *Metalia* 23 spatagus (Linnaeus) (Figure 19, page 29) is Metalia angustus de Ridder. The specimen 24 identified as Peronella lesueuri (Agassiz) (Figure 21, page 31) is Laganum decagonale 25 (Blainville). After these corrections, updated Hong Kong echinoid records from published 26 literature were provided and discussed herein (Table S1). The species list of sea urchins in 27 Hong Kong water includes 42 species (18 families) to date. 28 29 There are six recognized species and four unnamed species of the genus Echinometra 30 worldwide (Kroh & Mooi 2025). Four of them are the most common in the western Pacific, including E. mathaei, E. oblonga (Blainville), Echinometra sp. A (temporary name; Kroh & 31 32 Mooi 2025), and Echinometra sp. C (temporary name; Kroh & Mooi 2025). The two 33 unnamed species, Echinometra sp. A and Echinometra sp. C, were first identified through 34 cross-fertilization experiments by Uehara & Shingaki (1985) and later confirmed by genetic 35 analyses (e.g., Matsuoka & Hatanaka 1991). Echinometra sp. A is distinguished by its whitetipped spines and bright milled rings, whereas E. mathaei lacks white-tipped spines and has 36 37 very faded milled rings (Arakaki et al. 1998; Bronstein & Loya 2013; Lin et al. 2024). 38 Therefore, the specimen (Figure 7, page 16) in Yiu & Mah (2024) is clearly *Echinometra* sp. 39 A based on its obvious white-tipped spines and bright milled rings (Table S2).

The two species, *Pseudoboletia indiana* and *P. maculata*, are extremely similar. The species *P. maculata* was established based on distinct dark spots and patterns on the denuded test, which is the only difference from *P. indiana*, whose denuded test is completely white (Mortensen 1943; Schultz 2006). Because of the almost identical structure of the test between *P. indiana* and *P. maculata* and the presence of intermediate forms, they were usually treated as synonyms in many early studies (e.g., Liao & Clark 1995). However, Zigler et al. (2012) conducted genetic analyses on *P. indiana*-like, *P. maculata*-like, and intermediate forms, and the results supported that *P. indiana* and *P. maculata* remain distinct species with differences in color pattern, egg size, mtDNA, and nuclear DNA, whilst the intermediate forms are the result of natural hybridization. The World Echinoidea Database (Kroh & Mooi 2025) also recognize that they are separate species. Considering all of the above, it is clear that the specimens (Figure 15, page 25) in Yiu & Mah (2024) are *P. maculata* based on their obvious dark patterns (Table S3).

The three brissid echinoid species Brissus latecarinatus, B. agassizii, and B. unicolor (Leske) closely resemble each other. Their high morphological variability, especially in aboral petal patterns, has caused much confusion (Mortensen 1951). The most obvious difference between these species is the pedicellariae, with B. agassizii having peculiarly shaped globiferous pedicellariae (Mortensen 1951). Apart from this, B. latecarinatus differs from B. agassizii and B. unicolor in its periproct, which is overhung by the posterior interambulacrum, making it visible from the oral view and producing a keeled posterior interambulacrum in lateral view (Döderlein 1885; Mortensen 1951; Schultz 2006). As for B. agassizii and B. unicolor, the former has a vertically truncated posterior end, whilst the latter is lower and more rounded (Mortensen 1951; Schultz 2006). The brissid specimen (Figure 18, page 28) in Yiu & Mah (2024) is a denuded test, so its pedicellariae are unavailable, making identification possible only based on test morphology. Its vertically truncated posterior end and a periproct not visible from the oral view indicate it is not B. latecarinatus. Instead, its high posterior end suggests it is B. agassizii. Furthermore, the slight indent in the middle of the posterior end when viewed orally matches the original diagnosis in Döderlein (1885). Although this specimen may be a young adult with potential ontogenetic variation, based on the available traits, it should be identified as B. agassizii (Table S4).

The spatangoid echinoid specimen (Figure 19, page 29) in Yiu & Mah (2024) certainly belongs to the genus *Metalia* based on its overall outline and narrower shield-shaped subanal fasciole with radiating furrows (Mortensen 1951). However, it is clearly distinct from *M. spatagus* in overall outline, having an obvious frontal notch, a more centrally located apical system, thinner petal width, and a smaller angle between the two anterior petals, as evident from all available published descriptions, figures, and specimens (Mortensen 1951; Schultz

2006). In contrast, its characteristics align well with *M. angustus*, including its overall outline, slightly elongated and elevated test with a slightly raised posterior, obvious frontal notch, posterior petals that are divergent and not confluent toward the apical system, primary tubercles present in the posterior interambulacrum, and a moderately inflated plastron (de Ridder 1984; Schultz 2006). These features strongly indicate that the specimen belongs to *M. angustus* rather than other *Metalia* species in adjacent areas (Table S5). The specimen differs from *M. sternalis* (Lamarck) and *M. dicrana* H.L. Clark in having a narrower petal width, a more posteriorly located apical system, and a different lateral outline, and from *M. latissima* H.L. Clark in having a significantly lower test. This record enhances our understanding of the distribution of this species, which was previously only found in its type locality, Australian waters, and south of Sagami Bay, Japan (de Ridder 1984; Schultz 2006; Tanaka et al. 2019).

The laganid echinoid specimen (Figure 21, page 31) in Yiu & Mah (2024) certainly belongs to the family Laganidae rather than its sister group family Fibulariidae and other sand dollar taxa based on its dish-like test, apical system structure, and periproct position (e.g., Mortensen 1948; Schultz 2006; Lee et al. 2023). Although the detailed classifications within Laganidae remain controversial (Mortensen 1948; Schultz 2006), the two largest genera, Laganum and Peronella, can be easily distinguished by their apical system structures: the former has five gonopores and hydropores in a furrow, whilst the latter has four gonopores with hydropores scattered over the madreporite. Therefore, it is clear that the specimen does not belong to Peronella. The specimen is most likely Laganum decagonale (Blainville) based on its relatively short, distally closed petals with the widest point about halfway along their length, slightly elevated test with a thin margin, height increasing slightly toward the apical system, and a periproct very close to the posterior margin (Table S6). Compared to laganids with five gonopores in adjacent regions, it differs from L. fudsiyama Döderlein, L. retinens Koehler, and Jacksonaster depressum (L. Agassiz) in having shorter, lanceolate petals and a lower test height, and from L. laganum (Leske) in petal shape and a more posteriorly located periproct.

Consequently, incorporating the corrected data from this study, the efforts of Yiu & Mah (2024), Yiu & Chung (2024), comprehensive studies (Clark 1982; Liao & Clark 1995), earlier literatures which are not included in Clark (1982) and Liao & Clark (1995), and the Hong Kong Register of Marine Species, which includes numerous sporadic studies (Astudillo et al. 2025), an updated echinoid species list for Hong Kong waters was compiled (Table S1). A total of 42 species from 18 families are included (Table S1), highlighting the remarkably high echinoid diversity of Hong Kong waters, which host nearly 4% of the world sea urchin species within just 0.0004% of the world ocean area.

118 Acknowledgements 119 We are grateful to Kwen-Shen Lee for providing key literature for this study and for his 120 extensive contributions to echinoid taxonomy in Taiwan and the adjacent Western Pacific 121 areas. We thank Sam King Fung Yiu for discussions on this manuscript. We also thank Ben 122 Thuy and one anonymous reviewer for their constructive comments. 123 124 References 125 Arakaki, Y., Uehara, T. & Fagoonee, I. (1998) Comparative studies of the genus Echinometra from Okinawa and 126 Mauritius. Zoological Science, 15, 159-168. 127 https://doi.org/10.2108/zsj.15.159 128 Astudillo, J.C., Williams, G.A., Leung, K.M.Y., Cannicci, S., Yasuhara, M., Yau, C., Qiu, J.-W., Ang, P.O., To, 129 A.W.L. & Shea, S.K.H. (2025) Hong Kong Register of Marine Species. Available from: 130 https://www.marinespecies.org/hkrms/ (accessed 15 February 2025) 131 Bronstein, O. & Loya, Y. (2013) The taxonomy and phylogeny of *Echinometra* (Camarodonta: Echinometridae) 132 from the red sea and western Indian Ocean. PLoS One, 8, e77374. 133 https://doi.org/10.1371/journal.pone.0077374 134 Clark, A.M. (1982) Echinoderms of Hong Kong. In: Morton, B.S. & Tseng, C.K. (Eds.), Proceedings of the First 135 International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern 136 China. Hong Kong University Press, Hong Kong, pp. 485–501. 137 de Ridder, C. (1984) Clypeastéroïdes et spatangoïdes littoraux de Nouvelle-Calédonie (Echinodermata). Bulletin 138 du Muséum national d'Histoire naturelle, 4e série, Section A (Zoologie, Biologie et Écologie animales), 6, 139 617-624. 140 Döderlein, L. (1885) Seeigel von Japan und den Liu-Kiu Inseln. Archiv für Naturgeschichte, 51 (1), 73-112. 141 Kroh, A. & Mooi, R. (2025) World Echinoidea Database. Available from: 142 https://www.marinespecies.org/echinoidea (accessed 23 February 2025) 143 Lee, H., Lee, K.-S., Hsu, C.-H., Lee, C.-W., Li, C.-E., Wang, J.-K., Tseng, C.-C., Chen, W.-J., Horng, C.-C., 144 Ford, C.T., Kroh, A., Bronstein, O., Tanaka, H., Oji, T., Lin, J.-P. & Janies, D. (2023) Phylogeny, ancestral 145 ranges and reclassification of sand dollars. Scientific Reports, 13, 10199. 146 https://doi.org/10.1038/s41598-023-36848-0 147 Liao, Y. & Clark, A.M. (1995) The Echinoderms of Southern China. Science Press, Beijing, 614 pp. 148 Lin, M.-F., Yang, M.-C., Lin, Y.-Y., Chung, S.-C. & Liu, L.-L. (2024) Phylogeny and genetic diversity of 149 Echinometra sea urchin in Taiwan, Marine Biology Research, 20 (5-6), 181-195. 150 https://doi.org/10.1080/17451000.2024.2361228 151 Matsuoka, N. & Hatanaka, T. (1991) Molecular evidence for the existence of four sibling species within the sea 152 urchin, Echinometra mathaei in Japanese waters and their evolutionary relationships. Zoological Science, 153 154 Mortensen, T. (1943) A Monograph of the Echinoidea III, 2. Camarodonta I, Orthopsidae, Glyphocyphidae, 155 Temnopleuridae and Toxopneustidae. C.A. Reitzel, Copenhagen, 553 pp. 156 Mortensen, T. (1948) A Monograph of the Echinoidea IV, 1. Holectypoida, Cassiduloida. C.A. Reitzel,

157	Copenhagen, 371 pp.
158	Mortensen, T. (1951) A Monograph of the Echinoidea V, 2. Spatangoida II, Amphisternata II, Spatangidae,
159	Loveniidae, Pericosmidae, Schizasteridae, Brissidae. C.A. Reitzel, Copenhagen, 593 pp.
160	Schultz, H. (2006) Sea Urchins: A Guide to Worldwide Shallow Water Species. Third Edition. Heinke & Peter
161	Schultz Partner Scientific Publications, Hemdingen, 484 pp.
162	Tanaka, H., Osaku, K. & Kotsuka, H. (2019) The Handbook of Sea Urchins. Bun-Ichi Sogo Shuppan Co., Tokyo,
163	128 pp.
164	Uehara, T. & Shingaki, M. (1985) Taxonomic studies in the four types of the sea urchin, <i>Echinometra mathaei</i> ,
165	from Okinawa, Japan. Zoological Science, 2, 1009.
166	Yiu, S.K.F. & Chung, S.S.W. (2024) Spatial distribution and habitat relationship of sea urchin assemblages
167	(Echinodermata: Echinoidea) in Hong Kong waters. Continental Shelf Research, 273, 105170.
168	https://doi.org/10.1016/j.csr.2023.105170
169	Yiu, S.K.F. & Mah, C.L. (2024) New ecological observations and occurrence for Asteroidea and Echinoidea in
170	Hong Kong. Zootaxa, 5526 (1), 1–69.
171	https://doi.org/10.11646/zootaxa.5526.1.1
172	Zigler, K.S., Byrne, M., Raff, E.C., Lessios, H.A. & Raff, R.A. (2012) Natural hybridization in the sea urchin
173	genus Pseudoboletia between species without apparent barriers to gamete recognition. Evolution, 66 (6),
174	1695–1708.
175	https://doi.org/10.1111/j.1558-5646.2012.01609.x
176	
177	

178 Appendix

179

Table S1. Updated species list of echinoids in Hong Kong.

Family	Species	Source of Hong Kong record
Arbaciidae	Coelopleurus maculatus A. Agassiz & H.L.	Yiu & Mah (2024)
	Clark	
Brissidae	Anametalia sternaloides (Bolau)	Mortensen (1951), Baker & Rowe (1990)
Brissidae	Brissus agassizii Döderlein	Yiu & Mah (2024), this study
Brissidae	Brissus latecarinatus (Leske)	Liao & Clark (1995), Astudillo et al. (2025)
Brissidae	Metalia angustus de Ridder	Yiu & Mah (2024), this study
Brissidae	Metalia spatagus (Linnaeus)	Wai et al. (2011), Astudillo et al. (2025)
Cidaridae	Eucidaris metularia (Lamarck)	Yiu & Mah (2024)
Cidaridae	Prionocidaris baculosa (Lamarck)	Yiu & Mah (2024)
Clypeasteridae	Clypeaster reticulatus (Linnaeus)	Yiu & Mah (2024)
Clypeasteridae	Clypeaster virescens Döderlein	Morton & Morton (1983), Astudillo et al. (2025)
Diadematidae	Diadema savignyi (Audouin)	Liao & Clark (1995), Astudillo et al. (2025)
Diadematidae	Diadema setosum (Leske)	Agassiz (1864, 1872), Liao & Clark (1995),
		Astudillo et al. (2025)
Diadematidae	Echinothrix calamaris (Pallas)	Liao & Clark (1995), Astudillo et al. (2025)
Echinometridae	Echinometra mathaei (Blainville)	Liao & Clark (1995), Astudillo et al. (2025)
Echinometridae	Echinometra sp. A	Yiu & Mah (2024), this study
Echinometridae	Echinostrephus molaris (Blainville)	Yiu & Mah (2024)
Echinometridae	Heliocidaris crassispina (A. Agassiz)	Agassiz (1864), Liao & Clark (1995), Astudillo
		et al. (2025)
Fibulariidae	Echinocyamus provectus de Meijere	Mortensen (1948)
Laganidae	Jacksonaster depressum (L. Agassiz)	Agassiz (1872), Liao & Clark (1995), Astudillo
		et al. (2025)
Laganidae	Laganum decagonale (Blainville)	Agassiz (1872), Clark (1982), Yiu & Mah
		(2024), Astudillo et al. (2025), this study
Laganidae	Peronella lesueuri (L. Agassiz)	Agassiz (1864), Clark (1925), Liao & Clark
		(1995), Astudillo et al. (2025)
Loveniidae	Lovenia elongata (Gray)	Liao & Clark (1995), Astudillo et al. (2025)
Loveniidae	Lovenia subcarinata Gray	Agassiz (1864, 1872, 1881), Bolau (1873), Clark
		(1925), Liao & Clark (1995), Astudillo et al.
		(2025)
Maretiidae	Maretia planulata (Lamarck)	Bolau (1873)
Maretiidae	Nacospatangus altus (A. Agassiz)	Yiu & Mah (2024)
Palaeostomatidae	Palaeostoma mirabile (Gray)	Agassiz (1864, 1872), Liao & Clark (1995)
		Astudillo et al. (2025)

Parasaleniidae	Parasalenia gratiosa A. Agassiz	Liao & Clark (1995), Astudillo et al. (2025)
Pericosmidae	Faorina chinensis Gray	Agassiz (1872), Clark (1925), Liao & Clark
		(1995), Astudillo et al. (2025)
Pericosmidae	Pericosmus melanostomus Mortensen	Mortensen (1948), Liao & Clark (1995),
		Astudillo et al. (2025)
Rotulidae	Fibulariella volva (L. Agassiz in L. Agassiz &	& Chen (2007), Astudillo et al. (2025)
	Desor)	
Schizasteridae	Schizaster lacunosus (Linnaeus)	Agassiz (1872, 1881), Bolau (1873), Liao &
		Clark (1995), Astudillo et al. (2025)
Stomopneustidae	Stomopneustes variolaris (Lamarck)	Yiu & Mah (2024)
Temnopleuridae	Paratrema doederleini (Mortensen)	Koehler (1927), Liao & Clark (1995), Astudillo
		et al. (2025)
Temnopleuridae	Salmaciella dussumieri (L. Agassiz in L	Agassiz (1864, 1872), Huang & Mak (1982),
	Agassiz & Desor)	Astudillo et al. (2025)
Temnopleuridae	Salmacis sphaeroides (Linnaeus)	Liao & Clark (1995), Astudillo et al. (2025)
Temnopleuridae	Salmacis bicolor L. Agassiz in L. Agassiz &	& Environmental Resources Management (1998),
	Desor	Yiu & Mah (2024), Astudillo et al. (2025)
Temnopleuridae	Temnopleurus reevesii (Gray)	Agassiz (1864), Liao & Clark (1995), Astudillo
		et al. (2025)
Temnopleuridae	Temnopleurus toreumaticus (Leske)	Agassiz (1872), Liao & Clark (1995), Astudillo
		et al. (2025)
Temnopleuridae	Temnotrema maculatum (Mortensen)	Liao & Clark (1995), Astudillo et al. (2025)
Toxopneustidae	Pseudoboletia maculata Troschel	Yiu & Mah (2024), this study
Toxopneustidae	Toxopneustes pileolus (Lamarck)	Yiu & Mah (2024)
Toxopneustidae	Tripneustes gratilla (Linnaeus)	Liao & Clark (1995), Astudillo et al. (2025)

183

184185186

187188

189

190 191 Table S3. Comparison of *Pseudoboletia* specimen (Figure 15, page 25) in Yiu & Mah (2024) with similar species. Figures modified from Schultz (2006) and Kroh & Mooi (2025). Test length: *P. maculata* 43 mm, *P. indiana* 81 mm, Yiu & Mah (2024) specimen 50 mm.

species	Pseudoboletia maculata Troschel, 1869	Pseudoboletia indiana (Michelin, 1862)	specimen in Yiu & Mah (2024)
aboral			
dark pattern	0	Х	0

species	<i>Brissus agassizii</i> Döderlein, 1885	Brissus latecarinatus (Leske, 1778)	Brissus unicolor (Leske, 1778)	specimen in Yiu & Mah (2024)
aboral				
oral				
lateral				
periproct	invisible from oral	visible from oral	invisible from oral	invisible from oral
posterior end	high; vertically truncated	keeled	low; rounded	high; vertically truncated

193

194

Table S5. Comparison of *Metalia* specimen (Figure 19, page 29) in Yiu & Mah (2024) with similar species. Figures modified from Schultz (2006) and Kroh & Mooi (2025). Test length: *M. angustus* 124 mm, *M. spatagus* 74 mm, Yiu & Mah (2024) specimen 76 mm.

species	<i>Metalia angustus</i> de Ridder, 1984	<i>Metalia spatagus</i> (Linnaeus, 1758)	specimen in Yiu & Mah (2024)
aboral			
oral			
lateral			
petal	narrow	wide	narrow
frontal notch	0	X	0

203

204

205

species	Laganum decagonale (Blainville, 1827)	Peronella lesueuri (Agassiz, 1841)	specimen in Yiu & Mah (2024)
aboral			
oral			
gonopore	5	4	5
hydropore	in a furrow	scattered over madreporite	in a furrow
petal	wide and short	narrow and elongated	wide and short

209	References for appendix
210	Agassiz, A. (1864) Synopsis of the echinoids collected by Dr. W. Stimpson on the North Pacific Exploring
211	Expedition under the command of Captains Ringgold and Rodgers. Proceedings of the Academy of Natural
212	Sciences of Philadelphia, 15, 352–361.
213	Agassiz, A. (1872) Revision of the Echini. Memoirs of the Museum of Comparative Zoology at Harvard College,
214	3 (1–2), 1–378.
215	Agassiz, A. (1881) Report on the Echinoid, dredged by H.M.S. Challenger during the year 1873–1876. Zoology,
216	3, 1–321.
217	Astudillo, J.C., Williams, G.A., Leung, K.M.Y., Cannicci, S., Yasuhara, M., Yau, C., Qiu, JW., Ang, P.O., To,
218	A.W.L. & Shea, S.K.H. (2025) Hong Kong Register of Marine Species. Available from:
219	https://www.marinespecies.org/hkrms/ (accessed 15 February 2025)
220	Baker, A.N. & Rowe, F.W.E. (1990) Atelostomatid sea urchins from Australian and New Zealand waters
221	(Echinoidea: Cassiduloida, Holasteroida, Spatangoida, Neoplampadoida). Invertebrate Taxonomy, 4, 281-
222	316.
223	Bolau, C.C.H. (1873) Die Spatangiden des Hamburger Museums. Abhandlungen aus dem Gebiete der
224	Naturwissenschaften, 5, 1–23.
225	Chen, Y. (2007) The Ecology and Biology of Amphioxus in Hong Kong. Unpublished PhD Thesis, City
226	University of Hong Kong, Hong Kong, 294 pp.
227	Chung, S.C. (2025) The Study of the Species Diversity of Echinometra (Echinoidea: Echinometridae) in Taiwan.
228	Unpublished Master Thesis, National Sun Yat-sen University, Kaohsiung, 54 pp.
229	Clark, A.M. (1982) Echinoderms of Hong Kong. In: Morton, B.S. & Tseng, C.K. (Eds.), Proceedings of the First
230	International Marine Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern
231	China. Hong Kong University Press, Hong Kong, pp. 485–501.
232	Clark, H.L. (1925) A Catalogue of the Recent Sea-urchins (Echinoidea) in the Collection of the British Museum
233	(Natural History). Oxford University Press, London, 250 pp.
234	Environmental Resources Management (1998) Fisheries Resources and Fishing Operations in Hong Kong
235	Waters: Final Report. Agriculture & Fisheries Department, Hong Kong SAR Government, Hong Kong.
236	Huang, Z.G. & Mak, P.M.S. (1982) Studies on biofouling in Tolo Harbour. In: Morton, B.S. & Tseng, C.K.
237	(Eds.), Proceedings of the First International Marine Biological Workshop: The Marine Flora and Fauna
238	of Hong Kong and Southern China. Hong Kong University Press, Hong Kong, pp. 767-787.
239	Koehler, R. (1927) Echinides du Musée Indien á Calcutta, III: Echinides réguliers. Echinoderma of the Indian
240	Museum, 10, 1–158.
241	Kroh, A. & Mooi, R. (2025) World Echinoidea Database. Available from:
242	https://www.marinespecies.org/echinoidea (accessed 23 February 2025)
243	Liao, Y. & Clark, A.M. (1995) The Echinoderms of Southern China. Science Press, Beijing, 614 pp.
244	Mortensen, T. (1948) Contributions to the biology of the Philippine Archipelago and adjacent regions. Report on
245	the Echinoidea collected by the United States Fisheries Steamer "Albatross" during the Philippine
246	Expedition, 1907-1910. Part 3: The Echinoneidae, Echinolampidae, Clypeastridae, Arachnidae, Laganidae,
247	Fibulariidae, Urechinidae, Echinocorythidae, Palaeostomatidae, Micrasteridae, Palaepneustidae,

248	Hemiasteridae, and Spatangidae. Smithsonian Institution, United States National Museum Bulletin
249	Bulletin, 100, 93–140.
250	Mortensen, T. (1951) A Monograph of the Echinoidea V, 2. Spatangoida II, Amphisternata II, Spatangidae,
251	Loveniidae, Pericosmidae, Schizasteridae, Brissidae. C.A. Reitzel, Copenhagen, 593 pp.
252	Morton, B.S. & Morton, J. (1983) The Sea Shore Ecology of Hong Kong. Hong Kong University Press, Hong
253	Kong, 350 pp.
254	Schultz, H. (2006) Sea urchins: A Guide to Worldwide Shallow Water Species. Third Edition. Heinke & Peter
255	Schultz Partner Scientific Publications, Hemdingen, 484 pp.
256	Wai, T.C., Ng, W.C., Leung, K.M.Y. & Williams, G.A. (2011) Stock and Ecological Status of Echinoderms in
257	Hong Kong: Evaluation of Effectiveness of Marine Protected Areas Using Sea Urchins as Model
258	Organism: Final Report. Agriculture & Fisheries Department, Hong Kong SAR Government, Hong Kong
259	Yiu, S.K.F. & Mah, C.L. (2024) New ecological observations and occurrence for Asteroidea and Echinoidea in
260	Hong Kong. Zootaxa, 5526 (1), 1–69.
261	https://doi.org/10.11646/zootaxa.5526.1.1