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 a b s t r a c t

This paper proposes a non-causal economic model predictive control (EMPC) strategy based on wave predic-
tion and integrated within the wave-to-wire model, aiming to improve the energy conversion efficiency of wave 
energy converters (WECs) and ensure safe operation under diverse sea states. Extending conventional EMPC ap-
proaches that primarily consider mechanical-side dynamics, this study integrates both mechanical and electrical 
subsystems within a unified wave-to-wire model and imposes a PTO control-input rate constraint to allow cap-
turing the complete energy conversion path while ensuring electrical feasibility. The proposed non-causal EMPC 
guarantees recursive feasibility and satisfaction of safety constraints. It directly optimises an economic perfor-
mance criterion that maximises energy extraction and minimises operational costs. The wave-to-wire model 
enables accurate evaluation of output energy through electrical variables such as generator current and voltage, 
thereby enhancing conversion efficiency. Taking a point absorber as a case study, simulation results demonstrate 
that the proposed framework achieves substantial improvements in energy production compared with conven-
tional tracking-based MPC formulations. These findings confirm its effectiveness and highlight its potential for 
practical deployment in wave energy conversion control.

1.  Introduction

As fossil fuel resources become increasingly depleted in the com-
ing decades, the development of clean energy has become a global 
goal. As a form of ocean renewable energy, wave energy offers high 
energy density, strong predictability, and a reliable supply. Its theo-
retical annual power generation capacity could reach approximately 
32,000 kWh. Wave energy resources are primarily distributed in mid- 
and high-latitude oceans, such as the west coast of North America, south-
ern Australia, the British Isles, the west coast of Europe, southern Chile, 
and New Zealand (Gao et al., 2025). The total potential in coastal ar-
eas worldwide is estimated to exceed 2 TW (Gunn and Stock-Williams, 
2012). Compared to wind and solar energy, wave energy offers signifi-
cant advantages in energy density and stability (Falnes and Kurniawan, 
2020). However, the commercialisation of wave energy remains imma-
ture, primarily due to low energy conversion efficiency and a high risk 
of structural damage under certain sea conditions (Drew et al., 2009).

Reports on the utilisation of wave energy can be traced back to the 
18th century, with Salter’s research laying the foundation for large-scale 
wave power generation (Salter, 1974). However, achieving optimal en-
ergy conversion requires large-scale devices, which pose significant de-
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sign challenges. Over the past few decades, people have conducted ex-
tensive research on the control strategies of wave energy converters 
(WECs). WECs such as point absorbers, oscillating water columns and 
attenuators have been studied and developed (Manan Jariwala et al., 
2025). Wave prediction methods such as the extended Kalman filter 
(EKF), artificial neural networks, and deterministic sea wave prediction 
(DSWP) all introduce certain prediction errors. Based on the simple con-
trol method (SCM), practical prediction techniques have been improved 
and applied to wave observations, enabling near-accurate and simulta-
neous prediction of the hydrodynamic forces acting on a WEC. A com-
mon form of this type of system directly utilises the relative motion 
between the coil and the permanent magnet to generate electricity. By 
using analytical background and numerical methods to derive the opti-
mal control force parameters, the power generation of multiple PA-WEC 
arrays can be maximised (Murai et al., 2021). However, the frequency 
response of the point absorber WEC is narrow and its performance is un-
satisfactory under realistic ocean conditions unless its motion is actively 
controlled (Hals et al., 2011).

Model predictive control (MPC) is widely used in wave energy sys-
tems to handle strong dynamics and complex constraints (Zhang et al., 
2020). However, many conventional MPC strategies do not consider 
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\begin {equation}\begin {aligned} v_d &= R_s i_d + L_d \frac {d i_d}{d t} - \omega _e L_q i_q, \\ v_q &= R_s i_q + L_q \frac {d i_q}{d t} + \omega _e L_d i_d + \omega _e \psi _f \end {aligned} \label {eq:dqdynamics}\end {equation}
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\begin {equation}F_{\mathrm {PTO}} = -\frac {n_p}{r_{\mathrm {eq}}} \sqrt {\frac {3}{2}} \left ( i_q \psi _f + \left ( L_d - L_q \right ) i_d i_q \right ) \label {eq:FPTO}\end {equation}
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\begin {equation}i_{q,\mathrm {ref}} = -\sqrt {\frac {2}{3}} \, \frac {F_{\mathrm {PTO,ref}} \, r_{\mathrm {eq}}}{n_p} \cdot \frac {1}{\psi _f + \left ( L_d - L_q \right ) i_d} \label {eq:iqref}\end {equation}
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\begin {equation}\begin {aligned} v_d &= -K_{i,d} \int i_d \, dt - K_{p,d} \, i_d \\ v_q &= -K_{i,q} \int \left ( i_q - i_{q,\mathrm {ref}} \right ) dt - K_{p,q} \left ( i_q - i_{q,\mathrm {ref}} \right ) \end {aligned} \label {eq:vdvqcontrol}\end {equation}
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\begin {equation}i_{q,\mathrm {ref}} = \begin {cases} \mathrm {sign}\left (i_{q,\mathrm {ref}}\right ) \, i_{q,\max }, & \text {if } \left | i_{q,\mathrm {ref}} \right | > i_{q,\max }, \\[6pt] (59), & \text {else}. \end {cases} \label {eq:iqreflimit}\end {equation}
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\begin {equation}P_e = \sqrt {\frac {3}{2}} \left ( v_d i_d + v_q i_q \right ) \label {eq:Pe}\end {equation}
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$(F_{\mathrm {PTO}} = k_t i_q)$
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$u = F_{\mathrm {PTO}}$


\begin {equation}\label {gt} \dot {x} = A_c x + B_{uc} u + B_{wc} w\end {equation}


\begin {equation}\label {ttg} v = C_v x\end {equation}


\begin {equation}\label {tg} z = C_z x\end {equation}
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$x:= [z_v, \dot {z}_v, x_r]$


$z:= {z}_v$


$v:= \dot {z}_v$


$(A_c, B_{uc}, B_{wc}, C_c)$


\begin {align}A_c &= \begin {bmatrix} 0 & 1 & 0 \\ -\tfrac {k_s}{m} & 0 & \tfrac {C_r}{m} \\ 0 & B_r & A_r \end {bmatrix} &\!\! B_{uc} &= \begin {bmatrix} 0 \\[2pt] \tfrac {1}{m} \\[2pt] 0 \end {bmatrix} &\!\! B_{wc} &= \begin {bmatrix} 0 \\[2pt] \tfrac {1}{m} \\[2pt] 0 \end {bmatrix} & C_c &= \begin {bmatrix} 0 & 1 & 0_{1\times n_r} \end {bmatrix}\end {align}


$m := m_s + m_\infty $


\begin {equation}\label {21} x_{k + 1} = A x_k + B_u u_k + B_w w_k\end {equation}


\begin {equation}\label {331} z_k = C_z x_k\end {equation}


\begin {equation}\label {31} v_k = C_v x_k\end {equation}
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\begin {equation}\label {eq:power} P_k := - v_k \, u_k\end {equation}


\begin {equation}\label {eq:energy} E_k := - t_s \sum _{i=0}^k v_i u_i\end {equation}
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\begin {equation}\label {13} |z_k| \leq \Phi _{\text {max}} \quad |v_k| \leq v_{\text {max}} \quad |u_k| \leq u_{\text {max}}\end {equation}
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\begin {equation}{\, \Delta u_k := u_k - u_{k-1},\ \ |\Delta u_k| \le \dot {u}_{\max }\, T_s \,} \label {eq:deltau}\end {equation}


$T_s$


$\dot {u}_{\max }$


$u_{-1}:=u_0$


$\pm 3500\,\mathrm {N}$


$\pm 7000\,\mathrm {N}$


$\pm 3500\,\mathrm {N/step}$


\begin {equation}\label {2341} |w| \leq w_{\text {max}}\end {equation}
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\begin {equation}\label {e5} \mathbf {w}_k=[w_{k|k},w_{k+1|k},\, \dots ,\,w_{k+n_p+1|k}]\end {equation}


$w_{\max }$


\begin {equation}\label {15} u_k^*=arg\min _{[u_{k|k},\, \dots ,\,u_{k+n_p-1|k}]} \sum _{i=0}^{n_p-1}v_{k+i|k}u_{k+i|k}\end {equation}


\begin {equation}\label {5561} |z_{k+i}| \leq \Phi _{\text {max}},|v_{k+i}| \leq v_{\text {max}}, |u_{k+i}| \leq u_{\text {max}},\end {equation}


\begin {equation}\label {7781} \forall |w_{k+i}| \leq w_{\text {max}}, \forall i \in I_{[0,n_p-1]}\end {equation}


\begin {equation}\label {51} {s.t. \eqref {2},\ \eqref {eq:deltau} , \ \eqref {5561},\ \eqref {7781}}\end {equation}
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\begin {equation}\label {ip} u_k=F\widehat {x}_k+\delta _k\end {equation}
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\begin {equation}\label {kp} \widehat {x}_{k+1}=A\widehat {x}_{k}+B_uu_k+B_ww_{k|k}+L(y_k-C\widehat {x}_{k})\end {equation}
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\begin {equation}\label {tg} \begin {aligned} \mathbb {X} &:= \left \{ x \in \mathbb {R}^{n_x} \;\mid \; |C_z x_k| \le \Phi _{\max },\; |C_v x_k| \le v_{\max } \right \} \\ \mathbb {U} &:= \left \{ u \in \mathbb {R} \;\mid \; |u_k| \le u_{\max } \right \} \\ \mathbb {W} &:= \left \{ w \in \mathbb {R} \;\mid \; |w_k| \le w_{\max } \right \} \end {aligned}\end {equation}
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$\bar {x}_{n_p+k|k} \in \mathbb {X}_T$


\begin {equation}\label {rt} \begin {aligned} \bar {x}_{k+i+1|k} &= A \bar {x}_{k+i|k} + B_u \bar {u}_{k+i|k} \\ \bar {u}_{k+i|k} &= F \bar {x}_{k+i|k} + \delta _{k+i|k} \\ \bar {x}_{k|k} &= \hat {x}_k \end {aligned}\end {equation}


$\hat {x}_k$


\begin {align}\label {ry} &\mathbb {X}_i := \mathbb {X} \sim \mathbb {E} \sim \mathbb {D}_i, \quad \mathbb {U}_i := \mathbb {U} \sim F \mathbb {D}_i, \nonumber \\ &\mathbb {D}_i := \sum _{j=0}^{i-1} A_F^{\,j}\!\left [ B_w \mathbb {W} \oplus (A_L - A_F) \mathbb {E} \right ], \quad \mathbb {X}_T := \Sigma \sim \mathbb {D}_{n_p}\end {align}
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\begin {equation}\label {cv} \Sigma := \left \{\, x_0 \in \mathbb {X}: \begin {aligned} & x_{k+1} = A_F x_k + \eta _k\\ & x_k \in \mathbb {X} \sim \mathbb {E},\;\; u_k \in \mathbb {U},\;\; \forall \, k \in \mathbb {I}_{\ge 0}\\ & \forall \, \eta _k \in B_w \mathbb {W} \oplus (A_L - A_F) \mathbb {E} \end {aligned} \right \}\end {equation}


\begin {equation}\label {eq:errdyn} e_{k+1} = (A + B_u F)e_k + B_w w_k\end {equation}
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\begin {equation}\label {eq:lyapunov} V(e_k) = e_k^\mathsf {T} P e_k , \qquad P > 0\end {equation}
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$V(e_{k+1}) - V(e_k) \le - e_k^\mathsf {T} Q e_k < 0$


$e_k \neq 0$


$e_k$


$x_k = \bar {x}_{k|k} + e_k$


$\mathbb {S}$


$x_k \in \mathbb {X}$


$u_k \in \mathbb {U}$


$k$


\begin {equation}\begin {aligned} x_{k+i} &= \bar {x}_{k+i|k} + \xi _{k+i|k} + \sum _{j=1}^{i} A_F^{\,j-1} B_w\, w_{k+j}\\ u_{k+i} &= \bar {u}_{k+i|k} + F \left ( \sum _{j=1}^{i} A_F^{\,j-1} B_w\, w_{k+j} \right ) \end {aligned} \label {Xeqn36-29}\end {equation}
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\begin {equation}\max _{F}\; w_{\max }, \quad \text {s.t. } \exists \, \Sigma \text { satisfies} (23) \label {Xeqn38-31}\end {equation}


\begin {equation}\label {yu} \sum _{i=0}^{n_p-1} \left ( \tilde {u}_{k+i|k}\, C_v \tilde {x}_{k+i|k} \;+\; r\, \tilde {u}_{k+i|k}^2 \right )\end {equation}
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\begin {equation}\label {nm} \begin {aligned} \tilde {x}_{k+i+1\,|\,k} &= A\,\tilde {x}_{k+i\,|\,k} + B_u\,u_{k+i\,|\,k} + B_w\,w_{k+i\,|\,k}\\ \tilde {u}_{k+i\,|\,k} &= F\,\tilde {x}_{k+i\,|\,k} + c_{k+i\,|\,k}\\ \tilde {x}_{k\,|\,k} &= \hat {x}_k \, \end {aligned}\end {equation}


\begin {equation}\label {df} \delta _k^\top \mathbf {H}\, \delta _k \;+\; \delta _k^\top \mathbf {F} \;+\; \mathbf {G}\end {equation}


$\delta _k := [\,\delta _{k|k},\,\ldots ,\,\delta _{k+n_p-1|k}\,]^\top $


$\mathbf {H}$


$\mathbf {F}$


$\mathbf {G}$


$v_k := [C_v x_{k|k}, \ldots , C_v \tilde {x}_{k+n_p-1|k}]$


$u_k := [u_{k|k}, \tilde {u}_{k+1|k}, \ldots , \tilde {u}_{k+n_p-1|k}]$


\begin {equation}\label {eq:predictedtrajectories} \tilde {\mathbf {v}}_k = M_v \hat {x}_k + C_{cv} \mathbf {\delta }_k + C_{wv} \mathbf {w}_k, \quad \tilde {\mathbf {u}}_k = M_u \hat {x}_k + C_{cu} \mathbf {\delta }_k + C_{wu} \mathbf {w}_k\end {equation}


\begin {equation*}M_v := \begin {bmatrix} C_v \\ C_v A_F \\ \vdots \\ C_v A^{n_p-1}_F \end {bmatrix} \quad M_u := \begin {bmatrix} I \\ F A_F \\ \vdots \\ F A^{n_p-1}_F \end {bmatrix}\end {equation*}


\begin {align*}&C_{cv} := \begin {bmatrix} 0 & & & & \\ C_v B_u & 0 & & & \\ C_v A_F B_u & C_v B_u & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ C_v A^{n_p-2}_F B_u & \cdots & C_v A_F B_u & C_v B_u & 0 \end {bmatrix} \\ &C_{wv} := \begin {bmatrix} 0 & & & & \\ C_v B_w & 0 & & & \\ C_v A_F B_w & C_v B_w & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ C_v A^{n_p-2}_F B_w & \cdots & C_v A_F B_w & C_v B_w & 0 \end {bmatrix} \\ &C_{cu} := \begin {bmatrix} 1 & 0 & & & \\ F B_u & 1 & 0 & & \\ F A_F B_u & F B_u & 1 & 0 & \\ \vdots & \vdots & \vdots & \ddots & \\ F A^{n_p-2}_F B_u & \cdots & F A_F B_u & F B_u & 1 \end {bmatrix} \\ &C_{wu} := \begin {bmatrix} 0 & & & & \\ F B_w & 0 & & & \\ F A_F B_w & F B_w & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ F A^{n_p-2}_F B_w & \cdots & F A_F B_w & F B_w & 0 \end {bmatrix}\end {align*}


$A_F := A + B_u F$


$r\tilde {\mathbf {u}}_k^{T} \tilde {\mathbf {u}}_k + \tilde {\mathbf {u}}_k^{T} \tilde {\mathbf {v}}_k$


$\mathbf {H}$
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$\mathbf {G}$


\begin {equation}\mathbf {H} = r\, {C_{cu}}^\mathsf {T} C_{cu} + \frac {1}{2} \left ( {C_{cu}}^\mathsf {T} C_{cv} + {C_{cv}}^\mathsf {T} C_{cu} \right ) \label {eq:H}\end {equation}


\begin {equation}\mathbf {F} = \left (C_{cv} + r\, C_{cu}\right )^\mathsf {T} \left (M_u \hat {\mathbf {x}}_k + C_{wu} \mathbf {w}_k\right ) + {C_{cu}}^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right ) \label {eq:F}\end {equation}


\begin {align}\mathbf {G} &= \left (M_u \hat {\mathbf {x}}_k + C_{wu} \mathbf {w}_k\right )^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right )\nonumber \\ &\quad + r \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right )^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right ) \label {eq:G}\end {align}


$r$


$r^\star = 1.788\times 10^{-4}$


\begin {equation}\label {ui} \min _{r \ge 0} \; |r|, \quad \text {s.t. } \mathbf {H} \succeq 0\end {equation}
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$T_{\text {predict}}$
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\begin {equation}\tilde {w} = \frac {w - \mu }{\sigma } \label {Xeqn47-40}\end {equation}


$\tilde {w}$
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$\sigma $


$w$


$\phi $


\begin {equation}\phi = \begin {bmatrix} \tilde w_{N_{\text {train}}} &\tilde w_{N_{\text {train}}-1} & \cdots & \tilde w_{N_{\text {train}}-p+1} \end {bmatrix}^\top \label {Xeqn48-41}\end {equation}


$p$


$\phi $
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\begin {equation}{w}_\text {pred} = \theta \phi \label {Xeqn49-42}\end {equation}


${w}_\text {pred}$


$\theta $
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$e_\text {pred}$


\begin {equation}e_\text {pred} = \tilde {w} - {w}_\text {pred} \label {Xeqn50-43}\end {equation}


$e_\text {pred}$


\begin {equation}\alpha _{\text {dynamic}} = \alpha _{\text {dynamic}} (1 + |e_\text {pred} |) \label {Xeqn51-44}\end {equation}


$\alpha _{\text {dynamic}}$
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$\alpha _{\text {dynamic}}$


$|e_\text {pred} |$


$\alpha _{\text {dynamic}}$


$K$
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\begin {equation}AIC_p = N_{\text {train}} \log \left (\frac {1}{N_{\text {train}}} \sum _{k=p+1}^{N_{\text {train}}} e_\text {pred} ^{2}\right ) + 2p \label {Xeqn56-49}\end {equation}
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\begin {equation}\bar {w} = \hat {w}_\text {pred} \sigma + \mu \label {Xeqn61-54}\end {equation}
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terminal stability constraints or disturbance feedback mechanisms. In 
this study, conventional MPC refers to the standard linear model pre-
dictive control framework that solves a finite-horizon quadratic pro-
gram (QP) based on measurable mechanical states. It typically employs 
open-loop prediction and does not explicitly include disturbance feed-
back or terminal constraints. This formulation is consistent with widely 
adopted industrial MPC deployments. Their control structures primar-
ily rely on open-loop predictions and lack the ability to handle distur-
bances and uncertainties in closed-loop systems (Gao et al., 2025). Al-
though traditional tube-based model predictive control (TMPC) is robust 
to disturbances, it can suffer from steady-state errors in the presence of 
persistent disturbances (Wijaya et al., 2025). Robust model predictive
control (RMPC) ensures recursive feasibility for all disturbances within 
a prescribed bounded uncertainty set (Zhang et al., 2023). A min-max 
strategy is employed to evaluate the worst-case cost function (Evans 
et al., 2014), or a pipeline-based approach is employed to parameterise a 
partially separable feedback control law (Lasheen et al., 2017) (Garcia-
Violini and Ringwood, 2021). Non-causal MPC explicitly incorporates 
short-term wave forecasting into optimisation, improving energy recov-
ery while maintaining feasibility and constraint satisfaction (Zhan et al., 
2019b). Coupling data-driven LSTM wave force prediction with MPC has 
achieved real-time non-causal control under irregular sea conditions and 
completed physical experimental verification (Zhang et al., 2024a). Ex-
plicit non-causal MPC for online computability reduces the solution bur-
den and facilitates embedded implementation (Gao et al., 2025). Tube-
based RMPC for WEC uses set contraction to ensure recursive feasibil-
ity and constraint satisfaction under bounded uncertainty (Zhang and 
Li, 2022). Engineering applications have demonstrated that tube-based 
RMPC achieves an effective trade-off between performance and conser-
vatism in inertial WECs (Schiavon et al., 2021). Learning-enhanced ro-
bust MPC incorporates data-driven uncertainty modelling into an en-
semble contraction or cost-shaping framework to improve tolerance to 
modelling biases and wave prediction errors (Zhang et al., 2024b). There 
is a conflict between maximising energy capture and ensuring the range 
of sea conditions under which the system operates safely. This trade-
off is difficult to achieve and can reduce the operating range and energy 
conversion efficiency. The economic feedback MPC control law includes 
offline design of state feedback gains to maximise the operating range, 
and online calculation to maximise the captured energy (Zhan et al., 
2019a) and optimise the energy conversion efficiency of the WEC.

Models based solely on hydrodynamics struggle to fully evaluate the 
performance of WECs because they often ignore or oversimplify the role 
of the PTO system. To this end, researchers have proposed a wave-to-
wire framework to uniformly model all stages of the conversion from 
waves to the grid, while considering the necessary components, dynamic 
characteristics, and constraints (Penalba and Ringwood, 2016). Existing 
studies have developed wave-to-wire models for various WECs, includ-
ing overflow-type (Igic et al., 2011), oscillating water columns (OWCs) 
(Amundarain et al., 2010), and hydraulic point absorption devices (Jos-
set et al., 2007). Compared with fluid dynamic control that only fo-
cuses on maximum energy absorption, the wave-to-wire framework can 
achieve a more comprehensive trade-off between energy capture effi-
ciency and electrical constraints.

The control problem of a WEC can be viewed as a constrained non-
causal energy maximisation (EM) control problem, whose optimal so-
lution depends on future wave information (Zhang and Li, 2019) and 
whose actual operation is subject to constraints on device motion and 
actuator capacity. This problem is typically addressed using optimal 
control strategies to approximate the non-causal optimal solution. In 
recent years, economic model predictive control (EMPC), originating 
from the field of process control, has been gradually applied to wave 
energy research and proposed as an optimisation framework for di-
rectly solving energy maximisation problems (Müller and Grüne, 2016). 
Influenced by the concept of EMPC, several MPC-based WEC control 
methods have been proposed, among which (Zhan et al., 2019a) intro-
duced an economic feedback model predictive control (EMPC) frame-

work for WEC systems, successfully demonstrating the feasibility of this 
approach for wave energy conversion. Their formulation primarily fo-
cused on the dynamics of the mechanical side. In contrast, this study ex-
tends the EMPC concept to a complete wave-to-wire model, integrating 
mechanical and electrical subsystems with non-causal wave prediction 
and robust constraint handling. This integrated architecture allows the 
controller to simultaneously consider electrical dynamics and energy 
transfer efficiency, thereby providing a more realistic representation of 
the overall energy conversion process while maintaining recursive fea-
sibility and constraint satisfaction. A hard constraint on the variation 
rate of PTO force ensures electrical feasibility during the optimisation
process.

Most conventional WEC MPC methods adopt an open-loop approach, 
which has two major limitations in engineering applications. First, they 
lack recursive feasibility guarantees. The feasible solution of the MPC 
depends on the current system state, the predicted wave conditions, and 
the constraints. If all conditions are not met, the optimisation problem 
becomes unsolvable, and the constraints must be sacrificed to obtain 
a feasible input. Second, there is an inherent conflict between the ob-
jective function’s energy capture and safe operating range. Improving 
energy capture efficiency requires greater float oscillation, but this sig-
nificantly increases the risk of violating safety constraints and encoun-
tering infeasible solutions (Zhan et al., 2019a). Open-loop MPC strug-
gles to find the optimal balance between these two objectives within 
a single objective function, resulting in a limited operating range and 
reduced energy conversion efficiency. Therefore, this study aims to de-
velop a non-causal EMPC framework based on a wave-to-wire model 
for complex WECs to achieve both energy optimisation and safe oper-
ation. This framework incorporates fluid dynamics developed from lin-
ear wave theory and power take-off (PTO) dynamics on the mechanical 
side. On the electrical side, the motor and its energy calculation module 
are considered. Because the actual motion range of the motor is rel-
atively small, the application of linear fluid dynamics to describe the 
interaction between waves and floating bodies is both reasonable and
sufficient.

The main novelties and contributions of this paper are as follows:

1. The proposed non-causal EMPC algorithm does not rely on the tradi-
tional quadratic cost of trajectory tracking, but instead directly con-
structs an economic performance indicator. It organically integrates 
the mechanical and electrical aspects to create a wave-to-wire frame-
work that goes beyond mechanical energy capture. This is the first 
application of non-causal EMPC based on the wave-to-wire model in 
WEC control.

2. Given that WEC control is a non-causal control problem, this paper 
designs an autoregressive model for wave prediction to maximise 
energy.

3. Based on a wave-to-wire model, the PTO force-rate (the rate of 
change of the control input, 𝑢̇ in continuous time or Δ𝑢 in discrete 
time) hard constraint is physically coupled with the voltage/current 
limits and incorporated into the optimisation. This ensures electrical 
feasibility during the solution phase and links economic objectives 
with feasibility.

4. The proposed framework guarantees recursive feasibility and strict 
satisfaction of state and input constraints throughout operation.

5. Real wave data from the coast of Cornwall, UK (Zhang et al., 2019) 
(Li and Belmont, 2014) are used to verify the effectiveness of EMPC 
in wave energy-driven control.

6. The control algorithm flow of this paper is shown in the Algorithm 3.

This paper is organised as follows: Section II presents the mathe-
matical modelling of the WEC dynamic system. Section III analyses the 
structural design of the non-causal EMPC. Section IV presents the simu-
lation results and analysis. Section V provides an overall conclusion of 
this paper.
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Fig. 1. Schematic diagram of point absorber.

2.  Mathematical modelling of WEC dynamic system

This section introduces the dynamic model of a single-point ab-
sorber. In Section 2.1, a wave-to-wire model of WECs is established. In 
Section 2.2, the hydrodynamic model is transformed into a state-space 
model to design the controller, which introduces modelling uncertainty. 
Section 2.3 describes how to unify the energy maximisation objective 
and physical constraints of the WEC into an optimisation problem for a 
non-causal MPC.

2.1.  Wave-to-wire model of WECs

Fig. 1 illustrates a representative hydraulic power take-off (PTO) 
configuration, in which a hydraulic cylinder is mounted vertically be-
neath a float and anchored to the seabed. A detailed description of this 
design can be found in Weiss et al. (2012). The sea surface elevation is 
denoted as 𝑧𝑤, while 𝑧𝑣 represents the vertical position of the float mid-
point. The present study focuses primarily on realistic deep-water sea 
conditions, and shallow-water effects are not considered. To establish a 
wave-to-wire model from incident wave to electrical energy output, an 
electrical conversion unit must be introduced following the mechanical-
hydraulic subsystem. Specifically, the mechanical work of the hydraulic 
PTO is converted into electrical energy by the linear electric motor 
(LEM), and thus the dynamic characteristics of the motor must be incor-
porated into the overall modelling framework. To this end, this study 
uses an equivalent circuit model to represent the LEM, an approach that 
has been widely verified in renewable energy research (Wilson et al., 
2018). The corresponding circuit model is illustrated in Fig. 2. 𝑅𝑠 and 
𝐿𝑠 denote the stator resistance and inductance, respectively, while 𝑣𝑎𝑏𝑐
represents the three-phase terminal voltages with respect to the neutral 
point. The dynamic characteristics of the LEM equivalent circuit can be 
expressed in the 𝑑𝑞 reference frame as:

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
𝑑𝑖𝑑
𝑑𝑡

− 𝜔𝑒𝐿𝑞𝑖𝑞 ,

𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞
𝑑𝑖𝑞
𝑑𝑡

+ 𝜔𝑒𝐿𝑑 𝑖𝑑 + 𝜔𝑒𝜓𝑓

(1)

where 𝑣𝑑𝑞 , 𝑖𝑑𝑞 , and 𝐿𝑑𝑞 denote the terminal voltage, current, and induc-
tance in the 𝑑𝑞 frame, respectively; 𝜔𝑒 is the electrical velocity of the 
LEM, and 𝜓𝑓  is the field magnetic flux. Considering that the motion of 
the translator follows the heave motion of the WEC, the linear motion 
of the device can be converted into an equivalent rotational motion for 
further calculations by 𝜔𝑒 = 2𝑥̇

𝑟eq𝑛𝑝
. Here, 𝑟eq is the equivalent radius re-

lated to the permanent magnet design parameter (pole pitch), and 𝑛𝑝 is 
the number of pole pairs of the LEM. The force generated by the LEM 
can be computed as:

Fig. 2. Linear electrical machine equivalent circuit model.

𝐹PTO = −
𝑛𝑝
𝑟eq

√

3
2
(

𝑖𝑞𝜓𝑓 +
(

𝐿𝑑 − 𝐿𝑞
)

𝑖𝑑 𝑖𝑞
)

(2)

The desired control signal will be first converted to the reference cur-
rent signals. By assuming the reference signal for 𝑖𝑑 is 𝑖𝑞,ref = 0 (Eriksson, 
2019), the reference signal of 𝑖𝑞 can be therefore computed by using (2):

𝑖𝑞,ref = −
√

2
3
𝐹PTO,ref 𝑟eq

𝑛𝑝
⋅

1
𝜓𝑓 +

(

𝐿𝑑 − 𝐿𝑞
)

𝑖𝑑
(3)

where 𝑖𝑞,ref  is not directly used to solve for the reference signal 𝑖𝑞 because 
the instantaneous 𝑖𝑑 may not have converged to the reference signal. 
Once the reference control signal is converted to a reference current 
signal, a proportional-integral (PI) control law is employed to determine 
the required voltage input to the LEM:

𝑣𝑑 = −𝐾𝑖,𝑑 ∫ 𝑖𝑑 𝑑𝑡 −𝐾𝑝,𝑑 𝑖𝑑

𝑣𝑞 = −𝐾𝑖,𝑞 ∫
(

𝑖𝑞 − 𝑖𝑞,ref
)

𝑑𝑡 −𝐾𝑝,𝑞
(

𝑖𝑞 − 𝑖𝑞,ref
)

(4)

where 𝐾𝑖,𝑑 and 𝐾𝑖,𝑞 are the integral gains in the 𝑑𝑞 frame, respectively, 
and 𝐾𝑝,𝑑 and 𝐾𝑝,𝑞 are the proportional gains in the 𝑑𝑞 frame, accordingly. 
It is assumed that the required voltages 𝑣𝑑 and 𝑣𝑞 can be supported by 
the inverter:

𝑖𝑞,ref =

⎧

⎪

⎨

⎪

⎩

sign
(

𝑖𝑞,ref
)

𝑖𝑞,max, if ||
|

𝑖𝑞,ref
|

|

|

> 𝑖𝑞,max,

(59), else.
(5)

where 𝑖max is the maximum current of the LEM. The generated electricity 
𝑃𝑒 can be computed as:

𝑃𝑒 =
√

3
2
(

𝑣𝑑 𝑖𝑑 + 𝑣𝑞𝑖𝑞
)

(6)

In the wave-to-wire model, the PTO force and the 𝑞-axis current 
are coupled through electromagnetic conversion (2), while the stator-
voltage dynamics (1) bound the current slew via the inductive term 𝐿𝑞 𝑖̇𝑞
and the back-EMF 𝜔𝑒(𝐿𝑑 𝑖𝑑 + 𝜓𝑓 ). With 𝑖𝑑 ≈ 0 and the power-invariant 
√

2∕3 scaling, the torque-force map 𝑢 ≈ −𝐾𝑡𝑖𝑞 holds with 𝐾𝑡 =
𝑛𝑝
𝑟eq

√

3
2𝜓𝑓 , 

and it follows that 𝑢̇ ≈ −𝐾𝑡 𝑖̇𝑞 (the PTO force-rate, in discrete time 
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Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1). Enforcing the inverter box constraint (|𝑣𝑞| ≤ 𝑣𝑞,max) to-
gether with the hard current constraint (|𝑖𝑞| ≤ 𝑖𝑞,max) and the instan-
taneous speed |𝜔𝑒| gives |𝑖̇𝑞| ≤ [ 𝑣𝑞,max − 𝑅𝑠|𝑖𝑞| − |𝜔𝑒|𝜓𝑓 ]+∕𝐿𝑞 . Conse-
quently, |𝑢̇| ≤ (𝐾𝑡∕𝐿𝑞)[ 𝑣𝑞,max − 𝑅𝑠|𝑖𝑞| − |𝜔𝑒|𝜓𝑓 ]+. In discrete time this 
gives the implementable PTO force-rate constraint |Δ𝑢𝑘| ≤ 𝑢̇max𝑇𝑠. A 
PTO force trajectory is admissible only if the associated current and volt-
age remain within limits, so the amplitude bound |𝑢| ≤ 𝑢max alone is not 
sufficient. Accordingly, the voltage and current amplitude constraints 
are retained, and a hard rate limit on 𝑢 is imposed to ensure electrical 
feasibility and actuator safety. The effective electrical damping grows 
with |𝑖𝑞| and |𝜔𝑒|, which tightens the feasible rate.

2.2.  State-space model

To achieve consistent modelling of the electrical and mechanical dy-
namics, this paper incorporates the electromagnetic thrust generated 
by the LEM into the mechanical dynamics model of the WEC. Based 
on the principle of electromagnetic energy conversion, the electromag-
netic thrust generated by the LEM is determined by the 𝑞-axis current. 
Under common field-oriented control conditions, the thrust can be ap-
proximately linearised as (𝐹PTO = 𝑘𝑡𝑖𝑞). 𝑘𝑡 is the thrust constant, repre-
senting the electromagnetic thrust generated per unit current. Its mag-
nitude depends on parameters such as the number of motor pole pairs, 
flux linkage, and equivalent radius. This thrust acts on the float in the 
opposite direction of the wave excitation force and represents the me-
chanical reaction force of the power take-off (PTO). Therefore, in the 
state-space model, the control input 𝑢 is directly equivalent to the PTO 
force (𝑢 = 𝐹PTO). The input term in (7) is the PTO reaction, which pro-
vides a direct mapping from (1)–(6) to (7). The state-space model can 
be represented by:

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑢𝑐𝑢 + 𝐵𝑤𝑐𝑤 (7a)

𝑣 = 𝐶𝑣𝑥 (7b)

𝑧 = 𝐶𝑧𝑥 (7c)

where 𝑤 is the wave excitation whose prediction is incorporated into 
the controller design, 𝑥 ∶= [𝑧𝑣, 𝑧̇𝑣, 𝑥𝑟] represents the system state vector, 
𝑧 ∶= 𝑧𝑣 is the vertical displacement, and 𝑣 ∶= 𝑧̇𝑣 is the corresponding 
velocity. (𝐴𝑐 , 𝐵𝑢𝑐 , 𝐵𝑤𝑐 , 𝐶𝑐 ) are: 

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎣

0 1 0
− 𝑘𝑠
𝑚 0 𝐶𝑟

𝑚
0 𝐵𝑟 𝐴𝑟

⎤

⎥

⎥

⎥

⎦

𝐵𝑢𝑐 =

⎡

⎢

⎢

⎢

⎣

0
1
𝑚
0

⎤

⎥

⎥

⎥

⎦

𝐵𝑤𝑐 =

⎡

⎢

⎢

⎢

⎣

0
1
𝑚
0

⎤

⎥

⎥

⎥

⎦

𝐶𝑐 =
[

0 1 01×𝑛𝑟
]

(8)

with 𝑚 ∶= 𝑚𝑠 + 𝑚∞.
To formulate the MPC scheme, the continuous-time model (7) is dis-

cretised to obtain the discrete-time model (9): 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 (9a)

𝑧𝑘 = 𝐶𝑧𝑥𝑘 (9b)

𝑣𝑘 = 𝐶𝑣𝑥𝑘 (9c)

where the quadruple (𝐴,𝐵𝑢, 𝐵𝑤, 𝐶) is the discrete-time form of the 
quadruple (𝐴𝑐 , 𝐵𝑢𝑐 , 𝐵𝑤𝑐 , 𝐶𝑐 ). 𝑧𝑘 represents the heave displacement, and 
𝑣𝑘 represents the heave velocity. Subsequent work will use this discrete-
time model to develop linear optimal control for WECs.

2.3.  Control optimisation problem

Based on the continuous-time WEC dynamics and constraints defined 
in Section 2.1, the corresponding discrete-time formulations are intro-
duced for the control design. The output power and cumulative energy 
at time instant 𝑘 are expressed as: 
𝑃𝑘 ∶= −𝑣𝑘 𝑢𝑘 (10a)

𝐸𝑘 ∶= −𝑡𝑠
𝑘
∑

𝑖=0
𝑣𝑖𝑢𝑖 (10b)

where the constraints of 𝑧𝑘, 𝑣𝑘, and 𝑢𝑘 are expressed as:

|𝑧𝑘| ≤ Φmax |𝑣𝑘| ≤ 𝑣max |𝑢𝑘| ≤ 𝑢max (11)

where Φmax, 𝑣max, and 𝑢max denote the maximum admissible float heave 
displacement, heave velocity, and maximal control input force acting on 
the piston, respectively. The voltage and current limits in the wave-to-
wire model imply a finite admissible slew of the actuator-side force in 
discrete time. To encode this implementability requirement, the con-
straint set is augmented with a discrete rate limit on the control input:
Δ𝑢𝑘 ∶= 𝑢𝑘 − 𝑢𝑘−1, |Δ𝑢𝑘| ≤ 𝑢̇max 𝑇𝑠 (12)

where 𝑇𝑠 is the sampling period and 𝑢̇max is the admissible force slew rate 
determined from the electrical envelope (voltage/current limits). At the 
first sampling instant one can set 𝑢−1 ∶= 𝑢0 so that (12) is well-defined.

For a PTO with a ±3500N limit and a system with a 0.1-second sam-
pling rate, we know that ±7000N per sample is a reasonable assumption. 
But this is a mathematical upper-bound if the PTO is allowed to use the 
full force range for every control step. In real wave-to-wire systems, the 
electrical limits (DC bus, back-EMF, inductance) usually make the true 
rate limit much lower than this. So based on the wave-to-wire model, we 
impose a tighter rate constraint (20-50% of full swing per step), which 
is also the main contribution that distinguishes our work from Siyuan’s 
previous publication. Therefore, in our simulation, we constrain the rate 
of PTO change to ±3500N∕step , which is 50% of the full swing per step.

The objective of the WEC controller is to maximise the energy output 
defined in (10b), subject to the constraint in Section 3.1, that is, the 
maximum heave height profile satisfying:
|𝑤| ≤ 𝑤max (13)

with a 𝑛𝑝-step wave excitation force prediction:
𝐰𝑘 = [𝑤𝑘|𝑘, 𝑤𝑘+1|𝑘, … , 𝑤𝑘+𝑛𝑝+1|𝑘] (14)

where 𝑤max represents the maximum wave heave amplitude at which 
the WEC can safely operate. The non-causal optimal control problem for 
a WEC can be solved within the receding horizon framework of MPC by 
recursively solving the following constrained optimal control problem: 

𝑢∗𝑘 = 𝑎𝑟𝑔 min
[𝑢𝑘|𝑘 ,…, 𝑢𝑘+𝑛𝑝−1|𝑘]

𝑛𝑝−1
∑

𝑖=0
𝑣𝑘+𝑖|𝑘𝑢𝑘+𝑖|𝑘 (15a)

𝑠.𝑡.(9), (12), (15c), (15d) (15b)

|𝑧𝑘+𝑖| ≤ Φmax, |𝑣𝑘+𝑖| ≤ 𝑣max, |𝑢𝑘+𝑖| ≤ 𝑢max, (15c)

∀|𝑤𝑘+𝑖| ≤ 𝑤max,∀𝑖 ∈ 𝐼[0,𝑛𝑝−1] (15d)

where the first element of 𝑢∗𝑘 is applied as the control input at time 
instant 𝑘.

Unlike traditional MPC, which primarily relies on convex quadratic 
programming for state regulation and trajectory tracking, MPC applied 
to WEC aims to maximise energy output. Due to the high uncertainty of 
waves, its cost function 𝑣𝑘+𝑖|𝑘𝑢𝑘+𝑖|𝑘 exhibits non-convex characteristics. 
WEC operates under periodic and highly uncertain sea conditions for a 
long time, making it difficult for the system state to converge to a fixed 
equilibrium point. The controller must not only ensure that the state 
and control inputs satisfy the constraints (11) under various incident 
wave conditions, but also continuously adhere to wave height limits
(13) to ensure safe and reliable operation. WEC-MPC is a non-causal op-
timal control problem. By introducing short-term wave prediction 𝑤𝑘, 
the controller can actively adjust the control strategy. Compared to tra-
ditional MPC, which treats external disturbances as suppression targets, 
WEC uses incident waves as the primary energy source, and the control 
objective shifts from suppressing disturbances to actively enhancing en-
ergy absorption.
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Fig. 3. WEC non-causal EMPC framework.

3.  Non-causal EMPC structure design

This section describes the proposed non-causal EMPC. Section 3.1 ex-
plains the overall controller strategy. Section 3.2 introduces the EMPC 
architecture design. Section 3.3 presents a wave prediction method 
based on an autoregressive model.

3.1.  Overall strategy

The proposed non-causal EMPC method is implemented within each 
sampling period. Based on the current measurable system state and wave 
forecast information, a prediction model is established and a finite-time 
optimisation problem is solved to obtain the optimal control input 𝑢𝑘. 
This input acts on the dynamic model of the float/actuator, updating the 
system state and serving as a coupling variable between the mechanical 
and electrical sides. By combining the motor and generator parameter 
relationships, the current 𝑖𝑘 and voltage 𝑣𝑘 are calculated, yielding in-
stantaneous power and energy output for evaluating energy conversion 
performance. By simultaneously performing control optimisation and 
electrical performance evaluation in a unified control loop, this method 
quantitatively analyses the electromechanical energy conversion pro-
cess based on the wave-to-wire model and updates control decisions in 
real time. Meanwhile, the state observer acts on the mechanical sub-
system based solely on the measured displacement and velocity signals. 
Electrical variables such as current and voltage are regulated by fast in-
ternal control loops and are therefore not directly included in the state 
estimation process. Their impact on the mechanical dynamics is implic-
itly reflected through the power take-off (PTO) force, which serves as 
the control input in the state-space model. Under the receding-horizon 
implementation, the discrete rate constraint (12) is enforced at each 
sampling instant, ensuring that the applied control increments remain 
within the bound throughout the closed loop Fig. 3.

3.2.  Economic model predictive control

Conventional MPC methods for WEC often encounter difficulties in 
guaranteeing recursive feasibility (Zhang et al., 2020). EMPC is intro-
duced to overcome this limitation. In practical applications, not all states 
can be directly measured, and the non-causal and long-term memory 
characteristics of radiation dynamics exacerbate prediction errors. This 
paper employs an observer based on an autoregressive model to recon-
struct the complete state from measurable signals to improve prediction 
accuracy. After obtaining the optimal control input, the EMPC frame-
work is further combined with an independent wave-to-wire model 
to calculate the current, voltage, and power at the generator termi-
nal, thereby enabling quantitative assessment of energy performance 
and feedback updates. Based on this, an integrated EMPC framework is

proposed:

𝑢𝑘 = 𝐹𝑥𝑘 + 𝛿𝑘 (16)

where 𝐹  is the feedback gain designed offline, ̂𝑥 is the estimated state, 
and 𝛿 is an auxiliary variable that requires online calculation. In the 
EMPC framework, the design of the feedback gain matrix 𝐹  ensures 
system robustness under various sea conditions, thereby enhancing the 
wave energy system’s adaptability. 𝛿 is obtained by solving an online 
optimisation problem that maximises energy output while satisfying sys-
tem constraints.

Based on the available wave prediction (14), a Luenberger observer 
is designed to estimate the full information of the state, which is in the 
form of:
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘|𝑘 + 𝐿(𝑦𝑘 − 𝐶𝑥𝑘) (17)

where 𝑤𝑘|𝑘 is the estimation of current wave excitation and is defined 
in (14), 𝑦𝑘 is the measured output:
𝑦𝑘 = 𝐶𝑥𝑘 (18)

where 𝐶 ∶= [𝐶𝑧, 𝐶𝑣], 𝐶𝑧 and 𝐶𝑣 are defined as in (7). Assume 𝐴,𝐶 are 
observable. The observer gain 𝐿 must satisfy 𝜌(𝐴 − 𝐿𝐶) < 1 to ensure 
that the estimated state 𝑥̂𝑘 can effectively reconstruct the actual state 
𝑥𝑘 within the allowable error range (𝜉𝑘 ∶= 𝑥𝑘 − 𝑥̂𝑘). Due to the presence 
of input and state constraints, the traditional controller-observer separa-
tion principle is no longer directly applicable. Therefore, the impact of 
state estimation on the closed-loop system must be explicitly considered 
in controller design to avoid constraint violations. Comparing (9) with
(18) yields:
𝜉𝑘+1 = (𝐴 − 𝐿𝐶)𝜉𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤(𝑤𝑘 −𝑤𝑘|𝑘) (19)

Since 𝜌(𝐴 − 𝐿𝐶) < 1, there exists a bounded set 𝔼 such that for all 
𝑘 ≥ 0, 𝜉𝑘 ∈ 𝔼 (Mayne et al., 2006). When 𝑘 → ∞, the estimated error 
𝜉𝑘 → 0, and 𝑤𝑘|𝑘 = 𝑤𝑘. Since the systems 𝐴,𝐶 are observable and the 
observer poles can be placed at the desired locations by adjusting 𝐿, this 
paper assumes that the observer gain design ensures that 𝔼 is sufficiently 
small. According to observer design principles, while larger gains can 
accelerate error convergence, they also increase the demand for compu-
tational resources. Therefore, in practical applications, a trade-off must 
be struck between convergence velocity and real-time performance. Al-
though a numerically tractable MPC algorithm can be constructed based 
on Eq. (15) and combined with incident wave preview information (Li 
and Belmont, 2014), its recursive feasibility cannot be guaranteed.

In order to explicitly characterise the bounded estimation error, the 
set 𝔼 is defined as the minimal robust positively invariant (mRPI) set 
of the error dynamics (19), namely 𝔼 = {𝜉 ∈ ℝ𝑛𝑥 ∣ (𝐴 − 𝐿𝐶)𝜉 + 𝐵𝑤𝑤̃ ∈
𝔼, ∀ 𝑤̃ ∈ 𝕎}. It can be iteratively computed by 𝔼𝑖+1 = (𝐴 − 𝐿𝐶)𝔼𝑖 ⊕
𝐵𝑤𝕎 with 𝔼0 = {0} until 𝔼𝑖+1 ⊆ 𝔼𝑖, yielding a compact polyhedral set 
that bounds all feasible estimation errors under the bounded distur-
bance 𝕎. 𝔼 obtained by this fixed-point iteration is numerically incor-
porated into the constraint tightening in (22). Physically, 𝔼 describes 
the admissible region of estimation uncertainty.

Following the recent analysis of García-Violini et al. (2024), the 
performance of structure-based excitation-force estimators critically de-
pends on the spectral characteristics of the assumed disturbance model 
𝐴𝑒. While harmonic-oscillator estimators can achieve perfect conver-
gence for purely periodic waves, they tend to amplify high-frequency 
components and become numerically ill-conditioned when their as-
sumed excitation frequency is large. Conversely, the random-walk for-
mulation (𝐴𝑒 = 0) offers superior robustness in broadband, stochastic 
seas by avoiding such spectral amplification. In light of these findings, 
the proposed Luenberger observer adopts a low-gain configuration so 
that the eigenvalues of (𝐴 − 𝐿𝐶) remain within a moderate region of 
the unit circle, thereby limiting the closed-loop bandwidth and main-
taining numerical stability. This treatment ensures that the tightened 
constraints in (22) remain robust under model mismatch and parameter 
drift, keeping the closed-loop system recursively feasible.
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Table 1 
Notation of sets (property and symbol).
 Property (with units)  Symbol
 State admissible set (components include displacement [m] and velocity [m/s]) 𝕏
 Input admissible set (control force [N]) 𝕌
 Bounded disturbance set (wave excitation force [N]) 𝕎
 Estimation-error set (same physical units as the state vector) 𝔼
 Accumulated disturbance / tube set at prediction step 𝑖 (state space) 𝔻𝑖
 Terminal set; maximal output admissible set under bounded disturbances (state space) Σ

For clarity, Table 1 summarises the set notation and units. To facil-
itate constraint handling, the state and input constraints and perturba-
tion bounds are expressed as 𝑥 ∈ 𝕏, 𝑢 ∈ 𝕌, 𝑤 ∈ 𝕎, respectively, where 
𝕏, 𝕌, and 𝕎 are defined as follows:
𝕏 ∶=

{

𝑥 ∈ ℝ𝑛𝑥 ∣ |𝐶𝑧𝑥𝑘| ≤ Φmax, |𝐶𝑣𝑥𝑘| ≤ 𝑣max
}

𝕌 ∶=
{

𝑢 ∈ ℝ ∣ |𝑢𝑘| ≤ 𝑢max
}

𝕎 ∶=
{

𝑤 ∈ ℝ ∣ |𝑤𝑘| ≤ 𝑤max
}

(20)

where 𝐶𝑧 and 𝐶𝑤 are defined in (7), Φmax and 𝑣max are defined in (11), 
and 𝑤max is defined in (13). To ensure that the constraints given in
(11) are satisfied and to guarantee recursive feasibility, the constraint 
in (15c) is further imposed for all 𝑖 ≥ 0.

The satisfaction of 𝑥𝑘+𝑖 ∈ 𝕏 and 𝑢𝑘+𝑖 ∈ 𝕌 for all 𝑖 ≥ 0 and for any 
incoming wave profile 𝑤𝑘+𝑖 ∈ 𝕎 under given sea conditions can be en-
sured by introducing tightened constraints. The predicted auxiliary state 
and input trajectories are required to satisfy 𝑥̄𝑘+𝑖|𝑘 ∈ 𝕏𝑖 and 𝑢̄𝑘+𝑖|𝑘 ∈ 𝕌𝑖
for 𝑖 ∈ [0, 𝑛𝑝 − 1], and 𝑥̄𝑛𝑝+𝑘|𝑘 ∈ 𝕏𝑇 , where these trajectories are ob-
tained from the auxiliary system defined below:
𝑥̄𝑘+𝑖+1|𝑘 = 𝐴𝑥̄𝑘+𝑖|𝑘 + 𝐵𝑢𝑢̄𝑘+𝑖|𝑘
𝑢̄𝑘+𝑖|𝑘 = 𝐹 𝑥̄𝑘+𝑖|𝑘 + 𝛿𝑘+𝑖|𝑘
𝑥̄𝑘|𝑘 = 𝑥̂𝑘

(21)

where 𝑥̂𝑘 denotes the state estimate generated by the Luenberger ob-
server in (17), and the tightened constraint sets are specified as follows:
𝕏𝑖 ∶= 𝕏 ∼ 𝔼 ∼ 𝔻𝑖, 𝕌𝑖 ∶= 𝕌 ∼ 𝐹𝔻𝑖,

𝔻𝑖 ∶=
𝑖−1
∑

𝑗=0
𝐴 𝑗
𝐹
[

𝐵𝑤𝕎 ⊕ (𝐴𝐿 − 𝐴𝐹 )𝔼
]

, 𝕏𝑇 ∶= Σ ∼ 𝔻𝑛𝑝 (22)

where 𝐴𝐹 ∶= 𝐴 + 𝐵𝑢𝐹 , 𝐴𝐿 ∶= 𝐴 − 𝐿𝐶; 𝕏, 𝕌, and 𝕎 are defined in (20); 
Σ is the maximal output admissible set (MOAS) defined by:

Σ ∶=

⎧

⎪

⎨

⎪

⎩

𝑥0 ∈ 𝕏 ∶

𝑥𝑘+1 = 𝐴𝐹 𝑥𝑘 + 𝜂𝑘
𝑥𝑘 ∈ 𝕏 ∼ 𝔼, 𝑢𝑘 ∈ 𝕌, ∀ 𝑘 ∈ 𝕀≥0
∀ 𝜂𝑘 ∈ 𝐵𝑤𝕎 ⊕ (𝐴𝐿 − 𝐴𝐹 )𝔼

⎫

⎪

⎬

⎪

⎭

(23)

Following the robust MPC formulation proposed by Mayne et al. 
(2006), the recursive feasibility and closed-loop stability of the proposed 
EMPC are analysed as follows.

To formally guarantee recursive feasibility, consider the closed-loop 
error dynamics:
𝑒𝑘+1 = (𝐴 + 𝐵𝑢𝐹 )𝑒𝑘 + 𝐵𝑤𝑤𝑘 (24)

where 𝑒𝑘 ∶= 𝑥𝑘 − 𝑥̄𝑘|𝑘 denotes the deviation between the actual and 
nominal states. If there exists a compact set 𝕊 satisfying the robust pos-
itive invariance condition:
(𝐴 + 𝐵𝑢𝐹 )𝕊⊕𝐵𝑤𝕎 ⊆ 𝕊 (25)

then 𝕊 is a mRPI set for the closed-loop error dynamics. By tightening 
the feasible regions as:
ℤ ∶= 𝕏⊖ 𝕊 𝕍 ∶= 𝕌⊖ 𝐹𝕊 (26)

where ℤ and 𝕍  denote the tightened set of state and input constraints, 
eliminating biases due to bounded disturbances and estimation errors. 
The feasibility of the nominal optimisation problem at time 𝑘 implies 

its feasibility at time 𝑘+1. If 𝑥̄𝑘 ∈ ℤ and 𝑢̄𝑘 ∈ 𝕍  at time 𝑘, then 𝑥̄𝑘+1 ∈ ℤ
and 𝑢̄𝑘+1 ∈ 𝕍 , ensuring recursive feasibility of the EMPC under bounded 
disturbances.

Furthermore, to demonstrate closed-loop stability, define the 
quadratic Lyapunov function:

𝑉 (𝑒𝑘) = 𝑒𝖳𝑘𝑃𝑒𝑘, 𝑃 > 0 (27)

If there exists 𝑃  satisfying the discrete Lyapunov inequality:

(𝐴 + 𝐵𝑢𝐹 )𝖳𝑃 (𝐴 + 𝐵𝑢𝐹 ) − 𝑃 ≤ −𝑄, 𝑄 > 0 (28)

then 𝑉 (𝑒𝑘+1) − 𝑉 (𝑒𝑘) ≤ −𝑒𝖳𝑘𝑄𝑒𝑘 < 0 for all 𝑒𝑘 ≠ 0, indicating that the er-
ror 𝑒𝑘 asymptotically converges to the origin. Consequently, the closed-
loop state 𝑥𝑘 = 𝑥̄𝑘|𝑘 + 𝑒𝑘 remains bounded within the invariant tube 𝕊, 
while satisfying 𝑥𝑘 ∈ 𝕏 and 𝑢𝑘 ∈ 𝕌 for all 𝑘. Hence, both recursive fea-
sibility and asymptotic Lyapunov stability of the EMPC framework are 
theoretically ensured.

Algorithm 1 Iterative computation of the estimation-error set 𝔼 (mRPI).
Require: 𝐴; 𝐶; 𝐿; 𝐵𝑤; 𝕎.
Ensure: The mRPI 𝔼 for error dynamics 𝑒𝑘+1 = (𝐴 − 𝐿𝐶)𝑒𝑘 +

𝐵𝑤𝑤𝑘, 𝑤𝑘 ∈ 𝕎.
1: Initialisation: Set 𝔼0 ← {0}.
2: for 𝑖 = 0, 1, 2,… do
3:  Update: 𝔼𝑖+1 ← (𝐴 − 𝐿𝐶)𝔼𝑖 ⊕ 𝐵𝑤𝕎.
4:  Convergence check: if 𝔼𝑖+1 ⊆ 𝔼𝑖 then break.
5: end for
6: Return: 𝔼 ← 𝔼𝑖+1.

By comparing (21) with (9), it follows that:

𝑥𝑘+𝑖 = 𝑥̄𝑘+𝑖|𝑘 + 𝜉𝑘+𝑖|𝑘 +
𝑖

∑

𝑗=1
𝐴 𝑗−1
𝐹 𝐵𝑤𝑤𝑘+𝑗

𝑢𝑘+𝑖 = 𝑢̄𝑘+𝑖|𝑘 + 𝐹

( 𝑖
∑

𝑗=1
𝐴 𝑗−1
𝐹 𝐵𝑤𝑤𝑘+𝑗

)
(29)

The tightened constraints in (22) are met by the state and input tra-
jectories determined by (21), 𝑥𝑘+𝑖 − 𝜉𝑘+𝑖|𝑘 ∈ 𝑋 ∼ 𝐸 and 𝑢𝑘+𝑖 ∈ 𝑈 for all 
𝑖 ∈ [0, 𝑛𝑝 − 1], and 𝑥𝑘+𝑛𝑝 − 𝜉𝑘+𝑛𝑝|𝑘 ∈ Σ. By selecting the terminal local 
controller 𝑢𝑘+𝑖 = 𝐹𝑥𝑘+𝑖 for 𝑖 ≥ 𝑛𝑝 and invoking the definition in (23), it 
follows that for all 𝑖 ∈ ≥0, 𝑥𝑘+𝑖 ∈ 𝑋 and 𝑢𝑘+𝑖 ∈ 𝑈 :

𝑥𝑘+𝑖 − 𝜉𝑘+𝑖|𝑘 ∈ 𝕏 ∼ 𝔼, 𝑢𝑘+𝑖 ∈ 𝕌 (30)

Since the state estimation error satisfies 𝜉𝑘+𝑖|𝑘 ∈ 𝐸, for all 𝑖 ∈ ≥ 0, 
𝑥𝑘 + 𝑖 ∈ 𝑋 and 𝑢𝑘+𝑖 ∈ 𝑈 . If the feedback gain 𝐹  is designed such that 
𝜌(𝐴 + 𝐵𝑢𝐹 ) < 1, the MOAS in (23) is a polyhedron and can be computed 
in a finite number of steps according to Kolmanovsky and Gilbert (1995). 
The detailed computational procedure is summarised in Algorithms 1 
and 2.

Numerically, the computation was implemented using the MPT3 
toolbox. A less conservative (larger) Σ enlarges the feasible region but 
reduces robustness to model mismatch. A smaller Σ ensures stronger 
constraint satisfaction but sacrifices the size of the feasible region. To 
maximise the safe operating range of the sea state sensor, 𝐹  should be 
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Algorithm 2 Iterative computation of the maximal output admissible 
set Σ (MOAS).
Require: 𝕏; 𝔼; 𝐴𝐹 ; 𝐴𝐿; 𝐵𝑤; 𝕎.
Ensure: Maximal output admissible set Σ for the disturbed/estimated 

closed-loop dynamics.
1: Initialisation: Σ0 ← 𝕏 ∼ 𝔼.
2: for 𝑖 = 0, 1, 2,… do
3:  Disturbance/estimation aggregation: 𝔻 ← 𝐵𝑤𝕎 ⊕ (𝐴𝐿 − 𝐴𝐹 )𝔼.
4:  Update:

Σ𝑖+1 ←
{

𝑥 ∈ 𝕏 ∼ 𝔼 |

|

|

𝐴𝐹 𝑥 + 𝜂 ∈ Σ𝑖, ∀ 𝜂 ∈ 𝔻
}

.

5:  Convergence check: if Σ𝑖+1 ⊆ Σ𝑖 then break.
6: end for
7: Return Σ ← Σ𝑖+1.

selected to ensure that the resulting MOAS lies below the maximum dis-
turbance bound 𝑤max:

max
𝐹

𝑤max, s.t. ∃Σ satisfies(23) (31)

The constrained optimisation problem generated by the original ob-
jective function defined in (15b) is generally non-convex, which leads to 
excessive computational complexity. Directly adopting the original ob-
jective function may result in optimal control being achieved using only 
the upper and lower limits of the control input. Frequent switching be-
tween extreme values increases the complexity of control implementa-
tion. Research (Li and Belmont, 2014) has demonstrated that solving the 
non-convex problem by appropriately modifying the objective function 
can significantly influence the control performance. In order to solve the 
problem caused by non-convexity, the objective function is convexified 
in an optimal way:
𝑛𝑝−1
∑

𝑖=0

(

𝑢̃𝑘+𝑖|𝑘 𝐶𝑣𝑥̃𝑘+𝑖|𝑘 + 𝑟 𝑢̃2𝑘+𝑖|𝑘
)

(32)

where the predicted trajectories 𝑥̃𝑘+𝑖|𝑘 and 𝑢̃𝑘+𝑖|𝑘 are computed from an 
auxiliary system:
𝑥̃𝑘+𝑖+1 | 𝑘 = 𝐴 𝑥̃𝑘+𝑖 | 𝑘 + 𝐵𝑢 𝑢𝑘+𝑖 | 𝑘 + 𝐵𝑤𝑤𝑘+𝑖 | 𝑘
𝑢̃𝑘+𝑖 | 𝑘 = 𝐹 𝑥̃𝑘+𝑖 | 𝑘 + 𝑐𝑘+𝑖 | 𝑘
𝑥̃𝑘 | 𝑘 = 𝑥̂𝑘

(33)

which can be rewritten in a compact form as:
𝛿⊤𝑘𝐇 𝛿𝑘 + 𝛿⊤𝑘 𝐅 + 𝐆 (34)

where 𝛿𝑘 ∶= [ 𝛿𝑘|𝑘, … , 𝛿𝑘+𝑛𝑝−1|𝑘 ]
⊤. Coefficients 𝐇, 𝐅, and 𝐆 are de-

termined by straightforward matrix manipulations. From (33), the 
predicted heave-velocity and control-input trajectories are 𝑣𝑘 ∶=
[𝐶𝑣𝑥𝑘|𝑘,… , 𝐶𝑣𝑥̃𝑘+𝑛𝑝−1|𝑘] and 𝑢𝑘 ∶= [𝑢𝑘|𝑘, 𝑢̃𝑘+1|𝑘,… , 𝑢̃𝑘+𝑛𝑝−1|𝑘], which are 
calculated by the following formulas:
𝐯̃𝑘 =𝑀𝑣𝑥̂𝑘 + 𝐶𝑐𝑣𝛅𝑘 + 𝐶𝑤𝑣𝐰𝑘, 𝐮̃𝑘 =𝑀𝑢𝑥̂𝑘 + 𝐶𝑐𝑢𝛅𝑘 + 𝐶𝑤𝑢𝐰𝑘 (35)

where

𝑀𝑣 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝑣
𝐶𝑣𝐴𝐹
⋮

𝐶𝑣𝐴
𝑛𝑝−1
𝐹

⎤

⎥

⎥

⎥

⎥

⎦

𝑀𝑢 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝐼
𝐹𝐴𝐹
⋮

𝐹𝐴
𝑛𝑝−1
𝐹

⎤

⎥

⎥

⎥

⎥

⎦

𝐶𝑐𝑣 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝐶𝑣𝐵𝑢 0

𝐶𝑣𝐴𝐹𝐵𝑢 𝐶𝑣𝐵𝑢 0
⋮ ⋮ ⋮ ⋱

𝐶𝑣𝐴
𝑛𝑝−2
𝐹 𝐵𝑢 ⋯ 𝐶𝑣𝐴𝐹𝐵𝑢 𝐶𝑣𝐵𝑢 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐶𝑤𝑣 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝐶𝑣𝐵𝑤 0

𝐶𝑣𝐴𝐹𝐵𝑤 𝐶𝑣𝐵𝑤 0
⋮ ⋮ ⋮ ⋱

𝐶𝑣𝐴
𝑛𝑝−2
𝐹 𝐵𝑤 ⋯ 𝐶𝑣𝐴𝐹𝐵𝑤 𝐶𝑣𝐵𝑤 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐶𝑐𝑢 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0
𝐹𝐵𝑢 1 0

𝐹𝐴𝐹𝐵𝑢 𝐹𝐵𝑢 1 0
⋮ ⋮ ⋮ ⋱

𝐹𝐴
𝑛𝑝−2
𝐹 𝐵𝑢 ⋯ 𝐹𝐴𝐹𝐵𝑢 𝐹𝐵𝑢 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐶𝑤𝑢 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝐹𝐵𝑤 0

𝐹𝐴𝐹𝐵𝑤 𝐹𝐵𝑤 0
⋮ ⋮ ⋮ ⋱

𝐹𝐴
𝑛𝑝−2
𝐹 𝐵𝑤 ⋯ 𝐹𝐴𝐹𝐵𝑤 𝐹𝐵𝑤 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where 𝐴𝐹 ∶= 𝐴 + 𝐵𝑢𝐹  and (32) can be written in matrix multiplications 
𝑟𝐮̃𝑇𝑘 𝐮̃𝑘 + 𝐮̃𝑇𝑘 𝐯̃𝑘. With (35), the 𝐇, 𝐅, and 𝐆 in (34) can be determined by:

𝐇 = 𝑟 𝐶𝑐𝑢
𝖳𝐶𝑐𝑢 +

1
2
(

𝐶𝑐𝑢
𝖳𝐶𝑐𝑣 + 𝐶𝑐𝑣𝖳𝐶𝑐𝑢

)

(36)

𝐅 =
(

𝐶𝑐𝑣 + 𝑟 𝐶𝑐𝑢
)𝖳(𝑀𝑢𝐱̂𝑘 + 𝐶𝑤𝑢𝐰𝑘

)

+ 𝐶𝑐𝑢𝖳
(

𝑀𝑣𝐱̂𝑘 + 𝐶𝑤𝑣𝐰𝑘
)

(37)

𝐆 =
(

𝑀𝑢𝐱̂𝑘 + 𝐶𝑤𝑢𝐰𝑘
)𝖳(𝑀𝑣𝐱̂𝑘 + 𝐶𝑤𝑣𝐰𝑘

)

+ 𝑟
(

𝑀𝑣𝐱̂𝑘 + 𝐶𝑤𝑣𝐰𝑘
)𝖳(𝑀𝑣𝐱̂𝑘 + 𝐶𝑤𝑣𝐰𝑘

)

(38)

Compared with the original stage cost (15a), the modified stage 
cost (32) introduces a regularisation term to enforce convexity of the 
quadratic program. To achieve a balance between convexity assur-
ance and control performance, the coefficient 𝑟 should be selected such 
that convexity is guaranteed while energy capture is maximised. In 
this study, the optimisation framework leads to an optimal value of 
𝑟⋆ = 1.788 × 10−4, which achieves the best trade-off between numerical 
convexity and energy output in simulations:
min
𝑟≥0

|𝑟|, s.t. 𝐇 ⪰ 0 (39)

3.3.  Wave prediction by autoregressive model

Recursive least squares (RLS) is a widely adopted parameter esti-
mation algorithm, and it is applied to train an autoregressive model 
for wave data prediction with the aim of minimising the model error. 
The sampling time is 𝑇s, with training and prediction durations of 𝑇train
and 𝑇predict, respectively. A 1-second prediction phase is carried out af-
ter every 5-second training cycle. The total prediction time is expressed 
as 𝑇total. Each prediction horizon contains 𝑁pred prediction points. The 
training-prediction cycle time offset 𝑁shift is the time interval between 
the training and the prediction. The initial regularisation coefficient is 
𝛼base. To ensure that the training data remains uniform in scale, the data 
is processed by normalisation:

𝑤̃ =
𝑤 − 𝜇
𝜎

(40)

where 𝑤̃ denotes the standardised training value, 𝜇 and 𝜎 are the mean 
and standard deviation of 𝑤, respectively. Before performing multi-step 
prediction, an initial input vector 𝜙 is initialised, which contains past 
observations required for prediction. The input vector is defined as:

𝜙 =
[

𝑤̃𝑁train 𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+1
]⊤ (41)

where the first 𝑝 data points from the training data are flipped to con-
struct the input vector 𝜙 of the autoregressive model, 𝑝 is the order of the 
autoregressive model, implying that each subsequent prediction relies 
on previous 𝑝 data points. The predicted value is expressed as:
𝑤pred = 𝜃𝜙 (42)
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where 𝑤pred denotes the predicted value, and the parameter vector 𝜃
represents the model weights, initially assigned as a zero vector. 𝜃 is 
updated progressively to minimise the prediction error by using the RLS 
algorithm. The predicted error 𝑒pred is formulated as:
𝑒pred = 𝑤̃ −𝑤pred (43)

where 𝑒pred denotes the predicted error, defined as the difference be-
tween the predicted and the actual values. Through this procedure, the 
multi-step prediction results can be obtained for a specified time hori-
zon:

𝛼dynamic = 𝛼dynamic(1 + |𝑒pred|) (44)

where the dynamic regularisation coefficient 𝛼dynamic is initialised as 
𝛼base. 𝛼dynamic is adapted to regulate the update strength at each step. 
When |𝑒pred| is large, 𝛼dynamic is increased to the magnitude of parameter 
updates. The Kalman gain 𝐾 is expressed as:

𝐾 =
𝑃𝜙′

𝜆rls + 𝜙𝑃𝜙′ + 𝛼dynamic + 𝑙
(45)

where 𝑃𝜙′ denotes the incremental information derived from the past, 
the denominator incorporates both the forgetting factor 𝜆rls and the reg-
ularisation term, ensuring stability of the update. 𝜆rls mitigates the in-
fluence of old data. 𝑃  represents the covariance matrix employed for 
updating the parameter calculations. The regularisation parameter 𝑙 is 
introduced to prevent overfitting. The parameter update equation for 𝜃
is expressed as:
𝜃𝑘 = 𝜃𝑘−1 +𝐾𝑒𝑘,pred (46)

The covariance matrix 𝑃  is updated according to:

𝑃𝑘 =
(1 −𝐾𝜙𝑘−1)𝑃𝑘−1

𝜆rls
(47)

where 𝑃  progressively converges over time, diminishing the model’s 
sensitivity to historical data while improving both the stability and ac-
curacy of predictions:

𝐸(𝑝)
cv = 1

𝑁train − 𝑝

𝑁train
∑

𝑘=𝑝+1
|𝑒pred| (48)

where 𝐸(𝑝)
cv  represents the cross-validation error of the autoregressive 

model of order 𝑝, serving as a metric for model fitting performance 
across different orders: smaller values indicate superior model fitting, 
𝑁train is the total number of training samples, 𝑁train − 𝑝 is the number 
of observations employed in error computation, and 𝑘 is the index vari-
able ranging from 𝑝 + 1 to 𝑁train, ensuring that sufficient past data are 
available for prediction.

Traditional modelling sequential estimation methods include the 
Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) (Atyabi et al., 2016). AIC avoids overfitting and penalises 
complex models through a trade-off between accuracy of fit and model 
complexity:

𝐴𝐼𝐶𝑝 = 𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 2𝑝 (49)

𝐵𝐼𝐶𝑝 = 𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 𝑝 log(𝑁train) (50)

where 𝐴𝐼𝐶𝑝 and 𝐵𝐼𝐶𝑝 represent the AIC and BIC values, respectively, 
for an autoregressive model with order 𝑝, a smaller value indicates a bet-
ter fit, 𝑁train denotes the number of training samples, log is employed to 
capture data growth rates and evaluate model complexity, ∑𝑁train

𝑘=𝑝+1 𝑒
2
pred

is the sum of squares of prediction errors, 2𝑝 denotes the penalty term for 
model complexity in AIC, and 𝑝 log(𝑁train) denotes the penalty term in 
BIC, which increases with the sample size. BIC imposes stronger penal-
ties on higher-order models and thus tends to select simpler models to 

Table 2 
QP characteristics and computation performance of the proposed EMPC.
 Property  Value
 Solver type  Active-set QP (quadprog)
 Decision variables  10
 Linear constraints  2
 Hessian condition number 2.85 × 103

 Positive definiteness  Yes
 Average computation time  3.3ms
 Maximum computation time  151.6ms
 Warm-start usage  No
 Sampling period  0.1 s
 Hardware platform  Lenovo ThinkPad X13 Gen 2 (Intel i7, 1.9GHz)

avoid overfitting. Compared with AIC, BIC is stricter in penalizing com-
plex models.

To implement multi-step prediction, the initial predicted value 
𝑤̂1,pred is appended to the input vector 𝜙pred and treated as the most 
recent observation for subsequent multi-step predictions:
𝜙pred =

[

𝑤̂1,pred 𝑤̃𝑁train 𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+2
]⊤ (51)

Multi-step prediction is carried out using the parameter vector 𝜃 and 
the input vector 𝜙pred. The corresponding model output 𝑤̂pred is obtained 
as:

𝑤̂pred = 𝜃𝜙pred (52)

where 𝑤̂pred denotes the predicted normalised value. For multi-step pre-
diction, the prediction output is recursively fed back, and the input vec-
tor is updated at each step 𝑘:

1. Generate the new prediction (52).
2. Update 𝜙pred:

𝜙pred =
[

𝑤̂1,pred 𝜙1∶end−1,pred
]⊤ (53)

where the input vector 𝜙pred incorporates the most recent predicted 
value together with the past actual observations. After multi-step predic-
tions, the predicted results are denormalised to convert the normalised 
predictions back to the original scale:

𝑤̄ = 𝑤̂pred𝜎 + 𝜇 (54)

where 𝑤̄ denotes the prediction result after denormalisation. For the first 
prediction, the predicted segment is appended directly to the overall 
results. For subsequent predictions, continuity is maintained by setting 
the initial value of the new segment equal to the last predicted value of 
the preceding segment, after which the segments are concatenated:
𝑤p,all =

[

𝑤p,all, 𝑤̄
]

(55)

where 𝑤p,all denotes the cumulative predicted value. Following each 
prediction, the timestamp is updated accordingly:
𝑡p,all =

[

𝑡p,all, 𝑡pi
]

(56)

where 𝑡p,all denotes the cumulative predicted time, and 𝑡pi represents the 
time series of the current predicted segment.

4.  Simulation results and analysis

Table 2 This section shows the simulation results generated using 
MATLAB R2023b. The computer model is the Lenovo ThinkPad X13 Gen 
2. This paper uses real wave data collected from the coast of Cornwall, 
UK. The state space matrix of the impulse function for calculating the 
radiation force is:

𝐴𝑟 =
⎡

⎢

⎢

⎣

0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤

⎥

⎥

⎦

𝐵𝑟 =
⎡

⎢

⎢

⎣

36.5
394
75.1

⎤

⎥

⎥

⎦

𝐶𝑟 =
[

0 0 1
]

The system is discretised with a sampling time of 𝑡𝑠 = 0.1 s, and the 
non-causal EMPC is constructed using the Algorithm 3. At each sampling 
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Algorithm 3 Implementation of the non-causal EMPC (active-set QP 
solver, MATLAB quadprog).
1: Obtain the short-time incoming wave prediction 𝑤𝑘 from the autore-
gressive model.

2: Update the state estimation:
𝑥̂𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐿

(

𝑦𝑘 − 𝐶𝑥̂𝑘|𝑘−1
)

(57)

where 𝑥̂𝑘|𝑘−1 is the estimated state computed at the previous time 
instant 𝑘 − 1.

3: Compute the optimal control correction by solving the following 
quadratic program:
𝛅∗𝑘 = argmin

𝛅𝑘
𝛅𝖳𝑘𝐇𝛅𝑘 + 𝛅𝖳𝑘𝐅 s.t. (21) and (22) (58)

4: Solve (58) and apply the control input 𝑢𝑘 = 𝐹 𝑥̂𝑘 + 𝛿∗𝑘|𝑘, where 𝛿∗𝑘|𝑘 is 
the first element of 𝛿∗𝑘 .

5: Compute the reference signal of 𝑖𝑞 and 𝑣𝑞 :

𝑖𝑞,ref = −
√

2
3

𝐹PTO,ref 𝑟eq
𝑛𝑝
(

𝜓𝑓 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑
) (59)

𝑣𝑞 = −𝐾𝑖,𝑞∫
(

𝑖𝑞 − 𝑖𝑞,ref
)

d𝑡 −𝐾𝑝,𝑞
(

𝑖𝑞 − 𝑖𝑞,ref
)

(60)

6: Update the state prediction:
𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘 + 𝐵𝑢 𝑢𝑘 + 𝐵𝑤𝑤𝑘|𝑘 (61)

where 𝑤𝑘|𝑘 denotes the current wave measurement/prediction con-
sistent with the AR model.

7: Proceed to the next time instant 𝑘 + 1 and repeat steps 1 to 5.
Note (solver setup & timing). Each control step constructs the QP and 
solves it with MATLAB quadprog (active-set, no warm start). In MAT-
LAB R2023b on a ThinkPad X13 Gen 2 (Intel i7, 1.9GHz), the mean 
and worst-case solve times are 3.3ms and 151.6ms, respectively. Occa-
sional peaks stem from constraint switching, while the average remains 
well below the 0.1 s sampling period, confirming real-time feasibility. 
Considering desktop-embedded performance differences, the estimated 
execution on an ARM target also fits within the 0.1 s budget. Further 
solver characteristics are summarised in Table 2. 

time, using wave prediction techniques, the incident wave excitation of 
𝑡𝑝 = 1 s (corresponding to 𝑛 = 10 prediction steps) can be obtained. The 
observer gain 𝐿 is designed as:

𝐿 =
[

0.9412 −1.1639 0.5283 −20.5234 −4.4657
0.0980 0.9400 −3.1529 31.9104 7.4290

]T

Assuming that the estimation error of the ocean current wave ex-
citation force satisfies |𝑤𝑘|𝑘 −𝑤𝑘| ≤ 0.1𝑤max, the error bound 𝐸 = {𝑒 ∈
ℝ5 ∶ |𝐶𝑧𝑒| ≤ 0.01} is obtained. The feedback gain 𝐹  is designed as:
[𝐹 = −416.61 − 1025.57 0.1225 − 0.4785 0.9963] (62)

and the maximum wave excitation boundary for MOAS Σ is 𝑤max =
3.52 kN. The non-causal EMPC can operate safely in all sea conditions 
where the maximum wave excitation does not exceed 3.52 kN.

To facilitate the design of non-causal EMPC, (22) is used to compute 
the tightened state constraints 𝕏𝑘, input constraints 𝕌𝑘, and the termi-
nal constraint set 𝕏𝑇  for 𝑘 ∈ 𝕀[0,9]. Fig. 4 shows the projection of 𝕏𝑘 onto 
the 𝑥1-𝑥2 plane. The contour lines correspond to the continuously tight-
ened feasible region, with the outermost boundary corresponding to 𝕏0
and the innermost boundary corresponding to 𝕏9. As 𝑘 increases, the 
set gradually shrinks, reflecting the gradual narrowing of the feasible 
state domain. Its symmetry about the two coordinate axes reflects the 
constraint balance in the 𝑥1 and 𝑥2 directions. The figure also shows 
the projection of the tightened terminal set 𝕏𝑇  onto the 𝑥1-𝑥2 plane. 
Since the system is of fifth order, direct visualisation in the full state 

Fig. 4. Projection of the tightened state constraints on the 𝑥1-𝑥2 plane. The 
contour lines from outside to inside represent 𝑋0, 𝑋1, …, 𝑋9.

Fig. 5. Tightened control input constraint sets 𝑈𝑘 for 𝑘 ∈ 𝕀[0,1,…,9].

Table 3 
Physical parameters of autoregressive model.
 Description  Notation  Value
 Forgetting factor 𝜆rls  0.99
 Initial regularisation coefficient 𝛼base 10−8

 Regularisation parameter 𝓁 10−8

 Sampling time 𝑇s 0.1 s
 Training duration 𝑇train 5 s
 Prediction duration 𝑇predict 1 s
 Total prediction time 𝑇total 200 s
 Prediction points 𝑁pred  11
 Cycle time offset 𝑁shift  10
 Covariance matrix 𝑃 107 × 𝐼𝑝
 Identity matrix 𝐼𝑝 diag(1,… , 1)𝑝×𝑝

Table 4 
Physical parameters of the WEC model.
 Description  Notation  Value
 Float mass 𝑚𝑠  242 kg
 Added mass 𝑚  83.5 kg
 Total mass 𝑚  325.5 kg
 Stiffness 𝑘𝑠  3866N/m
 Control input limit 𝑢max  3.5 kN
 Heave displacement limit Φmax  1m
 Heave velocity limit 𝑣max  2m/s
 Control input rate limit 𝑢̇max  3.5 kN/s

space is not feasible, so a two-dimensional projection is used to high-
light key features. The closed contour lines define a compact, symmetric, 
and smoothly bounded feasible terminal region, thus ensuring terminal 
constraints, closed-loop stability, and constraint satisfaction Tables 3,4
and 12.

To ensure a fair comparison, the conventional MPC and the pro-
posed non-causal EMPC use the same model dynamics, state and input
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Fig. 6. Comparison of actual and predicted wave excitation forces. The solid 
red line represents the actual data, and the dashed blue line represents the pre-
dicted data. Forces are expressed in Newtons (kN), and time is expressed in 
seconds (s). The root mean square error (RMSE) of the predicted values is 0.741 
demonstrating excellent agreement between the actual and predicted data.

Fig. 7. Energy output comparison using the conventional MPC with different 
tuning of 𝑟.

constraints, and prediction horizon (𝑇𝑝 = 1.0 s, corresponding to 10 
steps). The only difference is that the EMPC uses predicted future wave 
excitations, while the conventional MPC uses current and past wave 
measurements for causal calculations. Both controllers use the same cost 
function weights and solver configuration to ensure consistency in op-
timisation conditions.

For both the proposed non-causal EMPC and the conventional MPC, 
the objective function based on (32) is employed, with the weighting 
coefficient 𝑟 designed according to the principle in (39). When 𝑟 = 0, 
the original cost function becomes non-convex with respect to the op-
timisation variable 𝑐, rendering the problem invalid for convex opti-
misation methods. Experiments have found that feasibility and con-
straint satisfaction can only be guaranteed when 𝑟 ≥ 1.788 × 10−4. When 
𝑟 = 1.787 × 10−4, the optimisation problem fails to obtain a feasible so-
lution. When the parameter 𝑟 approaches a critical value, the optimisa-
tion problem exhibits high sensitivity to numerical perturbations, indi-
cating that the condition number of the Hessian matrix in this region 
increases rapidly and numerical stability decreases. At this point, the 
margin of positive definiteness weakens, and the solver becomes ex-
tremely sensitive to initial values and round-off errors, potentially lead-
ing to infeasibility or unstable convergence. With slightly larger val-
ues of 𝑟, the numerical conditioning of the Hessian gradually improves, 
and the optimisation problem regains strict convexity and stability. To 
ensure that the solution remains positive definite and numerically sta-
ble over the entire operating range, the following selection criterion is 
used. Select the smallest 𝑟 that is practically well-conditioned within the 
solver’s tolerances, such that the optimisation problem remains strictly 

Table 5 
Energy output comparison table using the conventional MPC with differ-
ent tuning of 𝑟.
𝑟 (×10−4)  3.388  2.988  2.588  2.188  1.788  1.787
 Energy (J)  62804.3  69020.2  76702.5  86297.4  99247.3  Infeasible

Table 6 
Energy with 𝑟 under different sea states.
𝑟  Sea state - Energy [kJ]

 Light  Moderate  Heavy
1.788 × 10−4  129.64  127.86  121.51
1.988 × 10−4  127.87  122.47  119.97
2.188 × 10−4  104.85  101.66  98.73
2.388 × 10−4  79.11  76.60  74.48
2.588 × 10−4  55.43  54.29  52.00

convex and numerically stable, and no infeasibility or unstable con-
vergence is observed over the operating range. Applying this criterion 
yields 𝑟 = 1.788 × 10−4, which serves as a practical lower bound for the 
regularisation parameter. This setting effectively avoids pathological be-
haviour caused by near-singular regions and achieves a good balance 
between control stability and energy optimisation performance. It is im-
portant to note that the simulation precision of 10−3 amplifies the sen-
sitivity near the critical value 𝑟, resulting in an apparent "jump". This 
phenomenon is an amplification of numerical pathologies in the critical 
region at the selected numerical precision, and does not indicate physi-
cal model instability or structural instability in the algorithm. Therefore, 
the apparent discontinuity is primarily a numerical artifact caused by 
the precision setting, and its root cause remains inherent pathologies in 
the critical region. The current MPC framework allows for flexible ad-
justment of the parameter 𝑟 through experimentation. The relationship 
between energy output and different 𝑟 values can be analysed, and then 
MPC strategies can be compared. Fig. 7 illustrates the energy output of 
the WEC under the conventional MPC with different values of 𝑟, and 
the corresponding results are summarised in Table 5. The optimal en-
ergy output adjustment scheme yields 99.25 kJ at 𝑟 = 1.788 × 10−4. This 
value ensures optimisation problem convexity while balancing control 
performance and computational feasibility, thereby improving the ro-
bustness of the optimal solution.

Fig. 5 illustrates the gradual tightening of the control input constraint 
set 𝕌𝑘, where 𝑘 ∈ 𝕀[0,9]. As the number of forecast steps increases, the fea-
sible region (horizontal interval) gradually shrinks, reflecting a dynamic 
tightening characteristic along the forecast horizon. The outer bound 𝕌0
corresponds to the initial moment and allows for greater control free-
dom. The inner bound 𝕌9 represents the most stringent constraint at 
the end of the forecast. This tightening mechanism ensures that con-
trol inputs remain within a safe range throughout the forecast horizon 
and remain feasible in the presence of model uncertainties and pertur-
bations. The symmetrical tightening of the constraints around the zero 
axis indicates consistency in both positive and negative directions.

With the aim of assessing the robustness of the convexi-
fication parameter 𝑟, the energy-capture metric was evaluated 
for 𝑟 ∈ {1.788, 1.988, 2.188, 2.588, 2.788} × 10−4 under three controlled 
scenarios-sea state, signal-to-noise ratio (SNR), and prediction error 
within the same EMPC framework (see Tables 6–8). In these tests, the 
SNR bias is applied to the measured output 𝑦𝑘, and the prediction bias 
is applied to the predicted wave-excitation amplitude. The results show 
that, across all scenarios, the row-wise energy decreases monotonically 
as 𝑟 increases and the ranking is consistent, indicating that the selected 
𝑟 is robust to variations in sea state, SNR, and prediction error. Based 
on these results, 𝑟 = 1.788 × 10−4 is adopted uniformly.

For analysing the impact of prediction horizon length on control per-
formance, this paper conducted prediction horizon sweep experiments 
under the same EMPC framework, setting the prediction horizons to 
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Fig. 8. Control input response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with inaccurate 
predictions (red solid line). The conventional MPC (black solid line).

Fig. 9. Heave displacement response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with 
inaccurate predictions (red solid line). The conventional MPC (black solid line).

Table 7 
Energy with 𝑟 under different SNR levels.
𝑟  SNR-Energy [kJ]

 30dB  40dB  50dB
1.788 × 10−4  129.02  127.78  127.73
1.988 × 10−4  124.92  122.98  122.45
2.188 × 10−4  102.43  101.75  101.61
2.388 × 10−4  78.48  76.59  76.52
2.588 × 10−4  56.45  54.53  54.25

Table 8 
Energy with 𝑟 under prediction bias.
𝑟  Prediction bias - Energy [kJ]

5% bias 10% bias 20% bias
1.788 × 10−4  127.77  127.64  127.30
1.988 × 10−4  122.43  122.38  122.25
2.188 × 10−4  101.60  101.55  101.44
2.388 × 10−4  76.58  76.56  76.52
2.588 × 10−4  54.26  54.24  54.19

𝑇𝑝 = 0.5 s, 1.0 s, and 2.0 s. The model parameters, wave input, and con-
troller structure remained consistent across all operating conditions; 
only the wave prediction horizon varied. Table 9 presents the energy ab-

Table 9 
Effect of prediction horizon length on 
energy.

 Prediction horizon 𝑇𝑝 (s)  Energy (kJ)
 0.5  132.53
 1.0 (baseline)  127.86
 2.0  126.14

sorption results for different prediction horizons. As the prediction hori-
zon increases from 0.5 s to 2.0 s, the energy decreases slightly and then 
levels off. While shorter prediction horizons yield slightly higher energy, 
they also lead to more aggressive control behaviour. Longer prediction 
horizons, however, suffer from accumulated prediction errors, resulting 
in limited performance improvements. Considering prediction accuracy, 
feasibility, and computational cost, this paper adopts 𝑇𝑝 = 1.0 s as the 
baseline prediction horizon.

For an evaluation of the controller’s dependence on prediction ac-
curacy, this paper systematically examines three typical degradation 
scenarios: constant bias, root mean square error (RMSE), and miss-
ing prediction data. The results are shown in Table 10. The pro-
posed non-causal EMPC is highly robust to prediction errors: when 
the bias and missing data rates increase to 20%, the energy decreases 
by less than 0.5%. When the RMSE increases from 0.741 to 3.048, 
the energy decreases by only approximately 3.9%. This demonstrates 
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Fig. 10. Heave velocity response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with 
inaccurate predictions (red solid line). The conventional MPC (black solid line).

Fig. 11. Generator current and voltage responses.

Fig. 12. Control input rate of change (PTO force-rate, Δ𝑢).

that the controller can maintain stable and near-optimal performance 
despite significant degradation in prediction accuracy, validating its 
practical reliability and engineering feasibility under imperfect wave
prediction.

To systematically verify the effectiveness of the proposed non-causal 
EMPC strategy, this study selected measured wave data from the coast 
of Cornwall, UK. Based on the acquired raw data, an autoregressive 
(AR) model was used to construct a wave prediction sequence, which 

provides feedforward information for the model predictive controller. 
While preserving the measured wave characteristics, a statistically con-
sistent predicted wave signal was obtained. Fig. 6 shows a comparison 
of the actual wave excitation force curves calculated from the measured 
data and the wave excitation force curves generated from the prediction 
data, visually demonstrating the accuracy and effectiveness of the pre-
diction model in capturing the key wave dynamic characteristics. The 
comparison results were evaluated using the root mean square error 
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Table 10 
Sensitivity of energy to prediction accuracy (bias, RMSE, 
and missing data).
 Condition  Parameter value  Energy (kJ)
 Bias influence
 0% bias (baseline)  0  127.86
 +10% bias  +0.1  127.64
 +20% bias  +0.2  127.30
 RMSE influence
RMSE = 0.741 (baseline)  0.741  127.86
RMSE = 1.761  1.761  124.97
RMSE = 3.048  3.048  122.85
 Missing data influence
 0% missing (baseline)  0.0  127.86
 10% missing  0.1  127.62
 20% missing  0.2  127.33

Fig. 13. Energy output comparison. The proposed non-causal EMPC with accu-
rate predictions (blue solid line). The proposed non-causal EMPC with inaccu-
rate predictions (red dashed line). The conventional MPC (black dashed line).

Table 11 
Statistical comparison of energy between noncausal EMPC and MPC 
under five wave series.
 Wave series  MPC (kJ)  EMPC (kJ)  fEnergy gain (%)
 1  99.25  127.86  +28.8
 2  96.61  121.96  +26.2
 3  81.12  103.65  +27.8
 4  76.93  99.33  +29.1
 5  71.23  90.89  +27.6
 Average ± SD  85.03 ± 12.3  108.74 ± 15.6  +27.9 ± 1.1

(RMSE), which was 0.741. This confirms the high agreement between 
the measured and predicted wave forces.

The Figs. 8, 9, and 10 show the time responses of the control in-
put, displacement, and velocity, respectively, generated using the EMPC 
framework. Both state and control input constraints are satisfied, and 
the control method has achieved its maximum energy conversion limit. 
Case 1 shows the proposed non-causal EMPC with accurate wave excita-
tion predictions (blue solid line). Case 2 shows the proposed non-causal 
EMPC with a prediction error of 10% (red solid line). Case 3 shows 
conventional MPC with an optimal parameter of 𝑟 = 1.788 × 10−4 (black 
solid line).

Fig. 11(a) and (b) show the generator phase current and terminal 
voltage during the non-causal EMPC operation, respectively. Both sig-
nals remain within safety margins, exhibiting no significant overshoot 
or distortion. The energy output for the two scenarios is compared in 
Fig. 13. The energy output of the conventional MPC is 99.25 kJ, while 
that of the non-causal EMPC is 127.86 kJ, representing a 28.8% increase 

Table 12 
Physical parameters of the wave-to-wire model.
 Description  Notation  Value
 Pole pairs 𝑝  43
 Effective radius 𝑟eq 0.45m
 Permanent magnet flux 𝜓𝑓 0.28Wb
 Stator resistance 𝑅𝑠 0.2Ω
𝑑-axis inductance 𝐿𝑑 0.02H
𝑞-axis inductance 𝐿𝑞 0.02H
 Maximum 𝑞-axis current 𝑖𝑞,max 200A
 Maximum 𝑞-axis voltage 𝑣𝑞,max 45V
𝑞-axis PI gains (𝐾𝑝,𝑞 , 𝐾𝑖,𝑞 )  (0.06, 0.6)
𝑑-axis PI gains (𝐾𝑝,𝑑 , 𝐾𝑖,𝑑 )  (0.06, 0.6)

in energy output. Since the conventional MPC adopts the same finite-
horizon QP structure as commercialised MPC controllers, it serves as a 
realistic industrial baseline for evaluating control performance. This is 
due in part to the fact that the state and input trajectories using the 
non-causal EMPC, shown in Figs. 8 and 9, are closer to the boundaries 
in most cases compared to the conventional MPC. This means that the 
limits of the WEC design and the PTO mechanism are more effectively 
utilised. In addition to amplitude bound on the PTO force, the discrete 
rate constraint (12) is enforced. Fig. 12 shows the time profile of the con-
trol increment Δ𝑢𝑘 ∶= 𝑢𝑘 − 𝑢𝑘−1. All samples satisfy |Δ𝑢𝑘| ≤ 𝑢̇max𝑇𝑠 over 
the whole window, and no violations occur. This confirms closed-loop 
compliance with the rate constraint.

The consistency of control performance was evaluated using five in-
dependent wave sequences with statistically equivalent spectra. As sum-
marised in Table 11, the average energy of the proposed non-causal 
EMPC is 108.74 Â± 15.6 kJ, an improvement of approximately +27.9 
Â± 1.1% over the baseline MPC (85.03 Â± 12.3 kJ). The low vari-
ance indicates that the energy enhancement is statistically stable, con-
firming the robustness and general applicability of the proposed control
strategy.

5.  Conclusions

This paper proposes a non-causal economic model predictive control 
(EMPC) based on a wave-to-wire model for the control of wave energy 
converters (WECs), taking into account the computational limitations 
of embedded systems. Wave prediction is implemented using an autore-
gressive model, and parameter identification is performed via recursive 
least squares (RLS). Under the estimated wave state, the controller op-
erates in a 5-second training and 1-second prediction cycle, using piece-
wise prediction to reduce computational overhead. The wave-to-wire 
model is integrated within the same optimisation framework. During op-
timisation, hard constraints tied to electrical limits are imposed on the 
PTO force-rate, ensuring electrical feasibility is enforced at every step. 
This approach unifies economic objectives, the wave-to-wire model, and 
engineering feasibility into a single optimisation problem.

Simulation results demonstrate that, compared with traditional con-
trol methods, the proposed non-causal EMPC approach significantly im-
proves the WEC’s energy conversion efficiency while maintaining safe 
operation under varying sea conditions. By incorporating a hard con-
straint on the PTO force-rate into the optimisation, the mechanical-
economic objective is tightly coupled with electrical feasibility,
reducing the risk of infeasible commands and suppressing potential in-
stability. Current, voltage, and PTO force-rate are maintained within 
predefined limits. This framework concurrently verifies constraint satis-
faction and energy metrics within the same control loop, ensuring feasi-
bility for real-time deployment. Key properties such as recursive feasibil-
ity and robust constraint satisfaction are demonstrated. The non-causal 
EMPC demonstrates robust performance even in the presence of rea-
sonable prediction errors. The introduction of the autoregressive model 
further enhances the system’s environmental adaptability and control
accuracy.
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Overall, this research aims to implement real-time non-causal EMPC 
on a platform with limited computational resources, providing new pos-
sibilities for intelligent control applications in harsh marine environ-
ments. However, this method still relies on prediction accuracy, and 
large errors may affect economic optimisation results. Furthermore, cur-
rent validation is primarily based on idealised numerical models, which 
do not fully consider complex sea conditions and equipment nonlinear-
ities.

Future work will focus on extending non-causal EMPC to nonlin-
ear systems and introducing more advanced wave prediction meth-
ods to further improve prediction accuracy. The stability and robust-
ness of this method will be verified under more complex and variable 
real-world sea conditions, and hardware-in-the-loop (HIL) simulations 
will be conducted to evaluate its real-time performance and feasibil-
ity in actual engineering environments. Current/voltage peaks and con-
straint switching will be quantified under different sea states and longer 
timescales. The impact of the PTO force-rate hard constraint on the 
energy-feasibility trade-off will be analysed, and robustness bounds will 
be defined across a wider range of operating conditions.

Furthermore, future research will explore the integration of non-
causal EMPC with various renewable energy sources, and conduct long-
term reliability evaluations to demonstrate the stability and effective-
ness of such systems under real-world operating conditions.
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