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Abstract
Objective and design The objective of the present study was to assess the discriminative accuracy of
artificial intelligence (AI) software to identify COPD and other chronic respiratory diseases from primary
care spirometry. This was a diagnostic study with blinded analysis.
Methods Retrospective hand-held spirometry data from consecutive patients attending primary care clinics
in Hillingdon (London, UK) between September 2015 and March 2019 were used. The index diagnosis
was the “preferred” diagnosis determined by AI software (highest probability) using supervised random-
forest machine learning to interpret raw spirometry data and basic demographics. The reference diagnosis
was based on the consensus of expert pulmonologists with access to primary and secondary care medical
notes and results of relevant investigations. Cross-tabulation of the index test results by the results of the
reference standard for COPD and other respiratory disease categories provided the main outcome measures.
Results In this primary care spirometry dataset from 1113 patients, 543 (48.8%) had a reference diagnosis
of COPD. AI preferred diagnosis detected 456, achieving a sensitivity of 84.0% (95% CI 80.6–87.0%),
specificity of 86.8% (83.8–89.5%), accuracy of 85.4% (83.2–87.5%) with area under curve (AUC) of
0.914 (0.896–0.930). AI preferred diagnosis identified 187 out of 249 patients with reference diagnosis of
interstitial lung disease and 59 out of 107 patients with asthma, with AUCs of 0.900 (0.880–0.916) and
0.814 (0.790–0.836), respectively.
Conclusion AI software achieved high sensitivity and specificity in identifying COPD using spirometry
and basic demographic data and may support accurate diagnosis of COPD in primary care. AI software
performed less well for other chronic respiratory disease categories.
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Introduction
COPD is a leading cause of mortality and morbidity globally [1]. Spirometry is recommended to diagnose
COPD [2]. However, spirometry provision in primary care is suboptimal, particularly following the
coronavirus disease 2019 pandemic [3]. Only 13.4% of spirometry performed in primary care fully meets
international technical criteria [4], with 40% failing at least one quality criterion [5]. In addition, primary
care clinicians have low levels of confidence in identifying technical errors or interpreting spirometry [6]
and there are poor levels of agreement in spirometry interpretation between primary care staff and
pulmonologists [7]. Important consequences include underdiagnosis, misdiagnosis and unnecessary referral
to secondary care [8, 9].

Recent studies have evaluated an artificial intelligence (AI) pulmonary function interpretation software,
developed using random-forest machine learning. The AI software estimates the probability of respiratory
disease categories from pulmonary function tests (PFTs), comprising spirometry, gas transfer and lung
volume data. This AI software outperformed trained and trainee pulmonologists in the interpretation of
hospital-based PFTs [10].

The AI PFT interpretation software was developed and validated in hospitals across Belgium and against
pulmonologists (including trainees) from 16 European countries [10], but has not been validated in the
primary care setting. In addition, the performance of the software has not been tested on spirometry data
alone; spirometry often being the only point-of-care lung function test available in most healthcare settings
including primary care. Spirometry performed in primary care poses specific problems for AI software, as
the technical quality may be suboptimal [4].

The aim of the current study was to assess the diagnostic performance of an AI diagnostic support software
in the identification of COPD and other chronic respiratory diseases when provided with primary care
spirometry data against a clinical reference diagnosis (consensus of pulmonologists with access to medical
records and investigations). COPD was selected as the primary outcome as it is the only respiratory
condition where spirometry is part of the core diagnostic criteria.

Methods
This was a retrospective, blinded diagnostic validation study. Reporting was done in accordance with the
Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines [11]. The study was approved
by the United Kingdom Health Research Authority (IRAS project identifier 314058) and pre-registered in
Clinicaltrials.gov (identifier NCT05648227).

Patient and public involvement
The study was supported by representatives from Asthma+Lung UK (I. Jarrold and N.S. Hopkinson) and
patient and public involvement member (N. Spain), who were invited to and regularly attended steering
group meetings throughout the design, conduct and data interpretation of the study.

Primary care validation dataset
The retrospective spirometry data used in this study was collected between September 2015 and March
2019 in primary care clinics in Hillingdon borough, Northwest London. The clinics provided a variety of
clinical services including spirometry, annual respiratory review, pulmonary rehabilitation assessment and
home oxygen assessments, and were accessed through direct referral by general practitioner practices in
Hillingdon.

Inclusion criteria for this study were adults aged ⩾18 years; referred by a general practitioner working in
Hillingdon borough; presenting with at least one respiratory symptom (cough, wheeze, shortness of breath,
reduced exercise tolerance); undergoing supervised spirometry performed as part of routine clinical
assessment. Cases where spirometry was conducted as part of pre-operative assessment, or performed at
home without supervision were excluded.

Spirometry (without bronchodilator testing) was performed by nonrespiratory physiologist health
practitioners. All had completed an internal training and competency programme, but none were accredited
by the Association for Respiratory Technology & Physiology (ARTP). All spirometry was performed using
a portable, hand-held Easy One World Spirometer 2001 model using EasyOne connect software version
3.9.2.4 (ndd Medical Technologies, Zurich, Switzerland). Global Lung Function Initiative 2012 reference
equations were used [12]. The community respiratory service was not commissioned or equipped to
provide before and after bronchodilator responsiveness studies or fractional exhaled nitric oxide
measurements.
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Index test: machine-learning model
Anonymised raw spirometry data (time, flow, volume curves, demographic information (age, sex, ethnicity,
height, weight, smoking pack-years)) was provided to a nonclinical software engineer who analysed the
data using ArtiQ.Spiro developed by ArtiQ (Leuven, Belgium; www.artiq.eu). On average, <1 s was
needed to generate the analysis for each case and ∼5 s to generate the example Portable Document Format
output (supplementary figure S1).

The machine-learning model for interpretation of lung function tests was built using data from 1430 subjects
attending hospital pulmonary function tests [13, 14]. In these datasets, a final diagnosis was established by a
clinician using all additional tests deemed necessary, the patient’s history and PFTs and was validated by an
ad hoc installed expert panel or by the clinical expert panel taking care of the patients in follow-up.

Internal 10-fold cross-validation tuned the machine-learning model, with the best model resulting in a
diagnostic accuracy of 74%. To obtain an unbiased estimate of accuracy and validate findings, the model
was run at the Leuven pulmonary service on a randomly selected sample of 136 subjects. The model
demonstrated a consistent diagnostic accuracy of 76% [10]. This software was further validated in an
independent multicentre study, demonstrating that AI outperformed human interpretation and assigned a
correct diagnosis in 82% of all cases [4].

The existing model [10] was adapted for primary care using spirometry data from a representative dataset
(UK Biobank (UKBB)) [15]. To achieve this, a balanced bagging classifier model (a machine-learning
technique useful to train imbalanced datasets) was trained on 1609 subjects who underwent lung function
testing in a hospital, complemented with 500 healthy individuals from UKBB. The model was then tested
on an independent dataset extracted from UKBB. Patients were included with a clinician diagnosis of
asthma, bronchiectasis, COPD and interstitial lung disease (ILD) with acceptable-quality spirometry. The
AI model achieved overall accuracy of 76%.

The index test was defined before the commencement of the study. No clinical history or reference standard
results were known to the AI software company or software engineer before, during or subsequent to data
analysis. The software engineer did not communicate with the clinical team and had no access to medical
records, and only communicated with an independent researcher (A. Sunjaya) based in Sydney, Australia. Only
specific deidentified data was provided for the software engineer (information readily available on the spirometry
report: age, height, weight, sex, smoking status (current, never) and ethnicity) to feed into the AI software.

Reference standard
No index test results were known to the reference test adjudicators. All reference tests were defined before
commencement of the trial. Real-world primary and secondary care medical records (up to 24 months from
spirometry), and the results of relevant investigations for all participants were reviewed independently by two
pulmonologists from the Royal Brompton and Harefield hospitals, United Kingdom. Within this cohort,
participants’ care was supervised by 48 general practices supported by four secondary care organisations.
There was no one unified diagnostic pathway, so patients had a combination of tests as requested by their
clinicians. The pulmonologists were asked to attribute the participant’s main respiratory condition to one of
six categories (COPD, asthma, ILD, other obstructive disease, normal, other). In participants with multiple
respiratory diagnoses (e.g. COPD and ILD), the pulmonologist was asked to choose, at their discretion and
best judgement, the predominant category. After initial independent scoring, the two pulmonologists met to
discuss participants for whom there was no consensus. If consensus could not be agreed after discussion,
these cases and their medical records were reviewed by a third pulmonologist to adjudicate independently,
without access to index test results or to the previous scoring of the pulmonologists. All pulmonologists
(S. Kon, W.D-C. Man, N.S. Hopkinson) were specialists in respiratory medicine with a minimum of 8 years
as a consultant in the United Kingdom National Health Service, with expertise in the diagnosis and
management of COPD and other chronic respiratory diseases. Pulmonologists had no access to the index test
results (AI software reports), nor had they any communication with the software engineer or software
company. Cases where the experts decided they had inadequate information to determine an appropriate
diagnosis category were excluded from final analysis. The time taken to request and retrieve primary and
secondary medical notes was not measured. On average, the experts took 15 min to review each case, though
this was variable depending on the extensiveness of the prior patient workup.

Outcomes
The index test presented results in two ways: 1) an AI software preferred diagnosis (i.e. the category with
the highest probability score) and 2) probabilities for all the six categories (totalling 100%). In addition, we
evaluated AI software differential diagnosis (i.e. the top two categories with highest probability scores).
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Model performance was evaluated by calculating the area under the receiver operating characteristic curve
(AUC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value
(NPV) against all other categories than the one being assessed. For AUC, nonparametric analysis was
conducted with 95% confidence intervals calculated as recommended by HANLEY and MCNEIL [16]. For
sensitivity, specificity, PPV and NPV, “exact” Clopper–Pearson 95% confidence intervals were reported.

Algorithmic audit
An algorithmic audit adapted from methods by OAKDEN-RAYNER et al. [17] was conducted to explore
misclassifications including confusion matrices and comparison of the probability cut-offs of cases
classified correctly versus those classified incorrectly. Subgroup analyses were also conducted to audit the
AI model performance in different demographic groups by sex, age, ethnicity, body mass index (BMI),
smoking history and severity (for COPD) to explore possible biases or discrimination of model
performance across these groups.

In a random subset of 200 cases, three expert respiratory physiologists from ARTP determined the
technical quality of spirometry independently, which was then classified into high-quality versus
suboptimal quality cases by majority consensus. High quality was defined as both forced expiratory
volume in 1 s (FEV1) and forced vital capacity (FVC) scored as grade A or B according to the American
Thoracic Society (ATS)/European Respiratory Society (ERS) 2019 technical standard [18]. The 2019
standard was selected, as it is the currently accepted international standard and what the AI software was
trained on. Model performance was then compared between high-quality versus suboptimal-quality cases.

All analyses were conducted using Stata BE version 18 and Microsoft Excel based on a pre-planned ethics
approved analysis protocol designed with advice from the United Kingdom National Institute for Health
and Care Excellence (supplementary material). Probability cut-offs were obtained using the Stata roctab
command.

Results
1121 consecutive cases were obtained, with 1113 analysed in this validation study, as eight cases were
determined by the expert pulmonologists to have insufficient medical record data for a reference diagnosis
to be made. Experts independently achieved direct consensus on the reference diagnosis in 973 (87.4%)
cases and achieved consensus in a further 125 (11.3%) cases following discussion; the remaining 15
(1.3%) cases required a third expert to determine the diagnosis (supplementary figure S2).

The most frequent diagnostic category was COPD (48.8%) followed by ILD (22.4%) (table 1). Almost all
cases of the other obstructive disease category (86 out of 89) comprised people with bronchiectasis,
whereas the unidentified category comprised primarily of people with heart failure and extrathoracic
restriction (chest wall disorders, diaphragm disorders).

Identification of COPD
Out of 543 participants with a reference diagnosis of COPD, the AI preferred diagnosis had a sensitivity of
84.0% (95% CI 80.6–87.0%), specificity of 86.8% (95% CI 83.8–89.5%), PPV of 85.9% (95% CI 83.1–
88.3%), negative predictive value (NPV) of 85.1% (95% CI 82.4–87.4%) and AUC of 0.914 (95% CI
0.896–0.930) (table 2, figure 1). When AI differential diagnosis was also taken into account, the software
had a slight improvement in sensitivity to 90.6% (95% CI 87.8–92.9%), but with a larger reduction in
specificity to 75.6% (95% CI 71.9–79.1%) (supplementary table S1).

Compared with AI software, using FEV1/FVC <0.70 alone to identify COPD revealed increased sensitivity
(90.6%, 95% CI 87.8–92.9%) and NPV (88.3%, 95% CI 85.3–90.8%), but worse specificity (67.5%, 95%
CI 63.5–71.4%) and PPV (72.7%, 95% CI 70.2–75.0%).

Identification of non-COPD categories
The receiver operating characteristic curves for the AI software are illustrated in figure 1, with the AUC
values reported in table 2. In non-COPD cases, AI-preferred diagnosis performance was best for ILD
(AUC 0.900), which had the second highest number of cases (after COPD) evaluated, but less so for other
categories. Specificity was high across all diagnoses with variable sensitivity and high negative predictive
values, but low-to-moderate positive predictive values (range 0–60.5%). Probability cut-offs showed that
for all conditions when classified as the highest category their probability was >30% out of a maximum
100% (table 2). AI differential diagnosis performance for all categories is shown in supplementary table S1.
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TABLE 2 Area under the receiver operating characteristic curve (AUC) and model performance of artificial intelligence (AI) software by diagnosis

COPD Asthma ILD Normal OBD Unidentified#

Patients n 543 107 249 30 89 95
Probability cut-off 36.30% 33.90% 35.40% 33.50% 32.90% 37.50%
AUC (95% CI) 0.914

(0.896–0.930)
0.814

(0.790–0.836)
0.900

(0.880–0.916)
0.871

(0.850–0.891)
0.580

(0.551–0.610)
0.744

(0.717–0.769)
Accuracy (95% CI)¶ 85.4

(83.2–87.5)
83.8

(81.5–85.9)
83.5

(81.2–85.6)
94.3

(92.8–95.6)
90.8

(88.9–92.4)
90.5

(88.6–92.1)
Sensitivity (95% CI) 84.0

(80.6–87.0)
55.1

(45.2–64.8)
75.1

(69.3–80.3)
33.3

(17.3–52.8)
0+ 2.1

(0.3–7.4)
Specificity (95% CI) 86.8

(83.8–89.5)
86.9

(84.6–88.9)
85.9

(83.4–88.1)
96.0

(94.7–97.1)
98.6

(97.7–99.3)
98.7

(97.8–99.3)
PPV (95% CI) 85.9

(83.1–88.3)
30.9

(26.1–36.1)
60.5

(56.2–64.7)
18.9

(11.5–29.4)
0+ 13.3

(3.4–40.2)
NPV (95% CI) 85.1

(82.4–87.4)
94.8

(93.7–95.8)
92.3

(90.6–93.7)
98.1

(97.6–98.5)
91.9

(91.9–92.0)
91.5

(91.3–91.8)

All cases excluding the category analysed were classified as noncases. ILD: interstitial lung disease; OBD: other obstructive disease; PPV: positive
predictive value; NPV: negative predictive value. #: includes cases where the AI software reports the outcome as uncertain; ¶: taking into account the
prevalence of the condition in the whole cohort. Results for categories with lower case numbers would be driven by the ability to identify negative
cases correctly; +: no positive cases detected by AI from the 89 classified by experts into the category.

TABLE 1 Demographic and clinical characteristics of patient cases analysed

COPD Asthma ILD Normal OBD Unidentified Total

Patients 543 107 249 30 89 95 1113
Sex
Male 55.8 (303) 38.3 (41) 58.6 (146) 53.3 (16) 39.3 (35) 50.5 (48) 52.9 (589)
Female 44.2 (240) 61.7 (66) 41.4 (103) 46.7 (14) 60.7 (54) 49.5 (47) 47.1 (524)

Age years 69.8±9.6 64.6±13.0 71.8±10.2 69.3±12.0 70.7±10.4 71.1±10.0 69.9±10.4
⩽50 4.2 (23) 12.1 (13) 5.6 (14) 6.7 (2) 4.5 (4) 3.2 (3) 5.3 (59)
51–60 12.7 (69) 25.2 (27) 8.8 (22) 20.0 (6) 10.1 (9) 11.6 (11) 12.9 (144)
61–70 30.6 (166) 25.2 (27) 21.3 (53) 26.7 (8) 28.1 (25) 28.4 (27) 27.5 (306)
71–80 40.5 (220) 28.0 (30) 47.0 (117) 30.0 (9) 48.3 (43) 40.0 (38) 41.1 (457)
>80 12.0 (65) 9.3 (10) 17.3 (43) 16.7 (5) 9.0 (8) 16.8 (16) 13.2 (147)

Ethnicity
White 91.5 (497) 63.6 (68) 56.6 (141) 80.0 (24) 75.3 (67) 61.1 (58) 76.8 (855)
Other 8.5 (46) 36.4 (39) 43.4 (108) 20.0 (6) 24.7 (22) 38.9 (37) 23.2 (258)

Smoking
Current 93.7 (509) 42.1 (45) 34.9 (87) 56.7 (17) 40.4 (36) 51.6 (49) 66.8 (743)
Nonsmoker 6.3 (34) 57.9 (62) 65.1 (162) 43.3 (13) 59.6 (53) 48.4 (46) 33.2 (370)

BMI kg·m−2 28.1±7.1 31.4±7.6 27.9±6.3 31.6±5.3 28.1 7.9 30.7±8.7 28.7±7.3
<25 36.6 (199) 20.6 (22) 32.5 (81) 6.7 (2) 42.7 (38) 26.3 (25) 33.0 (367)
25–29 26.0 (141) 29.0 (31) 40.6 (101) 36.7 (11) 23.6 (21) 27.4 (26) 29.7 (331)
⩾30 37.4 (203) 50.5 (54) 26.9 (67) 56.7 (17) 33.7 (30) 46.3 (44) 37.3 (415)

Mean FEV1 L 1.22±0.63 1.54±0.71 1.60±0.62 2.40±0.76 1.47±0.56 1.50±0.62 1.42±0.68
FEV1 z-score −3.00±1.22 −2.38±1.19 −1.86±1.28 −0.62±1.14 −2.13±1.12 −2.04±1.25 −2.47±1.35
Mean FVC L 2.46±0.90 2.38±0.86 2.03±0.80 3.20±0.99 2.27±0.75 2.04±0.82 2.32±0.89
FVC z-score −1.66±1.37 −1.68±1.18 −2.13±1.38 −0.51±1.31 −1.53±1.20 −2.01±1.38 −1.76±1.37
Mean FEV1 % predicted (GLI 2012) 48.12±20.58 60.47±19.91 67.86±21.20 89.90±21.00 62.90±19.40 64.22±21.82 57.40±22.99
Mean FVC % predicted (GLI 2012) 74.31±20.44 74.38±17.17 66.42±20.16 92.59±22.23 75.39±18.34 67.73±21.57 72.57±20.62
Mean FEV1/FVC ratio 0.50±0.15 0.64±0.13 0.80±0.88 0.75±0.60 0.65±0.13 0.74±0.85 0.62±0.18
Consensus
Direct consensus 95.6 (519) 83.2 (89) 91.6 (228) 53.3 (16) 77.5 (69) 54.7 (52) 87.4 (973)
Post-discussion 3.3 (18) 15.9 (17) 7.6 (19) 36.7 (11) 20.2 (18) 44.2 (42) 11.2 (125)
Third rater 1.1 (6) 0.93 (1) 0.8 (2) 10.0 (3) 2.3 (2) 1.1 (1) 1.4 (15)

Data are presented as n, % (n) or mean±SD. ILD: interstitial lung disease; OBD: other obstructive disease; BMI: body mass index; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity; GLI: Global Lung Function Initiative.
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FIGURE 1 Receiver operating characteristic curves for a) COPD, b) asthma, c) interstitial lung disease,
d) normal, e) other obstructive disease and f) unidentified cases.
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Misclassification
Misclassifications for AI software preferred diagnoses are shown in the confusion matrix (table 3), with an
overall Cohen’s κ agreement coefficient of 0.477. For reference COPD cases, the most common
misclassification by AI software was asthma (8.3%), whereas for reference asthma cases, COPD was the
most common misclassification (16.8%). Very few reference COPD cases were misclassified as normal
(1.5%), whereas across the 30 normal cases in the study, 66.7% were misclassified mainly to be ILD or
asthma cases. Other obstructive disease as a category performed worst, with all cases in the category
misclassified into the other groups, mainly asthma and COPD.

For the disease groups, when incorrectly classified, the median rank of the correct category was either
second or third (out of six categories) (supplementary table S2). For example, on average, misclassified
COPD cases had COPD ranked as the third (of six) category. A comparison of the mean probability of
cases correctly versus incorrectly classified is shown in supplementary table S2.

Subgroup analyses
For COPD cases, subgroup analyses demonstrated that the AI software preferred diagnosis performed
better in current/ex-smokers, in those with BMI <30 kg·m−2, and in cases where there was direct
consensus of experts (table 4).

For all cases, the AI software preferred diagnosis classified a higher proportion of all cases correctly in
smokers, those with BMI <30 kg·m−2, and in cases where the experts had direct consensus compared with
those requiring discussion or the need for a third adjudicator (sensitivity 69.68% versus 24.00% versus
40.00%). Most cases requiring discussion were due to the presence of multiple respiratory diagnoses and
identifying the predominant pathology. There was a statistically significant higher proportion of correct
classifications in cases with White ethnicity as compared to other ethnicities (difference of 10.35%, p<0.002),
although this was not found when analysis was limited to those with COPD. No significant differences were
found between sex and age groups, though accuracy was found to be lower in those aged <50 years (COPD
<50 years 65% versus ⩾50 years >80%). Subanalysis based on COPD severity according to the Global
Initiative for Chronic Obstructive Lung Disease (GOLD) stages found that the AI software performed better
in more severe cases (GOLD stage 3 and 4) compared to GOLD 2 and especially GOLD 1.

In the subanalysis by spirometry quality (n=200), the correct classification of overall cases by the AI software
was significantly better (p=0.029) in those with optimal-quality FEV1 compared with suboptimal FEV1

(61.68% versus 46.24%), although not for reference COPD cases. Neither FVC quality nor the presence of
both FEV1 and FVC optimal quality were found to impact the accuracy in classification of cases.

Discussion
To our knowledge, this is the first study to assess the validity of AI in predicting the presence of lung
disease using spirometry in primary care. In real-world data external to the training set comprising >1000
people with respiratory symptoms undergoing point-of-care hand-held spirometry in primary care, the AI
software showed high sensitivity (84.0%) and specificity (86.8%) in identifying COPD from basic

TABLE 3 Confusion matrix with proportions of correctly and incorrectly artificial intelligence (AI)-classified
cases by diagnosis

Reference diagnosis

COPD Asthma ILD Normal OBD Unidentified

Patients n 543 107 249 30 89 95
AI-preferred diagnosis
COPD 83.98 16.82 4.82 6.67 30.34 16.84
Asthma 8.29 55.14 7.63 26.67 42.70 23.16
ILD 5.16 14.02 75.10 33.33 22.47 51.58
Normal 1.47 5.61 7.63 33.33 4.49 6.32
OBD 0.92 5.61 1.20 0 0 0
Unidentified# 0.18 2.8 3.61 0 0 2.11
Total 100 100 100 100 100 100

Data are presented as %, unless otherwise stated. Bold type represents percentages where both AI and
reference diagnoses were concordant. ILD: interstitial lung disease; OBD: other obstructive disease. #: includes
uncertain output.
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demographic and spirometry data alone with an AUC of 0.914. This suggests that, with limited
demographic data and spirometry (of variable quality), AI spirometry software can support identification
and prediction of COPD in primary care, and potentially facilitate faster and more accurate diagnosis.

Between 50.0% and 98.3% [8, 9] of COPD cases remain undiagnosed globally. Delayed diagnosis
represents a missed opportunity to initiate disease-modifying interventions [19], and is associated with
increased exacerbations and healthcare costs [20]. The diagnosis of COPD requires confirmation of airflow
obstruction by spirometry. Although noninvasive and cheap, there is significant inequity in the provision
of spirometry in primary care [3, 21]. Furthermore, even when spirometry is available, previous studies
have demonstrated low confidence in primary care practitioners, even those who have received spirometry
training [6, 22–24]. In a web-based survey of 630 general practitioners in Norway, <50% correctly
identified the spirometry parameters used for the diagnosis and grading of COPD [25].

TABLE 4 Subgroup analyses reporting proportions of correctly classified cases of COPD and correctly classified cases overall

COPD Overall

Cases n Correctly classified % p-value Cases n Correctly classified % p-value

Sex
Male 303 82.84 0.416 589 65.87 0.204
Female 240 85.42 524 62.21

Age group years
⩽50 23 65.22 0.138 59 49.15 0.162
51–60 69 82.61 144 62.50
61–70 166 84.34 306 65.36
71–80 220 85.00 457 65.43
>80 65 87.69 147 65.31

Ethnicity
White 497 83.50 0.319 855 66.55 0.002
Other 46 89.13 258 56.20

Smoking
Current/ex-smoker 509 89.59 <0.001 743 72.54 <0.001
Nonsmoker 34 0 370 47.30

BMI
Normal 199 89.45 <0.001 367 69.21 <0.001
Overweight 141 87.94 331 68.88
Obese 203 75.86 415 55.90

COPD GOLD
Stage 1 38 60.53 <0.001
Stage 2 195 76.92
Stage 3 189 91.01
Stage 4 121 91.74

Overall spirometry quality# 90 200
Optimal (grade A/B) 19 84.21 0.799 50 54.00 0.935
Suboptimal 71 81.69 150 54.67

FEV1 spirometry quality
Optimal (grade A/B) 63 82.54 0.904 107 61.68 0.029
Suboptimal 27 81.48 93 46.24

FVC spirometry quality
Optimal (grade A/B) 19 84.21 0.799 50 54.00 0.935
Suboptimal 71 81.69 150 54.67

Adjudication¶

Direct consensus 519 85.36 <0.001 973 69.68 <0.001
Consensus post-discussion 18 61.11 125 24.00
Third adjudicator 6 33.33 15 40.00

BMI: body mass index; GOLD: Global Initiative for Chronic Obstructive Lung Disease; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity.
#: spirometry quality was based on a subset of 200 random cases which were assessed for quality as per the American Thoracic Society/European
Respiratory Society technical standards by three expert respiratory physiologists (>10 years’ experience), with the most common grade selected
determining the quality of the spirometry session. 50 cases were of optimal quality, and 150 of suboptimal quality; ¶: most cases requiring
discussion were due to the presence of multiple respiratory diagnoses (asthma+COPD, asthma+bronchiectasis, COPD+bronchiectasis, combined
pulmonary fibrosis and emphysema) and identifying the predominant pathology.
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Primary care physicians are open to the use of validated AI to support the accurate and differential
diagnosis of chronic respiratory disease [3]. The AI software that served as the index test in the current
study was previously developed for the automated reading of hospital PFTs [10] and was reported to
assign a correct diagnosis in 41 (82%) out of 50 patients attending routine clinical tests in a subsequent
evaluation, outperforming pulmonologists (including trainees) from 16 European countries (n=120) who
made the correct diagnoses in only 44.6% of cases [10]. Furthermore, the combination of a pulmonologist
and the AI software was better at interpreting PFTs than pulmonologist or AI alone [26]. A similar
decision-support role is expected for primary care.

Compared to previous evaluations of hospital PFTs, there were several aspects of our study dataset that
could have negatively impacted the AI software’s performance. First, our cohort comprised consecutive,
unselected, real-world patients undergoing hand-held spirometry in primary care settings supervised by
nonphysiologists without comprehensive training in spirometry. The technical quality of spirometry was
suboptimal and would be expected to be considerably poorer than spirometry conducted in hospital PFT
laboratories supervised by dedicated respiratory physiologists. Second, whereas the original training set for
the AI software comprised entirely of patients of White origin [10], 23.2% of the patients included in the
dataset for this study were of other ethnicity. This may explain the significantly less accurate performance
of the AI software in non-White cases by ∼10% and suggests benefits from possible retraining or tuning
with data from a more diverse set of cases to the AI software training set. Finally, since our dataset
originated from primary care, respiratory conditions for which primary-care spirometry plays a more
crucial role in diagnosis were more frequently represented. For instance, COPD accounted for nearly 50%
of the sample. This contrasts with the training cohort for the AI software, where rarer respiratory
conditions seen in secondary and tertiary care, such as neuromuscular disease, chest wall disease,
post-pleurectomy/lobectomy and cystic fibrosis were over-represented [10]. Despite these barriers, and the
availability of only baseline spirometry, the AI software preferred diagnosis identified COPD cases
correctly using minimal demographic data and raw spirometry data alone with a high sensitivity, specificity
and AUC. This compares favourably with the correct identification of COPD by screening questionnaires
in primary care (sensitivity 34.8–64.2%) [27, 28] and primary care physicians with access to clinical
records and spirometry (sensitivity 41%) [29]. This is despite the variable technical quality of the
spirometry, with our subsample analysis showing that only 25% had optimal quality FEV1 and FVC
measures according to international standards (table 4), in line with previous observations from multiple
primary care settings [4].

Interestingly, the correct classification of COPD by AI was not significantly influenced by the quality of
FVC nor by age or ethnicity (table 4). However, COPD severity did have a significant impact with better
identification of cases across more severe cases (GOLD stages 3 and 4) compared to less severe ones by a
margin of 31% and 15% for GOLD stages 1 and 2, respectively. Furthermore, quality of FEV1 did affect
overall correct classification of all cases with ∼15% difference in correct classifications between those
from spirometry with optimal FEV1 quality as compared with suboptimal quality. From a safety
perspective, this suggests a possible need to limit the AI output to only spirometry that is at least of
optimal FEV1 quality to reduce the risk of misclassifications which may negatively affect clinical
decision-making. This also emphasises the need even with AI support to undertake a systematic approach
to improving the quality of spirometry conducted in primary care, including thorough provider training,
quality control programmes, new models of care such as high-volume community diagnostic centres, and
clinical decision-support tools. Further work is needed to understand whether AI algorithms that
incorporate assessment of spirometry quality can further improve correct identification of cases and safety
overall for implementation of such AI algorithms in practice.

Other than COPD, asthma is the major respiratory condition seen in primary care where spirometry is
recommended as part of the diagnostic pathway. However, unlike COPD where the presence of airway
obstruction identification by spirometry is mandatory for diagnosis, the role of spirometry is to primarily
support a clinical diagnosis of asthma. The discriminative ability of the AI software to identify asthma
from spirometry was reasonable with an AUC of 0.814 (driven by the small number of asthma cases across
the whole cohort); however, sensitivity was only 55.1%, considerably lower than observed with COPD,
and there was a low positive predictive value (30.9%) and correct classifications (55%). The dataset
included a single point of access spirometry session for each patient, without bronchodilator responsiveness
studies or fractional exhaled nitric oxide levels, and therefore data on variable airway obstruction,
significant response to bronchodilator or eosinophilic airway inflammation were unavailable to AI. These
lung function tests contribute to asthma diagnostic algorithms [30]. Furthermore, normal spirometry can be
found in those with well-controlled or treated asthma, though this does not fully explain the findings in our
study as only 5.61% of asthma cases were misclassified as normal by the AI software.
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An unexpected finding was the ability of the AI software to identify ILD with a sensitivity of 75.1% and
AUC of 0.900, although with a moderate PPV of 61% despite not being an essential diagnostic tool for the
condition, unlike for COPD. Although restrictive spirometry is the hallmark physiological abnormality in
patients with established fibrotic ILDs, FEV1 and FVC can be well preserved in a significant proportion of
patients with ILD at time of diagnosis [31] and accurate diagnosis typically requires computed tomography
(CT) imaging. AI software can potentially support improvements in interpretation of spirometry findings
through its ability for in-depth pattern recognition. For example, apart from the identification of typical
restrictive spirometry, we speculate that the AI algorithm may have also identified early ILD in those with
well-preserved FEV1 and FVC through the identification of high FEV1/FVC or peak flow/FVC ratios [31];
however, this requires further investigation. A caveat to this is that an incorrect AI-preferred diagnosis of
ILD may lead to unnecessary investigations, patient anxiety or referral to secondary care if not interpreted
with consideration of a patient’s pre-test probability for the condition.

The AI software performed poorly in the classification of the other obstructive disease and other
unidentified categories. The vast majority of those in the obstructive disease category had bronchiectasis,
which often co-exists with other airways diseases, so it was unsurprising that 73% of the misclassifications
were for asthma or COPD. The diagnosis of bronchiectasis is primarily through clinical history and
high-resolution CT scanning.

In addition, the AI performed poorly in identifying the “other unidentified” group, which primarily
comprised patients with heart failure (where spirometry plays a limited role in the diagnostic pathway), or
extrathoracic restrictive conditions, such as chest wall disease or diaphragm disorders, which are difficult to
distinguish from ILDs on the basis of spirometry alone. One reason maybe the lower direct consensus
across experts for obstructive disease and unidentified cases as compared to other categories such as
COPD, suggesting potentially greater ambiguity or complexity of these cases. This is in line with our
subgroup analysis finding that the AI software performed better across cases where the experts had a direct
consensus with each other. This is true for both classification of COPD and overall classification across the
disease groups. More broadly, the results from this study emphasise the limited ability of spirometry alone
to identify non-COPD conditions.

DECRAMER et al. [14] showed that spirometry, together with a detailed medical history, led to the correct
identification of diagnosis in only 61% of patients presenting to a pulmonologist with respiratory
symptoms. The main purpose of spirometry in primary care is to identify cases of COPD, or provide
evidence to support a clinical diagnosis of asthma, and therefore further iterations of the AI software
should consider simplifying the number of disease categories presented. There is also room to explore the
impact of integrating other inputs, such as expanded history, physical exam results, further lung function
tests (such as fractional exhaled nitric oxide, or pre–post bronchodilator studies), auscultation sounds or
results from imaging [32, 33] to enhance the diagnostic prediction performance of AI spirometry software.

To our knowledge this is the first study to evaluate the performance of AI software using spirometry data
to identify lung disease in primary care, the setting where most benefit can be derived from early and
accurate diagnosis. The dataset was a consecutive convenience sample, with a sample size large enough to
detect cases of COPD, ILD and asthma, at the observed frequency, to detect an AUC of 0.8 against a null
hypothesis AUC value of 0.5 with 95% power. While we note that the patients were sourced from a single
region in London, the region had a greater population diversity (especially with regards to ethnicity) and a
different disease profile compared to the training cohort for the AI software. The spirometry quality
themselves in the substudy was shown to be mostly suboptimal and reflective of real-world primary
care practice.

To reduce bias, care was taken to keep the AI engineer blinded to the reference standard; similarly, the
expert pulmonologist adjudicators were blinded to the index test results. The expert pulmonologists were
provided with access to both primary and secondary care medical records including relevant investigations
such as full PFTs, CT scans and echocardiograms performed after the index spirometry. This was
supported by the high level of agreement around reference diagnosis when experts were scoring
independently (87.4%) or following discussion (98.7%).

Although the study was conducted as a diagnostic accuracy study, it is important to point out that the
primary care respiratory clinics provided multiple functions other than diagnostic spirometry and so a
proportion of the analysed spirometry was not conducted for diagnostic purposes. There was a high
prevalence of respiratory disease and very few people deemed “normal”. As a result, it is not known
whether the observed study results are generalisable to spirometry performed in other primary care settings,
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such as diagnostic pathways, or pre-operative assessment screening as well as other countries, e.g. the
United States or those from the Global South with different primary care models and spirometry conduct.

Practical implications
Future work should include whether the implementation of AI software into spirometry pathways
influences the performance of primary care practitioners in the identification of COPD and other
respiratory diseases, makes the diagnostic pathway for those presenting with respiratory symptoms more
efficient, or affects secondary care referrals and other healthcare usage. There is a clear imperative for early
diagnosis of COPD and asthma as this is associated with improved clinical outcomes and lower healthcare
utilisation [34]. Our study suggests that while AI spirometry software can support this, for wider adoption,
further work is required to adapt the software output, extend model representation across various
demographics especially ethnicity through model retraining or tuning, and cost-effectiveness studies to
ascertain the value of the software to health systems. Furthermore, this study suggests the need for the
output of AI software to be contextualised to the primary care setting, for example by simplifying outputs
to only report conditions such as COPD and asthma, which are commonly managed in primary care, and
lung function patterns where there is a need to refer to secondary care (e.g. restrictive disease).

Conclusion
AI interpretation software achieved high sensitivity and specificity in identifying COPD from primary care
spirometry (many suboptimal in quality) and basic demographic data. AI software performed less well for
other chronic respiratory disease categories. Routine use of AI interpretation software could reduce barriers
to conducting spirometry and support accurate early diagnosis of COPD, which is commonly
misdiagnosed or underdiagnosed in practice.
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