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Maritime transportation is a vital component of global trade, yet maritime accidents pose significant risks with
far-reaching consequences, including human casualties, economic losses, and environmental damage. The high-
risk nature of this sector calls for in-depth, data-driven analysis to enhance risk assessment and accident pre-
vention. While traditional approaches such as probabilistic risk analysis have advanced the understanding of
maritime safety, they often overlook the evolving nature of risk under global crises, such as the COVID-19
pandemic (2020), the Ever Given blockage in the Suez Canal (March 2021), ongoing geopolitical conflicts (e.
g., Russia-Ukraine since 2022), and the recent Red Sea crisis (2024). To overcome this critical research gap, this
study proposes a crisis-aware maritime risk assessment framework based on Bayesian Network (BN), oper-
ationalised through a Tree-Augmented Naive Bayes (TAN) model, using the COVID-19 pandemic as a case study.
By analysing maritime accident patterns before and after the pandemic, the model reveals shifts in accident
dynamics and emerging risk factors. The BN approach enables objective, interpretable analysis of how under-
lying causes and safety interventions have evolved in response to the crisis. Additionally, this study indirectly
assesses the effectiveness of safety measures implemented during the pandemic and highlights areas for
improvement to enhance future resilience. The findings provide actionable insights for policymakers, regulators,
and industry stakeholders, supporting the development of more adaptive and robust maritime safety strategies to
address future global disruptions.

1. Introduction

Maritime transportation forms the critical infrastructure for global
trade and commerce, facilitating the efficient movement of goods across
vast oceans [1]. Despite its indispensable role, maritime transport is
inherently associated with risks, and accidents may result in severe
human casualties and substantial environmental damage. Consequently,
ensuring maritime safety at sea and reducing accident risks have always
been paramount concerns for the global shipping industry and interna-
tional regulatory authorities [2].

In recent years, a series of disruptive events have presented un-
precedented challenges to maritime safety. The COVID-19 pandemic
(2020), the Ever Given blockage in the Suez Canal (March 2021),
geopolitical conflicts such as Russia-Ukraine, and the recent Red Sea
crisis have not only disrupted global supply chains but also reshaped
shipping patterns and altered risk profiles in the maritime industry [3,

* Corresponding authors.

4]. Disruptions in global supply chains, shifts in shipping patterns, and
changes in accident patterns. These “shock events” have demonstrated
that crises can trigger both economic disruptions and new safety chal-
lenges, underscoring the urgent need to understand their impact on
maritime accident trends [5,6].

To capture the full impact of crises on maritime safety, it is essential
to examine accident dynamics before and after such events, revealing
both direct and indirect consequences. However, this requires compre-
hensive datasets covering maritime accidents before, during, and after
the crisis events, together with robust methods capable of capturing
complex interdependencies among risk factors. The COVID-19 pandemic
offers a unique opportunity to investigate these dynamics, serving as a
case study to examine how global crises can reshape maritime safety
conditions and risk evolution [7-9].

Traditional methods, such as probabilistic risk analysis [10], have
provided valuable insights into the causes and factors influencing
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maritime accidents [11-13]. However, they often suffer from subjec-
tivity and limited scope, which constrain their ability to fully capture the
multifaceted nature of maritime accident risks. In contrast, data-driven
approaches, exemplified by the Bayesian Network (BN), offer a more
objective and comprehensive understanding of maritime accident risks
by leveraging real-world data and probabilistic reasoning [14-17].
Within this family, the Tree Augmented Naive Bayes (TAN) model
provides a powerful extension capable of modelling variable de-
pendencies while maintaining computational efficiency [18-20].

Building on these advancements, this study proposes a novel data-
driven BN framework to investigate evolving trends in maritime acci-
dents before and after crisis events, with the COVID-19 pandemic used
as an illustrative case. Specifically, the framework integrates accident
datasets from the pre-pandemic (2017-2019) and pandemic (2020-
2021) periods to: (i) Identify pivotal Risk Influencial Factors (RIFs)
shaping maritime accident outcomes; (ii) compare how accident trends
and risk profiles shifted across pre- and post-crisis periods; and (iii)
evaluate the effectiveness of existing safety measures under changing
global conditions. The findings of this study are expected to deepen
understanding of the pandemic’s long-term effects on maritime safety
and contribute to the development of strategies to mitigate the associ-
ated risks.

The International Maritime Organization’s (IMO) Global Integrated
Shipping Information System (GISIS) serves as a crucial repository for
maritime accident investigation datasets [21]. However, its direct use is
constrained by missing static vessel information. To overcome this
limitation, this study supplements GISIS records with static ship attri-
butes obtained from Lloyd’s Register Fairplay (LRF) in Information
Handling Services (IHS), thereby constructing a comprehensive accident
dataset for 2017-2021. Based on this enriched database, a data-driven
BN model is developed to examine the impact of the COVID-19
pandemic on maritime accidents.

The specific innovative contributions are as follows:

(1) This paper systematically examines how the COVID-19 pandemic
has influenced maritime accident trends by comparing data from
pre- and post-pandemic periods, revealing shifts in safety dy-
namics and risk profiles.

(2) This paper introduces a novel data-driven BN model on real-

world maritime accident data to provide an objective assess-

ment of risk. This approach provides a systematic framework for
identifying key risk factors and evaluating the effectiveness of
current safety measures.

Through the BN model, this paper identifies specific risks asso-

ciated with the pandemic, such as changes in shipping patterns,

regulatory compliance challenges, and new safety concerns,
highlighting a deeper understanding of the pandemic’s unique
impact on maritime safety.

3

-

The remainder of this paper is organised as follows. Section 2 reviews
the use of BN in maritime risk analysis, revealing the state-of-the-art in
the field. Additionally, it evaluates the effects of COVID-19 on shipping
and identifies critical gaps in the literature. Section 3 presents a new
framework for analysing the impact of the global crisis on maritime
accident trends, including creating a novel maritime accident database.
This section also details the identification process for RIFs and explains
the steps in constructing a data-driven model. The methodology and
model verification results are presented in Section 4, providing a
comprehensive explanation of the techniques used in the study. Section
5 investigates the changes in maritime accidents before and after the
pandemic. By analysing shifts in RIFs from multiple perspectives, it
highlights significant trends and dynamics of maritime accident pat-
terns. To conclude, Section 6 summarises the key findings of the study. It
further elaborates on the broader implications of these results, empha-
sising their relevance to future research and practice.
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2. Literature review
2.1. A systematic analysis

BN stands out as a powerful probabilistic graphical model with sig-
nificant advantages in the realm of maritime accident research [22]. A
comprehensive retrieval on the Web of Science (WoS), utilising the
keywords ‘Bayesian network’ and ‘maritime accident’, was conducted,
focusing solely on documents indexed in the Science Citation Index
Expanded (SCI-Expanded) and Social Sciences Citation Index (SSCI) up
to February 2025. This rigorous search yielded a total of 232 relevant
documents. The initial content classification of the collected literature
indicates a wide range of previous applications of BN in maritime ac-
cident analysis. The study of maritime accidents has evolved into a
multifaceted field, encompassing a wide range of topics aimed at un-
derstanding and mitigating risks associated with maritime operations.
Through keyword clustering, the visualisation result is displayed in
Fig. 1. The primary research themes can be summarised as follows:

(1) Risk assessment and scenario modelling. Risk assessment remains
a cornerstone of maritime safety research [23]. Studies utilise
advanced probabilistic tools, such as BNs and their variants, to
model accident scenarios and evaluate potential risks [24,25].
Particular focus has been placed on specific contexts, such as ice
navigation and oil spill scenarios, where impact scenario models
are developed to predict and minimise the consequences of ac-
cidents [26].

(2) Human and organisational factors [27]. A significant body of
work examines the contribution of human errors and organisa-
tional factors to maritime accidents. The Human Factors Analysis
and Classification System (HFACS) framework is widely applied
to investigate how individual and systemic errors lead to failures
[28-30]. This line of research also explores the role of organisa-
tional management and maintenance practices in accident
prevention.

(3) Collision risk and decision support. Collision risk is a critical topic
within the field, particularly in congested maritime routes [31,
32]. Research efforts focus on developing decision support sys-
tems to assist in collision avoidance and analysing factors such as
corrosion and ship manoeuvrability that may exacerbate collision
risks [33]. These studies aim to improve real-time decision--
making for enhanced operational safety.

(4) Marine transportation systems. Marine transportation systems
are explored in terms of their safety and efficiency [34,35]. This
includes investigating decision-making processes, inspection
protocols, and collision risk management in maritime logistics.
Additionally, there is a growing interest in the safety of emerging
transportation routes, such as the Northern Sea Route [36],
where extreme environmental conditions pose unique challenges.

(5) Formal Safety Assessment (FSA). The adoption of FSA method-
ologies has become a standard practice for systematic accident
analysis and risk evaluation [37]. This approach integrates
human error analysis, accident scenario modelling and the
identification of risk factors to develop comprehensive safety
measures [38].

(6) Development of frameworks and management systems. Research
on frameworks for maritime safety [39] emphasises the integra-
tion of information systems and decision-making processes [40].
These frameworks aim to enhance the management of maritime
accidents and support safety strategies for transportation systems
[41]. Applications to specific contexts, such as Arctic shipping
and fishery operations, further underscore the practical relevance
of these studies [42].

(7) Maritime accident management and response. Maritime accident
management encompasses the development of strategies to
mitigate the impact of various accidents [43,44]. Decision
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Fig. 1. The clustering analysis of literature keywords in maritime accidents.

support systems are central to this theme, with particular atten-
tion given to the safety of fisheries and other critical maritime
industries [45]. This research highlights the importance of pro-
active measures in minimising loss and ensuring sustainability.
Severity and performance evaluation. Accident severity and
performance evaluation are key aspects of safety assessment.
Studies in this domain focus on identifying determinants of ac-
cident severity and analysing their consequences for maritime
operations. Groundings and vessel performance are frequently
examined to develop better safety protocols and predictive tools
[39,46].

®
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In conclusion, maritime accident research encompasses a wide
spectrum of challenges, including risk quantification, human factor
analysis, and the advancement of decision-support tools and manage-
ment frameworks. These themes reflect a comprehensive effort to
enhance safety, mitigate risks, and improve the overall resilience of
maritime operations in both traditional and emerging contexts.

The temporal analysis of research themes in maritime accidents re-
veals dynamic shifts and emerging trends during the last decade, as
shown in Fig. 2. Early studies (2014-2016) primarily focused on foun-
dational topics such as accident severity (#0) and collision risks (#2),
which laid the groundwork for understanding maritime safety. As the
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field evolved, research expanded to include decision-making processes
(#3) and formal safety assessments (#4), with peak activity occurring
between 2018 and 2022. In recent years, there has been a noticeable
shift towards data-driven methodologies, particularly the adoption of
Bayesian networks (#5) for probabilistic risk modelling and dynamic
scenario simulations. Themes such as maritime transportation frame-
works (#6) and accident management strategies (#7) have remained
consistently relevant, highlighting their central role in addressing
practical safety challenges. Furthermore, the increasing emphasis on
risk assessment in specific scenarios, such as ice navigation and oil spill
mitigation (#8), underscores the growing attention to environmental
and situational factors in maritime safety.

This evolution reflects a transition from traditional accident analysis
to proactive risk prevention and decision support, driven by techno-
logical advancements and the demand for robust management frame-
works. It also demonstrates that maritime accident patterns are dynamic
over time, influenced by major milestone events. However, to the au-
thors’ best knowledge, the impact of global crisis events on maritime
accident patterns has not been investigated, despite its crucial role in
effective maritime accident management when preparing for future
global crises. These insights provide a roadmap for future research,
emphasising the integration of cutting-edge techniques with real-world
applications to enhance maritime safety and resilience.

2.2. Applications of BN in maritime accidents

Numerous studies have effectively used BN for conducting risk an-
alyses under various specific conditions related to maritime accidents.
For instance, Sevgili et al. [47] constructed a data-driven BN based on
2080 accident reports from the US Coast Guard database to predict oil
leakage probabilities following tankship accidents. Additionally, Kaptan
[48] integrated BN within a fuzzy rule to assess the risk levels of
roll-on/roll-off (RORO) ships during the stowage process, providing
valuable insights to mitigate operational risks for stakeholders. Ugurlu
et al. [49] combined BN with chi-square methods to analyse fishing
vessel accidents spanning from 2008 to 2018, revealing significant
correlations between accident types and various ship-related parame-
ters. Fan et al. [20] introduced an innovative object-oriented BN
framework combined with an enhanced machine-learning approach and
mutual information theory to assess maritime risks, identifying key
influential factors and non-linear relationships in both traditional acci-
dents and piracy-related incidents, with ship type identified as a major
contributor to unsafe conditions.

Further, some studies have focused on specific maritime regions.
Zhao et al. [50] employed BN to analyse potential causes of maritime
accidents based on over 200 incidents in the Yangtze River waters be-
tween 2013 and 2019, suggesting that improved crew retention and
autonomous ship development could help reduce accidents. Jiang et al.
[51] proposed a BN-based model to evaluate ship stranding probabilities
in fluctuating backwater zones, emphasising the temporal and spatial
factors that influence accidents in the Three Gorges Reservoir. Addi-
tionally, Zhao et al. [52] utilised fuzzy fault tree analysis and BN to
assess navigation accident probabilities at Qinzhou Port. Jiang et al.
[53] applied a BN-based model to analyse maritime accident risks along
the Maritime Silk Road, manually collecting and analysing risk data to
identify key influencing factors and conducting scenario analysis for
accident prevention insights.

Human factors also play a crucial role in maritime accidents, with BN
being used to predict probabilities of unsafe behaviours among seafarers
[54], analyse accident reports [55], introduce new human factors
analysis frameworks [56], and assess the impact of pilotage on accident
probabilities [57]. Moreover, BN has been combined with other tech-
niques to develop accident prevention strategies [58]. Fan et al. [5]
introduced a data-driven BN that innovatively integrates human factors
into maritime safety analysis, using a TAN to model interdependencies.
Validated through sensitivity analysis and historical data, this model
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reveals critical risk factors and differentiates the impacts of human error
across accident types. Wang et al. [59] integrated navigation simulation
with Dynamic Bayesian Network (DBN) modelling to assess
seafarer-related accident risks, using a collision case study to demon-
strate causal pathways through sensitivity analysis.

BN has also been widely used to assess and predict the severity of
maritime accidents. For example, Khan et al. [60] employed BN to
investigate the handling of dangerous goods in port environments, while
Cakir et al. [61] applied BN to oil spill accidents. Similarly, Wang and
Yang [62] developed a BN-based method to explore the severity of water
traffic accidents, and Zhang et al. [63] conducted a comparative analysis
of maritime accident casualties. Wu et al. [64] proposed a new BN
method that reduces reliance on expert judgment and demonstrated its
reliability through validation with historical navigation accident data.

In summary, BN has proven to be a highly effective tool in maritime
accident risk analysis, offering precise insights into accident probabili-
ties and complex interdependencies while adeptly managing uncer-
tainty. Although extensive literature explores the application of BN in
various aspects of risk analyses in maritime accidents, there is a
noticeable gap in research addressing the impact of global crises such as
COVID-19 on maritime accidents. Given the significant disruptions
caused by the COVID-19 pandemic on the global shipping and supply
chains, it is imperative to comprehensively investigate its influence on
maritime accidents in the post-pandemic era. Such research would
contribute to developing effective risk management strategies and pro-
moting sustainable growth in maritime transportation. More impor-
tantly, it will provide a feasible framework for dealing with the impact of
crisis events on maritime accidents in future

2.3. The impact of COVID-19 on maritime transportation

As shown in Table 1, the COVID-19 pandemic substantially affected
the maritime transportation sector, disrupting ship operations, port ac-
tivities, supply chain management, and overall safety. These disruptions
have exposed critical vulnerabilities within the industry, particularly in
maritime traffic and accident risks, emphasising the urgent need for
innovative solutions and adaptive strategies to mitigate these effects and
enhance resilience.

Ship operations faced severe challenges due to port restrictions,
which hindered crew changes and cargo handling, while prolonged
work contracts led to widespread fatigue and mental stress among sea-
farers [72]. Studies, such as Narasimha et al. [65], revealed substantial
reductions in ship traffic and cargo volumes, particularly in Indian
seaports. Wang et al. [66] addressed post-pandemic challenges by
developing a trajectory recognition and classification model to manage

Table 1
The impact of COVID-19 on research on maritime accidents.

Impact area Specific impacts Research and solutions

“ Port restrictions hindered
crew changes and cargo
handling.

Ship Operations “ Highlighted reduced traffic
and cargo volumes in Indian
ports [65].

” Prolonged work contracts " Developed models to manage
caused fatigue and mental increased port traffic and
stress. docking times [66].

" Lockdowns disrupted " Created resilience models for
goods flow and reduced port operations [67].
port capacity. “ Examined connectivity drops

" Global maritime due to restrictions [68].
connectivity declined.

“ Demand for medical
supplies surged, while oil
demand dropped. ” Used AIS data for port

“ JIT supply chains faced clustering and monitoring
severe backlogs. [70].

“ Fatigue and delays " Proposed tools to improve
increased accident risks. accident prevention in

pandemic contexts [71].

Port Operations

“ Built models to assess demand
shifts [69].

Supply Chain
Management

Safety Concerns
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increased port traffic and docking times, noting a rise in daily berth
utilisation for cargo ships and oil tankers.

Port operations were also significantly affected, with lockdowns
disrupting the flow of goods and reducing port capacity. Global mari-
time connectivity declined as a result of these restrictions [73]. Panahi
et al. [67] developed a resilience assessment model to support sustain-
able port operations during the uncertainties brought on by COVID-19,
while Guerrero et al. [68] examined connectivity drops and their
regional impacts, revealing variations based on government-imposed
mitigation measures.

Supply chain management in the maritime sector experienced pro-
found disruptions [65]. A surge in demand for medical supplies coin-
cided with a sharp drop in oil demand, placing immense pressure on
Just-in-Time (JIT) supply chains, which struggled with severe back-
logs and bottlenecks [71]. As COVID-19 restrictions begin to ease and
demands recover, the maritime transportation system is tested further in
its ability to adapt to changing market conditions [74-76]. Zhao et al.
[69] examined changes in dry bulk and container transport by
employing the China Coastal Bulk Freight Index (CCBFI) and the Baltic
Dry Index (BDI) as key indicators, and developed models to capture the
external impacts of COVID-19 on the shipping industry. Zheng et al. [70]
developed a port classification model based on Automatic Identification
System (AIS) data to monitor and predict ship behaviour, highlighting
the effectiveness of port clustering methods in tracking maritime
transmission paths during the pandemic.

In addition to operational challenges, the pandemic increased safety
risks in the maritime sector. Fatigue and delays contributed to higher
accident risks, prompting researchers to propose tools for accident
prevention in pandemic contexts. These efforts aim to improve safety
measures and ensure the resilience of maritime operations in the face of
future disruptions.

As the maritime industry recovers, it must continue to adapt to the
evolving challenges introduced by the pandemic. This study aims to
provide a comprehensive and academically precise analysis of these
impacts, with a particular focus on maritime traffic and accident risks.
The industry can enhance its resilience, sustainability, and safety by
addressing these challenges in a post-pandemic world.

2.4. Research gaps

The extensive literature review identifies several critical research
gaps in maritime accident analysis that require further investigation:

(1) Lack of methodologies for quantifying the impact of global crises
on maritime accidents.

Existing research lacks comprehensive methodologies to systemati-
cally assess how various global crises, including economic downturns,
geopolitical conflicts, pandemics, and natural disasters, influence
maritime accident patterns. While the COVID-19 pandemic serves as a
relevant case study due to its widespread disruptions, a broader
framework is needed to evaluate the effects of different crisis events on
accident rates, types, and severity. Developing such methodologies is
crucial for improving risk assessment and enhancing crisis preparedness
in the maritime sector.

(2) Deficiencies in maritime accident databases and reporting during
global crises.

Disruptions caused by global crises may compromise the complete-
ness, consistency, and accuracy of maritime accident data. Inadequate
reporting and data loss during such periods hinder the ability to conduct
thorough analyses of accident trends and risks. Enhancing maritime
accident databases and reporting systems to account for data in-
consistencies and gaps during crisis events is essential for enabling
reliable risk assessment and accident prevention strategies.

(3) Insufficient integration of global crisis factors in maritime acci-
dent risk assessment models.

Current maritime accident risk assessment models often fail to
incorporate emergent crisis-related factors, such as port congestion,
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workforce shortages, and disruptions in global supply chains. These
factors, which arise during crises like geopolitical conflicts, pandemics,
or financial crises, significantly impact navigational safety but remain
underrepresented in existing models. Incorporating crisis-induced vari-
ables into accident risk assessment frameworks will enhance their pre-
dictive accuracy and real-world applicability.

To address these gaps, this study develops a data-driven BN frame-
work using a TAN model to systematically analyse the impact of global
crises on maritime accidents. While COVID-19 serves as a case study due
to its extensive data availability, the proposed methodology is designed
to be adaptable to other crisis events, providing broader insights into
maritime accident dynamics and contributing to more effective risk
management and policy development.

3. Methodology
3.1. The proposed framework

This study employs a data-driven BN model to examine the impact of
global crises on maritime accidents, using COVID-19 as a case study. The
methodological framework is illustrated in Fig. 3. Maritime accident
records and incident reports from 2017 to 2021 were collected from the
IMO GISIS. To address gaps in static vessel data, additional information
was integrated from the IHS-LRF database.

The dataset was then divided into two distinct periods: 2017-2019
(pre-pandemic) and 2020-2021 (during the pandemic). The pre-
pandemic period serves as a baseline to represent the normal maritime
accident pattern before the occurrence of COVID-19, while the latter
period captures changes in accident trends during the pandemic. Moving
forward, GISIS data from 2022 to 2025 will continue to be collected to
analyse post-pandemic trends once it becomes available. However, the
currently available 2017-2021 data is sufficient to support the primary
objective of this study, developing a new framework for analysing the
impact of global crises on maritime accident pattern shifts.

A total of 24 RIFs were identified based on prior literature and IMO
standards, with precise definitions established for each RIF status. Using
these datasets and RIFs, separate data-driven BN models were developed
to assess maritime accident patterns before and after COVID-19 [6]. This
approach provides a systematic method for evaluating how global crises
impact maritime safety, enabling more effective risk management and
policy development.

Model validation was conducted through sensitivity analysis,
confusion matrix evaluation, axiom testing, and kappa coefficient
calculation [6]. Finally, a comparative analysis of maritime accidents
between the two periods highlights the evolving accident characteristics
in response to the COVID-19 pandemic.

3.2. Dataset collection and generation

To build a reliable dataset for this study, maritime accident infor-
mation between 2017 and 2021 was compiled primarily from the IMO
GISIS and the IHS-LRF databases. The GISIS casualty module provides
structured records of maritime casualties and incidents reported in
compliance with IMO requirements. These records contain essential
attributes such as accident time and location, vessel identity, and a brief
description of causes. In addition, some cases are accompanied by full
investigation reports, which provide richer details including ship navi-
gational status, prevailing environmental conditions, accident progres-
sion, and causal analysis.

Since the GISIS database often lacks complete ship-specific infor-
mation (e.g., vessel age, hull construction, hull material, and type),
static ship data from the IHS-LRF database were used to supplement
missing attributes. Cross-referencing was performed using each vessel’s
IMO number and Maritime Mobile Service Identity (MMSI) to merge the
two sources, ensuring consistency and reliability of the integrated
dataset.
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Fig. 3. The framework diagram of this paper.

The raw accident dataset was initially extracted from GISIS, covering
1105 accident reports recorded between 1 January 2017 and 31
December 2021. The subsequent data refinement process followed three
major steps:

(1) Data cleansing: Accidents involving fishing vessels were removed
due to extremely limited information, where only static vessel
data were available in many cases. These records could not be
enriched with external sources to support the 23 RIFs required for
this study. Similarly, incidents involving domestic ferries and
naval ships were excluded, as they often lacked usable details.
After this stage, 462 accident records remained.

Data completion: For the retained records, the IHS-LRF database
was used to fill in missing static vessel attributes such as hull
material, hull type, vessel age, length, breadth, deadweight, and
gross tonnage. By systematically matching IMO numbers and
MMSI identifiers, data gaps were minimised and internal con-
sistency was maintained. Following this step, 428 accident re-
cords contained complete information relevant to all identified
RIFs.

Data screening: A double check was conducted on the supple-
mented dataset to validate accuracy and relevance. Records were
excluded if they lacked adequate causal explanations, ship
equipment details, or environmental conditions necessary for risk
analysis. After this screening, a total of 402 high-quality accident
records were retained as the final dataset for subsequent model-
ling and analysis.

(2

—

(3)

This integrated database provides a solid and robust foundation for
the study, enabling an in-depth analysis of maritime accidents during
the COVID-19 pandemic. Beyond the immediate scope of this research,
the database serves as a valuable resource for future maritime safety
studies, offering insights into the complex dynamics of maritime oper-
ations during global crises.

3.3. RIF identification

Accurate identification of RIFs is pivotal for precisely pinpointing the
potential causes and sources of risk in maritime accidents. In this study,
RIF identification was guided by the IMO classification framework and
supported by an extensive review of relevant literature [6,8,77] and
IMO accident reports. RIFs with higher occurrence frequencies were
carefully screened, leading to the selection of 24 key RIFs spanning
accident-related, ship-related, environmental, navigational, and human
factors. This refined dataset enables a systematic examination of how
COVID-19 has influenced maritime accidents across multiple RIFs.

Following RIF identification, the detailed definition of RIF status
facilitates quantitative analysis and standardisation of maritime

accidents. Previous studies often simplified RIF status definitions to
streamline quantitative modelling, but this reduced analytical precision
[77] and limited the applicability of results. Recognising the multifac-
eted impact of COVID-19, this paper adopts a detailed approach that
defines the statuses of the identified RIFs within the maritime trans-
portation context. For instance, the voyage segment classification pro-
vided by the IMO is utilised, including eight distinct geographical
regions. Furthermore, the ‘ship type’ category has been expanded to
incorporate offshore vessels, categories that have been neglected in prior
studies, thereby ensuring a more thorough analysis. Ultimately, all
recognised RIFs and their respective status descriptions are graphically
represented in Fig. 4.

3.4. Model construction

The dataset was split into pre-pandemic (2017-2019) and pandemic
(2020-2021) periods, with separate TAN models constructed to allow
comparative analysis of COVID-19's impact on maritime accidents. The
TAN model was selected due to its ability to account for dependencies
among variables, offering distinct advantages over Naive Bayes Network
(NBN) and Augmented Bayes Network (ABN) models. Unlike NBN,
which assumes conditional independence among variables, TAN ac-
commodates inter-variable dependencies during structure construction,
providing a more realistic representation of the relationships between
RIFs in maritime accidents. Compared with ABN, TAN also achieves a
balance between model flexibility and computational efficiency by
introducing a tree-based structure, in which each attribute is linked to
the class variable and at most one other attribute. This approach en-
hances interpretability and scalability, making it particularly suitable
for handling high-dimensional maritime accident data.

The construction of a TAN model begins with structure learning,
which specifies variable dependencies through a Directed Acyclic Graph
(DAG) [5,13]. Structure learning can generally be achieved using
expert-driven approaches, data-driven techniques, or a combination of
both. In this study, a data-driven strategy was applied, with TAN chosen
as the learning algorithm. The task of TAN structure learning can be
expressed as an optimisation problem: identifying a tree structure across
the attribute variables that maximises the data log-likelihood while
remaining consistent with the designated class variable [78,79]. To
address this, the study employed the ‘Construct-TAN’ algorithm intro-
duced by Friedman et al. [80], which utilises conditional mutual in-
formation to evaluate interdependencies among attribute variables,
defined as follows:

P(Xiuxji\Ci)

_ 1
P(xc;)P(x|c;) W

In (X, X|C) = Z P(x,xj;, ¢;)log

Xii Xji Ci

Here, I, denotes the conditional mutual information, x; refers to the
ith state of the attribute variable X;, x;; represents the ith state of the
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Fig. 4. The details of RIFs and states.

attribute variable X, and c; corresponds to the ith state of the class
variable C. Based on this measure, TAN builds a maximum-weight
spanning tree to capture the strongest inter-variable dependencies.

Once the qualitative structure of the TAN network is established,
parameter learning is required to determine the conditional probability
distribution of each node. For complete datasets, Bayesian Estimation is
preferred over Maximum Likelihood Estimation because it provides
more stable and accurate probability estimates, particularly in cases
with relatively small sample sizes. This step ensures that the constructed
network not only has a logically consistent structure but also captures
the statistical characteristics of the observed data.

The final step is to apply the model to risk analysis. The constructed
TAN models for the two time periods were used to conduct both quali-
tative and quantitative analyses. First, the models qualitatively exam-
ined changes in RIFs and their interdependencies before and during
COVID-19. Second, quantitative assessments were carried out,

including marginal probability estimation of targeted RIFs and the
ranking of RIFs based on their contributions to maritime accidents.

In summary, TAN integrates the strengths of BN and decision trees,
offering a versatile, interpretable, and statistically robust framework for
risk modelling. The two models constructed for the pre-pandemic and
pandemic periods provide a systematic means of examining how mari-
time accident risk factors evolved under the influence of COVID-19.

4. Model validation
4.1. Sensitivity analysis

Sensitivity analysis is essential for addressing uncertainty in mari-
time safety, as it identifies how key factors influence critical outcomes.

This study applies an integrated approach that combines mutual infor-
mation, joint probability distributions and the True Risk Influence (TRI)
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method to capture variable interdependencies, assess their relative
importance and quantify their impact on accident risk. This multi-
method design enhances both the robustness and reliability of the
analysis.

4.1.1. Mutual information

Mutual information is a statistical metric that quantifies the de-
pendency between two variables by measuring how much knowledge of
one reduces uncertainty about the other. Larger values indicate stronger
associations and greater predictive power. In sensitivity analysis, it is
commonly applied to gauge the influence of individual variables on a
target outcome, thereby highlighting the most critical factors within a
system.

Within the TAN model, the parent node ‘Type of casualty’ is linked to
24 RIFs as child nodes. Mutual Information Value and Variance of Beliefs
are computed separately for COVID-19 and the ‘Type of casualty’ node
across two periods: pre-COVID-19 (2017-2019) and post-COVID-19
(2020-2021). The results are presented in Fig. 5 and Fig. 6, respec-
tively. RIFs with mutual information values exceeding the average are
identified as having a significant impact on accident severity.

The findings reveal a shift in the key factors influencing accident
severity before and after COVID-19:

Pre-COVID-19 (2017-2019): The most influential factors were ‘Type
of accident’ (0.2564), ‘Ship operation’ (0.1081), ‘Ship type’ (0.0882),
‘Voyage segment’ (0.0747), and ‘Hull type’ (0.0461).

Post-COVID-19 (2020-2021): The critical factors included ‘Type of
accident’ (0.3582), ‘Ship type’ (0.1376), ‘Ship operation’ (0.0908),
‘Voyage segment’ (0.0858), ‘Ship age’ (0.0715), ‘Breadth’ (0.0556), and
‘Deadweight’ (0.0506).

These findings suggest that the maritime industry may have experi-
enced structural changes or operational adjustments during the
pandemic, leading to shifts in the determinants of accident severity.
Furthermore, the increased weighting of accident types post-COVID-19
indicates that certain types of accidents became more frequent or se-
vere, underscoring the evolving nature of maritime risks in response to
global disruptions.

These insights also prompt further studies to conduct a deeper root-
cause analysis of these changes. Understanding why certain types of
accidents have increased in frequency and severity is crucial and war-
rants further investigation, providing valuable guidance for shaping
future research agendas in the field. Additionally, scientific evidence on
the impact of reduced crew activities, including restricted social in-
teractions, prolonged isolation, and psychological stress in maritime
work environments, should be further explored as part of the future
research agenda to better assess their role in maritime accident trends.
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4.1.2. Joint probability distribution

Mutual information analysis identified key RIFs across two distinct
periods. Building on these findings, joint probability distributions were
applied to assess how different states and variables influence accident
severity. To preserve the integrity of probability distributions within the
BN framework, normalisation conditions were enforced. This step en-
sures the accurate computation of posterior probabilities for any given
variable and improves the efficiency of Bayesian inference.

To analyse the impact of each RIF state individually, a probability of
100 % was assigned to each state, generating joint probability outcomes.
Results from 2017 to 2019 (pre-pandemic) are shown in Table 2, and
those from 2020 to 2021 (post-pandemic) are shown in Table 3. The
calculation results reveal how different RIF states influence accident
severity, classified into three casualty levels. The most impactful states
for each RIF are highlighted in bold, while the least impactful states are
underlined. The first row of each table presents the baseline probabili-
ties before any RIF state adjustments. Subsequent rows show how ca-
sualty probabilities change when a specific RIF is fixed in a given state.

During the pre-pandemic period, accident severity varied signifi-
cantly across different accident types. Occupational accidents had the
highest probability (96.588 %) of leading to severe casualties, whereas
contact/crush accidents had the lowest (22.195 %).

The ship operation phase also played a crucial role in accident
severity. The loading/unloading phase exhibited the highest likelihood
of serious accidents (85.97 %), while the pilot stage had the lowest
(20.472 %), indicating that certain operational activities posed greater
risks.

Among different vessel types, fishing boats had the highest proba-
bility of serious accidents (86 %), whereas RORO ships experienced the
lowest (20.618 %). This suggests that vessel design and operational
characteristics significantly influenced accident outcomes.

Accidents in different voyage segments also showed varying degrees
of severity. Incidents occurring in berths had the highest probability of
severe casualties (87.363 %), whereas accidents in canal areas had the
lowest (14.872 %). This trend highlights how location-specific factors
affect accident risks.

Finally, hull type emerged as another key determinant of accident
severity. Wooden ships were most vulnerable, with an 87.065 % prob-
ability of severe casualties, while light alloy hulls had the lowest (13.109
%), underscoring the importance of ship material in accident resilience.

In the post-pandemic period, significant shifts were observed in ac-
cident probability distributions, particularly in open waters, suggesting
changing risk patterns in maritime operations. Notably, fishing vessels
exhibited a heightened likelihood of severe accidents, reflecting
evolving industry challenges and vulnerabilities.

These findings suggest that structural and operational adjustments in
the maritime sector during the pandemic may have had a significant
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Fig. 5. Visualisation of different results between ‘Type of casualty’ and RIFs pre-COVID-19.
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Fig. 6. Visualisation of different results between ‘Type of casualty’ and RIFs after COVID-19.

impact on accident severity. The heightened risks associated with spe-
cific accident types and vessel categories underscore the urgent need for
adaptive risk mitigation strategies to address evolving maritime safety
challenges. Moreover, these insights provide valuable perspectives for
further exploration, particularly in understanding why certain countries
or regions managed the COVID-19 pandemic more effectively than
others. They also offer a foundation for investigating how these findings
can inform assessments of the effectiveness of decisions made by
different countries and companies in managing COVID-19 and miti-
gating its impact on ship safety.

4.1.3. True risk influence

The TRI method, pioneered by [81], stands as a robust tool for
assessing multivariate sensitivity, finding extensive application within
maritime safety research. Given the multitude of states inherent in the
risk factors under consideration (RIF), this study adopts the TRI meth-
odology to gauge the influence of each key risk factor on accident
severity. The TRI value offers a comprehensive insight into the magni-
tude of each risk factor’s impact [77,79]. The specific calculation for-
mula is as follows.

‘Pofpmin‘+|P07Pmax|

TRI = 3

(2)

where P, is the baseline probability of the target node (e.g., type of
casualty) given the current BN without intervention. Py, indicates the
maximum conditional probability of the target node when a risk factor
(RIF) is forced into the state that has the strongest effect. Pp, denotes
the minimum conditional probability of the target node when the same
RIF is forced into the state that has the weakest effect.

Prax and Ppy, are calculated by systematically forcing each possible
state of a risk factor to 100 % in the BN and recording the resulting
probability of the target variable. The maximum probability value (Ppayx)
is highlighted in bold, while the minimum probability value (Pp;,) is
underlined in Table 2 and Table 3 in the two periods, respectively. The
TRI calculation results and ranking of all RIFs in the two periods are
shown in Table 4 and Table 5. It can be clearly seen from the results that
‘Type of accident’ is always the biggest factor affecting ‘Type of casu-
alty’. Moreover, the same RIF has different effects on accidents of
different severity. The TRI analysis reveals critical insights for maritime
safety management. The consistent influence of ‘Type of accident’ on
casualty severity highlights the need for targeted safety measures
tailored to specific accident types. Additionally, the shift in risk factor
rankings pre- and post-COVID-19 underscores the importance of adap-
tive risk management strategies that account for changing global con-
ditions. These findings emphasise the necessity for dynamic and context-
specific safety frameworks to enhance maritime resilience and reduce

accident severity.

The key implications for maritime safety management derived from
the above findings are listed below.

(1) Targeted safety measures for specific accident types.

The consistent influence of ‘Type of accident’ on casualty severity
underscores the necessity for accident-specific safety interventions.
Maritime authorities and companies should develop tailored risk miti-
gation strategies based on high-risk accident types to minimise severe
casualties and enhance overall safety resilience.

(2) Adapting risk management to changing global conditions.

The shift in RIF rankings pre- and post-COVID-19 highlights how
external disruptions can alter maritime risk dynamics. For instance,
‘Ship type’ rose in importance post-pandemic, suggesting that different
vessel categories faced heightened risks due to operational or regulatory
changes. This finding underscores the importance of adaptive risk
management frameworks that can respond to evolving maritime chal-
lenges, including pandemics, economic downturns, and geopolitical
disruptions.

(3) Understanding structural and operational adjustments in mari-
time transport.

The variations in RIF rankings suggest that structural and/or oper-
ational adjustments in the maritime industry during the pandemic
influenced accident severity. These changes suggest solutions relating to
altered shipping routes, reduced crew availability, new regulatory
constraints, or economic pressures affecting maintenance schedules and
vessel operations. Understanding these shifts can guide policy re-
finements and industry best practices to prevent future risks under
similar crisis scenarios.

(4) Future research and policy development for maritime resilience.

These findings highlight the need for continuous monitoring of ac-
cident patterns to inform evidence-based policymaking. The results also
prompt further investigations into why certain risk factors became more
significant post-pandemic and how different maritime policies and
operational strategies contributed to varying safety outcomes across
regions. Future research should explore the long-term impacts of global
crises on maritime safety and evaluate whether regulatory interventions
implemented during the pandemic had a lasting effect on risk reduction.

(5) Broader implications for global crisis preparedness.

The observed shifts in maritime risk factors during the pandemic can
inform broader crisis preparedness strategies. The maritime sector must
develop flexible safety policies that can quickly adapt to disruptions,
ensuring resilience against future global crises. Additionally, enhanced
data-driven risk assessment frameworks should be established to pro-
vide real-time insights into accident trends, enabling proactive safety
measures rather than reactive responses.
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Table 2
The joint probability of each variable and accident severity pre-COVID-19.
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Table 3
The joint probability of each variable and accident severity post-COVID-19.

less serious serious very serious

less serious serious very serious

original 8.034 26.119 65.846 original 4.747 35.375 59.877
Type of accident Type of accident

capsize 0.435 4.902 94.664 capsize 3.481 4.323 92.196
collision 10.433 33.294 56.273 collision 0.602 53.082 46.316
contact/crush 34.149 43.656 22.195 contact/crush 34.343 22.341 43.316
fire/explosion 6.971 41.730 51.299 fire/explosion 0.967 61.233 37.800
flooding 2.945 33.214 63.841 grounding 0.865 76.236 22.900
grounding 10.566 48.129 41.305 occupational accident 0.958 1.189 97.853
occupational accident 1.685 1.727 96.588 others 1.511 39.408 59.081
others 1.542 33.199 65.259 overboard 9.615 1.085 89.300
overboard 3.641 0.339 96.019 ship/equipment damage 2.430 33.200 64.370
ship/equipment damage 9.488 45.102 45.410 sinking 2.419 3.004 94.577
sinking 0.634 7.146 92.221 Ship type

Ship operation RORO 7.400 58.597 34.003
at anchor 2.276 25.190 72.534 bulk carrier 1.261 29.258 69.48
fishing 8.957 22.075 68.969 cargo ship 5.240 38.101 56.659
loading/unloading 7.721 6.309 85.970 container ship 2.732 84.716 12.552
manoeuvring 15.383 42.104 42.513 fishing vessel 1.649 21.453 76.898
on passage 3.864 23.997 72.139 offshore vessels 3.957 24.163 71.880
others 13.846 17.473 68.681 others 5.335 15.078 79.588
pilotage 32.220 47.308 20.472 passenger vessel 36.705 24.105 39.190
towing 16.683 10.748 72.569 tanker or chemical ship 6.226 32.710 61.064
Ship type Ship operation

RORO 11.483 67.898 20.618 at anchor 2.440 27.074 70.486
bulk carrier 5.887 29.497 64.616 fishing 4.621 11.027 84.352
cargo ship 8.648 20.645 70.707 loading/unloading 8.224 19.627 72.149
container ship 4.213 27.322 68.465 manoeuvring 19.817 38.178 42.006
dredger 8.481 12.230 79.288 on passage 3.718 35.523 60.758
fishing vessel 2.797 11.203 86.000 pilotage 3.675 72.223 24.102
offshore vessels 17.682 36.471 45.847 Voyage segment

others 14.186 17.169 68.645 Inland waters 7.686 20.911 71.403
passenger vessel 22.449 33.348 44.203 anchorage 3.716 27.297 68.987
tanker or chemical ship 4.621 27.266 68.113 archipelagos 5.619 42.187 52.195
tug 10.758 5.857 83.384 coastal waters 8.593 38.672 52.735
Voyage segment open sea 0.845 22.127 77.028
Inland waters 22.979 12.391 64.63 port 8.434 48.956 42.610
anchorage 2.039 25.554 72.407 port approach 3.729 63.712 32.558
archipelagos 11.829 31.057 57.114 river 3.875 41.554 54.570
at berth 2.960 9.677 87.363 Ship age

canal 46.042 39.086 14.872 1 2.847 30.394 66.759
channel 32.007 39.038 28.956 2 1.692 23.893 74.414
coastal waters 3.607 30.498 65.896 3 13.02 37.518 49.465
open sea 4.230 19.602 76.168 4 8.357 31.807 59.835
port 10.468 29.265 60.267 5 1111 50.350 48.539
port approach 21.697 32.077 46.226 6 5.198 12.845 81.957
river 4.415 29.444 66.141 Breadth

Hull type 1 5.310 30.399 64.291
GRP 7.193 8.881 83.926 2 7.055 46.426 46.520
NA 8.745 29.879 61.376 3 2.554 14.198 83.248
aluminium alloy 17.620 59.861 22.520 4 1.975 52.901 45.124
composite materials 17.506 39.608 42.887 Deadweight

light alloy 27.435 59.455 13.109 1 4.085 30.619 65.296
steel 7.274 25.913 66.812 2 12.907 49.340 37.754
wood 5.788 7.146 87.065 4 1.300 33.030 65.670

4.2. Model correctness verification

To enhance the robustness of the BN-based model, this study con-
ducts a sensitivity analysis to validate its accuracy. This analysis adheres
to two fundamental axioms:

Axiom 1: Minor adjustments in the prior probabilities of each RIF
should correspondingly influence the posterior probability of the target
node. This axiom ensures that even slight changes in the input variables
lead to proportional changes in the output, reflecting the model’s
responsiveness to variations in RIF probabilities.

Axiom 2: The total impact of integrating the probability variations of
x parameters should be larger than the one from the set of y(y € x) RIFs.

Adherence to these axioms during the sensitivity analysis serves to
validate the model’s reliability and ensure its consistency in reflecting
the intricate relationships among the RIFs and the target node. To
validate the model’s compliance with the two axioms, the collective

10

impact of all filtered significant RIFs on casualty types is examined. The
parent node ‘casualty type’ remains constant, and the variations of each
type are individually investigated. Using ‘very serious’ accidents as an
example, ‘type of accident’ is designated as the initial node, with its
prior probability incremented by 2 % to reach the extreme states that
exert the greatest and least influence on ‘lighter’ accidents. This process
is repeated for other RIFs. The sequence presented in the first column of
Table 6 and Table 7 depicts the cumulative probability change values.
Subsequently, the process is repeated for the remaining two casualty
types, yielding the computation outcomes illustrated in the subsequent
columns of Table 6 and Table 7.

The second column of Table 6 and Table 7 displays the original
probability values for each casualty type in the TAN structure, while the
subsequent columns exhibit the updated cumulative change values. The
findings indicate that adjustments in the prior probability of a selected
RIF correlate with corresponding variations in the posterior probability
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Table 4
TRI of important RIFs for three types of casualty (100 %) pre-COVID-19.
Node less serious serious very serious Average
TRI Rank TRI Rank TRI Rank
Type of accident 16.857 2 23.895 3 37.197 1 25.983
Ship operation 14.972 3 20.499 4 32.749 4 22.740
Ship type 9.826 5 31.020 1 32.691 5 24.512
Voyage segment 22.002 1 14.704 5 36.245 3 24.317
Hull type 10.823 4 26.357 2 36.978 2 24.719
Table 5
TRI of important RIFs for three types of casualty (100 %) post-COVID-19.
Node less serious serious very serious Average
TRI Rank TRI Rank TRI Rank TRI
Type of accident 16.871 2 37.575 1 37.4765 1 30.641
Ship type 17.722 1 34.819 2 33.518 2 28.686
Ship operation 8.689 3 30.598 3 30.125 3 23.137
Voyage segment 3.874 6 21.401 4 22.235 4 15.836
Ship age 5.953 4 18.753 5 16.709 6 13.805
Breadth 2.540 7 16.114 6 19.062 5 12.572
Deadweight 5.803 5 9.361 7 13.958 7 9.707
Table 6 accuracy as a metric to assess the overall performance of the model on
able i X . X the test set. Additionally, it utilises the confusion matrix along with
The combined influence of multiple variables before COVID-19. o 1. . . .
several related indicators, including precision, recall, F-measure, spec-
Tgpe of accident 2% +2%  +2%  +2%  +2% ificity, False Positive Rate (FPR), and area under the ROC curve (AUC),
i i 2% 2 % 2 % 2% e .
S ip operation 2 2 2% 2 to evaluate the classification effectiveness of the model for each
Ship type +2 % +2 % +2 %
Voyage segment +2 % +2 % subclass.
Hull type +2 % Precision, representing the ratio of correctly predicted positive
less serious 8.034 8.709 9.326 9.791 10.720  11.145 samples to all samples predicted as positive by the classifier, and recall,
serious 26119 27.075  27.905  29.154 29709 30.819 denoting the proportion of correctly predicted positive samples to the
very serious 65.846 67.334 68.648 69.947 71.087 72.584

of the respective casualty type, thereby validating Axiom 1. Moreover,
the cumulative probability change value of the parent node escalates
sequentially as the number of altered variables increases, as evidenced
by the collective values across all columns, affirming Axiom 2. Conse-
quently, these results substantiate the accuracy of the model.

4.3. Prediction performance verification

This study employed a training-testing split to evaluate predictive
performance. A hold-out validation strategy was applied, in which 80 %
of the accident records (322 cases) were randomly allocated to the
training set for model development, and the remaining 20 % (80 cases)
were reserved as an independent test set for performance assessment.
This separation of training and testing data helps to mitigate the risk of
overfitting. To further ensure robustness, the random split was repeated
multiple times during preliminary experiments, confirming that the re-
sults were consistent and not overly sensitive to a particular partition of
the data.

Similar to mainstream classification research, this study employs

actual positive class samples, are crucial in assessing classification ac-
curacy and consistency. F-measure, serving as the harmonic mean of
precision and recall, offers a comprehensive evaluation of the model’s
performance. Specificity gauges the model’s aptitude in accurately
categorising negative samples, while FPR quantifies the extent to which
the model misclassifies negative samples as positive. AUC, encompass-
ing the overall model performance across various thresholds, provides a
comprehensive evaluation. The confusion matrix depicting the model’s
prediction results is presented in Fig. 7, with the corresponding calcu-
lation outcomes of each indicator delineated in Table 8.

4.4. Model consistency verification

The marine accident data set used in this study has obvious problems
of uneven class distribution. The ‘very serious’ type accounted for 64.9
% of accident severity, while the ‘less serious’ type accounted for only
7.48 %. Therefore, the Kappa coefficient is introduced to test the con-
sistency of the model in predicting the severity of various accidents [54].

The calculated result of the Kappa coefficient is usually between
[0,1]. The larger the value, the more correct the classification result is.
When the kappa value falls within the range of [0.81,1], it can be

Table 7

The combined influence of multiple variables after COVID-19.
Type of accident +2 % +2 %
Ship type +2 %
Ship operation
Voyage segment
Ship age
Breadth
Deadweight
less serious 4.747 5.422 6.221
serious 35.375 36.111 37.503
very serious 59.877 61.377 62.712

+2 % +2 % +2 % +2 % +2 %

+2 % +2 % +2 % +2 % +2 %

+2 % +2 % +2 % +2 % +2 %

+2 % +2 % +2 % +2 %

+2 % +2 % +2 %

+2 % +2 %

+2%

6.675 6.881 7.214 7.351 7.643
38.747 39.67 40.493 41.187 41.588
63.897 64.779 65.371 66.06 66.657
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Fig. 7. Confusion matrix. (a) Confusion matrix of BN prediction results pre-COVID-19. (b) Confusion matrix of BN prediction results post-COVID-19.

Table 8

Risk level prediction results of BN model.

less serious

serious

very serious

2017-2019 2020-2021 2017-2019 2020-2021 2017-2019 2020-2021
Accuracy 1 1 0.8235 1 0.9783 1
Precision 1 1 0.9333 1 0.9375 1
Recall 1 1 0.8235 1 0.9783 1
F-measure 1 1 0.8784 1 0.9579 1
Specificity 1 1 0.9804 1 0.8636 1
FPR 0 0 0.0196 0 0.1364 0
AUC 1 1 0.9787 1 0.9743 1

inferred that the model’s prediction accuracy for maritime accident
casualties is basically the same. According to Eq. (2) and the confusion
matrix, the kappa coefficients of the two BN models are calculated to be
0.87 (2017-2019) and 1.0 (2020-2021), respectively. It is proven that
the model in this paper can adapt to the problem of data and distribution
imbalance.

5. Discussion and implications
5.1. Comparison of the number of accidents

The temporal evolution of maritime accidents is meticulously
documented in Table 9. The data underscores a substantial decrease in
maritime accidents following the advent of the COVID-19 pandemic.
This trend invites a comprehensive examination of the contributing
factors and their implications for the maritime industry, which facili-
tates the derivation of several pertinent conclusions regarding the pan-
demic’s influence on maritime safety:

(1) Traffic flow variations: The pandemic’s ripple effects on the
global economy and trade have precipitated the closure or
downsising of numerous ports. This has resulted in a significant
alteration in ship traffic and volume, potentially leading to a shift
in the frequency of maritime accidents.

(2) Personnel and equipment reductions: The exigencies of the
pandemic have compelled some shipping entities and port au-
thorities to curtail their workforce and operational equipment.

Table 9
The number of maritime accidents over the pre- and post-COVID-19.
Year This study IMO GISIS
2017 144 451
2018 118 299
2019 75 304
2020 54 216
2021 11 163
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Such adjustments may have inadvertently impacted the likeli-
hood of maritime accidents occurring.

(3) Ship maintenance and inspection constraints: The imposition of
pandemic-related restrictions has led to the cessation or reduc-
tion of essential ship maintenance and inspection services in some
ports. This could have resulted in an increase in technical mal-
functions aboard vessels, consequently heightening the risk of
maritime accidents.

(4) Crew health concerns: The health and well-being of crew mem-
bers are paramount to the safe operation of maritime vessels. The
pandemic’s impact on crew health, including the potential for
illness-induced fatigue and errors, poses a significant risk factor
for the escalation of maritime accidents.

5.2. A comparative analysis from the perspective of important RIFs

The analysis conducted in Section 4.1.1 reveals noteworthy shifts in
the influential factors affecting maritime accidents between the periods
of 2017-2019 and 2020-2021. During 2017-2019, the pivotal RIFs were
determined as ‘Type of accident’, ‘Ship operation’, ‘Ship type’, ‘Voyage
segment’, and ‘Hull type’, while for 2020-2021, they were identified as
‘Type of accident’, ‘Ship type’, ‘Ship operation’, ‘Voyage segment’, ‘Ship
age’, ‘Breadth’ and ‘Deadweight’. These findings underscore a dynamic
evolution in the critical factors contributing to accident severity over
time.

The emergence of new factors in the latter period, such as ‘Ship age’,
‘Breadth’ and ‘Deadweight’, could be indicative of the broader re-
percussions of the COVID-19 pandemic on the maritime industry. The
inclusion of ‘Ship age’ can indicate potential delays in ship maintenance
and renewal initiatives amidst heightened operational costs during the
epidemic. Similarly, the introduction of ‘Breadth’ and ‘Deadweight’ may
signify strategic adjustments by shipowners to address market un-
certainties and dwindling demand, potentially resulting in alterations to
cargo loads and vessel size.

Furthermore, these changes may also be intertwined with the
deceleration of global economic activities during the pandemic.
Reduced international trade could have prompted shipowners to
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prolong the service life of existing vessels due to diminished investment
in new ships. Concurrently, in response to cost constraints and market
challenges, ship operators might have opted for larger, wider, and
heavier vessels to enhance operational efficiency, albeit at the expense
of heightened operational complexities and risks.

Thus, it becomes evident that the impact of the COVID-19 pandemic
on maritime accidents is multifaceted, encompassing shifts in opera-
tional strategies and broader economic dynamics. A nuanced compre-
hension of these transformations is imperative for devising effective
maritime safety protocols and interventions aimed at mitigating acci-
dent risks during the pandemic. Scenario analysis within the context of
specific settings will be necessary to reveal the multifaceted impact in
detail.

5.3. Scenario analysis

5.3.1. Scenario 1: harsh environmental conditions

In the realm of marine accident risk assessment, scenario 1 delves
into the intricate interplay among various parameters, including ‘Time
of day’, ‘sea condition’, ‘Visibility’, ‘Weather condition’, ‘Wind’,
‘Voyage segment’, and ‘Ship operation’, particularly emphasising the
influence of environmental factors on accident severity. Fig. 8 and Fig. 9
present simulations illustrating the probability distributions of diverse
accidents across different environmental contexts. After rigorous itera-
tion, it was ascertained that when the aforementioned factors align at
‘night’, ‘bad’, ‘low’, ‘bad’, ‘high’, ‘river’, and ‘on passage’, respectively,
the vessel is highly susceptible to grave accidents, exhibiting the highest
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likelihood. This underscores that during practical maritime navigation,
circumstances such as nighttime operations, harsh sea conditions,
diminished visibility, inclement weather, elevated wind speeds, and
navigation through riverine stretches may significantly heighten the risk
of maritime mishaps.

Nighttime navigation often entails poor illumination, potentially
impeding the vessel’s ability to detect obstacles or other craft in a timely
manner, thus elevating collision risks. Harsh sea and weather condi-
tions, typified by towering waves, torrential rainfall, or thunderstorms,
not only imperil the ship’s stability and manoeuvrability but also pose
threats of structural damage or capsizing. Reduced visibility, commonly
associated with meteorological phenomena such as fog or precipitation,
constrains the crew’s situational awareness, augmenting the likelihood
of collisions or groundings. High wind velocities can compromise the
vessel’s manoeuvring capabilities, precipitating deviations from the
intended course, which can be particularly perilous in confined water-
ways or intricate channels. Furthermore, navigating through riverine
expanses presents its own set of challenges, including tumultuous cur-
rents and variable water depths, thereby amplifying the risk of maritime
incidents in such locales.

In light of these exigencies, it is imperative for both crew members
and management personnel to maintain a state of heightened vigilance
and possess adept emergency response capabilities to effectively miti-
gate potential hazards in real-time. Consequently, prudent navigation
mandates a comprehensive assessment and adept management of these
factors, coupled with the implementation of robust preventive and
contingency measures, to safeguard the integrity and reliability of
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Fig. 8. The combined impact of environmentally-related RIFs on ‘very serious’ casualties before the COVID-19 outbreak.
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Fig. 9. The combined impact of environmentally-related RIFs on ‘very serious’ casualties after the COVID-19 outbreak.

maritime operations.

Analysis of simulation results shown in Table 10 reveals notable
shifts in the characteristics of maritime accidents pre- and post-
outbreak. Amidst the epidemic, a discernible downward trajectory in the
incidence rate of severe accidents, plummeting from 98.0 % to 89.6 %,
juxtaposes with a corresponding surge in the likelihood of grave acci-
dents, emblematic of the multifaceted repercussions of the pandemic on
accident severity. Notably, the prevalence of ground-contact incidents
surged to 56.1 %, while occurrences of collision and sinking events
dwindled. Such dynamics may be attributable to alterations in the
maritime landscape during the epidemic period. For instance, there was
a marked uptick in the proportion of offshore vessels and bulk carriers,

Table 10
Under the influence of environmental factors, the probability changes of
different influencing factors pre- and post-COVID-19.

2017-2019 2020-2021 Tendency
Type of casualty less serious 0.15 % 4.01 % 1
serious 1.88 % 6.39 % 1
very serious 98.00 % 89.60 % 1
Type of accident grounding 28.40 % 56.10 % 1
collision 13.90 % 5.11 % 1
sinking 27.40 % 14.30 % 1
overboard 21.80 % 18.90 % 1
Ship type offshore vessels 6.63 % 35.10 % 1
bulk carrier 10.80 % 24.40 % 1
cargo ship 22.80 % 12.30 % 1
container ship 10.80 % 3.85 % l
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concomitant with a decline in container ships and cargo vessels, mir-
roring the pandemic’s sway over shipping demand and vessel selection.
Insights from maritime transportation expertise underscore the
impact of the epidemic-induced supply chain disruptions and route re-
alignments on shipping operations, thereby engendering a meta-
morphosis in accident typologies and severity levels. Consequently,
stakeholders within the maritime domain, including shipping entities
and regulatory bodies, are urged to remain vigilant vis-a-vis these
evolving trends and institute efficacious safety management protocols to
curtail both the frequency and magnitude of maritime mishaps, thereby
safeguarding navigational integrity amidst turbulent times.

5.3.2. Scenario 2: impact of ship characteristics

Scenario 2 examines how vessel-related RIFs influence accident
severity, illustrated in Fig. 10 and Fig. 11. The results show that fishing
vessels with wooden hulls, of unknown age, and in poor condition face
the highest risks. High-risk characteristics also include a deadweight of
0-5000 tons, gross tonnage of 0-3000 GT, length of 0-100 m, breadth of
0-20 m, power of 0-3000 kW, draught of 0-6 m, and single-hull con-
struction. Vessels with this combination of features are most likely to
experience very severe accidents. These findings underline that vessel
type, hull material, and operational condition are critical factors shaping
maritime risk.

For instance, vessels outfitted with wooden hulls may exhibit
heightened vulnerability to damage or accidents under certain circum-
stances, while idiosyncratic design flaws or equipment malfunctions
could exacerbate accident probabilities. Consequently, stakeholders
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Fig. 10. Posterior probability analysis in ‘very serious’ type from ship-related factors pre-COVID-19.

encompassing shipowners, crew members, and regulatory bodies are
enjoined to exercise heightened vigilance in the safe management and
operation of such vessels, proactively instituting requisite precautions to
mitigate accident risks, thereby fortifying both vessel integrity and crew
safety.

Simulation findings elucidate the differential impact of ship char-
acteristics on maritime accident dynamics pre and post the epidemic. As
delineated in Table 11, the prevalence of capsizing incidents surged
markedly to 83.1 % subsequent to the outbreak, indicative of a recali-
bration in ship transportation exigencies and operational modalities, or
heightened susceptibility to capsizing owing to intensified vessel activ-
ities in coastal environs. Conversely, fire and explosion accidents
decreased in the post-pandemic period, reflecting stricter safety pro-
tocols, targeted interventions, and improvements in maritime opera-
tional practices.

Moreover, there was a pronounced escalation in accident rates
within coastal waters, soaring to 77.9 %, while incident frequencies in
open seas and port locales registered a concomitant decline, suggestive
of the realignment of maritime activities or the heightened prevalence of
coastal conveyance operations. The increased frequency of accidents in
fishing operations reflects the intensified activity within the fishing
sector during the pandemic period.

These findings underscore the nuanced interplay between ship
characteristics, operational dynamics, and environmental exigencies in
shaping maritime accident trends amidst evolving socio-economic
landscapes. Consequently, proactive measures encompassing robust
safety frameworks, adherence to stringent standards, and the
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implementation of targeted interventions are imperative to mitigate
accident risks, bolster navigational safety, and fortify resilience within
the maritime domain in the wake of disruptive events such as global
pandemics.

5.3.3. Scenario 3: reverse analysis from consequences to causes

Both scenarios outlined above have been subjected to prospective
analysis utilising the BN model. Moreover, the versatility of the BN
model extends to facilitating reverse analysis by examining the impact
on variable nodes through adjustments in the target node status. In
scenario 3, a deliberate inquiry into the most plausible circumstances
surrounding incidents categorised as ‘very serious’ pre and post the
COVID-19 outbreak is pursued. Herein, the probability value of the
target node status is fixed at 100 % ‘very serious’, thereby elucidating
alterations in the variable node ‘Condition.’ Fig. 12 and Fig. 13 elucidate
the contextual particulars corresponding to ‘very serious’ accidents pre
and post the COVID-19 pandemic, with the ‘Type of Casualty’ status of
the target node held at 100 %.

Table 12 furnishes insights into shifts in influential factors following
the COVID-19 outbreak, predicated on a 100 % probability of severe
marine accidents. Notably, ‘occupational accidents’ and ‘overboard in-
cidents’ have surfaced as predominant accident types post-pandemic,
indicative of an uptick in crew members falling overboard. This un-
derscores the imperative for ship managers to institute more stringent
safety training regimens and deploy enhanced safety measures to safe-
guard the well-being of crew members against such perilous
occurrences.
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Fig. 11. Posterior probability analysis in ‘very serious’ type from ship-related factors post-COVID-19.

Table 11
Under the influence of the ship characteristics factors, the probability changes of
different influencing factors pre- and post-COVID-19.

2017-2019  2020-2021 Tendency
Type of accident  capsize 35.10 % 83.10 % 1
fire/explosion 19.60 % 1.91 % |
overboard 16.30 % 5.06 % l
Voyage segment  coastal waters 31.10 % 77.90 % 1
open sea 20.80 % 3.29% 1
port 20.30 % 1.79 % !
Ship operation Fishing 6.62 % 20.50 % )
Loading/ 10.20 % 2.66 % 1
unloading
Manoeuvring 11.90 % 2.30 % l

Furthermore, a noteworthy transition is observed in ship typologies,
with ‘bulk carriers’ supplanting the erstwhile prevalent ‘cargo ships,’
suggesting a surge in the deployment of large-scale bulk carriers within
maritime transportation networks. Such vessels warrant heightened
scrutiny and vigilant oversight during operational phases to uphold the
integrity and safety of maritime endeavours. Concurrently, a discernible
escalation in the probability of accidents transpiring in open seas is
discerned, plausibly attributable to protracted long-distance voyages
spanning global maritime routes. This necessitates the implementation
of more rigorous safety protocols to ensure the secure navigation of
vessels across expansive oceanic expanses.

Moreover, the heightened probability of ‘on passage’ operations
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post-pandemic signifies the proliferation of vessels embarking on
extensive transcontinental journeys. This underscores the imperative for
crews and ship managers to exercise heightened vigilance and prudence
in navigating vessels, particularly during protracted long-haul voyages.
Thus, it is incumbent upon ship managers and regulatory bodies to
accord heightened attention to and adeptly manage scenarios encom-
passing crew-related accidents, the operation of large bulk carriers,
transoceanic voyages, and extensive maritime traverses, thereby un-
derpinning the safety and dependability of maritime traffic networks.

5.4. Implications

The findings of this study reveal a complex relationship between the
COVID-19 pandemic, implemented safety measures, and maritime
safety outcomes. By highlighting significant shifts in accident patterns,
risk factors, and operational dynamics, this study provides valuable in-
sights into the effectiveness of safety interventions and their broader
implications for maritime stakeholders. To reflect these, the implica-
tions are structured into five key points.

(1) Effectiveness of pandemic safety measures.

This study assessed the effectiveness of key safety measures,
including stricter port health inspections, reduced crew changes,
mandatory quarantine, and enhanced digital reporting, by comparing
accident patterns before and after the pandemic.

The effectiveness of these measures is evaluated through observed
accident pattern changes. For example, reductions in collisions and fire/
explosion incidents in Tables 9 and 10 suggest that stricter regulatory
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Fig. 12. Prior probability analysis in ‘very serious’

compliance, reduced port congestion, and remote oversight contributed
positively to safety outcomes. Conversely, the increase in overboard
incidents (from 12.6 % to 20.3 % in Table 12) indicates that some
measures, particularly those limiting crew mobility and rotations, had
unintended adverse effects on crew welfare. This dual impact un-
derscores the need for balanced approaches that improve safety without
overburdening seafarers.

(2) Pandemic impacts on maritime accident dynamics.

The overall decline in reported accidents (Table 9) occurred during
the pandemic, partly due to global economic slowdowns and restricted
shipping activity. However, accident typologies shifted. Bulk carriers
were disproportionately involved in severe post-pandemic accidents,
and overboard incidents rose (Table 10). These patterns reveal that
while safety measures reduced some traditional risks, they also created
new vulnerabilities linked to workforce stress, operational adjustments,
and concentrated vessel activity.

(3) Structural shifts in vessel attributes and accident risk.

The analysis shows that ‘breadth’ and ‘deadweight’ became more
influential RIFs after the onset of COVID-19. This aligns with external
evidence indicating that containerships grew larger during this period
(15-20 % increase according to Clarkson), while dry bulk carriers
remained stable and oil tankers saw few new deliveries, with large
vessels continuing to dominate but without a notable size change.
Hence, the increased influence of breadth and deadweight in our model
is likely driven by the size growth of containerships rather than uniform
trends across all ship types. Larger breadth and higher deadweight are
directly associated with reduced manoeuvrability, stability constraints,
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casualty type pre-COVID-19.

and grounding risks, particularly in confined waterways and congested
port approaches. Their heightened influence therefore reflects genuine
changes in fleet composition and operational exposure, rather than a
statistical artifact.

(4) Strategic adjustments for stakeholders.

The BN model outputs and TRI-based scenario analysis point to
actionable strategies. For ship operators, the rise in capsizing and
overboard risks (Tables 11-12) highlights the need for reinforced sta-
bility checks, stricter maintenance adherence, and enhanced fall pro-
tection systems. For regulators, declining collision rates but rising
ground-contact incidents suggest a need for digitalised COLREGs over-
sight and improved remote inspection tools (Table 10). For port au-
thorities, the higher probability of severe accidents in poor visibility and
high-wind scenarios (Figs. 8-9) demonstrates the importance of
enhanced meteorological monitoring, dredging, and night navigation
support. For supply chain managers, the shift from container ships (10.8
% to 3.85 %) to bulk carriers (10.8 % to 24.4 %) (Fig. 7) underscores the
importance of adaptive routing strategies and predictive analytics. From
a broader regulatory perspective, these results also indicate the need to
adjust inspection priorities to focus on vessel categories most exposed to
post-pandemic risks, such as bulk carriers and fishing vessels.

By directly linking simulation results to stakeholder actions, the
findings provide a structured roadmap for evidence-based policy and
operational reform.

(4) Crew welfare and long-term safety considerations.

The BN analysis of occupational safety scenarios (Figs. 12-13) shows
rising probabilities of overboard and open-sea incidents (28.9 % to 42.6
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Fig. 13. Prior probability analysis in ‘very serious’ casualty type post-COVID-19.
Table 12 5.5. Extension to other crisis scenarios and future directions
able

When the probability of a maritime accident being ‘very serious’ is 100 %, the
probability changes of related influencing factors pre- and post-COVID-19.

2017-2019  2020-2021 Tendency
Type of occupational 27.40 % 20.30 % |
accident accident
overboard 12.60 % 20.30 % 1
Voyage open sea 28.90 % 42.60 % 1
segment
port 21.60 % 9.88 % !
Ship type cargo ship 19.50 % 17.10 % 1
bulk carrier 17.40 % 23.90 % 1
Ship operation on passage 44.10 % 51.40 % 1
loading/unloading 11.80 % 6.25 % l
manoeuvring 9.61 % 4.10 % 1

%), reflecting increased long-haul voyages and reduced crew changes.
These trends align with the qualitative interpretation of fatigue and
isolation risks in Section 4.2. Thus, implications extend beyond technical
fixes: mental health monitoring, regulated crew rotation, and onboard
psychological support systems should be prioritised alongside training
and safety culture initiatives.

By systematically learning from the COVID-19 experience, the
maritime industry can design resilient frameworks to manage not only
pandemics but also other large-scale disruptions such as geopolitical
conflicts or canal blockages.
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Although this study focuses specifically on the COVID-19 pandemic,
the proposed BN-based framework is not limited to pandemic-related
disruptions. The methodological foundation, linking RIFs with acci-
dent outcomes through probabilistic reasoning, is sufficiently flexible to
accommodate a wide range of large-scale crisis scenarios, provided that
relevant datasets are available.

For example, crises such as the Suez Canal blockage (2021), the Red
Sea geopolitical disruptions, or future large-scale port closures could be
analysed using the same framework. By adjusting the input dataset to
reflect accident reports, vessel traffic records, or operational disruptions
specific to these crises, the model could capture how risk factors and
accident probabilities shift under different external pressures.

In practical terms, the framework could be extended in two
directions:

Crisis-specific RIFs: Introducing additional risk factors unique to
non-pandemic crises (e.g., navigational constraints in canal blockages,
security threats in conflict zones).

Comparative scenario analysis: Applying the model to multiple crises
to identify common vulnerabilities versus crisis-specific risk patterns,
thereby supporting proactive preparedness strategies.

This study demonstrates that pandemic-induced changes have last-
ing effects on accident causation patterns. Building on this, future
research should focus on: Integrating AIS, port congestion, and real-time
monitoring data with BN models, assessing the long-term impacts of
reduced workforce availability and delayed maintenance, developing
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Al-driven predictive risk models for evolving operational patterns, and
evaluating the effectiveness of crisis-response mechanisms across
different regulatory regimes.

These directions will advance the applicability of the framework and
enhance its value as a decision-support tool for managing diverse
maritime crises.

6. Conclusions

This research analyses the profound effects of the COVID-19
pandemic on maritime safety, meticulously examining the evolution of
maritime accident trends before and after the pandemic’s onset. By
meticulously analysing extensive datasets from the GISIS and the IHS-
LRF database, this study has pinpointed pivotal factors that shape
maritime accident trends and appraised the effectiveness of prevailing
safety protocols. Our analysis, grounded in a data-driven BN framework,
has unveiled the pandemic’s profound imprint on maritime safety dy-
namics, highlighting shifts in safety paradigms and the advent of un-
precedented risk factors. The altered shipping patterns and the
challenges posed by regulatory compliance in the wake of the pandemic
have emerged as specific risks, which our study has objectively quan-
tified. The implications of these findings are far-reaching for policy-
makers, industry stakeholders, and maritime professionals. They
underscore the necessity for a nuanced understanding of the post-
COVID-19 maritime safety landscape to inform strategic decisions
aimed at bolstering safety measures and mitigating the risks of maritime
accidents.

From a practical perspective, the findings can support the IMO and
flag states in updating risk management guidelines, particularly by
prioritising vessel categories and operational phases that showed
heightened accident involvement during the pandemic. The demon-
strated robustness of the TAN framework also highlights its readiness for
integration into digital decision-support systems, enabling probabilistic
risk assessment to be embedded within operational monitoring plat-
forms. Specific use cases include: guiding port state control in tailoring
inspection priorities toward higher-risk vessel types (e.g., bulk carriers
and fishing vessels); assisting shipowners in adopting targeted stability
and occupational safety measures; and enabling classification societies
to refine rules relating to vessel breadth, deadweight, and stability under
crisis conditions.

The restricted post-crisis period (2020-2021) constrains the ability
to capture long-term or delayed impacts of the pandemic, such as those
arising from prolonged crew fatigue, deferred maintenance, or evolving
trade patterns. As more accident data and records become available
from 2022 onwards, future research will expand the dataset to enable a
more robust comparative analysis and better distinguish between short-
term disruptions and long-term structural changes in maritime safety.
Another limitation concerns class imbalance: 64.9 % of cases are clas-
sified as ‘very serious,” which may bias the model toward the majority
class. While the real-world distribution was preserved here, future work
will explore rebalancing strategies to improve minority class detection.

Looking forward, there remains an imperative need for further
research to uncover additional determinants of maritime accidents and
to refine predictive models that can better anticipate and mitigate these
risks. For instance, the data could be reclassified based on the different
stages of COVID-19 response across countries (e.g. national quarantine
periods) to enable a more in-depth analysis of the impact. While
acknowledging the limitations inherent in our study, it nonetheless en-
riches the maritime safety discourse, offering a robust foundation for
future research endeavours and policy formulation within the maritime
sector.
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