

Raising awareness of alcohol as a modifiable risk factor for breast cancer: A randomized controlled trial comparing the efficacy of accessing an interactive website with a non-interactive website

Claudia Sardu^a, Fabrizio Angius^b, Paolo Contu^a, Sofia Cosentino^a, Monica Deiana^c, Matteo Fraschini^d, Clelia Madeddu^a, Elena Massa^a, Alessandra Mereu^a, Luigi Minerba^a, Carola Politi^a, Silvia Puxeddu^b, Francesco Salis^{a,e}, Julia M.A. Sinclair^f, Roberta Agabio^{e,*}

^a Department of Medical Sciences and Public Health, University of Cagliari, Italy

^b Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Italy

^c Department of Biomedical Sciences, Unit of Experimental Pathology, University of Cagliari, Italy

^d Department of Electrical and Electronic Engineering, University of Cagliari, Italy

^e Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy

^f Faculty of Medicine, University of Southampton, Southampton, UK

ARTICLE INFO

Keywords:

Breast cancer
Alcohol
Modifiable risk factor
Awareness
Interactive website

ABSTRACT

Background: Alcohol consumption is a potentially modifiable risk factor for breast cancer (BC). Reducing alcohol consumption within the daily amount at low-risk for alcohol-related consequences (daily alcohol threshold) may contribute to preventing BC new cases. However, most women are unaware of risk factors for BC, the daily alcohol threshold, and how to measure alcohol use. We aimed at investigating the efficacy of accessing an interactive website in increasing the knowledge that alcohol is a BC risk factor.

Methods: We conducted a randomized controlled trial among women waiting for mammography. Women completed a questionnaire to investigate their knowledge before and after accessing an interactive (intervention group) and non-interactive (control group) website.

Results: We recruited 671 women, randomized 329 (49.0 %) and 342 (51.0 %) to the intervention and control groups, respectively. At baseline, most women were not aware of most modifiable BC risk factors. Accessing either website significantly increased the percentage of women who acquired the knowledge on BC risk factors, with the interactive website achieving better results: 82 % and 69 % of women acquired the knowledge that alcohol is a risk factor for BC in the intervention and control groups, respectively ($p < 0.001$). Among women with lower levels of education, the probability of acquiring this knowledge was higher in the intervention group than control group.

Conclusion: Our results show that accessing an interactive website may increase the percentage of women who acquire the knowledge that alcohol is a BC risk factor especially among women of lower levels of education.

1. Introduction

Breast cancer (BC) is the most prevalent cancer worldwide with approximately 7.8 million women, estimated at the end of 2020, diagnosed in the previous 5 years [1]. Despite effectiveness of treatments for BC improving, mortality rates remain high [1,2].

Alcohol use, physical inactivity, being overweight or obese, and hormone replacement therapy (HRT) are potentially modifiable BC risk

factors, responsible for approximately 30 % of new BC cases [1,3,4]. The relationship between alcohol consumption and the risk of developing BC is dose-dependent [5], with an increased risk of approximately 10 % for each additional daily standard unit of alcohol (AU). This corresponds to approximately one glass of wine, a can of beer, or a small glass of spirits [1,6].

In Europe, almost 11,000 new cases of BC per year are related to light to moderate drinking levels (less than 2 AU per day [7]), with no alcohol

Abbreviations: AU, standard unit of alcohol; BC, breast cancer; HRT, hormone replacement therapy; RCT, randomized controlled trial.

* Corresponding author. Dept Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, CA, Italy.

E-mail address: agabio@unica.it (R. Agabio).

<https://doi.org/10.1016/j.breast.2024.103868>

Received 7 October 2024; Received in revised form 23 December 2024; Accepted 26 December 2024

Available online 26 December 2024

0960-9776/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

consumption as the lowest risk [8]. However, as most of the general population consume alcohol, many countries have produced 'lower risk' thresholds at which alcohol-related consequences are minimized to help people adopt healthier behaviors [6,9]. In general, healthy, non-pregnant, and non-breast-feeding women should avoid alcohol consumption higher than one AU per day, and women at higher risk of BC due to other factors, such as family history of BC or obesity, should completely avoid alcohol or consume alcohol only occasionally [10]. In France, it has been estimated that perfect adherence to daily thresholds between 2015 and 2050 would prevent more than 61,000 new BC cases [11]. Similar data have been estimated by other studies conducted in Australia [12], Canada [13], as well as worldwide [14].

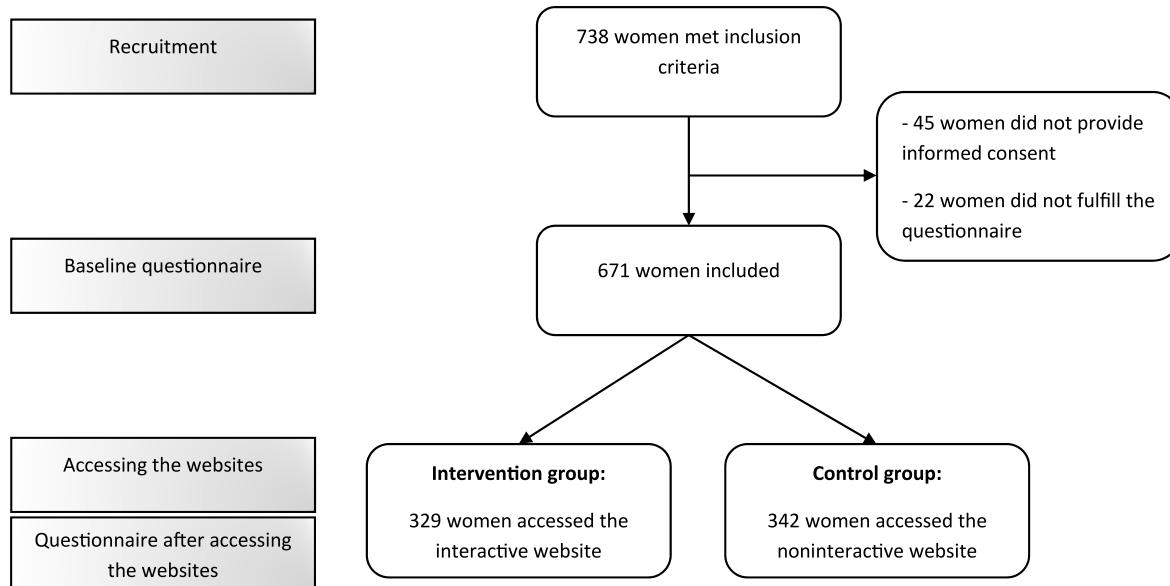
To adhere to these recommendations, women should be aware of modifiable BC risk factors, how to quantify alcohol consumption into AU, and the daily alcohol threshold. In fact, most women are neither aware of modifiable risk factors for BC nor how to quantify alcohol consumption into AU [15]. Recently, asking a sample of women to list BC risk factors, we found that less than 20 % mentioned obesity, alcohol use, lifestyle, and use of exogenous hormones and most ignored how to measure alcohol consumption into AU [16].

These data advocate the urgency to develop evidence-based educational programs to increase the knowledge of BC risk factors [1]. Digital tools have shown promising results in reducing at-risk drinking [17] as well as improved health processes [18]. On the other hand, two recent reviews concluded that further studies are needed to clarify the effectiveness of interactive digital tools to help pregnant women [19] and adolescents [20] to manage weight gain. Promising results were achieved by studies investigating the effectiveness of interactive digital tools in improving psychological well-being, and/or quality of life of BC patients [21–23]. Accordingly, a growing number of studies are starting to evaluate the effectiveness of these tools in increasing the knowledge of BC risk factors among healthy young women [24,25]. These latter studies are mainly focused on healthy diet and physical activity [24–26].

Our study was aimed at evaluating the efficacy of an interactive website compared to a validated noninteractive website in increasing the knowledge of alcohol as a BC risk factor. We hypothesized that this interactive tool may be more effective in increasing women's awareness than a similar but non-interactive digital tool.

2. Methods and material

2.1. Study design


We conducted a randomized controlled trial (RCT) in agreement with the Declaration of Helsinki and Good Clinical Practice guidelines. The study was approved by the Ethic Committee of the University Hospital of Cagliari, Italy.

2.2. Procedures

Participants were adult women (age >18 years), able to speak the Italian language, understand and give informed consent. Women were recruited at two Hospitals in Cagliari, Italy (the University Hospital and the Civil Hospital) among outpatients waiting to undergo mammography for organized BC screening or other reasons like personal initiative, symptoms, family history of BC, and/or previous BC diagnosis. Based on the results of our previous study [16], we planned to recruit a sample of approximately 600 women and divide them randomly using a computer-generated list, into two arms, the intervention and control groups, in which women accessed an interactive and a non-interactive website, respectively.

Before accessing the websites (Fig. 1), participants were submitted a questionnaire investigating their baseline knowledge of BC risk factors, the alcohol content of common alcoholic beverages expressed in the number of AU, and the daily recommended threshold to avoid high alcohol-related risks (see [Appendix A, Supplementary Box 1, Questionnaire](#)). Information on age, civil status, employment, education, reason for medical assessment, family history of BC, was also collected.

Then, each participant received a tablet already linked to the homepages of the interactive and non-interactive websites, for the intervention and control groups, respectively. For the intervention group, we used a modified draft of the "Abreast of health", created by the University of Southampton, UK (freely available at the link <https://abreastofhealth.github.io/>) to increase women's knowledge on BC risk factors in a simple and interactive way. Information is provided as minimal text and several figures. Briefly, it contains the questionnaire AUDIT-C [27,28] and other questions on smoking, height, and weight. The image provided with AUDIT-C questions describes the content in AU

Fig. 1. Flow-chart diagram of the study.

The graph shows the recruitment of the sample of women while waiting to undergo mammography, the administration of the questionnaire at baseline, the division of the sample of participants into two groups who accessed the interactive and the not-interactive website, and the administration of the questionnaire after accessing the websites.

of the most common beverages to help women to quantify their alcohol use. After that, the website provides tailored feedback. In agreement with the lead author of the UK team (JS), we adapted the text for use in Italy. Furthermore, as the content of alcohol in a 'standard drink' varies between the UK (8 g) and Italy (12 g) [6], we also adapted the images of the alcoholic beverages corresponding to an AU in Italy. For instance, we substituted the image of the half pint with a can of beer. The Italian version was re-translated into English and the new English version was submitted to the authors of the original version to ensure consistency between the two English versions. The Italian version is freely available at the link "<https://allasalute.github.io>". Replies given by participants to the questions of the interactive website were not registered.

For the control group, we used the website devoted to BC created by the Italian Ministry of Health, freely available at [Il tumore della mammella \(salute.gov.it\)](https://www.salute.gov.it), containing certified information on BC but without interaction or figures.

Participants of both groups accessed the websites for as long as they wished, then they returned the tablets back to the researcher, and were re-submitted the same questionnaire administered at baseline (Fig. 1; Appendix A, Supplementary Box 1). We also measured the time spent accessing the websites.

2.3. Outcomes

The primary outcome was the increase in the knowledge of alcohol as a BC risk factor evaluated as the rate of women who mentioned alcohol as a BC risk factor in section 3 of the questionnaire. Secondary outcomes were the increase in the knowledge of the other modifiable BC risk factors, the alcohol content of common alcoholic beverages expressed in the number of AU, and the daily recommended threshold to avoid high alcohol-related risks.

2.4. Statistical analysis

Student *t*-test was carried out to assess differences in age between groups; Mann Whitney test was carried out to assess differences in time spent browsing the assigned website. Chi-squared tests were carried out to verify that the baseline knowledge of control and intervention groups did not differ. McNemar's tests for paired data were used to assess the efficacy of both websites comparing baseline to post-intervention knowledge. Chi-squared tests were also carried out to assess differences in the efficacy between the two websites. Multivariable logistic regression analysis was performed to explore socio-demographic factors affecting the probability of acquiring knowledge of alcohol as a BC risk factor. Detailed statistical procedures are reported in Appendix A, Supplementary data.

3. Results

3.1. Sample description

Recruitment occurred between January to June 2023. Overall, 738 women met our inclusion criteria and were invited to participate (Fig. 1): 67 (9 %) refused or did not complete the final questionnaire because they were called for mammography, and 671 (91 %) were included in the study. Participants were randomly allocated to 329 (49.0 %) in the intervention and 342 (51.0 %) in the control group. Women did not differ in sociodemographic characteristics between the two groups (Table 1).

3.2. Baseline knowledge

Baseline knowledge of BC risk factors, alcohol content in AU of alcoholic beverages, and the daily alcohol threshold did not differ between the intervention and control groups (Table 2). In detail, only 20 % of women of both the groups mentioned alcohol as a BC risk factor.

Table 1

Demographics of survey participants divided into intervention group and control group.

		Intervention group (n = 329)	Control group (n = 342)	Chi square p value
Age	Years (mean value, SD)	56.6 (8.9)	56.7 (9.3)	0.826
Reasons for the mammography	Spontaneous BC screening	109 (33 %)	116 (34 %)	0.829
	Organized BC screening	220 (70 %)	226 (66 %)	
Studying or working in healthcare	Yes	30 (9 %)	32 (9 %)	0.915
	No	299 (91 %)	310 (91 %)	
Civil status	Single or unmarried	57 (17 %)	76 (22 %)	0.112
	Other	272 (83 %)	266 (78 %)	
Education level	Middle school	132 (40 %)	135 (40 %)	0.580
	High school	125 (38 %)	121 (35 %)	
	Degree	72 (22 %)	86 (25 %)	

Abbreviation: SD: standard deviation.

Table 2

Baseline knowledge expressed as % of women who rightly mentioned BC risk factors, reported the right number of AU, and identified the daily alcohol level at low-risk for alcohol-related consequences.

		Intervention group (n = 329)	Control group (n = 342)	Chi square p value
BC risk factors	Alcohol	65 (20 %)	68 (20 %)	0.967
	Diet	166 (50 %)	182 (53 %)	0.474
	Physical inactivity	61 (19 %)	57 (17 %)	0.524
	Cigarette smoke	135 (41 %)	143 (42 %)	0.838
	Contraceptive pill	30 (9 %)	34 (10 %)	0.717
	Age	4 (1 %)	5 (1 %)	1.000
	Being female	1 (0 %)	6 (2 %)	0.124
	Family history of BC	166 (50 %)	161 (47 %)	0.381
	Overweight/obesity	36 (11 %)	28 (8 %)	0.225
	HRT	29 (9 %)	39 (11 %)	0.267
Content of alcohol of the most common alcoholic beverages	Half a glass of wine (0.06 l)	133 (40 %)	129 (38 %)	0.473
	A glass of wine (0.125 l)	215 (65 %)	234 (68 %)	0.913
	A can of beer (0.33 l)	166 (50 %)	174 (51 %)	0.939
	A mug of beer (0.5 l)	39 (12 %)	48 (14 %)	0.400
	A glass of aperitif (0.08 l)	226 (69 %)	226 (66 %)	0.471
	Two glasses of aperitif (0.08 l)	31 (9 %)	30 (9 %)	0.769
	≤1 unit of alcohol	284 (86 %)	305 (89 %)	0.258
Daily threshold				

Abbreviations: AU: alcohol unit; BC: breast cancer; HRT: hormone replacement therapy. Unit of alcohol: a beverage containing approximately 12 g of alcohol, corresponding to approximately one glass of wine, a can of beer, or a small glass of spirits.

Women in the intervention group spent a longer time accessing the interactive website than non-interactive one (median value in minutes: 2.35 vs 1.98; $p < 0.001$).

3.3. Efficacy of accessing the websites in increasing the knowledge of BC risk factors

According to McNemar's tests' results, accessing both websites significantly increased the percentages of women acquiring knowledge of most BC risk factors examined (Table 3; Fig. 2). Specifically, compared to their baseline values (20 % in both groups), the percentages of women who mentioned alcohol as a BC risk factor were 85 % ($p < 0.001$; Table 3) and 75 % ($p < 0.001$; Table 3) in intervention and control groups, respectively. Regarding the content in AU of commonly consumed beverages, accessing both the websites significantly, although weakly, increased the percentages of women who reported the right content except for "a mug of beer" in the control group (Table 3). Regarding the daily alcohol threshold, at baseline most women were already aware of this value (Table 2). Accessing both the websites significantly but slightly increased this knowledge (both groups, $p < 0.001$; Table 3).

3.4. Comparing the efficacy of accessing the interactive website to accessing the not interactive website

Analyzing only those women who were not aware of risk factors at baseline, Table 4 shows that accessing the interactive website resulted in higher percentages of women acquiring knowledge on most BC risk factors than the non-interactive site, although the control group were more likely to acquire the knowledge on age as a risk factor. Specifically, among women who were not aware at baseline, those who acquired this information were 82 % and 69 % of the intervention and control groups,

respectively ($p < 0.001$; Table 4). Finally, we found no differences between the two groups in acquiring knowledge on diet, contraceptive pills, being female, and family history of BC. Regarding the content in AU of commonly consumed beverages (can of beer, mug of beer and two shot glasses), Table 4 shows that the intervention group achieved better results compared to the control group in half of the beverages investigated with no differences in the other beverages.

Regarding the daily alcohol threshold, Table 4 shows that accessing the interactive website induced better results than the non-interactive website.

3.5. Factors associated with the acquisition of knowledge that alcohol is a BC risk factor

Table 5 shows factors significantly associated with the probability of acquiring knowledge that alcohol is a BC risk factor. In detail, the level of education interacts with the specifically accessed website, while civil status and reasons for mammography influence this probability independent by of other factors:

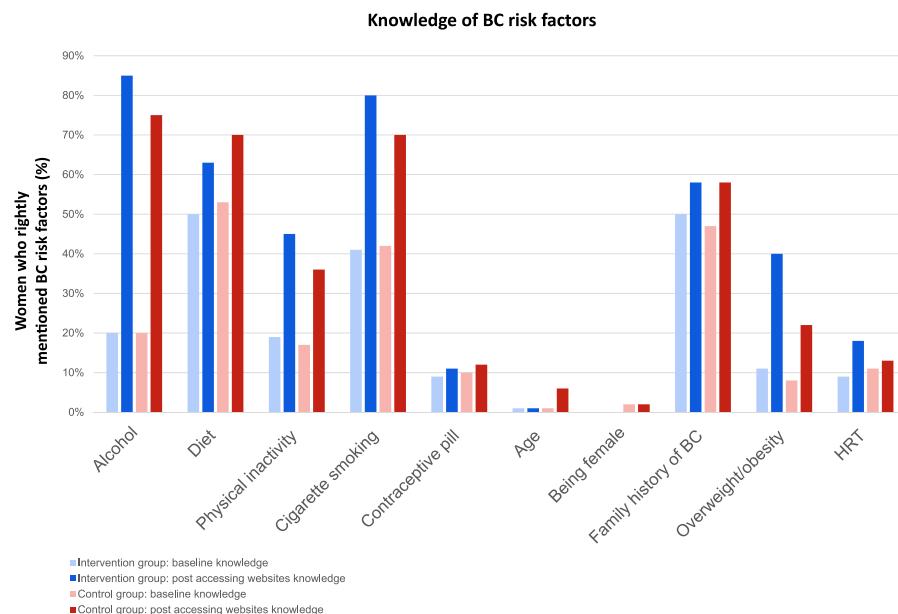

- women with middle-school level education are more likely to gain increased knowledge when included in the interventional rather than the control group (OR 2.64; $p = 0.01$)
- women with high school education are more likely to increase their knowledge when included in the interventional group compared to the control group (OR 2.56; $p = 0.01$)

Table 3

Baseline vs post accessing websites in each group: Knowledge expressed as % of women who rightly mentioned BC risk factors, reported the right number of AU, and identified the daily alcohol level at low-risk for alcohol-related consequences.

	INTERVENTION GROUP (n = 329)			CONTROL GROUP (n = 342)		
	Baseline knowledge	Post accessing websites knowledge	Mc Nemar's p value	Baseline knowledge	Post accessing websites knowledge	Mc Nemar's p value
Alcohol	65 (20 %)	280 (85 %)	<0.001	68 (20 %)	256 (75 %)	<0.001
	166 (50 %)	208 (63 %)	<0.001	182 (53 %)	239 (70 %)	<0.001
Diet	61 (19 %)	147 (45 %)	<0.001	57 (17 %)	123 (36 %)	<0.001
	135 (41 %)	262 (80 %)	<0.001	143 (42 %)	238 (70 %)	<0.001
Physical inactivity	30 (9 %)	35 (11 %)	0.359	34 (10 %)	40 (12 %)	0.286
	4 (1 %)	4 (1 %)	1.000	5 (1 %)	19 (6 %)	<0.001
Cigarette smoking	1 (0 %)	1 (0 %)	1.000	6 (2 %)	8 (2 %)	0.727
	166 (50 %)	190 (58 %)	0.005	161 (47 %)	200 (58 %)	<0.001
Contraceptive pill	36 (11 %)	130 (40 %)	<0.001	28 (8 %)	76 (22 %)	<0.001
	29 (9 %)	58 (18 %)	<0.001	39 (11 %)	46 (13 %)	0.230
Age	133 (40 %)	169 (51 %)	<0.001	129 (38 %)	170 (50 %)	<0.001
	215 (65 %)	269 (82 %)	<0.001	234 (68 %)	270 (79 %)	<0.001
Being female	166 (50 %)	229 (70 %)	<0.001	174 (51 %)	207 (61 %)	<0.001
	39 (12 %)	70 (21 %)	<0.001	48 (14 %)	40 (12 %)	0.115
Family history of BC	226 (69 %)	276 (84 %)	<0.001	226 (66 %)	252 (74 %)	<0.001
	31 (9 %)	59 (18 %)	<0.001	30 (9 %)	35 (10 %)	<0.001
Overweight/obesity	284 (86 %)	313 (95 %)	<0.001	305 (89 %)	322 (94 %)	<0.001
	Daily threshold					

Abbreviations: AU: alcohol unit; BC: breast cancer; HRT: hormone replacement therapy. Unit of alcohol: a beverage containing approximately 12 g of alcohol, corresponding to approximately one glass of wine, a can of beer, or a small glass of spirits. Bold font indicates statistical significance.

Fig. 2. Knowledge of BC risk factors.

The graph shows the knowledge of BC risk factors expressed as % of women who rightly mentioned each BC risk factor at baseline and after accessing the interactive and not-interactive website. Abbreviation: BC: breast cancer.

Table 4

Women who acquired the right knowledge among women with incorrect answers at baseline: Comparison between the interactive website (intervention group) vs noninteractive website (control group).

	INTERVENTION GROUP		CONTROL GROUP		Chi square p value
	Women who were not aware at baseline n	Acquired knowledge only after accessing website n (%)	Women who were not aware at baseline n	Acquired knowledge only after accessing website n (%)	
Alcohol	264	216 (82 %)	274	188 (69 %)	<0.001
Diet	163	57 (35 %)	160	70 (44 %)	0.106
Physical inactivity	268	94 (35 %)	285	68 (24 %)	0.004
Cigarette smoking	194	139 (72 %)	199	105 (53 %)	<0.001
Contraceptive pill	299	12 (4 %)	308	14 (5 %)	0.746
Age	325	3 (1 %)	337	15 (4 %)	0.005
Being female	328	1 (0 %)	336	5 (1 %)	0.107
Family history of BC	163	46 (28 %)	181	56 (31 %)	0.581
Overweight/obesity	293	100 (34 %)	314	52 (17 %)	<0.001
HRT	300	33 (11 %)	303	16 (5 %)	0.01
Half a glass of wine (0.06 l)	196	51 (26 %)	213	56 (26 %)	0.95
A glass of wine (0.125 l)	114	62 (54 %)	108	46 (43 %)	0.079
A can of beer (0.33 l)	163	72 (44 %)	168	47 (28 %)	0.002
A mug of beer (0.5 l)	290	36 (12 %)	294	6 (2 %)	<0.001
A glass of aperitif (0.08 l)	63	30 (48 %)	70	26 (37 %)	0.222
Two glasses of aperitif (0.08 l)	298	29 (10 %)	312	9 (3 %)	<0.001
Daily recommended threshold	45	31 (69 %)	37	17 (46 %)	0.036

Abbreviations: AU: alcohol unit; BC: breast cancer; HRT: hormone replacement therapy. Unit of alcohol: a beverage containing approximately 12 g of alcohol, corresponding to approximately one glass of wine, a can of beer, or a small glass of spirits. Bold font indicates statistical significance. For each item, only women who did not have the knowledge at baseline were included in the analysis.

- women with a university degree do not differ in their probability of increasing knowledge when included in either interventional or control groups (OR 0.75; p = 0.55)
- for the entire sample, single or unmarried status was negatively associated with the probability of increasing their knowledge compared to those with any other civil status (OR 0.56; p = 0.03)
- for the entire sample, participating in spontaneous BC screening was positively associated with the probability of increasing their

knowledge compared to participating in organized screening programs (OR 1.61; p = 0.04).

4. Discussion

The results of the present study support the use of digital tools to improve the knowledge of alcohol as a modifiable risk factor for BC, the daily alcohol threshold, and how to measure alcohol consumption. In addition, our results suggest that accessing interactive websites is more

Table 5

Factors significantly associated with the probability of acquiring knowledge of alcohol as a BC risk factor after accessing the randomized websites: results of the logistic regression.

	Odds ratio	95 % Confidence interval	p value
University degree			
Interactive website vs non-interactive website	0.75	0.29–1.93	0.55
High school education			
Interactive website vs non-interactive website	2.56	1.27–5.18	0.01
Middle school education			
Interactive website vs non-interactive website	2.64	1.45–4.81	0.02
Single or unmarried women vs other civil status	0.56	0.33–0.95	0.03
Women participating in BC spontaneous screening vs organized one	1.61	1.03–2.53	0.04

Abbreviations: BC: breast cancer. Bold font indicates statistical significance.

effective than accessing non-interactive websites, especially among people with lower levels of education.

Educational programs aiming at increasing the knowledge of modifiable BC risk factors, including alcohol use, should consider alcohol health literacy [29,30]. Health literacy defined as "the motivation, knowledge, and competencies to access, understand, appraise and apply health information to make judgments and take decisions in everyday life" [31] is a key field of activity in health promotion. Accordingly, educational programs aiming at increasing the knowledge of BC risk factors should consider the degree to which people may process and understand information on alcohol use, alcohol-related consequences, contents of alcoholic beverages expressed in AU, and the daily alcohol threshold. From an empowerment perspective, increasing women's alcohol literacy is needed to guarantee their right to make informed choices on alcohol consumption. Women need to understand and learn the impact of alcohol on their health and how to measure alcohol consumption into AU to be able to adhere to alcohol recommendations [29, 30].

It is noteworthy that accessing the interactive website obtained better results than the non-interactive website among participants with lower education levels. Education level is a proxy indicator of socio-economic status and, in general, the lower the education level, the lower the level of health literacy [29–31]. Our interactive website was co-created to be a "literacy friendly" tool, with women presenting for breast screening [32], also suitable for people with low levels of education, with poor reading skills, for whom the acquisition of knowledge by written texts, as in the case of the non-interactive website of the control group, could be more difficult. The free availability of this digital tool could also have important implications in terms of equity of access to simple yet scientifically correct information to make informed choices, contributing to reducing BC burden.

Although it appears there has been a sustained reduction in alcohol consumption in Italy [33], the incidence of new cases of BC has been increased over the same time period [34]. However, the observed reduction does not include unrecorded alcohol consumption (e.g., home-produced alcoholic beverages). Furthermore, in Italy as well as in other Western countries, alcohol consumption has increased in women in recent years instead of reducing [35–37]. Accordingly, among female population, breast malignant tumors' incidence increased between 2008 and 2016 in all age groups [34]. However, this increased incidence could be at least in part due to the introduction of organized screening programmes as well as by the widespread use of opportunistic screening [38,39].

Our study faced the challenges of adapting a tool realized for use in the UK to Italy. The main problem concerned the difference in the contents of alcohol of the AU between Italy and the UK. Although AU

represent a useful tool to simplify the evaluation of alcohol consumption, how AUs are defined differs between countries ranging from 8 g in the UK to 19.75 g in Japan [6]. As part of the translation of any questionnaire it needs to ensure good face validity to participants, and so in our study, we modified the images of alcoholic beverages corresponding to the AU to take this difference into account. However, in planning the study, we realized that this problem also concerns some screening tools. As an example, despite the AUDIT being a WHO developed tool, the third question of the AUDIT investigates alcohol consumption equal to or greater than six AU on a single occasion in both the Italian and English versions despite such consumption corresponds to different amounts of alcohol in Italy (72 g) and the UK (48 g). Difficulties due to these differences deserve to be addressed by further studies.

Some limitations of this study should be acknowledged. The lack of a control group without any information would have allowed an appreciation of the efficacy of accessing both the websites in increasing the knowledge of our sample of women. However, engaging women in research in this area and then leaving them with incorrect knowledge about BC risk factors would have been unethical.

Our digital platform also has some limitations. For instance, both accessing the interactive and non-interactive websites only slightly increased knowledge about alcohol contents in AU of the most common alcoholic beverages. For some beverages, we found no differences between the two groups. This negative result may be due, at least in part, to the ambiguity of the images showing the content in AU. Both the image of a wine drink and aperitif may be subject to interpretation and may have confused the 'visual memory' of our participants who visited the interactive website [40]. In the light of these results, we intend to adapt these images during our next iteration of the platform to make them clearer.

Finally, our results show that most women were already aware of the daily alcohol threshold at baseline. This finding appears to differ from the results observed in a younger population [41]. This may be due in part to the different ages of the populations. However, it may also be due to the response option "1 AU" representing both the right reply and the lowest threshold. Accordingly, women can have chosen it from a "precautionary principle" perspective.

Our study did not evaluate the persistence of the acquired knowledge in the middle and long-term. The results demonstrate the efficacy of our interactive website in transferring comprehensible information to a sample of women, including low education participants. Future studies will be conducted to evaluate the persistence of this acquired knowledge, and its impact on behaviour.

Finally, accessing the interactive website did not increase the knowledge of certain BC risk factors (i.e., contraceptive pill, age, being female) and did not differ in the efficacy compared to control group in others (i.e., diet, contraceptive pill, being female, family history of BC). This is because the website was developed to examine the change in knowledge in alcohol within the context of understanding risk factors for BC. As a research tool this in part mitigates that information on risk factors was given to both groups. The design of the website enables similar testing of the other risk factors (e.g., weight and diet) in a similar fashion. This is a strength of the method that it takes as modular approach. In future studies, other modules of our interactive website devoted to other modifiable BC risk factors like contraceptive pills and diets will be developed and tested.

5. Conclusions

Digital tools are promising instruments to increase people's awareness of healthy behaviors; however, their efficacy needs to be evidence-based and verified [1]. To the best of our knowledge, our study is the first RCT conducted to specifically evaluate the efficacy of an interactive website specifically designed to increase the knowledge of alcohol as a BC risk factor. Our results show evidence of the effectiveness of accessing this tool in increasing women's awareness and that the

interactive website is being more effective compared to the non-interactive one, especially among women with lower education levels.

CRediT authorship contribution statement

Claudia Sardu: Writing – review & editing, Writing – original draft, Validation, Supervision, Software, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. **Fabrizio Angius:** Writing – review & editing, Formal analysis, Data curation. **Paolo Contu:** Writing – review & editing, Formal analysis, Data curation. **Sofia Cosentino:** Writing – review & editing, Formal analysis, Data curation. **Monica Deiana:** Writing – review & editing, Formal analysis, Data curation. **Matteo Fraschini:** Writing – review & editing, Validation, Supervision, Software, Methodology, Formal analysis, Data curation. **Clelia Madeddu:** Writing – review & editing, Visualization, Investigation, Data curation. **Elena Massa:** Writing – review & editing, Visualization, Investigation, Data curation. **Alessandra Mereu:** Writing – review & editing, Formal analysis, Data curation. **Luigi Minerba:** Writing – review & editing, Formal analysis, Data curation. **Carola Politi:** Writing – review & editing, Visualization, Investigation, Data curation. **Silvia Puxeddu:** Writing – review & editing, Formal analysis, Data curation. **Francesco Salis:** Writing – review & editing, Formal analysis, Data curation. **Julia M.A. Sinclair:** Writing – review & editing, Validation, Supervision, Software, Methodology, Conceptualization. **Roberta Agabio:** Writing – review & editing, Writing – original draft, Supervision, Software, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Data sharing statement

Data are available from the authors upon reasonable request.

Ethical approval and consent to participate

The study was approved by the Ethic Committee of the University Hospital of Cagliari, Italy (Prot. 2022/33; December 14, 2022; see [Appendix A](#), Supplementary data). The study was conducted in full accordance with the guidelines for randomized clinical trials and ethical principles of the Declaration of Helsinki and Good Clinical Practice, including rules concerning the protection of personal data. All participants provided written informed consent.

Funding information

This research was partially supported by a grant by the Fondazione di Sardegna (“*Alcol e altri fattori di rischio modificabili per il tumore alla mammella: progetto finalizzato ad aumentare la loro conoscenza tra la popolazione femminile*”; Prot. U685.2022/AI.670.BE). Fondazione di Sardegna had no role in the design and conduct of the study; access and collection of data; analysis and interpretation of data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Declaration of competing interest

The authors declare no conflicts of interest.

Appendix B. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.breast.2024.103868>.

References

- Coles CE, Earl H, Anderson BO, Barrios CH, Bienz M, Bliss JM, et al. The lancet breast cancer commission. Lancet 2024;403:1895–950. [https://doi.org/10.1016/S0140-6736\(24\)00747-5](https://doi.org/10.1016/S0140-6736(24)00747-5). 10439.
- Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet 2021;397:1750–69. [https://doi.org/10.1016/S0140-6736\(20\)32281-3](https://doi.org/10.1016/S0140-6736(20)32281-3) (10286), Erratum in: Lancet. 2021;397(10286):1710. doi: 10.1016/S0140-6736(21)00838-2.
- Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Prim 2019;5(1):66. <https://doi.org/10.1038/s41572-019-0111-2>.
- Maas P, Barndahl M, Joshi AD, Auer PL, Gaudet MM, Milne RL, et al. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol 2016;2(10):1295–302. <https://doi.org/10.1001/jamaoncol.2016.1025>. Erratum in: JAMA Oncol. 2016;2(10):1374. doi: 10.1001/jamaoncol.2016.3582.
- Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res 2016;40(6):1166–81. <https://doi.org/10.1111/acer.13071>.
- MacKillop J, Agabio R, Feldstein Ewing SW, Heilig M, Kelly JF, Leggio L, et al. Hazardous drinking and alcohol use disorders. Nat Rev Dis Prim 2022;8(1):80. <https://doi.org/10.1038/s41572-022-00406-1>.
- Rovira P, Rehm J. Estimation of cancers caused by light to moderate alcohol consumption in the European Union. Eur J Publ Health 2021;31(3):591–6. <https://doi.org/10.1093/eupub/ckaa236>.
- GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018;392:1015–35. [https://doi.org/10.1016/S0140-6736\(18\)31310-2](https://doi.org/10.1016/S0140-6736(18)31310-2) (10152), Epub 2018 Aug 23. Erratum in: Lancet. 2018;392(10153):1116. doi: 10.1016/S0140-6736(18)32338-9. Erratum in: Lancet. 2019;393(10190):e44. doi: 10.1016/S0140-6736(19)31050-5.
- National Institute on Alcohol Abuse and Alcoholism. Drinking levels defined. <http://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking>. [Accessed 7 August 2024].
- Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcohol 2012;47(3):204–12. <https://doi.org/10.1093/alc/ags011>.
- Ren Y, Chase E, d’Almeida T, Allégre J, Latino-Martel P, Deschamps V, et al. Modelling the number of avoidable new cancer cases in France attributable to alcohol consumption by following official recommendations: a simulation study. Addiction 2021;116(9):2316–25. <https://doi.org/10.1111/add.15426>.
- Wilson LF, Baade PD, Green AC, Jordan SJ, Kendall BJ, Neale RE, et al. The impact of reducing alcohol consumption in Australia: an estimate of the proportion of potentially avoidable cancers 2013–2037. Int J Cancer 2019;145(11):2944–53. <https://doi.org/10.1002/ijc.32204>.
- Young SW, Candido E, Klein-Geltink J, Giesbrecht N. Preventing alcohol-related cancer: what if everyone drank within the guidelines? Can J Public Health 2018;109(1):70–8. <https://doi.org/10.17269/s41997-018-0033-x>.
- Praud D, Rota M, Rehm J, Shield K, Zatonski W, Hashibe M, et al. Cancer incidence and mortality attributable to alcohol consumption. Int J Cancer 2016;138(6):1380–7. <https://doi.org/10.1002/ijc.29890>.
- Sinclair J, McCann M, Sheldon E, Gordon I, Brierley-Jones L, Copson E. The acceptability of addressing alcohol consumption as a modifiable risk factor for breast cancer: a mixed method study within breast screening services and symptomatic breast clinics. BMJ Open 2019;9(6):e027371. <https://doi.org/10.1136/bmjopen-2018-027371>.
- Agabio R, Madeddu C, Contu P, Cosentino S, Deiana M, Massa E, et al. Alcohol consumption is a modifiable risk factor for breast cancer: are women aware of this relationship? Alcohol Alcohol 2022;57(5):533–9. <https://doi.org/10.1093/alc/alcab042>.
- Kaner EF, Beyer FR, Garnett C, Crane D, Brown J, Muirhead C, et al. Personalised digital interventions for reducing hazardous and harmful alcohol consumption in community-dwelling populations. Cochrane Database Syst Rev 2017;9(9):CD011479. <https://doi.org/10.1002/14651858.CD011479.pub2>.
- Kasper T, Yamey G, Dwyer S, McDade KK, Lidén J, Lüdemann C, et al. Rethinking how development assistance for health can catalyse progress on primary health care. Lancet 2023;402:2253–64. [https://doi.org/10.1016/S0140-6736\(23\)01813-5](https://doi.org/10.1016/S0140-6736(23)01813-5). 10418.
- Raab R, Geyer K, Zagar S, Hauner H. App-supported lifestyle interventions in pregnancy to manage gestational weight gain and prevent gestational diabetes: scoping review. J Med Internet Res 2023;25:e48853. <https://doi.org/10.2196/48853>.
- Metzendorf MI, Wieland LS, Richter B. Mobile health (m-health) smartphone interventions for adolescents and adults with overweight or obesity. Cochrane Database Syst Rev 2024;2(2):CD013591. <https://doi.org/10.1002/14651858.CD013591.pub2>.
- Çınar D, Karadakovan A, Erdogan AP. Effect of mobile phone app-based training on the quality of life for women with breast cancer. Eur J Oncol Nurs 2021;52:101960. <https://doi.org/10.1016/j.ejon.2021.101960>.
- Horn A, Jíru-Hillmann S, Widmann J, Montellano FA, Salmen J, Pryss R, et al. Systematic review on the effectiveness of mobile health applications on mental health of breast cancer survivors. J Cancer Surviv 2023. <https://doi.org/10.1007/s11764-023-01470-6>.
- Wolff J, Smollich M, Wuelfing P, Mitchell J, Wuerstlein R, Harbeck N, et al. App-based lifestyle intervention (PINK! Coach) in breast cancer patients-A real-world-

data analysis. *Cancers* 2024;16(5):1020. <https://doi.org/10.3390/cancers16051020>.

[24] Martín-Payo R, Leirós-Díaz C, Armes J, Fu MR, Cachero-Rodríguez J, Del Mar Fernandez-Alvarez M. The "Breast-4Y" web app for breast cancer prevention at young age: development, evaluation, and validation. *Internet Interv* 2023;33:100651. <https://doi.org/10.1016/j.invent.2023.100651>.

[25] Martín-Payo R, Martínez-Urquijo A, Zabala-Del-Olmo E, Del Mar Fernandez-Alvarez M. Use a web-app to improve breast cancer risk factors and symptoms knowledge and adherence to healthy diet and physical activity in women without breast cancer diagnosis (Precam project). *Cancer Causes Control* 2023;34(2):113–22. <https://doi.org/10.1007/s10552-022-01647-x>.

[26] Roberts AL, Potts HW, Koutoukidis DA, Smith L, Fisher A. Breast, prostate, and colorectal cancer survivors' experiences of using publicly available physical activity mobile apps: qualitative study. *JMIR Mhealth Uhealth* 2019;7(1):e10918. <https://doi.org/10.2196/10918>.

[27] Reinert DF, Allen JP. The alcohol use disorders identification test: an update of research findings. *Alcohol Clin Exp Res* 2007;31(2):185–99. <https://doi.org/10.1111/j.1530-0277.2006.00295.x>.

[28] Rubinsky AD, Dawson DA, Williams EC, Kivlahan DR, Bradley KA. AUDIT-C scores as a scaled marker of mean daily drinking, alcohol use disorder severity, and probability of alcohol dependence in a U.S. general population sample of drinkers. *Alcohol Clin Exp Res* 2013;37(8):1380–90. <https://doi.org/10.1111/acer.12092>.

[29] Manthey J, Kokole D, Riedel-Heller S, Rowlands G, Schäfer I, Schomerus G, et al. Improving alcohol health literacy and reducing alcohol consumption: recommendations for Germany. *Addiction Sci Clin Pract* 2023;18(1):28. <https://doi.org/10.1186/s13722-023-00383-0>.

[30] Okan O, Rowlands G, Sykes S, Wills J. Shaping alcohol health literacy: a systematic concept analysis and review. *Health Lit Res Pract* 2020;4(1):e3–20. <https://doi.org/10.3928/24748307-20191104-01>. Erratum in: *Health Lit Res Pract*. 2020;4(1):e66. doi: 10.3928/24748307-20200116-01.

[31] Sørensen K, Van den Broucke S, Fullam J, Doyle G, Pelikan J, Slonska Z, et al. Health literacy and public health: a systematic review and integration of definitions and models. *BMC Publ Health* 2012;12:80. <https://doi.org/10.1186/1471-2458-12-80>.

[32] Chambers SE, Copson ER, Dutey-Magni PF, Priest C, Anderson AS, Sinclair JMA. Alcohol use and breast cancer risk: a qualitative study of women's perspectives to inform the development of a preventative intervention in breast clinics. *Eur J Cancer Care* 2019;28(4):e13075. <https://doi.org/10.1111/ecc.13075>.

[33] Italian Ministry of Health. *Relazione del Ministro della Salute al Parlamento sugli interventi realizzati ai sensi della Legge 30/03/2021 n° 125 "Legge Quadro in materia di alcol e problemi alcol correlati"*. 2023.

[34] Toss A, Piombino C, Quarello P, Trama A, Mascalchin M, Lambertini M, et al. Risk factors behind the increase of early-onset cancer in Italian adolescents and young adults: an investigation from the Italian AYA Working group. *Eur J Cancer* 2024 Nov;212:115042. <https://doi.org/10.1016/j.ejca.2024.115042>.

[35] McCaul ME, Roach D, Hasin DS, Weisner C, Chang G, Sinha R. Alcohol and women: a brief overview. *Alcohol Clin Exp Res* 2019 May;43(5):774–9. <https://doi.org/10.1111/acer.13985>.

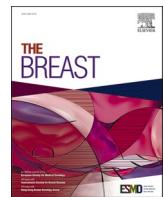
[36] Agabiti R, Pisani C, Minerba L, Gessa GL, Francconi F. Gender differences among Sardinians with alcohol use disorder. *J Clin Med* 2021 Oct 13;10(20):4688. <https://doi.org/10.3390/jcm10204688>.

[37] Vignoli T, Staccioli MC, Salaris M, Sanchini S, Martino E, Rigoli L, et al. Needs of female outpatients with alcohol use disorder: data from an Italian study. *Alcohol Alcohol* 2024 Jul 21;59(5):agae054. <https://doi.org/10.1093/alcalc/agae054>.

[38] Battisti F, Mantellini P, Falini P, Ventura L, Giordano L, Saguatti G, et al. Key performance indicators of breast cancer screening programmes in Italy, 2011–2019. *Ann Ist Super Sanita* 2022;58(4):244–53. https://doi.org/10.4415/ANN_22_04_04.

[39] Aiom, AIRTUM, SIAPC-IAP. I numeri del cancro in Italia 2020. <https://www.registri-tumori.it/cms/pubblicazioni/i-numeri-del-cancro-italia-2020>. [Accessed 15 November 2024].

[40] Mbanda N, Dada S, Bastable K, Ingall GB, Ralf WS. A scoping review of the use of visual aids in health education materials for persons with low-literacy levels. *Patient Educ Counsel* 2021;104(5):998–1017. <https://doi.org/10.1016/j.pec.2020.11.034>.


[41] Mercuri A, Liori A, Dessì C, Girau M, Mc Gilliard DC, Sotgiu A, et al. Alcohol-related behaviour in freshmen university students in Sardinia, Italy. *Int J Environ Res Publ Health* 2021;18(13):7203. <https://doi.org/10.3390/ijerph18137203>.

Update

The Breast

Volume 79, Issue , February 2025, Page

DOI: <https://doi.org/10.1016/j.breast.2025.103888>

Corrigendum to 'Raising awareness of alcohol as a modifiable risk factor for breast cancer: A randomized controlled trial comparing the efficacy of accessing an interactive website with a non-interactive website' [The Breast (2025) 103868]

Claudia Sardu^a, Fabrizio Angius^b, Paolo Contu^a, Sofia Cosentino^a, Monica Deiana^c, Matteo Fraschini^d, Clelia Madeddu^a, Elena Massa^a, Alessandra Mereu^a, Luigi Minerba^a, Carola Politi^a, Silvia Puxeddu^b, Francesco Salis^{a,e}, Julia M.A. Sinclair^f, Roberta Agabio^{e,*}

^a Department of Medical Sciences and Public Health, University of Cagliari, Italy

^b Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Italy

^c Department of Biomedical Sciences, Unit of Experimental Pathology, University of Cagliari, Italy

^d Department of Electrical and Electronic Engineering, University of Cagliari, Italy

^e Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy

^f Faculty of Medicine, University of Southampton, Southampton, UK

The authors regret to inform that the funding information is amended to add the grant ("Alcol e altri fattori di rischio modificabili per il tumore alla mammella: upgrade della App -Alla salute-"; Prot. U878.2024/AI.858.PL) received by the Fondazione di Sardegna.

Funding information

This research was partially supported by a grant by the Fondazione di Sardegna ("Alcol e altri fattori di rischio modificabili per il tumore alla mammella: progetto finalizzato ad aumentare la loro conoscenza tra la

popolazione femminile"; Prot. U685.2022/AI.670.BE) and ("Alcol e altri fattori di rischio modificabili per il tumore alla mammella: upgrade della App -Alla salute-"; Prot. U878.2024/AI.858.PL). Fondazione di Sardegna had no role in the design and conduct of the study; access and collection of data; analysis and interpretation of data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

The authors would like to apologise for any inconvenience caused.

DOI of original article: <https://doi.org/10.1016/j.breast.2024.103868>.

* Corresponding author.

E-mail address: agabio@unica.it (R. Agabio).

