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A B S T R A C T

Maritime transportation is a vital component of global trade, yet maritime accidents pose significant risks with 
far-reaching consequences, including human casualties, economic losses, and environmental damage. The high- 
risk nature of this sector calls for in-depth, data-driven analysis to enhance risk assessment and accident pre
vention. While traditional approaches such as probabilistic risk analysis have advanced the understanding of 
maritime safety, they often overlook the evolving nature of risk under global crises, such as the COVID-19 
pandemic (2020), the Ever Given blockage in the Suez Canal (March 2021), ongoing geopolitical conflicts (e. 
g., Russia-Ukraine since 2022), and the recent Red Sea crisis (2024). To overcome this critical research gap, this 
study proposes a crisis-aware maritime risk assessment framework based on Bayesian Network (BN), oper
ationalised through a Tree-Augmented Naïve Bayes (TAN) model, using the COVID-19 pandemic as a case study. 
By analysing maritime accident patterns before and after the pandemic, the model reveals shifts in accident 
dynamics and emerging risk factors. The BN approach enables objective, interpretable analysis of how under
lying causes and safety interventions have evolved in response to the crisis. Additionally, this study indirectly 
assesses the effectiveness of safety measures implemented during the pandemic and highlights areas for 
improvement to enhance future resilience. The findings provide actionable insights for policymakers, regulators, 
and industry stakeholders, supporting the development of more adaptive and robust maritime safety strategies to 
address future global disruptions.

1. Introduction

Maritime transportation forms the critical infrastructure for global 
trade and commerce, facilitating the efficient movement of goods across 
vast oceans [1]. Despite its indispensable role, maritime transport is 
inherently associated with risks, and accidents may result in severe 
human casualties and substantial environmental damage. Consequently, 
ensuring maritime safety at sea and reducing accident risks have always 
been paramount concerns for the global shipping industry and interna
tional regulatory authorities [2].

In recent years, a series of disruptive events have presented un
precedented challenges to maritime safety. The COVID-19 pandemic 
(2020), the Ever Given blockage in the Suez Canal (March 2021), 
geopolitical conflicts such as Russia-Ukraine, and the recent Red Sea 
crisis have not only disrupted global supply chains but also reshaped 
shipping patterns and altered risk profiles in the maritime industry [3,

4]. Disruptions in global supply chains, shifts in shipping patterns, and 
changes in accident patterns. These “shock events” have demonstrated 
that crises can trigger both economic disruptions and new safety chal
lenges, underscoring the urgent need to understand their impact on 
maritime accident trends [5,6].

To capture the full impact of crises on maritime safety, it is essential 
to examine accident dynamics before and after such events, revealing 
both direct and indirect consequences. However, this requires compre
hensive datasets covering maritime accidents before, during, and after 
the crisis events, together with robust methods capable of capturing 
complex interdependencies among risk factors. The COVID-19 pandemic 
offers a unique opportunity to investigate these dynamics, serving as a 
case study to examine how global crises can reshape maritime safety 
conditions and risk evolution [7–9].

Traditional methods, such as probabilistic risk analysis [10], have 
provided valuable insights into the causes and factors influencing 

* Corresponding authors.
E-mail addresses: Huanhuan.Li@soton.ac.uk (H. Li), z.yang@ljmu.ac.uk (Z. Yang). 

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

https://doi.org/10.1016/j.ress.2025.111783
Received 25 April 2025; Received in revised form 26 August 2025; Accepted 21 October 2025  

Reliability Engineering and System Safety 266 (2026) 111783 

Available online 22 October 2025 
0951-8320/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-4293-4763
https://orcid.org/0000-0002-4293-4763
https://orcid.org/0000-0001-7920-2665
https://orcid.org/0000-0001-7920-2665
https://orcid.org/0000-0003-1385-493X
https://orcid.org/0000-0003-1385-493X
mailto:Huanhuan.Li@soton.ac.uk
mailto:z.yang@ljmu.ac.uk
www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2025.111783
https://doi.org/10.1016/j.ress.2025.111783
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2025.111783&domain=pdf
http://creativecommons.org/licenses/by/4.0/


maritime accidents [11–13]. However, they often suffer from subjec
tivity and limited scope, which constrain their ability to fully capture the 
multifaceted nature of maritime accident risks. In contrast, data-driven 
approaches, exemplified by the Bayesian Network (BN), offer a more 
objective and comprehensive understanding of maritime accident risks 
by leveraging real-world data and probabilistic reasoning [14–17]. 
Within this family, the Tree Augmented Naïve Bayes (TAN) model 
provides a powerful extension capable of modelling variable de
pendencies while maintaining computational efficiency [18–20].

Building on these advancements, this study proposes a novel data- 
driven BN framework to investigate evolving trends in maritime acci
dents before and after crisis events, with the COVID-19 pandemic used 
as an illustrative case. Specifically, the framework integrates accident 
datasets from the pre-pandemic (2017-2019) and pandemic (2020- 
2021) periods to: (i) Identify pivotal Risk Influencial Factors (RIFs) 
shaping maritime accident outcomes; (ii) compare how accident trends 
and risk profiles shifted across pre- and post-crisis periods; and (iii) 
evaluate the effectiveness of existing safety measures under changing 
global conditions. The findings of this study are expected to deepen 
understanding of the pandemic’s long-term effects on maritime safety 
and contribute to the development of strategies to mitigate the associ
ated risks.

The International Maritime Organization’s (IMO) Global Integrated 
Shipping Information System (GISIS) serves as a crucial repository for 
maritime accident investigation datasets [21]. However, its direct use is 
constrained by missing static vessel information. To overcome this 
limitation, this study supplements GISIS records with static ship attri
butes obtained from Lloyd’s Register Fairplay (LRF) in Information 
Handling Services (IHS), thereby constructing a comprehensive accident 
dataset for 2017–2021. Based on this enriched database, a data-driven 
BN model is developed to examine the impact of the COVID-19 
pandemic on maritime accidents.

The specific innovative contributions are as follows: 

(1) This paper systematically examines how the COVID-19 pandemic 
has influenced maritime accident trends by comparing data from 
pre- and post-pandemic periods, revealing shifts in safety dy
namics and risk profiles.

(2) This paper introduces a novel data-driven BN model on real- 
world maritime accident data to provide an objective assess
ment of risk. This approach provides a systematic framework for 
identifying key risk factors and evaluating the effectiveness of 
current safety measures.

(3) Through the BN model, this paper identifies specific risks asso
ciated with the pandemic, such as changes in shipping patterns, 
regulatory compliance challenges, and new safety concerns, 
highlighting a deeper understanding of the pandemic’s unique 
impact on maritime safety.

The remainder of this paper is organised as follows. Section 2 reviews 
the use of BN in maritime risk analysis, revealing the state-of-the-art in 
the field. Additionally, it evaluates the effects of COVID-19 on shipping 
and identifies critical gaps in the literature. Section 3 presents a new 
framework for analysing the impact of the global crisis on maritime 
accident trends, including creating a novel maritime accident database. 
This section also details the identification process for RIFs and explains 
the steps in constructing a data-driven model. The methodology and 
model verification results are presented in Section 4, providing a 
comprehensive explanation of the techniques used in the study. Section 
5 investigates the changes in maritime accidents before and after the 
pandemic. By analysing shifts in RIFs from multiple perspectives, it 
highlights significant trends and dynamics of maritime accident pat
terns. To conclude, Section 6 summarises the key findings of the study. It 
further elaborates on the broader implications of these results, empha
sising their relevance to future research and practice.

2. Literature review

2.1. A systematic analysis

BN stands out as a powerful probabilistic graphical model with sig
nificant advantages in the realm of maritime accident research [22]. A 
comprehensive retrieval on the Web of Science (WoS), utilising the 
keywords ‘Bayesian network’ and ‘maritime accident’, was conducted, 
focusing solely on documents indexed in the Science Citation Index 
Expanded (SCI-Expanded) and Social Sciences Citation Index (SSCI) up 
to February 2025. This rigorous search yielded a total of 232 relevant 
documents. The initial content classification of the collected literature 
indicates a wide range of previous applications of BN in maritime ac
cident analysis. The study of maritime accidents has evolved into a 
multifaceted field, encompassing a wide range of topics aimed at un
derstanding and mitigating risks associated with maritime operations. 
Through keyword clustering, the visualisation result is displayed in 
Fig. 1. The primary research themes can be summarised as follows: 

(1) Risk assessment and scenario modelling. Risk assessment remains 
a cornerstone of maritime safety research [23]. Studies utilise 
advanced probabilistic tools, such as BNs and their variants, to 
model accident scenarios and evaluate potential risks [24,25]. 
Particular focus has been placed on specific contexts, such as ice 
navigation and oil spill scenarios, where impact scenario models 
are developed to predict and minimise the consequences of ac
cidents [26].

(2) Human and organisational factors [27]. A significant body of 
work examines the contribution of human errors and organisa
tional factors to maritime accidents. The Human Factors Analysis 
and Classification System (HFACS) framework is widely applied 
to investigate how individual and systemic errors lead to failures 
[28–30]. This line of research also explores the role of organisa
tional management and maintenance practices in accident 
prevention.

(3) Collision risk and decision support. Collision risk is a critical topic 
within the field, particularly in congested maritime routes [31,
32]. Research efforts focus on developing decision support sys
tems to assist in collision avoidance and analysing factors such as 
corrosion and ship manoeuvrability that may exacerbate collision 
risks [33]. These studies aim to improve real-time decision-
making for enhanced operational safety.

(4) Marine transportation systems. Marine transportation systems 
are explored in terms of their safety and efficiency [34,35]. This 
includes investigating decision-making processes, inspection 
protocols, and collision risk management in maritime logistics. 
Additionally, there is a growing interest in the safety of emerging 
transportation routes, such as the Northern Sea Route [36], 
where extreme environmental conditions pose unique challenges.

(5) Formal Safety Assessment (FSA). The adoption of FSA method
ologies has become a standard practice for systematic accident 
analysis and risk evaluation [37]. This approach integrates 
human error analysis, accident scenario modelling and the 
identification of risk factors to develop comprehensive safety 
measures [38].

(6) Development of frameworks and management systems. Research 
on frameworks for maritime safety [39] emphasises the integra
tion of information systems and decision-making processes [40]. 
These frameworks aim to enhance the management of maritime 
accidents and support safety strategies for transportation systems 
[41]. Applications to specific contexts, such as Arctic shipping 
and fishery operations, further underscore the practical relevance 
of these studies [42].

(7) Maritime accident management and response. Maritime accident 
management encompasses the development of strategies to 
mitigate the impact of various accidents [43,44]. Decision 
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support systems are central to this theme, with particular atten
tion given to the safety of fisheries and other critical maritime 
industries [45]. This research highlights the importance of pro
active measures in minimising loss and ensuring sustainability.

(8) Severity and performance evaluation. Accident severity and 
performance evaluation are key aspects of safety assessment. 
Studies in this domain focus on identifying determinants of ac
cident severity and analysing their consequences for maritime 
operations. Groundings and vessel performance are frequently 
examined to develop better safety protocols and predictive tools 
[39,46].

In conclusion, maritime accident research encompasses a wide 
spectrum of challenges, including risk quantification, human factor 
analysis, and the advancement of decision-support tools and manage
ment frameworks. These themes reflect a comprehensive effort to 
enhance safety, mitigate risks, and improve the overall resilience of 
maritime operations in both traditional and emerging contexts.

The temporal analysis of research themes in maritime accidents re
veals dynamic shifts and emerging trends during the last decade, as 
shown in Fig. 2. Early studies (2014-2016) primarily focused on foun
dational topics such as accident severity (#0) and collision risks (#2), 
which laid the groundwork for understanding maritime safety. As the 

Fig. 1. The clustering analysis of literature keywords in maritime accidents.

Fig. 2. The temporal analysis of research themes in maritime accidents.
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field evolved, research expanded to include decision-making processes 
(#3) and formal safety assessments (#4), with peak activity occurring 
between 2018 and 2022. In recent years, there has been a noticeable 
shift towards data-driven methodologies, particularly the adoption of 
Bayesian networks (#5) for probabilistic risk modelling and dynamic 
scenario simulations. Themes such as maritime transportation frame
works (#6) and accident management strategies (#7) have remained 
consistently relevant, highlighting their central role in addressing 
practical safety challenges. Furthermore, the increasing emphasis on 
risk assessment in specific scenarios, such as ice navigation and oil spill 
mitigation (#8), underscores the growing attention to environmental 
and situational factors in maritime safety.

This evolution reflects a transition from traditional accident analysis 
to proactive risk prevention and decision support, driven by techno
logical advancements and the demand for robust management frame
works. It also demonstrates that maritime accident patterns are dynamic 
over time, influenced by major milestone events. However, to the au
thors’ best knowledge, the impact of global crisis events on maritime 
accident patterns has not been investigated, despite its crucial role in 
effective maritime accident management when preparing for future 
global crises. These insights provide a roadmap for future research, 
emphasising the integration of cutting-edge techniques with real-world 
applications to enhance maritime safety and resilience.

2.2. Applications of BN in maritime accidents

Numerous studies have effectively used BN for conducting risk an
alyses under various specific conditions related to maritime accidents. 
For instance, Sevgili et al. [47] constructed a data-driven BN based on 
2080 accident reports from the US Coast Guard database to predict oil 
leakage probabilities following tankship accidents. Additionally, Kaptan 
[48] integrated BN within a fuzzy rule to assess the risk levels of 
roll-on/roll-off (RORO) ships during the stowage process, providing 
valuable insights to mitigate operational risks for stakeholders. Ugurlu 
et al. [49] combined BN with chi-square methods to analyse fishing 
vessel accidents spanning from 2008 to 2018, revealing significant 
correlations between accident types and various ship-related parame
ters. Fan et al. [20] introduced an innovative object-oriented BN 
framework combined with an enhanced machine-learning approach and 
mutual information theory to assess maritime risks, identifying key 
influential factors and non-linear relationships in both traditional acci
dents and piracy-related incidents, with ship type identified as a major 
contributor to unsafe conditions.

Further, some studies have focused on specific maritime regions. 
Zhao et al. [50] employed BN to analyse potential causes of maritime 
accidents based on over 200 incidents in the Yangtze River waters be
tween 2013 and 2019, suggesting that improved crew retention and 
autonomous ship development could help reduce accidents. Jiang et al. 
[51] proposed a BN-based model to evaluate ship stranding probabilities 
in fluctuating backwater zones, emphasising the temporal and spatial 
factors that influence accidents in the Three Gorges Reservoir. Addi
tionally, Zhao et al. [52] utilised fuzzy fault tree analysis and BN to 
assess navigation accident probabilities at Qinzhou Port. Jiang et al. 
[53] applied a BN-based model to analyse maritime accident risks along 
the Maritime Silk Road, manually collecting and analysing risk data to 
identify key influencing factors and conducting scenario analysis for 
accident prevention insights.

Human factors also play a crucial role in maritime accidents, with BN 
being used to predict probabilities of unsafe behaviours among seafarers 
[54], analyse accident reports [55], introduce new human factors 
analysis frameworks [56], and assess the impact of pilotage on accident 
probabilities [57]. Moreover, BN has been combined with other tech
niques to develop accident prevention strategies [58]. Fan et al. [5] 
introduced a data-driven BN that innovatively integrates human factors 
into maritime safety analysis, using a TAN to model interdependencies. 
Validated through sensitivity analysis and historical data, this model 

reveals critical risk factors and differentiates the impacts of human error 
across accident types. Wang et al. [59] integrated navigation simulation 
with Dynamic Bayesian Network (DBN) modelling to assess 
seafarer-related accident risks, using a collision case study to demon
strate causal pathways through sensitivity analysis.

BN has also been widely used to assess and predict the severity of 
maritime accidents. For example, Khan et al. [60] employed BN to 
investigate the handling of dangerous goods in port environments, while 
Cakir et al. [61] applied BN to oil spill accidents. Similarly, Wang and 
Yang [62] developed a BN-based method to explore the severity of water 
traffic accidents, and Zhang et al. [63] conducted a comparative analysis 
of maritime accident casualties. Wu et al. [64] proposed a new BN 
method that reduces reliance on expert judgment and demonstrated its 
reliability through validation with historical navigation accident data.

In summary, BN has proven to be a highly effective tool in maritime 
accident risk analysis, offering precise insights into accident probabili
ties and complex interdependencies while adeptly managing uncer
tainty. Although extensive literature explores the application of BN in 
various aspects of risk analyses in maritime accidents, there is a 
noticeable gap in research addressing the impact of global crises such as 
COVID-19 on maritime accidents. Given the significant disruptions 
caused by the COVID-19 pandemic on the global shipping and supply 
chains, it is imperative to comprehensively investigate its influence on 
maritime accidents in the post-pandemic era. Such research would 
contribute to developing effective risk management strategies and pro
moting sustainable growth in maritime transportation. More impor
tantly, it will provide a feasible framework for dealing with the impact of 
crisis events on maritime accidents in future

2.3. The impact of COVID-19 on maritime transportation

As shown in Table 1, the COVID-19 pandemic substantially affected 
the maritime transportation sector, disrupting ship operations, port ac
tivities, supply chain management, and overall safety. These disruptions 
have exposed critical vulnerabilities within the industry, particularly in 
maritime traffic and accident risks, emphasising the urgent need for 
innovative solutions and adaptive strategies to mitigate these effects and 
enhance resilience.

Ship operations faced severe challenges due to port restrictions, 
which hindered crew changes and cargo handling, while prolonged 
work contracts led to widespread fatigue and mental stress among sea
farers [72]. Studies, such as Narasimha et al. [65], revealed substantial 
reductions in ship traffic and cargo volumes, particularly in Indian 
seaports. Wang et al. [66] addressed post-pandemic challenges by 
developing a trajectory recognition and classification model to manage 

Table 1 
The impact of COVID-19 on research on maritime accidents.

Impact area Specific impacts Research and solutions

Ship Operations ¨ Port restrictions hindered 
crew changes and cargo 
handling.

¨ Prolonged work contracts 
caused fatigue and mental 
stress.

¨ Highlighted reduced traffic 
and cargo volumes in Indian 
ports [65].

¨ Developed models to manage 
increased port traffic and 
docking times [66].

Port Operations ¨ Lockdowns disrupted 
goods flow and reduced 
port capacity.

¨ Global maritime 
connectivity declined.

¨ Created resilience models for 
port operations [67].

¨ Examined connectivity drops 
due to restrictions [68].

Supply Chain 
Management

¨ Demand for medical 
supplies surged, while oil 
demand dropped.

¨ JIT supply chains faced 
severe backlogs.

¨ Built models to assess demand 
shifts [69].

¨ Used AIS data for port 
clustering and monitoring 
[70].

Safety Concerns ¨ Fatigue and delays 
increased accident risks.

¨ Proposed tools to improve 
accident prevention in 
pandemic contexts [71].
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increased port traffic and docking times, noting a rise in daily berth 
utilisation for cargo ships and oil tankers.

Port operations were also significantly affected, with lockdowns 
disrupting the flow of goods and reducing port capacity. Global mari
time connectivity declined as a result of these restrictions [73]. Panahi 
et al. [67] developed a resilience assessment model to support sustain
able port operations during the uncertainties brought on by COVID-19, 
while Guerrero et al. [68] examined connectivity drops and their 
regional impacts, revealing variations based on government-imposed 
mitigation measures.

Supply chain management in the maritime sector experienced pro
found disruptions [65]. A surge in demand for medical supplies coin
cided with a sharp drop in oil demand, placing immense pressure on 
Just-in-Time (JIT) supply chains, which struggled with severe back
logs and bottlenecks [71]. As COVID-19 restrictions begin to ease and 
demands recover, the maritime transportation system is tested further in 
its ability to adapt to changing market conditions [74–76]. Zhao et al. 
[69] examined changes in dry bulk and container transport by 
employing the China Coastal Bulk Freight Index (CCBFI) and the Baltic 
Dry Index (BDI) as key indicators, and developed models to capture the 
external impacts of COVID-19 on the shipping industry. Zheng et al. [70] 
developed a port classification model based on Automatic Identification 
System (AIS) data to monitor and predict ship behaviour, highlighting 
the effectiveness of port clustering methods in tracking maritime 
transmission paths during the pandemic.

In addition to operational challenges, the pandemic increased safety 
risks in the maritime sector. Fatigue and delays contributed to higher 
accident risks, prompting researchers to propose tools for accident 
prevention in pandemic contexts. These efforts aim to improve safety 
measures and ensure the resilience of maritime operations in the face of 
future disruptions.

As the maritime industry recovers, it must continue to adapt to the 
evolving challenges introduced by the pandemic. This study aims to 
provide a comprehensive and academically precise analysis of these 
impacts, with a particular focus on maritime traffic and accident risks. 
The industry can enhance its resilience, sustainability, and safety by 
addressing these challenges in a post-pandemic world.

2.4. Research gaps

The extensive literature review identifies several critical research 
gaps in maritime accident analysis that require further investigation:

(1) Lack of methodologies for quantifying the impact of global crises 
on maritime accidents.

Existing research lacks comprehensive methodologies to systemati
cally assess how various global crises, including economic downturns, 
geopolitical conflicts, pandemics, and natural disasters, influence 
maritime accident patterns. While the COVID-19 pandemic serves as a 
relevant case study due to its widespread disruptions, a broader 
framework is needed to evaluate the effects of different crisis events on 
accident rates, types, and severity. Developing such methodologies is 
crucial for improving risk assessment and enhancing crisis preparedness 
in the maritime sector.

(2) Deficiencies in maritime accident databases and reporting during 
global crises.

Disruptions caused by global crises may compromise the complete
ness, consistency, and accuracy of maritime accident data. Inadequate 
reporting and data loss during such periods hinder the ability to conduct 
thorough analyses of accident trends and risks. Enhancing maritime 
accident databases and reporting systems to account for data in
consistencies and gaps during crisis events is essential for enabling 
reliable risk assessment and accident prevention strategies.

(3) Insufficient integration of global crisis factors in maritime acci
dent risk assessment models.

Current maritime accident risk assessment models often fail to 
incorporate emergent crisis-related factors, such as port congestion, 

workforce shortages, and disruptions in global supply chains. These 
factors, which arise during crises like geopolitical conflicts, pandemics, 
or financial crises, significantly impact navigational safety but remain 
underrepresented in existing models. Incorporating crisis-induced vari
ables into accident risk assessment frameworks will enhance their pre
dictive accuracy and real-world applicability.

To address these gaps, this study develops a data-driven BN frame
work using a TAN model to systematically analyse the impact of global 
crises on maritime accidents. While COVID-19 serves as a case study due 
to its extensive data availability, the proposed methodology is designed 
to be adaptable to other crisis events, providing broader insights into 
maritime accident dynamics and contributing to more effective risk 
management and policy development.

3. Methodology

3.1. The proposed framework

This study employs a data-driven BN model to examine the impact of 
global crises on maritime accidents, using COVID-19 as a case study. The 
methodological framework is illustrated in Fig. 3. Maritime accident 
records and incident reports from 2017 to 2021 were collected from the 
IMO GISIS. To address gaps in static vessel data, additional information 
was integrated from the IHS-LRF database.

The dataset was then divided into two distinct periods: 2017–2019 
(pre-pandemic) and 2020–2021 (during the pandemic). The pre- 
pandemic period serves as a baseline to represent the normal maritime 
accident pattern before the occurrence of COVID-19, while the latter 
period captures changes in accident trends during the pandemic. Moving 
forward, GISIS data from 2022 to 2025 will continue to be collected to 
analyse post-pandemic trends once it becomes available. However, the 
currently available 2017–2021 data is sufficient to support the primary 
objective of this study, developing a new framework for analysing the 
impact of global crises on maritime accident pattern shifts.

A total of 24 RIFs were identified based on prior literature and IMO 
standards, with precise definitions established for each RIF status. Using 
these datasets and RIFs, separate data-driven BN models were developed 
to assess maritime accident patterns before and after COVID-19 [6]. This 
approach provides a systematic method for evaluating how global crises 
impact maritime safety, enabling more effective risk management and 
policy development.

Model validation was conducted through sensitivity analysis, 
confusion matrix evaluation, axiom testing, and kappa coefficient 
calculation [6]. Finally, a comparative analysis of maritime accidents 
between the two periods highlights the evolving accident characteristics 
in response to the COVID-19 pandemic.

3.2. Dataset collection and generation

To build a reliable dataset for this study, maritime accident infor
mation between 2017 and 2021 was compiled primarily from the IMO 
GISIS and the IHS-LRF databases. The GISIS casualty module provides 
structured records of maritime casualties and incidents reported in 
compliance with IMO requirements. These records contain essential 
attributes such as accident time and location, vessel identity, and a brief 
description of causes. In addition, some cases are accompanied by full 
investigation reports, which provide richer details including ship navi
gational status, prevailing environmental conditions, accident progres
sion, and causal analysis.

Since the GISIS database often lacks complete ship-specific infor
mation (e.g., vessel age, hull construction, hull material, and type), 
static ship data from the IHS-LRF database were used to supplement 
missing attributes. Cross-referencing was performed using each vessel’s 
IMO number and Maritime Mobile Service Identity (MMSI) to merge the 
two sources, ensuring consistency and reliability of the integrated 
dataset.
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The raw accident dataset was initially extracted from GISIS, covering 
1105 accident reports recorded between 1 January 2017 and 31 
December 2021. The subsequent data refinement process followed three 
major steps: 

(1) Data cleansing: Accidents involving fishing vessels were removed 
due to extremely limited information, where only static vessel 
data were available in many cases. These records could not be 
enriched with external sources to support the 23 RIFs required for 
this study. Similarly, incidents involving domestic ferries and 
naval ships were excluded, as they often lacked usable details. 
After this stage, 462 accident records remained.

(2) Data completion: For the retained records, the IHS-LRF database 
was used to fill in missing static vessel attributes such as hull 
material, hull type, vessel age, length, breadth, deadweight, and 
gross tonnage. By systematically matching IMO numbers and 
MMSI identifiers, data gaps were minimised and internal con
sistency was maintained. Following this step, 428 accident re
cords contained complete information relevant to all identified 
RIFs.

(3) Data screening: A double check was conducted on the supple
mented dataset to validate accuracy and relevance. Records were 
excluded if they lacked adequate causal explanations, ship 
equipment details, or environmental conditions necessary for risk 
analysis. After this screening, a total of 402 high-quality accident 
records were retained as the final dataset for subsequent model
ling and analysis.

This integrated database provides a solid and robust foundation for 
the study, enabling an in-depth analysis of maritime accidents during 
the COVID-19 pandemic. Beyond the immediate scope of this research, 
the database serves as a valuable resource for future maritime safety 
studies, offering insights into the complex dynamics of maritime oper
ations during global crises.

3.3. RIF identification

Accurate identification of RIFs is pivotal for precisely pinpointing the 
potential causes and sources of risk in maritime accidents. In this study, 
RIF identification was guided by the IMO classification framework and 
supported by an extensive review of relevant literature [6,8,77] and 
IMO accident reports. RIFs with higher occurrence frequencies were 
carefully screened, leading to the selection of 24 key RIFs spanning 
accident-related, ship-related, environmental, navigational, and human 
factors. This refined dataset enables a systematic examination of how 
COVID-19 has influenced maritime accidents across multiple RIFs.

Following RIF identification, the detailed definition of RIF status 
facilitates quantitative analysis and standardisation of maritime 

accidents. Previous studies often simplified RIF status definitions to 
streamline quantitative modelling, but this reduced analytical precision 
[77] and limited the applicability of results. Recognising the multifac
eted impact of COVID-19, this paper adopts a detailed approach that 
defines the statuses of the identified RIFs within the maritime trans
portation context. For instance, the voyage segment classification pro
vided by the IMO is utilised, including eight distinct geographical 
regions. Furthermore, the ‘ship type’ category has been expanded to 
incorporate offshore vessels, categories that have been neglected in prior 
studies, thereby ensuring a more thorough analysis. Ultimately, all 
recognised RIFs and their respective status descriptions are graphically 
represented in Fig. 4.

3.4. Model construction

The dataset was split into pre-pandemic (2017–2019) and pandemic 
(2020-2021) periods, with separate TAN models constructed to allow 
comparative analysis of COVID-19′s impact on maritime accidents. The 
TAN model was selected due to its ability to account for dependencies 
among variables, offering distinct advantages over Naïve Bayes Network 
(NBN) and Augmented Bayes Network (ABN) models. Unlike NBN, 
which assumes conditional independence among variables, TAN ac
commodates inter-variable dependencies during structure construction, 
providing a more realistic representation of the relationships between 
RIFs in maritime accidents. Compared with ABN, TAN also achieves a 
balance between model flexibility and computational efficiency by 
introducing a tree-based structure, in which each attribute is linked to 
the class variable and at most one other attribute. This approach en
hances interpretability and scalability, making it particularly suitable 
for handling high-dimensional maritime accident data.

The construction of a TAN model begins with structure learning, 
which specifies variable dependencies through a Directed Acyclic Graph 
(DAG) [5,13]. Structure learning can generally be achieved using 
expert-driven approaches, data-driven techniques, or a combination of 
both. In this study, a data-driven strategy was applied, with TAN chosen 
as the learning algorithm. The task of TAN structure learning can be 
expressed as an optimisation problem: identifying a tree structure across 
the attribute variables that maximises the data log-likelihood while 
remaining consistent with the designated class variable [78,79]. To 
address this, the study employed the ‘Construct-TAN’ algorithm intro
duced by Friedman et al. [80], which utilises conditional mutual in
formation to evaluate interdependencies among attribute variables, 
defined as follows: 

IP
(
Xi,Xj|C

)
=

∑

xii ,xji ,ci

P
(
xii, xji, ci

)
log

P
(
xii, xji|ci

)

P(xii|ci)P
(
xji|ci

) (1) 

Here, IP denotes the conditional mutual information, xii refers to the 
ith state of the attribute variable Xi, xji represents the ith state of the 

Fig. 3. The framework diagram of this paper.
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attribute variable Xj, and ci corresponds to the ith state of the class 
variable C. Based on this measure, TAN builds a maximum-weight 
spanning tree to capture the strongest inter-variable dependencies.

Once the qualitative structure of the TAN network is established, 
parameter learning is required to determine the conditional probability 
distribution of each node. For complete datasets, Bayesian Estimation is 
preferred over Maximum Likelihood Estimation because it provides 
more stable and accurate probability estimates, particularly in cases 
with relatively small sample sizes. This step ensures that the constructed 
network not only has a logically consistent structure but also captures 
the statistical characteristics of the observed data.

The final step is to apply the model to risk analysis. The constructed 
TAN models for the two time periods were used to conduct both quali
tative and quantitative analyses. First, the models qualitatively exam
ined changes in RIFs and their interdependencies before and during 
COVID-19. Second, quantitative assessments were carried out, 

including marginal probability estimation of targeted RIFs and the 
ranking of RIFs based on their contributions to maritime accidents.

In summary, TAN integrates the strengths of BN and decision trees, 
offering a versatile, interpretable, and statistically robust framework for 
risk modelling. The two models constructed for the pre-pandemic and 
pandemic periods provide a systematic means of examining how mari
time accident risk factors evolved under the influence of COVID-19.

4. Model validation

4.1. Sensitivity analysis

Sensitivity analysis is essential for addressing uncertainty in mari
time safety, as it identifies how key factors influence critical outcomes. 
This study applies an integrated approach that combines mutual infor
mation, joint probability distributions and the True Risk Influence (TRI) 

Fig. 4. The details of RIFs and states.
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method to capture variable interdependencies, assess their relative 
importance and quantify their impact on accident risk. This multi- 
method design enhances both the robustness and reliability of the 
analysis.

4.1.1. Mutual information
Mutual information is a statistical metric that quantifies the de

pendency between two variables by measuring how much knowledge of 
one reduces uncertainty about the other. Larger values indicate stronger 
associations and greater predictive power. In sensitivity analysis, it is 
commonly applied to gauge the influence of individual variables on a 
target outcome, thereby highlighting the most critical factors within a 
system.

Within the TAN model, the parent node ‘Type of casualty’ is linked to 
24 RIFs as child nodes. Mutual Information Value and Variance of Beliefs 
are computed separately for COVID-19 and the ‘Type of casualty’ node 
across two periods: pre-COVID-19 (2017-2019) and post-COVID-19 
(2020-2021). The results are presented in Fig. 5 and Fig. 6, respec
tively. RIFs with mutual information values exceeding the average are 
identified as having a significant impact on accident severity.

The findings reveal a shift in the key factors influencing accident 
severity before and after COVID-19:

Pre-COVID-19 (2017–2019): The most influential factors were ‘Type 
of accident’ (0.2564), ‘Ship operation’ (0.1081), ‘Ship type’ (0.0882), 
‘Voyage segment’ (0.0747), and ‘Hull type’ (0.0461).

Post-COVID-19 (2020–2021): The critical factors included ‘Type of 
accident’ (0.3582), ‘Ship type’ (0.1376), ‘Ship operation’ (0.0908), 
‘Voyage segment’ (0.0858), ‘Ship age’ (0.0715), ‘Breadth’ (0.0556), and 
‘Deadweight’ (0.0506).

These findings suggest that the maritime industry may have experi
enced structural changes or operational adjustments during the 
pandemic, leading to shifts in the determinants of accident severity. 
Furthermore, the increased weighting of accident types post-COVID-19 
indicates that certain types of accidents became more frequent or se
vere, underscoring the evolving nature of maritime risks in response to 
global disruptions.

These insights also prompt further studies to conduct a deeper root- 
cause analysis of these changes. Understanding why certain types of 
accidents have increased in frequency and severity is crucial and war
rants further investigation, providing valuable guidance for shaping 
future research agendas in the field. Additionally, scientific evidence on 
the impact of reduced crew activities, including restricted social in
teractions, prolonged isolation, and psychological stress in maritime 
work environments, should be further explored as part of the future 
research agenda to better assess their role in maritime accident trends.

4.1.2. Joint probability distribution
Mutual information analysis identified key RIFs across two distinct 

periods. Building on these findings, joint probability distributions were 
applied to assess how different states and variables influence accident 
severity. To preserve the integrity of probability distributions within the 
BN framework, normalisation conditions were enforced. This step en
sures the accurate computation of posterior probabilities for any given 
variable and improves the efficiency of Bayesian inference.

To analyse the impact of each RIF state individually, a probability of 
100 % was assigned to each state, generating joint probability outcomes. 
Results from 2017 to 2019 (pre-pandemic) are shown in Table 2, and 
those from 2020 to 2021 (post-pandemic) are shown in Table 3. The 
calculation results reveal how different RIF states influence accident 
severity, classified into three casualty levels. The most impactful states 
for each RIF are highlighted in bold, while the least impactful states are 
underlined. The first row of each table presents the baseline probabili
ties before any RIF state adjustments. Subsequent rows show how ca
sualty probabilities change when a specific RIF is fixed in a given state.

During the pre-pandemic period, accident severity varied signifi
cantly across different accident types. Occupational accidents had the 
highest probability (96.588 %) of leading to severe casualties, whereas 
contact/crush accidents had the lowest (22.195 %).

The ship operation phase also played a crucial role in accident 
severity. The loading/unloading phase exhibited the highest likelihood 
of serious accidents (85.97 %), while the pilot stage had the lowest 
(20.472 %), indicating that certain operational activities posed greater 
risks.

Among different vessel types, fishing boats had the highest proba
bility of serious accidents (86 %), whereas RORO ships experienced the 
lowest (20.618 %). This suggests that vessel design and operational 
characteristics significantly influenced accident outcomes.

Accidents in different voyage segments also showed varying degrees 
of severity. Incidents occurring in berths had the highest probability of 
severe casualties (87.363 %), whereas accidents in canal areas had the 
lowest (14.872 %). This trend highlights how location-specific factors 
affect accident risks.

Finally, hull type emerged as another key determinant of accident 
severity. Wooden ships were most vulnerable, with an 87.065 % prob
ability of severe casualties, while light alloy hulls had the lowest (13.109 
%), underscoring the importance of ship material in accident resilience.

In the post-pandemic period, significant shifts were observed in ac
cident probability distributions, particularly in open waters, suggesting 
changing risk patterns in maritime operations. Notably, fishing vessels 
exhibited a heightened likelihood of severe accidents, reflecting 
evolving industry challenges and vulnerabilities.

These findings suggest that structural and operational adjustments in 
the maritime sector during the pandemic may have had a significant 

Fig. 5. Visualisation of different results between ‘Type of casualty’ and RIFs pre-COVID-19.
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impact on accident severity. The heightened risks associated with spe
cific accident types and vessel categories underscore the urgent need for 
adaptive risk mitigation strategies to address evolving maritime safety 
challenges. Moreover, these insights provide valuable perspectives for 
further exploration, particularly in understanding why certain countries 
or regions managed the COVID-19 pandemic more effectively than 
others. They also offer a foundation for investigating how these findings 
can inform assessments of the effectiveness of decisions made by 
different countries and companies in managing COVID-19 and miti
gating its impact on ship safety.

4.1.3. True risk influence
The TRI method, pioneered by [81], stands as a robust tool for 

assessing multivariate sensitivity, finding extensive application within 
maritime safety research. Given the multitude of states inherent in the 
risk factors under consideration (RIF), this study adopts the TRI meth
odology to gauge the influence of each key risk factor on accident 
severity. The TRI value offers a comprehensive insight into the magni
tude of each risk factor’s impact [77,79]. The specific calculation for
mula is as follows. 

TRI =
|P0 − Pmin| + |P0 − Pmax|

2
. (2) 

where P0 is the baseline probability of the target node (e.g., type of 
casualty) given the current BN without intervention. Pmax indicates the 
maximum conditional probability of the target node when a risk factor 
(RIF) is forced into the state that has the strongest effect. Pmin denotes 
the minimum conditional probability of the target node when the same 
RIF is forced into the state that has the weakest effect.

Pmax and Pmin are calculated by systematically forcing each possible 
state of a risk factor to 100 % in the BN and recording the resulting 
probability of the target variable. The maximum probability value (Pmax) 
is highlighted in bold, while the minimum probability value (Pmin) is 
underlined in Table 2 and Table 3 in the two periods, respectively. The 
TRI calculation results and ranking of all RIFs in the two periods are 
shown in Table 4 and Table 5. It can be clearly seen from the results that 
‘Type of accident’ is always the biggest factor affecting ‘Type of casu
alty’. Moreover, the same RIF has different effects on accidents of 
different severity. The TRI analysis reveals critical insights for maritime 
safety management. The consistent influence of ‘Type of accident’ on 
casualty severity highlights the need for targeted safety measures 
tailored to specific accident types. Additionally, the shift in risk factor 
rankings pre- and post-COVID-19 underscores the importance of adap
tive risk management strategies that account for changing global con
ditions. These findings emphasise the necessity for dynamic and context- 
specific safety frameworks to enhance maritime resilience and reduce 

accident severity.
The key implications for maritime safety management derived from 

the above findings are listed below.
(1) Targeted safety measures for specific accident types.
The consistent influence of ‘Type of accident’ on casualty severity 

underscores the necessity for accident-specific safety interventions. 
Maritime authorities and companies should develop tailored risk miti
gation strategies based on high-risk accident types to minimise severe 
casualties and enhance overall safety resilience.

(2) Adapting risk management to changing global conditions.
The shift in RIF rankings pre- and post-COVID-19 highlights how 

external disruptions can alter maritime risk dynamics. For instance, 
‘Ship type’ rose in importance post-pandemic, suggesting that different 
vessel categories faced heightened risks due to operational or regulatory 
changes. This finding underscores the importance of adaptive risk 
management frameworks that can respond to evolving maritime chal
lenges, including pandemics, economic downturns, and geopolitical 
disruptions.

(3) Understanding structural and operational adjustments in mari
time transport.

The variations in RIF rankings suggest that structural and/or oper
ational adjustments in the maritime industry during the pandemic 
influenced accident severity. These changes suggest solutions relating to 
altered shipping routes, reduced crew availability, new regulatory 
constraints, or economic pressures affecting maintenance schedules and 
vessel operations. Understanding these shifts can guide policy re
finements and industry best practices to prevent future risks under 
similar crisis scenarios.

(4) Future research and policy development for maritime resilience.
These findings highlight the need for continuous monitoring of ac

cident patterns to inform evidence-based policymaking. The results also 
prompt further investigations into why certain risk factors became more 
significant post-pandemic and how different maritime policies and 
operational strategies contributed to varying safety outcomes across 
regions. Future research should explore the long-term impacts of global 
crises on maritime safety and evaluate whether regulatory interventions 
implemented during the pandemic had a lasting effect on risk reduction.

(5) Broader implications for global crisis preparedness.
The observed shifts in maritime risk factors during the pandemic can 

inform broader crisis preparedness strategies. The maritime sector must 
develop flexible safety policies that can quickly adapt to disruptions, 
ensuring resilience against future global crises. Additionally, enhanced 
data-driven risk assessment frameworks should be established to pro
vide real-time insights into accident trends, enabling proactive safety 
measures rather than reactive responses.

Fig. 6. Visualisation of different results between ‘Type of casualty’ and RIFs after COVID-19.
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4.2. Model correctness verification

To enhance the robustness of the BN-based model, this study con
ducts a sensitivity analysis to validate its accuracy. This analysis adheres 
to two fundamental axioms:

Axiom 1: Minor adjustments in the prior probabilities of each RIF 
should correspondingly influence the posterior probability of the target 
node. This axiom ensures that even slight changes in the input variables 
lead to proportional changes in the output, reflecting the model’s 
responsiveness to variations in RIF probabilities.

Axiom 2: The total impact of integrating the probability variations of 
x parameters should be larger than the one from the set of y(y ∈ x) RIFs.

Adherence to these axioms during the sensitivity analysis serves to 
validate the model’s reliability and ensure its consistency in reflecting 
the intricate relationships among the RIFs and the target node. To 
validate the model’s compliance with the two axioms, the collective 

impact of all filtered significant RIFs on casualty types is examined. The 
parent node ‘casualty type’ remains constant, and the variations of each 
type are individually investigated. Using ‘very serious’ accidents as an 
example, ‘type of accident’ is designated as the initial node, with its 
prior probability incremented by 2 % to reach the extreme states that 
exert the greatest and least influence on ‘lighter’ accidents. This process 
is repeated for other RIFs. The sequence presented in the first column of 
Table 6 and Table 7 depicts the cumulative probability change values. 
Subsequently, the process is repeated for the remaining two casualty 
types, yielding the computation outcomes illustrated in the subsequent 
columns of Table 6 and Table 7.

The second column of Table 6 and Table 7 displays the original 
probability values for each casualty type in the TAN structure, while the 
subsequent columns exhibit the updated cumulative change values. The 
findings indicate that adjustments in the prior probability of a selected 
RIF correlate with corresponding variations in the posterior probability 

Table 2 
The joint probability of each variable and accident severity pre-COVID-19.

less serious serious very serious
original 8.034 26.119 65.846

Type of accident ​ ​ ​
capsize 0.435 4.902 94.664
collision 10.433 33.294 56.273
contact/crush 34.149 43.656 22.195
fire/explosion 6.971 41.730 51.299
flooding 2.945 33.214 63.841
grounding 10.566 48.129 41.305
occupational accident 1.685 1.727 96.588
others 1.542 33.199 65.259
overboard 3.641 0.339 96.019
ship/equipment damage 9.488 45.102 45.410
sinking 0.634 7.146 92.221
Ship operation ​ ​ ​
at anchor 2.276 25.190 72.534
fishing 8.957 22.075 68.969
loading/unloading 7.721 6.309 85.970
manoeuvring 15.383 42.104 42.513
on passage 3.864 23.997 72.139
others 13.846 17.473 68.681
pilotage 32.220 47.308 20.472
towing 16.683 10.748 72.569
Ship type ​ ​ ​
RORO 11.483 67.898 20.618
bulk carrier 5.887 29.497 64.616
cargo ship 8.648 20.645 70.707
container ship 4.213 27.322 68.465
dredger 8.481 12.230 79.288
fishing vessel 2.797 11.203 86.000
offshore vessels 17.682 36.471 45.847
others 14.186 17.169 68.645
passenger vessel 22.449 33.348 44.203
tanker or chemical ship 4.621 27.266 68.113
tug 10.758 5.857 83.384
Voyage segment ​ ​ ​
Inland waters 22.979 12.391 64.63
anchorage 2.039 25.554 72.407
archipelagos 11.829 31.057 57.114
at berth 2.960 9.677 87.363
canal 46.042 39.086 14.872
channel 32.007 39.038 28.956
coastal waters 3.607 30.498 65.896
open sea 4.230 19.602 76.168
port 10.468 29.265 60.267
port approach 21.697 32.077 46.226
river 4.415 29.444 66.141
Hull type ​ ​ ​
GRP 7.193 8.881 83.926
NA 8.745 29.879 61.376
aluminium alloy 17.620 59.861 22.520
composite materials 17.506 39.608 42.887
light alloy 27.435 59.455 13.109
steel 7.274 25.913 66.812
wood 5.788 7.146 87.065

Table 3 
The joint probability of each variable and accident severity post-COVID-19.

less serious serious very serious
original 4.747 35.375 59.877

Type of accident ​ ​ ​
capsize 3.481 4.323 92.196
collision 0.602 53.082 46.316
contact/crush 34.343 22.341 43.316
fire/explosion 0.967 61.233 37.800
grounding 0.865 76.236 22.900
occupational accident 0.958 1.189 97.853
others 1.511 39.408 59.081
overboard 9.615 1.085 89.300
ship/equipment damage 2.430 33.200 64.370
sinking 2.419 3.004 94.577
Ship type ​ ​ ​
RORO 7.400 58.597 34.003
bulk carrier 1.261 29.258 69.48
cargo ship 5.240 38.101 56.659
container ship 2.732 84.716 12.552
fishing vessel 1.649 21.453 76.898
offshore vessels 3.957 24.163 71.880
others 5.335 15.078 79.588
passenger vessel 36.705 24.105 39.190
tanker or chemical ship 6.226 32.710 61.064
Ship operation ​ ​ ​
at anchor 2.440 27.074 70.486
fishing 4.621 11.027 84.352
loading/unloading 8.224 19.627 72.149
manoeuvring 19.817 38.178 42.006
on passage 3.718 35.523 60.758
pilotage 3.675 72.223 24.102
Voyage segment ​ ​ ​
Inland waters 7.686 20.911 71.403
anchorage 3.716 27.297 68.987
archipelagos 5.619 42.187 52.195
coastal waters 8.593 38.672 52.735
open sea 0.845 22.127 77.028
port 8.434 48.956 42.610
port approach 3.729 63.712 32.558
river 3.875 41.554 54.570
Ship age ​ ​ ​
1 2.847 30.394 66.759
2 1.692 23.893 74.414
3 13.02 37.518 49.465
4 8.357 31.807 59.835
5 1.111 50.350 48.539
6 5.198 12.845 81.957
Breadth ​ ​ ​
1 5.310 30.399 64.291
2 7.055 46.426 46.520
3 2.554 14.198 83.248
4 1.975 52.901 45.124
Deadweight ​ ​ ​
1 4.085 30.619 65.296
2 12.907 49.340 37.754
4 1.300 33.030 65.670
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of the respective casualty type, thereby validating Axiom 1. Moreover, 
the cumulative probability change value of the parent node escalates 
sequentially as the number of altered variables increases, as evidenced 
by the collective values across all columns, affirming Axiom 2. Conse
quently, these results substantiate the accuracy of the model.

4.3. Prediction performance verification

This study employed a training-testing split to evaluate predictive 
performance. A hold-out validation strategy was applied, in which 80 % 
of the accident records (322 cases) were randomly allocated to the 
training set for model development, and the remaining 20 % (80 cases) 
were reserved as an independent test set for performance assessment. 
This separation of training and testing data helps to mitigate the risk of 
overfitting. To further ensure robustness, the random split was repeated 
multiple times during preliminary experiments, confirming that the re
sults were consistent and not overly sensitive to a particular partition of 
the data.

Similar to mainstream classification research, this study employs 

accuracy as a metric to assess the overall performance of the model on 
the test set. Additionally, it utilises the confusion matrix along with 
several related indicators, including precision, recall, F-measure, spec
ificity, False Positive Rate (FPR), and area under the ROC curve (AUC), 
to evaluate the classification effectiveness of the model for each 
subclass.

Precision, representing the ratio of correctly predicted positive 
samples to all samples predicted as positive by the classifier, and recall, 
denoting the proportion of correctly predicted positive samples to the 
actual positive class samples, are crucial in assessing classification ac
curacy and consistency. F-measure, serving as the harmonic mean of 
precision and recall, offers a comprehensive evaluation of the model’s 
performance. Specificity gauges the model’s aptitude in accurately 
categorising negative samples, while FPR quantifies the extent to which 
the model misclassifies negative samples as positive. AUC, encompass
ing the overall model performance across various thresholds, provides a 
comprehensive evaluation. The confusion matrix depicting the model’s 
prediction results is presented in Fig. 7, with the corresponding calcu
lation outcomes of each indicator delineated in Table 8.

4.4. Model consistency verification

The marine accident data set used in this study has obvious problems 
of uneven class distribution. The ‘very serious’ type accounted for 64.9 
% of accident severity, while the ‘less serious’ type accounted for only 
7.48 %. Therefore, the Kappa coefficient is introduced to test the con
sistency of the model in predicting the severity of various accidents [54].

The calculated result of the Kappa coefficient is usually between 
[0,1]. The larger the value, the more correct the classification result is. 
When the kappa value falls within the range of [0.81,1], it can be 

Table 4 
TRI of important RIFs for three types of casualty (100 %) pre-COVID-19.

Node less serious serious very serious Average

TRI Rank TRI Rank TRI Rank

Type of accident 16.857 2 23.895 3 37.197 1 25.983
Ship operation 14.972 3 20.499 4 32.749 4 22.740
Ship type 9.826 5 31.020 1 32.691 5 24.512
Voyage segment 22.002 1 14.704 5 36.245 3 24.317
Hull type 10.823 4 26.357 2 36.978 2 24.719

Table 5 
TRI of important RIFs for three types of casualty (100 %) post-COVID-19.

Node less serious serious very serious Average

TRI Rank TRI Rank TRI Rank TRI

Type of accident 16.871 2 37.575 1 37.4765 1 30.641
Ship type 17.722 1 34.819 2 33.518 2 28.686
Ship operation 8.689 3 30.598 3 30.125 3 23.137
Voyage segment 3.874 6 21.401 4 22.235 4 15.836
Ship age 5.953 4 18.753 5 16.709 6 13.805
Breadth 2.540 7 16.114 6 19.062 5 12.572
Deadweight 5.803 5 9.361 7 13.958 7 9.707

Table 6 
The combined influence of multiple variables before COVID-19.

Type of accident ​ +2 % +2 % +2 % +2 % +2 %
Ship operation ​ ​ +2 % +2 % +2 % +2 %
Ship type ​ ​ ​ +2 % +2 % +2 %
Voyage segment ​ ​ ​ ​ +2 % +2 %
Hull type ​ ​ ​ ​ ​ +2 %
less serious 8.034 8.709 9.326 9.791 10.720 11.145
serious 26.119 27.075 27.905 29.154 29.709 30.819
very serious 65.846 67.334 68.648 69.947 71.087 72.584

Table 7 
The combined influence of multiple variables after COVID-19.

Type of accident ​ +2 % +2 % +2 % +2 % +2 % +2 % +2 %
Ship type ​ ​ +2 % +2 % +2 % +2 % +2 % +2 %
Ship operation ​ ​ ​ +2 % +2 % +2 % +2 % +2 %
Voyage segment ​ ​ ​ ​ +2 % +2 % +2 % +2 %
Ship age ​ ​ ​ ​ ​ +2 % +2 % +2 %
Breadth ​ ​ ​ ​ ​ ​ +2 % +2 %
Deadweight ​ ​ ​ ​ ​ ​ ​ +2 %
less serious 4.747 5.422 6.221 6.675 6.881 7.214 7.351 7.643
serious 35.375 36.111 37.503 38.747 39.67 40.493 41.187 41.588
very serious 59.877 61.377 62.712 63.897 64.779 65.371 66.06 66.657
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inferred that the model’s prediction accuracy for maritime accident 
casualties is basically the same. According to Eq. (2) and the confusion 
matrix, the kappa coefficients of the two BN models are calculated to be 
0.87 (2017–2019) and 1.0 (2020–2021), respectively. It is proven that 
the model in this paper can adapt to the problem of data and distribution 
imbalance.

5. Discussion and implications

5.1. Comparison of the number of accidents

The temporal evolution of maritime accidents is meticulously 
documented in Table 9. The data underscores a substantial decrease in 
maritime accidents following the advent of the COVID-19 pandemic. 
This trend invites a comprehensive examination of the contributing 
factors and their implications for the maritime industry, which facili
tates the derivation of several pertinent conclusions regarding the pan
demic’s influence on maritime safety: 

(1) Traffic flow variations: The pandemic’s ripple effects on the 
global economy and trade have precipitated the closure or 
downsising of numerous ports. This has resulted in a significant 
alteration in ship traffic and volume, potentially leading to a shift 
in the frequency of maritime accidents.

(2) Personnel and equipment reductions: The exigencies of the 
pandemic have compelled some shipping entities and port au
thorities to curtail their workforce and operational equipment. 

Such adjustments may have inadvertently impacted the likeli
hood of maritime accidents occurring.

(3) Ship maintenance and inspection constraints: The imposition of 
pandemic-related restrictions has led to the cessation or reduc
tion of essential ship maintenance and inspection services in some 
ports. This could have resulted in an increase in technical mal
functions aboard vessels, consequently heightening the risk of 
maritime accidents.

(4) Crew health concerns: The health and well-being of crew mem
bers are paramount to the safe operation of maritime vessels. The 
pandemic’s impact on crew health, including the potential for 
illness-induced fatigue and errors, poses a significant risk factor 
for the escalation of maritime accidents.

5.2. A comparative analysis from the perspective of important RIFs

The analysis conducted in Section 4.1.1 reveals noteworthy shifts in 
the influential factors affecting maritime accidents between the periods 
of 2017–2019 and 2020–2021. During 2017–2019, the pivotal RIFs were 
determined as ‘Type of accident’, ‘Ship operation’, ‘Ship type’, ‘Voyage 
segment’, and ‘Hull type’, while for 2020–2021, they were identified as 
‘Type of accident’, ‘Ship type’, ‘Ship operation’, ‘Voyage segment’, ‘Ship 
age’, ‘Breadth’ and ‘Deadweight’. These findings underscore a dynamic 
evolution in the critical factors contributing to accident severity over 
time.

The emergence of new factors in the latter period, such as ‘Ship age’, 
‘Breadth’ and ‘Deadweight’, could be indicative of the broader re
percussions of the COVID-19 pandemic on the maritime industry. The 
inclusion of ‘Ship age’ can indicate potential delays in ship maintenance 
and renewal initiatives amidst heightened operational costs during the 
epidemic. Similarly, the introduction of ‘Breadth’ and ‘Deadweight’ may 
signify strategic adjustments by shipowners to address market un
certainties and dwindling demand, potentially resulting in alterations to 
cargo loads and vessel size.

Furthermore, these changes may also be intertwined with the 
deceleration of global economic activities during the pandemic. 
Reduced international trade could have prompted shipowners to 

Fig. 7. Confusion matrix. (a) Confusion matrix of BN prediction results pre-COVID-19. (b) Confusion matrix of BN prediction results post-COVID-19.

Table 8 
Risk level prediction results of BN model.

less serious serious very serious

2017–2019 2020–2021 2017–2019 2020–2021 2017–2019 2020–2021

Accuracy 1 1 0.8235 1 0.9783 1
Precision 1 1 0.9333 1 0.9375 1
Recall 1 1 0.8235 1 0.9783 1
F-measure 1 1 0.8784 1 0.9579 1
Specificity 1 1 0.9804 1 0.8636 1
FPR 0 0 0.0196 0 0.1364 0
AUC 1 1 0.9787 1 0.9743 1

Table 9 
The number of maritime accidents over the pre- and post-COVID-19.

Year This study IMO GISIS

2017 144 451
2018 118 299
2019 75 304
2020 54 216
2021 11 163
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prolong the service life of existing vessels due to diminished investment 
in new ships. Concurrently, in response to cost constraints and market 
challenges, ship operators might have opted for larger, wider, and 
heavier vessels to enhance operational efficiency, albeit at the expense 
of heightened operational complexities and risks.

Thus, it becomes evident that the impact of the COVID-19 pandemic 
on maritime accidents is multifaceted, encompassing shifts in opera
tional strategies and broader economic dynamics. A nuanced compre
hension of these transformations is imperative for devising effective 
maritime safety protocols and interventions aimed at mitigating acci
dent risks during the pandemic. Scenario analysis within the context of 
specific settings will be necessary to reveal the multifaceted impact in 
detail.

5.3. Scenario analysis

5.3.1. Scenario 1: harsh environmental conditions
In the realm of marine accident risk assessment, scenario 1 delves 

into the intricate interplay among various parameters, including ‘Time 
of day’, ‘sea condition’, ‘Visibility’, ‘Weather condition’, ‘Wind’, 
‘Voyage segment’, and ‘Ship operation’, particularly emphasising the 
influence of environmental factors on accident severity. Fig. 8 and Fig. 9
present simulations illustrating the probability distributions of diverse 
accidents across different environmental contexts. After rigorous itera
tion, it was ascertained that when the aforementioned factors align at 
‘night’, ‘bad’, ‘low’, ‘bad’, ‘high’, ‘river’, and ‘on passage’, respectively, 
the vessel is highly susceptible to grave accidents, exhibiting the highest 

likelihood. This underscores that during practical maritime navigation, 
circumstances such as nighttime operations, harsh sea conditions, 
diminished visibility, inclement weather, elevated wind speeds, and 
navigation through riverine stretches may significantly heighten the risk 
of maritime mishaps.

Nighttime navigation often entails poor illumination, potentially 
impeding the vessel’s ability to detect obstacles or other craft in a timely 
manner, thus elevating collision risks. Harsh sea and weather condi
tions, typified by towering waves, torrential rainfall, or thunderstorms, 
not only imperil the ship’s stability and manoeuvrability but also pose 
threats of structural damage or capsizing. Reduced visibility, commonly 
associated with meteorological phenomena such as fog or precipitation, 
constrains the crew’s situational awareness, augmenting the likelihood 
of collisions or groundings. High wind velocities can compromise the 
vessel’s manoeuvring capabilities, precipitating deviations from the 
intended course, which can be particularly perilous in confined water
ways or intricate channels. Furthermore, navigating through riverine 
expanses presents its own set of challenges, including tumultuous cur
rents and variable water depths, thereby amplifying the risk of maritime 
incidents in such locales.

In light of these exigencies, it is imperative for both crew members 
and management personnel to maintain a state of heightened vigilance 
and possess adept emergency response capabilities to effectively miti
gate potential hazards in real-time. Consequently, prudent navigation 
mandates a comprehensive assessment and adept management of these 
factors, coupled with the implementation of robust preventive and 
contingency measures, to safeguard the integrity and reliability of 

Fig. 8. The combined impact of environmentally-related RIFs on ‘very serious’ casualties before the COVID-19 outbreak.
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maritime operations.
Analysis of simulation results shown in Table 10 reveals notable 

shifts in the characteristics of maritime accidents pre- and post- 
outbreak. Amidst the epidemic, a discernible downward trajectory in the 
incidence rate of severe accidents, plummeting from 98.0 % to 89.6 %, 
juxtaposes with a corresponding surge in the likelihood of grave acci
dents, emblematic of the multifaceted repercussions of the pandemic on 
accident severity. Notably, the prevalence of ground-contact incidents 
surged to 56.1 %, while occurrences of collision and sinking events 
dwindled. Such dynamics may be attributable to alterations in the 
maritime landscape during the epidemic period. For instance, there was 
a marked uptick in the proportion of offshore vessels and bulk carriers, 

concomitant with a decline in container ships and cargo vessels, mir
roring the pandemic’s sway over shipping demand and vessel selection.

Insights from maritime transportation expertise underscore the 
impact of the epidemic-induced supply chain disruptions and route re
alignments on shipping operations, thereby engendering a meta
morphosis in accident typologies and severity levels. Consequently, 
stakeholders within the maritime domain, including shipping entities 
and regulatory bodies, are urged to remain vigilant vis-à-vis these 
evolving trends and institute efficacious safety management protocols to 
curtail both the frequency and magnitude of maritime mishaps, thereby 
safeguarding navigational integrity amidst turbulent times.

5.3.2. Scenario 2: impact of ship characteristics
Scenario 2 examines how vessel-related RIFs influence accident 

severity, illustrated in Fig. 10 and Fig. 11. The results show that fishing 
vessels with wooden hulls, of unknown age, and in poor condition face 
the highest risks. High-risk characteristics also include a deadweight of 
0–5000 tons, gross tonnage of 0–3000 GT, length of 0–100 m, breadth of 
0–20 m, power of 0–3000 kW, draught of 0–6 m, and single-hull con
struction. Vessels with this combination of features are most likely to 
experience very severe accidents. These findings underline that vessel 
type, hull material, and operational condition are critical factors shaping 
maritime risk.

For instance, vessels outfitted with wooden hulls may exhibit 
heightened vulnerability to damage or accidents under certain circum
stances, while idiosyncratic design flaws or equipment malfunctions 
could exacerbate accident probabilities. Consequently, stakeholders 

Fig. 9. The combined impact of environmentally-related RIFs on ‘very serious’ casualties after the COVID-19 outbreak.

Table 10 
Under the influence of environmental factors, the probability changes of 
different influencing factors pre- and post-COVID-19.

2017–2019 2020–2021 Tendency

Type of casualty less serious 0.15 % 4.01 % ↑
​ serious 1.88 % 6.39 % ↑
​ very serious 98.00 % 89.60 % ↓
Type of accident grounding 28.40 % 56.10 % ↑
​ collision 13.90 % 5.11 % ↓
​ sinking 27.40 % 14.30 % ↓
​ overboard 21.80 % 18.90 % ↓
Ship type offshore vessels 6.63 % 35.10 % ↑
​ bulk carrier 10.80 % 24.40 % ↑
​ cargo ship 22.80 % 12.30 % ↓
​ container ship 10.80 % 3.85 % ↓
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encompassing shipowners, crew members, and regulatory bodies are 
enjoined to exercise heightened vigilance in the safe management and 
operation of such vessels, proactively instituting requisite precautions to 
mitigate accident risks, thereby fortifying both vessel integrity and crew 
safety.

Simulation findings elucidate the differential impact of ship char
acteristics on maritime accident dynamics pre and post the epidemic. As 
delineated in Table 11, the prevalence of capsizing incidents surged 
markedly to 83.1 % subsequent to the outbreak, indicative of a recali
bration in ship transportation exigencies and operational modalities, or 
heightened susceptibility to capsizing owing to intensified vessel activ
ities in coastal environs. Conversely, fire and explosion accidents 
decreased in the post-pandemic period, reflecting stricter safety pro
tocols, targeted interventions, and improvements in maritime opera
tional practices.

Moreover, there was a pronounced escalation in accident rates 
within coastal waters, soaring to 77.9 %, while incident frequencies in 
open seas and port locales registered a concomitant decline, suggestive 
of the realignment of maritime activities or the heightened prevalence of 
coastal conveyance operations. The increased frequency of accidents in 
fishing operations reflects the intensified activity within the fishing 
sector during the pandemic period.

These findings underscore the nuanced interplay between ship 
characteristics, operational dynamics, and environmental exigencies in 
shaping maritime accident trends amidst evolving socio-economic 
landscapes. Consequently, proactive measures encompassing robust 
safety frameworks, adherence to stringent standards, and the 

implementation of targeted interventions are imperative to mitigate 
accident risks, bolster navigational safety, and fortify resilience within 
the maritime domain in the wake of disruptive events such as global 
pandemics.

5.3.3. Scenario 3: reverse analysis from consequences to causes
Both scenarios outlined above have been subjected to prospective 

analysis utilising the BN model. Moreover, the versatility of the BN 
model extends to facilitating reverse analysis by examining the impact 
on variable nodes through adjustments in the target node status. In 
scenario 3, a deliberate inquiry into the most plausible circumstances 
surrounding incidents categorised as ‘very serious’ pre and post the 
COVID-19 outbreak is pursued. Herein, the probability value of the 
target node status is fixed at 100 % ‘very serious’, thereby elucidating 
alterations in the variable node ‘Condition.’ Fig. 12 and Fig. 13 elucidate 
the contextual particulars corresponding to ‘very serious’ accidents pre 
and post the COVID-19 pandemic, with the ‘Type of Casualty’ status of 
the target node held at 100 %.

Table 12 furnishes insights into shifts in influential factors following 
the COVID-19 outbreak, predicated on a 100 % probability of severe 
marine accidents. Notably, ‘occupational accidents’ and ‘overboard in
cidents’ have surfaced as predominant accident types post-pandemic, 
indicative of an uptick in crew members falling overboard. This un
derscores the imperative for ship managers to institute more stringent 
safety training regimens and deploy enhanced safety measures to safe
guard the well-being of crew members against such perilous 
occurrences.

Fig. 10. Posterior probability analysis in ‘very serious’ type from ship-related factors pre-COVID-19.
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Furthermore, a noteworthy transition is observed in ship typologies, 
with ‘bulk carriers’ supplanting the erstwhile prevalent ‘cargo ships,’ 
suggesting a surge in the deployment of large-scale bulk carriers within 
maritime transportation networks. Such vessels warrant heightened 
scrutiny and vigilant oversight during operational phases to uphold the 
integrity and safety of maritime endeavours. Concurrently, a discernible 
escalation in the probability of accidents transpiring in open seas is 
discerned, plausibly attributable to protracted long-distance voyages 
spanning global maritime routes. This necessitates the implementation 
of more rigorous safety protocols to ensure the secure navigation of 
vessels across expansive oceanic expanses.

Moreover, the heightened probability of ‘on passage’ operations 

post-pandemic signifies the proliferation of vessels embarking on 
extensive transcontinental journeys. This underscores the imperative for 
crews and ship managers to exercise heightened vigilance and prudence 
in navigating vessels, particularly during protracted long-haul voyages. 
Thus, it is incumbent upon ship managers and regulatory bodies to 
accord heightened attention to and adeptly manage scenarios encom
passing crew-related accidents, the operation of large bulk carriers, 
transoceanic voyages, and extensive maritime traverses, thereby un
derpinning the safety and dependability of maritime traffic networks.

5.4. Implications

The findings of this study reveal a complex relationship between the 
COVID-19 pandemic, implemented safety measures, and maritime 
safety outcomes. By highlighting significant shifts in accident patterns, 
risk factors, and operational dynamics, this study provides valuable in
sights into the effectiveness of safety interventions and their broader 
implications for maritime stakeholders. To reflect these, the implica
tions are structured into five key points.

(1) Effectiveness of pandemic safety measures.
This study assessed the effectiveness of key safety measures, 

including stricter port health inspections, reduced crew changes, 
mandatory quarantine, and enhanced digital reporting, by comparing 
accident patterns before and after the pandemic.

The effectiveness of these measures is evaluated through observed 
accident pattern changes. For example, reductions in collisions and fire/ 
explosion incidents in Tables 9 and 10 suggest that stricter regulatory 

Fig. 11. Posterior probability analysis in ‘very serious’ type from ship-related factors post-COVID-19.

Table 11 
Under the influence of the ship characteristics factors, the probability changes of 
different influencing factors pre- and post-COVID-19.

2017–2019 2020–2021 Tendency

Type of accident capsize 35.10 % 83.10 % ↑
​ fire/explosion 19.60 % 1.91 % ↓
​ overboard 16.30 % 5.06 % ↓
Voyage segment coastal waters 31.10 % 77.90 % ↑
​ open sea 20.80 % 3.29 % ↓
​ port 20.30 % 1.79 % ↓
Ship operation Fishing 6.62 % 20.50 % ↑
​ Loading/ 

unloading
10.20 % 2.66 % ↓

​ Manoeuvring 11.90 % 2.30 % ↓
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compliance, reduced port congestion, and remote oversight contributed 
positively to safety outcomes. Conversely, the increase in overboard 
incidents (from 12.6 % to 20.3 % in Table 12) indicates that some 
measures, particularly those limiting crew mobility and rotations, had 
unintended adverse effects on crew welfare. This dual impact un
derscores the need for balanced approaches that improve safety without 
overburdening seafarers.

(2) Pandemic impacts on maritime accident dynamics.
The overall decline in reported accidents (Table 9) occurred during 

the pandemic, partly due to global economic slowdowns and restricted 
shipping activity. However, accident typologies shifted. Bulk carriers 
were disproportionately involved in severe post-pandemic accidents, 
and overboard incidents rose (Table 10). These patterns reveal that 
while safety measures reduced some traditional risks, they also created 
new vulnerabilities linked to workforce stress, operational adjustments, 
and concentrated vessel activity.

(3) Structural shifts in vessel attributes and accident risk.
The analysis shows that ‘breadth’ and ‘deadweight’ became more 

influential RIFs after the onset of COVID-19. This aligns with external 
evidence indicating that containerships grew larger during this period 
(15–20 % increase according to Clarkson), while dry bulk carriers 
remained stable and oil tankers saw few new deliveries, with large 
vessels continuing to dominate but without a notable size change. 
Hence, the increased influence of breadth and deadweight in our model 
is likely driven by the size growth of containerships rather than uniform 
trends across all ship types. Larger breadth and higher deadweight are 
directly associated with reduced manoeuvrability, stability constraints, 

and grounding risks, particularly in confined waterways and congested 
port approaches. Their heightened influence therefore reflects genuine 
changes in fleet composition and operational exposure, rather than a 
statistical artifact.

(4) Strategic adjustments for stakeholders.
The BN model outputs and TRI-based scenario analysis point to 

actionable strategies. For ship operators, the rise in capsizing and 
overboard risks (Tables 11–12) highlights the need for reinforced sta
bility checks, stricter maintenance adherence, and enhanced fall pro
tection systems. For regulators, declining collision rates but rising 
ground-contact incidents suggest a need for digitalised COLREGs over
sight and improved remote inspection tools (Table 10). For port au
thorities, the higher probability of severe accidents in poor visibility and 
high-wind scenarios (Figs. 8–9) demonstrates the importance of 
enhanced meteorological monitoring, dredging, and night navigation 
support. For supply chain managers, the shift from container ships (10.8 
% to 3.85 %) to bulk carriers (10.8 % to 24.4 %) (Fig. 7) underscores the 
importance of adaptive routing strategies and predictive analytics. From 
a broader regulatory perspective, these results also indicate the need to 
adjust inspection priorities to focus on vessel categories most exposed to 
post-pandemic risks, such as bulk carriers and fishing vessels.

By directly linking simulation results to stakeholder actions, the 
findings provide a structured roadmap for evidence-based policy and 
operational reform.

(4) Crew welfare and long-term safety considerations.
The BN analysis of occupational safety scenarios (Figs. 12–13) shows 

rising probabilities of overboard and open-sea incidents (28.9 % to 42.6 

Fig. 12. Prior probability analysis in ‘very serious’ casualty type pre-COVID-19.
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%), reflecting increased long-haul voyages and reduced crew changes. 
These trends align with the qualitative interpretation of fatigue and 
isolation risks in Section 4.2. Thus, implications extend beyond technical 
fixes: mental health monitoring, regulated crew rotation, and onboard 
psychological support systems should be prioritised alongside training 
and safety culture initiatives.

By systematically learning from the COVID-19 experience, the 
maritime industry can design resilient frameworks to manage not only 
pandemics but also other large-scale disruptions such as geopolitical 
conflicts or canal blockages.

5.5. Extension to other crisis scenarios and future directions

Although this study focuses specifically on the COVID-19 pandemic, 
the proposed BN–based framework is not limited to pandemic-related 
disruptions. The methodological foundation, linking RIFs with acci
dent outcomes through probabilistic reasoning, is sufficiently flexible to 
accommodate a wide range of large-scale crisis scenarios, provided that 
relevant datasets are available.

For example, crises such as the Suez Canal blockage (2021), the Red 
Sea geopolitical disruptions, or future large-scale port closures could be 
analysed using the same framework. By adjusting the input dataset to 
reflect accident reports, vessel traffic records, or operational disruptions 
specific to these crises, the model could capture how risk factors and 
accident probabilities shift under different external pressures.

In practical terms, the framework could be extended in two 
directions:

Crisis-specific RIFs: Introducing additional risk factors unique to 
non-pandemic crises (e.g., navigational constraints in canal blockages, 
security threats in conflict zones).

Comparative scenario analysis: Applying the model to multiple crises 
to identify common vulnerabilities versus crisis-specific risk patterns, 
thereby supporting proactive preparedness strategies.

This study demonstrates that pandemic-induced changes have last
ing effects on accident causation patterns. Building on this, future 
research should focus on: Integrating AIS, port congestion, and real-time 
monitoring data with BN models, assessing the long-term impacts of 
reduced workforce availability and delayed maintenance, developing 

Fig. 13. Prior probability analysis in ‘very serious’ casualty type post-COVID-19.

Table 12 
When the probability of a maritime accident being ‘very serious’ is 100 %, the 
probability changes of related influencing factors pre- and post-COVID-19.

2017–2019 2020–2021 Tendency

Type of 
accident

occupational 
accident

27.40 % 20.30 % ↓

​ overboard 12.60 % 20.30 % ↑
Voyage 

segment
open sea 28.90 % 42.60 % ↑

​ port 21.60 % 9.88 % ↓
Ship type cargo ship 19.50 % 17.10 % ↓
​ bulk carrier 17.40 % 23.90 % ↑
Ship operation on passage 44.10 % 51.40 % ↑
​ loading/unloading 11.80 % 6.25 % ↓
​ manoeuvring 9.61 % 4.10 % ↓
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AI-driven predictive risk models for evolving operational patterns, and 
evaluating the effectiveness of crisis-response mechanisms across 
different regulatory regimes.

These directions will advance the applicability of the framework and 
enhance its value as a decision-support tool for managing diverse 
maritime crises.

6. Conclusions

This research analyses the profound effects of the COVID-19 
pandemic on maritime safety, meticulously examining the evolution of 
maritime accident trends before and after the pandemic’s onset. By 
meticulously analysing extensive datasets from the GISIS and the IHS- 
LRF database, this study has pinpointed pivotal factors that shape 
maritime accident trends and appraised the effectiveness of prevailing 
safety protocols. Our analysis, grounded in a data-driven BN framework, 
has unveiled the pandemic’s profound imprint on maritime safety dy
namics, highlighting shifts in safety paradigms and the advent of un
precedented risk factors. The altered shipping patterns and the 
challenges posed by regulatory compliance in the wake of the pandemic 
have emerged as specific risks, which our study has objectively quan
tified. The implications of these findings are far-reaching for policy
makers, industry stakeholders, and maritime professionals. They 
underscore the necessity for a nuanced understanding of the post- 
COVID-19 maritime safety landscape to inform strategic decisions 
aimed at bolstering safety measures and mitigating the risks of maritime 
accidents.

From a practical perspective, the findings can support the IMO and 
flag states in updating risk management guidelines, particularly by 
prioritising vessel categories and operational phases that showed 
heightened accident involvement during the pandemic. The demon
strated robustness of the TAN framework also highlights its readiness for 
integration into digital decision-support systems, enabling probabilistic 
risk assessment to be embedded within operational monitoring plat
forms. Specific use cases include: guiding port state control in tailoring 
inspection priorities toward higher-risk vessel types (e.g., bulk carriers 
and fishing vessels); assisting shipowners in adopting targeted stability 
and occupational safety measures; and enabling classification societies 
to refine rules relating to vessel breadth, deadweight, and stability under 
crisis conditions.

The restricted post-crisis period (2020–2021) constrains the ability 
to capture long-term or delayed impacts of the pandemic, such as those 
arising from prolonged crew fatigue, deferred maintenance, or evolving 
trade patterns. As more accident data and records become available 
from 2022 onwards, future research will expand the dataset to enable a 
more robust comparative analysis and better distinguish between short- 
term disruptions and long-term structural changes in maritime safety. 
Another limitation concerns class imbalance: 64.9 % of cases are clas
sified as ‘very serious,’ which may bias the model toward the majority 
class. While the real-world distribution was preserved here, future work 
will explore rebalancing strategies to improve minority class detection.

Looking forward, there remains an imperative need for further 
research to uncover additional determinants of maritime accidents and 
to refine predictive models that can better anticipate and mitigate these 
risks. For instance, the data could be reclassified based on the different 
stages of COVID-19 response across countries (e.g. national quarantine 
periods) to enable a more in-depth analysis of the impact. While 
acknowledging the limitations inherent in our study, it nonetheless en
riches the maritime safety discourse, offering a robust foundation for 
future research endeavours and policy formulation within the maritime 
sector.
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[27] Dominguez-Péry C, Vuddaraju LNR, Corbett-Etchevers I, Tassabehji R. Reducing 
maritime accidents in ships by tackling human error: a bibliometric review and 
research agenda. J Shipp Trade 2021;6:20. https://doi.org/10.1186/s41072-021- 
00098-y.
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[30] Yıldız S, Uğurlu Ö, Wang X, Loughney S, Wang J. Dynamic accident network model 
for predicting marine accidents in narrow waterways under variable conditions: a 
case study of the Istanbul strait. J Mar Sci Eng 2024;12:2305. https://doi.org/ 
10.3390/jmse12122305.

[31] Brcko T, Luin B. A decision support system using fuzzy logic for collision avoidance 
in multi-vessel situations at sea. J Mar Sci Eng 2023;11:1819. https://doi.org/ 
10.3390/jmse11091819.
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