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This paper proposes a non-causal economic model predictive control (EMPC) strategy based on wave predic-
tion and integrated within the wave-to-wire model, aiming to improve the energy conversion efficiency of wave
energy converters (WECs) and ensure safe operation under diverse sea states. Extending conventional EMPC ap-
proaches that primarily consider mechanical-side dynamics, this study integrates both mechanical and electrical
subsystems within a unified wave-to-wire model and imposes a PTO control-input rate constraint to allow cap-
turing the complete energy conversion path while ensuring electrical feasibility. The proposed non-causal EMPC
guarantees recursive feasibility and satisfaction of safety constraints. It directly optimises an economic perfor-
mance criterion that maximises energy extraction and minimises operational costs. The wave-to-wire model
enables accurate evaluation of output energy through electrical variables such as generator current and voltage,
thereby enhancing conversion efficiency. Taking a point absorber as a case study, simulation results demonstrate
that the proposed framework achieves substantial improvements in energy production compared with conven-
tional tracking-based MPC formulations. These findings confirm its effectiveness and highlight its potential for
practical deployment in wave energy conversion control.

1. Introduction

As fossil fuel resources become increasingly depleted in the com-
ing decades, the development of clean energy has become a global
goal. As a form of ocean renewable energy, wave energy offers high
energy density, strong predictability, and a reliable supply. Its theo-
retical annual power generation capacity could reach approximately
32,000 kWh. Wave energy resources are primarily distributed in mid-
and high-latitude oceans, such as the west coast of North America, south-
ern Australia, the British Isles, the west coast of Europe, southern Chile,
and New Zealand (Gao et al., 2025). The total potential in coastal ar-
eas worldwide is estimated to exceed 2 TW (Gunn and Stock-Williams,
2012). Compared to wind and solar energy, wave energy offers signifi-
cant advantages in energy density and stability (Falnes and Kurniawan,
2020). However, the commercialisation of wave energy remains imma-
ture, primarily due to low energy conversion efficiency and a high risk
of structural damage under certain sea conditions (Drew et al., 2009).

Reports on the utilisation of wave energy can be traced back to the
18th century, with Salter’s research laying the foundation for large-scale
wave power generation (Salter, 1974). However, achieving optimal en-
ergy conversion requires large-scale devices, which pose significant de-
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sign challenges. Over the past few decades, people have conducted ex-
tensive research on the control strategies of wave energy converters
(WECs). WECs such as point absorbers, oscillating water columns and
attenuators have been studied and developed (Manan Jariwala et al.,
2025). Wave prediction methods such as the extended Kalman filter
(EKF), artificial neural networks, and deterministic sea wave prediction
(DSWP) all introduce certain prediction errors. Based on the simple con-
trol method (SCM), practical prediction techniques have been improved
and applied to wave observations, enabling near-accurate and simulta-
neous prediction of the hydrodynamic forces acting on a WEC. A com-
mon form of this type of system directly utilises the relative motion
between the coil and the permanent magnet to generate electricity. By
using analytical background and numerical methods to derive the opti-
mal control force parameters, the power generation of multiple PA-WEC
arrays can be maximised (Murai et al., 2021). However, the frequency
response of the point absorber WEC is narrow and its performance is un-
satisfactory under realistic ocean conditions unless its motion is actively
controlled (Hals et al., 2011).

Model predictive control (MPC) is widely used in wave energy sys-
tems to handle strong dynamics and complex constraints (Zhang et al.,
2020). However, many conventional MPC strategies do not consider
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\begin {equation}\begin {aligned} v_d &= R_s i_d + L_d \frac {d i_d}{d t} - \omega _e L_q i_q, \\ v_q &= R_s i_q + L_q \frac {d i_q}{d t} + \omega _e L_d i_d + \omega _e \psi _f \end {aligned} \label {eq:dqdynamics}\end {equation}
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$\omega _e = \frac {2 \dot {x}}{r_{\mathrm {eq}} n_p}$
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\begin {equation}F_{\mathrm {PTO}} = -\frac {n_p}{r_{\mathrm {eq}}} \sqrt {\frac {3}{2}} \left ( i_q \psi _f + \left ( L_d - L_q \right ) i_d i_q \right ) \label {eq:FPTO}\end {equation}
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\begin {equation}i_{q,\mathrm {ref}} = -\sqrt {\frac {2}{3}} \, \frac {F_{\mathrm {PTO,ref}} \, r_{\mathrm {eq}}}{n_p} \cdot \frac {1}{\psi _f + \left ( L_d - L_q \right ) i_d} \label {eq:iqref}\end {equation}
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\begin {equation}\begin {aligned} v_d &= -K_{i,d} \int i_d \, dt - K_{p,d} \, i_d \\ v_q &= -K_{i,q} \int \left ( i_q - i_{q,\mathrm {ref}} \right ) dt - K_{p,q} \left ( i_q - i_{q,\mathrm {ref}} \right ) \end {aligned} \label {eq:vdvqcontrol}\end {equation}
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\begin {equation}i_{q,\mathrm {ref}} = \begin {cases} \mathrm {sign}\left (i_{q,\mathrm {ref}}\right ) \, i_{q,\max }, & \text {if } \left | i_{q,\mathrm {ref}} \right | > i_{q,\max }, \\[6pt] (59), & \text {else}. \end {cases} \label {eq:iqreflimit}\end {equation}
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\begin {equation}P_e = \sqrt {\frac {3}{2}} \left ( v_d i_d + v_q i_q \right ) \label {eq:Pe}\end {equation}
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$|\dot {i}_q|\le [\,v_{q,\max }-R_s|i_q|-|\omega _e|\psi _f\,]_+/L_q$
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$|\Delta u_k|\le \dot {u}_{\max }T_s$
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$(F_{\mathrm {PTO}} = k_t i_q)$
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$u$


$u = F_{\mathrm {PTO}}$


\begin {equation}\label {gt} \dot {x} = A_c x + B_{uc} u + B_{wc} w\end {equation}


\begin {equation}\label {ttg} v = C_v x\end {equation}


\begin {equation}\label {tg} z = C_z x\end {equation}


$w$


$x:= [z_v, \dot {z}_v, x_r]$


$z:= {z}_v$


$v:= \dot {z}_v$


$(A_c, B_{uc}, B_{wc}, C_c)$


\begin {align}A_c &= \begin {bmatrix} 0 & 1 & 0 \\ -\tfrac {k_s}{m} & 0 & \tfrac {C_r}{m} \\ 0 & B_r & A_r \end {bmatrix} &\!\! B_{uc} &= \begin {bmatrix} 0 \\[2pt] \tfrac {1}{m} \\[2pt] 0 \end {bmatrix} &\!\! B_{wc} &= \begin {bmatrix} 0 \\[2pt] \tfrac {1}{m} \\[2pt] 0 \end {bmatrix} & C_c &= \begin {bmatrix} 0 & 1 & 0_{1\times n_r} \end {bmatrix}\end {align}


$m := m_s + m_\infty $


\begin {equation}\label {21} x_{k + 1} = A x_k + B_u u_k + B_w w_k\end {equation}


\begin {equation}\label {331} z_k = C_z x_k\end {equation}


\begin {equation}\label {31} v_k = C_v x_k\end {equation}


$(A, B_u, B_w, C)$
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$z_k$


$v_k$


$k$


\begin {equation}\label {eq:power} P_k := - v_k \, u_k\end {equation}


\begin {equation}\label {eq:energy} E_k := - t_s \sum _{i=0}^k v_i u_i\end {equation}


$z_k$


$v_k$


$u_k$


\begin {equation}\label {13} |z_k| \leq \Phi _{\text {max}} \quad |v_k| \leq v_{\text {max}} \quad |u_k| \leq u_{\text {max}}\end {equation}


$\Phi _{\text {max}}$
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$u_{\text {max}}$


\begin {equation}{\, \Delta u_k := u_k - u_{k-1},\ \ |\Delta u_k| \le \dot {u}_{\max }\, T_s \,} \label {eq:deltau}\end {equation}
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\begin {equation}\label {2341} |w| \leq w_{\text {max}}\end {equation}
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\begin {equation}\label {e5} \mathbf {w}_k=[w_{k|k},w_{k+1|k},\, \dots ,\,w_{k+n_p+1|k}]\end {equation}


$w_{\max }$


\begin {equation}\label {15} u_k^*=arg\min _{[u_{k|k},\, \dots ,\,u_{k+n_p-1|k}]} \sum _{i=0}^{n_p-1}v_{k+i|k}u_{k+i|k}\end {equation}


\begin {equation}\label {5561} |z_{k+i}| \leq \Phi _{\text {max}},|v_{k+i}| \leq v_{\text {max}}, |u_{k+i}| \leq u_{\text {max}},\end {equation}


\begin {equation}\label {7781} \forall |w_{k+i}| \leq w_{\text {max}}, \forall i \in I_{[0,n_p-1]}\end {equation}


\begin {equation}\label {51} {s.t. \eqref {2},\ \eqref {eq:deltau} , \ \eqref {5561},\ \eqref {7781}}\end {equation}
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\begin {equation}\label {ip} u_k=F\widehat {x}_k+\delta _k\end {equation}


$F$


$\widehat {x}$


$\delta $


$F$
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\begin {equation}\label {kp} \widehat {x}_{k+1}=A\widehat {x}_{k}+B_uu_k+B_ww_{k|k}+L(y_k-C\widehat {x}_{k})\end {equation}
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$y_k$


\begin {equation}\label {lkp} y_k=C{x}_{k}\end {equation}
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$\rho (A - LC) < 1$
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$\xi _k := x_k - \hat {x}_k$


\begin {equation}\label {91} {\xi }_{k+1}=(A-LC)\xi _{k}+B_uu_k+B_w(w_k-w_{k|k})\end {equation}
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\begin {equation}\label {tg} \begin {aligned} \mathbb {X} &:= \left \{ x \in \mathbb {R}^{n_x} \;\mid \; |C_z x_k| \le \Phi _{\max },\; |C_v x_k| \le v_{\max } \right \} \\ \mathbb {U} &:= \left \{ u \in \mathbb {R} \;\mid \; |u_k| \le u_{\max } \right \} \\ \mathbb {W} &:= \left \{ w \in \mathbb {R} \;\mid \; |w_k| \le w_{\max } \right \} \end {aligned}\end {equation}
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$w_{k+i} \in \mathbb {W}$


$\bar {x}_{k+i|k} \in \mathbb {X}_i$


$\bar {u}_{k+i|k} \in \mathbb {U}_i$


$i \in \mathcal {I}[0, n_p - 1]$


$\bar {x}_{n_p+k|k} \in \mathbb {X}_T$


\begin {equation}\label {rt} \begin {aligned} \bar {x}_{k+i+1|k} &= A \bar {x}_{k+i|k} + B_u \bar {u}_{k+i|k} \\ \bar {u}_{k+i|k} &= F \bar {x}_{k+i|k} + \delta _{k+i|k} \\ \bar {x}_{k|k} &= \hat {x}_k \end {aligned}\end {equation}


$\hat {x}_k$


\begin {align}\label {ry} &\mathbb {X}_i := \mathbb {X} \sim \mathbb {E} \sim \mathbb {D}_i, \quad \mathbb {U}_i := \mathbb {U} \sim F \mathbb {D}_i, \nonumber \\ &\mathbb {D}_i := \sum _{j=0}^{i-1} A_F^{\,j}\!\left [ B_w \mathbb {W} \oplus (A_L - A_F) \mathbb {E} \right ], \quad \mathbb {X}_T := \Sigma \sim \mathbb {D}_{n_p}\end {align}


$A_F := A + B_u F$


$A_L := A - L C$


$\mathbb {X}$


$\mathbb {U}$


$\mathbb {W}$


$\Sigma $


\begin {equation}\label {cv} \Sigma := \left \{\, x_0 \in \mathbb {X}: \begin {aligned} & x_{k+1} = A_F x_k + \eta _k\\ & x_k \in \mathbb {X} \sim \mathbb {E},\;\; u_k \in \mathbb {U},\;\; \forall \, k \in \mathbb {I}_{\ge 0}\\ & \forall \, \eta _k \in B_w \mathbb {W} \oplus (A_L - A_F) \mathbb {E} \end {aligned} \right \}\end {equation}


\begin {equation}\label {eq:errdyn} e_{k+1} = (A + B_u F)e_k + B_w w_k\end {equation}


$e_k := x_k - \bar {x}_{k|k}$


$\mathbb {S}$


\begin {equation}\label {eq:rpi} (A + B_u F)\mathbb {S} \oplus B_w \mathbb {W} \subseteq \mathbb {S}\end {equation}


$\mathbb {S}$


\begin {equation}\mathbb {Z} := \mathbb {X} \ominus \mathbb {S} \qquad \mathbb {V} := \mathbb {U} \ominus F\mathbb {S} \label {Xeqn33-26}\end {equation}
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$\bar {x}_{k+1} \in \mathbb {Z}$
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\begin {equation}\label {eq:lyapunov} V(e_k) = e_k^\mathsf {T} P e_k , \qquad P > 0\end {equation}


$P$


\begin {equation}\label {eq:lyapunovineq} (A + B_u F)^\mathsf {T} P (A + B_u F) - P \le -Q, \qquad Q > 0\end {equation}


$V(e_{k+1}) - V(e_k) \le - e_k^\mathsf {T} Q e_k < 0$
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$x_k = \bar {x}_{k|k} + e_k$
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\begin {equation}\begin {aligned} x_{k+i} &= \bar {x}_{k+i|k} + \xi _{k+i|k} + \sum _{j=1}^{i} A_F^{\,j-1} B_w\, w_{k+j}\\ u_{k+i} &= \bar {u}_{k+i|k} + F \left ( \sum _{j=1}^{i} A_F^{\,j-1} B_w\, w_{k+j} \right ) \end {aligned} \label {Xeqn36-29}\end {equation}


$x_{k+i} - \xi _{k+i|k} \in X \sim E$


$u_{k+i} \in U$


$i \in \mathcal {I}[0, n_p - 1]$


$x_{k+n_p} - \xi _{k+n_p|k} \in \Sigma $


$u_{k+i} = F x_{k+i}$


$i \ge n_p$


$i \in \mathcal {I}_{\ge 0}$


$x_{k+i} \in X$


$u_{k+i} \in U$


\begin {equation}x_{k+i} - \xi _{k+i|k} \in \mathbb {X} \sim \mathbb {E},\qquad u_{k+i} \in \mathbb {U} \label {Xeqn37-30}\end {equation}


$\xi _{k+i|k} \in E$


$i \in \mathcal {I}{\ge 0}$


$x{k+i} \in X$


$u_{k+i} \in U$


$F$


$\rho (A + B_u F) < 1$


$\Sigma $


$\Sigma $


$F$


$w_{\max }$


\begin {equation}\max _{F}\; w_{\max }, \quad \text {s.t. } \exists \, \Sigma \text { satisfies} (23) \label {Xeqn38-31}\end {equation}


\begin {equation}\label {yu} \sum _{i=0}^{n_p-1} \left ( \tilde {u}_{k+i|k}\, C_v \tilde {x}_{k+i|k} \;+\; r\, \tilde {u}_{k+i|k}^2 \right )\end {equation}


$\tilde {x}_{k+i|k}$


$\tilde {u}_{k+i|k}$


\begin {equation}\label {nm} \begin {aligned} \tilde {x}_{k+i+1\,|\,k} &= A\,\tilde {x}_{k+i\,|\,k} + B_u\,u_{k+i\,|\,k} + B_w\,w_{k+i\,|\,k}\\ \tilde {u}_{k+i\,|\,k} &= F\,\tilde {x}_{k+i\,|\,k} + c_{k+i\,|\,k}\\ \tilde {x}_{k\,|\,k} &= \hat {x}_k \, \end {aligned}\end {equation}


\begin {equation}\label {df} \delta _k^\top \mathbf {H}\, \delta _k \;+\; \delta _k^\top \mathbf {F} \;+\; \mathbf {G}\end {equation}


$\delta _k := [\,\delta _{k|k},\,\ldots ,\,\delta _{k+n_p-1|k}\,]^\top $


$\mathbf {H}$


$\mathbf {F}$


$\mathbf {G}$


$v_k := [C_v x_{k|k}, \ldots , C_v \tilde {x}_{k+n_p-1|k}]$


$u_k := [u_{k|k}, \tilde {u}_{k+1|k}, \ldots , \tilde {u}_{k+n_p-1|k}]$


\begin {equation}\label {eq:predictedtrajectories} \tilde {\mathbf {v}}_k = M_v \hat {x}_k + C_{cv} \mathbf {\delta }_k + C_{wv} \mathbf {w}_k, \quad \tilde {\mathbf {u}}_k = M_u \hat {x}_k + C_{cu} \mathbf {\delta }_k + C_{wu} \mathbf {w}_k\end {equation}


\begin {equation*}M_v := \begin {bmatrix} C_v \\ C_v A_F \\ \vdots \\ C_v A^{n_p-1}_F \end {bmatrix} \quad M_u := \begin {bmatrix} I \\ F A_F \\ \vdots \\ F A^{n_p-1}_F \end {bmatrix}\end {equation*}


\begin {align*}&C_{cv} := \begin {bmatrix} 0 & & & & \\ C_v B_u & 0 & & & \\ C_v A_F B_u & C_v B_u & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ C_v A^{n_p-2}_F B_u & \cdots & C_v A_F B_u & C_v B_u & 0 \end {bmatrix} \\ &C_{wv} := \begin {bmatrix} 0 & & & & \\ C_v B_w & 0 & & & \\ C_v A_F B_w & C_v B_w & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ C_v A^{n_p-2}_F B_w & \cdots & C_v A_F B_w & C_v B_w & 0 \end {bmatrix} \\ &C_{cu} := \begin {bmatrix} 1 & 0 & & & \\ F B_u & 1 & 0 & & \\ F A_F B_u & F B_u & 1 & 0 & \\ \vdots & \vdots & \vdots & \ddots & \\ F A^{n_p-2}_F B_u & \cdots & F A_F B_u & F B_u & 1 \end {bmatrix} \\ &C_{wu} := \begin {bmatrix} 0 & & & & \\ F B_w & 0 & & & \\ F A_F B_w & F B_w & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ F A^{n_p-2}_F B_w & \cdots & F A_F B_w & F B_w & 0 \end {bmatrix}\end {align*}


$A_F := A + B_u F$


$r\tilde {\mathbf {u}}_k^{T} \tilde {\mathbf {u}}_k + \tilde {\mathbf {u}}_k^{T} \tilde {\mathbf {v}}_k$


$\mathbf {H}$


$\mathbf {F}$


$\mathbf {G}$


\begin {equation}\mathbf {H} = r\, {C_{cu}}^\mathsf {T} C_{cu} + \frac {1}{2} \left ( {C_{cu}}^\mathsf {T} C_{cv} + {C_{cv}}^\mathsf {T} C_{cu} \right ) \label {eq:H}\end {equation}


\begin {equation}\mathbf {F} = \left (C_{cv} + r\, C_{cu}\right )^\mathsf {T} \left (M_u \hat {\mathbf {x}}_k + C_{wu} \mathbf {w}_k\right ) + {C_{cu}}^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right ) \label {eq:F}\end {equation}


\begin {align}\mathbf {G} &= \left (M_u \hat {\mathbf {x}}_k + C_{wu} \mathbf {w}_k\right )^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right )\nonumber \\ &\quad + r \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right )^\mathsf {T} \left (M_v \hat {\mathbf {x}}_k + C_{wv} \mathbf {w}_k\right ) \label {eq:G}\end {align}


$r$


$r^\star = 1.788\times 10^{-4}$


\begin {equation}\label {ui} \min _{r \ge 0} \; |r|, \quad \text {s.t. } \mathbf {H} \succeq 0\end {equation}


$T_{\text {s}}$


$T_{\text {train}}$


$T_{\text {predict}}$


$T_{\text {total}}$


$N_{\text {pred}}$


$N_{\text {shift}}$


$\alpha _{\text {base}}$


\begin {equation}\tilde {w} = \frac {w - \mu }{\sigma } \label {Xeqn47-40}\end {equation}


$\tilde {w}$


$\mu $


$\sigma $


$w$


$\phi $


\begin {equation}\phi = \begin {bmatrix} \tilde w_{N_{\text {train}}} &\tilde w_{N_{\text {train}}-1} & \cdots & \tilde w_{N_{\text {train}}-p+1} \end {bmatrix}^\top \label {Xeqn48-41}\end {equation}


$p$


$\phi $


$p$


$p$


\begin {equation}{w}_\text {pred} = \theta \phi \label {Xeqn49-42}\end {equation}


${w}_\text {pred}$


$\theta $


$\theta $


$e_\text {pred}$


\begin {equation}e_\text {pred} = \tilde {w} - {w}_\text {pred} \label {Xeqn50-43}\end {equation}


$e_\text {pred}$


\begin {equation}\alpha _{\text {dynamic}} = \alpha _{\text {dynamic}} (1 + |e_\text {pred} |) \label {Xeqn51-44}\end {equation}


$\alpha _{\text {dynamic}}$


$\alpha _{\text {base}}$


$\alpha _{\text {dynamic}}$


$|e_\text {pred} |$


$\alpha _{\text {dynamic}}$


$K$
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terminal stability constraints or disturbance feedback mechanisms. In
this study, conventional MPC refers to the standard linear model pre-
dictive control framework that solves a finite-horizon quadratic pro-
gram (QP) based on measurable mechanical states. It typically employs
open-loop prediction and does not explicitly include disturbance feed-
back or terminal constraints. This formulation is consistent with widely
adopted industrial MPC deployments. Their control structures primar-
ily rely on open-loop predictions and lack the ability to handle distur-
bances and uncertainties in closed-loop systems (Gao et al., 2025). Al-
though traditional tube-based model predictive control (TMPC) is robust
to disturbances, it can suffer from steady-state errors in the presence of
persistent disturbances (Wijaya et al., 2025). Robust model predictive
control (RMPC) ensures recursive feasibility for all disturbances within
a prescribed bounded uncertainty set (Zhang et al., 2023). A min-max
strategy is employed to evaluate the worst-case cost function (Evans
etal., 2014), or a pipeline-based approach is employed to parameterise a
partially separable feedback control law (Lasheen et al., 2017) (Garcia-
Violini and Ringwood, 2021). Non-causal MPC explicitly incorporates
short-term wave forecasting into optimisation, improving energy recov-
ery while maintaining feasibility and constraint satisfaction (Zhan et al.,
2019b). Coupling data-driven LSTM wave force prediction with MPC has
achieved real-time non-causal control under irregular sea conditions and
completed physical experimental verification (Zhang et al., 2024a). Ex-
plicit non-causal MPC for online computability reduces the solution bur-
den and facilitates embedded implementation (Gao et al., 2025). Tube-
based RMPC for WEC uses set contraction to ensure recursive feasibil-
ity and constraint satisfaction under bounded uncertainty (Zhang and
Li, 2022). Engineering applications have demonstrated that tube-based
RMPC achieves an effective trade-off between performance and conser-
vatism in inertial WECs (Schiavon et al., 2021). Learning-enhanced ro-
bust MPC incorporates data-driven uncertainty modelling into an en-
semble contraction or cost-shaping framework to improve tolerance to
modelling biases and wave prediction errors (Zhang et al., 2024b). There
is a conflict between maximising energy capture and ensuring the range
of sea conditions under which the system operates safely. This trade-
off is difficult to achieve and can reduce the operating range and energy
conversion efficiency. The economic feedback MPC control law includes
offline design of state feedback gains to maximise the operating range,
and online calculation to maximise the captured energy (Zhan et al.,
2019a) and optimise the energy conversion efficiency of the WEC.

Models based solely on hydrodynamics struggle to fully evaluate the
performance of WECs because they often ignore or oversimplify the role
of the PTO system. To this end, researchers have proposed a wave-to-
wire framework to uniformly model all stages of the conversion from
waves to the grid, while considering the necessary components, dynamic
characteristics, and constraints (Penalba and Ringwood, 2016). Existing
studies have developed wave-to-wire models for various WECs, includ-
ing overflow-type (Igic et al., 2011), oscillating water columns (OWCs)
(Amundarain et al., 2010), and hydraulic point absorption devices (Jos-
set et al., 2007). Compared with fluid dynamic control that only fo-
cuses on maximum energy absorption, the wave-to-wire framework can
achieve a more comprehensive trade-off between energy capture effi-
ciency and electrical constraints.

The control problem of a WEC can be viewed as a constrained non-
causal energy maximisation (EM) control problem, whose optimal so-
lution depends on future wave information (Zhang and Li, 2019) and
whose actual operation is subject to constraints on device motion and
actuator capacity. This problem is typically addressed using optimal
control strategies to approximate the non-causal optimal solution. In
recent years, economic model predictive control (EMPC), originating
from the field of process control, has been gradually applied to wave
energy research and proposed as an optimisation framework for di-
rectly solving energy maximisation problems (Miiller and Griine, 2016).
Influenced by the concept of EMPC, several MPC-based WEC control
methods have been proposed, among which (Zhan et al., 2019a) intro-
duced an economic feedback model predictive control (EMPC) frame-
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work for WEC systems, successfully demonstrating the feasibility of this
approach for wave energy conversion. Their formulation primarily fo-
cused on the dynamics of the mechanical side. In contrast, this study ex-
tends the EMPC concept to a complete wave-to-wire model, integrating
mechanical and electrical subsystems with non-causal wave prediction
and robust constraint handling. This integrated architecture allows the
controller to simultaneously consider electrical dynamics and energy
transfer efficiency, thereby providing a more realistic representation of
the overall energy conversion process while maintaining recursive fea-
sibility and constraint satisfaction. A hard constraint on the variation
rate of PTO force ensures electrical feasibility during the optimisation
process.

Most conventional WEC MPC methods adopt an open-loop approach,
which has two major limitations in engineering applications. First, they
lack recursive feasibility guarantees. The feasible solution of the MPC
depends on the current system state, the predicted wave conditions, and
the constraints. If all conditions are not met, the optimisation problem
becomes unsolvable, and the constraints must be sacrificed to obtain
a feasible input. Second, there is an inherent conflict between the ob-
jective function’s energy capture and safe operating range. Improving
energy capture efficiency requires greater float oscillation, but this sig-
nificantly increases the risk of violating safety constraints and encoun-
tering infeasible solutions (Zhan et al., 2019a). Open-loop MPC strug-
gles to find the optimal balance between these two objectives within
a single objective function, resulting in a limited operating range and
reduced energy conversion efficiency. Therefore, this study aims to de-
velop a non-causal EMPC framework based on a wave-to-wire model
for complex WECs to achieve both energy optimisation and safe oper-
ation. This framework incorporates fluid dynamics developed from lin-
ear wave theory and power take-off (PTO) dynamics on the mechanical
side. On the electrical side, the motor and its energy calculation module
are considered. Because the actual motion range of the motor is rel-
atively small, the application of linear fluid dynamics to describe the
interaction between waves and floating bodies is both reasonable and
sufficient.

The main novelties and contributions of this paper are as follows:

1. The proposed non-causal EMPC algorithm does not rely on the tradi-
tional quadratic cost of trajectory tracking, but instead directly con-
structs an economic performance indicator. It organically integrates
the mechanical and electrical aspects to create a wave-to-wire frame-
work that goes beyond mechanical energy capture. This is the first
application of non-causal EMPC based on the wave-to-wire model in
WEC control.

2. Given that WEC control is a non-causal control problem, this paper
designs an autoregressive model for wave prediction to maximise
energy.

3. Based on a wave-to-wire model, the PTO force-rate (the rate of
change of the control input, # in continuous time or Au in discrete
time) hard constraint is physically coupled with the voltage/current
limits and incorporated into the optimisation. This ensures electrical
feasibility during the solution phase and links economic objectives
with feasibility.

4. The proposed framework guarantees recursive feasibility and strict
satisfaction of state and input constraints throughout operation.

5. Real wave data from the coast of Cornwall, UK (Zhang et al., 2019)
(Li and Belmont, 2014) are used to verify the effectiveness of EMPC
in wave energy-driven control.

6. The control algorithm flow of this paper is shown in the Algorithm 3.

This paper is organised as follows: Section II presents the mathe-
matical modelling of the WEC dynamic system. Section III analyses the
structural design of the non-causal EMPC. Section IV presents the simu-
lation results and analysis. Section V provides an overall conclusion of
this paper.



T. Gao et al.

Float Zy

Sea Surface

Cylinder

Piston

Seabed

Fig. 1. Schematic diagram of point absorber.

2. Mathematical modelling of WEC dynamic system

This section introduces the dynamic model of a single-point ab-
sorber. In Section 2.1, a wave-to-wire model of WECs is established. In
Section 2.2, the hydrodynamic model is transformed into a state-space
model to design the controller, which introduces modelling uncertainty.
Section 2.3 describes how to unify the energy maximisation objective
and physical constraints of the WEC into an optimisation problem for a
non-causal MPC.

2.1. Wave-to-wire model of WECs

Fig. 1 illustrates a representative hydraulic power take-off (PTO)
configuration, in which a hydraulic cylinder is mounted vertically be-
neath a float and anchored to the seabed. A detailed description of this
design can be found in Weiss et al. (2012). The sea surface elevation is
denoted as z,,,, while z, represents the vertical position of the float mid-
point. The present study focuses primarily on realistic deep-water sea
conditions, and shallow-water effects are not considered. To establish a
wave-to-wire model from incident wave to electrical energy output, an
electrical conversion unit must be introduced following the mechanical-
hydraulic subsystem. Specifically, the mechanical work of the hydraulic
PTO is converted into electrical energy by the linear electric motor
(LEM), and thus the dynamic characteristics of the motor must be incor-
porated into the overall modelling framework. To this end, this study
uses an equivalent circuit model to represent the LEM, an approach that
has been widely verified in renewable energy research (Wilson et al.,
2018). The corresponding circuit model is illustrated in Fig. 2. R, and
L, denote the stator resistance and inductance, respectively, while v,
represents the three-phase terminal voltages with respect to the neutral
point. The dynamic characteristics of the LEM equivalent circuit can be
expressed in the dq reference frame as:

. dig .
vy = Riy; + Ld? —w.Lyi,,

@

di
. q .
v, = Rii, + ng +w,Lgig+ oy

where v,,, iy, and Ly, denote the terminal voltage, current, and induc-
tance in the dq frame, respectively; w, is the electrical velocity of the
LEM, and vy, is the field magnetic flux. Considering that the motion of
the translator follows the heave motion of the WEC, the linear motion
of the device can be converted into an equivalent rotational motion for

further calculations by w, = —=-. Here, req is the equivalent radius re-
eq’lp

lated to the permanent magnet design parameter (pole pitch), and ), is
the number of pole pairs of the LEM. The force generated by the LEM
can be computed as:
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Va

Fig. 2. Linear electrical machine equivalent circuit model.

n 3, -
FP'I‘O:_r_p\/;(lqll/f‘F(Ld_Lq)[dlq) 2
eq

The desired control signal will be first converted to the reference cur-
rent signals. By assuming the reference signal for i, is i, . = 0 (Eriksson,

2019), the reference signal of i, can be therefore computed by using (2):

. 2 Frroger 7 1
fqeer = —\/; — - : @)
n, W+ (Ld - Lq)ld

where i, ¢ is not directly used to solve for the reference signal i, because
the instantaneous i; may not have converged to the reference signal.
Once the reference control signal is converted to a reference current
signal, a proportional-integral (PI) control law is employed to determine
the required voltage input to the LEM:

vy = _Ki,d / iy dt — Kp,d iy
4
Uy = —K,-,q/ (iq - iq,ref)dt - KP»LI([‘l - iq,ref)

where K; ; and K; , are the integral gains in the dg frame, respectively,
and K, , and K, , are the proportional gains in the dq frame, accordingly.
It is assumed that the required voltages v, and v, can be supported by
the inverter:

Sign<iq,ref) iq,max’ if ‘iq,ref > iq,max’
iq,rcf = (5)
(59, else.

where i, is the maximum current of the LEM. The generated electricity
P, can be computed as:

3, .
P, = \/;(Udld+vqlq) (6)

In the wave-to-wire model, the PTO force and the g-axis current
are coupled through electromagnetic conversion (2), while the stator-
voltage dynamics (1) bound the current slew via the inductive term L i,
and the back-EMF w,(L,i, + ;). With i; ~ 0 and the power-invariant
1/2/3 scaling, the torque-force map u ~ —K,i, holds with K, = ,"—" \/gy/f,

eq

and it follows that i ~ —K,iq (the PTO force-rate, in discrete time
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Auy = uy — uy_y). Enforcing the inverter box constraint (v,| < v
gether with the hard current constraint (|i,| < i, ) and the instan-
taneous speed |w,| gives |iq| <[ vgmax — Rligl = o lwy 1, /L,. Conse-
quently, [i] < (K;/L)IVymax — Rsligl = lw, |y, 1,. In discrete time this
gives the implementable PTO force-rate constraint |Auy| < i, Ts A
PTO force trajectory is admissible only if the associated current and volt-
age remain within limits, so the amplitude bound |u| < u,,,, alone is not
sufficient. Accordingly, the voltage and current amplitude constraints
are retained, and a hard rate limit on « is imposed to ensure electrical
feasibility and actuator safety. The effective electrical damping grows
with |i | and |w,|, which tightens the feasible rate.

q,max) to-

2.2. State-space model

To achieve consistent modelling of the electrical and mechanical dy-
namics, this paper incorporates the electromagnetic thrust generated
by the LEM into the mechanical dynamics model of the WEC. Based
on the principle of electromagnetic energy conversion, the electromag-
netic thrust generated by the LEM is determined by the g-axis current.
Under common field-oriented control conditions, the thrust can be ap-
proximately linearised as (Fpro = k,i,). k, is the thrust constant, repre-
senting the electromagnetic thrust generated per unit current. Its mag-
nitude depends on parameters such as the number of motor pole pairs,
flux linkage, and equivalent radius. This thrust acts on the float in the
opposite direction of the wave excitation force and represents the me-
chanical reaction force of the power take-off (PTO). Therefore, in the
state-space model, the control input u is directly equivalent to the PTO
force (u = Fprp). The input term in (7) is the PTO reaction, which pro-
vides a direct mapping from (1)—(6) to (7). The state-space model can
be represented by:

X =Ax+ Byu+ B,.w (72)
v=C,x (7b)
z=C,x (7¢)

where w is the wave excitation whose prediction is incorporated into
the controller design, x := [z,, z,, x,] represents the system state vector,
z 1=z, is the vertical displacement, and v := z, is the corresponding
velocity. (A,, B, B,..C,) are:

0 10 0 0
Ac=|-% 0 Sl Bo=|L| Bu=|L| c=[0 1 04,]
0 B, A, 0 0
(C))

withm :=mg+mg,.
To formulate the MPC scheme, the continuous-time model (7) is dis-
cretised to obtain the discrete-time model (9):

Xpp1 = Axy + By + B wy (9a)
z, = C,xy (9b)
v = Cuxy 90)

where the quadruple (4, B,, B,,,C) is the discrete-time form of the
quadruple (A,, B, B,.,C,). z, represents the heave displacement, and
v, represents the heave velocity. Subsequent work will use this discrete-
time model to develop linear optimal control for WECs.

2.3. Control optimisation problem

Based on the continuous-time WEC dynamics and constraints defined
in Section 2.1, the corresponding discrete-time formulations are intro-
duced for the control design. The output power and cumulative energy
at time instant k are expressed as:

P = —vuy (10a)
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k

E, :=—t, ) v (10b)
i=0

where the constraints of z,, v,, and u, are expressed as:

2] € Prax  10k] < Vmax k] < tmax an

where @, Umax, and u,,, denote the maximum admissible float heave
displacement, heave velocity, and maximal control input force acting on
the piston, respectively. The voltage and current limits in the wave-to-
wire model imply a finite admissible slew of the actuator-side force in
discrete time. To encode this implementability requirement, the con-
straint set is augmented with a discrete rate limit on the control input:
Auk FE U~ Up_qs |Auk| < umax Ts (12)
where T is the sampling period and i,,,, is the admissible force slew rate
determined from the electrical envelope (voltage/current limits). At the
first sampling instant one can set u_; := y so that (12) is well-defined.

For a PTO with a +3500 N limit and a system with a 0.1-second sam-
pling rate, we know that +7000 N per sample is a reasonable assumption.
But this is a mathematical upper-bound if the PTO is allowed to use the
full force range for every control step. In real wave-to-wire systems, the
electrical limits (DC bus, back-EMF, inductance) usually make the true
rate limit much lower than this. So based on the wave-to-wire model, we
impose a tighter rate constraint (20-50 % of full swing per step), which
is also the main contribution that distinguishes our work from Siyuan’s
previous publication. Therefore, in our simulation, we constrain the rate
of PTO change to +3500 N/step , which is 50 % of the full swing per step.

The objective of the WEC controller is to maximise the energy output
defined in (10b), subject to the constraint in Section 3.1, that is, the
maximum heave height profile satisfying:

[w] < Winax 13)
with a n,-step wave excitation force prediction:
Wi = [Wgpie> Wiy jie> -+ » wk+np+1|k] a4

where w,,,, represents the maximum wave heave amplitude at which
the WEC can safely operate. The non-causal optimal control problem for
a WEC can be solved within the receding horizon framework of MPC by
recursively solving the following constrained optimal control problem:

n,—1
ut = ar min Uity i (15a)
k g[“k\ksu-y“k-pn,,—l\k] ; kil k" k+i|k
5..(9), (12), (15¢), (15d) (15b)
|Zk+i| < cIDmax’ |Uk+i| < Umax> |uk+i| < Umax» (15C)
VNwgy;| £ Winax, Vi € Iig 1) (15d)

where the first element of v is applied as the control input at time
instant k.

Unlike traditional MPC, which primarily relies on convex quadratic
programming for state regulation and trajectory tracking, MPC applied
to WEC aims to maximise energy output. Due to the high uncertainty of
waves, its cost function vy uy4 €xhibits non-convex characteristics.
WEC operates under periodic and highly uncertain sea conditions for a
long time, making it difficult for the system state to converge to a fixed
equilibrium point. The controller must not only ensure that the state
and control inputs satisfy the constraints (11) under various incident
wave conditions, but also continuously adhere to wave height limits
(13) to ensure safe and reliable operation. WEC-MPC is a non-causal op-
timal control problem. By introducing short-term wave prediction w,
the controller can actively adjust the control strategy. Compared to tra-
ditional MPC, which treats external disturbances as suppression targets,
WEC uses incident waves as the primary energy source, and the control
objective shifts from suppressing disturbances to actively enhancing en-
ergy absorption.
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Fig. 3. WEC non-causal EMPC framework.

3. Non-causal EMPC structure design

This section describes the proposed non-causal EMPC. Section 3.1 ex-
plains the overall controller strategy. Section 3.2 introduces the EMPC
architecture design. Section 3.3 presents a wave prediction method
based on an autoregressive model.

3.1. Overall strategy

The proposed non-causal EMPC method is implemented within each
sampling period. Based on the current measurable system state and wave
forecast information, a prediction model is established and a finite-time
optimisation problem is solved to obtain the optimal control input u,.
This input acts on the dynamic model of the float/actuator, updating the
system state and serving as a coupling variable between the mechanical
and electrical sides. By combining the motor and generator parameter
relationships, the current i, and voltage v, are calculated, yielding in-
stantaneous power and energy output for evaluating energy conversion
performance. By simultaneously performing control optimisation and
electrical performance evaluation in a unified control loop, this method
quantitatively analyses the electromechanical energy conversion pro-
cess based on the wave-to-wire model and updates control decisions in
real time. Meanwhile, the state observer acts on the mechanical sub-
system based solely on the measured displacement and velocity signals.
Electrical variables such as current and voltage are regulated by fast in-
ternal control loops and are therefore not directly included in the state
estimation process. Their impact on the mechanical dynamics is implic-
itly reflected through the power take-off (PTO) force, which serves as
the control input in the state-space model. Under the receding-horizon
implementation, the discrete rate constraint (12) is enforced at each
sampling instant, ensuring that the applied control increments remain
within the bound throughout the closed loop Fig. 3.

3.2. Economic model predictive control

Conventional MPC methods for WEC often encounter difficulties in
guaranteeing recursive feasibility (Zhang et al., 2020). EMPC is intro-
duced to overcome this limitation. In practical applications, not all states
can be directly measured, and the non-causal and long-term memory
characteristics of radiation dynamics exacerbate prediction errors. This
paper employs an observer based on an autoregressive model to recon-
struct the complete state from measurable signals to improve prediction
accuracy. After obtaining the optimal control input, the EMPC frame-
work is further combined with an independent wave-to-wire model
to calculate the current, voltage, and power at the generator termi-
nal, thereby enabling quantitative assessment of energy performance
and feedback updates. Based on this, an integrated EMPC framework is
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proposed:
up = FX; + 6 (16)

where F is the feedback gain designed offline, X is the estimated state,
and § is an auxiliary variable that requires online calculation. In the
EMPC framework, the design of the feedback gain matrix F ensures
system robustness under various sea conditions, thereby enhancing the
wave energy system’s adaptability. § is obtained by solving an online
optimisation problem that maximises energy output while satisfying sys-
tem constraints.

Based on the available wave prediction (14), a Luenberger observer
is designed to estimate the full information of the state, which is in the
form of:

Xp41 = AXy + By + Bwy + Ly — CXy) a17)

where wy, is the estimation of current wave excitation and is defined
in (14), y, is the measured output:

v = Cxy (18)

where C :=[C,,C,], C, and C, are defined as in (7). Assume A, C are
observable. The observer gain L must satisfy p(A — LC) < 1 to ensure
that the estimated state %, can effectively reconstruct the actual state
x, within the allowable error range (¢, := x, — %,). Due to the presence
of input and state constraints, the traditional controller-observer separa-
tion principle is no longer directly applicable. Therefore, the impact of
state estimation on the closed-loop system must be explicitly considered
in controller design to avoid constraint violations. Comparing (9) with
(18) yields:

Sir1 = (A= LOYy + By + B, (wy — wye) 19)

Since p(A — LC) < 1, there exists a bounded set E such that for all
k>0, & € E (Mayne et al.,, 2006). When k — oo, the estimated error
& — 0, and wy), = wy. Since the systems A, C are observable and the
observer poles can be placed at the desired locations by adjusting L, this
paper assumes that the observer gain design ensures that E is sufficiently
small. According to observer design principles, while larger gains can
accelerate error convergence, they also increase the demand for compu-
tational resources. Therefore, in practical applications, a trade-off must
be struck between convergence velocity and real-time performance. Al-
though a numerically tractable MPC algorithm can be constructed based
on Eq. (15) and combined with incident wave preview information (Li
and Belmont, 2014), its recursive feasibility cannot be guaranteed.

In order to explicitly characterise the bounded estimation error, the
set E is defined as the minimal robust positively invariant (mRPI) set
of the error dynamics (19), namely E = {¢£ € R™ | (A— LC)é+ B, €
E, Vi € W}. It can be iteratively computed by E, | = (A - LO)E; &
B, W with Eq, = {0} until E,,; C E,, yielding a compact polyhedral set
that bounds all feasible estimation errors under the bounded distur-
bance W. E obtained by this fixed-point iteration is numerically incor-
porated into the constraint tightening in (22). Physically, E describes
the admissible region of estimation uncertainty.

Following the recent analysis of Garcia-Violini et al. (2024), the
performance of structure-based excitation-force estimators critically de-
pends on the spectral characteristics of the assumed disturbance model
A,. While harmonic-oscillator estimators can achieve perfect conver-
gence for purely periodic waves, they tend to amplify high-frequency
components and become numerically ill-conditioned when their as-
sumed excitation frequency is large. Conversely, the random-walk for-
mulation (A4, = 0) offers superior robustness in broadband, stochastic
seas by avoiding such spectral amplification. In light of these findings,
the proposed Luenberger observer adopts a low-gain configuration so
that the eigenvalues of (A — LC) remain within a moderate region of
the unit circle, thereby limiting the closed-loop bandwidth and main-
taining numerical stability. This treatment ensures that the tightened
constraints in (22) remain robust under model mismatch and parameter
drift, keeping the closed-loop system recursively feasible.
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Table 1
Notation of sets (property and symbol).
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Property (with units)

State admissible set (components include displacement [m] and velocity [m/s])

Input admissible set (control force [N])

Bounded disturbance set (wave excitation force [N])

Estimation-error set (same physical units as the state vector)

E
Accumulated disturbance / tube set at prediction step i (state space) D
z

Terminal set; maximal output admissible set under bounded disturbances (state space)

For clarity, Table 1 summarises the set notation and units. To facil-
itate constraint handling, the state and input constraints and perturba-
tion bounds are expressed as x € X, u € U, w € W, respectively, where
X, U, and W are defined as follows:

X = {x €R™ | |C;x;| € Ppaes 1Cox4| < Vo }
Ui={ueR | lul <tpae } (20
W:={WER | |wklswmax}

where C, and C,, are defined in (7), ®,,,, and v,,, are defined in (11),
and w,,, is defined in (13). To ensure that the constraints given in
(11) are satisfied and to guarantee recursive feasibility, the constraint
in (15c¢) is further imposed for all i > 0.

The satisfaction of x;,; € X and u,,; € U for all i >0 and for any
incoming wave profile w;; € W under given sea conditions can be en-
sured by introducing tightened constraints. The predicted auxiliary state
and input trajectories are required to satisfy X, € X; and ;) € U
for i € I[0,n, — 1], and )'c"p +klk € Xg, where these trajectories are ob-
tained from the auxiliary system defined below:

Xpqivie = AXppipe + Builigijk
Btk = FXpqipk + i 21

Xpjke = X
where %, denotes the state estimate generated by the Luenberger ob-
server in (17), and the tightened constraint sets are specified as follows:
X; ;=X ~E~D,,

-1
D, := Y AL[B,W® Ay — ApE|, Xy :=Z~D
j=0
where A := A+ B,F, A; := A— LC; X, U, and W are defined in (20);
¥ is the maximal output admissible set (MOAS) defined by:

U, :=U~ FD;,

N 22)

Xyl = ApX + 1
Ti=9x€EX:x, €X~E, u €U, Vkely (23)
Vi, € B,W@ (A, — Ap)E

Following the robust MPC formulation proposed by Mayne et al.
(2006), the recursive feasibility and closed-loop stability of the proposed
EMPC are analysed as follows.

To formally guarantee recursive feasibility, consider the closed-loop
error dynamics:

€1 =(A+ B, Fe, + Bwy (24)

where e := x; — X, denotes the deviation between the actual and
nominal states. If there exists a compact set S satisfying the robust pos-
itive invariance condition:

(A+B,F)S®B,WCS (25)

then S is a mRPI set for the closed-loop error dynamics. By tightening
the feasible regions as:

Z:=X6S V:=USFS (26)

where Z and V denote the tightened set of state and input constraints,
eliminating biases due to bounded disturbances and estimation errors.
The feasibility of the nominal optimisation problem at time k implies

its feasibility at time k+1. If X, € Zand i, € V at time k, then X, ,; € Z
and &, | €V, ensuring recursive feasibility of the EMPC under bounded
disturbances.

Furthermore, to demonstrate closed-loop stability, define the
quadratic Lyapunov function:

Vie)=e Pe,, P>0 27)

If there exists P satisfying the discrete Lyapunov inequality:

(A+B,F)TP(A+B,F)-P<-0, 0>0 (28)

then V(e;,1) — V(e,) < —e} Qe; < 0 for all ¢, # 0, indicating that the er-
ror e, asymptotically converges to the origin. Consequently, the closed-
loop state x; = Xy, + ¢, remains bounded within the invariant tube S,
while satisfying x;, € X and u; € U for all k. Hence, both recursive fea-
sibility and asymptotic Lyapunov stability of the EMPC framework are
theoretically ensured.

Algorithm 1 Iterative computation of the estimation-error set E (mRPI).
Require: A; C; L; B,,; W.
Ensure: The mRPI [E for
B,w;, w, €W.

1: Initialisation: Set E, < {0}.

2: fori=0,1,2,... do
3 Update: E;,; < (A- LO)E; & B, W.
4: Convergence check: if E;,; C E; then break.
5
6

error dynamics e;,; =(A— LC)e; +

: end for
: Return: E < E, ;.

By comparing (21) with (9), it follows that:

i
_ j-1
Xpi = Xpgitre + Ekie + 2 Ap B, wiy;
=

i
_ -1
Upyi = T + F<z Ay B, wk+j>

Jj=1

(29)

The tightened constraints in (22) are met by the state and input tra-
jectories determined by (21), x44; — &4y € X ~ E and uy; € U for all
i € I[0,n, — 1], and x, +n, = Skernylk € Z. By selecting the terminal local
controller uy,; = Fx,,; for i > n, and invoking the definition in (23), it
follows that for all i € T, x;,; € X and u;; € U:

Xkti = Sevitk € X ~ E, Uy €U (30

Since the state estimation error satisfies &, € E, for alli € I> 0,
xk+i€ X and u,,; € U. If the feedback gain F is designed such that
p(A + B,F) < 1, the MOAS in (23) is a polyhedron and can be computed
in a finite number of steps according to Kolmanovsky and Gilbert (1995).
The detailed computational procedure is summarised in Algorithms 1
and 2.

Numerically, the computation was implemented using the MPT3
toolbox. A less conservative (larger) ¥ enlarges the feasible region but
reduces robustness to model mismatch. A smaller ¥ ensures stronger
constraint satisfaction but sacrifices the size of the feasible region. To
maximise the safe operating range of the sea state sensor, F should be
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Algorithm 2 Iterative computation of the maximal output admissible

set T (MOAS).

Require: X; E; Ap; A;; B,; W.

Ensure: Maximal output admissible set £ for the disturbed/estimated
closed-loop dynamics.

1: Initialisation: £, < X ~ E.
2: fori=0,1,2,... do
3: Disturbance/estimation aggregation: D < B, W @ (A; — Ap)E.
4: Update:
T {xeX~[E‘AFx+neZ[, VneD).
5: Convergence check: if X, ; C X, then break.
6: end for

7: Return X « X, ,.

selected to ensure that the resulting MOAS lies below the maximum dis-

turbance bound w,:

MAX Wy s.t. 3% satisfies(23) (31)

The constrained optimisation problem generated by the original ob-
jective function defined in (15b) is generally non-convex, which leads to
excessive computational complexity. Directly adopting the original ob-
jective function may result in optimal control being achieved using only
the upper and lower limits of the control input. Frequent switching be-
tween extreme values increases the complexity of control implementa-
tion. Research (Li and Belmont, 2014) has demonstrated that solving the
non-convex problem by appropriately modifying the objective function
can significantly influence the control performance. In order to solve the
problem caused by non-convexity, the objective function is convexified
in an optimal way:

n,—1

2 (ﬁk+f|k CoXpqite + "Ziwk) (32)

=l

where the predicted trajectories X, and i, are computed from an
auxiliary system:

Xiirt |k = AXpyiye + Bty + By Wiy i
Uik = F Xpqi |k + ik (33)
Fppe =3
which can be rewritten in a compact form as:
6{Hs, + 6[F + G (34)

where & 1= [y ---» Sketn, 11k 17. Coefficients H, F, and G are de-
termined by straightforward matrix manipulations. From (33), the
predicted heave-velocity and control-input trajectories are v, :=
[CoXgr -+ » CoRpopm—11] and uy 1= [ugppes Byqqpps - g, 11k 5 which are
calculated by the following formulas:

Vi =M% +C,.0, +Cp,Wy, 0, =M% +C,0 +C,wW, (35)
where
C, I
C A FA
M, = F | m,= T
n,—1 n,—1
| CoAY FA?
[ 0
C,B, 0
c,, :=| C,AgB, C,B, 0
.72 : .
|c,A}B, C,A;B, C,B, O
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0
C,B, 0
Cuo:=| CoArB, C,B, 0
—2 ’
C,AY""B, C,ArB, C,B, 0
1 0
FB, 1 0
C, :=| FArB, FB, 1 0
n.72 ’
FA? B, FAyB, FB, 1
0
FB, 0
C,, :=| FA¢B, FB, 0
FA"B, FAzB, FB, 0

where Ap := A+ B, F and (32) can be written in matrix multiplications
rﬁ{ﬁk + ﬁ{ﬁk. With (35), the H, F, and G in (34) can be determined by:

H = rCClATCClA + %(CL‘MTCL’U + CL‘UTCCM) (36)
T N N
F= (Ccv + rCcu) (MuXk + Cwuwk) + CcuT(MuXk + Cwuwk) (37)

G= (Muf(k + Cwuwk)T(Mvﬁk + vawk)
+ MRy + Cywi ) (MR, + C W) (38)

Compared with the original stage cost (15a), the modified stage
cost (32) introduces a regularisation term to enforce convexity of the
quadratic program. To achieve a balance between convexity assur-
ance and control performance, the coefficient r should be selected such
that convexity is guaranteed while energy capture is maximised. In
this study, the optimisation framework leads to an optimal value of
r* = 1.788 x 1074, which achieves the best trade-off between numerical
convexity and energy output in simulations:

min |r|, st.H>0 (39)
r>0

3.3. Wave prediction by autoregressive model

Recursive least squares (RLS) is a widely adopted parameter esti-
mation algorithm, and it is applied to train an autoregressive model
for wave data prediction with the aim of minimising the model error.
The sampling time is T}, with training and prediction durations of T 4,
and Tjregicr> respectively. A 1-second prediction phase is carried out af-
ter every 5-second training cycle. The total prediction time is expressed
as Tyoa1- Each prediction horizon contains Np,.q prediction points. The
training-prediction cycle time offset Ng,;; is the time interval between
the training and the prediction. The initial regularisation coefficient is
(pase- TO ensure that the training data remains uniform in scale, the data
is processed by normalisation:

_w—p
w =

(40)

o
where @ denotes the standardised training value, x and ¢ are the mean
and standard deviation of w, respectively. Before performing multi-step
prediction, an initial input vector ¢ is initialised, which contains past
observations required for prediction. The input vector is defined as:

- T
thrain —p+1 ] (41)

where the first p data points from the training data are flipped to con-
struct the input vector ¢ of the autoregressive model, p is the order of the
autoregressive model, implying that each subsequent prediction relies
on previous p data points. The predicted value is expressed as:

Whred = 0 (42)

¢ = [thrain M)Ntrain_1
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where wy,eq denotes the predicted value, and the parameter vector ¢
represents the model weights, initially assigned as a zero vector. 6 is
updated progressively to minimise the prediction error by using the RLS
algorithm. The predicted error ep.q is formulated as:

€pred = w— Wpred (43)

where e,.q denotes the predicted error, defined as the difference be-
tween the predicted and the actual values. Through this procedure, the
multi-step prediction results can be obtained for a specified time hori-
zon:

@dynamic = *dynamic(l + |€predl) 44

where the dynamic regularisation coefficient agynamic is initialised as
pase+ Xdynamic 1S adapted to regulate the update strength at each step.
When |epreql is large, agynamic is increased to the magnitude of parameter
updates. The Kalman gain K is expressed as:
P /
K= L (45)
Ans + oPY + Adynamic +1

where P¢’ denotes the incremental information derived from the past,
the denominator incorporates both the forgetting factor 4,;; and the reg-
ularisation term, ensuring stability of the update. i, mitigates the in-
fluence of old data. P represents the covariance matrix employed for
updating the parameter calculations. The regularisation parameter / is
introduced to prevent overfitting. The parameter update equation for 6
is expressed as:

O = 0y + Key preq (46)
The covariance matrix P is updated according to:
1 —=K¢y_1)P_
Pk:( -1 P 47)
}‘rls

where P progressively converges over time, diminishing the model’s
sensitivity to historical data while improving both the stability and ac-
curacy of predictions:

o 1 Nirain
Ef) = —— lepredl (48)
" Nigain =P k=§—l pre

where Eg;) represents the cross-validation error of the autoregressive
model of order p, serving as a metric for model fitting performance
across different orders: smaller values indicate superior model fitting,
Nirain is the total number of training samples, Ny, — p is the number
of observations employed in error computation, and k is the index vari-
able ranging from p + 1 to Ny.;,, ensuring that sufficient past data are
available for prediction.

Traditional modelling sequential estimation methods include the
Akaike Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) (Atyabi et al., 2016). AIC avoids overfitting and penalises
complex models through a trade-off between accuracy of fit and model
complexity:

Nirain

AICp = Nirain 108 ( Z ef)red) +2p (49)
train j—p1
1 Nirain

BIC), = Nisain log < Z ef)red) + plog(Nirain) (50)
train g—pi|

where AIC, and BIC, represent the AIC and BIC values, respectively,
for an autoregressive model with order p, a smaller value indicates a bet-
ter fit, Ny, denotes the number of training samples, log is employed to
capture data growth rates and evaluate model complexity, ZkN:t;‘j:‘] elz)re d
is the sum of squares of prediction errors, 2p denotes the penalty term for
model complexity in AIC, and plog(Ny.,;,) denotes the penalty term in
BIC, which increases with the sample size. BIC imposes stronger penal-
ties on higher-order models and thus tends to select simpler models to
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Table 2
QP characteristics and computation performance of the proposed EMPC.
Property Value
Solver type Active-set QP (quadprog)
Decision variables 10
Linear constraints 2
Hessian condition number 2.85x 10°
Positive definiteness Yes
Average computation time 3.3ms
Maximum computation time 151.6 ms
Warm-start usage No
Sampling period 0.1s

Hardware platform Lenovo ThinkPad X13 Gen 2 (Intel i7, 1.9 GHz)

avoid overfitting. Compared with AIC, BIC is stricter in penalizing com-
plex models.

To implement multi-step prediction, the initial predicted value
W) pred is appended to the input vector ¢,.q and treated as the most
recent observation for subsequent multi-step predictions:

~ T
thrain_P+2] (51)

Multi-step prediction is carried out using the parameter vector § and
the input vector ¢y.4. The corresponding model output 04 is obtained
as:

wpred = 9¢pred (52)

where 0,q denotes the predicted normalised value. For multi-step pre-
diction, the prediction output is recursively fed back, and the input vec-
tor is updated at each step k:

1. Generate the new prediction (52).

2. Update preq:

¢'pred = [wl,pred thrain LUNlrain_1

¢1 :end—l,pred] ! (53)

where the input vector ¢y..q incorporates the most recent predicted
value together with the past actual observations. After multi-step predic-
tions, the predicted results are denormalised to convert the normalised
predictions back to the original scale:

‘f)pred = ["@1 ,pred

W= Wpreqo + H 54

where w denotes the prediction result after denormalisation. For the first
prediction, the predicted segment is appended directly to the overall
results. For subsequent predictions, continuity is maintained by setting
the initial value of the new segment equal to the last predicted value of
the preceding segment, after which the segments are concatenated:

Wpall = [wp,all’ u_)] (55)
where w,, ,; denotes the cumulative predicted value. Following each
prediction, the timestamp is updated accordingly:

tp,all = [lp,allvtpi] (56)

where 1), ;; denotes the cumulative predicted time, and 7,,; represents the
time series of the current predicted segment.

4. Simulation results and analysis

Table 2 This section shows the simulation results generated using
MATLAB R2023b. The computer model is the Lenovo ThinkPad X13 Gen
2. This paper uses real wave data collected from the coast of Cornwall,
UK. The state space matrix of the impulse function for calculating the
radiation force is:

0 0 -179 36.5
A.=[1 0 -177| B, =|3%]| C,=[0 0 1]
0 1 -441 75.1

The system is discretised with a sampling time of 7, = 0.1 s, and the
non-causal EMPC is constructed using the Algorithm 3. At each sampling
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Algorithm 3 Implementation of the non-causal EMPC (active-set QP
solver, MATLAB quadprog).
1: Obtain the short-time incoming wave prediction w from the autore-
gressive model.
2: Update the state estimation:

R = Rt + L{yk = Cye) G7)
where %,,_, is the estimated state computed at the previous time
instant k — 1.

3: Compute the optimal control correction by solving the following
quadratic program:

5 =arg min 5/H5, +8,F s.t. (21) and (22) (58)

s

4: Solve (58) and apply the control input u;, = F% + 6k|k,

the first element of ;.
5: Compute the reference signal of i; and v,:

s
where 6k‘k is

. 2 Fpro ref T

fonet = _\/; ol (59)
n,(wy+ Ly — Liy)

Vg = _Ki,q/(iq - iq,rcf)dt - Kp,q(iq - iq,rcf) (60)

6: Update the state prediction:
Riq1k = AZp + B uy + By, wy (61)

where wy, denotes the current wave measurement/prediction con-
sistent with the AR model.
7: Proceed to the next time instant k + 1 and repeat steps 1 to 5.

Note (solver setup & timing). Each control step constructs the QP and
solves it with MATLAB quadprog (active-set, no warm start). In MAT-
LAB R2023b on a ThinkPad X13 Gen 2 (Intel i7, 1.9 GHz), the mean
and worst-case solve times are 3.3 ms and 151.6 ms, respectively. Occa-
sional peaks stem from constraint switching, while the average remains
well below the 0.1s sampling period, confirming real-time feasibility.
Considering desktop-embedded performance differences, the estimated
execution on an ARM target also fits within the 0.1s budget. Further
solver characteristics are summarised in Table 2.

time, using wave prediction techniques, the incident wave excitation of
t, =1 s (corresponding to n = 10 prediction steps) can be obtained. The
observer gain L is designed as:

—4.4657]"
7.4290

_ [0.9412
~10.0980

-1.1639
0.9400

0.5283
-3.1529

—20.5234

L 31.9104

Assuming that the estimation error of the ocean current wave ex-
citation force satisfies |wy — wi| < 0.1 Wy, the error bound E = {e €
R3 : |C,e| <0.01} is obtained. The feedback gain F is designed as:

[F=-416.61 —102557 0.1225 —0.4785 0.9963] (62)

and the maximum wave excitation boundary for MOAS X is w,,,, =
3.52 kN. The non-causal EMPC can operate safely in all sea conditions
where the maximum wave excitation does not exceed 3.52 kN.

To facilitate the design of non-causal EMPC, (22) is used to compute
the tightened state constraints X,, input constraints U,, and the termi-
nal constraint set Xr for k € o). Fig. 4 shows the projection of X, onto
the x,-x, plane. The contour lines correspond to the continuously tight-
ened feasible region, with the outermost boundary corresponding to X
and the innermost boundary corresponding to Xy. As k increases, the
set gradually shrinks, reflecting the gradual narrowing of the feasible
state domain. Its symmetry about the two coordinate axes reflects the
constraint balance in the x; and x, directions. The figure also shows
the projection of the tightened terminal set X, onto the x,-x, plane.
Since the system is of fifth order, direct visualisation in the full state
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Fig. 4. Projection of the tightened state constraints on the x,-x, plane. The

contour lines from outside to inside represent X, X, ..., Xo.
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Fig. 5. Tightened control input constraint sets U, for k € ljp; ;.
Table 3
Physical parameters of autoregressive model.
Description Notation  Value
Forgetting factor Aris 0.99
Initial regularisation coefficient  ay,g,. 10-8
Regularisation parameter 13 10-8
Sampling time T, 0.1s
Training duration Train 5s
Prediction duration Tpredict Is
Total prediction time Trotal 200s
Prediction points Nipred 11
Cycle time offset Naige 10
Covariance matrix P 10" x1,
Identity matrix I, diag(l, ..., I)PX‘,
Table 4
Physical parameters of the WEC model.
Description Notation Value
Float mass m 242kg
Added mass m 83.5kg
Total mass m 325.5kg
Stiffness kg 3866 N/m
Control input limit Upax 3.5kN
Heave displacement limit @, 1m
Heave velocity limit Unax 2m/s
Control input rate limit Upax 3.5kN/s

space is not feasible, so a two-dimensional projection is used to high-
light key features. The closed contour lines define a compact, symmetric,
and smoothly bounded feasible terminal region, thus ensuring terminal
constraints, closed-loop stability, and constraint satisfaction Tables 3,4
and 12.

To ensure a fair comparison, the conventional MPC and the pro-
posed non-causal EMPC use the same model dynamics, state and input
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RMSE = 0.741

i
[

—Actual
---Predicted
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Wave Excitation Force (kN)
o
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Fig. 6. Comparison of actual and predicted wave excitation forces. The solid
red line represents the actual data, and the dashed blue line represents the pre-
dicted data. Forces are expressed in Newtons (kN), and time is expressed in
seconds (s). The root mean square error (RMSE) of the predicted values is 0.741
demonstrating excellent agreement between the actual and predicted data.
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Fig. 7. Energy output comparison using the conventional MPC with different
tuning of r.

constraints, and prediction horizon (T, = 1.0s, corresponding to 10
steps). The only difference is that the EMPC uses predicted future wave
excitations, while the conventional MPC uses current and past wave
measurements for causal calculations. Both controllers use the same cost
function weights and solver configuration to ensure consistency in op-
timisation conditions.

For both the proposed non-causal EMPC and the conventional MPC,
the objective function based on (32) is employed, with the weighting
coefficient r designed according to the principle in (39). When r =0,
the original cost function becomes non-convex with respect to the op-
timisation variable ¢, rendering the problem invalid for convex opti-
misation methods. Experiments have found that feasibility and con-
straint satisfaction can only be guaranteed when r > 1.788 x 10~%. When
r=1.787 x 1074, the optimisation problem fails to obtain a feasible so-
lution. When the parameter r approaches a critical value, the optimisa-
tion problem exhibits high sensitivity to numerical perturbations, indi-
cating that the condition number of the Hessian matrix in this region
increases rapidly and numerical stability decreases. At this point, the
margin of positive definiteness weakens, and the solver becomes ex-
tremely sensitive to initial values and round-off errors, potentially lead-
ing to infeasibility or unstable convergence. With slightly larger val-
ues of r, the numerical conditioning of the Hessian gradually improves,
and the optimisation problem regains strict convexity and stability. To
ensure that the solution remains positive definite and numerically sta-
ble over the entire operating range, the following selection criterion is
used. Select the smallest r that is practically well-conditioned within the
solver’s tolerances, such that the optimisation problem remains strictly

10
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Table 5
Energy output comparison table using the conventional MPC with differ-
ent tuning of r.

r(x10™) 3.388 2.988 2.588 2.188 1.788 1.787
Energy (J) 62804.3 69020.2 76702.5 86297.4 99247.3 Infeasible
Table 6
Energy with r under different sea states.
r Sea state - Energy [kJ]
Light Moderate  Heavy
1.788 x 10~* 129.64 127.86 121.51
1.988 x 107* 127.87 122.47 119.97
2,188 x 10~* 104.85 101.66 98.73
2.388 x 1074 79.11 76.60 74.48
2.588 x 107* 55.43 54.29 52.00

convex and numerically stable, and no infeasibility or unstable con-
vergence is observed over the operating range. Applying this criterion
yields r = 1.788 x 10~#, which serves as a practical lower bound for the
regularisation parameter. This setting effectively avoids pathological be-
haviour caused by near-singular regions and achieves a good balance
between control stability and energy optimisation performance. It is im-
portant to note that the simulation precision of 10-> amplifies the sen-
sitivity near the critical value r, resulting in an apparent "jump". This
phenomenon is an amplification of numerical pathologies in the critical
region at the selected numerical precision, and does not indicate physi-
cal model instability or structural instability in the algorithm. Therefore,
the apparent discontinuity is primarily a numerical artifact caused by
the precision setting, and its root cause remains inherent pathologies in
the critical region. The current MPC framework allows for flexible ad-
justment of the parameter r through experimentation. The relationship
between energy output and different r values can be analysed, and then
MPC strategies can be compared. Fig. 7 illustrates the energy output of
the WEC under the conventional MPC with different values of r, and
the corresponding results are summarised in Table 5. The optimal en-
ergy output adjustment scheme yields 99.25kJ at » = 1.788 x 10~*. This
value ensures optimisation problem convexity while balancing control
performance and computational feasibility, thereby improving the ro-
bustness of the optimal solution.

Fig. 5illustrates the gradual tightening of the control input constraint
set Uy, where k € [y o). As the number of forecast steps increases, the fea-
sible region (horizontal interval) gradually shrinks, reflecting a dynamic
tightening characteristic along the forecast horizon. The outer bound U,
corresponds to the initial moment and allows for greater control free-
dom. The inner bound Uy represents the most stringent constraint at
the end of the forecast. This tightening mechanism ensures that con-
trol inputs remain within a safe range throughout the forecast horizon
and remain feasible in the presence of model uncertainties and pertur-
bations. The symmetrical tightening of the constraints around the zero
axis indicates consistency in both positive and negative directions.

With the aim of assessing the robustness of the convexi-
fication parameter r, the energy-capture metric was evaluated
for r € {1.788, 1.988, 2.188, 2.588, 2.788} x 10~* under three controlled
scenarios-sea state, signal-to-noise ratio (SNR), and prediction error
within the same EMPC framework (see Tables 6-8). In these tests, the
SNR bias is applied to the measured output y,, and the prediction bias
is applied to the predicted wave-excitation amplitude. The results show
that, across all scenarios, the row-wise energy decreases monotonically
as r increases and the ranking is consistent, indicating that the selected
r is robust to variations in sea state, SNR, and prediction error. Based
on these results, r = 1.788 x 10~* is adopted uniformly.

For analysing the impact of prediction horizon length on control per-
formance, this paper conducted prediction horizon sweep experiments
under the same EMPC framework, setting the prediction horizons to
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Fig. 8. Control input response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with inaccurate
predictions (red solid line). The conventional MPC (black solid line).
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Fig. 9. Heave displacement response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with

inaccurate predictions (red solid line). The conventional MPC (black solid line).

Table 7 Table 9
Energy with r under different SNR levels. Effect of prediction horizon length on
energy.

r

SNR-Energy [kJ]

Prediction horizon 7, (s)

Energy (kJ)

30dB 40dB 50dB
1788 x 10 129.02  127.78  127.73 (1)'3 (baseline) 135:2
1988 x 10~ 12492 12298 12245 20 aseline 12614
2.188x 10 10243  101.75  101.61 : :
2388x 10  78.48  76.59  76.52
2588x 10  56.45  54.53 54.25
sorption results for different prediction horizons. As the prediction hori-
zon increases from 0.5s to 2.0s, the energy decreases slightly and then
Table § levels off. While sh diction horizons yield slightly high
Energy with » under prediction bias. evels off. While shorter pre 1ct.10n orizons yield slig tly higher energy,
they also lead to more aggressive control behaviour. Longer prediction
r Prediction bias - Energy [kJ] horizons, however, suffer from accumulated prediction errors, resulting
5%bias  10%bias  20% bias in limited performance improvements. Considering prediction accuracy,
1788 % 10+ 127.77  127.64 127.30 feasﬂ?lhty, an.d .comput.atlonal cost, this paper adopts T, = 1.0s as the
1988x 10 12243  122.38 122.25 baseline prediction horizon.
2.188x 107 101.60  101.55 101.44 For an evaluation of the controller’s dependence on prediction ac-
2.388x 107 76.58 76.56 76.52 curacy, this paper systematically examines three typical degradation
2588x 10 54.26 54.24 54.19

T,=0.5s, 1.0s, and 2.0s. The model parameters, wave input, and con-
troller structure remained consistent across all operating conditions;
only the wave prediction horizon varied. Table 9 presents the energy ab-
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scenarios: constant bias, root mean square error (RMSE), and miss-
ing prediction data. The results are shown in Table 10. The pro-
posed non-causal EMPC is highly robust to prediction errors: when
the bias and missing data rates increase to 20 %, the energy decreases
by less than 0.5%. When the RMSE increases from 0.741 to 3.048,
the energy decreases by only approximately 3.9 %. This demonstrates
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Fig. 10. Heave velocity response comparison. The proposed non-causal EMPC with accurate predictions (blue solid line). The proposed non-causal EMPC with

inaccurate predictions (red solid line). The conventional MPC (black solid line).
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Fig. 12. Control input rate of change (PTO force-rate, Au).

that the controller can maintain stable and near-optimal performance
despite significant degradation in prediction accuracy, validating its
practical reliability and engineering feasibility under imperfect wave
prediction.

To systematically verify the effectiveness of the proposed non-causal
EMPC strategy, this study selected measured wave data from the coast
of Cornwall, UK. Based on the acquired raw data, an autoregressive
(AR) model was used to construct a wave prediction sequence, which

provides feedforward information for the model predictive controller.
While preserving the measured wave characteristics, a statistically con-
sistent predicted wave signal was obtained. Fig. 6 shows a comparison
of the actual wave excitation force curves calculated from the measured
data and the wave excitation force curves generated from the prediction
data, visually demonstrating the accuracy and effectiveness of the pre-
diction model in capturing the key wave dynamic characteristics. The
comparison results were evaluated using the root mean square error

12
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Table 10
Sensitivity of energy to prediction accuracy (bias, RMSE,
and missing data).

Condition Parameter value  Energy (kJ)
Bias influence

0% bias (baseline) 0 127.86
+10 % bias +0.1 127.64
+20 % bias +0.2 127.30
RMSE influence

RMSE = 0.741 (baseline) 0.741 127.86
RMSE = 1.761 1.761 124.97
RMSE = 3.048 3.048 122.85
Missing data influence

0% missing (baseline) 0.0 127.86
10 % missing 0.1 127.62
20 % missing 0.2 127.33

4
15 x10 ‘
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---Wave-to-Wire EMPC (10% error)
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>
>
2
w s |
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Fig. 13. Energy output comparison. The proposed non-causal EMPC with accu-
rate predictions (blue solid line). The proposed non-causal EMPC with inaccu-
rate predictions (red dashed line). The conventional MPC (black dashed line).

Table 11
Statistical comparison of energy between noncausal EMPC and MPC
under five wave series.

Wave series MPC (kJ) EMPC (kJ) fEnergy gain (%)
1 99.25 127.86 +28.8

2 96.61 121.96 +26.2

3 81.12 103.65 +27.8

4 76.93 99.33 +29.1

5 71.23 90.89 +27.6

Average + SD  85.03 +12.3  108.74 + 15.6 +279+1.1

(RMSE), which was 0.741. This confirms the high agreement between
the measured and predicted wave forces.

The Figs. 8, 9, and 10 show the time responses of the control in-
put, displacement, and velocity, respectively, generated using the EMPC
framework. Both state and control input constraints are satisfied, and
the control method has achieved its maximum energy conversion limit.
Case 1 shows the proposed non-causal EMPC with accurate wave excita-
tion predictions (blue solid line). Case 2 shows the proposed non-causal
EMPC with a prediction error of 10% (red solid line). Case 3 shows
conventional MPC with an optimal parameter of r = 1.788 x 10~* (black
solid line).

Fig. 11(a) and (b) show the generator phase current and terminal
voltage during the non-causal EMPC operation, respectively. Both sig-
nals remain within safety margins, exhibiting no significant overshoot
or distortion. The energy output for the two scenarios is compared in
Fig. 13. The energy output of the conventional MPC is 99.25kJ, while
that of the non-causal EMPC is 127.86 kJ, representing a 28.8 % increase
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Table 12

Physical parameters of the wave-to-wire model.
Description Notation Value
Pole pairs p 43
Effective radius Teq 0.45m
Permanent magnet flux vy 0.28 Wb
Stator resistance R, 02Q
d-axis inductance L, 0.02H
g-axis inductance L, 0.02H
Maximum g-axis current g max 200A
Maximum g-axis voltage v, . 45V
g-axis PI gains (K, K ) (0.06, 0.6)
d-axis PI gains (K, 4. Kia) (0.06, 0.6)

in energy output. Since the conventional MPC adopts the same finite-
horizon QP structure as commercialised MPC controllers, it serves as a
realistic industrial baseline for evaluating control performance. This is
due in part to the fact that the state and input trajectories using the
non-causal EMPC, shown in Figs. 8 and 9, are closer to the boundaries
in most cases compared to the conventional MPC. This means that the
limits of the WEC design and the PTO mechanism are more effectively
utilised. In addition to amplitude bound on the PTO force, the discrete
rate constraint (12) is enforced. Fig. 12 shows the time profile of the con-
trol increment Au;, :=u;, —u;_,. All samples satisfy |Au;| < i, T, over
the whole window, and no violations occur. This confirms closed-loop
compliance with the rate constraint.

The consistency of control performance was evaluated using five in-
dependent wave sequences with statistically equivalent spectra. As sum-
marised in Table 11, the average energy of the proposed non-causal
EMPC is 108.74 A+ 15.6kJ, an improvement of approximately +27.9
A=+ 1.1% over the baseline MPC (85.03 A+ 12.3kJ). The low vari-
ance indicates that the energy enhancement is statistically stable, con-
firming the robustness and general applicability of the proposed control
strategy.

5. Conclusions

This paper proposes a non-causal economic model predictive control
(EMPC) based on a wave-to-wire model for the control of wave energy
converters (WECs), taking into account the computational limitations
of embedded systems. Wave prediction is implemented using an autore-
gressive model, and parameter identification is performed via recursive
least squares (RLS). Under the estimated wave state, the controller op-
erates in a 5-second training and 1-second prediction cycle, using piece-
wise prediction to reduce computational overhead. The wave-to-wire
model is integrated within the same optimisation framework. During op-
timisation, hard constraints tied to electrical limits are imposed on the
PTO force-rate, ensuring electrical feasibility is enforced at every step.
This approach unifies economic objectives, the wave-to-wire model, and
engineering feasibility into a single optimisation problem.

Simulation results demonstrate that, compared with traditional con-
trol methods, the proposed non-causal EMPC approach significantly im-
proves the WEC’s energy conversion efficiency while maintaining safe
operation under varying sea conditions. By incorporating a hard con-
straint on the PTO force-rate into the optimisation, the mechanical-
economic objective is tightly coupled with electrical feasibility,
reducing the risk of infeasible commands and suppressing potential in-
stability. Current, voltage, and PTO force-rate are maintained within
predefined limits. This framework concurrently verifies constraint satis-
faction and energy metrics within the same control loop, ensuring feasi-
bility for real-time deployment. Key properties such as recursive feasibil-
ity and robust constraint satisfaction are demonstrated. The non-causal
EMPC demonstrates robust performance even in the presence of rea-
sonable prediction errors. The introduction of the autoregressive model
further enhances the system’s environmental adaptability and control
accuracy.
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Overall, this research aims to implement real-time non-causal EMPC
on a platform with limited computational resources, providing new pos-
sibilities for intelligent control applications in harsh marine environ-
ments. However, this method still relies on prediction accuracy, and
large errors may affect economic optimisation results. Furthermore, cur-
rent validation is primarily based on idealised numerical models, which
do not fully consider complex sea conditions and equipment nonlinear-
ities.

Future work will focus on extending non-causal EMPC to nonlin-
ear systems and introducing more advanced wave prediction meth-
ods to further improve prediction accuracy. The stability and robust-
ness of this method will be verified under more complex and variable
real-world sea conditions, and hardware-in-the-loop (HIL) simulations
will be conducted to evaluate its real-time performance and feasibil-
ity in actual engineering environments. Current/voltage peaks and con-
straint switching will be quantified under different sea states and longer
timescales. The impact of the PTO force-rate hard constraint on the
energy-feasibility trade-off will be analysed, and robustness bounds will
be defined across a wider range of operating conditions.

Furthermore, future research will explore the integration of non-
causal EMPC with various renewable energy sources, and conduct long-
term reliability evaluations to demonstrate the stability and effective-
ness of such systems under real-world operating conditions.
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