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Abstract—In this correspondence, we derive closed-form bit
error rate (BER) expressions for a Spatial Modulated Orthogonal
Time Frequency Space (SM-OTFS) system under imperfect chan-
nel state information (CSI). We consider both Zero Forcing (ZF)
and Minimum Mean Square Error (MMSE) based equalization
techniques. OTFS modulation exhibits robustness against Doppler
shifts and multipath fading, while Spatial Modulation (SM) en-
hances the spectral efficiency by utilizing the antenna index to
encode additional information. However, imperfect CSI due to
realistic channel estimation errors encountered in rapidly varying
channel conditions significantly degrades the system performance.
We analyze the effects of imperfect CSI on the BER performance
of an SM-OTFS system for different equalization methods and
SM orders. The closed-form expressions derived provide valuable
insights into the trade-offs between the equalizer type, channel
estimation accuracy, and system performance, demonstrating the
necessity for robust channel estimation and resilient equalization
strategies in high-mobility environments.

Index Terms—Spatial modulation, MIMO, OTFS, SM-OTFS,
CSI, CSI error, channel estimation

I. INTRODUCTION

Orthogonal Time Frequency Space (OTFS) modulation has
emerged as a Doppler-resilient alternative to traditional multi-
carrier modulation schemes in wireless communication. It is
particularly well suited for doubly selective fading environ-
ments, such as the high-mobility scenarios of next-generation
(NG) networks [1]. By transforming information symbols from
the time-frequency domain into the delay-Doppler (DD) do-
main, OTFS effectively mitigates the inter-symbol interfer-
ence (ISI) and inter-carrier interference (ICI) caused by time-
frequency selectivity [2]. Recent advances have also explored
OTFS for integrated sensing and communications (ISAC) ap-
plications and high-mobility environments, where accurate de-
lay–Doppler parameter estimation and beamforming are criti-
cal [3].

Spatial Modulation (SM), able to improve spectral efficiency
at reduced complexity, beneficially complements OTFS by
leveraging spatial diversity without requiring multiple radio
frequency chains [4], [5]. In an SM-OTFS system, the informa-
tion is jointly mapped across the time, frequency, and spatial
domains, allowing for robust communication under challenging
propagation conditions. However, these benefits are significantly
impacted by the accuracy of channel state information (CSI) in
real-world deployments [6].
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[1] [8] [11] [12] [13] [9] our work
OTFS ✓ ✓ ✓ ✓ ✓ ✓
Spatial Modulation ✓ ✓ ✓
CSI Error ✓ ✓ ✓ ✓
Zero Forcing Equalisation ✓ ✓ ✓
MMSE Equalisation ✓ ✓

TABLE I: Positioning of this correspondence relative to the
prior art.

Accurate CSI is critical in SM-OTFS systems, especially
when employing minimum mean square error (MMSE) equal-
ization, which relies on precise channel estimates for counter-
acting delay-Doppler impairments encountered [7]. The impact
of channel estimation errors in pure OTFS schemes has been
explored in [8], but no prior works have addressed the unique
challenges that arise when realistic imperfect CSI is used in
SM-OTFS systems. Consequently, there is a pressing need for
quantifying the impact of CSI imperfections in SM-OTFS,
where estimation errors could degrade the system’s resilience
to fading and Doppler effects, ultimately affecting its reliability
and throughput [9].

This correspondence addresses the open problem of analysing
SM-OTFS under imperfect CSI. While previous works have
studied OTFS with estimation errors [8] and SM-OTFS under
ideal CSI [13], the joint impact of CSI inaccuracies on SM-
OTFS with closed-form BER analysis for linear equalizers
has not been reported. In contrast to OTFS-only studies that
overlook antenna-index detection, and SM-only studies with
CSI errors [9] that ignore delay–Doppler coupling and OTFS
equalisation, we derive and validate closed-form BER expres-
sions for SM-OTFS under ZF and MMSE detection. Our
analysis quantifies BER degradation due to imperfect CSI and
provides insights into designing more robust SM-OTFS systems
for high-mobility next-generation scenarios, with contributions
summarised in Table I. Similar analytical frameworks have
recently been extended to non-terrestrial links [10], further
demonstrating the relevance of imperfect-CSI analysis for high-
mobility channels.

This correspondence is organised as follows. Section II
presents our transceiver architecture and our system model.
Section III explores how ZF and MMSE equalisation will be
implemented and derives the corresponding BER expressions.
Section IV presents our results, comparing the performance of
both equalisation as well as the impact of channel estimation
error followed by conclusions in Section V. The notation and
definitions used in this paper are defined in II.

II. TRANSCEIVER ARCHITECTURE
A. Modulation and Mapping

A specific bit-to-symbol mapping is required in order to
implement spatial modulation as well as the classic quadrature
amplitude modulation (QAM). This subsection will describe
how the whole OTFS frame can be characterised according to
this joint modulation scheme, as seen in Figure 1.

Let Nt and Nr represent the number of transmit antennas
(TA) and receive antennas (RA) respectively. In this MIMO
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Symbol Meaning
S,Q Number of subcarriers/time slots per OTFS frame
T, ∆f Symbol duration (T=1/∆f ), subcarrier spacing
Tframe Frame duration (Tframe=QT )
Nt, Nr # transmit/receive antennas
M QAM order; bits per QAM symbol = log2 M
LSM, LQAM Bits via SM / QAM (log2 Nt, log2 M )
B Bandwidth (B = S∆f )
XDD, YDD Transmit / receive DD-domain vectors/matrices
HDD Stacked DD-domain channel (all RAs/TAs)
HDD

nr,nt
Per-link DD channel (RA nr , TA nt)

ρ2 CSI accuracy
σ2
η AWGN variance

Eb/N0 Energy-per-bit to noise-density ratio

TABLE II: Main notation used throughout the paper.

system, they are moving at high speeds, which warrants the
usage of OTFS to offset the detrimental effects on the signal.
By defining the number of subcarriers and the number of time
slots of an OTFS frame as S and Q respectively, the bandwidth
of the OTFS signal can be defined as B = S∆f , where ∆f is
the subcarrier spacing, and the frame duration is Tframe = QT
where T is the symbol duration. With the characteristics of the
OTFS frame now established, the modulation process can be
defined. Since there are S subcarriers and Q time slots, there
are a total of SQ different slots available for the data to be
transmitted in. Therefore an input bit stream b of length Lb

would be split into groups, each with Lb

SQ bits. Then, b can be
defined as b = [b1,b2, ...,bSQ−1,bSQ].

The bits in bsqth group, i.e., bits being transmitted by the
sth subcarrier at the qth time slot, are mapped both to the TA
SM and QAM conventional symbols. This bit group is further
separated into bSM

sq and bQAM
sq which represent the mapping into

the spatial and phase-amplitude domains. The number of bits
conveyed by SM can be defined as LSM = log2 Nt, which is
also the length of bSM

sq . Likewise, the number of bits carried
by QAM of order M (M -QAM) can be defined as LQAM =
log2 M , which is the length of bQAM

sq . Therefore, the total length
of the bit stream to be transmitted per frame is:

Lb = SQ(LSM + LQAM) = SQ log2(MNt). (1)

There are SQ groups of data that have to be transmitted in
the OTFS frame, using a single TA at any given transmission
instance in order to perform spatial modulation. The OTFS
frame F ∈ CNt×SQ can now be defined as:

F =

 F (0, 0) . . . F (0, SQ− 1)
...

. . .
...

F (Nt − 1, 0) . . . F (Nt − 1, SQ− 1)

 , (2)

where each column represents a transmission instance with
a single nonzero term for the active TA, while each row
corresponds to a different TA.

B. Transmitter

After obtaining the overall OTFS frame in (2), this matrix
has to be transformed into the time domain for transmission.
First, the transmission matrix of each antenna is extracted from
F. The transmission matrix for the ntth TA in the delay-doppler
domain can then be defined as:

Xnt
= vec−1(FT

nt
), (3)

where Fnt
is the ntth row of matrix F and vec−1(·) is the

inverse vectorisation operator. To find the time-domain signal,

Xnt
is first transformed into the time-frequency domain using

the inverse symplectic Fourier transform (ISFFT) [1]:

X̄nt
(sq) =

1√
SQ

S∑
a=1

Q∑
b=1

Xnt
(a, b)ej2π(

qb
Q − sa

S ). (4)

Given X̄nt
(sq), using a Heisenberg transform [1], [2], the time

domain signal transmitted by the ntth TA can be formulated as

snt
(t) =

S∑
s=1

Q∑
q=1

X̄nt
(sq)gtpulse(t− qT )e−j2πs∆f(t−qT ), (5)

where gtpulse(t − qT ) is the transmit pulse at the qth time slot
and X̄nt(sq) is the element located at sq in the time-frequency
domain transmission matrix X̄nt

.

C. Channel

We consider an imperfect time-varying non-line-of-sight
(nLOS) fading channel. The channel between the ntth transmit-
ter and nrth receiver having a total of P paths and a channel
estimation accuracy of ρ can be expressed as

hnr,nt(τ, ν) =

P∑
i=1

(
ρhi,nr,nt +

√
1− ρ2 ∆hi,nr,nt

)
×δ(τ − τi)δ(ν − νi),

(6)

where τi =
τ̄i
B and νi =

ν̄i

Tf
are the delay and Doppler indices

aligned with the OTFS grid, hi,nr,nt
∼ CN (0, d−ζ

tr /P ) is the
true complex gain of the ith path with dtr denoting the distance
between the transmitter and receiver and ζ representing the
path-loss exponent, and ∆hi,nr,nt

∼ CN (0, d−ζ
tr ) is the i.i.d.

estimation error. The coefficient ρ ∈ [0, 1] is the correlation
between the true and estimated path gains, so ρ2 quantifies the
CSI accuracy. Perfect CSI is recovered when ρ = 1.

Definition 1. The CSI accuracy is quantified by the squared
correlation between the true and estimated path gains:

ρ ≜
E[hĥ∗]√
E|h|2 E|ĥ|2

, ρ2 ∈ [0, 1].

Here ρ2 = 1 denotes perfect CSI, while ρ2 = 0 corresponds to
a completely uncorrelated estimate.

Remark 1. For analytical tractability, we assume that all
path delays and Doppler shifts are aligned with the OTFS
grid, so that each path contributes to a single (τi, νi) bin
as in (6). In practice, fractional Doppler results in inter-
bin leakage and additional interference, which would tighten
BER at low–moderate SNR. A rigorous treatment of fractional
Doppler is left for future work.

D. Receiver

The signal at the nrth RA from the ntth TA can be expressed
as:

rnr,nt(t) =

∫∫
ĥnr,nt(τ, ν) snt(t− τ) ej2πν(t−τ) dτdν (7)

+ηnr,nt
(t),

where ηnr,nt
(t) ∼ CN (0, σ2

η) is the complex additive white
Gaussian noise (AWGN). To obtain the received signal matrix in



3

SM 
Modulator

Mapper

ISFFT
Heisenberg 
Transform

ISFFT
Heisenberg 
Transform

...

𝒙𝟎

𝒙𝑵𝒕−𝟏

෩𝑿𝟎

෩𝑿𝑵𝒕−𝟏

Detector Demapper

SFFT
Wigner 

Transform

SFFT
Wigner 

Transform

...

𝒚𝟎

𝒚𝑵𝒕−𝟏

෩𝒀𝟎

෩𝒀𝑵𝒕−𝟏

W
ireless C

h
an

n
el

Fig. 1: Transceiver architecture of SM-OTFS.

DD domain, first, (7) is converted to the time-frequency domain
using the Wigner transform:

Ȳnr,nt
(s, q) =

∫
rnr,nt

(t)grx(t− qT )ej2πs∆f(t−qT )dt. (8)

Then, by applying the SFFT, (9) can be obtained. The received
signal matrix in the delay-Doppler domain is Ynr,nt . The s̃, q̃th
element of this matrix can be expressed as:

Ynr,nt(s̃, q̃) =

S∑
s=1

Q∑
q=1

Ȳnr,nt
(s, q)√

SQ
e−j2π( q̃q

Q − s̃s
S ), (9)

where s̃ = 1, ..., S and q̃ = 1, ..., Q. Similar to the transmitter
process, the signal received at nrth RA can be expressed as

ynr
=

Nt−1∑
nt=0

vec(Ynr,nt
). (10)

Finally, by stacking ynr , the received signal matrix can be
obtained as YDD = [yT

0 , ...,y
T
Nr−1]

T. Having acquired the
received signal matrix in the delay Doppler domain, equalisation
can be used for recovering the original data.

Lemma 1. Under white Gaussian noise η(t)∼CN (0, σ2
η) and

unit-energy pulses, the TF and DD-domain noises remain white
with the same variance: WTF ∼ CN (0, σ2

ηI) and WDD ∼
CN (0, σ2

ηI).

Proof: The TF samples are inner products of r(t) with
orthonormal time-frequency shifts of grx(·); under the unit-
energy assumption, the mapping from time to TF is unitary.
The subsequent SFFT from TF to DD is also unitary up to the
1/
√
SQ scaling already included in (9). For a unitary matrix

U and w ∼ CN (0, σ2
ηI), we have Uw ∼ CN (0, σ2

ηI). Hence
the variance is preserved through TF and DD transforms.

III. EQUALISATION

This section will cover both ZF and MMSE equalisation.
First, we need to obtain the channel matrix in the delay-Doppler
domain which is contaminated by the estimation error.

Lemma 2 (DD channel sampling). Given (6), the DD channel
matrix between the nrth RA and ntth TA, HDD

nr,nt
, is formulated

as:

HDD
nr,nt

(k, l) =

P∑
i=1

(
ρhi,nr,nt

+
√
1− ρ2 ∆hnr,nt

i

)
δk,ki

δl,li ,

(11)
where δk,ki

, δl,li are Kronecker delta functions to ensure that
each path i only contributes to its own corresponding de-
lay–Doppler bin.

Proof: To represent the channel in the DD domain, the
channel response is first sampled on a discrete DD grid. The

delay and Doppler bins can be expressed as τ = k∆τ and
ν = l∆ν, respectively, where k = 0, 1, ..., S − 1, l =
0, 1, ..., Q−1, ∆τ = 1

B and ∆ν = 1
Tf

are the delay and Doppler
resolutions. The objective is to create a discrete DD channel
matrix HDD

nr,nt
, where each element, HDD

nr,nt
(k, l), represents the

channel response at that specific DD bin (k, l).
Observing (6), each path i is mapped onto its corresponding

DD bins (ki, li) by finding the closest points on the DD grid:

ki = round
( τi
∆τ

)
, li = round

( νi
∆ν

)
, (12)

where round(·) rounds to the nearest integer. Then, the contri-
bution of the ith path is added to its corresponding grid location.
For the ith path the matrix element HDD

nr,nt
(ki, li) is:

HDD
nr,nt

(ki, li)← HDD
nr,nt

(ki, li) +
(
ρhi,nr,nt

+
√
1− ρ2 ∆hnr,nt

i

)
.

(13)
After summing all the paths in (13), we have HDD

nr,nt
(k, l) =∑P

i=1 H
DD
nr,nt

(ki, li), which establishes (11). This result charac-
terises the sampled DD channel only; the residual error matrix
used later arises after left-multiplying by H−1

DD and inserting
the estimation discrepancy ĤDD −HDD.

Therefore, the overall DD channel
matrix can be written as HDD =
[(
∑Nt−1

nt=0 vec(HDD
1,nt

))T, ..., (
∑Nt−1

nt=0 vec(HDD
Nr−1,nt

))T]T.

A. Zero Forcing Equalisation
ZF equalisation attempts to remove the effect of the channel

by multiplying the received signal matrix by the inverse of the
perceived channel matrix, yielding:

X̃DD = H−1
DDYDD = H−1

DDĤDDXDD +H−1
DDWDD (14)

However, since the perceived channel matrix has estimation
error, we have HDD ̸= ĤDD and therefore ZF fails to perfectly
cancel out the impact of the channel; consequently, the inter-
symbol interference is not completely eliminated.

Since ĤDD ̸= HDD under imperfect CSI, we may write
H−1

DDĤDD = I+EDD, EDD ≜ H−1
DD

(
ĤDD −HDD

)
,

which motivates the residual interference term EDD used
below.

Lemma 3. With EDD = H−1
DD(ĤDD −HDD) and indepen-

dent, zero-mean estimation errors whose entries have variance
(1− ρ2) after DD-domain normalization,

E
[
∥EDDXDD∥2

]
≈ (1− ρ2)

∥∥H−1
DD

∥∥2 E
[
∥XDD∥2

]
. (15)

Proof: Let ∆ = ĤDD − HDD and A = H−1
DD, so

EDDXDD = A∆XDD. The matrix ∆ has i.i.d. entries
CN (0, 1−ρ2) and is independent of XDD. By isotropy of i.i.d.
Gaussian matrices, for any fixed A and any Z independent of
∆, E

[
∥A∆Z∥2F

]
= (1− ρ2) ∥A∥2F E

[
∥Z∥2F

]
. With Z = XDD

we obtain (15).

Theorem 1. The BER for ZF equalisation relying on imperfect
channel estimation can be expressed as

BERZF ≈
2

log2 M

(
1− 1√

M

)
(16)

×Q

√√√√ 3Es

(M − 1)
(
E
[
∥EDDXDD∥2

]
+ σ2

η

∥∥H−1
DD

∥∥2)
 .
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Proof: In order to calculate the BER, the signal to inter-
ference plus noise ratio (SINR) has to be obtained first. Due to
imperfect CSI, there is an extra interference term as well as the
noise. The SINR can be approximated as

SINRZF =
E[||XDD||2]

E[||EDDXDD||2] + Var(H−1
DDWDD)

, (17)

where E[||EDDXDD||2] represents the power of the in-
terference term due to channel estimation errors and
Var(H−1

DDWDD) = σ2
η||H−1

DD||2 is the variance of the ampli-
fied noise. Since the BER of M -QAM is commonly approxi-
mated as [14]

BERQAM ≈
2

log2 M

(
1− 1√

M

)
Q

(√
3SINR
M − 1

)
, (18)

substituting (17) into (18) completes the proof.
Lemma 4. The BER expression of ZF equalisation under
imperfect channel estimation can be simplified as

BERZF ≈
2

log2 M

(
1− 1√

M

)
(19)

×Q

√ 3

(M − 1)
∥∥H−1

DD

∥∥2 ((1− ρ2) + σ2
η/Es

)
 .

Proof: By Lemma 3,

E[||EDDXDD||2] ≈ (1− ρ2) ||H−1
DD||

2 E[||XDD||2]. (20)

Substituting (20) into (17) yields

SINRZF ≈
1

||H−1
DD||2

(
(1− ρ2) +

σ2
η

E[||XDD||2]

) . (21)

Finally, substitute (21) into (18) to obtain (19).

B. MMSE Equalisation

Before MMSE equalisation is implemented, the DD channel
at the nrth RA is given by:

Ynr
= ρĤnr,nt

Xnt
+
√
1− ρ2 ∆Hnr,nt

Xnt
+Wnr

, (22)

where Ĥnr,nt
is the channel coefficient between the ntth TA

and nrth RA, ∆Hnr,nt
is the estimation error (zero-mean

complex Gaussian with variance σ2
h) and Wnr is the AWGN at

the nrth RA with variance σ2
η .

MMSE equalisation aims for estimating the transmitted sym-
bol by minimizing the mean squared error between the esti-
mated symbol and the actual transmitted symbol. The MMSE
equaliser for the nrth RA is derived for minimizing:

MMSE = E
[
|Xnt

− X̂nt
|2
]
, (23)

where X̂nt
is the estimate of Xnt

obtained from X̂nt
= Gnr

Ynr

with Gnr the MMSE equalisation coefficient.

Theorem 2. The MMSE equalisation coefficient for the nrth
RA is:

Gnr
=

ρĤnr,nt

ρ2|Ĥnr,nt
|2 + (1− ρ2)σ2

h + σ2
η

. (24)

Proof: Refer to Appendix A.

Parameter Value / Assumption
Frame size (S,Q) (64, 16)
Subcarrier spacing ∆f 15 kHz (T = 1/∆f )
Bandwidth B S∆f = 960 kHz
Transmit/Receive antennas (Nt, Nr) (4, 4) unless varied)
QAM order M 4 (QPSK) unless varied
Paths P & delay support P = 4 taps within [0, (P−1)∆τ ]
Max Doppler νmax = 200 Hz (integer bins)
Pathloss exponent ζ = 3.5 (normalized distance)
Noise variance set via Eb/N0 sweep
Time variations constant within frame, i.i.d. across frames
CSI accuracy ρ2 ∈ [0, 1]; error var. (1 − ρ2)

TABLE III: Simulation parameters (used unless otherwise
noted).

Lemma 5. The estimated transmitted symbol X̂nt
is obtained

by applying the MMSE equaliser to the received signal:

X̂nt
=

ρ2|Ĥnr,nt
|2

D
Xnt

+
ρĤnr,nt

D

√
1− ρ2 ∆Hnr,nt

Xnt

+
ρĤnr,nt

D
Wnr

,

(25)
where D = ρ2|Ĥnr,nt |2 + (1− ρ2)σ2

h + σ2
η .

Proof: (25) follows by substituting (22) and (24) into
X̂nt = GnrYnr .

Lemma 6. The SINR of MMSE equalisation can be expressed
as:

SINRMMSE =
ρ2|Ĥnr,nt

|2

(1− ρ2)σ2
h + σ2

η

. (26)

Proof: Rewrite (25) as X̂nt
=

ρ2|Ĥnr,nt |
2

D Xnt
+Neff, where

Neff =
ρĤnr,nt

D

(√
1− ρ2 ∆Hnr,ntXnt +Wnr

)
is the effective

noise after equalisation. Taking second moments yields (26).

Theorem 3. The BER of MMSE equalisation can be expressed
for imperfect channel estimation as

BERMMSE =

(
log2(Nt)(Nt − 1)

2 log2(NtM)Nt
+

2(
√
M − 1)

log2(NtM)
√
M

)

×
(
1−

√√√√ ρ2

(1− ρ2) + dζ
tr

SNR

)
,

(27)

where SNR = Eb

N0B
, dtr is the distance between the transmitter

and receiver, and ζ is the pathloss exponent.

Proof: Refer to Appendix B.
Observed from the BER expression of MMSE equalisation,

the BER is affected by the transmission power, pathloss, channel
estimation accuracy and the modulation orders.

IV. NUMERICAL RESULTS

Unless otherwise stated, the parameters in Table III are used.
The channels obey a Rayleigh distribution with P grid-aligned
taps; Doppler shifts are integer-valued on the OTFS grid; taps
are constant over one OTFS frame and vary i.i.d. across frames.
Estimation error variance is (1− ρ2) as per Sec. II-C..

Figure 2 compares the numerical and simulation results to
verify their accuracy over the considered SNR range. The
chosen range already captures the key BER behaviour: the
divergence between ZF and MMSE under imperfect CSI and
the relative advantage of MMSE at higher CSI accuracies. Upon
increasing SNR, the analytical and simulated curves naturally
converge since the closed-form expressions are derived from
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Fig. 2: Comparison of the numerical and simulated BER of both
ZF and MMSE equalisation under perfect and imperfect CSI.

high-SNR approximations and rely on Gaussian-distributed
interference terms that remain accurate under the studied setup.
In this scenario, 4 TAs are used for SM with 4-QAM, and
Nr = 4 receive antennas. The close agreement observed
above approximately 2 dB arises because the Q-function-based
BER expressions provide a tight fit once the system operates
beyond the noise-dominant region. At low SNR, however, small
discrepancies emerge as the assumptions of Gaussianity and
interference dominance no longer hold strictly, causing the
analytical approximation to slightly underestimate the simulated
BER. Nevertheless, the overall trends and relative performance
differences between ZF and MMSE are well captured, confirm-
ing the validity of the derived expressions.

Figure 3 further investigates the impact of CSI accuracy on
BER. There are Nt = 4 TAs and 4-QAM is considered, as well
as Eb

N0
= 2 dB. As expected, for higher CSI accuracy the ZF and

MMSE equalization techniques are more accurate. There are
two interesting points of note: at low CSI accuracies the BER
of ZF and MMSE seem to converge; at high CSI accuracies
MMSE significantly outperforms ZF.

This can be explained by the inherent design of both equal-
izers. ZF aims for completely eliminating interference between
the different signals transmitted, while MMSE uses the CSI
to calculate a weight matrix that minimizes the overall mean
square error by balancing the noise and interference reduction.
ZF is designed for completely eliminating interference at the
cost of potential noise enhancement. At low CSI accuracy,
both ZF and MMSE become heavily affected by channel
imperfections. ZF suffers from unreliable channel inversion
leading to noise amplification, while MMSE loses its ability
to optimally balance noise and interference. The result is that
their BERs converge because the key strength of MMSE to
balance interference and noise becomes ineffective when the
channel estimate is highly inaccurate, while ZF also struggles
due to noise amplification.

As the CSI accuracy increases, ZF does a better job of elimi-
nating interference, but it still lacks a potent strategy to control
noise, which limits the BER improvement. On the other hand,
MMSE optimally combines the received signals for minimizing
the combined impact of both noise and interference. As the
CSI improves, MMSE becomes more efficient at obtaining a
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Fig. 3: Impact of CSI accuracy (ρ2) on BER at Eb/N0 = 2 dB.
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Fig. 4: BER versus CSI accuracy ρ2 at Eb/N0 = 2 dB for Nt ∈
{2, 4, 8} and M=4, comparing ZF and MMSE equalisation.

balance in minimizing the total error. This leads to a better BER
reduction compared to ZF, that focuses only on interference
without explicitly addressing the effect of noise.

Fig. 4 illustrates the impact of transmit antennas and equalisa-
tion schemes on CSI robustness. The BER versus ρ2 is shown at
Eb/N0 = 2 dB for Nt ∈ {2, 4, 8} with M=4. As Nt increases,
antenna-index detection becomes more sensitive to estimation
errors, and BER degrades more rapidly with decreasing ρ2. This
is because (i) the set of possible antenna indices expands, (ii)
per-antenna channels must be estimated more accurately, and
(iii) index errors directly cause symbol errors. Furthermore,
MMSE equalisation consistently outperforms ZF, as it mitigates
noise enhancement and is more robust to imperfect CSI, while
ZF exhibits stronger degradation as ρ2 decreases.

Remark 2. Including fractional Doppler (off-grid νi) is ex-
pected to further degrade the BER due to inter-bin leakage
and additional interference. A rigorous treatment with leakage-
aware detection is left for future work, while the current model
assumes grid-aligned Doppler for analytical tractability.

V. CONCLUSION

In conclusion, we investigated the impact of imperfect CSI
on the performance of SM integrated with OTFS modula-
tion. Our results demonstrate a significant difference in BER
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when considering CSI errors, highlighting the importance of
accounting for channel imperfections in SM-OTFS systems.
Future work should continue to explore strategies to mitigate
the effects of imperfect CSI, ensuring more robust and reliable
communication in SM-OTFS systems. Additionally, the analysis
in this paper underscores the need for advanced estimation
and compensation techniques to handle CSI imperfections.
By considering various levels of channel inaccuracies, our
study provides a more comprehensive understanding of their
influence on system reliability and efficiency. To the best of
our knowledge, this is the first correspondence to provide
closed-form BER expressions for SM-OTFS under imperfect
CSI with both ZF and MMSE equalization. Future work will
explicitly incorporate fractional Doppler (to quantify leakage-
induced interference in finite grids), extend the analysis to more
realistic channels such as the 3GPP EVA profile, and explore
ML-based channel estimation/prediction to enhance CSI quality
for high-mobility SM-OTFS links.

APPENDIX A
DERIVATION OF MMSE EQUALISER COEFFICIENT

To find Gnr
, first MMSE needs to be computed and its

derivative with respect to Gnr
set to zero.

MMSE = E
[
|Xnt

−Gnr
Ynr
|2
]
. (28)

Looking at (22), Ynr
can be rewritten as Ynr

= ρĤnr,nt
Xnt

+
Weff , where Weff =

√
1− ρ2 ∆Hnr,nt

Xnt
+Wnr

is the ef-
fective noise, including the interference imposed by the channel
estimation error. Weff has zero mean and a variance of σ2

eff :

σ2
eff = (1− ρ2)σ2

h + σ2
η, (29)

assuming that E
[
|Xnt |2

]
= 1. Now the MMSE expression in

(28) can be rewritten in terms of Weff as:

MMSE = E
[∣∣ (1−Gnr

ρĤnr,nt

)
Xnt
−Gnr

Weff

∣∣2] . (30)

Since Xnt
and Weff are independent and Xnt

has zero mean
and unit variance, the expectation expands to

MMSE =
∣∣∣1−Gnr

ρĤnr,nt

∣∣∣2 + |Gnr
|2σ2

eff . (31)

Differentiating MMSE with respect to Gnr and setting it to
zero, the MMSE equaliser is

Gnr
=

ρĤnr,nt

ρ2|Ĥnr,nt
|2 + σ2

eff

=
ρĤnr,nt

ρ2|Ĥnr,nt
|2 + (1− ρ2)σ2

h + σ2
η

,

(32)
which matches (24).

APPENDIX B
DERIVATION OF THE BER OF THE MMSE EQUALISER

The overall BER can be formulated as a weighted sum of
the BER of SM and the BER of QAM, relying on the number
of bits allocated to each modulation scheme, yielding:

BERMMSE =
1

log2(NtM)

(
log2(Nt)BERSM + log2(M)BERQAM

)
.

(33)

Lemma 7. The BER for SM can be approximated as:

BERSM ≈
1

2

(
1− 1

Nt

)(
1−

√
SINRMMSE

1 + SINRMMSE

)
. (34)

Proof: The probability of incorrectly detecting the active
TA is derived using the union bound and pairwise error prob-
ability in Rayleigh fading channels. The factor (1 − 1

Nt
) is

the probability that the incorrect TA is chosen out of Nt − 1
possibilities.

Lemma 8. The BER for QAM can be approximated as:

BERQAM ≈
2

log2(M)

(
1− 1√

M

)(
1−

√
SINRMMSE

1 + SINRMMSE

)
.

(35)

Proof: This approximation is popularly used in BER
calculations for M -QAM over Rayleigh fading channels, where
the BER is a function of SINR.

By substituting (26) into (35) and (34) and substituting these
expressions into (33), the final expression for the overall BER
can be obtained.
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