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Abstract

The paper proposes to treat agent awareness as a form of
knowledge, breaking the tradition in the existing literature on
awareness. It distinguishes the de re and de dicto forms of
such knowledge. The work introduces two modalities captur-
ing these forms and formally specifies their meaning using a
version of 2D-semantics. The main technical result is a sound
and complete logical system describing the interplay between
the two proposed modalities and the standard “knowledge of
the fact” modality.

Full version — https://arxiv.org/abs/2511.05977

Introduction

Artificial agents are increasingly making important deci-
sions that affect our lives. The choice of the right decision
often depends on the awareness about other agents’ pres-
ence at the scene. A war robot must minimise casualties if it
is aware of civilians present at the theatre of operations. A
self-driving car must stop at the yield (give way) sign if it is
aware of an approaching vehicle on the other road. An agent,
who is a medical doctor, must offer help if she is aware of
someone being sick. An autonomous driving system must
stop the vehicle if it is aware of an approaching emergency
vehicle. A machine whose values align with humans’ must
apologise if it is aware of someone being offended. A well-
mannered robot should not take the last piece of a cake if it
is aware of somebody else wanting this piece.

Awareness is a vague term that could be interpreted in
different ways. In the literature, the authors consider aware-
ness of an object (Board and Chung 2022, 2021; Board,
Chung, and Schipper 2011) and conceptual awareness (Fa-
gin and Halpern 1987; van Ditmarsch, French, Velazquez-
Quesada, and Wang 2013; van Benthem and Veldzquez-
Quesada 2010; Grossi and Velazquez-Quesada 2015; Schip-
per 2015). In this work, we focus on a specific form of the
former: “agent awareness” or awareness of one agent about
the existence of another agent with a certain property. Al-
though the existing literature on awareness treats it as a dis-
tinct concept, the Cambridge Dictionary suggests an epis-
temic interpretation of awareness by defining it as “knowl-
edge that something exists”. In this paper, we give a formal
account of this epistemic approach to awareness. While do-

ing this, we observe that there are two distinct ways in which
one agent can be aware of another.
Indeed, let us consider the following two sentences:

Vehicle’s autopilot started to slow down after it be-
came aware of a AAAI attendee crossing the road.

Vehicle’s autopilot started to slow down after it be-
came aware of being followed by a police car.

Note that, in these sentences, the autopilot is aware in two
distinct senses. In the first sentence, it knows that there ex-
ists a human on the road ahead of the vehicle. The human
happens to be a AAAI attendee, but the autopilot does not
necessarily know this. The awareness is about the physical
object (human on the road) and not her property of being
a AAAI attendee. Using first-order epistemic logic, we can
write this as

Jz(AAAI-Attendee(x) A KuutopitotCrossingRoad(x)).

In the second sentence, the autopilot hears the siren and
knows that one of the vehicles driving behind is a police
car, but it might not even know which of the vehicles behind
belongs to the police. This is awareness of someone with
designator “police car” being behind:

Kautopitot 32 (PoliceCar(z) A DrivingBehind(x)).

In the philosophy of language, a distinction between a
reference to an object and to a designator of this object is
usually referred to as a de re/de dicto distinction. Follow-
ing this tradition, we say that the autopilot is aware of the
AAALI attendee de re and of the police car de dicto. De re/de
dicto distinction (without the context of awareness) has been
the subject of studies in the philosophy of language (Quine
1956; Lewis 1979; Chisholm 1976; Abusch 1997; Keshet
and Schwarz 2019) and law (Anderson 2014; Yaffe 2011).
Rebuschi and Tulenheimo (2011) introduced a related notion
“de objecto”. The existing approaches to formally capturing
the distinction mostly rely on quantifiers.

As another example, consider the sentences:

A robot series 117 must introduce itself if a security
guard becomes aware of its presence

V(117 (x) A Kguara(Present(z) ) — MustSelfIntro(z)),

and



A security guard must report to a supervisor any
sighting of a series 117 robot

Va (Kguara (Present(x) A117(x)) — MustReport(guard)),

the first refers to de re awareness of the security guard about
the robot as a physical object (not necessarily of 117 series).
Otherwise, what would be the point of an introduction if the
guard already knows that the robot is of series 1177 The
word “sighting” in the second sentence refers to de dicto
awareness. The guard must report to a supervisor if the guard
knows that the robot is of that specific series.
Finally, the sentence

A robot of series 117 must self-distract if it becomes
aware of someone aware of its presence

Va(i17(z) A y(y # « A K Ky (Present(z)))
— MustSelfDistract(x))

mentions awareness twice. The first of them is the awareness
of X (robot series 117) that some other agent Y nearby has
the property of “being aware of X’s presence”. This is a de
dicto awareness. The second of them is Y’s de re awareness
of X as a physical object, perhaps without knowing that X
is a robot series 117.

Even without focusing specifically on awareness, very
few quantifier-free logical systems for capturing the de re/de
dicto distinction have been proposed. Epstein, Naumov, and
Tao (2023) considered modalities that capture de re/de dicto
versions of “know who”. Epistemic Logic with Assign-
ments (Wang and Seligman 2018; Cohen, Tang, and Wang
2021; Wang, Wei, and Seligman 2022) proposes a very gen-
eral language that can also be used to capture de re and de
dicto knowledge of one agent about knowledge of the other.
Jiang and Naumov (2025) proposed a modal logical system
for reasoning about de re and de dicto knowledge of a prop-
erty of an agent inferred from a dataset. However, none of
these logical systems can express either de re or de dicto
awareness.

In this paper, we propose to capture de re and de dicto
forms of awareness by two modalities, whose meaning is
defined using a 2D-semantics (Schroeter 2021). Our main
technical result is a sound and complete logical system cap-
turing the interplay between the traditional “knowledge of
the fact” modality and these two new modalities. The com-
pleteness proof uses a non-trivial modification of a recently
introduced “matrix” technique.

The proposed logical system complements the existing
body of literature on other specialised forms of knowledge:
know-how (Naumov and Tao 2017; Fervari, Herzig, Li, and
Wang 2017; Agotnes and Alechina 2019), know-who (Ep-
stein, Naumov, and Tao 2023), know-whether (Fan, Wang,
and van Ditmarsch 2015), know-why (Xu, Wang, and Studer
2019), and know value (Wang and Fan 2013; Baltag 2016).

Running Example

Imagine Ann, who decided to take a break from AAAI-26
meetings at Singapore’s Asian Civilisations Museum. While
in the building, she booked a WeRide self-driving car to take

her back to the conference. As Ann leaves the building, she
notices a car parked in front of the entrance to the building.
Unknown to Ann, the car in front of her is an unmarked
police vehicle. Ann is aware of the car in front of her. The
car is a police vehicle. Thus, Ann is de re aware of the police
vehicle next to the museum.

A few seconds after exiting the building, Ann gets a text
message that her WeRide has arrived. Ann cannot see the
WeRide vehicle because it is parked around the corner, but
Ann knows that the WeRide is somewhere near her. Hence,
Ann is de dicto aware of the WeRide vehicle next to the mu-
seum. In this paper, we capture these two forms of awareness
by two modalities. We believe that the definitions of these
modalities are the most elegant in the egocentric logic set-
ting. The semantics of the traditional modal logical systems
is defined in terms of a binary relation w I . In such a
setting, formula ¢ captures a property of possible world w.
Prior (1968) proposed to consider logics that capture prop-
erties of agents rather than possible worlds. He called such
logics “egocentric”. The semantics of egocentric logical sys-
tems can be defined in terms of a binary relation a I ¢ be-
tween an agent a and a formula ¢. Multiple versions of such
systems, not dealing with awareness, have been proposed in
the literature (Grove and Halpern 1991, 1993; Grove 1995;
Seligman, Liu, and Girard 2011, 2013; Christoff and Hansen
2015; Christoff, Hansen, and Proietti 2016; Jiang and Nau-
mov 2022, 2024).

In order to capture knowledge and awareness, one can ex-
tend egocentric semantics by considering a ternary satisfac-
tion relation w, a I ¢ between possible world w, agent a,
and formula ¢. In such a setting, formula ¢ captures prop-
erty ¢ of agent a in world w.

agent ¢ |

w,

—
_‘ i agent b _‘

agent a

Figure 1: Symbol = designates a WeRide vehicle.

For example, consider an epistemic model, depicted in
Figure 1, capturing the setting of our running example. This
model has two worlds, w; and ws with wy being the ac-
tual world in the example. There are three agents present
in world w;: Ann (agent a), WeRide vehicle (agent b), un-
marked police vehicle (agent c). In Figure 1, two-directional
arrows represent transworld identity between instances of
agents in different worlds. Although the nature and the very
existence of transworld identity is a widely discussed sub-
ject in the philosophy of language (Mackie and Jago 2022),
in this work, we assume such identity to be given.

Because agent c is a police vehicle in world w; we can
write:

w1, ¢ I “is police vehicle”.



Furthermore, because agent c is located near the museum,
wy, ¢ I “is police vehicle” A “is near the museum”.

Ann cannot distinguish world w; from world w,. How-
ever, in world wy the same agent c is a WeRide vehicle lo-
cated near the museum:

wa, ¢ IF “is a WeRide vehicle” A “is near the museum”.

Because the same agent c is present in both worlds that Ann
cannot distinguish, Ann is aware of agent c. Since in the
actual world agent c is an unmarked police vehicle, in world
w1 Ann is de re (as of a physical object) aware of the police
vehicle near the museum. We write this as

wy,a IF R(“is police vehicle” A “is near the museum”).

Recall that agent b is also present in the world w; and, in
this world, it is a WeRide vehicle located near the museum:

w1, b IF “is a WeRide” A “is near the museum”.

Because Ann cannot see agent b, she is not aware of it de re
(as a physical object):

w1, a lF ~R(“is a WeRide” A “is near the museum”).

At the same time, because Ann got the message from
WeRide that her vehicle had arrived at the museum, there
must be a WeRide near the museum in each world that Ann
cannot distinguish from the current world. In our example,
there is a WeRide near the museum in world w; (agent b)
as well as in world ws (agent c¢). As a result, Ann is aware
of a WeRide, as a concept (de dicto), being present near the
museum:

wi,a l- D(“is a WeRide” A “is near the museum”).

The rest of the paper is structured as follows. First, we in-
troduce epistemic models and proceed by defining the syn-
tax and semantics of our logical system. Then we propose
the axiomatisation. Having informally discussed the axioms,
we state the soundness theorem. In the next section, we in-
troduce the notions of general awareness and a \-assured
set. Finally, we prove the completeness of the logical system
using the “matrix” technique.

Epistemic Models

In this section, we define the class of models that we use
later to define the formal semantics of our logical system.
Throughout the paper, we assume a fixed nonempty set of
propositional variables.

Definition 1A tuple (W, A, P, ~, ) is an epistemic model if

1. W is a (possibly empty) set of all “worlds”,
2. Ais a (possibly empty) set of “agents”,

3. PC Ax W isa “presence” relation,
4

.~ Is an “indistinguishability” equivalence relation on
the set P, = {w € W | aPw} for each agent a € A,

5. w(p) C P for each propositional variable p.

In addition to the notation P,, introduced above, it is also
convenient to use the notation P, = {a € A | aPw}.

In our “museum” running example, set W consists of
worlds w; and ws. Set A is {a, b, c}. Presence relation P
consists of all pairs from the set A x W except for (b, ws)
because agent b is not present in world ws. In the same ex-
ample, wy ~, ws. The relations ~; and ~, are not impor-
tant for that example. If propositional variable p represents
the statement “is a WeRide”, then 7(p) = {(b, w1), (¢, w2)}.

Syntax and Semantics

The language ® of our logical system is defined by the gram-
mar:
p:=p|-p|le—=¢|Ke|Rp|Dg,

where p is a propositional variable. We read Ky as “knows
o about herself”, Ry as “de re aware about someone with
property ¢”, and Dy as “de dicto aware about someone with
property ¢”. We assume that conjunction A and disjunction
V as well as constants truth T and false L are defined in the
standard way.

Definition 2 For any worldw € W, any agent a € P,, of an
epistemic model (W, A, P,~, ), and any formula ¢ € ®,
the satisfaction relation w,a |+ ¢ is defined recursively as
follows:

1. w,alkFpif(a,w) € 7(p),
2. wy,alk @ ifw,alF
3. wyalk o = Yifw,all porw,al-,
4. w,alF K ifu,a Ik @, for each world v € P, such that
W ~q U,
5. w,al- Ry if there is such an agent b € P, that
(a) w,blF ¢ and
(b) for any world u € P, if w ~g u, then u € Py,

6. w,a - Dy if for each world u € P, such that w ~, u
there is an agent b € P, such that u, b I .

Note that item 4 above requires property ¢ to be true about
agent a in all worlds indistinguishable by agent a from the
current world. Thus, modality Ky captures the knowledge
of ¢ by agent a about herself.

Item 5 above states that agent b has property ¢ in the cur-
rent world w and agent b is present in all worlds indistin-
guishable by agent a from the current world. In other words,
agent b has property ¢ and agent a is aware of agent b. In
this case, we say that agent a is de re aware of . In our
example in Figure 1, agent c has the property “is a police
vehicle near the museum” in the current world w; and agent
c is present in all worlds indistinguishable by Ann from the
current world.

Item 6 above states that in each world indistinguishable
by a from the current world, there is at least one agent with
property . Thus, agent a is de dicto aware of ¢. In our run-
ning example, there is a WeRide vehicle near the museum in
each of the worlds indistinguishable by Ann from the current
world wy.

In the philosophy of language, the type of semantics
that we gave in Definition 2 is sometimes called a 2D-
semantics (Schroeter 2021). Modality K for such semantics



has been studied before (Seligman, Liu, and Girard 2011,
2013; Epstein and Naumov 2021; Epstein, Naumov, and Tao
2023; Naumov and Tao 2023). Modalities R and D are orig-
inal to this paper.

Axiomatisation

In addition to the tautologies in language ®, our logical sys-
tem has the following axioms:

1. Truth: Ko — ¢,

Negative Introspection: =Ky — K=K,
Distributivity: K(¢ — 1) — (Ko — Kt),
Self-Awareness: ¢ — Ry and Ko — Dy,
Introspection of Awareness: Dy — KD,
Unawareness of Falsehood: —=R_L and =D _L,
Disjunctivity: R(¢ V ¢) — Rp V Ry,

. General Awareness: D(Ry V Dy) — Do.

The first three axioms are the standard axioms of the epis-
temic logic. It is easy to see that they hold for “knows about
herself” modality K.

Note that Definition 2 requires agent a to be present in
the world w each time when w,a IF ¢. Also, by Defini-
tion 1, relation ~, is defined only on the worlds in which
agent a is present. As a result, each agent is present in all
worlds that she cannot distinguish from the current world.
Thus, each agent is aware of her own presence in the current
world. Then, if agent a has property ¢, then a is de re aware
of . We capture this observation in the first Self-Awareness
axiom. If agent a has property Ky, then ¢ is true about a
in all worlds indistinguishable by a from the current world.
Hence, if agent a has property Ky, then a is de dicto aware
of . We capture this in the second Self-Awareness axiom.

By item 6 of Definition 2, an agent is de dicto aware of ¢ if
each indistinguishable world contains an agent with property
. Thus, if formula D¢ is true, then this formula must also
be true in all indistinguishable worlds. We state this in the
Introspection of Awareness axiom. A similar axiom for de
re modality R, generally speaking, is not valid.

Note that items 5 and 6 of Definition 2 require that for-
mula ¢ must be true about agent b in the current world. Thus,
an agent cannot be either de re or de dicto aware of a false-
hood. We state this in the two Unawareness of Falsehood
axioms.

Item 5(a) of Definition 2 requires that for w, a IF R(¢ V1))
to be true, formula ¢ V 1 must be true in the current world
about some agent b. Then either ¢ or 1) must be true about b
in the current world. As a result, either statement w, a |- Ry
or w,a |- Ry must be true. This justifies the Disjunctivity
axiom.

Note that if, in each indistinguishable world, there is
someone who is (either de re or de dicto) aware of a WeRide,
then there must be a WeRide in each indistinguishable
world. We capture this observation in the General Aware-
ness axiom. We discuss the axiom’s name in the section on
A-assured sets.

We write - ¢ and say that formula ¢ € ® is a theorem
of our logical system if ¢ is derivable from the above ax-
ioms using the Modus Ponens, the Necessitation, and the

N oL R W

two forms of the Monotonicity inference rules:

pozv v w2V P2 Y
P Ky Dy — Dy Ry — Ry’
In addition to unary relation - ¢, we also consider a bi-
nary relation X F ¢ between a set of formulae X C & and
a formula ¢ € ®. We say that X F ¢ is true if formula ¢
is derivable from the theorems of our logical system and the
set of additional axioms X using only the Modus Ponens in-
ference rule. It is easy to see that the statements & F ¢ and
F  are equivalent. We say that the set of formulae X is con-
sistent if X ¥ L. The theorem below captures our informal
discussion above. Formally, it follows from Definition 2.

Lemma 1 (Lindenbaum) Any consistent set of formulae
can be extended to a maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma (Mendel-
son 2009, Proposition 2.14) applies here. X

Soundness

Theorem 1 (soundness) If - ¢, then w,a I ¢ for each
world w and each agent a € P, of each epistemic model.

The soundness of the Truth, the Negative Introspection,
the Distributivity, the Self-Awareness, the Introspection of
Awareness, the Unawareness of Falsehood, and the Disjunc-
tivity axioms as well as of the inference rules are straightfor-
ward. Below, we prove the soundness of the General Aware-
ness axiom as a separate lemma.

Lemma 2 Ifw,a - D(Rp V Dy), then w, a I+ De.

Proof. Suppose that w, a ¥ De. Thus, by item 6 of Defini-
tion 2, there exists a world v € W such that

W ~vg U (D
and
Vb e P, (u, bl ). (2)
At the same time, by the assumption of the lemma and the
same item 6 of Definition 2, there exists an agent ¢ € P,
such that u, ¢ IF Ry V Dy. Thus, one of the following two
cases takes place:

Case I: u, c IF Rp. Hence, by item 5(a) of Definition 2, there
exists an agent d € P, such that u, d I (, which contradicts
statement (2).

Case II: u,c IF Dy. Hence, by item 6 of Definition 2 and
statement (1), there exists an agent d € P, such that u, d I+
0, which contradicts statement (2). X

In the rest of the paper, we prove the completeness of our
logical system.

A-assured sets

In this section, we introduce a technical notion of a \-
assured set that will be used in the next section. Through-
out the rest of the paper, we use the notation Ay to denote
the formula Ry VV Dp. We read Ag as “is generally aware of
©”. The General awareness axiom is essentially using this
modality and is named after it.

By A™p we mean the formula A...Ap. In the special

N——

n times
case n = 0, the notation A" denotes formula .



Definition 3 A set X of formulae is A-assured if X ¥ A"—\
for eachn > 0.

To develop an intuition about A-assured sets, let X be a max-
imal consistent set of formulae and A be the property “is not
a spy”. Thus, =\ is the property “is a spy”. The formula
A—\ means the agent is generally aware of a spy. The for-
mula —~A—\ means that the agent is not aware of a spy. The
formula =AA—-X means that the spy is embedded so well
that the agent is not even aware of anyone who is aware of
a spy. The formula ~AAA—-X\ allows only the existence of
“super spies” who are hidden so well that the agent is not
aware of anyone aware of anyone aware of a spy. The notion
of A-assurance captures the fact that only the existence of
absolutely undetectable “ghost” spies is consistent with set
X. In other words, it says that all “detectable” agents in the
setting captured by set X must have property A.

Completeness
Frames

Traditionally, proofs of the completeness in modal logic use
a canonical model in which worlds are defined as maximal
consistent sets of formulae. At the core of such proofs is a
“truth” lemma stating that ¢ € w if and only if w IF . This
approach is not easy to apply to 2D-semantics as it requires
a “decoupling” of a maximal consistent set into a world
and an agent. In this paper, we use the “matrix” technique
for such decoupling recently proposed by Naumov and Tao
(2023). The technique consists of building the canonical
model as a matrix, whose rows correspond to worlds and
whose columns correspond to agents. The elements of the
matrix are maximal consistent sets representing all formu-
lae that are satisfied in a given world-agent combination.
(Naumov and Tao 2023) proves the completeness of a logi-
cal system for “telling apart” modality. This system contains
modality K, but it does not contain awareness modalities and
it does not deal with de re/de dicto distinction.

In this paper, we adapt the matrix technique Naumov and
Tao (2023) in a novel way: frames include an explicit aware-
ness relation, row labels \,,, and the requirement that each
Xwa be Ay-assured. To emphasise these additions, we refer
to our matrices as “frames”.

Definition 4 A frame is a tuple (x, 3, A\, P, X, ~, ~), where

1. « P are ordinals and A\, € P is a formula for each
w < K,

2. P C axpPisa “presence” relation; we read (w,a) € P
as “agent a is present at world w”’; we slightly abuse the
notations and for each w < « and each a < {3 by P,
and P, we denote the set {b < f | (w,b) € P} and the
set {u < & | (u,a) € P}, respectively,

3. X is a function that maps each pair (w,a) € P into a
Aw-assured maximal consistent set of formulae denoted
by XU)U.)

4. ~gq is an “indistinguishability” equivalence relation on
the set P, for each a < [ such that for any w,u < «
and any formula ¢ € @,

(a) if w ~q u, then Kp € Xyq iff Kp € X0,

5.~y s a reflexive “awareness” relation on the set P, for
each w < o such that for any v < «, any a,b < 3, and
any formula p € P,

(a) if a ~y band w ~, u, then a ~>, b,
(b) ifa~>y band Rp & Xoa, then © ¢ Xyp.

In linear algebra, matrices usually have a finite number
of rows and a finite number of columns. In this paper, we
allow infinite matrices with o rows and 3 columns, where «
and 3 are two ordinals. Recall that elements of an ordinal o«
are ordinals smaller than «. For example, 0 = &, 1 = {0},
2=4{0,1},...w={0,1,2,... },w+1=4{0,1,2,...,w}.
If a matrix has « rows, then we assume that the rows are
indexed by the elements of ordinal «. For example, a three-
row matrix has row 0, row 1, and row 2.

Informally, a “matrix” is usually defined as a table. For-
mally, a matrix is a function X on the Cartesian product of
the set of rows and the set of columns. Following the tra-
dition, we use the notation X,,, to denote the value of the
matrix function X on the pair (w, a). Note that we define X
as a total function on the set & x (3. Thus, X, , is defined
even if (w,a) ¢ P. This is done only to avoid constant refer-
ences to the domain of X in the proofs. If (w,a) ¢ P, then
it is not significant for our proof which exactly A, -assured
maximal consistent set is X .

There is a significant difference between the way aware-
ness is treated in epistemic models (Definition 1) and frames
(Definition 4). Intuitively, an agent a is “aware” of an agent
b in an epistemic model if agent b is present in all worlds
that agent a cannot distinguish from the current world. As
we will see later, a frame represents a partially constructed
model. Thus, some of the worlds (rows) might be missing
and they will be added later. If we attempt to define aware-
ness in frames the same way as it is done in epistemic mod-
els, an agent might become “unaware” of another agent after
a new possible world is introduced. To make our construc-
tion work properly, we want to avoid this “loss of awareness
effect”. This problem did not exist in work (Naumov and
Tao 2023) that does not deal with awareness. To achieve this
goal, in this paper we equip our frames with an aware-
ness relation a ~+,, b. Intuitively, it means that in world w
agent a is aware of agent b. Item 5(a) of Definition 4 states
that if agent a is aware of b in the current world, then a is
aware of b in each indistinguishable world.

Note that there are two distinct references to awareness in
our frame. One of them is semantical: through relation ~+,,
on the columns. The other is syntactical, through modalities
R and D occurring in the formulae from a set X,,,. Item 5(b)
of Definition 4 connects these two references to awareness.
It states: if a ~~,, band ¢ € X, then Rp € X,,,. That
is: if a is semantically aware of b and b has property ¢, then
a is syntactically (de re) aware of someone with property ¢.
In Definition 4, we state this item in contrapositive form for
ease of use.

Complete Frames

As briefly mentioned in the previous subsection, frames rep-
resent partially built models. In order to be convertible into
a canonical model a frame must be complete.



Definition 5 A frame («, 3, A\, P, X, ~,~>) is complete if

Sor each (u,b) € P and each formula ¢ € ®,

1. if Ky ¢ X, then there is v € Py such that u ~y v and
2 ¢ Xobs

2. if Rp € Xy, then there is ¢ € P, such that b ~,, c and
¥ € Xue,

3. if b ¥y ¢ then there is v € Py, such that u ~y v and
c¢ P,

4. if Dy ¢ Xyp, then there is v € Py, such that u ~y v, and
>\’U frd —|90’

5. if Dy € Xy, then thereis c € P, and ¢ € Xye.
A frame (&, 3, A, P, X, ~, ~>) is finite if ordinals o« and

[3 are finite. In Lemma 11, we prove that any finite frame

can be extended to a complete frame. The formal definition

of an extension is below.

Definition 6 A frame (', ', N, P, X', ~' ~') is an ex-

tension of a frame (o, 3, A, P, X, ~,~>) if

I. o< o and p <P/,

2. N, = Ay foreachw < «,

3. PPN(ax B)=P,

4. Xiyq = Xya for (w,a) € P,

5. wy ~g wy iff wy ~ we for each a < B and each
wy,wy € Py,

6. a1 ~>qy ag iff ap ~>, ag for each w < o and each

ai,as € Py,
The following lemmas are proven in the full version.

Lemma 3 For any finite frame (&, B, \, P, X, ~,~), any
(u,b) € P, and any formula Dy € X, there is an exten-
sion (o, B+ 1, N, P!, X', ~', ~>") such that p € X, 5.

Lemma 4 For any finite frame (&, B, \, P, X, ~,~), any
(u,b) € P, and any formula Ko ¢ X, there is an exten-
sion («+ 1,3, N, P, X', ~' ~") such that (i) u ~} «, (ii)
o & X', and (iii) for each ¢ < B, if b+, ¢, then c ¢ P},.

Lemma 5 For any finite frame (&, B, A, P, X, ~,~), any
(u,b) € P, and any formula Ry € Xy, there is an exten-
sion (o, B + 1, N, P, X'~/ ~~') such that b ~!, B and
€ X,p-

Lemma 6 For any finite frame (x, B, A, P, X, ~,~>), any
(u,b) € P, and any formula Dy ¢ X, there is an exten-
sion (+ 1,3, N, P, X', ~' ~") such that u ~} o and N,
is equal to —.

We write ¥ C F’ if frame F’ is an extension of
the frame F'. For any (finite or infinite) chain of frames
F1 E F2 E F3 E F4 E ey where Fz =
(CXZ', Bi? )\7;, Pi, Xi, iy Wi), the limit hmz Fz is the tuple
(U; i, U; Bi, U Ais U P U X, Ui Upi)- As usual,
to compute the union of functions we treat them as func-
tional relations (sets of pairs). The next lemma follows from

Definition 6.

Lemma 7 The limit of a chain of extensions Iy T Fy, C
F3 C ... is an extension of the frame F.

Definition 7 A Type 1 requirement is a tuple (u,b, ),
where u,b < w and ¢ € ®. In a given frame
(¢, B, A, P, X, ~, ~~) this requirement is

1. active ifu < «, b < B3, and (u,b) € P,
2. fulfilled if it is active and u, b, and ¢ satisfy item 1 of
Definition 5.

The definition of Type 2, Type 4, and Type 5 requirements
are identical to the one above except that they refer to item 2,
item 4, and item 5 of Definition 5.

Definition 8 A Type 3 requirement is a tuple (u, b, ¢), where
u,b,c < w. In a given frame (o, B, \, P, X, ~, ~~) this re-
quirement is

1. active ifu < o, b,c < B, (u,b) € P, and (u,c) € P,
2. fulfilled if it is active and u, b, and c satisfy item 3 of
Definition 5.

Lemma 8 Any finite frame that has an active unfulfilled re-
quirement (of any type), can be extended to a finite frame
where the same requirement is fulfilled.

Proof. For requirements of Type 1, Type 2, Type 4, and
Type 5, the statement of the lemma follows from Lemma 4,
Lemma 5, Lemma 6, and Lemma 3, respectively.

In the case of Type 3 requirement, notice that KL — L
is an instance of the Truth axiom. Thus, KL ¢ X,; for
each (u,b) € P because set X,,;, is consistent. Therefore,
the statement of the lemma follows from Lemma 4, where
is L. X

The next lemma follows from Definition 6 and the defini-
tion of a “fulfilled” requirement.

Lemma 9 If a requirement (of any of the five types) is ac-
tive and fulfilled in a frame, then it is also fulfilled in any
extension of the frame.

The lemma below follows from Definition 5 and the defi-
nition of a “fulfilled” requirement.

Lemma 10 [f all active requirements (of all five types) are
fulfilled in a frame, then the frame is complete.

Lemma 11 Any finite frame can be extended to a complete
frame.

Proof. Let F' be an arbitrary finite frame. Observe that there
are countably many requirements of each of the five types.
Let r1,792,73,... be an enumeration of all requirements of
all five types (combined). We define a (possibly infinite)
chain of finite frames F; C F, C ... recursively:

1. i =F,

2. if frame F;, does not contain any active unfulfilled re-
quirements, then F;, is the last element of the chain,

3. otherwise, let r,,;, be the first (in terms of the enu-
meration rq, 79, 3, . . . ) active unsatisfied requirement in
frame F),; by Lemma 8, frame F;, can be extended to a
finite frame F,, 41 that fullfils requirement r,,, .

Claim 1 Frame lim,, F,, is complete.

Proof of Claim. Consider any requirement r (of any of the
five types). By Lemma 10, it suffices to show that if require-
ment r is active in frame lim,, F,, then it is fulfilled.
Indeed, if r is active in lim,, F},, then (by definition of
being “active”) r must be active in frame F; for some ¢ >
0. Observe that, due to the construction of the chain F; C



F, C ... if requirement 7 is active in frame Fj;, then it is
fulfilled in frame F}; for some j > 4. Therefore, requirement
r is fulfilled in frame lim,, F}, by Lemma 7 and Lemma 9. =

Frame lim,, F}, is an extension of the frame F; = F by
Lemma 7. X

Canonical Model

For any given frame («, 3, A, P, X, ~, ~») we consider an
epistemic model («, 3, P, ~, 7), where

m(p) = {(w,a) | p € Xua}- 3)

Note that, in particular, worlds of the model are the elements
of & and agents are the elements of 3. The next lemma con-
nects the epistemic model and the frame on which it is based.
This lemma plays the role of a “truth” lemma in the classical
proofs of completeness.

Lemma 12 [fframe (x, 3, A, P, X, ~, ~>) is complete, then
w,a IF @ iff o € Xyq for any world w < «, any agent
a € Py, and any formula ¢ € .

Proof. We prove the lemma by induction on structural com-
plexity of formula . If ¢ is a propositional variable, then
the statement of the lemma follows from statement (3) and
item 1 of Definition 2. If ¢ is a negation or an implication
then the statement of the lemma follows from either item 2
or item 3 of Definition 2, the induction hypothesis, and the
maximality and consistency of set X,,, in the standard way.
Suppose that formula ¢ has the form K.

(=) : Assume that K¢y ¢ X,,,. Thus, by item 1 of Defini-
tion 5, there is u € P, such that w ~, v and ¢ ¢ X,,.
Then, u,a W ¢ by the induction hypothesis. Therefore,
w, a ¥ Kt by item 4 of Definition 2.

(«<=) : Assume that K¢y € X,,,. Consider any v < o such
that w ~, u. By item 4 of Definition 2 it suffices to show
that u,a IF 1. Indeed, the assumptions K¢ € X, and
w ~q U, by item 4(a) of Definition 4, imply that K¢ € X,,.
Then, X, - 9 by the Truth axiom and the Modus Ponens
inference rule. Thus, b € X, because X, is a maximal
consistent set. Hence, u, a I 1 by the induction hypothesis.

Suppose that formula ¢ has the form Rzp.

(=) : Assume w, a IF Re. Thus, by item 5 of Definition 2,
there is an agent b € P,, such that two facts hold. First,

w, b - . “

Second, for any world u € P,, if w ~, u, then u € P.
Then, by the contraposition of item 3 of Definition 5,

@~y b. &)

At the same time, by the induction hypothesis, statement (4)
implies ¢ € Xy. Therefore, Ry € X, by statement (5)
and item 5(b) of Definition 4 applied contrapositively.

(<) : Assume that Ry € X,,,. Then, by item 2 of Defini-
tion 5, there is b € P, such that a ~~,, b and ¢ € X,.
Thus, by the induction hypothesis,

w, b - . (6)

Furthermore, by item 5(a) of Definition 4, a ~+,, b for every
world v € P, such that w ~, u. Note that ~»,, is a relation

on set P,. Thus, b € P, for every world u € P, such that
w ~, u. In other words, u € P, for every u € P, such that
w ~g u. Therefore w, a I Ry by equation (6) and item 5 of
Definition 2.

Suppose that formula  has the form D).
(=) : Towards contradiction, assume Dy ¢ X,,,. Thus, by
item 4 of Definition 5, there is world u € P, such that

W~ U, )
Ay = h. ®)

By the assumption w, a I D1, statement (7), and item 6
of Definition 2, there exists an agent b € P, such that
u,b IF 1. Hence, ¥ € X, by the induction hypothesis.
Then, X,; F —— by the laws of propositional reason-
ing. Thus, X,; = —A, by equation (8). In other words,
Xup F AP=)\,. Therefore, set X, is not A, -assured by Def-
inition 3, which contradicts item 3 of Definition 4.

(<) : We need to show that w, a IF D). Consider a world
u € P, such that
W ~g U. )]

By item 6 of Definition 2, it suffices to show that there exists
an agent b € P, such that u, b I 1.

Assume that D) € X,,,. Then, by the Introspection of
Awareness axiom and the Modus Ponens inference rule,
Xwa F KD%. Thus, KDy € X,,, because X,,, is a maximal
consistent set. Hence, KDy € X, by item 4 of Definition 4
and statement (9). Then, by the Truth axiom and the Modus
Ponens inference rule, X,,, - D). Thus, Dy € X, since
X 18 @ maximal consistent set. Hence, by item 5 of Def-
inition 5, there exists an agent b € P, such that ¢y € X ;.
Therefore, by the induction hypothesis, u, b IF 1. X

Theorem 2 (strong completeness) If X ¥ ¢, then there is
a world w and an agent a of an epistemic model such that
w, a - x for each formula x € X and w,a ¥ .

Proof. Set {—¢}UX is consistent by the assumption X ¥ ¢.
By Lemma 1, it can be extended to a maximal consistent set
Xoo. Consider tuple F' = (1,1, \, P, X, ~, ~~), where

1. Ay =T,

2. P={(0,0)},
3. X(0,0) = Xoo,
4. ~o={(0,0)},
5. ~={(0,0)}.

This tuple is a frame by Definition 4. By Lemma 11, frame
F can be extended to a complete frame F”. Consider the
canonical model corresponding to frame F”. Note that 0,0 I+
x for each y € X and 0,0 I+ —¢ by Lemma 12. Therefore,
0,0 ¥ ¢ by item 2 of Definition 2. X

Conclusion

We have proposed to interpret “awareness” as knowledge of
existence and observed that such knowledge can have two
distinct forms: de re and de dicto. Our main technical re-
sult is a sound and complete logical system that describes
the interplay between two modalities representing these two
forms of awareness, as well as the standard “knowledge of
the fact” modality usually studied in epistemic logic.
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