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Shear wave velocity, Vi, is a critical parameter for offshore site characterisation to estimate the small strain shear
modulus, which is essential for subsequent geotechnical designs. Direct measurements of V; are often sparse due
to time and resource constraints, while indirect estimations of V; based on empirical correlations can exhibit
significant errors. This study presents the performance of 125 models with various combinations of standard
piezocone tests (CPTu) input features (e.g., depth, z; sleeve friction resistance, f;; corrected cone tip resistance,
q:; and pore pressure at the shoulder of the cone, uy), CPTu and V, data pairing methods, and prediction
techniques (support vector regression (SVR), random forest regression (RFR), extreme gradient boosting
regression (XGBR), deep neural network (DNN) and multiple linear regression (MLR)). To do this, we compile a
seismic piezocone test (SCPTu) database from onshore and offshore sites across the globe (Netherlands, Austria,
Germany, Nepal, and Taipei) and consider five different methods for pairing CPTu data (resolution of 0.02 m)
and V; data (resolution of 0.5 m and 1 m depending on the dataset). Two cases consider the more conventional
downsampling of CPTu data to V; data. The remaining three methods consider augmented V; data to the reso-
lution of CPTu measurements, to fully utilise all the CPTu data. Results indicate that data augmentation enhances
predictive performance. Incorporating pore pressure as an input feature also improves model performance,
particularly in cemented materials such as chalk. In contrast, the derived features have a negligible influence.
The recommended model combines a DNN with four directly measured CPTu parameters (z, f;, g, and uz), and
uses an augmentation method that assumes constant V, values within each V; interval. This model achieves a
mean absolute error (MAE) of 37.3 m/s and a coefficient of determination (R2) of 0.59.

1. Introduction conducted using either non-intrusive or intrusive techniques.

Non-intrusive methods, such as multichannel analysis of surface waves

Shear wave velocity, V;, is a fundamental property of geomaterials
that is adopted in design codes for site characterisation [1-5]. The small
strain shear modulus is directly related to V; based on elasticity theory,
and it is a critical parameter utilised in various geotechnical design
applications such as site response analysis [6], prediction of foundation
settlement on soft clays [7], seismic pile foundation design [8], and
design of monopile foundations for offshore wind turbines [9,10].

Direct measurements of V; are typically obtained through laboratory
or in-situ tests during offshore site investigations [11,12]. Laboratory
tests such as bender element tests [13] require high-quality, undisturbed
samples, which are particularly challenging to obtain for soft clays or
granular deposits at offshore sites. Moreover, laboratory tests provide V;
values only at discrete depth locations. In-situ measurements of V; are
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(MASW), rely on inversion analysis, which often leads to non-unique
solutions [14]. MASW methods are most commonly employed
onshore, although some applications in offshore are reported [15].
Alternatively, intrusive methods, such as seismic piezocone tests
(SCPTu), which integrate V; measurements with cone penetration test
(CPT) and pore pressure (CPTu), are widely employed [16]. While the
CPT/CPTu is commonly used across a broad range of projects, SCPTu is
typically conducted at a limited number of CPT/CPTu locations
(generally at around 10-15 % of the locations) due to the specialised
equipment requirements, high costs, and time-consuming nature of
drilling [17]. As a result, direct measurements of V; obtained through
laboratory or in-situ testing are generally sparse. Consequently, indirect
estimations of Vs based on conventional CPT/CPTu data have become
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Fig. 1. Concepts of CPTu and V; data pairing methods. Red points indicate individual measurements, and paired data points are connected using dashed lines for

visualisation.

essential for geotechnical designs, allowing for the generation of V;
profiles at unsampled locations without incurring additional testing
costs.

Numerous empirical relationships between V; and CPT/CPTu have
been proposed in various functional forms, incorporating different CPT/
CPTu parameters [e.g. Refs. [17-21]]. However, these empirical re-
lationships often exhibit substantial prediction errors (i.e., the difference
between predicted and measured values) when applied to newly
collected datasets [22-24]. These discrepancies can be attributed to two
primary factors: i) existing empirical relationships are typically devel-
oped based on regional or site-specific data [16,25], making them less
generalisable across different soil conditions, and ii) the relationship
between V; and CPTu measurements is inherently complicated due to
the differences in soil mechanics, strain regimes, and loading fre-
quencies associated with these two types of measurements.

Machine learning (ML) techniques have demonstrated effectiveness
in capturing complicated relationships and have been applied to develop
CPT/CPTu-V; correlations [e.g. Refs. [26-29]]. Notably, some of these
studies have omitted pore pressure in V; prediction, primarily due to the
limited availability of pore pressure measurements [28]. Moreover,
when constructing databases for training, validation, and testing, CPTu
parameters are typically paired only at matching V; depths or averaged
over the V sampling intervals. However, the resolution of V; measure-
ments obtained via SCPTu is relatively low (e.g., 1 m intervals)
compared to the resolution of CPT/CPTu tests (e.g., 0.02 m intervals).
Therefore, a significant portion of high-resolution CPTu measurements
is discarded, leading to a loss of valuable data and information that
could potentially enhance ML model performance. Comparison analyses
of CPT-V; correlations from different ML techniques have been con-
ducted, but the V; used for training was mainly derived from an
empirical equation rather than real measurements [e.g. Ref. [26]].

Our objective is to investigate the use of data-driven approaches for
deriving CPTu-V; correlations and provide guidance on best practices for
their use in geotechnical engineering practice. To achieve this, we pre-
sent an analysis of the performance of 125 models with various com-

binations of CPTu input features (depth, sleeve friction resistance, cone
tip resistance, pore pressure, and their derived parameters), CPTu and V;
data pairing methods, and prediction techniques (support vector
regression (SVR), random forest regression (RFR), extreme gradient
boosting regression (XGBR), deep neural network (DNN), and multiple
linear regression (MLR)). These ML techniques are selected for their
simplicity and efficiency in addressing engineering problems. Because of
the current lag in the widespread adoption of ML techniques in
geotechnical engineering, simpler models are more appropriate for
promoting understanding and acceptance among practitioners. Some of
these techniques, such as RFR and SVR, have been adopted to correlate
CPTu-V;, and have demonstrated superior performance compared to
traditional empirical correlations [e.g. Refs. [26,28]]. However, a
comprehensive comparison between various ML techniques using real
measurement data has not yet been conducted. This study aims to fill
that gap by systematically evaluating and comparing the performance of
various ML models and offering practical guidance for their application
in geotechnical engineering practice. This study also introduces data
augmentation strategies aimed at fully utilising high-resolution CPTu
data to improve model performance.

2. Database generation
2.1. Data collection

The database used in this study is compiled from five publicly
available geotechnical datasets [30-34], collected from offshore
(Netherlands and Germany) and onshore sites (Germany, Austria, Tai-
pei, and Nepal). The database includes the curated measurements of
CPTu parameters (depth, z; sleeve friction resistance, f;; corrected cone
tip resistance, q;; and pore pressure at the shoulder of the cone, uy) and
the derived parameters (normalised friction ratio, F;; normalised cone
resistance, Q;; normalised pore pressure, By; and soil behaviour type
index, I.) and V;. While some original datasets already include the
derived parameters, they may have been calculated using different
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Fig. 2. Pairwise comparison and distribution of parameters and corresponding Robertson chart using the Point-Point pairing method.

methodologies. To ensure consistency across all data sources, these
parameters are recalculated using the following equations [18].

B, = U — W 6h)
qt — Oy

Q= % @)

Fe—J 100% 3)
qt — Oy

I.= /347 — log(Q)]* + [log(F,) +1.22" @)

where uy is the hydrostatic pore pressure, and o, and ¢/, are the total and
effective vertical stress, respectively.

A preliminary filtering process is applied to the raw data, consisting
of the following steps: i) only tests containing complete CPTu mea-
surements (2, f;, q;, and uy) are retained; and ii) V; data recorded at
shallow depths (e.g., less than 5 m) are excluded, as they may be un-
reliable due to refraction effects [35]. After filtering, the five CPTu and
V, data pairing methods described in Section 2.2 are applied to construct
the databases (D1 to D5) described in Section 2.3.

2.2. CPTu and V; data pairing methods

Typically, CPTu measurements are recorded with a depth resolution
of 0.02 m, while V; measurements are generally recorded at 1 m in-
tervals. The recorded V; values represent the average value within each

1 m interval, and the corresponding depth can be assigned either to the
upper boundary or the midpoint of the interval. When the depth is
assigned to the upper boundary, the visualisation of measurements ap-
pears as shown in Fig. 1 (a).

CPTu parameters (2, fs, q;, and uy) are either directly paired at
matching Vs depths (Fig. 1 (b), Point-Point method, D1) or averaged
over the V; sampling interval (Fig. 1 (c), Point-Average method, D2).
The Point-Point method uses a single CPTu measurement within each V;
sampling interval and, consequently, valuable data and information are
omitted. In contrast, the Point-Average method differs from the Point-
Point method by averaging all CPTu values within the entire V; inter-
val rather than selecting one single measurement. This method also re-
sults in only one data pair per V; interval, and the averaged CPTu values
may not accurately represent the entire interval. The latter issue may
arise when distinct parameter values are measured within the interval,
which can impact model performance.

Data augmentation methods that fully utilise all CPTu measurements
can be applied to increase the amount of V; data. Fig. 1(d)-(f) illustrate
the concepts of three V; augmentation methods. The Augmented-
Constant method (Fig. 1 (d), D3) assumes that V; remains constant
within each interval and pairs this value with each of the corresponding
CPTu measurements in the interval (generally fifty).

The Augmented-Linear method (Fig. 1 (e), D4) assumes a linear trend
of V; within the interval [36]. The slope of the linear trend is determined
based on V; values at two consecutive intervals, while the mean value
across the entire interval remains consistent with the measured V;.
Therefore, the augmented V; generated by the Augmented-Linear
method can be expressed as a function of depth, as shown in Eq. (5),
given the measured depths and V; values of two consecutive intervals,
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Table 1
Magnitude and proportion of each soil category using five data pairing methods.

Soil type CPTu and V; data pairing methods and databases (D)
Point- Point- Augmented- Augmented- Augmented-
Point Average Constant D3 Linear D4 Random D5
D1 D2
Gravelly 173 166 (2.8 6758 (2.7 %) 6758 (2.7 6758 (2.7 %)
to 3.2 %) %)
dense %)
sand
I. <131
Clean to 1908 2295 92,935 92,935 92,935
silty (35.1 (38.3 %) (36.8 %) (36.8 %) (36.8 %)
sand %)
1.31< I,
< 2.05
Silty sand 1205 1448 59,079 59,079 59,079
to (22.2 (24.2 %) (23.4 %) (23.4 %) (23.4 %)
sandy %)
silt
2.05 < I,
< 2.60
Clayey 573 657 27,978 27,978 27,978
silt to (10.5 (11.0 %) (11.1 %) (11.1 %) (11.1 %)
silty %)
clay
2.60 < I,
<295
Silty clay 1449 1319 58,504 58,504 58,504
to clay (26.6 (22.0 %) (23.2 %) (23.2 %) (23.2 %)
295 < I, %)
< 3.60
Organic 131 105 (1.8 7201 (2.9%) 7201 (2.9 7201 (2.9 %)
soils - (2.4 %) %)
clay %)
I. > 3.60
All soils 5439 5990 252,455 252,455 252,455
(100 (100 %) (100 %) (100 %) (100 %)

%)

(2i, Vs) and (2i1, Vsi1). In Eq. (5), the term inside the brackets repre-
sents the linear interpolation between the two measured data points,
while the term outside the brackets is an adjustment factor ensuring that
the mean of the augmented values within the interval remains consistent
with the measured value, V.

2Vs,i X Vs.i+1 — in

Vi(z) =
() Vi + Vsin Ziv1 — Zi

(z—z)| 2 <2<z (5)

Rather than assuming a constant or linear trend for V;, the
Augmented-Random method (Fig. 1 (f), D5) treats V; as a random var-
iable that is correlated with CPTu measurements. For each depth, the
CPTu measurement is compared to the average CPTu value within the
entire V; interval. Given that CPTu measurements consist of four pa-
rameters with significantly different scales, these parameters are first
normalised to the range [0, 1], and equal weights are assigned to each
parameter to compute the mean CPTu value. Following this normal-
isation, when the CPTu measurement is lower than the average CPTu
measurement, a uniformly distributed random number between 0.8 and
1.0 is generated and multiplied by the measured V; value to obtain the
new V,. Conversely, when it is higher, a random number between 1.0
and 1.2 is used. This process results in a series of randomly adjusted V;
values that are then paired with the corresponding CPTu data. For an
interval containing N CPTu measurements, each measurement is rep-

resented as C; = |2;, fsi, qris uzyi], containing four measured CPTu pa-

rameters. Each parameter is normalised within the interval using C; =
C;—min(C)
max(C)—min(C) *

computed as I; = % Zle C;;- The mean CPTu index across the interval is

An equally weighted CPTu index at depth z; is then

expressed asI = L 3" I,. A random multiplier r; is generated according

to a uniform distribution between 0.8 and 1.0 if I; < I, and between 1.0
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and 1.2 if I; > I, to ensure that the generated V, values remain within
physically plausible limits. The corresponding augmented V; is calcu-
lated as r; x Vy;. Other approaches are available for augmenting V; be-
tween intervals. For example, V; can be assumed to be depth-dependent,
where an exponential stress-dependent gradient is used to consider
increasing confining stress with depth [37]. While this method provides
stronger engineering justification, it remains uncertain whether the
assumed functional form fully captures realistic subsurface conditions.
Alternatively, the Gaussian randomisation framework [38,39], with a
specified coefficient of variation and vertical correlation length, can be
used to model the spatial variability of V;. However, estimating these
statistical parameters from sparse V, measurements may introduce
additional uncertainties. In this study, the linear and random augmen-
tation strategies are selected to explore the influence of basic variability
in V;, rather than to simulate physical soil variability rigorously. The
databases generated using the different augmentation methods are
publicly available, enabling readers to adopt one of the demonstrated
methods or implement more physically based augmentation methods, as
appropriate to their objectives.

2.3. Databases using different pairing methods

Fig. 2 illustrates pairwise scatter plots and the distributions of five
parameters (2, f;, g, Uz, and V;) based on the database generated using
the Point-Point method. Additionally, the data are mapped onto the
Robertson’s chart [18], shown in the upper right corner of the figure.
The corresponding figures for the other four methods are provided in the
supporting material (Figure S1 to Figure S4). From the scatter plots in
Fig. 2, it is observed that depth (z) ranges from 5 to 80 m below ground
level, covering a representative depth range for geotechnical applica-
tions. V, ranges from 46 to 1310 m/s, with approximately 1 % of the data
exceeding 600 m/s. According to the borehole report [40], data with
Vs > 600 m/s correspond to chalk (generally considered a cemented
material). The reliability of CPTu measurements, particularly in stiff or
cemented soils, can vary depending on local geological conditions. In
this case, the borehole report [40] associated with the CPTu measure-
ments in chalk indicate no signs of technical issues such as partial
penetration or tip underestimation.

A-priori outlier (here defined as datapoints that sit outside the range
of most of the data in the database) filtering is not applied to the data-
base to avoid introducing subjectivity into the analysis; therefore, all
data are retained for model development. In Fig. 2, a clear correlation is
observed between ¢, and z, as well as between ¢, and f;, while no clear
relationships are observed between V; and z, f;, q;, or uy. The Robertson
chart indicates that the ranges of Q; and F; values for silty clay to clay
(2.95 < I, < 3.60), clayey silt to silty clay (2.60 < I, < 2.95), and silty
sand to sandy silt (2.05 < I < 2.60) are well represented. However, data
for clean to silty sand (1.31 < I < 2.05) are concentrated in a relatively
small region, and data for organic soils - clay (I. > 3.60) and gravelly to
dense sand (I, < 1.31) is limited.

The magnitude and proportion corresponding to different soil types
using the five data pairing methods are summarised in Table 1. The
database generated using the Point-Average method contains slightly
more data points compared to the Point-Point method. This is due to
instances where CPTu measurements are not available at the exact depth
where V; is recorded, but measurements exist within the specified V;
interval. The distribution of soil types within the database reveals that
gravelly to dense sand (I; < 1.31) and organic soils - clay (I, > 3.60)
account for around 3 %, while clean to silty sand (1.31 < I, < 2.05)
represents the largest proportion, comprising approximately 37 % of the
total data.
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Table 2
Hyperparameters for various ML prediction techniques.

ML Hyperparameters Range Optimised value
technique
SVR Width of the insensitive zone [10’4, 10] 8.70

Kernel coefficient for RBF [1074 11 0.98

Regularisation parameter [0, 500] 389

RFR Tree depth [2,10] 9
Number of trees [5, 100] 55
Ratio of features considered [0.1, 1] 0.97
per split
Minimum samples to split an [2,10] 8
internal node
Minimum samples per leaf [1,5] 3
node

XGBR Tree Depth [2,8] 7
Number of trees [5, 100] 92
Subsampling ratio for training ~ [0.5, 1] 0.86
Subsampling ratio for features [0.5, 1] 0.76
Minimum loss reduction for [0, 1] 0.03
split
Regularisation parameters [0, 1] 0.80

DNN Units in hidden layers 32, 64 and [32, 128, 128] for

128 three layers
Learning rate [1076, 0.01
1073
Table 3

Tested cases in this study.

Group  Input feature Database generation Prediction technique
A 2z, fs, Q¢ D1 to D5 with all MLR, SVR, RFR, XGBR
datasets and DNN
B 2, fs, Qe Uz Same as above Same as above
C 2, fs, Qt, Qi Fr, I Same as above Same as above
D 2, fs, G, U2, Qi, Fr,  Same as above Same as above
By, I,
E 2, fs, qt, U2, Qi, Fr, D1 to D5 excluding Same as above
By, I, Taipei dataset
Table 4

Computational time required for training various prediction models.

Computational time for training (s)

MLR SVR RFR XGBR DNN
Group D Point-Point 0.004 10 6 1 156
(Eight Augmented- 0.02 96,180 487 4 8535
features) Constant
Computational time 5 9618 81 4 55

multiplying factor

3. Prediction techniques and performance evaluations
3.1. Prediction techniques

Five prediction techniques, namely MLR, SVR, RFR, XGBR, and DNN,
are employed to establish the relationship between CPTu and V;. A brief
description of each technique is provided below. In these techniques, it
is assumed that a database contains N pairs of CPTu and V; measure-
ment, {(x1,¥1), (X2,Y2), ..., (xn,¥n)}. Here, x; € R" are the CPTu param-
eters used to predict Vi, R" is the n-dimensional vector space, n is the
number of CPTu parameters, and y; € R is the measured V;.

3.1.1. Multiple linear regression (MLR)

MLR is a statistical technique that predicts the value of a dependent
variable based on the values of multiple independent variables [41].
However, due to its inherent assumptions, MLR may exhibit lower ac-
curacy when applied to nonlinear multivariate engineering problems

Soil Dynamics and Earthquake Engineering 201 (2026) 109972

[42]. Despite these limitations, MLR remains a widely used approach in
geotechnical engineering due to its mathematical simplicity and the ease
of interpreting input variables. For example, to predict lateral spread
displacement based on various factors (e.g., earthquake magnitude, the
thickness of saturated granular layers, and particle size distribution), an
MLR was developed using an extensive case history database and has
since been widely adopted in engineering practice [43]. The MLR is
described as [41]:

Yi=bo+ Zﬂjxij + & (6)
=

where f is the intercept, f, to 8, are the slope coefficients associated
with the n parameters used to predict V;. ¢; is the error term corre-
sponding to the i-th prediction. The n + 1 coefficients are determined by
minimising 3N | €2,

3.1.2. Support vector regression (SVR)

SVR is a ML technique that is an extension of support vector ma-
chines (SVM) developed for regression problems, aiming to simulta-
neously minimise training errors while maximising the generalisation
ability of the model [44]. Consequently, SVR may exhibit superior
generalisation performance compared to artificial neural network
models [45]. However, a major drawback of SVR is its computational
complexity, which scales cubically with the number of training samples,
making it computationally expensive and less practical for large-scale
datasets [46]. Recently, SVR has been applied to various geotechnical
engineering problems, including the prediction of the overconsolidation
ratio of clay using piezocone data [47] and the capacity prediction of
stone columns floating in soft clay [48].

SVR employs kernel functions to map input data into a higher-
dimensional feature space, where linear regression can be effectively
performed [44]:

F)=w'p(x) +b %)

where f(x) is the linear function, w is the weight vector, T denotes the
transpose, ¢(x) is the kernel function, the most widely used radial basis
function (RBF) is adopted here [49], and b is the bias.

In SVR, f(x) is fitted to the data while allowing a certain level of
tolerance (insensitive zone). § denotes the width of the insensitive zone,
where predictions are considered ‘correct’. The main goal of SVR is to
find f(x) such that its deviation from the actual output y; does not exceed
8, while simultaneously ensuring the function remains as flat as possible
to minimise model complexity. This objective is formulated as the
following optimisation problem [44]:

N
Minimise %wTw +CY (&+¢&)
i=1

Yi—wp(x) —b <5+ ®
W) +b—y <5+¢

Subject to <
&6 >0

where C is the penalty/regularisation parameter that controls model
complexity, & and ¢; are slack variables, which penalise prediction er-
rors for training instances that fall outside the tolerance zone [48].

3.1.3. Random forest regression (RFR)

RFR is a tree-based ensemble ML technique that constructs multiple
decision trees using independently sampled subsets of the original
training dataset (bootstrap aggregation). Additionally, at each node
split, only a randomly selected subset of features is considered, intro-
ducing further variability and reducing overfitting. The final prediction
is obtained by averaging the predictions from all trees in the ensemble
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Fig. 3. Performance for different numbers of input features using the Augmented-Constant pairing method and DNN.
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Fig. 4. Comparison of (a) MAE and (b) R? for different input features. Note: D1-DNN represents the combination of Point-Point (D1) and DNN.

[29]. Compared to SVR, RFR generally exhibits superior performance in
capturing complex, nonlinear relationships and is more computationally
efficient for large datasets [50]. Recently, RFR has gained significant
popularity in geotechnical engineering applications, such as the

drivability [51].

input x; is given by:

prediction of the bearing ratio of soils [50] and the assessment of pile

Mathematically, for an ensemble of K trees, the prediction y; for
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Fig. 5. Predictions with different CPTu and V; data pairing methods using eight features and DNN.
1 & Newmark sliding displacements [55].
Yi=g ka (x1) 9 The prediction by XGBR is calculated as:
k=1
M M-1
where fi(x;) is the prediction from the k-th decision tree. Yi= me(xi) =yi  +fulx) 10)
m=1

3.1.4. Extreme gradient boosting regression (XGBR)

XGBR is also a tree-based ensemble ML technique [52]. Unlike RFR,
which employs bootstrap sampling to construct independent decision
trees, XGBR utilises boosting, where trees are built sequentially, with
each new tree correcting the errors of the previous one. This iterative
learning process continuously enhances model performance by refining
predictions based on previous outcomes [53]. Due to its efficiency and
precision in regression tasks, as well as its ability to handle large data-
sets, XGBR has been applied to geotechnical applications, such as the
stability assessments for braced excavations [54] and the prediction of

where M is the number of trees, ?iw ! is the prediction based on the

previous tree model, fy( -) is the newly generated tree model.
The objective function of XGBR is given by:

M
r=>"Ly.3) +Qfu) an
i=1

where L(y;,¥;) is the loss function, and Q(fi) is the regularisation
function that penalises model complexity to prevent overfitting.
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Fig. 6. Comparison of (a) MAE and (b) R? for different CPTu and V; data pairing methods. Note: 3 F-DNN represents the combination of three features (3 F) and DNN.

3.1.5. Deep neural network for regression (DNN)

DNN is a subset of ML techniques that consists of multiple inter-
connected layers, including i) an Input Layer, which receives raw data,
such as CPTu parameters; ii) Hidden Layers, composed of multiple
neurons that transform the inputs using weights, biases, and activation
functions; and iii) an Output Layer, which generates the final pre-
dictions, such as V;. DNN has emerged as a powerful ML technique in
geotechnical applications, demonstrating superior predictive capabil-
ities compared to traditional ML techniques, such as SVR [56]. However,
DNN generally requires large datasets for effective training.

During the training process, the network parameters (weights and
biases) are optimised by minimising a predefined loss function. Mathe-
matically, a fully connected DNN model with T layers is expressed as:

Input layer: hy = x
Hidden layer: h, = o(wh, 1 + b;)
Output layer:y = wrhr_; + by

for t=1,2,....T—-1 (12)

where h; is the output of the t-th layer, o(-) is the activation function,
such as the rectified linear unit (ReLU) [57], which enhances the
nonlinearity of the network. w, and b, are the weights and biases of the
t-th layer, respectively.

3.2. Hyperparameters, loss function, and performance metrics

The performance of the four ML techniques, SVR, RFR, XGBR and
DNN, is highly sensitive to their respective hyperparameters. Therefore,
Bayesian optimisation [58] is adopted to efficiently tune these hyper-
parameters. The predefined initial ranges for the hyperparameters and
the optimal hyperparameters for the model using four input features (z,
fs, q¢, and uz) and the Augmented-Constant pairing method are listed in
Table 2. Additionally, the maximum number of optimisation iterations is
set to 50, with an early stopping criterion defined as no performance
improvement over 5 consecutive iterations.

In this study, DNN models with three, four, and five hidden layers are
tested and compared. However, increasing the number of hidden layers
does not yield any notable improvements in prediction performance.
Therefore, a DNN architecture with three hidden layers is adopted.

The generated databases (D1 to D5) are randomly divided into

training, validation and testing datasets with a ratio of 80:10:10. The
loss function adopted is the mean absolute error (MAE), defined in Eq.
(13), as it is less sensitive to outliers than the mean squared error. Model
performance is evaluated using MAE and the coefficient of determina-
tion (R?), defined in Eq. (14). Specifically, MAE quantifies the average
magnitude of prediction errors, where a lower MAE indicates superior
model performance. In contrast, R? measures the proportion of variation
in the data that the model can capture, where a higher value of R? means
better prediction. Eq. (14) shows that the maximum R? value is 1, when
the model fully explains all the variation in the data, and R? can be
negative when the performance of the model is worse than the arith-
metic mean.

1
MAE=2 |7 i 13)
i=1
N 2
_Z(y—}’i)
R2—1_1t! (14
;Oﬁ—)—')z

where y and y; are the values predicted and measured values, respec-
tively. ¥ is the arithmetic mean value of measurements, y = % SN v

4. Investigated cases

Table 3 summarises the examined cases in this study. Groups A to D,
comprising a total of 100 models, explore the influence of various factors
on prediction performance, including input features, CPTu and V; data
pairing methods, and prediction techniques. Group E, consisting of an
additional 25 models, evaluates the generalisation capability of the
models. Group A and Group C exclude uy for the prediction, whereas
Group B and Group D incorporate it to explore the impact of u; on
prediction performance. If u, is found to have an insignificant effect,
there is potential to leverage a large volume of onshore CPT data, where
u, is often unavailable, to develop the CPTu/CPT-V; correlation. The
derived CPTu parameters, as described in Section 2.1, are considered in
Group C and Group D, but not in Group A and Group B, to assess whether
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Fig. 7. Performance of five prediction techniques based on eight features and the Augmented-Constant pairing method.

incorporating them improves prediction performance, as they can be
easily obtained from the measured CPTu parameters. It is noted that
Group C does not include By, as its computation requires u,, which is
not used in this group. Within each group, all the CPTu and V; data
pairing methods and associated databases (D1 to D5) and prediction
techniques (MLR, SVR, RFR, XGBR and DNN) are used to assess their
impact on predictive performance. In Group E, data collected from
Taipei are excluded when constructing the CPTu-V; models. The models
are then applied to predict Vs from CPTu measurements at the Taipei
dataset to assess the generalisation capacity of the models and investi-
gate an example of a site where direct V; measurements are unavailable.

The training process is conducted on a personal desktop equipped
with RAM (64 GB) and 13th Gen Intel(R) Core(TM) i9-13900KF 3.00
GHz processor. The computational time required for training is sum-
marised in Table 4, based on eight input features (Group D). Notably, the

training time for each of the non-augmented databases (Point-Point and
Point-Average) and for each of the augmented databases (Augmented-
Constant, Augmented-Linear and Augmented-Random) is comparable
due to the similar amount of data within their respective groups.
Therefore, only the training times for the Point-Point and Augmented-
Constant methods are presented in Table 4. Regardless of the data-
base, MLR exhibits the shortest training time (less than 1s), as it only
requires the estimation of a limited number of coefficients (e.g., nine
coefficients when eight input features are considered). All prediction
models using the Augmented-Constant method require longer training
times because of the substantial increase in data volume. When the
Point-Point method is used, training for SVR, RFR, and XGBR is
completed within 10 s, whereas DNN requires the longest training time,
at 156 s; however, this remains computationally efficient. When the
Augmented-Constant method is utilised, SVR exhibits the highest
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Fig. 8. Comparison of (a) MAE and (b) R? for different prediction techniques. Note:

computational demand, requiring more than 26 h for training due to the
substantial increase in data volume. In contrast, XGBR demonstrates
exceptional efficiency, with its training time increasing only marginally
from 1 to 4 s despite the database expanding nearly 50-fold.

5. Results and discussions

Figs. 3,5, 7 and 9 illustrate scatter plots of predicted versus measured
V; for the testing dataset. In these figures, the red ellipse denotes the 90
% confidence region, which represents the area where 90 % of the
predicted and true V; data pairs are expected to fall, generated through
principal component analysis. The direction of the major axis of this
ellipse indicates the principal direction of data. If this axis aligns closely
with the 1:1 line, the model demonstrates strong predictive perfor-
mance, whereas any misalignment signifies reduced performance.
Additionally, data density contours are displayed, where darker regions
indicate a higher concentration of data points.

Figs. 4, 6 and 8 illustrate radar charts of performance, including MAE
and R?, for the testing dataset of the 100 models considered in Groups A
to D. While these figures display the same set of results, they are
organised differently to separately highlight the effects of input features,
CPTu and V; data pairing methods and prediction techniques, respec-
tively. In addition, a summary table that includes MAE and R? for all
cases is provided in the supporting material (Table S1).

5.1. Prediction performance for different input features

This subsection evaluates the influence of input features on model
performance. The scatter plots for predictions based on the Augmented-
Constant method and DNN are shown in Fig. 3, while the radar charts of
MAE and R? for all cases are shown in Fig. 4. A comparison between
Fig. 3 (a) (excluding uy) and Fig. 3 (b) (including u,), as well as between
Fig. 3 (c) (excluding u and associated derived parameter, B;) and Fig. 3
(d) (including u, and associated derived parameter, B;), demonstrates
that incorporating us significantly enhances predictive performance.
This conclusion is drawn based on three key observations: i) the major
axis of the confidence ellipse in Fig. 3 (b) and (d) aligns more closely
with the 1:1 line; ii) the data density contours in Fig. 3 (b) and (d) show
that the predicted values are more concentrated around the 1:1 line with
reduced scatter; iii) the inclusion of us results in a lower MAE and an
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3 F-D1 represents the combination of three features (3 F) and Point-Point (D1).

increase in R? values, demonstrating enhanced predictive capability.
This trend is consistent across all cases, as illustrated in Fig. 4.

Additionally, Fig. 3 (b) shows that soils with V; > 600 m/s present
better agreement between predicted and measured values compared to
those in Fig. 3 (a), which may be a key factor contributing to the sig-
nificant improvement observed when u; is included. When data with
Vs > 600 m/s are excluded from training, the improvement resulting
from the inclusion of uy is less pronounced but remains evident. This
highlights the importance of including uy as an input feature during
training, particularly when cemented materials, such as chalk in this
case, are present. The results obtained using only data with V; <
600 m/s for training are provided in the supplementary material
(Fig. S5 and Fig. S6).

Based on a comparison between Fig. 3 (a) and (c), or Fig. 3 (b) and
(d), as well as the MAE and R? shown in Fig. 4, it is observed that
incorporating derived CPTu parameters has a minor effect on prediction
performance as the MAE and R? values change only marginally. For
instance, when all eight CPTu parameters are considered (Fig. 3 (d)), the
MAE decreases only slightly, from 37.3 m/s with four features (Fig. 3
(b)) to 35.7 m/s, while R? increases from 0.59 to 0.60. While the model
exhibits only a slight improvement in predictive performance when
using eight features, the training time is approximately doubled
compared to the four-feature case. Therefore, the recommended
configuration is to use four input features. Nonetheless, if all trained
models are made available, users may still choose the eight-feature
model for prediction.

5.2. Prediction performance for different CPTu and Vs data pairing
methods

The impact of CPTu and V; data pairing methods on model perfor-
mance is explored in this section. The scatter plots for predictions ob-
tained using eight input features and the DNN are presented in Fig. 5,
while the radar charts of MAE and R? for all cases are shown in Fig. 6.
Fig. 5 illustrates that predictions generated by Point-Point and Point-
Average methods, i.e. with the smaller databases, are more scattered
compared to the other data pairing methods. Additionally, Fig. 5 (b) and
Fig. 6 (a) indicate that the Point-Average method exhibits the highest
MAE among the five data pairing methods. This may be attributed to the
presence of very distinct CPTu measurements (very low or high values),
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Fig. 9. Predictions with different soil types using eight features, Augmented-Constant pairing method, and DNN.

making the averaged CPTu unrepresentative of the entire interval and
thereby reducing the accuracy. Conversely, the contour plots in Fig. 5
show that predictions generated using Augmented-Constant and
Augmented-Linear methods are more concentrated along the 1:1 line,
and Fig. 6 (a) demonstrates that these two methods yield similar MAE
values, which are generally lower than those obtained using the non-
augmented databases. This improvement can be attributed to the
expanded databases, which mitigate the influence of individual CPTu-V;
pairings, thereby enhancing overall model performance.

In Fig. 6 (b), it is observed that Augmented-Linear and Augmented-
Random methods achieve similar R? across all cases, both of which
are slightly lower than those obtained by the Augmented-Constant
method. Moreover, augmented databases achieve higher R? than those
obtained by non-augmented databases when RFR, XGBR and DNN are
utilised. The apparent inconsistency in the performance of the
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Augmented-Linear method when evaluated using different metrics (i.e.,
MAE and R?) arises because the MAE and R? assess different aspects of
model performance. While MAE measures the average magnitude of
prediction error, R? quantifies the proportion of variance in the observed
data that is captured by the model. Although the Augmented-Linear
method effectively reduces prediction error (as indicated by lower
MAE), it may also introduce additional variability through interpola-
tion. This added variability can limit the model’s ability to explain
variance in the target variable, resulting in a slightly lower R2.

Based on these findings, it is concluded that the three augmentation
methods have the potential to improve prediction performance by fully
utilising high-resolution CPTu data. Furthermore, they outperform the
Point-Average method, which also leverages high-resolution CPTu data
but does so by averaging CPTu parameters. Within these data augmen-
tation methods, assuming a constant V; across each interval
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(Augmented-Constant database) introduces the least uncertainty into
the augmented databases, leading to the best predictive performance,
whereas assuming randomly varying values within each interval
(Augmented-Random database) introduces the highest uncertainty,
resulting in the poorest predictive performance. Future research could
examine the impact of these uncertainties on geotechnical design and
assess augmentation methods with stress-dependent logic to minimise
uncertainties [e.g. Ref. [59]].

5.3. Prediction performance for five prediction models

Here we assess the impact of different techniques on predictive
performance. The scatter plots for predictions obtained using eight input
features and a database generated by the Augmented-Constant method
are presented in Fig. 7, while the radar charts of MAE and R? for all cases
are shown in Fig. 8. Additionally, MLR’s performance using eight input
features across various database generation methods is provided in the
supplementary material (Fig. S7). Fig. 7 illustrates that predictions
generated by MLR are more scattered, while Fig. 8 (a) indicates that
MLR exhibits the highest MAE among the five prediction techniques.
The two tree-based techniques, RFR and XGBR, display similar data
distributions (Fig. 7), and also yield comparable MAE and R? values
(Fig. 8). Additionally, RFR and XGBR consistently achieve higher R?
values compared to the other techniques. Fig. 8 (a) demonstrates that
SVR, RFR, XGBR and DNN generally exhibit similar MAE values. How-
ever, for 8 F-D3 and 8 F-D4, DNN achieves a lower MAE than the other
techniques.

Based on these observations and the computational time discussed in
Section 4, MLR is the simplest and fastest prediction model. However, its
predictive performance is considerably lower than that of more
advanced ML techniques. Specifically, MLR results in a 41 % higher MAE
and 28 % lower R? compared to DNN. These results indicate that MLR is
unsuitable for developing CPTu-V, correlations. SVR demonstrates
moderate predictive performance among the five techniques, although
its computational demands significantly increase with the increase in
database size. Thus, SVR is not recommended for use in scenarios where
database augmentation is employed. RFR and XGBR are the third and
second fastest models, respectively, and both consistently achieve the
highest R? across all cases in this study. However, these tree-based
models are prone to overfitting when trained on small databases, such
as those generated using Point-Point and Point-Average methods,
particularly if the initial parameter ranges are not appropriately selected
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[55]. To mitigate overfitting, it is recommended that a trial-and-error
approach be used to determine appropriate initial ranges for hyper-
parameters. Based on the study presented in this paper, DNN is appli-
cable across different database sizes, balancing both training time and
predictive accuracy, making it a robust choice for constructing CPTu-V;
correlations.

5.4. Prediction performance in different soil types

Here we evaluate the predictive performance across different soil
types categorised by soil behaviour index, I.. We use the DNN for this
analysis as our results evidence that it is the most accurate, robust and
efficient technique from those analysed above. Fig. 9 illustrates the
scatter plots for predictions obtained using DNN with eight input fea-
tures and the Augmented-Constant method. In Fig. 9 (a) and (f), the
principal axes of the ellipses do not align well with the 1:1 line indi-
cating poor predictive performance for gravelly to dense sands (I <
1.31) and organic soils - clay (I. > 3.60). This is primarily attributed to
the insufficient amount of data for these two soil types, each accounting
for less than 3 % of the entire database (see Table 1). However, it is
noted that clean sands to silty sands (Fig. 9 (b)), despite representing the
largest data subset, exhibit poorer predictive performance compared to
the silty clays, clayey silts and clays shown in Fig. 9 (d) and (e). This can
be attributed to i) the reduced information obtained from CPTu mea-
surements in sandy soils compared to clays (as uz generally adds little
information in sands); ii) the data imbalance, where the clean to silty
sand data are primarily concentrated within a narrow region on the
Robertson chart, whereas other soil types are more widely distributed.
The poor predictive performance may also result from the complicated
force chains and associated stress distribution in sand-dominated soils
that develop due to for example, variations in grain shapes and orien-
tation and grain-to-grain contacts. Additionally, it is observed that
although the number of data points in Fig. 9 (c) and 9 (e) are compa-
rable, Fig. 9 (e) represents clay-dominated soils, which exhibit signifi-
cantly lower deviations between predicted and measured values,
compared to the sand-clay mixed soil type in Fig. 9 (c).

Fig. 10 presents the relative error, defined as the absolute difference
between the predicted and measured V; normalised by the measured V;,
for each soil type. Based on Fig. 10, the number of predictions within a
given relative error threshold can be determined. For example, for silty
clays to clays (2.95 < I, < 3.60), 90 % of predictions have relative errors
below 25 %, providing a quantitative measure of prediction uncertainty
for different soil types.

In addition, the predictive performance of the model across different
soil depths is evaluated using DNN with eight input features and the
Augmented-Constant method (Fig. S8). Results show that the highest
MAE occurs at depths greater than 50 m. At this range, several data
points exhibit extremely low measured values (V; < 50 m/s), but un-
usually high predicted values (V; > 800 m/s). This discrepancy may be
attributed to the presence of thin soil layers that are captured by high-
resolution CPTu measurements but missed by the low-resolution V;
measurements, which are averaged over larger depth intervals.
Conversely, the predictions within the 10-20m and 20-30m depth
ranges show relatively low MAE, indicating better model performance at
these intermediate depths.

Furthermore, predictive performance across different soil regions
(sub-datasets) is assessed using DNN with eight input features and the
Augmented-Constant method (Fig. S9). Interestingly, model perfor-
mance does not appear to be directly correlated with the size of the
dataset. For instance, the Taipei dataset yields better prediction accu-
racy than the RVO dataset, despite the latter containing a significantly
larger number of data points.

5.5. Generalisation ability of the models

The previous sections have assessed model performance using da-
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Fig. 11. Generalisation performance for different prediction techniques using eight features, Point-Point pairing method without Taipei dataset.

tabases compiled from all five datasets. In this subsection, we assess the
generalisation ability of some of the models using databases that exclude
all or part of the Taipei dataset, which contains 636 data points when
generated using the Point-Point method. The trained models are then
tested by predicting V; values using the remaining data (i.e., data not
used in training) from the Taipei dataset. Fig. 11 illustrates the predic-
tion results that exclude the Taipei dataset during training, obtained
from five prediction techniques and using eight input features and the
Point-Point method, alongside predictions from a widely used empirical
CPTu-V; correlation (Eq. (15)) proposed by Robertson [18]. The
empirical correlation is found to generally underestimate V;, producing
significant errors and negative R2. It is also observed that MLR and DNN
yield lower MAE and higher R? compared to SVR, RFR, and XGBR.
However, the principal axis of MLR deviates significantly from the 1:1
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line, suggesting potential bias in its predictions. In contrast, predictions
from DNN are symmetrically distributed along the 1:1 line, demon-

strating the best gener.

alisation performance among all five techniques.

Furthermore, predictions generated by SVR, RFR, and XGBR exhibit a
general tendency toward overestimation and negative R?, indicating

that the generalisatio

n capacity of these techniques for the Taipei

dataset is worse than using an arithmetic mean. This suggests that these

models may not be rel

iable to accurately predict V; conditions that are

unseen during training.

V.= 10(0.55[c+1.68) x
s =

q: —

5105
- (15)

Pa

where p, is the atmospheric pressure.
To further assess the impact of site-specific data on model perfor-
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Fig. 12. Generalisation performance using different numbers of data from the Taipei dataset in training (eight features, Point-Point pairing method, and DNN).
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Fig. 13. Performance on Taipei dataset using global model (use all the data except Taipei dataset in training) and site-specific model (use only Taipei dataset

in training).

mance, an additional test was conducted by incorporating varying
portions of the Taipei dataset into the training process, as shown in
Fig. 12. From the MAE and R? values in Fig. 12, it is observed that the
prediction performance of MLR remains nearly unchanged, regardless of
the amount of Taipei data included. This is mainly because MLR assigns
equal weight to all data points, and a small number of additional data
points (e.g., 400) exert a negligible influence on the model compared to
the large-scale dataset initially used for training. Conversely, ML tech-
niques (SVR, RFR, XGBR and DNN), which dynamically assign varying
weights to individual data points, exhibit a stronger capacity to learn
from site-specific data. Consequently, as more Taipei data is incorpo-
rated into training, these models demonstrate improved prediction
performance, as evidenced by decreasing MAE and increasing R?. For
example, when RFR is used, MAE decreases from 37.8 m/s to 28.5 while
R? increases from —0.25 to 0.37. It is also noted that MAE and R? reach a
plateau when approximately 50 % of the Taipei dataset is utilised for
training.

To further assess model generalisation, the trained model is tested
using an external dataset from Christchurch, New Zealand [17]. The
model’s performance on this dataset is relatively poor, as reflected in the
MAE and R? (Fig. S11). This can be attributed to the fact that the
Christchurch data predominantly represent clean to silty sand (1.31 < I,
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< 2.05), which shows relatively poor predictive performance even
during model training (see Fig. 9). In contrast, the Taipei dataset pri-
marily consists of silty clay to clay (2.95 < I. < 3.60), which shows good
predictive performance during model training (see Fig. 9). These results
suggest that the model exhibits stronger generalisation for soil types that
are well represented and better learned during training.

A comparison analysis, presented in Fig. 13, is conducted between
the site-specific model (trained on only the Taipei dataset) and the
global model (trained on all data excluding the Taipei dataset). Results
indicate that the site-specific model outperforms the global model. This
is expected when sufficient local data are available, as models trained on
site-specific data often generalise better within the same geotechnical
context. However, in situations where site-specific data are limited,
training a dedicated model may not be feasible or may result in signif-
icant bias. In such cases, a more practical approach is to enhance a global
model by integrating limited site-specific data. In this study, we
explored a straightforward method by directly adding a subset of the
Taipei data to the global training dataset to retrain the model, which led
to improved predictive performance.
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6. Conclusions

This paper assesses statistical and ML-based techniques to establish
CPTu-V; correlations, where the CPTu measurements are served as input
features, while shear wave velocity, Vi, is the output. The effects of
various factors on the prediction performance have been investigated,
including the number and selection of input features, database size or
data pairing methods, prediction techniques, and soil type. Additionally,
the generalisation ability of the different predictive techniques has been
evaluated. The main conclusions are summarised as follows:

1) The incorporation of pore pressure as an input feature enhances
prediction accuracy, particularly in cemented materials such as
chalk. In contrast, the inclusion of derived parameters has an insig-
nificant effect on model performance.

For the conventional measurement resolutions of CPTu (every 0.02
m) and Vi data (every 1 m), the proposed V; data augmentation
methods provide up to a 50-fold increase in dataset size (here 46-
fold), without requiring additional data collection. This leads to
improved prediction accuracy compared to conventional data pair-
ing methods in which CPTu data is downsampled to V; resolution.
Moreover, these augmentation methods are simple, efficient, and
easily applicable in engineering practice.

The three augmentation methods inherently introduce uncertainties
due to their underlying assumptions. Among them, assuming a
constant V; value within each V; interval results in the lowest un-
certainty, leading to the lowest MAE in predictions. The opposite
occurs when assuming random V; values within each V; interval. 4)
For the investigated augmented databases, DNN exhibits the lowest
MAE, while RFR or XGBR achieve the highest R?>, demonstrating
their capability for establishing CPTu-V; correlations. Conversely,
MLR exhibits significant prediction errors, making it unsuitable for
constructing CPTu-V; correlations. SVR requires extensive compu-
tational time (e.g., exceeding 26 h and approximately 11 times, 197
times, and 24,045 times longer than DNN, RFR, and XGBR, respec-
tively), rendering it impractical for large databases.

Prediction accuracy varies across soil types. In general, sand-
dominated soils exhibit greater prediction errors than -clay-
dominated soils, which can be attributed to the complicated stress
distribution in sand-dominated soils caused by variations in grain
shapes and orientation and grain-to-grain contacts.

Based on the results, the recommended model for developing CPTu-
V; correlations should utilise four measured features, a database
generated using the augmentation method that assumes constant V;
values within each V; interval and pairs them with each CPTu data
point throughout the interval, and the DNN prediction technique.
Future research that naturally follows from this study may include
adding uncertainty quantification in model predictions, and inves-
tigating augmentation techniques with stress-dependent logic and
geostatistical realism (using estimated correlation lengths and vari-
ability ranges), as well as sequence-to-sequence ML techniques, such
as Long Short-Term Memory (LSTM). Finally, this study demon-
strated the benefits of integrating local data with global data for
constructing site-specific models, and more advanced techniques
such as transfer learning [60] could be also investigated in future
research.

2)

3)
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