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Abstract—This work conceives the Bayesian Group-Sparse
Regression (BGSR) for the estimation of a spatial and frequency
wideband, i.e., a dual wideband channel in Multi-User (MU) THz
hybrid MIMO scenarios. We develop a practical dual wideband
THz channel model that incorporates absorption losses, reflection
losses, diffused ray modeling and angles of arrival/departure
(AoAs/AoDs) using a Gaussian Mixture Model (GMM). Fur-
thermore, a low-resolution analog-to-digital converter (ADC) is
employed at each RF chain, which is crucial for wideband
THz massive MIMO systems to reduce power consumption and
hardware complexity, given the high sampling rates and large
number of antennas involved. The quantized MU THz MIMO
model is linearized using the popular Bussgang decomposition
followed by BGSR based channel learning framework that results
in sparsity across different subcarriers, where each subcarrier
has its unique dictionary matrix. Next, the Bayesian Cramér
Rao Bound (BCRB) is devised for bounding the normalized mean
square error (NMSE) performance. Extensive simulations were
performed to assess the performance improvements achieved
by the proposed BGSR method compared to other sparse
estimation techniques. The metrics considered for quantifying
the performance improvements include the NMSE and bit error
rate (BER).

Index Terms—TeraHertz, beam squint, dual-wideband, Multi-
User, Bussgang decomposition, Bayesian learning, Cramér-Rao
bound

The work is supported by IEEE SPS scholarship grant for 2023, 2024 and
2025. The work of Aditya K. Jagannatham was supported in part by the Qual-
comm Innovation Fellowship; in part by the Qualcomm 6G UR Gift; in part by
the Arun Kumar Chair Professorship; and in part by the DST, Govt. of India.
Lajos Hanzo would like to acknowledge the financial support of the following
Engineering and Physical Sciences Research Council (EPSRC) projects is
gratefully acknowledged: Platform for Driving Ultimate Connectivity (TI-
TAN) under Grant EP/Y037243/1 and EP/X04047X/1; Robust and Reliable
Quantum Computing (RoaRQ, EP/W032635/1); PerCom (EP/X012301/1);
EP/X01228X/1; EP/Y037243/1. The work of S. Srivastava was supported
in part by IIT Jodhpur’s Research Grant No. I/RIG/SUS/20240043; in part
by Anusandhan National Research Foundation’s PM-ECRG/2024/478/ENS;
and in part by Telecom Technology Development Fund (TTDF) under Grant
TTDF/6G/368. S. Srivastava, A. K Jagannatham, and L. Hanzo jointly ac-
knowledge the funding support provided to ICON-project by DST and UKRI-
EPSRC under India-UK Joint opportunity in Telecommunications Research.

Abhisha Garg and Aditya K. Jagannatham are with the Department of Elec-
trical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016,
India (e-mail: abhisha20@iitk.ac.in; adityaj@iitk.ac.in).

Akash Kumar is with Qualcomm India Pvt. Ltd., Hyderabad, Telangana,
500081, India (email: akkum@qti.qualcomm.com)

Suraj Srivastava is with the Department of Electrical Engineering, Indian
Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India (e-mail:
surajsri @iitj.ac.in).

Nimish Yadav is with Samsung Semiconductor India Research, Bengaluru,
Karnataka, 560048, India (email: nimish.y @samsung.com).

L. Hanzo is with the School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, U.K.
(email:lh@ecs.soton.ac.uk)

I. INTRODUCTION

TeraHertz (THz) communication stands out as a promising
avenue to deliver ultra-high data rates and massive short-range
connectivity in next-generation wireless communications. The
THz band, spaning from (0.1 — 10) THz, offers spectral
windows characterized by bandwidths of 10 GHz or higher
[1]. In comparison to the mmWave band that spans 30 — 100
GHz [2], the major challenges in this band include having
fewer spatial degrees-of-freedom (SDoF) [3], high blockages
and the spatial wideband effect. The short wavelength of the
THz signal leads to variation in the delay across different
antenna elements within the array, resulting in deleterious
spatial wideband effects [4]. Furthermore, a wideband THz
signal exhibits frequency-selective characteristics stemming
from the multipath delay spread, consequently inducing a
hostile frequency-wideband effect. A general THz system
experiencing simultaneous frequency- and spatial-wideband
effects is termed a dual wideband system [5]. The so-called
beam squint effect arises because of the variation in the
effective angle of arrival (AoA)/ angle of departure (AoD)
across the subcarriers, which in turn affects the array response
vector [4]. This phenomenon leads to a significant difference
with respect to its mmWave counterpart and gives rise to a
fundamental challenge in this band. However, the presence
of precise channel state information (CSI) is essential for
successful beamforming in such systems. Furthermore, the
conventional channel estimation methods like least-squares
(LS) and linear minimum mean squared error (LMMSE)
techniques necessitate a substantial pilot overhead because of
the dense packing of antennas, leading to reduced spectral
efficiency (SE). Therefore, the development of advanced CSI
estimation techniques tackling the dual-wideband effect in
THz hybrid MIMO systems is paramount, while also ac-
counting for the beam squint effect. A popular technique of
recovering such a sparse channel is sparse Bayesian learning
(SBL), which exhibits a distinct advantage over other sparse
recovery techniques such as LASSO and FOCUSS, as it
automatically exploits sparsity, without user intervention [6].
Additionally, as a probabilistic method, SBL calculates the a
posteriori distribution of the sparse weight vectors, including
its mean and covariance, which enhances the overall accuracy
of the estimation process. The following section will offer a
critical appraisal of the pertinent previous studies.



A. Review of existing works

The THz band is associated with significant challenges
primarily due to the inevitable propagation and molecular
absorption (MA) losses. Pioneering research conducted by
Jornet and Akyildiz [1] has led to the development of a cutting-
edge THz channel model that effectively incorporates both
propagation and MA losses. The pioneering work of Lin and
Li [7] proposed a distance- and frequency-dependent hybrid
beamforming scheme for an indoor scenario considering multi-
ple users (MU). They modeled the AoA/AoD using a Gaussian
Mixture Model (GMM).

The problem of finding sparse solutions from a single
measurement vector (SMV) has received extensive attention in
prior research [8]. Despite its NP-hard nature, numerous near-
optimal algorithms designed for single-measurement scenarios
have been devised, and these algorithms have proven to be
valuable in diverse applications [9]. The algorithms conceived
for SMV can broadly be classified into greedy algorithms [10],
mixed-norm optimization [11], iterative re-weighted [12] and
Bayesian learning algorithms. As a result of this groundwork,
numerous multiple measurement vector (MMV) algorithms
have emerged as straightforward extensions of these SMV
algorithms. These MMV algorithms leverage the foundational
principles established in the SMV context to address more
complex scenarios, owing to their efficiency and adaptability.
Wipf and Rao [6] proposed the SBL algorithm for SMV
and later on extended to MMV in form of the MMV-SBL
(MSBL) algorithm. Within the realm of MMV algorithms, the
family of Bayesian learning frameworks has gained significant
popularity among researchers due to their demonstrated can be
ability of achieving optimal recovery performance. Cotter e?
al. [13], in their path breaking work expanded the application
of MMV techniques to encompass a range of sparse recovery
algorithms, including MMV based matching pursuit (MBMP),
MMV orthogonal matching pursuit (MOMP), MMV order-
recursive matching pursuit (MORMP), and MFOCUSS with
unknown sparsity structure. The key advantage of using MSBL
over the other MMV algorithms is that the global minima of
MSBL is always the sparsest solution and exhibits very few
local minima compared to other MMV based algorithms [14].

The versatility and relevance of MSBL techniques are not
limited to quasi-static channels; they also lend themselves
to employment in the domains of online learning and data
recovery processes. Joseph et al. [15], introduce a pair of
online MSBL algorithms designed for recovering temporally
correlated sparse data, using a sequential EM approach. They
model the correlation using an auto-regressive (AR) process
and achieve online estimation with a small delay. Srivastava
et al. [16], proposed a MMV sparse Kalman filtering based
approach for data-aided channel estimator tailored for doubly
selective mmWave MIMO-OFDM systems. They model the
temporal variation of the path gain using an AR-1 process.

The authors of [17] developed an SBL based TD THz chan-
nel estimation framework considering optimal pilot design.
Sha and Wang [18] in their pioneering work proposed a two-
stage channel estimator for frequency wideband THz channels
considering RF impairments. Dovelos et al. [19], modeled

the OFDM-based dual-wideband THz channel of a uniform
planar array (UPA) and estimated the channel using both
OMP and generalized MOMP (GSOMP) based approaches.
They consider a single-user (SU) configuration in a single
antenna scenario. The recent literature only has a limited
number of works addressing the dual wideband effect for THz
channel estimation. In this work, Chou er al. [20], proposed
a framework for dual wideband channel modeling in the sub-
THz regime, utilizing MMV least squares (MM V-LS-CS) tech-
niques for acquiring a time-varying MIMO-OFDM channel. Li
and Madhukumar [21] proposed a channel-estimation frame-
work for hybrid (near- and far)-field THz UM-MIMO that
integrates dictionary learning with Bayesian sparse recovery.
A sparsifying dictionary is learned to capture the joint hybrid-
field channel structure, and Bayesian inference is then applied
to recover the sparse coefficients, yielding improved estima-
tion performance under constrained pilot resources relative to
fixed-basis approaches.

Wang et al. [4], in their groundbreaking treatise suggest a
new massive MIMO channel model that considers both the
spatial-wideband and frequency-wideband effects. However,
they left the problem of dual-wideband reception under low-
resolution ADCs as an open issue. Zhang et al. [22], com-
pare the performance of finite-resolution ADCs and DACs in
narrow-band MU THz hybrid MIMO systems. They derived
a closed-form expression for the achievable lower bound.
Nikbakht and Lozano [23] proposed an unsupervised learning-
based technique for transmit beamforming in THz systems
considering low-resolution ADCs. However, none of the ex-
isting literature investigating low-resolution ADCs considers
the dual-wideband channel, which is predominant in the THz
band. The authors in their seminal work [24] proposed a
data-driven de-quantizer to combat hardware imperfections
in OFDM systems. They utilized a data-driven approach to
mitigate signal distortion caused by quantization and additive
white Gaussian noise (AWGN), whereas compressive sens-
ing techniques do not account for system properties. Kim
and Choi in their pioneering work [25] proposed a channel
estimation scheme considering low-resolution ADCs in the
face of spatial-wideband effect only. However, they consider a
mmWave massive MIMO system, where each user is equipped
with a single antenna. Furthermore, they employ a time-
domain system that does not account for frequency selectivity,
a common consideration for wideband THz systems.

Moreover, in contrast to [5], which primarily focuses on
angular-domain processing, this work addresses multiple key
challenges inherent in THz communication. Specifically, we
incorporate off-grid-based dictionary estimation to enhance the
angular resolution, account for low-resolution ADCs which are
the dominant sources of power consumption and extension
of the framework to construct the MU dual-wideband chan-
nel formulation. Additionally, we integrate the GMM based
approach for AoA/AoD generation to better capture spatial
variations. These enhancements collectively provide a more
comprehensive and practical framework for robust channel
estimation and system design in THz-band communications.
To address this research gap, we propose a novel CSI es-
timation framework that considers a dual wideband channel



Table I
COMPARISON OF THE NOTABLE CONTRIBUTIONS OF THIS STUDY WITH THE ALREADY EXISTING WORKS

Features [71 | [5] | [16]

[17] | [19] | [20] | [21] | [25] | [26] | [18] | This Paper

sub-THz/ THz Band v

v v v v v

Reflection losses & molecular losses v

v v v v

SC-FDE system

v

ANENENEN

Dual-Wideband Effect

v v v

Multi-User MIMO v

Low Resolution ADCs

BCRB

N
AN

Taylor-based off-grid estimation

MU AoA/AoD with GMM

SNENESENENENENENENEN

RRC-PSF based dual-wideband channel

for MU scenarios using an SC-FDE system. It is important
to note that, for low-resolution ADCs, single-carrier systems
are generally preferred, since OFDM-based systems cannot
preserve orthogonality [27]. Table-I boldly contrasts the salient
contributions of the proposed work to the literature at a glance.

B. Contributions

1) We commence by formulating a practical THz chan-
nel model that incorporates both frequency- and
spatial-wideband effects, while also accounting for
their distance-dependent characteristics. Furthermore,
we consider the effects of diffused rays associated with
each multipath component, a practical challenge that
has been overlooked in previous contributions [1], [7],
[20]. Additionally, we compare the root raised cosine
pulse shaping filter (RRC-PSF) and the rectangular pulse
shaping filter (Rect-PSF) in dual-wideband channel for-
mulations. A key challenge is the generation of distinct
and realistic spatial signatures for AoA/AoD pairs using
the GMM corresponding to each user, which has been
overlooked in [7], [28] and addressed in this work.
The approaches in [17] and [29] assume a common
dictionary across all subcarriers, which is not feasible
due to the beam squint effect altering the traditional
array manifold. To address this, we leverage the spar-
sity in the angular domain to formulate a compressive
sensing (CS) problem and solve it using the Bayesian
Group Sparse Regression (BGSR) approach. Addition-
ally, we construct both the on-grid and Taylor-based off-
grid (TBoD) dictionary matrices and demonstrate that
the channel exhibits a shared support across different
subcarriers, unlike the case in [5].

We quantify the accuracy of the proposed BGSR based
technique by comparing the estimation error variance to
the Bayesian Cramér-Rao Bound (BCRB). Therefore,
another significant contribution of this work involves
deriving the BCRB for MU scenarios. It provides a
valuable benchmark for assessing the performance of
the CSI frameworks.

Another key contribution of this work involves the
combined study of the grave challenges occurring in
the THz band, including the hybrid architecture, low-
resolution ADCs, and dual-wideband channels, to en-
hance the end-to-end system performance. To the best
of our knowledge, no existing work considers an SC-
FDE-based system utilizing low-resolution ADCs in

2)

3)

4)

dual-wideband channels. This is because single-carrier
systems are inherently more robust to low-resolution
ADCs than OFDM systems. Therefore, integrating these
elements within a unified SC-FDE framework further
exacerbates their interdependencies, which we aim to
address in this work.

Our simulation results conclusively illustrate the
improved performance of the proposed BGSR algorithm,
also verifying that the normalized mean squared error
(NMSE) of the proposed algorithm approaches the
BCRB, demonstrating its effectiveness. Furthermore, the
MA coefficient is evaluated using the HIgh Resolution
Transmission (HITRAN) database [30], which exhibits
reliability throughout the entire THz band.

5)

C. Notation:

Matrices are represented by uppercase letters B, while
lowercase letters b represent vectors. Various operators are
indicated by superscripts such as ()7, (.)¥,(.)~! which
represent the transpose, Hermitian and inverse, respectively.
Let {H,(0),H,(1),--- ,H,(/N — 1)} represent a sequence
of matrices and {x,(0),x,(1), -+ ,x,(N — 1)} represent a

. . N-1
sequence of vectors. The circular convolution {r,(n)}, _, can

be defined as

N-1
ru(n) = Z Hy (D)xu[(n = D]n + Vu(n),
1=0
where [|ny  represents modulo-N  operation. Let
{x4(0),x,(1), -+ ,x4,(N —1)}  represent the input
sequence, where x(n,k) denotes the kth element of

x(n). Let {ry(0),ry(1),---,r, (N —1)} constitute the
output sequence, where r(n,k) denotes the kth element of
r(n). Then, the N-point FFT of the vector sequence is defined
as r(p,q) 22:01 x(n, q)e‘jh#. The uniform distribution
is denoted by {(.) while the Gaussian distribution is denoted
with CN (p, ) where p represents mean while 3 represents
variance.

II. MU THz HYBRID MIMO SYSTEM AND CHANNEL
ESTIMATION MODELS
Consider an MU THz hybrid MIMO system as shown in
Fig. 1(a), where a BS is fitted with Ny receive antennas
and serves U users simultaneously, with each user possessing
N7, transmit antennas. Therefore, the total of all the transmit
antennas for all the users equals Zgzl Nty =UNr,y = Nr.
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Figure 1. (a) Schematic diagram of SC-FDE based MU THz hybrid MIMO systems with low-resolution ADCs. (b) Frame structure utilized for wideband

MU THz hybrid MIMO system using SC-FDE corresponding to each user.

The BS has N5, RF chains, while each user possess N};F,u
RF chains. Furthermore, we consider a practical scenario in
which the RF chain count follows the constraint N5, < Ng
and N};Eu < Nr, in order to support the hybrid MIMO
architecture. The aggregate number of data streams, denoted
as Ng, is subject to the constraint Ny < N,§F, where N is
defined as N, = Zgzl Ng o = UNg,y, and N, represents
the number of data streams corresponding to each user. More-
over, at the receiver, the hybrid processing module consists
of a set of frequency-selective baseband receiver combiners
(RC) Wgg[k] € CNar*N: cascaded with a frequency-flat
RF RC Wy € CNexNir At the transmitter, the hybrid
processing module is comprised of a frequency-flat baseband
transmit precoder (TPC) Fgg ,, € cN #rwXNau for each user
coupled with a frequency-flat RF TPC Fgg,, € CNTwxN gF’u.
Furthermore, the RF TPC and RC are composed of digitally
controlled networks of phase-shifters, which consist of only
constant-amplitude phase elements following the constraints
|WRF(’{7£)| = ﬁ’ |FRF,u(Ha€)| = #Tw

The frame structure of each user i1s shown in Fig. 1(b).
Let H;,, € CNrRXN7.u represent the complex wideband THz
MIMO channel corresponding to the [-th delay tap of wu-
th user. Furthermore, let a%}u S CNngu“ represent the
p-th complex pilot vector of the m-th block corresponding
to the u-th user. Prior to transmission through individual
RF chains, the N, pilot vectors undergo zero-padding (ZP),
where L — 1 zeros are appended to each block. This process
results in ZP blocks of length K, which is further given
by {a(Q) K-1 {a(O) ad L qWNe=1)

maUf g0 m,us Bm,u,

s Bm,u USRS 70}-
——
. . . . L71 .
To achieve consistent dimensions, N, — 1 zero-matrices
of size Ngp x Nrp, are appended to the channel taps

H; ., and the resultant taps are given by {qu}ffzf()1 =

{Ho,u,Hl,u,--,HL_l,u,0,~-~,O}. Therefore, the re-
N—_——

Np—1
ceived signal vector r,,(q) € CNBs*! corresponding to all
the U users is given by
U

rm(Q) = Z Hq,u QK (FRF,m,uaquL?u) + {’m(Q); (D

u=1

where V,,(q) represents the AWGN, which obeys

CN(Onpsx1,0%IN,5), while ®k denotes the circular
convolution of length K. The quantity Frg ., represents the
RF TPC for the u-th user corresponding to the m-th block.
Furthermore, the ZP operation converts the linear convolution
to circular convolution and after applying the fast Fourier
transform (FFT) at the receiver, the system is decoupled into
different frequency bins. At this juncture it is also worth
noting that while the overall system model is decomposed
into different frequency bins at the receiver, it can be still
viewed as an SC system at the transmitter. This is because,
the transmitter does not employ an inverse FFT (IFFT) block
and the signals aS?,?u are transmitted sequentially with the aid
of ZP. Therefore, the received signal y,,, mu(q) € CV mrx1 for
all the U users after performing RF combining corresponding
to the m-th block and passing through low-resolution ADCs
Q(+) can be formulated as

U
Yn(a) = ©( Wik > Hy @ (Frem uafih) + Wik ¥n(a) )
u=1

U
~ DW]Iﬁr:,m Z Hq,u ®K (FRF,m,uar(rg,)u) + DWéIF,me(q) + V.

u=1

(@)
Assuming each RF chain to be quantized independently, the
quantization matrix D € CN&* Nt may be considered to be
diagonal. Moreover, the entries of D are represented as D =
el, where ¢ = 1—wv and v represents the quantization noise-to-
signal power [31]. Let E{agf{?u(a%?u)H} =071y, , where o}
represents the pilot power. Additionally, the quantization vec-
tor v follows the distribution CN'(Oyz 1, Crn), Where Gy, =
e(1 — e)diag(Wigk ,, QumWrEm + 02 Wk, WrEm). The
derivation of this along with that for matrix Q,, is detailed in
Appendix-A. Moreover, the diagonal error covariance matrix
results from quantizing each RF chain independently, which
is followed from the property of Bussgang decomposition for
Gaussian inputs [32]. Furthermore, the values of v are given in
Table II for b < 5 and can be approximated as v = ”T\/g2_2b
for b > 5 [31]. Let v,,(q) = DWEE . ¥, (q) + v € CNeix!
represent the equivalent noise. Therefore, the equivalent noise
covariance matrix of Ry, = E{v,,(q)vH(q)} € CNerxNar
can be expressed as R, = 620'%Wg;7mWRF7m +C,,. There-

fore, the received signal y,, wu[k] € CV frx1 corresponding



Table 11
v FOR DIFFERENT ADC BITS b [31]

b 1 2 3 4 5
v | 0.3634 | 0.1175 | 0.03454 | 0.009497 | 0.002499

to the k-th subcall;rier for all the users, ob}?ined via K-point
-1 —1N . .
FFT {Ym,MU (K] k=0 — FFT( {Ym,MU(Q)}qzo ) is given by

Ymmu (k] & DWEEL - HMu[kFRE m,u0m,ulk] + Vi [k], (3)

where HMU[k‘] = [Hl[k‘] Hg[k‘} HUUfH S CNrxNr
represents the concatenated channel for all the users while
H,[k] € CNrxNtw represents the K-point FFT of
{H; ,} ;' The quantity a,, . [k] € CNarwX1 is obtained by
taking the K-point FFT of the input signal {aSZ?u whereas
v k] € CNrr*1 results from applying the same transfor-
mation to the effective noise signal v,,,(q). Let s, mulk] =
FRE m.uOm.ulk] € CNT«X1 for notational simplicity. Upon
employing the vec(.) operator property in Eq. (3), we obtain

Ymmulk] = (85, au (K] © DWig ) vee(Hy[k]) +vin[K].

A Mmulk]

Note that, although the Bussgang approximation is sub-optimal
under low-resolution ADCs, it remains a practical choice
in THz systems [3]. Due to the extremely high bandwidth
and large antenna arrays, exact nonlinear quantization models
become computationally expensive and scale poorly with
system dimensions. However, Bussgang linearization provides
a tractable trade-off sacrificing some modeling accuracy at
higher resolutions, while enabling large-scale multi-subcarrier,
multi-antenna channel estimation in THz systems, where
beam-squint and high dimensionality already render exact
quantization approaches intractable. The next section will
discuss the dual-wideband effected channel model.

hyru(x)

III. MU THZ CHANNEL MODELING WITH
DUAL-WIDEBAND EFFECTS

This section delves into the characteristics of the dual-
wideband THz MIMO channel for a generalized pulse shaping
filter (PSF) and further describes the channel model for a THz
hybrid MIMO system. Table-III provides the description of the
channel parameters considered. The generalized array steering
vector a(¢, f.) can be formulated as

1

o . —I(N-1) 2T dccos 9T
(o) = [t e T
where A\ = ? while d. = # It is worth noting that

the frequently employed approximation of d. ~ % used for
antenna arrays holds true only for narrowband channels, where
the B is much smaller than the center frequency f., i.e.,
bandwidth B < f.. Naturally, it breaks down for wideband
signals occupying a significant frequency spectrum [33]. Let fj
represent the frequency of the kth subcarrier, which is defined
” K+ 1\ B
fo2 fot (k=== ) = )
Furthermore, we define the spatial phase offset AY,, ;, for the

n-th antenna at the k-th subcarrier as

2
i = 1 (n=1)decosg = n(n — Do cosg,  (6)

where o = {Tk Consequently, the effective spatial AoA gg( fr)
at the k-th subcarrier is defined as

~

¢(fr) = arccos (gx cos @). (7)

Thus, the modified array steering vector associated with
frequency-dependent angles from Equations (4) and (7), can
be further expressed as

. X T
1’ e~ Imok Cos(¢)’ . 767](N71)7rgk cos (¢) )

®)

Moreover, the THz channel can be characterized as a com-
bination of line-of-sight (LoS) and non-line-of-sight (NLoS)
components. The LoS component captures the direct propaga-
tion path between the BS and UE, while the NLoS component
encompasses the multiple reflections caused by various scatters
within the environment. Therefore, the dual-wideband THz
MIMO channel can be mathematically expressed as the merger
of the LoS and NLoS components, which can be described for
the subcarrier k as

H, [k] = k] + H K], ©

A _ L
a(d)v fk) - \/N

The LoS and NLoS components for the dual-wideband channel
are given by

H.*[k] = \/NruNra(fi,d)B-Br.Brar(s, fr)ar, (0, fi),

NxLos Nray (10)
NpuN.
HNLOS k] = M o, 7dz 3
U [ ] NNLOSNTay ZZ:1 JZ:; 7.7(fk ,])6 23

%TJL%RQR(QSZ,]?fk,)ég{u(927]7fk)7 (11)
K-—1
Br., = pUTy — 72 p)e 75 Wk, (12)

=0

where the parameters of Hq(j)[k] are defined in Table-III.
Moreover, THz wireless channels are susceptible to substantial
attenuation due to various factors. Among these are absorption
losses arising from molecular interactions and noise introduced
by water vapor molecules [1]. These considerations are inte-
grated into the modeling of the complex-path gains «( f%, d)
and «, ,(fk,d. ), which depend on both the subcarrier fre-
quency fi and transmission distance d(.). Moreover, the intri-
cate path gain oy (fx, d.)), can be described by its magnitude
and phase components as a()(fx,d()) = |a)(fr, d())|e’™.
Thus, the modeling of the complex path gain for the LoS
component as discussed in [1] is given by

|Oé(fk7 d)‘Q = Lfree(fka d)Labs(fka d)a

where Liee(fx, d) and Lups(f, d) [20] are respectively given
as

13)

C

L dy=(——
free(fka ) <47Tfkd
while kaps (i) = > k%I (fi). The quantity k5.7 ( fx) represents

abs

2
>7Lm=e*MhW (14)

the attenuation ofplediation at the subcarrier frequency fj due
to the absorption by the p-th isotopologue of the ¢-th gas and
can be efficiently calculated from the HITRAN database [1].
In a similar vein, the complex path gain associated with the



Table III
NOTATION AND DESCRIPTION OF CHANNEL PARAMETERS CONSIDERED
Parameter | Description Parameter Description
A wavelength w phase of complex path gain
e subcarrier frequency Kaps molecular-absorption loss
AY spatial phase offset T first-order reflection coefficient
de inter-antenna spacing Ok relative subcarrier frequency
Nyay # of diffused rays 1o/ €o free-space permeability/ permittivity
D) AoA x absorption coefficient of reflecting medium
0(_) AoD Lfree free-space loss
Laps absorption loss Zo intrinsic impedance of free space
() complex path gain vi/vr angle of incidence/ refraction of medium
Ts sampling time Z characteristic impedance
T() delay n index of refraction
PO pulse-shaping filter or standard roughness deviation of reflecting medium
Note that, the notation (-) represents a generalized index placeholder corresponding to specific parameter, depending on the context.

z-th NLoS component corresponding to the j-th diffuse ray
can be mathematically modelled as

‘Oéz,j(fk‘? dz,j)|2 = Tg,](fk)Lfree(fka dz,j)Labs(fka dz,j)- (15)

Here, Tz’j signifies the first-order reflection coefficient per-
taining to the j-th diffuse ray within the z-th NLoS cluster.
The quantity Ti , 1s the multiplication of the Fresnel reflection
coefficient and Rayleigh roughness factor [34], as

M

47 fi, op cos Viz,] 2
vz _ Z(frx)cos(vi, ;) — O(COSVTZJ)(; ( k —C( ))
21  Z(fr) cos(vs, ) + Zo(cos Vr. ;)

Tz,j

Z(f

where v, = arcsin (sin (Viz J) Z—O’“)> The characteristic

impedance Z( f) of the reflecting medium given by Z(fy) =
Mo

co (12— (52250 )—5 325
are detailed in Table-VIIL. It is worth noting that the highly
directional nature of propagation in the THz band results
in a sparsely populated multipath channel in the AoA/AoD
domain. In such scenarios, the recently developed sparse signal
processing paradigm can yield excellent results for channel
estimation, which leads to improved bandwidth efficiency. The
next section introduces the sparse THz recovery model.

) where the specific parameter values

IV. SPARSE CHANNEL ESTIMATION FOR MU THZ HYBRID
MIMO SYSTEMS

Let Gr, and GpR represent the number of transmit and
receive angular bins, satisfying the relationship (Gr,., Gr) >
max(Ny ,, Ng). Furthermore, let ©1,, and ®p represent the
transmit and receive angular grids, which are formed by the
directional cosines in the range [—1, 1] and are given by

‘I)R = {¢7‘ : COS(¢)T‘) = GAR(T_ 1) — 171 <r< GR}7

Or,u = {b,u : cos(by) =

(t—1)—1,1<t<Gru}.
(16)

GT, u

The extended virtual channel model [35] for to the u-th user

is given by

H, k] = Ag[k]H,, [k]AF,[K], (17)

where Agp(®pg, fr) € CNrXCR represents the receive array
manifold which is given by

AR((I)R7fk) = [éR(¢17fk)véR(¢25 fk)7 T ’éR(¢GR7fk)] :
(18)

The quantity A7, (O, fr) € CNTwXGTu denotes the
transmit array manifold vector for the u-th user, which is given

AT,u(@T,ua fk) = [aT,u(el,u, fk)véT,u(GQ,ua fk), Tty
aru(0cr., fr)]-

Furthermore, Hy, ,,[k] € CE®*ET.u represents the beamspace
channel frequency response (CFR) matrix corresponding to
H,, [k]. Leveraging the vec(.) operator and the ® relationship,
the THz MIMO channel corresponding to the u-th user can
be recast as

vee(Hy[k]) = (AT,4(OT,u, fi) ® Ar(Pr, fi)) vee(Hy[k]),

\i’u [k]

19)

where W, [k] € CNrNT.wXGrGT.u represents the sparsifying-
dictionary of the u-th user. Furthermore, with vec (H, ,[k])
denoting hy ,,[k], the concatenated vectorized CFR across all
the U users for the k-th subcarrier is given by hyylk] =

blkdiag (¥1[k] @2[k] -~ Ty [k]) [bI [k, [K] - b, [K],

Py [K]
where Wyylk] € represents
the concatenated sparsifying dictionary and hpwulk] €
CGr¥U-1Gruxl ig the concatenated beamspace output for
all the U users. Consider a simplistic scenario associated
with 25:1 G,y = UGr,. The beamspace received output
vector for all the U users corresponding to the m-th block is
given by

Ymmulk] = Ay mu k] ®mu k] hy mulk] + Vi [K].

—_— ——

Qm,MU[k]

hy mulk]
CUNRNT,u XGR 25:1 GT,u

(20)

Furthermore, to develop a compatible pilot model [29] for the
k-th subcarrier, we concatenate the outputs y,, mu[k| for all
the M blocks into a single vector, represented as

vimulk] Q1 mulk] v1[k]
y2mulk] Q2 mu (K] valk]
. = : hy mulk] + : , (21
v mmulk] Qo mulk] v [K]
ymu (k] Qmu k] VMU[k]



where yyulk] € CMNirx! denotes the stacked pilot out-
put, Quulk] € CMNiErxUGRGT.u s the equivalent sens-
ing matrix and vyylk] € CM Nipx1 represents the equiv-
alent noise across all the M blocks for the k-th subcar-
rier. We assume that the noise samples are uncorrelated
across all the subcarriers and satisfy E {vyu[k](vmulk])? } =
blkdiag (Ryy,1, Ryw,2, - s Ryy,m) = Cy. The next sectlon
introduces a BGSR based algorithm for the sparse channel
estimation model of (21).

V. BAYESIAN GROUP-SPARSE REGRESSION ALGORITHM
FOR SPARSE CHANNEL ESTIMATION IN MU THz MIMO
SYSTEMS

As discussed in Section-I, practical scenarios in the THz
domain necessitate careful consideration and modeling of
the beam squint effect, resulting from the variation in the
effective AoA/AoDs across subcarriers. This variation further
impacts the array response dictionaries [19]. Consequently,
conventional MSBL algorithms, which assume a common
dictionary matrix across all the subcarriers [16], do not lead
to optimal performance in such scenarios. Therefore, we
propose a novel BGSR based approach that jointly processes
the hyperparameters across all the subcarriers and provides
enhanced performance over the conventional sparse sens-
ing techniques. Furthermore, in order to construct a group
based MU sparse channel estimation model, we concate-
nate the output across all the subcarriers from Equation
(21) to obtain Yyuy = [YMU[O] yMU[l} YMU[K — 1]] S
CMNEr*K  Furthermore, the equivalent sensing matrix across
all subcarriers can be given by Evy(:,: k) = Qmulk] €
CMNEpxUGRGTuxK v () < k < K — 1, and the cor-
responding noise matrix can be concatenated as Vyy =
[VMu[O] VMu[l] s VMU[K — ].H € (CJWN;;FXK. Let Hb,MU =
[hb,MU[O] th,MU[l] cee hb,MU[K - 1“ € CUGRGTuxK rep-
resent the aggregate channel matrix across all the subcar-
riers, while H;, = [H;,[0]H,y,[1] ---Hp [K —1]] €
CGr*KGr.u represent the combined channel matrix across all
the subcarriers of the u-th user. Moreover, we assign a pa-
rameterized Gaussian prior f(Hj mu;T'mu) to the beamspace
channel matrix Hj vy, which is given by

K—-1UGRGT,y . 2
F(Hpmu; Twy) = H H (mye.:) " texp (,M> 7
k=0 =1

Vhyi

(22)
where -y ; represents the i-th hyperparameter for the k-th
subcarrier.

(k) = (S (5 k)CL B (s k) + Tk )

B k)C Ymu(LE) VO < k<K —1,
(23)
K—1 K—1
H log[f(Ymu(:, k); Timu)] = Z (— MNgplog(m)—
k=0 k=0
log[det(cwy,k)] - YI\I}U(:v k)cw,} kYMU( k))a (24)
The matrix I'yy can be defined as I'yy =
Zi:ol L'y mu € RUGRGTwXUGRGT W where

Timu = diag (Ye1, k2, Ve,UGrGr.)- In Bayesian
techniques, hyperparameters are used as variance parameters
that play a crucial role in promoting sparsity, since coefficients
associated with small ; are automatically driven toward zero,
while those with large ~; remain active [8]. This mechanism
eliminates the need to explicitly impose sparsity levels or
tune penalty factors, as done in traditional approaches such as
OMP or LASSO [36]. Furthermore, by iteratively updating the
hyperparameters, Bayesian approaches adaptively determine
the most relevant coefficients, while providing posterior
distributions that quantify uncertainty in the estimates.

The MMSE estimate Hyyy € CUCRGTWXK can be
derived as Eq. (23) and one can observe that estimating
Hj my ultimately reduces to the estimation of the corre-
sponding hyperparameter matrix I'y, my. Furthermore, the log-
likelihood log [f(Ymu(:, k); Tk mu)] of the hyperparameter
matrix I'; mu can be expressed as Eq. (24) where Cwy)k =
Cy+ EMUI‘MMUE{}[{U. However, the maximization of the log-
likelihood w.r.t. T', vy is mathematically intractable. As a rem-
edy, the expectation maximization (EM) [37] algorithm offers
an efficient approach for iterative maximization. Furthermore,
this algorithm guarantees convergence to the local maximum.

In preparation for exploiting the EM approach, let the
complete information set be defined as {Ymu, Hymu} and
the hyperparameter matrix be represented as I'yiy. Let f‘,(\ja 1
denote the hyperparameter matrix estimate at the (j — 1)st EM
iteration. We now present the detailed update procedure for the
hyperparameter estimate I‘l(v][[)j in the j-th EM iteration. During
the E-step, we evaluate the log-likelihood of the complete
information set denoted as E(I‘MU|f‘1(\ij 1)), where

(I‘MU‘I‘IE/ZU 1)) EHb ol Yy BG D {logf(Ymu, Hymu; Tmu) } -

(25)

This can be re-written as
E(FMU‘I‘(J 1)) ]EHb VAN J(Chay {logf YMU|Hb MU)+
log f (Hpmu; Tmu) }- (26)

The expression within the first expectation operator can be
simplified as seen in Eq. (27) given at the top of the next page.
One can observe that Eq. (27) is independent of I'yy, which
can be ignored in the subsequent M-step. Thus, the equivalent
optimization problem can be formulated as

D = g v By, o8 (s Do)}
T'mu
(28)

Substituting  f(Hp mu; I'my) from Equation (22), one can
observe that the maximization problem can be separated w.r.t
the hyperparameters and one obtains

_ UGRGT, W K—-1
I‘l(\,]u)J = arg max Z (— Z log(vk,i)—
Py i=1 k=0

K—-1 1 . )
> %E{mb,w(z,kn }).

k=0
(29)
To evaluate the hyperparameter estimate, it is necessary to
compute a stationary point of the above cost function. This



]EHb,Mu|YMU;f]EAjU71) {logf(YMU|Hb MU

=

(Ymu(s, k) — Enmu(s, s, k) Hy mu(

- oo

) C

K-1

k=0 27

. (YMU

— B B H (s ) ),

can be determined by differentiating the cost function above
with respect to «y; and setting the derivative to zero. This
leads to the following update equation for the hyperparameter
estimate ﬁ,(j 7) in the j-th EM iteration

K—1

. 2
Z ]EHb,MUlYMU;fIE,ﬂJ_U {|Hb7MU(Z’ k>| } ’
k=0

il =

(30)
where the conditional expectation in the above equation can
be evaluated using the a posteriori pdf of Hymu given by
FHpmulYwui Tifg V) = CN(HRy, zﬁjﬁj). Therefore, the
a posteriori mean Hb MU € CUGr G x K and a posteriori co-
variance Xy € (CUGRGT uXUGRGT u XK for the MU scenario
are derived as Eq. (31) and (32) respectively. Note that we
adopt a Gaussian prior for the beamspace channel coefficients.
This choice is essential for two main reasons. Firstly, the
observation model for the received pilots is Gaussian due to
AWGN noise, and using a Gaussian prior ensures conjugacy
with the likelihood. This leads to closed-form expressions for
the posterior mean and covariance of the channel coefficients,
as given by Eqgs. (31) and (32) which are directly exploited
in the E-step of the EM algorithm. Secondly, by associating
each Gaussian prior with a variance hyperparameter that is
iteratively refined in the M-step, the proposed framework is
able to automatically enforce sparsity. As discussed above,
the coefficients with small estimated variances are effectively
pruned, while only the dominant beamspace coefficients are
retained, thereby yielding accurate sparse channel recovery.
Thus, the Gaussian prior is not an arbitrary choice, but a key
enabler that provides both computational tractability within
EM and the sparsity-inducing behavior that underpins the

BGSR algorithm.
ﬁb,BGSR(H k)=

Smu(s 5 B)ERU (G, 5 k) Cy Yo (s, k)

VO<k<K-1, (31)
] — 1
2MU(:7 :7k) = (HﬁU( k)cwleU(: k) + Fk MU)
VO<k<K-1. (32)

The complexity of the proposed BGSR algorithm is mainly
dominated by computing the a posteriori covariance matrix
as it involves the inverse operation. The inversion in the
update has O(U?G%G%,,,) complexity. In order to reduce
the complexity, we adopt the Woodbury matrix identity
(A+UCV)t=A"1t-A-lUC !+ VAU VAL
and the lemma (I+ P)~! = I — (I + P)~'P, where the a
posteriori covariance and mean can be re-expressed as Eq.
(33) and (34) respectively. The inversion required for the new
updates of the a posteriori covariance matrix has a complex-
ity of O (U?G%G% ,MNfp + M3(NE)?), which reduces
the overall computational load as UGRGr, > MN, }§F.
Determining the a posteriori PDF from the mean of (31)

and covariance of (32), followed by substitution in (30), the
hyperparameter update finally simplifies to

Ty = diag (SU0G, k) + [Homu (b)) -

To refine the hyperparameter estimates further, one can aver-
age these parameters across all the subcarriers to glean the
processing gain resulting from multiple observations. Thus,
the modified hyperparameter update equatlon is given by

Note that upon forcing the dlctlonarles to be subcarrier-
dependent due to beam squint, the underlying sparsity pat-
tern of the channel is forced to remain consistent across
subcarriers. This allows the hyperparameters to be averaged,
since the non-zero coefficient locations do not change with
subcarrier. Mathematically, the averaging can be interpreted as
approximating the expectation of the hyperparameters across
subcarriers, which reduces the variance of the estimates and
suppresses the influence of noise or outliers from any indi-
vidual subcarrier. Thus, the subcarrier-dependent dictionaries
capture frequency variation, while hyperparameter averaging
improves robustness without contradicting the problem formu-
lation. This trade-off ensures that the estimates are not biased
toward any single subcarrier, but instead they reflect the joint
statistics across all subcarriers. The MU equivalent sensing
matrix Eyyy, equivalent received output Yy, noise covariance
C,,, total subcarriers K and stopping parameters are given by
inputs to Algorithm 1 to obtain the group sparse output across
all the users. Let the concatenated MU transmit dictionary
Armu (Or, fo.x—1) € CUNTwXUGTuXEK pe formulated as

A1 mu (O, fo.x—1) = blkdiag (AT,l (©r,1, fo:x-1),

A7r,(O72, fo.xk-1), -, Aru(OrU, f():Kfl))~
(37
The estimated channel obtained through the BGSR framework

can now be determined as
Hgosk = Ar(Pr, fo:x—1)vec™

(35)

(36)

" (Hy pasr) AT (97, forx—1).
(38)
A significant implication of the proposed BGSR framework
is the sparsity of the distribution across distinct dictionaries.
This implies that when we use a common dictionary across all
subcarriers, the sparse locations will vary for each subcarrier.
However, when we employ a dictionary corresponding to each
subcarrier, it fixes the sparse locations, resulting in group
sparsity in the channel. In essence, the sparse locations remain
consistent across different subcarrier dictionaries, despite each
subcarrier having its unique dictionary matrix. This character-
istic further enhances the robustness of the algorithm, which
makes it novel and can be used in practical scenarios. A
popular choice for embedding the non-linearity caused by low-
resolution ADCs includes Bayesian inference [38], which cor-
responds to a discrete likelihood. However, in a dual-wideband



Smu(s k) = Temu — TemuBau (5 5)(Cot + Enmu (s s b) DBy G5 k) T Bmu (0 k) Temu VO < k < K — 1,

—~ —1
Hy pos (k) = TomuB, (0 k) O3 (IMN& + Bwu s ) Teau B G, k)c;1> Y, E)VO<k<K -1,

(33)
(34)

Algorithm 1: BGSR based sparse channel estimation
for dual-wideband MU THz MIMO systems

Input: Eyvy, Yymu, Cu, K, Ar(Pr, fo.x—1) and
A1 mu(Or, forr—1), € and Kax
Output: HBGSR =

phases which includes Identification (Steps 5,6, 7), Augmen-
tation (Steps 9 and 10) and the Residual Updation phase. Step
5 performs summed correlation across all subcarriers, rather
than independently selecting the strongest correlation for each
subcarrier, as it is done in standard OMP [9]. Step 6 then

Ar(®p, fO:Kfl)VeC_l(ﬁb,BGSR)A%MU(@T7 fO:Kilz/II)dates the residual in a grouped manner. While the existing

1 Initialization: f‘ﬁ% =lvcrcr. I‘](v% = 0UGrGr..

and counter j =1
2 while (|| T{y — DU 13 > € && j < Kinax) do
3 E-Step: Compute the a posteriori covariance and
mean as
4 for k=0,--- ,K —1do

Compute the covariance using Eq. (33)

L Compute the mean using Eq. (34)

7 M-Step: Update the estimates of the
hyperparameters as

8 for k=0,--- , K —1do

9 L Update the hyperparameters using Eq. (35).

10 Averaging hyperparameter using Eq. (36)
11 j—j+1

return: Hj posr

—
N

THz system associated with a large number of antennas
and subcarriers, this discrete likelihood must be recalculated
iteratively for each subcarrier, leading to substantial memory
usage and computational overhead. As a result, maintaining
a Bayesian inference loop under these conditions becomes
prohibitively demanding, making closed-form iterative updates
elusive, unless additional approximations or dimensionality
reduction techniques are introduced. The next subsection
briefly describes the GSMP-based sparse channel estimation
method, originally presented in [19] for THz communication
and later extended for the MU-MIMO system model with low-
resolution ADCs exploiting cross-subcarrier sparsity.

A. Group Structure Matching Pursuit based sparse channel
estimation

In order to effectively compare our proposed MU BGSR
approach, this treatise also introduces a MU group structure
matching pursuit (GSMP)-based channel learning technique,
which is described in the following section. The concatenated
group sparse based channel model is detailed in Section
V. Moreover, the MU-equivalent sensing matrix Eyyy, the
received output Yy, and the stopping parameter are fed into
Algorithm-2 to obtain the estimated sparse channel for all the
users. The greedy-iterative procedure consists of three distinct

MV-based OMP approach [29] also processes the subcarriers
jointly, they use a common dictionary for computing a single
correlation metric aggregated both across all measurement
vectors in each iteration. This typically selects one index at
a time based on the aggregated correlation. By contrast, our
GSMP variant in Algorithm-2 performs a more refined, group-
based selection (as shown in Step 5 and 6), where multiple
subcarrier indices are chosen to refine the group structure
in each iteration. Additionally, Step 9 augments the empty
matrix with columns obtained from the index set of Step 7,
while Step 10 computes the intermediate LS solution from
the matrix Zgj,. Finally, Step 11 updates the residual vector
by subtracting the LS solution obtained from the original
output vector, whereas Step 12 averages the residual vector
at each iteration. The estimated channel can be reconstructed
using Eq. (38) corresponding to all the users. Note that the
GSMP algorithm is introduced in this work to demonstrate the
trade-off between computational complexity and estimation
accuracy in comparison to the BGSR framework and it is also
one of the pair of algorithms proposed.

Remark 1: In order to relax the grid-based dictionary
constraint, we also adopt the continuous basis pursuit [39]
based dictionary, which is approximated by the first order
Taylor series interpolation of

A(6, i) = 8(br, fi) + (6 — o) 22 Tk)

6¢ ¢T+O((¢_¢T‘) )7

(39)

where ¢ represents the continuous AoA/ AoD, while ¢, =
QWO"G;RI) represents the grid point having the minimal distance
from ¢. Therefore, the new dictionary will contain the grid
points from the quantized array factor along with its deriva-
tives, which can be further formulated as Eq. (40)

Tr(Pr, fr) = [a(D1, fr), - - s a(dar, fr),
b(¢1, fi),- -+ b(bcps fr)];

where b(g,, fy) = 220

the offset angle wrt the grid, an interpolator is defined as

= [ 120 A0],
Gr Gr

(40)

. Furthermore, to incorporate

(41)

where [A¢| < Z-. Finally, the Taylor series based off-grid

dictionary (TBoD) is given by Eq. (42). Note that, a similar



AR(®R, fr) =R
A7 (O, fr) =

(O, fr)tr = [AR(01, fi), -
[ar.u (01, fr), -

7éR(¢GRa fk)7A¢BR(¢lafk)a T
AT (067 f1), DODT (01, fr), -

5 A¢BR(¢GR7 fk)]
5 Ael?)T,u (QGT’u7 fk)]

(42)
(43)

Algorithm 2: GSMP based sparse channel estimation
for dual-wideband MU THz MIMO systems

Input: EMUa YMU’ AR(CI)Rme:Kfl) and
AZ,MU(GT’JCO:K—I)’ €0

Output: Hgspmp =
AR(®g, fo.x—1)vec™
1 Initialization: Index set A =

Etu =11, ﬁLS,MU = [ ], Residue vector

= Yy, Estimated beamspace

[ ], Empty matrix

To=0ynz <k T1
channel Hy gsmp = OvG Gy, x K> counter j = 1
while (|| T;—1 [|7 — | T, %] > «) do
Iy =
for k=0,1,..., K —1do

| Zu = Zau U (Bhiu (1K) TS (5, )
6 | &=arg max> |Zmu(:, k)|?
k

[T RV N

7 A=AU¢

8 for k=0,1,..., K —1do

9 Eity = Emu( A k)

10 Hismu(s, k) = (Bkiv)"Ymu(:, k)

1 T, (k) = Yau(s, k) — Sty Hismu (s, k)
T.

12 T, =+

B | jeg+1
I/:Ib,GSMP(Jf\la 0:K—1)
return: Hb,GSMP

-
'S

= His mu

-
wm

TBoD matrix is formed at the transmitter, which is given
by Eq. (43). The next section presents the computational
complexity of the proposed algorithm along with that of
GSMP algorithm.

B. Computational Complexity

This subsection derives the computational complexities
of the BGSR and GSMP based THz channel learn-
ing techniques. Table-IV list the per-subcarrier and per-
iteration complexity of the GSMP-framework along with
various key computational steps. The overall computa-
tional complexity of the GSMP-framework is on the order
of (KUGRGT MNEL+ K(25% + j2MNEL + 3 MNEL)),
where j represents the current iteration. The worst-case
complexity order is O(K(M3N{L)?3), which is attributed
to the necessity of an intermediate LS estimate at each
iteration. Table-V lists the per-subcarrier and per-iteration
complexity of the BGSR-framework along with various
key computational steps. The worst-case complexity of the
BGSR technique for each subcarrier is on the order of
O(2(MNEL)? +2UGRGT (M NE)? +3UG rGr,o M N+
(UGRGr,u)*MN{:), which is dominated by the matrix-
inversion of C,,. Moreover, as discussed above, UGRG T, >

M N therefore, the approximated complexity of the BGSR
algorithm for each subcarrier is O(U?G%G2 ,MNE +
M?3(N{L)?). The worst-case computational complexity for all
the subcarriers is O(K(U*G%G7,,, M Nt + M?(Ngk)?)),
implying that the computational complexity increases linearly

1(ﬁb,GSMP) A%MU (Or, fo:K71?'ith the number of subcarriers and also higher than GSMP
T

amework. However, as shown in Section-VI, BGSR indicates
superior performance. Hence, there is a clear trade-off between
computational complexity and estimation performance. The
BCRB characterizing the estimation of the MU channel is
derived in detail next.

C. MU Bayesian Cramér-Rao bound

Consider the parameterized Gaussian prior associated with
the beamspace channel matrix Hj vy as

K-1 1

JF(Hpmu; Tvu) = H () UCRGTw det(
k=0

exp( — Hilyu(, F)T puHomu (5, ).

The log-likelihood of the beamspace channel Hy, vy is given
as

L'y mu)
44)

=

L(f(Hymu; Tmu)) =
k

0
logldet(Tiz)] — Hffy . T dyHoao (. K) ). 49)

The conditional PDF of the pilot output vector Yy, is repre-
sented by the complex normal distribution ]+, CA (Emul:, :

,k)Hp mu (3, k), Cyp). Therefore, the conditional PDF is given
by Equation (49), where ¥ = ———1——— Taking the

J\/INRFdet

logarithm on both sides of Equat10n (49) ylelds ]%quanon (50).
Let Iyjy € CYGrGT«xUGRGTw denote the Bayesian Fisher
information matrix (FIM), formulated as

( — UGRGT,uIOg(ﬂ')—

Inmu = Iy mu + Ip mu, (46)

where I, iy € CYCRETuxUCRGTw denotes the FIM associ-
ated with the combined received signal Yy, while I mu €
CUCGRGTwxUGRGT.w quantifies the FIM arising from the a
priori knowledge about the beamspace CSI matrix Hy, ymy. The
following equations represent these quantities mathematically

32£(YMU|H1) MU)
I, =-E : 47
y,MU Ywmu,Hy mu { aHb,MU aHIiIMU ) 47)
82£(Hb MU FMU)
I, vy = —E MU L @)
b,MU Hy mu { aHb,MU aHII;IMU

Using the conditional PDF as derived in Equation (50), the
FIM I, mu can be modeled as

K-1

_ =H (. .
Iy,MU* E ‘_'MU("')

k=0

E)C ' Bmu(:,:, k).

w

61V



Table IV
COMPUTATION COMPLEXITY OF GSMP SCHEME, PER-SUBCARRIER IN THE j-TH ITERATION

Operation Complex multiplications Complex additions
EG L k)T (L k) UGRrGr, MNE UGRGr,(MNE — 1)
Hismu(s, k) = (uMU) Ymu(, k) | 55° + 2 MNgE +2jMNgte | £5° + 52 (MNgg — 1) + (M Nre — 1)
Ywmu (s, k) — EiyHismu (s, k) JMNE FM N
Table V
COMPUTATION COMPLEXITY OF BGSR FRAMEWORK, PER-SUBCARRIER, PER-EM ITERATION
Operation Complex multiplication Complex additions
T muEity G, 5, k) UGRGr  MNE 0
col! (MNG)” | 3QMNg)® (MNgG)” _ 3MNg)”
MNE)2UGRGT (MNEY2(UGRGT . — 1)
Emu(s,:, k)T =0k ( RF U RF U
Moy )T amuEny 5 5 k) + MNRUGRG.u + (MNE)(UGRGr. — 1)
(Ca’ + Emu(;, 5, k) (M Ngh)3 4 BUGRGT,,(MN{E)? 4 (MNRF)3 3UGRGT, u(MNl{;})Q B
2
Ly muBiy (s 5 k) UGRGr. MNE UGRGr.  MNE

K-
F(Ymu[Hpmu) = H P( (Ymu(s, k) = Emuls,

L(YmuHymu) =
k=0

k)Hb,MU(:7 k’))

Hc;l(YMU(:7k) — Emu(s k>Hb,MU(:ak)))a 49)

Z ( — MNEzlog(r) — logldet(Cy,)]— (Yau (k) — Enu Gy 5 k) Hypmu (k) O3

(Yo (s, k) — B, ;k)Hb,MU(:,k))). (50)

In a similar vein, the FIM corresponding to the Hj py can be

derived as

Iy mu = f‘{/ulj (52)

The complete Bayesian FIM is now obtained by combining
Equation (51) and (52), which is formulated as

K—1
Iwo = Y (Elu( 5 k)C Buu( k) + Ty (53)
k=0
We further define the equivalent sparsi-
fying dictionary across all subcarriers as
AMU = [‘I’MU[O] ‘IIMU[l] o ‘I’MU[K — 1]] S

CYNrNT,uxUGRGT.w XK Finally, the BCRB for the MSE of
the estimated CSI is expressed as

MSE(ﬁMU) Z Tr (AMU,O:K—lll\j[[lel\I;[IU,O;K_l) . (54)

VI. SIMULATION RESULTS

This section presents our results characterizing the perfor-
mance of the proposed channel learning technique, namely the
BGSR designed for MU THz hybrid MIMO systems. Table-VI
provides the numerical parameters considered for the simula-
tion study. Furthermore, the root raised cosine and rectangular
pulse shapes denoted by RRC-PSF and Rect-PSF, respectively,
are considered for performance evaluation. Note that, Rect-
PSF represents the dual-wideband channel when a rectangular
filter is used instead of Root Raised Cosine filter in Equation
(12). The quantity Br in Table-VI represents the combined
transmit gain for all the users, i.e., 25:1 Br, = Br. To
generate the amplitudes of the LoS and NLoS components, for

both the dual wideband formulations, we utilize Equations (13)
and (15) respectively. The phase shifts corresponding to (13)
and (15) are generated as independent samples of a uniformly
distributed random variable over the interval (—m, 7r]. Both the
transmit and receive antennas maintain inter-antenna spacings
of dy =d, = % The MA coefficient appearing in Equations
(13) and (15) is calculated using the HITRAN database [1]. We
consider an indoor office scenario with a molecular composi-
tion of 20.9% oxygen, 78.1% nitrogen and 1% water vapour,
where the temperature and pressure are set to 298 K and 1
atm, respectively. We consider 6 scatters that can be present
in a general office scenario, which are detailed in Table-VII.
Furthermore, the data symbols are randomly generated with
an average power of unity. Therefore, the SNR in decibels
(dB) is calculated as SNR(dB) = 101log;, ( ) The receiving
and transmitting array response matrices are generated using
(18) and (37) respectively, and the grid-sizes are considered
to be Gr > 2Ng and Gr, > 2N, [35]. The frequency-
independent phase shifters as shown in Eqgs. (2) are modeled
as [41]

FRF,m,u(K;7€) = 7exp(j®fﬁ,€)a (55)
T,u
1 .
WrEm (K, £) = \/]\Texp(ﬂ?,i,g)7 (56)
R

where the phases @ ¢,V ¢ are randomly sampled with uni-

. bili . o (2Va-1)
orm probability over T = {O,QTQ,-n NG . For
performance evaluation, we employ the widely used NMSE
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Table VI

SIMULATION PARAMETERS FOR THE DUAL-WIDEBAND THZ HYBRID

MIMO SYSTEM

| Parameter | Value |
# of TAs (Nr) 4
# of RAs (NR) 48
# of TAs RF chains (N% ) 2
# of RAs RF chains (N}_-?F) 8
# of subcarriers (K) 64
# of pilot blocks (M) 20
# of data vectors (Ng) 100
# of Users (U) 3
# of NLoS components (Nnros) 3
# of delay taps (L) 3
Transmit Antenna Gain (B7) 31 dBi
Receive Antenna Gain (B ) 31 dBi
Transmit angular grid size (G ) 8
Receive angular grid size (GR) 96
Operating frequency (f.) 0.65 THz
Transmission distance (d) 15m
Bandwidth (B) 5 GHz
Angle quantization parameter (Ng) 4
ADC Resolution 3-bit
Constellation 8-PSK
Roll-off factor for RRC-PSF 0.80
Upsampling factor 20
GSMP Threshold (eg) 2
BGSR Thresholds (e, Kmax) 1,20
Table VII
LIST OF MATERIALS USED FOR SIMULATION ENVIRONMENT [34], [40]
Material Type or(inmm) | x(incm™T) n
Polycarbonate (PC) 0 23 1.52
Polystyrene (PS) 0.002 2 1.6
Polyvinyl chloride (PVC) 0.028 19 1.68
Plaster sl 0.05 10 2
Gypsum plaster 0.13 38 1.4
Plaster s2 0.15 10 2

metric given

NMSE =

b0 || K — HH |3

o I HIE] 1%

(57

A. GMM based MU AoA/ AoD generation

We harness a GMM for generating the AoAs/AoDs, as it
provides an accurate representation of the angular characteris-
tics in the THz band [7]. To generate angles corresponding to
distinct users, the mean angle for each user is drawn from a
uniform distribution, 6, ~ U [—180°, 180°], where 0,, denotes
the mean angle of the wu-th user. Around each mean, the
angular spread is modeled by a Gaussian kernel of variance &2,
where &2 is chosen according to the measurements reported
in [28] (Table III). Thus, the AoA/AoD distribution using a
two-component GMM can be expressed as

2
GMM(z4) = Y _ au N (wul0u,., 5°), (58)
=1

where a,,, represent the mixture weight. They are randomly
drawn from a uniform distribution {a,, 1, a2} ~ U(0,1) sat-
isfying a, 1 + a,,2 = 1, ensuring a valid convex combination.
Furthermore, to avoid angular overlap among different users,
we impose a minimum separation constraint of

10 — 0y > dmin Vu # v (59)

where d,;, is chosen to guarantee sufficiently distinct spatial
signatures. For our simulations we have considered dpi, ~ 5°.
This ensures that although all users share the same angular
spread parameter o, their mean directions remain sufficiently
separated.

B. MU performance analysis

In this section, we evaluate the performance of the pro-
posed BGSR based CSI estimation technique. The parameters
considered for simulation are shown in Table-VI. Fig. 2(a)
portrays the improved performance of the proposed BGSR
technique in contrast to several orthodox sparse estimation
techniques, such as SBL [8], OMP [9], MFOCUSS [13],
GSMP for THz hybrid MIMO systems. The performance of
the OMP algorithm is significantly affected by the choice of
the stopping criterion and the dictionary matrix, as well as
error propagation. Additionally, convergence-related issues are
experienced with the MFOCUSS algorithm, which exhibits
high sensitivity to variations in the regularization parameter.
The SMV-based SBL does not exploit group sparsity, as it es-
timates the channel separately on individual subcarriers, which
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channel for MU scenario

degrades its performance. The GSMP framework demonstrates
noteworthy performance improvement, since it leverages the
group sparsity via the estimation of the channel over all
the subcarriers. However, similar to the OMP algorithm, the
GSMP framework is sensitive to the stopping criterion and to
the choice of the dictionary matrix. By contrast, the proposed
BGSR framework leverages EM-based hyperparameter estima-
tion, eliminating the need for manual parameter adjustments,
while ensuring robust convergence. Furthermore, the proposed
BGSR framework is unaffected by the selection of a dictionary
matrix and stopping threshold, which vindicates the efficacy
of the proposed algorithm. Moreover, observe from the figure
that the performance of the proposed BGSR framework closely
tracks the BCRB. This is of significant importance, as the
BCRB is derived under the assumption of perfect knowledge
of the AoA/ AoDs, which is an ideal scenario, while the
proposed BGSR framework does not require any prior infor-
mation. Note that we have assumed C,, to be perfectly known.
However, as depicted in Fig. 2(b), if the noise covariance is
estimated, the NMSE performance remains almost identical,
illustrating that the proposed BGSR algorithm is robust to
noise mismatches.

Fig. 2(c) shows the accuracy of the data detection achieved
using the MMSE receiver for the BGSR and other traditional
sparse estimation based approaches along with that of the
Genie-aided detector. It is evident from the figure that the
resultant BER improves upon increasing the data SNR and
yields the best performance for the proposed BGSR based
technique. This is in line with the trend for the NMSE of
the estimated CSI. Furthermore, the BERs of the BGSR and
GSMP techniques closely approximate the hypothetical Genie-
aided detector, demonstrating the efficacy of the proposed
schemes. Fig. 2(d) illustrates the impact of a diffused multipath
channel on the proposed BGSR scheme for N,., = {3,4},
with a comparison to the GSMP approach. As the number
of diffused rays increases, the performance of both schemes
degrades. This behavior arises from the GMM adopted for
generating AoAs/AoDs. In the GMM framework, additional
rays correspond to extra Gaussian components, which broaden
the angular spread around each user’s mean direction. A
larger spread reduces the sparsity of the beamspace channel,
as more angular bins become active. Consequently, the dic-
tionary atoms become less distinguishable, which diminishes

the efficacy of sparse recovery and leads to degraded NMSE
performance. Note that, in practical THz scenarios, the true
angular statistics may deviate from the Gaussian assumption.
As shown in Fig. 3(a), the BGSR framework exhibits almost
identical NMSE performance under both the Gaussian and
non-Gaussian distributions. This robustness arises because the
Bayesian framework primarily exploits the inherent sparsity
of the beamspace channel, rather than relying on the exact
functional form of the angular distribution. While the Gaussian
prior is adopted in our formulation due to its analytical
tractability and closed-form EM updates, the results confirm
that the algorithm remains resilient to moderate distributional
mismatches. Performance degradation is observed only when
the variance of rays becomes significantly larger or when the
number of clusters increase significantly, as this reduces spar-
sity and leads to overlapping dictionary atoms, as depicted in
Fig. 2(d). These results demonstrate that the BGSR framework
is not limited to Gaussian angular models and generalizes well
to other practical distributions.

Fig. 3(b) compares the NMSE vs SNR performance of
subcarrier-independent and subcarrier-dependent dictionaries-
based sparse recovery frameworks. The relatively poor perfor-
mance of the subcarrier-independent dictionary-based SMV-
SBL [8] is primarily due to its reliance on a dictionary
constructed at the central subcarrier, which cannot accurately
capture the frequency-dependent variations introduced by the
beam-squint effect. This mismatch leads to degraded channel
estimation performance across a wideband. When a subcarrier-
dependent dictionary is incorporated into the SMV-SBL [5],
the dictionary better reflects the frequency-selective charac-
teristics, resulting in performance improvement. However, the
single-measurement formulation remains limited, since it does
not exploit the joint sparsity across users. By contrast, the
MMV-SBL framework substantially enhances the performance
by jointly estimating all user channels under a shared sparsity
structure. The subcarrier-independent dictionary-based MM V-
SBL [36] provides noticeable improvement compared to the
SMV variants, and the proposed BGSR achieves the best
performance, as it simultaneously leverages joint sparsity
and accurately models the beam-squint effect, leading to the
lowest NMSE across all SNR values. Fig. 3(c) depicts the
NMSE versus the number of pilot blocks M for the proposed
BGSR and GSMP techniques in comparison with traditional
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Bayesian methods. The NMSE decreases with increasing
number of pilot blocks, as a larger number of pilots provides
richer observations and thereby improves channel estimation
accuracy. Furthermore, BGSR consistently outperforms the
other schemes by leveraging simultaneous sparsity within
the Bayesian framework, while GSMP achieves moderate
performance and SBL performs the worst due to its limited
ability to exploit the joint sparsity structure. These results
further validate the robustness of the proposed BGSR and
GSMP frameworks.

Fig. 3(d) compares the performance of the BGSR and
GSMP based channel estimation approaches by considering
both the RRC-PSF and Rect-PSF based dual-wideband chan-
nels. The Rect-PSF based dual-wideband channel suffers from
spectral leakage, which leads to a higher level of interference
between the adjacent channels, which may erode the overall
performance of the communication system. On the other hand,
the RRC-PSF based dual wideband channel introduces the
problem of signal strength reduction at the edges of the
frequency band. This attenuation may adversely affect signal
recovery at the receiver end, as the diminished signal may fall
below the receiver’s detection threshold. Thus, there is a clear-
trade off between both the models and the consideration of the
filter depends upon the specific application. Fig. 4(a) compares
the performance of the RRC-PSF and Rect-PSF based dual-
wideband channels in terms of its BER. The improved ac-
curacy of GSMP and BGSR based CSI learning techniques
is clearly evident from the figure. Moreover, the BER is
compared to that of a Genie-aided hypothetical scenario,
which assumes perfect knowledge of the THz hybrid MIMO
channel. It is evident that the BGSR technique learns the dual-
wideband channel effectively and performs close to the ideal
genie receiver. Thus, the improved performance makes the
BGSR technique eminently suitable for practical THz system
implementation.

Fig. 4(b) demonstrates the influence of using low-resolution
ADCs on the estimated CSI performance for the BGSR
framework. One can readily observe from the figure that
the proposed BGSR technique with 3-bit ADC resolution
closely approaches the performance of an oo-bit resolution
transceiver. This observation is of considerable importance
as it highlights the practicality of the BGSR scheme, which

often necessitates low-resolution ADCs to efficiently handle
its substantial bandwidth at a nominal power consumption.
Furthermore, none of the existing studies has addressed the
influence of low-resolution ADCs in the face of dual-wideband
effects. Moreover, it can be observed from Table-II that
the quantization noise-to-signal power ratio v increases with
decreasing the ADC resolution b. Therefore, for ADCs with
fewer than 3 bits (b < 3), the higher quantization noise leads
to significant performance degradation, as illustrated in Fig.
4(b). Thus, the proposed model not only conserves power
but also leads to a reduction in hardware costs and energy
consumption, thereby highlighting the practical advantages of
the proposed approach. Fig 4 (c) compares the performance of
the existing on-grid dictionary and of the TBoD matrix. The
TBoD outperforms the on-grid dictionary based performance
for both the proposed techniques due to its ability to more
accurately represent continuous angular domains. Unlike the
on-grid approach, which is constrained by discretized grid
points and suffers from basis mismatch errors, the off-grid
dictionary eliminates such limitations by allowing a finer and
more flexible representation of the angular information. This
enhanced adaptability leads to improved estimation accuracy
and to enhanced overall performance. Fig. 5(a) depicts the
no. of the convergence of the proposed BGSR technique as
a function of EM iterations for multiple users. To achieve
a target NMSE of approximately 0.1, the algorithm requires
about 8 EM iterations for a single user, but roughly 14
iterations for three users. Although the required no. of EM
iterations increases from approximately 8 to 14, this growth
is not strictly linear with respect to the number of users.
The fact that the increment is less than a factor of three
indicates that the dictionary-based algorithm benefits from
the shared angular structure of multiple users, preventing
the computational complexity from growing linearly. Hence,
while the MU extension naturally expands the sparse channel
space, the iterative process still leverages inter-user corre-
lations, preventing an unmanageable increase in complexity.
This sub-linear scaling highlights that the MU scenario re-
mains computationally tractable, enabling the framework to
effectively accommodate additional users without requiring an
unbounded increase in iteration count. Fig. 5(b) compares the
NMSE performance for different numbers of users. As the
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number of users increases, the NMSE performance improve
due to the availability of additional measurement vectors,
which enhances the estimation accuracy. Moreover, the TBoD-
based dictionary outperforms the uniform dictionary, as it
provides a more accurate representation of the continuous
angular domains. This improvement highlights the advantage
of structured dictionary learning in capturing the underlying
sparsity of the THz channel, leading to more efficient channel
estimation. Therefore, this sub-linear scaling ensures that the
framework remains computationally feasible, while efficiently
supporting MU in high-dimensional THz systems.

C. Trade-off between communication resources and computa-
tional complexity

As a special case for MU, Fig. 5(c) and (d) compares the
performance for an SU scenario. All the other parameters are
identical to the ones in Table-VI. Fig. 5(c) compares the BER
performance of the proposed channel estimation techniques
for {16, 64}-PSK modulation. It is apparent from the figure
that the proposed technique outperforms the other sparse
techniques for higher-order modulation as well. Moreover,
the increased constellation size of say 64-PSK mandates a
higher SNR due to its tighter spacing between the constellation
points, leading to a higher BER. Fig. 5(d) demonstrates our
performance comparison between the NMSE and the number
of subcarriers. Observe that by increasing the number of
subcarriers, a large number of pilot symbols can be embedded
within the signal, which further helps in improving the channel
estimation performance. Moreover, given the precise channel
knowledge at each subcarrier, the receiver can accurately re-
cover the data, thus leading to improved performance. Further-
more, the improved performance of the proposed algorithms
is due to the fact that they leverage the unique sparsity of the
channel within a group framework, enabling group channel
estimation across all the subcarriers. Therefore, as the number
of subcarriers K increases, the number of group sparse vectors
also increases, enhancing the overall estimation performance.
Additionally, the pilots are loaded onto subcarriers, meaning
that the number of pilot blocks effectively increases with the
number of subcarriers. Furthermore, as the number of pilot
blocks increases, the NMSE performance also improves.

A clear trade-off exists between SU and MU channel
estimation. SU estimation is computationally efficient due
to its lower dimensionality; however, it requires sequential

processing of user channels, often over different time slots,
and relies on separate pilots for each user. As a result, by
the time later users are estimated, the CSI of earlier users
may already be outdated, especially in dynamic environments.
By contrast, joint estimation is more resource-intensive but
leverages a common communication sequence and shared pilot
transmission over the same time—frequency band to simul-
taneously estimate all user channels. This joint processing
eliminates sequential delays, ensures consistency across users,
and avoids performance loss due to outdated CSI. Moreover,
MU estimation leverages the inherent group sparsity and inter-
user correlations in THz channels, which cannot be fully
exploited by independent SU estimation. Consequently, despite
the higher computational cost, joint estimation achieves more
reliable, up-to-date, and spectrally efficient CSI acquisition,
making it highly advantageous in practical MU systems.

VII. CONCLUSIONS

New channel learning techniques have been conceived by
exploiting the angular domain sparsity in practical THz hybrid
MIMO systems. The THz channel was rigorously modeled
considering the absorption coefficient (obtained through the
HITRAN database), reflection losses, diffused ray modeling
including the dual wideband effect. Furthermore, we also
considered the effect of low resolution ADCs along with
the practical implementation of THz hybrid MIMO systems.
The i/o model was linearized using the popular Bussgang
decomposition. Moreover, an SC-FDE based system model
was conceived to convert the TD processing into its equivalent
FD counterpart, and to provide frame-wise processing for
attaining significant performance improvements. Furthermore,
a novel Bayesian learning based channel learning framework
i.e., BGSR, was proposed whose performance was also charac-
terized by deriving the MU-BCRB. Moreover, the performance
of the RRC-PSF and Rect-PSF based dual wideband channels
was explicitly compared. Our simulation results offer empirical
evidence of the enhanced performance achieved by the BGSR
scheme in comparison to other sparse estimation techniques.

APPENDIX A
CALCULATION OF NOISE COVARIANCE

The received signal after performing analog combining
and before passing through the low-resolution ADC can be



expressed as
U

[12]

YmMmu(q) = Wg:,m Z H;.® (FRF,m,uagz?u) + ngﬁ,m{’m (9),

u=1

(60)

Let Xy, (q) = Fprm’ua,(g?u for notational simplicity. More-

over, E(xﬂhu(q)xg,u (q)) = o'gFRF;m’uFlg:,m,u Rxw,m~
Expanding the circular convolution as defined in Section-I-C,
Eq. (60) can be re-written as

U
I (@) = Wik Y [Hu(0)%m,u(q) + Hy(1)Xpmu(q — 1)+
u=1

R Hu(K - l)xm,u(q - K+ 1)] + WlIgF,m{’m(Q)' (61)

Let C,, € CM i N represents the covariance matrix which is
defined as C,,, = E{y,,(q)y2(q)}. After substituting y,,(q)
into the expression of the covariance matrix, we obtain

U
Cn = Wik > [Hu(0) Ry HY (0) 4 -+
u=1

HM(K - l)wa,me(K - 1)}W]l’3:,7n + O-’IQLW%,THWRF7m'

(62)

Therefore, the received signal covariance matrix before
passing through low-resolution ADCs can be expressed as
Cm = W}I{{]:7QOWRF,m —+ U%W%:7mWRF,m where Qm =
25:1 Zf;ol H,(n)Ry. nHY (n). Additionally, the noise
covariance matrix after passing through low-resolution ADC

is given as C,, = ¢(1 — ¢)diag(C,,).
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