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Abstract—Source-Free unsupervised Domain Adaptation
(SFDA) aims to classify target samples by only accessing a pre-
trained source model and unlabelled target samples. Since no
source data is available, transferring the knowledge from the
source domain to the target domain is challenging. Existing
methods normally exploit the pair-wise relation among target
samples and attempt to discover their correlations by clustering
these samples based on semantic features. The drawbacks of these
methods include: 1) the pair-wise relation is limited to exposing
the underlying correlations of two more samples, hindering the
exploration of the structural information embedded in the target
domain; and 2) the clustering process only relies on the semantic
feature, while overlooking the critical effect of domain shift, i.e.,
the distribution differences between the source and target domains.
To address these issues, we propose a new SFDA method that
exploits the high-order neighborhood relation and explicitly takes
the domain shift effect into account. Specifically, we formulate the
SFDA as a hypergraph learning problem and construct hyperedges
to explore the deep structural and context information among
multiple samples. Moreover, we integrate a self-loop strategy into
the constructed hypergraph to elegantly introduce the domain
uncertainty of each sample. By clustering these samples based on
hyperedges, both the semantic feature and domain shift effects
are considered. We then describe an adaptive relation-based
objective to tune the model with soft attention levels for all samples.
Extensive experiments are conducted on Office-31, Office-Home,
VisDA, DomainNet-126 and PointDA-10 datasets. The results
demonstrate the superiority of our method over state-of-the-art
counterparts.

Index Terms—Source-free domain adaptation, Unsupervised
learning, Hypergraph learning.

I. INTRODUCTION

DEEP learning methods for vision tasks (e.g., image
classification), trained with a large number of training

samples, can generalize well on the testing set with a similar
data distribution [1]–[4]. However, their performance notably
degrades when applied to an unseen data distribution due
to the phenomenon of domain shift, i.e., differences in the
data distribution between the source and target domains.
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Unsupervised Domain Adaptation (UDA) is a typical solution
to this issue by transferring knowledge from the fully labeled
source domain to the unlabeled target domain [5]–[10]1.
However, traditional UDA methods require to access to the data
of the source domain during training, which may be infeasible
in real-world applications due to data privacy or intellectual
property concerns [11], [12].

One emerging research direction, Source-Free unsupervised
Domain Adaptation (SFDA), has recently been explored to ad-
dress the above concerns and attracted increasing attention [13]–
[21]. The setting of SFDA is stricter and more challenging
than UDA because the source data is unavailable, and only a
pre-trained source model and target data are available. Under
this setting, obtaining more domain knowledge depends on
how to effectively exploit the underlying relation of these
target samples. One typical solution for this involves using the
spirit of neighborhood clustering so that domain adaptation
can be accomplished by exploring the neighborhood relation of
target samples in feature space, e.g., G-SFDA [13], NRC [22],
AaD [23], SF(DA)2 [20]. The intuition behind these methods is
that similar target samples likely belong to the same semantic
class and vice versa, and the sample relations in clusters can
help the model to learn domain invariant knowledge. Despite
promising results shown by these methods, they still suffer
the following limitations: 1) Only pair-wise relations are
considered in clustering. Since no prior knowledge about the
source data is available, only considering the pair-wise sample
relations may not adequately capture the underlying relations
hidden in the target domain, as illustrated in Fig. 1 (Left).
This limitation results in failing to capture deeper structural
information and makes the model easily distracted by outliers
(i.e., the sample wrongly predicted), which directly hinders the
model from learning domain invariant knowledge, as seen in
Fig. 1 (Middle). 2) Domain shift is not explicitly involved
in clustering. Existing works focus on seeking the semantic
relation of target samples and assume that the domain shift
can be reduced implicitly by only considering the semantic
relation. This strategy cannot effectively address the domain
shift problem, as it is not explicitly involved in the clustering
process, thereby hindering clustering effectiveness, as shown
in Fig. 1 (Right).

In this paper, we present a new clustering-based method
called HG-SFDA to overcome the above limitations. Fig. 2
shows the overview of the proposed HG-SFDA method.
Differing from the existing methods that only consider pair-
wise relations, e.g., NRC++ [26], AaD [23], SF(DA)2 [20],

1General UDA methods are typically explored on standard image classifica-
tion tasks, which fall under the scope of image processing.
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Fig. 1: (Left) The pair-wise relation for sample c only considers the affinity to sample b in its neighborhood, but it fails to consider
the high-order relation between sample a and c, resulting in inaccurate predictions. (Middle) Comparison of the pair-wise relation
based method AaD [23] and our method on the accuracy of target samples’ nearest neighbors having the correct predicted
labels. The accuracy of nearest neighbors is computed as follows: For each target sample, we calculate the ratio of its correctly
classified neighbors with the same label. A higher ratio of correct neighbours means that truly similar neighbour samples can
be found more accurately, thereby resulting in better pseudo labels for adaptation. (Right) “Neighborhood misleading ratio” and
“High-confidence” denote the mismatch between the predicted label and ground truth label of neighbors, and neighbors with
high prediction confidence [24]. Without involving the domain shift in optimization, the misleading ratio fluctuates among different
categories, indicating that the domain shift is not generally solved. These figures are validated on the VisDA dataset [25].

our method explores the high-order neighborhood relations
among multiple target samples while considering the domain
shift phenomenon explicitly. Since high-order neighborhood
relations can encapsulate the complex interplay among two
or more target samples and little prior knowledge is used in
the SFDA setting, this high-order neighborhood is the most
valuable and handy resource that can aggregate more deep
structural information and context. To capture the high-order
relation, we propose a hypergraph learning method, which
formulates the target samples as graph nodes and conducts
hyperedges over the graph (see Subsection III-B).

To attach importance to the domain shift effect, we propose
a novel self-loop strategy on the constructed hypergraph. This
strategy involves creating self-loops on nodes to represent
the domain uncertainty of corresponding samples. Domain

uncertainty indicates the likelihood of samples belonging to
the source or target domain. By involving the self-loops
in clustering, the samples with high domain uncertainty
are drawn more attention, which leads to a comprehensive
consideration of both semantic relations and domain shift re-
calibration, ultimately improving the effectiveness of clusters
(see Subsection III-C).

Furthermore, we describe a new adaptive learning scheme
that can be incorporated into mainstream objective functions.
In particular, we assign “soft” attention levels for different
samples, i.e., paying more attention to hard samples and vice
versus. For example, the samples having large differences in
the same cluster should be concerned more than others. This
also holds for samples from different clusters. Therefore, we
dynamically assign different weights to samples according to
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Fig. 2: Overview of the proposed method HG-SFDA. (a) Initial results. (b) The hyperedges are constructed on the target domain to
capture complicated high-order neighborhood relations among multiple samples. (c) A self-loop strategy is proposed to consider the
domain shift effect. (d) Clustering results by considering both hyperedges and self-loops. (e) After clustering, the model is trained
using the objective in AaD [23] with the proposed adaptive learning scheme. (f) Final results.
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the semantic distance between the target sample and its nearest
neighbors (see Subsection III-D).

Extensive experiments are conducted on several image
datasets (Office-31 [27], Office-Home [28], VisDA [25],
DomainNet-126 [29]) and a 3D point cloud dataset (PointDA-
10 [30]), to compare our method to the recent counterparts
with the best results currently available. The results obtained
show the superiority of our method on the SFDA problem.

The contributions of this paper can be recapped as follows.
1) Different from the existing pair-wise relation-based methods,
e.g., NRC [22], AaD [23], SF(DA)2 [20], we formulate SFDA
as a hypergraph learning problem and explore the high-order
neighborhood relations to excavate the underlying structural
information. 2) With the constructed hypergraph, we design a
novel self-loop strategy to elegantly involve the domain shift
into optimization. 3) We describe an adaptive learning scheme
to enhance the mainstream objectives by considering different
attention levels.

II. RELATED WORK

A. Unsupervised Domain Adaptation

UDA methods transfer the knowledge from the fully labeled
source domain to the unlabeled target domain. Generally,
the UDA methods can be divided into several categories,
ranging from minimizing distributional differences [31]–[38],
adversarial training [39]–[42] to clustering [8], [43]–[48].
The distributional differences are usually minimized using
maximum mean discrepancy [49] and contrastive domain
discrepancy [50]. In addition to minimizing distributional
differences, domain adaptation can also be accomplished
through domain adversarial methods. DANN [40] and VRADA
[51] effectively confuse domain classifiers by countering their
gradients using a gradient inversion layer. More recently,
Clustering-based methods have gained popularity, which can
discover the correlation of samples between source and target
domain and extract the domain invariant knowledge. For
example, CoDT [43] captures pseudo-labels to guide feature
clustering by exploiting the complementary domain-shared
features and target-specific features. CAT [44] achieves domain
alignment and class-conditional alignment via a discriminative
clustering loss and a clustering-based alignment loss.

B. Source-free Unsupervised Domain Adaptation

SFDA is a more challenging category of UDA, which
requires accomplishing domain adaptation only with a pre-
trained source model and unlabeled target data [12], [17], [21],
[24], [52]–[59]. Most of the SFDA methods [60]–[70] focus
on learning domain invariant representations to facilitate cross-
domain adaptation. Specifically, the work [63] introduces an
image generator to update target images to resemble source
images, and the study [62] employs a GAN-based generator
to simulate source data. ASM [21] proposes an adversarial
generation method for source styles based on a style generator.
DIPE [65], VMP [64], and CAF [47] explore the transferability
of source model parameters to generate better domain-invariant
representations. In recent years, following the clustering spirit in
general UDA, many clustering-based strategies are proposed to

solve the SFDA problem [13], [16], [18], [20], [22], [23], [26],
[71]–[74]. For example, SHOT [15] and SHOT++ [73] generate
single-feature prototypes by weighted k-means clustering and
refine pseudo-labels based on the prototypes. BMD [16] gen-
erates balanced feature prototypes through inter-class balanced
sampling and improves pseudo-label accuracy by using an intra-
class multicentre clustering strategy. To alleviate the problem
of prototype noise in prototype-based clustering methods,
NRC++ [26] introduces a local structural clustering strategy to
encourage prediction consistency among nearest neighbors with
high affinity. AaD [23] further exploits underlying information
from different samples and achieves SFDA by pulling together
the predictions of nearest-neighbour features while dispersing
predictions of dissimilar features. SF(DA)2 [20] designs a
spectral neighborhood clustering loss based on AaD [23]
to identify partitions in the prediction space by spectral
clustering. However, these methods only focused on pair-wise
relations between samples and overlooked the domain shift
issue in optimization, failing to extract the underlying structural
information of target data.

C. Hypergraph Learning Methods

Hypergraph learning models high-order relationships by con-
structing hyperedges that connect more than two nodes, thereby
capturing richer and more informative features, e.g., [75]–[78].
Early work formulated hypergraph embedding as a spectral
optimisation problem [79]. Subsequently, hypergraph neural
networks (HGNN) have introduced spectral convolution into
hypergraphs, effectively exploiting high-order structures [76].
Based on this, further developments have led to Dynamic Hyper-
graph Neural Network (DHGNN) [80], which can dynamically
update hypergraph structures. Recently, HGAT [75] combines
a self-attention mechanism with hypergraphs to automatically
learn the importance of nodes and hyperedges. Despite these
advances, most existing works have been applied primarily
to basic tasks such as social network analysis [81], [82] and
drug-target interactions [83], [84], leaving the potential of
hypergraph learning in computer vision largely underexplored.
In this paper, we reveal that the main bottleneck in the SFDA
problem can be effectively addressed by leveraging high-order
relationships among target domain samples.

III. METHODOLOGY

A. Problem Setting of SFDA

Denote the source domain as Ds = {(xs
i , y

s
i )}

Ns

i=1, where xs
i

and ysi represent a source sample and its corresponding label,
and Ns is the number of samples. Denote the target domain
as Dt = {xt

i}
Nt

i=1 containing Nt unlabeled samples. Let the
model network be O, which consists of a feature extractor f
and a classifier g. Given an input sample x, the output of the
feature extractor is denoted as z = f(x), and the prediction
vector (after softmax) of the classifier is denoted as p = g(z).
The objective of SFDA is to transfer the knowledge from the
source domain to the target domain, by adapting a pre-trained
source model O to the target domain Dt, without accessing to
the source domain data Ds. Following the previous works [17],
[20], [22], [23], [59], [85], we explore this task mainly on the
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close-set setting, i.e., the source domain and target domain
share the same label set.

Correct predictions
Incorrect predictions

Correct predictions
Incorrect predictions
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Fig. 3: Illustration of the result difference between the pairwise
method AaD [23] (Left) and our method HG-SFDA (Right) using
the VisDA dataset. By constructing high-order hyperedges to
connect multiple samples, we can utilize more correctly classified
neighborhood information to assist in correcting the prediction
results of target samples.

B. Exploring High-order Neighborhood Relation

Motivation. To obtain the pseudo-labels for target samples,
existing neighborhood clustering-based methods [13], [20], [23],
[26] always explore pairwise relationships, encouraging the
prediction of target samples similar to their nearest neighbors.
However, as shown in Fig. 3 (Left), the pairwise nearest
neighbors of a misclassified target sample are all misclassified.
This indicates that the pairwise relation is limited to see more
context, failing to exploit more complex relationships to adjust
the prediction of target samples. To address this limitation, we
formulate SFDA as a hypergraph learning problem to capture
the high-order neighborhood relation. Fig. 3 (Right) illustrates
the advantage of our method, where the misclassified target
sample can be corrected by leveraging high-order neighborhood
relation that captures more correctly classified neighbors.

Hypergraph Meets SFDA. Hypergraph is a graph structure
with special edges that cover two more nodes. Let G =
(V, E ,W) represent a hypergraph, where V = {v1, . . . , vn}
is the set of nodes, E = {e1, . . . , em} is the set of hyperedges,
and W is the affinity set corresponding to hyperedges. Each
hyperedge e ∈ E consists of k(k > 2) nodes, and the degree
of each hyperedge is k =

∑
v∈e 1. W(e) denotes the affinity

associated with hyperedge e. Formally, a hypergraph G can be
represented by a relation matrix H with size n ×m, where
each element H(v, e) = 1 if node v exists in hyperedge e;
otherwise H(v, e) = 0. For node v, we use N(v) to denote its
neighborhood which is a set containing nodes connected to v.

Given the target domain Dt, we formulate a hypergraph
structure based on the target samples. Specifically, we set each
target sample xt as a node v, i.e., v = xt, and form the
hyperedge to effectively expose the underlying relation from
a high-order perspective. We then seek the clusters for each
target sample based on hyperedges and use these clusters to
drive the fine-tuning of model O on target domain Dt.

1Since the visualization projects high-dimensional features into 2-
dimensional space, the Euclidean distance between nodes does not reflect their
real similarity in the original feature space.

Hyperedge Generation. How to precisely select the nodes
and measure the affinity of these nodes are fundamental
in generating hyperedges. Specifically, we aim to generate
hyperedges corresponding to every node, i.e., n = m. For
each node vi, we set it as an anchor node and find its k − 1
nearest neighbors. These k − 1 neighbors and the node vi
together form a hyperedge ei with degree k, denoted as
ei = {vi} ∪ {vi1 , . . . , vik−1

}. To obtain the nearest neighbors,
we measure the similarity between samples using their cosine
similarity of features z and then employ the KNN algorithm
[23] to select k−1 neighbors based on the calculated similarity.

Given a hyperedge, we formulate its affinity by measuring
the coherence of this hyperedge. Inspired by the work [86],
we describe the coherence using a linear combination relation
between its anchor node and other nodes. Assume that the
feature of node vi can be reconstructed by a linear combination
of its k − 1 neighbors, and the coefficient of each neighbor
in this combination indicates the relation of node vi to each
neighbor. To obtain the affinity of a hyperedge ei, we optimize
the following objective function for node vi

argmin
ai

∥F(Nk−1(vi),ai)− f (vi)∥22 + α ∥ai∥2 ,
s.t. ∀j, ai,j ≥ 0, ai,j ∈ ai,

(1)

where ai = {ai,1, . . . , ai,k−1} is the coefficient vector for node
vi and each element ai,j corresponds to the coefficient for the
j-th neighbor of node vi, while Nk−1(vi) = {vi1 , . . . , vik−1

}
is the set of k−1 neighbors of vi obtained by KNN. In Eq. (1),
we employ L2 norm of ai for regularization, i.e., ∥ai∥2 is the
regularization term to make the coefficient vector sparse and α
is a balancing factor, while F(Nk−1(vi),ai) denotes the linear
combination operation as

F(Nk−1(vi),ai) =

k−1∑
j=1

ai,j · f(vij ). (2)

We perform the optimization Eq. (1) over all nodes. Each node
vi corresponds to a hyperedge ei = {vi} ∪ {vi1 , . . . , vik−1

},
and its affinity can be represented by the vector ai as W(ei) =
{1, ai,1, . . . , ai,k−1} = {1}∪ai, where 1 is the fixed coefficient
for the anchor node vi

2.

Refining Node Representations. Given the hypergraph, we
utilize the hypergraph convolution layer [77], which adopts the
vertex-hyperedge-vertex information propagation to efficiently
exploit the high-order correlations, and to learn the structure-
aware knowledge. This process can be written as

X l+1 = σ
(
D−1

v HWD−1
e HTX lΘl

)
, (3)

where X l is the feature matrix of the nodes in the l layer
learned, Dv and De are the diagonal degree matrices of
vertices and hyperedges, respectively, while W is a diagonal
matrix whose ith diagonal element is the weight of the ith
hyperedge, and σ(·) denotes the nonlinear activation function.
The parameter to be learned during training is Θ, which
acts as a filter applied to the nodes for refinement. After the

2In the experiments, we consistently observe that the optimized coefficients
are always less than 1, which aligns with our understanding that the highest
affinity is typically assigned to the node itself.
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convolution operation, the high-order structure-aware feature
X l+1 is obtained.

Why Hypergraph Is Better. In general, the relationships
among target samples are complex, as more than two samples
may share common properties. Consequently, relying solely
on pair-wise relationships may result in a loss of information
compared to utilizing high-order relations. For a complete
mathematical proof regarding the advantages of hypergraphs,
the reader is referred to [78].

Time Complexity Consideration. Generating hyperedges
theoretically demands much more running time than pair-
wise relation-based methods. However, each hyperedge can
be generated independently by solving the optimization (1).
This allows for parallelization of the process, which greatly
reduces the overall time cost, making it comparable to pair-
wise relation-based methods. Experimental demonstrations of
this will be provided in Subsection IV-C.

C. Handling Domain Shift by Self-loop

Motivation. Existing methods [13], [22], [23], [26] consider
the neighborhood relations without explicitly taking the domain
shift effect into account. These methods assume that all samples
receive the same level of attention regarding domain assignment.
However, samples likely require varying attention levels. For
instance, those near the boundary between the source and target
domain need more attention during optimization compared
to samples far away from this boundary. Domain uncertainty
reflects the likelihood of samples belonging to either the source
or target domain, corresponding to these varying attention levels.
We develop a self-loop for each target sample to indicate its
domain uncertainty and incorporate the domain uncertainty
into semantic relations to alleviate the domain shift problem.

Self-loops Generation. Following [15], [19], [72], [73], we
estimate this domain uncertainty using the entropy value based
on the pseudo-labels from the classifier g. Samples with high
entropy indicate that the prediction probabilities across all
categories are similar. It means that the classifier is uncertain
about the category of the input sample. In other words, the
classifier, trained on the source domain, has limited knowledge
about this sample. As shown in Fig. 4, the entropy of samples
at the classification boundary before domain adaptation is high,
indicating high domain uncertainty (The transition from yellow
to purple indicates an increase in entropy.).

Denote Es = {{v1}, . . . , {vn}} as the self-loops for nodes.
By adding self-loops, the hypergraph can be updated as G =
(V, E ∪Es,W∪Ws), where Ws is the affinity set of self-loops.
To obtain the affinity of a self-loop, the most straightforward
way is to calculate its entropy using the prediction vector p.
However, solely relying on one node may suffer from the inner
deviation of this node. Therefore, we consider its neighbors for
representation to mitigate the errors. Specifically, given a node
vi, we find its corresponding hyperedge ei and average the
prediction vectors of the other k − 1 nodes in this hyperedge.
Then we calculate the entropy based on the averaged prediction
vector and employ the exponential function for normalization.
The rationale for using the exponential function is that it can

Fig. 4: T-SNE feature visualizations before adaptation on the
VisDA dataset. The point colors indicate the entropy values of
the samples. The transition from yellow to purple indicates an
increase in entropy, reflecting higher domain uncertainty.

assign larger weights to samples with higher entropy, allowing
us to prioritize the samples likely to have been shifted. The
affinity of the self-loop is calculated as

Ws({vi}) = exp(ϕ(p̄i)), (4)

where p̄i is the averaged prediction vector given by

p̄i =
1

k − 1

∑
vj∈ei/vi

g(f(vj)), (5)

in which ei/vi denotes the nodes in ei excluding vi, and ϕ(·)
denotes the calculation of entropy:

ϕ(p̄i) =
1

log |C|
∑
c∈C

−p̄ci log p̄
c
i . (6)

In Eq. (6), C is the set of categories, and p̄ci denotes the
average averaged prediction vector for category c. Based
on each hyperedge obtained above, we add self-loops into
every node to form a new hyperedge. For the nodes in
hyperedge ei, the affinity of their self-loops can be defined as
bi = {Ws({vi})}∪{Ws{vi1}, . . . ,Ws{vik−1

}}. After adding
self-loops, the affinity of hyperedge ei can be defined as
W(ei) = W(ei) + bi. Thus the affinity of all hyperedges
is a set of {W(e1), . . . ,W(em)}.

D. Clustering and Training

Clustering Based on High-order Relations. To find the
cluster for each node, we update the relation matrix H with
representations calculated in Eq. (1) instead of the fixed value
1 or 0. Mathematically, the elements of H are updated as

H(vi, ej) =

{
W (ej) |vi , vi ∈ ej ,

0, vi ̸∈ ej ,
(7)

where W (ej) |vi picks the element in W (ei) corresponding
to node vi. Given the relation matrix H , we can obtain the
relations of all nodes to all hyperedges with each row represents
the relations of this node to all hyperedges, which reflects the
knowledge of this node correlating with the hypergraph, i.e.,
the target domain. Thus it can be viewed as a compact (1×m)
representation for this node. Then we perform KNN based on
the representation of this node and find the top-h neighbors to
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TABLE I: Adaptive learning scheme.
Method Objective

AaD [23] −
∑

j∈Ai
pTi pj+λ

∑
k∈Bi

pTi pk

AaD + ALS −
∑

j∈Ai
(1− dγij)p

T
i pj+λ

∑
k∈Bi

(1− dγik)p
T
i pk

form a cluster. To reduce the clustering cost, we compact the
representation for each node by projecting H from n×m to
n×m′(m′ < m) (e.g., by PCA). Therefore, for each node vi,
we obtain a set of neighbors as Ai and regard the rest nodes
as a background set Bi.

Adaptive Learning Scheme. Based on the above cluster
results, we design an adaptive learning scheme that assigns
“soft” attention levels to different samples. This scheme can be
adapted into objectives considering both inter- and intra-cluster
relations. We use AaD [23] as an example for illustration.
Table I shows the objectives of AaD and AaD+Adaptive
Learning Scheme (ALS). Note that Ai and Bi denote the same
cluster and different cluster with sample xt

i. By minimizing
this objective, the first term increases the similarity of samples
within the same cluster while the second term decreases the
similarity in different clusters. Considering that samples within
the same cluster are expected to be consistent, so those with
notable discrepancies should obtain more attention. In contrast,
samples in different clusters should differ, meaning those with
small distances should be prioritized. To facilitate this, we
calculate dij , which is the normalized Euclidean distance
between the pi and pj , and we use γ to regulate the magnitude
of distance. In the first term, (1−dγij) decreases when samples
xt
i and xt

j are not similar. As a result, to minimize this term, pi
and pj are pulled closer. Similarly, in the second term, (1− dγik)
increases when samples xt

i and xt
k are similar. Thus pi and

pk are pushed further apart. More adaptations are studied in
Subsection IV-C.

Overall Procedure. As summarized in Algorithm 1, we alter-
natively perform hyperedge generation (line 2-line 4), clustering
process (line 8), and model training process (line 10). After each
iteration, the model parameters are updated and the hypergraph
can be reconstructed based on the refined features. To further
reduce the time cost, we set a time interval Tin for constructing
the hypergraph. These steps are executed until the maximum
number of iterations T is reached.

Algorithm 1 Overall procedure of HG-SFDA

Input: Target domain Dt, Source model O, Total training iterations T , Interval
of updating hypergraph Tin

Output: Fine-tuned model O
1: for t = 0 → T do
2: if t % Tin = 0 then
3: Constructing hypergraph G: Generating hyperedges E and calcu-

lating affinity set W ∪Ws

4: Utilizing the hypergraph convolution layer to refine node represen-
tations Xl+1

5: end if
6: Training batch Vb ∼ Target domain Dt

7: for node vi ∼ Training batch Vb do
8: Performing clustering based on node vi
9: end for

10: Training model O on Vb using objectives
11: end for
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Fig. 5: Examples of Office-31, Office-Home, DomainNet-126,
VisDA and PointDA-10 dataset images.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. Note that the SFDA task is typically validated
using image classification, a general task in image processing.
Therefore, we follow [20], [21], [47], [48], [88] and evaluate our
method on four commonly used 2D image benchmark datasets,
Office-31 [27], Office-Home [28], DomainNet-126 [29] and
VisDA [25]. The Office-31 dataset contains 3 domains of
Amazon, Webcam and DSLR with 31 classes and 4652 images.
The Office-Home dataset contains 15,500 images, covering
4 domains of Real, Clipart, Art and Product with 65 classes.
DomainNet is a large-scale dataset. Following [17], [20], [59],
we use a subset of it that contains 126 classes from 4 domains
Clipart (C), Painting (P), Real (R) and Sketch (S), and we
refer to it as DomainNet-126 containing over 500,000 images.
VisDA is a large-scale dataset with 12 classes for both synthetic
and real object recognition tasks, containing 152,000 synthetic
images in the source domain and 55,000 real object images in
the target domain. Moreover, we also use a challenging 3D point
cloud recognition dataset PointDA-10 [30] to fully evaluate our
method. PointDA-10 is a 3D point cloud benchmark dataset
designed for a domain adaptation, with 3 domains and 10
classes, denoted as ModelNet-10, ShapeNet-10, and ScanNet-
10, respectively. It contains 27,700 training images and 5,100
test images. Examples of these dataset images are shown in
Fig. 5.

Compared Methods. Following previous works [20], [21],
[23], [59], we compare our method with general DA and
SFDA methods. Specifically, we involves 30 SFDA methods,
including pair-wise clustering-based methods (e.g., SHOT [15],
SHOT++ [73], BMD [16], NRC [22], NRC++ [26], AaD [23],
SF(DA)2 [20]) and other methods using various strategies such
as pseduo-label filtering (e.g., DIPE [65], CoWA-JMDS [72], C-
SFDA [17], D-MCD [66], LLN [24], Co-learn [59], HCL [56],
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TABLE II: Accuracy (%) of different methods on Office-Home dataset.
Method SF Base A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
CoVi (ECCV’22) [37] × RN 58.5 78.1 80.0 68.1 80.0 77.0 66.4 60.2 82.1 76.6 63.6 86.5 73.1
RAIN (IJCAI’23) [38] × RN 57.0 79.7 82.8 67.9 79.5 81.2 67.7 53.2 84.6 73.3 59.6 85.6 73.0
COT (CVPR’23) [46] × RN 57.6 75.2 83.2 67.8 76.2 75.7 65.4 56.2 82.4 75.1 60.7 84.7 71.7
TCPL (TIP’24) [10] × RN 61.2 80.5 82.8 68.8 75.1 76.5 71.7 59.8 83.5 78.1 66.2 87.6 74.3
SHOT (ICML’20) [15] ✓ RN 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRC (NeurIPS’21) [22] ✓ RN 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
DIPE (CVPR’22) [65] ✓ RN 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5
CoWA-JMDS (ICML’22) [72] ✓ RN 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
VMP (NeurIPS’22) [64] ✓ RN 57.9 77.6 82.5 68.6 79.4 80.6 68.4 55.6 83.1 75.2 59.6 84.7 72.8
D-MCD (AAAI’22) [66] ✓ RN 59.4 78.9 80.2 67.2 79.3 78.6 65.3 55.6 82.2 73.3 62.8 83.9 72.2
AaD (NeurIPS’22) [23] ✓ RN 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
Sub-Sup (ECCV’22) [67] ✓ RN 61.0 80.4 82.5 69.1 79.9 79.5 69.1 57.8 82.7 74.5 65.1 86.4 74.0
BMD (ECCV’22) [16] ✓ RN 58.1 79.7 82.6 69.3 81.0 80.7 70.8 57.6 83.6 74.0 60.0 85.9 73.6
U-SFAN (ECCV’22) [55] ✓ RN 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9
TPDS (IJCV’24) [58] ✓ RN 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5
NRC++ (TPAMI’23) [26] ✓ RN 57.8 80.4 81.6 69.0 80.3 79.5 65.6 57.0 83.2 72.3 59.6 85.7 72.5
C-SFDA (CVPR’23) [17] ✓ RN 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
CAF (TIP’23) [47] ✓ RN 59.8 81.2 83.2 67.2 79.2 80.1 68.4 56.4 83.0 73.7 61.2 85.9 73.2
LLN (ICLR’23) [24] ✓ RN 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6
Co-learn (ICCV’23) [59] ✓ RN 57.7 80.4 83.3 70.1 80.1 80.6 66.6 55.5 84.1 72.1 57.6 84.3 72.7
RLD (ECCV’24) [87] ✓ RN 62.2 81.0 79.7 68.8 85.4 78.6 67.7 61.7 79.5 69.0 64.1 88.2 73.8
Improved SFDA (CVPR’24) [48] ✓ RN 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4
DPC (CVPR’24) [88] ✓ RN 59.5 80.6 82.9 69.4 79.3 80.1 67.3 57.2 83.7 73.1 58.9 84.9 73.1
ASM (TIP’24) [21] ✓ RN 56.9 79.1 82.9 69.5 79.6 79.7 67.9 55.1 82.6 74.7 60.5 84.8 72.8
Ours ✓ RN 62.4 82.2 83.4 73.3 83.7 82.8 73.4 61.5 85.5 76.8 62.6 87.8 76.3
CDTrans (ICLR’22) [89] × ViT 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
Mixup (ICML’22) [57] ✓ ViT 65.3 82.1 86.5 77.3 81.7 82.4 77.1 65.7 84.6 81.2 70.1 88.3 78.5
DIPE (CVPR’22) [65] ✓ ViT 66.0 80.6 85.6 77.1 83.5 83.4 75.3 63.3 85.1 81.6 67.7 89.6 78.2
DSiT-B (ICCV’23) [90] ✓ ViT 69.2 83.5 87.3 80.7 86.1 86.2 77.9 67.9 86.6 82.4 68.3 89.8 80.5
PSAT-GDA (TMM’23) [91] ✓ ViT 73.1 88.1 89.2 82.1 88.8 88.9 83.0 72.0 89.6 83.3 73.7 91.3 83.6
Ours ✓ ViT 76.1 91.7 91.4 87.5 91.7 92.2 87.0 75.6 91.7 88.4 77.1 92.8 86.9

GPUE [19]), uncertainty-guided (e.g., U-SFAN [55], CAF [47]),
semi-supervised learning (e.g., RLD [87]), domain distribution
generation (e.g., Sub-Sup [67], Mixup [57], ASM [21], DSiT-
B [90], SFDA-DE [69], VMP [64], VDM [70]) and domain
alignment (e.g., TPDS [58], Improved SFDA [48], DPC [88],
PSAT-GDA [91], A2Net [14]).

Implementation details. Our method is implemented using
PyTorch 1.13.1 [94] with a Nvidia RTX 3090 GPU. In the
training stage, we employ SGD optimizer with a momentum
0.9 for the 2D image datasets and use Adam optimizer for the
PointDA-10 dataset. The batch size for all datasets is set to 64.
The starting learning rate for 2D image datasets is set to 10−3,
and the one for PointDA-10 dataset is set to 10−6. We train
50 epochs for Office-31 and train 40 epochs for Office-Home
while 35 epochs for VisDA, and 100 epochs for PointDA-10.
To construct hyperedges, we set the degree k=6 and update the
hypergraph structure every Tin=50 iterations. We set α=2 in
(1). To cluster the samples, we consider h=3 nearest neighbors.
In the main experiment, we employ the objective of AaD (same
λ) with our ALS and a regularization term Lreg following [24],
[95]. Note that the regularization term can prevent the model
from overly focusing on incorrect predictions by accumulating
knowledge of the predictions at previous training time stamps.
For t-th time stamp (iteration), the target prediction is defined
as q

(t)
i = δq

(t−1)
i + (1− δ) p

(t)
i . The initial state of q(0)i is set

to 0 and δ is the weight factor. Slightly different from [24], we
use KL divergence instead of inner product to measure their
difference, as Lreg = KL(qi||pi). This term combines with the
objective using a factor η as LAaD+ALS + ηLreg. We set δ

and η to 0.8 and 2, respectively.

B. Results

The accuracy results of different methods on Office-
Home, Office-31 and VisDA, DomainNet-126, and PointDA-10
datasets are shown in Tables II to V, respectively. In each
table, we show the accuracy results for each task attained by
various methods and their average accuracy (Avg) over all tasks.
The best results are marked in bold. SF denotes Source-Free
unsupervised domain adaptation, and a mark × in this column
means that the method requires access to source domain data
during domain adaptation, while a mark ✓ means that the
method belongs to the SFDA. Base denotes the base network
of each method. Following the previous works [17], [21], [88],
[90], [91], we use ResNet (RN) [1] and ViT-B (ViT) [96] as the
backbone networks on 2D image datasets. Note that ResNet-50
[1] is used on Office-31, DomainNet-126 and Office-Home
datasets, while ResNet-101 is employed on VisDA dataset for
a fair comparison. For PointDA-10 dataset, we use PointNet
as in [97].

Office-Home. Following previous works [22]–[24], [26], our
method is compared to several recent state-of-the-art DA meth-
ods and SFDA methods, published in 2020 to 2024. As shown
in Table II, our method achieves the best average accuracy
result of 76.3% by ResNet backbone, which outperforms all the
DA and SFDA methods compared. In particular, it surpasses the
most recent SFDA methods ASM [21], DPC [88] and Improved
SFDA [48] by 3.5%, 3.2% and 2.9%, respectively. And it
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TABLE III: Accuracy (%) of different methods on Office-31 and VisDA dataset.

Method SF Base Office-31 VisDA
A→D A→W D→W W→D D→A W→A Avg S→R

CoVi (ECCV’22) [37] × RN 98.0 97.6 99.3 100.0 77.5 78.4 91.8 88.5
RAIN (IJCAI’23) [38] × RN 93.8 88.8 96.8 99.5 75.5 76.7 88.5 82.7
COT (CVPR’23) [46] × RN 96.1 96.5 99.1 100.0 76.7 77.4 91.0 87.1
TCPL (TIP’24) [10] × RN - - - - - - - 87.8
SHOT (ICML’20) [15] ✓ RN 94.0 90.1 98.4 99.9 74.7 74.3 88.6 82.9
HCL (NeurIPS’21) [56] ✓ RN 90.8 91.3 98.2 100.0 72.7 72.7 87.6 83.5
A2Net (ICCV’21) [14] ✓ RN 94.5 94.0 99.2 100.0 76.7 76.1 90.1 84.3
SHOT++ (TPAMI’22) [73] ✓ RN 94.3 90.4 98.7 99.9 76.2 75.8 89.2 87.3
NRC (NeurIPS’21) [22] ✓ RN 96.0 90.8 99.0 100.0 75.3 75.0 89.4 85.9
D-MCD (AAAI’22) [66] ✓ RN 94.1 93.5 98.8 100.0 76.4 76.4 89.9 87.5
DIPE (CVPR’22) [65] ✓ RN 96.6 93.1 98.4 99.6 75.5 77.2 90.1 83.1
CoWA-JMDS (ICML’22) [72] ✓ RN 94.4 95.2 98.5 100.0 76.2 77.6 90.3 86.9
Mixup (ICML’22) [57] ✓ RN 94.6 93.2 98.9 100.0 78.3 78.9 90.7 87.8
SFDA-DE (CVPR’22) [69] ✓ RN 96.0 94.2 98.5 99.8 76.6 75.5 90.1 86.5
BMD (ECCV’22) [16] ✓ RN 96.2 94.2 98.0 100.0 76.0 76.0 90.1 88.7
Sub-Sup (ECCV’22) [67] ✓ RN 95.6 94.6 99.2 99.8 77.0 77.7 90.7 88.2
U-SFAN (ECCV’22) [55] ✓ RN 94.2 92.8 98.0 99.0 74.6 74.4 88.8 82.7
AaD (NeurIPS’22) [23] ✓ RN 96.4 92.1 99.1 100.0 75.0 76.5 89.9 88.0
LLN (ICLR’23) [24] ✓ RN - - - - - - - 86.4
TPDS (IJCV’24) [58] ✓ RN 97.1 94.5 98.7 99.8 75.7 75.5 90.2 87.6
NRC++ (TPAMI’23) [26] ✓ RN 95.9 91.2 99.1 100.0 75.5 75.0 89.5 88.1
Co-learn (ICCV’23) [59] ✓ RN 96.6 92.5 98.9 99.8 77.3 76.6 90.3 88.2
C-SFDA (CVPR’23) [17] ✓ RN 96.2 93.9 98.8 99.7 77.3 77.9 90.5 87.8
CAF (TIP’23) [47] ✓ RN 95.0 93.5 99.1 99.9 76.3 78.4 90.3 87.3
Improved SFDA (CVPR’24) [48] ✓ RN 95.3 94.2 98.3 99.9 76.4 77.5 90.3 88.4
DPC (CVPR’24) [88] ✓ RN 95.8 94.5 98.9 100.0 76.5 76.8 90.5 88.8
SF(DA)2 (ICLR’24) [20] ✓ RN 95.8 92.1 99.0 99.8 75.7 76.8 89.9 88.1
ASM (TIP’24) [21] ✓ RN 96.0 95.1 98.7 100.0 75.3 77.2 90.4 84.1
Ours ✓ RN 98.4 98.2 99.1 100.0 78.6 78.7 92.2 89.6
CDTrans (ICLR’22) [89] × ViT 97.0 96.7 99.0 100.0 81.1 81.9 92.6 88.4
SSRT-B (CVPR’22) [92] × ViT 98.6 97.7 99.2 100.0 83.5 82.2 93.5 88.7
Mixup (ICML’22) [57] ✓ ViT 95.4 96.1 98.6 100.0 80.2 80.1 91.7 86.3
DIPE (CVPR’22) [65] ✓ ViT 94.8 95.5 98.5 100.0 77.5 77.1 90.5 82.8
DSiT-B (ICCV’23) [90] ✓ ViT 98.0 97.2 99.1 100.0 81.7 81.8 93.0 87.6
Ours ✓ ViT 98.4 99.0 99.9 99.8 86.3 87.6 95.2 91.2

TABLE IV: Accuracy (%) of different methods on DomainNet-126 dataset.
Method SF Base S→P C→S P→C P→R R→S R→C R→P Avg
MCC (ECCV’20) [93] × RN 47.3 34.9 41.9 72.4 35.3 44.8 65.7 48.9
SHOT (ICML’20) [15] ✓ RN 66.1 60.1 66.9 80.8 59.9 67.7 68.4 67.1
NRC (NeurIPS’21) [22] ✓ RN 65.7 58.6 64.5 82.3 58.4 65.2 68.2 66.1
AaD (NeurIPS’22) [23] ✓ RN 65.4 54.2 59.8 81.8 54.6 60.3 68.5 63.5
Co-learn (ICCV’23) [59] ✓ RN 65.7 60.1 63.8 79.2 58.2 68.0 67.6 66.1
C-SFDA (CVPR’23) [17] ✓ RN 67.4 62.1 68.5 80.4 62.7 70.8 71.1 69.0
GPUE (CVPR’23) [19] ✓ RN 67.5 64.0 68.8 76.5 65.7 74.2 70.4 69.6
SF(DA)2 (ICLR’24) [20] ✓ RN 67.7 59.6 67.8 83.5 60.2 68.8 70.5 68.3
Ours ✓ RN 71.3 66.3 71.5 82.6 65.8 75.2 73.1 72.3
RLD (ECCV’24) [87] ✓ ViT 76.6 68.5 77.8 85.1 68.3 76.9 77.8 75.9
Ours ✓ ViT 80.7 75.9 68.5 83.5 76.8 81.1 79.6 78.0

TABLE V: Accuracy (%) of different methods on PointDA-10 dataset.
Method SF M→SC M→SH SC→M SC→SH SH→M SH→SC Avg
ADDA (CVPR’17) [9] × 30.5 61.0 48.9 51.1 40.4 29.3 43.5
MCD (CVPR’18) [98] × 31.0 62.0 46.8 59.3 41.4 31.3 45.3
PointDAN (NeurIPS’19) [30] × 33.0 64.2 49.1 64.1 47.6 33.9 48.7
SHOT (ICML’20) [15] ✓ 31.8 62.1 67.6 56.9 75.8 24.3 53.1
VDM (TCSVT’22) [70] ✓ 30.9 58.4 45.3 61.8 61.0 40.8 49.7
NRC (NeurIPS’21) [22] ✓ 25.8 64.8 70.1 68.1 59.8 26.9 52.6
AaD (NeurIPS’22) [23] ✓ 34.6 69.6 68.0 66.6 67.7 28.8 55.9
BMD (ECCV’22) [16] ✓ 32.8 66.1 75.0 62.0 81.5 24.4 57.0
NRC++ (TPAMI’23) [26] ✓ 27.6 67.2 74.5 71.2 60.2 30.4 55.1
SF(DA)2 (ICLR’24) [20] ✓ 35.5 70.3 70.4 69.2 68.3 29.0 57.1
Ours ✓ 33.4 71.4 80.2 73.1 77.3 28.6 60.7

exceeds the clustering-based methods BMD [16], AaD [23] by 2.7% and 3.6%, respectively. This is because either BMD or



9

TABLE VI: Effect of each component.
Hypergraph Adaptive Lreg Office-31 Office-HomeHigh-order Self-loop Relation
× × × × 89.9 72.7
× × × ✓ 90.5 (+0.6) 73.1 (+0.4)
× × ✓ ✓ 90.7 (+0.8) 73.7 (+1.0)
✓ × × ✓ 90.6 (+0.7) 75.1 (+2.4)
✓ ✓ × ✓ 91.7 (+1.8) 75.9 (+3.2)
✓ ✓ ✓ ✓ 92.2 (+2.3) 76.3 (+3.6)

AaD explores the pairwise relation among prototype or neighbor
samples, which limits their ability to exploit complex high-
order relationships, making them more susceptible to outliers.
When using ViT backbone, our method further improves the
performance and exceeds the current best method PSAT-GDA
[91] by 3.3%, demonstrating the effectiveness of our method
on this dataset.
Office-31 and VisDA. Table III shows the performance of
several methods on Office-31 and VisDA datasets. We evaluate
more counterparts that are specifically designed for these two
datasets. The results reveal that our method outperforms all the
DA and SFDA benchmark methods on these two datasets. On
Office-31 dataset, our method achieves the best performance
using both RN and ViT backbone, surpassing the leading
SFDA methods SF(DA)2 [20], DPC [88] and DSiT-B [90]
by 2.3%, 1.7% and 2.2%, respectively. This highlights the
effectiveness of leveraging high-order relationships. Compared
to Office-31, the VisDA dataset is more challenging due to
significant distributional differences between the source domain
(synthetic images) and the target domain (real images). Due to
the limited capacity of RN, our method does not achieve notable
performance gain. But after switching to the ViT backbone,
our method improves significantly and surpasses the current
best method DSiT-B [90] by 3.6%.
DomainNet-126. The DomainNet dataset is more challenging
due to its large size, significant differences in cross-domain
distributions, and category complexity. We evaluate 7 domain
shifts built from the 4 domains and we report the top-1 accuracy
under each domain shift as well as the average accuracy (Avg)
over all domain shifts. The results, presented in Table IV,
demonstrate the superiority of our method, which outperforms
the second-best approach (GPUE [19]) by 2.7% using RN and
the second-best approach (RLD [87]) by 2.1% using ViT.
PointDA-10. Table V shows the performance of our method
compared with other methods on PointDA-10 dataset. Since
this dataset is for 3D point cloud recognition, only a few
methods have reported their performance on it. It can be seen
that our method achieves the best average accuracy of 60.7%,
surpassing the current best methods SF(DA)2 [20], BMD [16]
by 3.6% and 3.7%, respectively. This experiment corroborates
that our method is not only effective in general 2D images but
also in 3D point cloud recognition tasks.

TABLE VII: Impact of batch size on accuracy (%).

Method Batch Size
32 64 128

NRC [22] 90.2 90.8 90.1
AaD [23] 93.3 92.6 91.5
LLN [24] 91.8 92.2 91.8

Ours 94.3 98.1 98.6
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Fig. 6: (Left) Effect of different intervals in updating hypergraph.
(Right) Effect of different hyperedge degrees.
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Fig. 7: (Left) Effect of different scale factor γ. (Right) Effect of
different balancing factor β.
C. Ablation Study

Effect of Each Component. We investigate the effects of the
three components in our proposed HG-SFDA, namely, high-
order neighborhood relation, self-loop strategy, and adaptive
relation-based loss, on Office-31 and Office-Home datasets. As
shown in Table VI, the first row is the baseline performance
without using any of these components, which is degraded to the
AaD method [23]. The second row represents using Lreg , which
slightly improves the baseline by 0.6% and 0.4%. The third row
highlights the effectiveness of ALS, leading to improvements
of 0.8% and 1%. Rows four to six illustrate the effectiveness
of our proposed hypergraph learning strategy. The fifth row
shows the results of using the hypergraph learning strategy on
top of second row (i.e., with Lreg, without ALS), boosting
performance by 1.2% and 2.8%. The sixth row corresponds to
the setting of using the hypergraph learning strategy on top of
third row (i.e., with Lreg , with ALS), which further improves
results by 1.5% and 2.6%. Specifically, by exploring the high-
order information, the performance is improved by 0.1% and
2%. By adding the self-loop to hyperedge, the performance
is improved by 1.1% and 0.8%, respectively. After adding
the adaptive relation-based loss, additional 0.5% and 0.4% of
performance enhancement is achieved.
Sensitivity of Batch Size. Table VII shows the performance of
our method compared to the pair-wise methods using different
batch sizes on Office-31 (A→W). The results of Table VII
indicate that as the batch size increases, the performance of
our method improves, while the performance of NRC [22],
AaD [23] and LLN [24] remain stable. This is because more
samples result in more complex correlations, which highlights
the effectiveness of high-order relations. To ensure a fair
comparison, we use a batch size of 64 for all datasets.
Interval Tin in Updating Hypergraph. The constructed
hypergraph is periodically updated during training to maintain
its effectiveness. To investigate the impact of the interval Tin



10

TABLE VIII: Adapting ALS on various objectives.
Method Loss Avg accuracy (%)
G-SFDA [13] −g(Wijp

T
i pj) +

∑C
c=1 KL(pc||qc) 76.9

G-SFDA + ALS −g((1− dγij)Wijp
T
i Tpj) +

∑C
c=1 KL(pc||qc) 77.2

NRC [22] −g(Wijp
T
i pj) +

∑C
c=1 KL(pc||qc) 79.8

NRC + ALS −g((1− dγij)Wijp
T
i pj) +

∑C
c=1 KL(pc||qc) 80.1

AaD [23] −
∑

j∈Ci
pTi pj + λ

∑
m∈Bi

pTi pm 79.8
AaD + ALS −

∑
j∈Ci

(1− dγij)p
T
i pj + λ

∑
m∈Bi

(1− dγik)p
T
i pm 80.4

SF(DA)2 [20] − 2
K

∑
j∈NK

i
pTi pj +

∑
k∈B(p

T
i pk)

2 + LIFA + LFD 77.3
SF(DA)2 + ALS − 2

K

∑
j∈NK

i
(1− dγij)p

T
i pj +

∑
k∈B(1− dγik)(p

T
i pk)

2 + LIFA + LFD 78.1

on the achievable accuracy, we experiment on Rw→Pr track
on Office-Home dataset. Fig. 6 (Left) illustrates the effect of
using different update intervals on our method, showing that
the accuracy of our method is stable around 86% as the interval
number Tin increases from 50 to 100. This indicates that the
performance of our method is insensitive to the update interval.
In the main experiment, we select 50 as the final interval
number. Note that Fig. 6 (Left) reflects the optimization results
for the “hypergraph update interval Tin” parameter alone, while
keeping other parameters at their initial values.

Degree k in Hyperedges. Fig. 6 (Right) is based on the optimal
update interval (50) determined in Fig. 6 (Left), and further
shows the effect of different degree k in hyperedges to the
achievable accuracy. The experiment setting is the same as
above. We change the hyperedge degree k from 3 to 7 and
find that our method is only slightly affected, which indicates
that the performance is also insensitive to hyperedge degree.

Scale factor γ and hyperparameter λ in Objective. As
shown in Table I, γ is the scale factor controlling the attention
levels. Fig. 7 (Left) shows the effect of different γ on Rw→Pr
track on Office-Home dataset, showing that our method is not
sensitive to γ either. We experimentally prove that taking γ=7
is valid for all datasets. We then study the effect of different λ
on the second loss term. Since the rate of decay is controlled by
a balancing factor β as λ=(1+10 · iter

maxiter )
−β , where maxiter

is the maximum number of iterations, we study the effect of
β instead. Fig. 7 (Right) shows the effect of different β on
Rw→Pr track on Office-Home dataset, which indicates that a
proper β is important, e.g., β=0 is the best for Office-Home
dataset.
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Fig. 8: Effect of different numbers of nearest neighbors on Office-
31 (Left) and Office-Home (Right).

Number of Nearest Neighbors in Clustering. This part studies
the effect of using different numbers of nearest neighbors
in clustering. Fig. 8 shows the corresponding performance
on Office-31 (Left) and Office-Home (Right) using different
nearest neighbors, from 1 to 5. From Fig. 8, we observe that

using the median value 3 achieves the best performance on
these two datasets. This is due to the fact that a small number
of neighbors is prone to be affected by outliers and a mass of
neighbors may lose the locality of group information.

Adapting ALS on Various Objectives. As shown in Table VIII,
we add the ALS to the objectives in G-SFDA, NRC, AaD
and SF(DA)2 on Office-Home (C→P). G-SFDA and NRC
only consider intra-cluster relations while AaD and SF(DA)2

consider intra- and inter-cluster relations. It can be seen that
the performance of all the methods are further improved after
using ALS. In our main experiments, AaD is employed as the
base objective.

Adapting Hypergraph on Various Objectives. To demonstrate
our method can serve as a plug-and-play strategy, we follow
the setting in Table VIII to apply our method to various
objectives. The results, shown in Table IX, demonstrate that
using hypergraph learning strategy can notably improve the
accuracy on all different objectives. This corroborates that our
method is not limited to AaD but can be used as a plug-and-play
strategy for other objective functions.

TABLE IX: Adapting Hypergraph on various objectives.
Method Avg accuracy (%)
G-SFDA [13] 76.9
G-SFDA + HG 79.4
NRC [22] 79.8
NRC + HG 81.3
AaD [23] 79.8
AaD + HG 82.8
SF(DA)2 [20] 77.3
SF(DA)2 + HG 80.3

Feasibility of Using Domain Uncertainty to Solve Domain
Shifts. For feasibility validation, we split VisDA dataset to
ensure a sufficient number of samples for each class and
conduct experiments on it. Specifically, we validate three
variants: 1) only using the source model, 2) our method without
the self-loop strategy, and 3) our method using the self-loop
strategy. As shown in Table X, for the tasks of bcycl, bus
and truck, the performance are very poor when only using
the source model, which indicates that these tasks have large
domain uncertainty. For these tasks, especially for truck, the
self-loop strategy can further improve the performance. This is
because the domain shifts of difficult samples can be mitigated
by adding large self-loop weights (domain uncertainty). Thus
the clustering of such samples can be focused.

Complexity Analysis. Table XI shows the training time, the
number of parameters, the floating point operations, memory
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TABLE X: Feasibility of using domain uncertainty to solve domain shifts (accuracy %).
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg
Source 71.1 18.2 46.0 70.0 57.7 4.4 82.3 24.0 57.8 35.0 87.3 7.7 46.8
Ours w/o self-loop 96.1 79.5 80.3 79.5 93.3 98.9 90.9 85.9 93.7 87.4 89.1 27.5 83.5
Ours w/ self-loop 96.4 80.6 81.7 79.4 93.3 98.1 91.8 83.5 95.1 90.4 90.5 36.6 84.8

TABLE XI: Complexity and performance analysis.

Method A→R R→A R→C R→P GPU (MB) RAM (MB) FLOPs (G) Params (M)Time (min) Acc(%) Time (min) Acc(%) Time (min) Acc(%) Time (min) Acc(%)
NRC (NeurIPS’21) [22] 26.1 81.5 10 71.7 16 58.6 16.4 85.9 323.2 5853 263.04 24.05
LLN (ICLR’23) [24] 25.7 80.7 10 74 16.1 59.6 16.6 83.7 323.2 6003 263.04 24.05
AaD (NeurIPS’22) [23] 26.2 81.4 9.8 72.8 15.9 59.4 16.2 85.1 323.1 5975 263.04 24.05
SF(DA)2 (ICLR’24) [20] 29.9 79.6 8.1 69.6 12.4 57.5 12.6 84.8 361 9708 263.04 24.05
Ours 24.4 83.4 12.6 76.8 21 62.6 21 87.8 313.1 16138 268.26 24.50

usage, and accuracy of different methods on Office-Home under
the same setting. It can be seen that our method maintains com-
parable training time and GPU memory usage, with a moderate
increase in the number of parameters (Params) and the floating
point operations (FLOPs), but achieves notable performance
improvement. It is worth noting that the process of building
a hypergraph is executed in RAM rather than on the GPU.
While our method requires more RAM than other methods, it
is unlikely to pose a barrier in real-world application, given
that RAM is relatively inexpensive and widely available. The
results indicate that our method properly balances complexity
and performance, demonstrating the efficacy of hypergraph
learning. Note that the existing neighborhood clustering-based
methods [20], [22]–[24] are all improved based on the same
baseline method [13], and they have comparable number of
parameters (Params) and the floating point operations (FLOPs).

D. Further Analysis

Feature Visualization. We visualize feature distribution using
t-SNE [99] on Office-Home (C→A). Meanwhile, we choose 4
comparisons, the Source model, NRC [22], AaD [23] and
SF(DA)2 [20]. As can be seen from Fig. 9 (Top), from
Source to Ours, we can observe that the target samples of the
same class become more coherent, and the margins between
different classes become clearer and larger, demonstrating the
effectiveness of our proposed method. Fig. 9 (Bottom) shows
the comparison of feature distribution between our method
and the general pairwise method AaD [23] during the training
process. The results indicate that, as training epochs progress,
our method consistently achieves better clustering performance
than the pairwise method AaD, highlighting the effectiveness
of hypergraph learning in SFDA.

TABLE XII: Accuracy (%) of CLIP-based methods. The backbone
of image encoder is ResNet and ViT, respectively.

Method Office-31 VisDA
→A →D →W Avg S→R

CLIP-RN (ICML’21) [100] 73.1 73.9 67.0 71.4 83.7
Source+CLIP-RN 76.3 90.4 84.0 83.6 82.0
DIFO-CLIP-RN (CVPR’24) [85] 78.6 95.3 93.9 89.3 88.8
Ours-RN 78.7 99.2 98.7 92.2 89.6
CLIP-ViT (ICML’21) [100] 76.0 82.7 80.6 79.8 82.9
Source+CLIP-ViT 78.5 93.0 89.6 87.0 82.0
DIFO-CLIP-ViT (CVPR’24) [85] 83.1 98.0 96.4 92.5 90.3
Ours-ViT 87.0 99.1 99.5 95.2 91.2

Compared to CLIP-based Multimodal Methods. Several
recent methods employ CLIP [100] to solve the SFDA problem.

Since CLIP contains powerful prior knowledge, directly compar-
ing these methods to ours would be unfair. For a compromise,
we compare our method with the methods that use ResNet
and ViT as the backbone of CLIP, and average the adaptation
results grouped by target domain name. As shown in Table XII.
Our method outperforms CLIP-related methods on all tasks for
Office-31 and VisDA. Specifically, for ResNet, it outperforms
CLIP-RN [100] and DIFO [85] by 20.8% and 5.9%, as well
as 2.9% and 0.8%, respectively. For ViT, the improvement
over CLIP-RN [100] and DIFO [85] is 15.4% and 8.3%, and
2.7% and 0.9%, respectively. This demonstrates the competitive
capacity of our method compared to CLIP-based methods.

TABLE XIII: Source-free open-set Domain Adaptation on Office-
Home.

Method SF Avg accuracy (%)
ResNet (CVPR’2016) [1] × 65.3
OSBP (ECCV’18) [101] × 65.7
STA (CVPR’19) [102] × 69.5
GLC (CVPR’23) [103] × 69.8
SHOT (ICML’20) [15] ✓ 72.8
SHOT-IM (ICML’20) [15] ✓ 71.5
SHOT+HCL (NeurIPS’21) [56] ✓ 73.2
CoWA-JMDS (ICML’22) [72] ✓ 73.2
AaD (NeurIPS’22) [23] ✓ 71.8
U-SFAN (ECCV’22) [55] ✓ 73.5
CREL (CVPR’23) [18] ✓ 73.3
Ours ✓ 77.3

Source-free Open-set Domain Adaptation (SODA). We
provide additional experiments in the open-set DA setting
on Office-Home. In the open-set scenario, the target domain
includes unseen classes that are not contained in the source
domain. For open-set detection, we follow the same protocol
for the detection of unseen classes as in SHOT [15]. We sort
the entropy of the samples and perform two-class k-means
clustering. The high entropy clusters are then classified as
unknown samples and the low entropy clusters are classified
as known samples. The known samples are used to train the
model. As can be seen from the results in Table XIII, our
method outperforms the current state-of-the-art method [55]
with an improvement of 3.8%. This scenario further highlights
the benefit of high-order relations in uncovering the underlying
correlations, especially the semantic difference between known
and unknown categories (see the illustration of Fig. 10).

Norm l and factor α in Eq (1). Table XIV shows the
study regarding the employed norm l and factor α in the
regularization term on Office-31 (A→W) and Office-Home
(P→A). We employ the L2 norm with α = 2 in the main
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Source NRC AaD SF(DA)2 Ours

Epoch-0(Source) Epoch-20(AaD) Epoch-20(Ours) Epoch-40(AaD) Epoch-40(Ours)
Fig. 9: Visualization of feature distribution on the C→A in Office-Home. T-SNE feature distribution over 65 categories, where different
colors stand for different categories. (Top) Note that NRC [22] (NeurIPS’21), AaD [23] (NeurIPS’22), and SF(DA)2 [20] (ICLR’24) are
pair-wise based methods. Source indicates the source model before domain adaptation. (Bottom) Comparison of feature changes
during training between our method and the pairwise method AaD [23]

(a) Before (b) After
Fig. 10: T-SNE feature visualizations before and after adaptation.
Blue and red colors correspond to known and unknown cate-
gories.

experiments. The grouping effect is improved by grouping more
relevant neighbors to construct a hyperedge and controlling
the hypergraph sparsity more effectively.

TABLE XIV: Numerical ablation on regularization term in Eq.(1).
Regularization norm l α Office-31 (A→W) Office-Home (P→A)

L1 1.0 97.9 72.9
2.0 95.0 72.3

L2 1.0 96.4 72.5
2.0 98.1 73.1

Limitations and Future Works. One limitation of our method
is that it solely relies on visual features to construct the
hypergraph, neglecting the potential benefits of linguistic
information. With the emergence of powerful vision-language
models (VLMs), future work could explore enriching sample
representations using multi-modal semantic embeddings derived
from VLMs. Integrating such multi-modal information may
enable the construction of more expressive hypergraphs, facili-
tating the capture of more complex and robust relationships
among samples.

V. CONCLUSION

This paper has introduced a new SFDA method, called
HG-SFDA, that exploits high-order neighborhood relations and
explicitly takes the domain shift effect into account. Specifically,
we have constructed hyperedges over the target samples by
considering their semantic similarity and have developed a
self-loop strategy to involve the domain uncertainty of target
samples in hypergraph optimization. Then we have further
proposed an adaptive relation-based objective that pushes close
samples in a cluster and pulls away samples in different clusters
with soft attention levels. Extensive experiments conducted on
mainstream datasets have demonstrated the efficacy of our
method on the SFDA problem.
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