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A B S T R A C T

Shear wave velocity, Vs, is a critical parameter for offshore site characterisation to estimate the small strain shear 
modulus, which is essential for subsequent geotechnical designs. Direct measurements of Vs are often sparse due 
to time and resource constraints, while indirect estimations of Vs based on empirical correlations can exhibit 
significant errors. This study presents the performance of 125 models with various combinations of standard 
piezocone tests (CPTu) input features (e.g., depth, z; sleeve friction resistance, fs; corrected cone tip resistance, 
qt ; and pore pressure at the shoulder of the cone, u2), CPTu and Vs data pairing methods, and prediction 
techniques (support vector regression (SVR), random forest regression (RFR), extreme gradient boosting 
regression (XGBR), deep neural network (DNN) and multiple linear regression (MLR)). To do this, we compile a 
seismic piezocone test (SCPTu) database from onshore and offshore sites across the globe (Netherlands, Austria, 
Germany, Nepal, and Taipei) and consider five different methods for pairing CPTu data (resolution of 0.02 m) 
and Vs data (resolution of 0.5 m and 1 m depending on the dataset). Two cases consider the more conventional 
downsampling of CPTu data to Vs data. The remaining three methods consider augmented Vs data to the reso
lution of CPTu measurements, to fully utilise all the CPTu data. Results indicate that data augmentation enhances 
predictive performance. Incorporating pore pressure as an input feature also improves model performance, 
particularly in cemented materials such as chalk. In contrast, the derived features have a negligible influence. 
The recommended model combines a DNN with four directly measured CPTu parameters (z, fs, qt , and u2), and 
uses an augmentation method that assumes constant Vs values within each Vs interval. This model achieves a 
mean absolute error (MAE) of 37.3 m/s and a coefficient of determination (R2) of 0.59.

1. Introduction

Shear wave velocity, Vs, is a fundamental property of geomaterials 
that is adopted in design codes for site characterisation [1–5]. The small 
strain shear modulus is directly related to Vs based on elasticity theory, 
and it is a critical parameter utilised in various geotechnical design 
applications such as site response analysis [6], prediction of foundation 
settlement on soft clays [7], seismic pile foundation design [8], and 
design of monopile foundations for offshore wind turbines [9,10].

Direct measurements of Vs are typically obtained through laboratory 
or in-situ tests during offshore site investigations [11,12]. Laboratory 
tests such as bender element tests [13] require high-quality, undisturbed 
samples, which are particularly challenging to obtain for soft clays or 
granular deposits at offshore sites. Moreover, laboratory tests provide Vs 
values only at discrete depth locations. In-situ measurements of Vs are 

conducted using either non-intrusive or intrusive techniques. 
Non-intrusive methods, such as multichannel analysis of surface waves 
(MASW), rely on inversion analysis, which often leads to non-unique 
solutions [14]. MASW methods are most commonly employed 
onshore, although some applications in offshore are reported [15]. 
Alternatively, intrusive methods, such as seismic piezocone tests 
(SCPTu), which integrate Vs measurements with cone penetration test 
(CPT) and pore pressure (CPTu), are widely employed [16]. While the 
CPT/CPTu is commonly used across a broad range of projects, SCPTu is 
typically conducted at a limited number of CPT/CPTu locations 
(generally at around 10–15 % of the locations) due to the specialised 
equipment requirements, high costs, and time-consuming nature of 
drilling [17]. As a result, direct measurements of Vs obtained through 
laboratory or in-situ testing are generally sparse. Consequently, indirect 
estimations of Vs based on conventional CPT/CPTu data have become 
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essential for geotechnical designs, allowing for the generation of Vs 
profiles at unsampled locations without incurring additional testing 
costs.

Numerous empirical relationships between Vs and CPT/CPTu have 
been proposed in various functional forms, incorporating different CPT/ 
CPTu parameters [e.g. Refs. [17–21]]. However, these empirical re
lationships often exhibit substantial prediction errors (i.e., the difference 
between predicted and measured values) when applied to newly 
collected datasets [22–24]. These discrepancies can be attributed to two 
primary factors: i) existing empirical relationships are typically devel
oped based on regional or site-specific data [16,25], making them less 
generalisable across different soil conditions, and ii) the relationship 
between Vs and CPTu measurements is inherently complicated due to 
the differences in soil mechanics, strain regimes, and loading fre
quencies associated with these two types of measurements.

Machine learning (ML) techniques have demonstrated effectiveness 
in capturing complicated relationships and have been applied to develop 
CPT/CPTu-Vs correlations [e.g. Refs. [26–29]]. Notably, some of these 
studies have omitted pore pressure in Vs prediction, primarily due to the 
limited availability of pore pressure measurements [28]. Moreover, 
when constructing databases for training, validation, and testing, CPTu 
parameters are typically paired only at matching Vs depths or averaged 
over the Vs sampling intervals. However, the resolution of Vs measure
ments obtained via SCPTu is relatively low (e.g., 1 m intervals) 
compared to the resolution of CPT/CPTu tests (e.g., 0.02 m intervals). 
Therefore, a significant portion of high-resolution CPTu measurements 
is discarded, leading to a loss of valuable data and information that 
could potentially enhance ML model performance. Comparison analyses 
of CPT-Vs correlations from different ML techniques have been con
ducted, but the Vs used for training was mainly derived from an 
empirical equation rather than real measurements [e.g. Ref. [26]].

Our objective is to investigate the use of data-driven approaches for 
deriving CPTu-Vs correlations and provide guidance on best practices for 
their use in geotechnical engineering practice. To achieve this, we pre
sent an analysis of the performance of 125 models with various com

binations of CPTu input features (depth, sleeve friction resistance, cone 
tip resistance, pore pressure, and their derived parameters), CPTu and Vs 
data pairing methods, and prediction techniques (support vector 
regression (SVR), random forest regression (RFR), extreme gradient 
boosting regression (XGBR), deep neural network (DNN), and multiple 
linear regression (MLR)). These ML techniques are selected for their 
simplicity and efficiency in addressing engineering problems. Because of 
the current lag in the widespread adoption of ML techniques in 
geotechnical engineering, simpler models are more appropriate for 
promoting understanding and acceptance among practitioners. Some of 
these techniques, such as RFR and SVR, have been adopted to correlate 
CPTu-Vs, and have demonstrated superior performance compared to 
traditional empirical correlations [e.g. Refs. [26,28]]. However, a 
comprehensive comparison between various ML techniques using real 
measurement data has not yet been conducted. This study aims to fill 
that gap by systematically evaluating and comparing the performance of 
various ML models and offering practical guidance for their application 
in geotechnical engineering practice. This study also introduces data 
augmentation strategies aimed at fully utilising high-resolution CPTu 
data to improve model performance.

2. Database generation

2.1. Data collection

The database used in this study is compiled from five publicly 
available geotechnical datasets [30–34], collected from offshore 
(Netherlands and Germany) and onshore sites (Germany, Austria, Tai
pei, and Nepal). The database includes the curated measurements of 
CPTu parameters (depth, z; sleeve friction resistance, fs; corrected cone 
tip resistance, qt; and pore pressure at the shoulder of the cone, u2) and 
the derived parameters (normalised friction ratio, Fr; normalised cone 
resistance, Qt; normalised pore pressure, Bq; and soil behaviour type 
index, Ic) and Vs. While some original datasets already include the 
derived parameters, they may have been calculated using different 

Fig. 1. Concepts of CPTu and Vs data pairing methods. Red points indicate individual measurements, and paired data points are connected using dashed lines for 
visualisation.
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methodologies. To ensure consistency across all data sources, these 
parameters are recalculated using the following equations [18]. 

Bq =
u2 − u0

qt − σv
(1) 

Qt =
qt − σv

σv́
(2) 

Fr =
fs

qt − σv
× 100% (3) 

Ic =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[3.47 − log(Qt)]
2
+ [log(Fr) + 1.22]2

√

(4) 

where u0 is the hydrostatic pore pressure, and σv and σv́ are the total and 
effective vertical stress, respectively.

A preliminary filtering process is applied to the raw data, consisting 
of the following steps: i) only tests containing complete CPTu mea
surements (z, fs, qt , and u2) are retained; and ii) Vs data recorded at 
shallow depths (e.g., less than 5 m) are excluded, as they may be un
reliable due to refraction effects [35]. After filtering, the five CPTu and 
Vs data pairing methods described in Section 2.2 are applied to construct 
the databases (D1 to D5) described in Section 2.3.

2.2. CPTu and Vs data pairing methods

Typically, CPTu measurements are recorded with a depth resolution 
of 0.02 m, while Vs measurements are generally recorded at 1 m in
tervals. The recorded Vs values represent the average value within each 

1 m interval, and the corresponding depth can be assigned either to the 
upper boundary or the midpoint of the interval. When the depth is 
assigned to the upper boundary, the visualisation of measurements ap
pears as shown in Fig. 1 (a).

CPTu parameters (z, fs, qt , and u2) are either directly paired at 
matching Vs depths (Fig. 1 (b), Point-Point method, D1) or averaged 
over the Vs sampling interval (Fig. 1 (c), Point-Average method, D2). 
The Point-Point method uses a single CPTu measurement within each Vs 
sampling interval and, consequently, valuable data and information are 
omitted. In contrast, the Point-Average method differs from the Point- 
Point method by averaging all CPTu values within the entire Vs inter
val rather than selecting one single measurement. This method also re
sults in only one data pair per Vs interval, and the averaged CPTu values 
may not accurately represent the entire interval. The latter issue may 
arise when distinct parameter values are measured within the interval, 
which can impact model performance.

Data augmentation methods that fully utilise all CPTu measurements 
can be applied to increase the amount of Vs data. Fig. 1(d)–(f) illustrate 
the concepts of three Vs augmentation methods. The Augmented- 
Constant method (Fig. 1 (d), D3) assumes that Vs remains constant 
within each interval and pairs this value with each of the corresponding 
CPTu measurements in the interval (generally fifty).

The Augmented-Linear method (Fig. 1 (e), D4) assumes a linear trend 
of Vs within the interval [36]. The slope of the linear trend is determined 
based on Vs values at two consecutive intervals, while the mean value 
across the entire interval remains consistent with the measured Vs.

Therefore, the augmented Vs generated by the Augmented-Linear 
method can be expressed as a function of depth, as shown in Eq. (5), 
given the measured depths and Vs values of two consecutive intervals, 

Fig. 2. Pairwise comparison and distribution of parameters and corresponding Robertson chart using the Point-Point pairing method.
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(zi,Vs,i) and (zi+1,Vs,i+1). In Eq. (5), the term inside the brackets repre
sents the linear interpolation between the two measured data points, 
while the term outside the brackets is an adjustment factor ensuring that 
the mean of the augmented values within the interval remains consistent 
with the measured value, Vs,i.

Vs(z)=
2Vs,i

Vs,i + Vs,i+1

[

Vs,i +
Vs,i+1 − Vs,i

zi+1 − zi
(z − zi)

]

zi ≤ z< zi+1 (5) 

Rather than assuming a constant or linear trend for Vs, the 
Augmented-Random method (Fig. 1 (f), D5) treats Vs as a random var
iable that is correlated with CPTu measurements. For each depth, the 
CPTu measurement is compared to the average CPTu value within the 
entire Vs interval. Given that CPTu measurements consist of four pa
rameters with significantly different scales, these parameters are first 
normalised to the range [0, 1], and equal weights are assigned to each 
parameter to compute the mean CPTu value. Following this normal
isation, when the CPTu measurement is lower than the average CPTu 
measurement, a uniformly distributed random number between 0.8 and 
1.0 is generated and multiplied by the measured Vs value to obtain the 
new Vs. Conversely, when it is higher, a random number between 1.0 
and 1.2 is used. This process results in a series of randomly adjusted Vs 

values that are then paired with the corresponding CPTu data. For an 
interval containing N CPTu measurements, each measurement is rep

resented as Ci =
[
zi, fs,i, qt,i, u2,i

]
, containing four measured CPTu pa

rameters. Each parameter is normalised within the interval using Cʹ
i =

Ci − min(C)
max(C)− min(C) . An equally weighted CPTu index at depth zi is then 

computed as Ii =
1
4
∑4

j=1 Cʹ
ij. The mean CPTu index across the interval is 

expressed as I = 1
N
∑N

i=1 Ii. A random multiplier ri is generated according 
to a uniform distribution between 0.8 and 1.0 if Ii < I, and between 1.0 

and 1.2 if Ii ≥ I, to ensure that the generated Vs values remain within 
physically plausible limits. The corresponding augmented Vs is calcu
lated as ri × Vs,i. Other approaches are available for augmenting Vs be
tween intervals. For example, Vs can be assumed to be depth-dependent, 
where an exponential stress-dependent gradient is used to consider 
increasing confining stress with depth [37]. While this method provides 
stronger engineering justification, it remains uncertain whether the 
assumed functional form fully captures realistic subsurface conditions. 
Alternatively, the Gaussian randomisation framework [38,39], with a 
specified coefficient of variation and vertical correlation length, can be 
used to model the spatial variability of Vs. However, estimating these 
statistical parameters from sparse Vs measurements may introduce 
additional uncertainties. In this study, the linear and random augmen
tation strategies are selected to explore the influence of basic variability 
in Vs, rather than to simulate physical soil variability rigorously. The 
databases generated using the different augmentation methods are 
publicly available, enabling readers to adopt one of the demonstrated 
methods or implement more physically based augmentation methods, as 
appropriate to their objectives.

2.3. Databases using different pairing methods

Fig. 2 illustrates pairwise scatter plots and the distributions of five 
parameters (z, fs, qt , u2, and Vs) based on the database generated using 
the Point-Point method. Additionally, the data are mapped onto the 
Robertson’s chart [18], shown in the upper right corner of the figure. 
The corresponding figures for the other four methods are provided in the 
supporting material (Figure S1 to Figure S4). From the scatter plots in 
Fig. 2, it is observed that depth (z) ranges from 5 to 80 m below ground 
level, covering a representative depth range for geotechnical applica
tions. Vs ranges from 46 to 1310 m/s, with approximately 1 % of the data 
exceeding 600 m/s. According to the borehole report [40], data with 
Vs > 600 m/s correspond to chalk (generally considered a cemented 
material). The reliability of CPTu measurements, particularly in stiff or 
cemented soils, can vary depending on local geological conditions. In 
this case, the borehole report [40] associated with the CPTu measure
ments in chalk indicate no signs of technical issues such as partial 
penetration or tip underestimation.

A-priori outlier (here defined as datapoints that sit outside the range 
of most of the data in the database) filtering is not applied to the data
base to avoid introducing subjectivity into the analysis; therefore, all 
data are retained for model development. In Fig. 2, a clear correlation is 
observed between qt and z, as well as between qt and fs, while no clear 
relationships are observed between Vs and z, fs, qt , or u2. The Robertson 
chart indicates that the ranges of Qt and Fr values for silty clay to clay 
(2.95 < Ic ≤ 3.60), clayey silt to silty clay (2.60 < Ic ≤ 2.95), and silty 
sand to sandy silt (2.05 < Ic ≤ 2.60) are well represented. However, data 
for clean to silty sand (1.31 < Ic ≤ 2.05) are concentrated in a relatively 
small region, and data for organic soils - clay (Ic > 3.60) and gravelly to 
dense sand (Ic ≤ 1.31) is limited.

The magnitude and proportion corresponding to different soil types 
using the five data pairing methods are summarised in Table 1. The 
database generated using the Point-Average method contains slightly 
more data points compared to the Point-Point method. This is due to 
instances where CPTu measurements are not available at the exact depth 
where Vs is recorded, but measurements exist within the specified Vs 
interval. The distribution of soil types within the database reveals that 
gravelly to dense sand (Ic ≤ 1.31) and organic soils - clay (Ic > 3.60) 
account for around 3 %, while clean to silty sand (1.31 < Ic ≤ 2.05) 
represents the largest proportion, comprising approximately 37 % of the 
total data.

Table 1 
Magnitude and proportion of each soil category using five data pairing methods.

Soil type CPTu and Vs data pairing methods and databases (D)

Point- 
Point 
D1

Point- 
Average 
D2

Augmented- 
Constant D3

Augmented- 
Linear D4

Augmented- 
Random D5

Gravelly 
to 
dense 
sand

173 
(3.2 
%)

166 (2.8 
%)

6758 (2.7 %) 6758 (2.7 
%)

6758 (2.7 %)

Ic ≤ 1.31
Clean to 

silty 
sand

1908 
(35.1 
%)

2295 
(38.3 %)

92,935 
(36.8 %)

92,935 
(36.8 %)

92,935 
(36.8 %)

1.31< Ic 
≤ 2.05

Silty sand 
to 
sandy 
silt

1205 
(22.2 
%)

1448 
(24.2 %)

59,079 
(23.4 %)

59,079 
(23.4 %)

59,079 
(23.4 %)

2.05 < Ic 
≤ 2.60

Clayey 
silt to 
silty 
clay

573 
(10.5 
%)

657 
(11.0 %)

27,978 
(11.1 %)

27,978 
(11.1 %)

27,978 
(11.1 %)

2.60 < Ic 
≤ 2.95

Silty clay 
to clay

1449 
(26.6 
%)

1319 
(22.0 %)

58,504 
(23.2 %)

58,504 
(23.2 %)

58,504 
(23.2 %)

2.95 < Ic 
≤ 3.60

Organic 
soils - 
clay

131 
(2.4 
%)

105 (1.8 
%)

7201 (2.9 %) 7201 (2.9 
%)

7201 (2.9 %)

Ic > 3.60
All soils 5439 

(100 
%)

5990 
(100 %)

252,455 
(100 %)

252,455 
(100 %)

252,455 
(100 %)
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3. Prediction techniques and performance evaluations

3.1. Prediction techniques

Five prediction techniques, namely MLR, SVR, RFR, XGBR, and DNN, 
are employed to establish the relationship between CPTu and Vs. A brief 
description of each technique is provided below. In these techniques, it 
is assumed that a database contains N pairs of CPTu and Vs measure
ment, {(x1,y1), (x2,y2),…, (xN,yN)}. Here, xi ∈ Rn are the CPTu param
eters used to predict Vs, Rn is the n-dimensional vector space, n is the 
number of CPTu parameters, and yi ∈ R is the measured Vs.

3.1.1. Multiple linear regression (MLR)
MLR is a statistical technique that predicts the value of a dependent 

variable based on the values of multiple independent variables [41]. 
However, due to its inherent assumptions, MLR may exhibit lower ac
curacy when applied to nonlinear multivariate engineering problems 

[42]. Despite these limitations, MLR remains a widely used approach in 
geotechnical engineering due to its mathematical simplicity and the ease 
of interpreting input variables. For example, to predict lateral spread 
displacement based on various factors (e.g., earthquake magnitude, the 
thickness of saturated granular layers, and particle size distribution), an 
MLR was developed using an extensive case history database and has 
since been widely adopted in engineering practice [43]. The MLR is 
described as [41]: 

yi = β0 +
∑n

j=1
βjxi,j + εi (6) 

where β0 is the intercept, β1 to βn are the slope coefficients associated 
with the n parameters used to predict Vs. εi is the error term corre
sponding to the i-th prediction. The n + 1 coefficients are determined by 
minimising 

∑N
i=1 ε2

i .

3.1.2. Support vector regression (SVR)
SVR is a ML technique that is an extension of support vector ma

chines (SVM) developed for regression problems, aiming to simulta
neously minimise training errors while maximising the generalisation 
ability of the model [44]. Consequently, SVR may exhibit superior 
generalisation performance compared to artificial neural network 
models [45]. However, a major drawback of SVR is its computational 
complexity, which scales cubically with the number of training samples, 
making it computationally expensive and less practical for large-scale 
datasets [46]. Recently, SVR has been applied to various geotechnical 
engineering problems, including the prediction of the overconsolidation 
ratio of clay using piezocone data [47] and the capacity prediction of 
stone columns floating in soft clay [48].

SVR employs kernel functions to map input data into a higher- 
dimensional feature space, where linear regression can be effectively 
performed [44]: 

f(x)=wTϕ(x) + b (7) 

where f(x) is the linear function, w is the weight vector, T denotes the 
transpose, ϕ(x) is the kernel function, the most widely used radial basis 
function (RBF) is adopted here [49], and b is the bias.

In SVR, f(x) is fitted to the data while allowing a certain level of 
tolerance (insensitive zone). δ denotes the width of the insensitive zone, 
where predictions are considered ‘correct’. The main goal of SVR is to 
find f(x) such that its deviation from the actual output yi does not exceed 
δ, while simultaneously ensuring the function remains as flat as possible 
to minimise model complexity. This objective is formulated as the 
following optimisation problem [44]: 

Minimise
1
2
wTw + C

∑N

i=1

(
ξi + ξ*

i

)

Subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi − wTϕ(xi) − b ≤ δ + ξi

wTϕ(xi) + b − yi ≤ δ + ξ*
i

ξi, ξ*
i ≥ 0

(8) 

where C is the penalty/regularisation parameter that controls model 
complexity, ξi and ξ*

i are slack variables, which penalise prediction er
rors for training instances that fall outside the tolerance zone [48].

3.1.3. Random forest regression (RFR)
RFR is a tree-based ensemble ML technique that constructs multiple 

decision trees using independently sampled subsets of the original 
training dataset (bootstrap aggregation). Additionally, at each node 
split, only a randomly selected subset of features is considered, intro
ducing further variability and reducing overfitting. The final prediction 
is obtained by averaging the predictions from all trees in the ensemble 

Table 2 
Hyperparameters for various ML prediction techniques.

ML 
technique

Hyperparameters Range Optimised value

SVR Width of the insensitive zone [10− 4, 10] 8.70
Kernel coefficient for RBF [10− 4, 1] 0.98
Regularisation parameter [0, 500] 389

RFR Tree depth [2,10] 9
Number of trees [5, 100] 55
Ratio of features considered 
per split

[0.1, 1] 0.97

Minimum samples to split an 
internal node

[2,10] 8

Minimum samples per leaf 
node

[1,5] 3

XGBR Tree Depth [2,8] 7
Number of trees [5, 100] 92
Subsampling ratio for training [0.5, 1] 0.86
Subsampling ratio for features [0.5, 1] 0.76
Minimum loss reduction for 
split

[0, 1] 0.03

Regularisation parameters [0, 1] 0.80

DNN Units in hidden layers 32, 64 and 
128

[32, 128, 128] for 
three layers

Learning rate [10− 6, 
10− 2]

0.01

Table 3 
Tested cases in this study.

Group Input feature Database generation Prediction technique

A z, fs, qt D1 to D5 with all 
datasets

MLR, SVR, RFR, XGBR 
and DNN

B z, fs, qt , u2 Same as above Same as above
C z, fs, qt , Qt , Fr, Ic Same as above Same as above
D z, fs, qt , u2, Qt , Fr,

Bq, Ic
Same as above Same as above

E z, fs, qt , u2, Qt , Fr,

Bq, Ic
D1 to D5 excluding 
Taipei dataset

Same as above

Table 4 
Computational time required for training various prediction models.

Computational time for training (s)

MLR SVR RFR XGBR DNN

Group D 
(Eight 
features)

Point-Point 0.004 10 6 1 156
Augmented- 
Constant

0.02 96,180 487 4 8535

Computational time 
multiplying factor

5 9618 81 4 55

Y. Zhang et al.                                                                                                                                                                                                                                   Soil Dynamics and Earthquake Engineering 201 (2026) 109972 

5 



[29]. Compared to SVR, RFR generally exhibits superior performance in 
capturing complex, nonlinear relationships and is more computationally 
efficient for large datasets [50]. Recently, RFR has gained significant 
popularity in geotechnical engineering applications, such as the 

prediction of the bearing ratio of soils [50] and the assessment of pile 
drivability [51].

Mathematically, for an ensemble of K trees, the prediction ŷi for 
input xi is given by: 

Fig. 3. Performance for different numbers of input features using the Augmented-Constant pairing method and DNN.

Fig. 4. Comparison of (a) MAE and (b) R2 for different input features. Note: D1-DNN represents the combination of Point-Point (D1) and DNN.
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ŷi =
1
K
∑K

k=1
fk(xi) (9) 

where fk(xi) is the prediction from the k-th decision tree.

3.1.4. Extreme gradient boosting regression (XGBR)
XGBR is also a tree-based ensemble ML technique [52]. Unlike RFR, 

which employs bootstrap sampling to construct independent decision 
trees, XGBR utilises boosting, where trees are built sequentially, with 
each new tree correcting the errors of the previous one. This iterative 
learning process continuously enhances model performance by refining 
predictions based on previous outcomes [53]. Due to its efficiency and 
precision in regression tasks, as well as its ability to handle large data
sets, XGBR has been applied to geotechnical applications, such as the 
stability assessments for braced excavations [54] and the prediction of 

Newmark sliding displacements [55].
The prediction by XGBR is calculated as: 

ŷi =
∑M

m=1
fm(xi)= ŷM− 1

i + fM(xi) (10) 

where M is the number of trees, ŷM− 1
i is the prediction based on the 

previous tree model, fM( ⋅) is the newly generated tree model.
The objective function of XGBR is given by: 

Γ=
∑M

i=1
L(yi, ŷi) + Ω(fM) (11) 

where L
(
yi, ŷi

)
is the loss function, and Ω

(
fk
)

is the regularisation 
function that penalises model complexity to prevent overfitting.

Fig. 5. Predictions with different CPTu and Vs data pairing methods using eight features and DNN.
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3.1.5. Deep neural network for regression (DNN)
DNN is a subset of ML techniques that consists of multiple inter

connected layers, including i) an Input Layer, which receives raw data, 
such as CPTu parameters; ii) Hidden Layers, composed of multiple 
neurons that transform the inputs using weights, biases, and activation 
functions; and iii) an Output Layer, which generates the final pre
dictions, such as Vs. DNN has emerged as a powerful ML technique in 
geotechnical applications, demonstrating superior predictive capabil
ities compared to traditional ML techniques, such as SVR [56]. However, 
DNN generally requires large datasets for effective training.

During the training process, the network parameters (weights and 
biases) are optimised by minimising a predefined loss function. Mathe
matically, a fully connected DNN model with T layers is expressed as: 
⎧
⎨

⎩

Input layer : h0 = x
Hidden layer : ht = σ(wtht− 1 + bt) for t = 1, 2,…,T − 1
Output layer : ŷ = wThT− 1 + bT

(12) 

where ht is the output of the t-th layer, σ( ⋅) is the activation function, 
such as the rectified linear unit (ReLU) [57], which enhances the 
nonlinearity of the network. wt and bt are the weights and biases of the 
t-th layer, respectively.

3.2. Hyperparameters, loss function, and performance metrics

The performance of the four ML techniques, SVR, RFR, XGBR and 
DNN, is highly sensitive to their respective hyperparameters. Therefore, 
Bayesian optimisation [58] is adopted to efficiently tune these hyper
parameters. The predefined initial ranges for the hyperparameters and 
the optimal hyperparameters for the model using four input features (z,
fs, qt , and u2) and the Augmented-Constant pairing method are listed in 
Table 2. Additionally, the maximum number of optimisation iterations is 
set to 50, with an early stopping criterion defined as no performance 
improvement over 5 consecutive iterations.

In this study, DNN models with three, four, and five hidden layers are 
tested and compared. However, increasing the number of hidden layers 
does not yield any notable improvements in prediction performance. 
Therefore, a DNN architecture with three hidden layers is adopted.

The generated databases (D1 to D5) are randomly divided into 

training, validation and testing datasets with a ratio of 80:10:10. The 
loss function adopted is the mean absolute error (MAE), defined in Eq. 
(13), as it is less sensitive to outliers than the mean squared error. Model 
performance is evaluated using MAE and the coefficient of determina
tion (R2), defined in Eq. (14). Specifically, MAE quantifies the average 
magnitude of prediction errors, where a lower MAE indicates superior 
model performance. In contrast, R2 measures the proportion of variation 
in the data that the model can capture, where a higher value of R2 means 
better prediction. Eq. (14) shows that the maximum R2 value is 1, when 
the model fully explains all the variation in the data, and R2 can be 
negative when the performance of the model is worse than the arith
metic mean. 

MAE=
1
N

∑N

i=1
|ŷ − yi| (13) 

R2 =1 −

∑N

i=1
(ŷ − yi)

2

∑N

i=1
(yi − y)2

(14) 

where ŷ and yi are the values predicted and measured values, respec
tively. y is the arithmetic mean value of measurements, y = 1

N
∑N

i=1 yi.

4. Investigated cases

Table 3 summarises the examined cases in this study. Groups A to D, 
comprising a total of 100 models, explore the influence of various factors 
on prediction performance, including input features, CPTu and Vs data 
pairing methods, and prediction techniques. Group E, consisting of an 
additional 25 models, evaluates the generalisation capability of the 
models. Group A and Group C exclude u2 for the prediction, whereas 
Group B and Group D incorporate it to explore the impact of u2 on 
prediction performance. If u2 is found to have an insignificant effect, 
there is potential to leverage a large volume of onshore CPT data, where 
u2 is often unavailable, to develop the CPTu/CPT-Vs correlation. The 
derived CPTu parameters, as described in Section 2.1, are considered in 
Group C and Group D, but not in Group A and Group B, to assess whether 

Fig. 6. Comparison of (a) MAE and (b) R2 for different CPTu and Vs data pairing methods. Note: 3 F-DNN represents the combination of three features (3 F) and DNN.
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incorporating them improves prediction performance, as they can be 
easily obtained from the measured CPTu parameters. It is noted that 
Group C does not include Bq, as its computation requires u2, which is 
not used in this group. Within each group, all the CPTu and Vs data 
pairing methods and associated databases (D1 to D5) and prediction 
techniques (MLR, SVR, RFR, XGBR and DNN) are used to assess their 
impact on predictive performance. In Group E, data collected from 
Taipei are excluded when constructing the CPTu-Vs models. The models 
are then applied to predict Vs from CPTu measurements at the Taipei 
dataset to assess the generalisation capacity of the models and investi
gate an example of a site where direct Vs measurements are unavailable.

The training process is conducted on a personal desktop equipped 
with RAM (64 GB) and 13th Gen Intel(R) Core(TM) i9-13900KF 3.00 
GHz processor. The computational time required for training is sum
marised in Table 4, based on eight input features (Group D). Notably, the 

training time for each of the non-augmented databases (Point-Point and 
Point-Average) and for each of the augmented databases (Augmented- 
Constant, Augmented-Linear and Augmented-Random) is comparable 
due to the similar amount of data within their respective groups. 
Therefore, only the training times for the Point-Point and Augmented- 
Constant methods are presented in Table 4. Regardless of the data
base, MLR exhibits the shortest training time (less than 1s), as it only 
requires the estimation of a limited number of coefficients (e.g., nine 
coefficients when eight input features are considered). All prediction 
models using the Augmented-Constant method require longer training 
times because of the substantial increase in data volume. When the 
Point-Point method is used, training for SVR, RFR, and XGBR is 
completed within 10 s, whereas DNN requires the longest training time, 
at 156 s; however, this remains computationally efficient. When the 
Augmented-Constant method is utilised, SVR exhibits the highest 

Fig. 7. Performance of five prediction techniques based on eight features and the Augmented-Constant pairing method.
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computational demand, requiring more than 26 h for training due to the 
substantial increase in data volume. In contrast, XGBR demonstrates 
exceptional efficiency, with its training time increasing only marginally 
from 1 to 4 s despite the database expanding nearly 50-fold.

5. Results and discussions

Figs. 3, 5, 7 and 9 illustrate scatter plots of predicted versus measured 
Vs for the testing dataset. In these figures, the red ellipse denotes the 90 
% confidence region, which represents the area where 90 % of the 
predicted and true Vs data pairs are expected to fall, generated through 
principal component analysis. The direction of the major axis of this 
ellipse indicates the principal direction of data. If this axis aligns closely 
with the 1:1 line, the model demonstrates strong predictive perfor
mance, whereas any misalignment signifies reduced performance. 
Additionally, data density contours are displayed, where darker regions 
indicate a higher concentration of data points.

Figs. 4, 6 and 8 illustrate radar charts of performance, including MAE 
and R2, for the testing dataset of the 100 models considered in Groups A 
to D. While these figures display the same set of results, they are 
organised differently to separately highlight the effects of input features, 
CPTu and Vs data pairing methods and prediction techniques, respec
tively. In addition, a summary table that includes MAE and R2 for all 
cases is provided in the supporting material (Table S1).

5.1. Prediction performance for different input features

This subsection evaluates the influence of input features on model 
performance. The scatter plots for predictions based on the Augmented- 
Constant method and DNN are shown in Fig. 3, while the radar charts of 
MAE and R2 for all cases are shown in Fig. 4. A comparison between 
Fig. 3 (a) (excluding u2) and Fig. 3 (b) (including u2), as well as between 
Fig. 3 (c) (excluding u2 and associated derived parameter, Bq) and Fig. 3 
(d) (including u2 and associated derived parameter, Bq), demonstrates 
that incorporating u2 significantly enhances predictive performance. 
This conclusion is drawn based on three key observations: i) the major 
axis of the confidence ellipse in Fig. 3 (b) and (d) aligns more closely 
with the 1:1 line; ii) the data density contours in Fig. 3 (b) and (d) show 
that the predicted values are more concentrated around the 1:1 line with 
reduced scatter; iii) the inclusion of u2 results in a lower MAE and an 

increase in R2 values, demonstrating enhanced predictive capability. 
This trend is consistent across all cases, as illustrated in Fig. 4.

Additionally, Fig. 3 (b) shows that soils with Vs > 600 m/s present 
better agreement between predicted and measured values compared to 
those in Fig. 3 (a), which may be a key factor contributing to the sig
nificant improvement observed when u2 is included. When data with 
Vs > 600 m/s are excluded from training, the improvement resulting 
from the inclusion of u2 is less pronounced but remains evident. This 
highlights the importance of including u2 as an input feature during 
training, particularly when cemented materials, such as chalk in this 
case, are present. The results obtained using only data with Vs <

600 m/s for training are provided in the supplementary material 
(Fig. S5 and Fig. S6).

Based on a comparison between Fig. 3 (a) and (c), or Fig. 3 (b) and 
(d), as well as the MAE and R2 shown in Fig. 4, it is observed that 
incorporating derived CPTu parameters has a minor effect on prediction 
performance as the MAE and R2 values change only marginally. For 
instance, when all eight CPTu parameters are considered (Fig. 3 (d)), the 
MAE decreases only slightly, from 37.3 m/s with four features (Fig. 3 
(b)) to 35.7 m/s, while R2 increases from 0.59 to 0.60. While the model 
exhibits only a slight improvement in predictive performance when 
using eight features, the training time is approximately doubled 
compared to the four-feature case. Therefore, the recommended 
configuration is to use four input features. Nonetheless, if all trained 
models are made available, users may still choose the eight-feature 
model for prediction.

5.2. Prediction performance for different CPTu and Vs data pairing 
methods

The impact of CPTu and Vs data pairing methods on model perfor
mance is explored in this section. The scatter plots for predictions ob
tained using eight input features and the DNN are presented in Fig. 5, 
while the radar charts of MAE and R2 for all cases are shown in Fig. 6. 
Fig. 5 illustrates that predictions generated by Point-Point and Point- 
Average methods, i.e. with the smaller databases, are more scattered 
compared to the other data pairing methods. Additionally, Fig. 5 (b) and 
Fig. 6 (a) indicate that the Point-Average method exhibits the highest 
MAE among the five data pairing methods. This may be attributed to the 
presence of very distinct CPTu measurements (very low or high values), 

Fig. 8. Comparison of (a) MAE and (b) R2 for different prediction techniques. Note: 3 F-D1 represents the combination of three features (3 F) and Point-Point (D1).
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making the averaged CPTu unrepresentative of the entire interval and 
thereby reducing the accuracy. Conversely, the contour plots in Fig. 5
show that predictions generated using Augmented-Constant and 
Augmented-Linear methods are more concentrated along the 1:1 line, 
and Fig. 6 (a) demonstrates that these two methods yield similar MAE 
values, which are generally lower than those obtained using the non- 
augmented databases. This improvement can be attributed to the 
expanded databases, which mitigate the influence of individual CPTu-Vs 
pairings, thereby enhancing overall model performance.

In Fig. 6 (b), it is observed that Augmented-Linear and Augmented- 
Random methods achieve similar R2 across all cases, both of which 
are slightly lower than those obtained by the Augmented-Constant 
method. Moreover, augmented databases achieve higher R2 than those 
obtained by non-augmented databases when RFR, XGBR and DNN are 
utilised. The apparent inconsistency in the performance of the 

Augmented-Linear method when evaluated using different metrics (i.e., 
MAE and R2) arises because the MAE and R2 assess different aspects of 
model performance. While MAE measures the average magnitude of 
prediction error, R2 quantifies the proportion of variance in the observed 
data that is captured by the model. Although the Augmented-Linear 
method effectively reduces prediction error (as indicated by lower 
MAE), it may also introduce additional variability through interpola
tion. This added variability can limit the model’s ability to explain 
variance in the target variable, resulting in a slightly lower R2.

Based on these findings, it is concluded that the three augmentation 
methods have the potential to improve prediction performance by fully 
utilising high-resolution CPTu data. Furthermore, they outperform the 
Point-Average method, which also leverages high-resolution CPTu data 
but does so by averaging CPTu parameters. Within these data augmen
tation methods, assuming a constant Vs across each interval 

Fig. 9. Predictions with different soil types using eight features, Augmented-Constant pairing method, and DNN.
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(Augmented-Constant database) introduces the least uncertainty into 
the augmented databases, leading to the best predictive performance, 
whereas assuming randomly varying values within each interval 
(Augmented-Random database) introduces the highest uncertainty, 
resulting in the poorest predictive performance. Future research could 
examine the impact of these uncertainties on geotechnical design and 
assess augmentation methods with stress-dependent logic to minimise 
uncertainties [e.g. Ref. [59]].

5.3. Prediction performance for five prediction models

Here we assess the impact of different techniques on predictive 
performance. The scatter plots for predictions obtained using eight input 
features and a database generated by the Augmented-Constant method 
are presented in Fig. 7, while the radar charts of MAE and R2 for all cases 
are shown in Fig. 8. Additionally, MLR’s performance using eight input 
features across various database generation methods is provided in the 
supplementary material (Fig. S7). Fig. 7 illustrates that predictions 
generated by MLR are more scattered, while Fig. 8 (a) indicates that 
MLR exhibits the highest MAE among the five prediction techniques. 
The two tree-based techniques, RFR and XGBR, display similar data 
distributions (Fig. 7), and also yield comparable MAE and R2 values 
(Fig. 8). Additionally, RFR and XGBR consistently achieve higher R2 

values compared to the other techniques. Fig. 8 (a) demonstrates that 
SVR, RFR, XGBR and DNN generally exhibit similar MAE values. How
ever, for 8 F-D3 and 8 F-D4, DNN achieves a lower MAE than the other 
techniques.

Based on these observations and the computational time discussed in 
Section 4, MLR is the simplest and fastest prediction model. However, its 
predictive performance is considerably lower than that of more 
advanced ML techniques. Specifically, MLR results in a 41 % higher MAE 
and 28 % lower R2 compared to DNN. These results indicate that MLR is 
unsuitable for developing CPTu-Vs correlations. SVR demonstrates 
moderate predictive performance among the five techniques, although 
its computational demands significantly increase with the increase in 
database size. Thus, SVR is not recommended for use in scenarios where 
database augmentation is employed. RFR and XGBR are the third and 
second fastest models, respectively, and both consistently achieve the 
highest R2 across all cases in this study. However, these tree-based 
models are prone to overfitting when trained on small databases, such 
as those generated using Point-Point and Point-Average methods, 
particularly if the initial parameter ranges are not appropriately selected 

[55]. To mitigate overfitting, it is recommended that a trial-and-error 
approach be used to determine appropriate initial ranges for hyper
parameters. Based on the study presented in this paper, DNN is appli
cable across different database sizes, balancing both training time and 
predictive accuracy, making it a robust choice for constructing CPTu-Vs 
correlations.

5.4. Prediction performance in different soil types

Here we evaluate the predictive performance across different soil 
types categorised by soil behaviour index, Ic. We use the DNN for this 
analysis as our results evidence that it is the most accurate, robust and 
efficient technique from those analysed above. Fig. 9 illustrates the 
scatter plots for predictions obtained using DNN with eight input fea
tures and the Augmented-Constant method. In Fig. 9 (a) and (f), the 
principal axes of the ellipses do not align well with the 1:1 line indi
cating poor predictive performance for gravelly to dense sands (Ic ≤
1.31) and organic soils - clay (Ic > 3.60). This is primarily attributed to 
the insufficient amount of data for these two soil types, each accounting 
for less than 3 % of the entire database (see Table 1). However, it is 
noted that clean sands to silty sands (Fig. 9 (b)), despite representing the 
largest data subset, exhibit poorer predictive performance compared to 
the silty clays, clayey silts and clays shown in Fig. 9 (d) and (e). This can 
be attributed to i) the reduced information obtained from CPTu mea
surements in sandy soils compared to clays (as u2 generally adds little 
information in sands); ii) the data imbalance, where the clean to silty 
sand data are primarily concentrated within a narrow region on the 
Robertson chart, whereas other soil types are more widely distributed. 
The poor predictive performance may also result from the complicated 
force chains and associated stress distribution in sand-dominated soils 
that develop due to for example, variations in grain shapes and orien
tation and grain-to-grain contacts. Additionally, it is observed that 
although the number of data points in Fig. 9 (c) and 9 (e) are compa
rable, Fig. 9 (e) represents clay-dominated soils, which exhibit signifi
cantly lower deviations between predicted and measured values, 
compared to the sand-clay mixed soil type in Fig. 9 (c).

Fig. 10 presents the relative error, defined as the absolute difference 
between the predicted and measured Vs normalised by the measured Vs,

for each soil type. Based on Fig. 10, the number of predictions within a 
given relative error threshold can be determined. For example, for silty 
clays to clays (2.95 < Ic ≤ 3.60), 90 % of predictions have relative errors 
below 25 %, providing a quantitative measure of prediction uncertainty 
for different soil types.

In addition, the predictive performance of the model across different 
soil depths is evaluated using DNN with eight input features and the 
Augmented-Constant method (Fig. S8). Results show that the highest 
MAE occurs at depths greater than 50 m. At this range, several data 
points exhibit extremely low measured values (Vs < 50 m/s), but un
usually high predicted values (Vs > 800 m/s). This discrepancy may be 
attributed to the presence of thin soil layers that are captured by high- 
resolution CPTu measurements but missed by the low-resolution Vs 
measurements, which are averaged over larger depth intervals. 
Conversely, the predictions within the 10–20m and 20–30m depth 
ranges show relatively low MAE, indicating better model performance at 
these intermediate depths.

Furthermore, predictive performance across different soil regions 
(sub-datasets) is assessed using DNN with eight input features and the 
Augmented-Constant method (Fig. S9). Interestingly, model perfor
mance does not appear to be directly correlated with the size of the 
dataset. For instance, the Taipei dataset yields better prediction accu
racy than the RVO dataset, despite the latter containing a significantly 
larger number of data points.

5.5. Generalisation ability of the models

The previous sections have assessed model performance using da

Fig. 10. Relationship between cumulative percentage of data and relative error 
for each soil type using eight features, Augmented-Constant pairing method, 
and DNN.

Y. Zhang et al.                                                                                                                                                                                                                                   Soil Dynamics and Earthquake Engineering 201 (2026) 109972 

12 



tabases compiled from all five datasets. In this subsection, we assess the 
generalisation ability of some of the models using databases that exclude 
all or part of the Taipei dataset, which contains 636 data points when 
generated using the Point-Point method. The trained models are then 
tested by predicting Vs values using the remaining data (i.e., data not 
used in training) from the Taipei dataset. Fig. 11 illustrates the predic
tion results that exclude the Taipei dataset during training, obtained 
from five prediction techniques and using eight input features and the 
Point-Point method, alongside predictions from a widely used empirical 
CPTu-Vs correlation (Eq. (15)) proposed by Robertson [18]. The 
empirical correlation is found to generally underestimate Vs, producing 
significant errors and negative R2. It is also observed that MLR and DNN 
yield lower MAE and higher R2 compared to SVR, RFR, and XGBR. 
However, the principal axis of MLR deviates significantly from the 1:1 

line, suggesting potential bias in its predictions. In contrast, predictions 
from DNN are symmetrically distributed along the 1:1 line, demon
strating the best generalisation performance among all five techniques. 
Furthermore, predictions generated by SVR, RFR, and XGBR exhibit a 
general tendency toward overestimation and negative R2, indicating 
that the generalisation capacity of these techniques for the Taipei 
dataset is worse than using an arithmetic mean. This suggests that these 
models may not be reliable to accurately predict Vs conditions that are 
unseen during training. 

Vs =

[

10(0.55Ic+1.68) ×
qt − σv

pa

]0.5

(15) 

where pa is the atmospheric pressure.
To further assess the impact of site-specific data on model perfor

Fig. 11. Generalisation performance for different prediction techniques using eight features, Point-Point pairing method without Taipei dataset.
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mance, an additional test was conducted by incorporating varying 
portions of the Taipei dataset into the training process, as shown in 
Fig. 12. From the MAE and R2 values in Fig. 12, it is observed that the 
prediction performance of MLR remains nearly unchanged, regardless of 
the amount of Taipei data included. This is mainly because MLR assigns 
equal weight to all data points, and a small number of additional data 
points (e.g., 400) exert a negligible influence on the model compared to 
the large-scale dataset initially used for training. Conversely, ML tech
niques (SVR, RFR, XGBR and DNN), which dynamically assign varying 
weights to individual data points, exhibit a stronger capacity to learn 
from site-specific data. Consequently, as more Taipei data is incorpo
rated into training, these models demonstrate improved prediction 
performance, as evidenced by decreasing MAE and increasing R2. For 
example, when RFR is used, MAE decreases from 37.8 m/s to 28.5 while 
R2 increases from − 0.25 to 0.37. It is also noted that MAE and R2 reach a 
plateau when approximately 50 % of the Taipei dataset is utilised for 
training.

To further assess model generalisation, the trained model is tested 
using an external dataset from Christchurch, New Zealand [17]. The 
model’s performance on this dataset is relatively poor, as reflected in the 
MAE and R2 (Fig. S11). This can be attributed to the fact that the 
Christchurch data predominantly represent clean to silty sand (1.31 < Ic 

≤ 2.05), which shows relatively poor predictive performance even 
during model training (see Fig. 9). In contrast, the Taipei dataset pri
marily consists of silty clay to clay (2.95 < Ic ≤ 3.60), which shows good 
predictive performance during model training (see Fig. 9). These results 
suggest that the model exhibits stronger generalisation for soil types that 
are well represented and better learned during training.

A comparison analysis, presented in Fig. 13, is conducted between 
the site-specific model (trained on only the Taipei dataset) and the 
global model (trained on all data excluding the Taipei dataset). Results 
indicate that the site-specific model outperforms the global model. This 
is expected when sufficient local data are available, as models trained on 
site-specific data often generalise better within the same geotechnical 
context. However, in situations where site-specific data are limited, 
training a dedicated model may not be feasible or may result in signif
icant bias. In such cases, a more practical approach is to enhance a global 
model by integrating limited site-specific data. In this study, we 
explored a straightforward method by directly adding a subset of the 
Taipei data to the global training dataset to retrain the model, which led 
to improved predictive performance.

Fig. 12. Generalisation performance using different numbers of data from the Taipei dataset in training (eight features, Point-Point pairing method, and DNN).

Fig. 13. Performance on Taipei dataset using global model (use all the data except Taipei dataset in training) and site-specific model (use only Taipei dataset 
in training).
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6. Conclusions

This paper assesses statistical and ML-based techniques to establish 
CPTu-Vs correlations, where the CPTu measurements are served as input 
features, while shear wave velocity, Vs, is the output. The effects of 
various factors on the prediction performance have been investigated, 
including the number and selection of input features, database size or 
data pairing methods, prediction techniques, and soil type. Additionally, 
the generalisation ability of the different predictive techniques has been 
evaluated. The main conclusions are summarised as follows: 

1) The incorporation of pore pressure as an input feature enhances 
prediction accuracy, particularly in cemented materials such as 
chalk. In contrast, the inclusion of derived parameters has an insig
nificant effect on model performance.

2) For the conventional measurement resolutions of CPTu (every 0.02 
m) and Vs data (every 1 m), the proposed Vs data augmentation 
methods provide up to a 50-fold increase in dataset size (here 46- 
fold), without requiring additional data collection. This leads to 
improved prediction accuracy compared to conventional data pair
ing methods in which CPTu data is downsampled to Vs resolution. 
Moreover, these augmentation methods are simple, efficient, and 
easily applicable in engineering practice.

3) The three augmentation methods inherently introduce uncertainties 
due to their underlying assumptions. Among them, assuming a 
constant Vs value within each Vs interval results in the lowest un
certainty, leading to the lowest MAE in predictions. The opposite 
occurs when assuming random Vs values within each Vs interval. 4) 
For the investigated augmented databases, DNN exhibits the lowest 
MAE, while RFR or XGBR achieve the highest R2, demonstrating 
their capability for establishing CPTu-Vs correlations. Conversely, 
MLR exhibits significant prediction errors, making it unsuitable for 
constructing CPTu-Vs correlations. SVR requires extensive compu
tational time (e.g., exceeding 26 h and approximately 11 times, 197 
times, and 24,045 times longer than DNN, RFR, and XGBR, respec
tively), rendering it impractical for large databases.

5) Prediction accuracy varies across soil types. In general, sand- 
dominated soils exhibit greater prediction errors than clay- 
dominated soils, which can be attributed to the complicated stress 
distribution in sand-dominated soils caused by variations in grain 
shapes and orientation and grain-to-grain contacts.

6) Based on the results, the recommended model for developing CPTu- 
Vs correlations should utilise four measured features, a database 
generated using the augmentation method that assumes constant Vs 
values within each Vs interval and pairs them with each CPTu data 
point throughout the interval, and the DNN prediction technique.

7) Future research that naturally follows from this study may include 
adding uncertainty quantification in model predictions, and inves
tigating augmentation techniques with stress-dependent logic and 
geostatistical realism (using estimated correlation lengths and vari
ability ranges), as well as sequence-to-sequence ML techniques, such 
as Long Short-Term Memory (LSTM). Finally, this study demon
strated the benefits of integrating local data with global data for 
constructing site-specific models, and more advanced techniques 
such as transfer learning [60] could be also investigated in future 
research.
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