

1 **SoK: Acoustic Side Channels**

2 PING WANG, Xidian University, China

3 SHISHIR NAGARAJA, Newcastle University, UK

4 AURÉLIEN BOURQUARD, Massachusetts Institute of Technology, USA

5 HAICHANG GAO, Xidian University, China

6 JEFF YAN*, University of Southampton, UK

7 Acoustic side channels (ASCs) have been discovered for several decades, highlighting the tangible security risks posed by unintended
8 sound emissions from computing and electronic systems. Their existence has drawn considerable attention from researchers, driving
9 rapid progress in both attack methodologies and defense mechanisms across a wide range of scenarios. In this paper, we provide
10 a state-of-the-art analysis of ASCs, covering all the significant academic research in the area. First, we clarify existing ambiguities
11 and conceptual confusion, proposing a clear definition of ASC. Second, we analyse the characteristics of known ASCs, discuss their
12 security implications, and propose the first taxonomy. Next, we summarise attack techniques, discuss countermeasures, and identify
13 areas for future research. We also link side channels and inverse problems, two fields that appear to be completely isolated from each
14 other but have deep connections.

15 CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures;

16 Additional Key Words and Phrases: Side channel, Covert channel, Inverse problems, Scientific Foundation, Impediment, Interference,
17 Masking, Obfuscation

18 **ACM Reference Format:**

19 Ping Wang, Shishir Nagaraja, Aurélien Bourquard, Haichang Gao, and Jeff Yan. 2025. SoK: Acoustic Side Channels. *ACM Comput. Surv.*
20 37, 4, Article 111 (August 2025), 32 pages. <https://doi.org/XXXXXX.XXXXXXX>

21 **1 Introduction**

22 Security engineers have long known that information leaks where you least expect it. While much effort has been
23 expended on securing networks from DDoS and hosts from zero-days, a significant vulnerability is the sound computing
24 devices make while working. From the clatter of a keyboard to the whine of a CPU under load, acoustic emissions
25 betray secrets with shocking fidelity. Indeed all electronic and mechanical devices emit sound during operation – sound
26 which can be weaponized to steal private and sensitive data.

27 The idea is not new. In the 1950s [61, 80], TEMPEST standards addressed radio-frequency leaks from Cold War cipher
28 machines. By the 2000s, Adi Shamir and others showed that you could extract RSA keys by listening to a laptop’s CPU
29 noise [69]. More recently, researchers demonstrated that neural networks can decode keyboard taps from Zoom meeting

30 *Corresponding author.

31 Authors’ Contact Information: Ping Wang, pingwangyy@foxmail.com, Xidian University, Xi’an, Shaanxi, China; Shishir Nagaraja, Newcastle University,
32 Newcastle, UK, shishir.nagaraja@ncl.ac.uk; Aurélien Bourquard, Massachusetts Institute of Technology, Boston, USA, aurelien@mit.edu; Haichang Gao,
33 hchgao@xidian.edu.cn, Xidian University, Xi’an, Shaanxi, China; Jeff Yan, University of Southampton, Southampton, UK, jeff.yan@soton.ac.uk.

34 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
35 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
36 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
37 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

38 © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

39 Manuscript submitted to ACM

40 Manuscript submitted to ACM

53 recordings with 95% accuracy. Even industrial control systems are not safe—the rhythmic clunk of a robotic arm might
 54 reveal proprietary manufacturing processes, these are simply refined versions of privacy-attacks on dot-matrix printers
 55 where acoustic emanations were leveraged to reconstruct the printed text [13].

56 Why does this matter? Because while we have spent decades hardening software, we have ignored the physics of
 57 computation. Encryption does not stop your fan from speeding up during a cryptographic operation, or your GPU
 58 from emitting a high-pitched whine while rendering sensitive data. Worse, the Internet of Things has turned this into a
 59 surveillance goldmine. Your smart speaker is not just listening for "Hey Alexa"—it is capable of capturing the sound
 60 of your PIN entry at the nearby ATM, while smartphones leak pins when presented with an ultrasound field. These
 61 attacks are particularly insidious because they bypass traditional security defenses like firewalls and encryption, as the
 62 leaked data originates from unintended physical behaviors rather than digital exploits.

63 For example, advanced machine learning models can analyze keystroke sounds recorded via a smartphone microphone
 64 to reconstruct typed passwords with alarming accuracy, while fluctuations in a server's cooling fan noise have been
 65 shown to reveal cryptographic key operations [29]. The risks extend beyond computers: industrial systems, ATMs,
 66 and even medical devices can inadvertently leak data through operational sounds. With the proliferation of smart
 67 devices equipped with always-on microphones, the attack surface for acoustic eavesdropping has expanded dramatically,
 68 enabling attackers to conduct surveillance passively and at scale.

69 Mitigation is a nightmare. You cannot just patch this with an update. Soundproofing is expensive, and masking noise
 70 with white sound risks being impractical. Some systems resort to "acoustic jamming," but that is like fighting fire with
 71 fire—and just as messy. The goal of our work is to systematize the work on sound-based unintentional leakages (or
 72 Acoustic Side-Channels), including those cases where other physical elements like power, heat, and even the vibrations
 73 in your server rack, are converted into acoustic signals. Until we design systems with these leaks in mind, attackers will
 74 keep eavesdropping—not just on our networks, but on the very noises our machines make.

75 Our paper represents the first (comprehensive) effort in systematising knowledge of ASCs discovered to date. We
 76 aim to make the following contributions.

- 77 • First, we clarify conceptual ambiguity within side-channel literature. Key concepts lack clarity, hence the
 78 literature as a whole is confusing and chaotic. While some ASCs are not recognised as ASCs, other side-channel
 79 attacks that are not ASCs are termed as such. For example, does the Dolphinattack [86]—which induces inaudible
 80 voice commands in ultrasound into an Acoustic Speech Recognition system—constitute an ASC or a *signal
 81 injection attack*? Is Lamphone [59]—using a hanging lamp as a noisy acoustic-to-optical transducer – an acoustic
 82 or an optical side-channel attack? How do side channels differ from covert channels? A number of authors have
 83 presented confusing and conflicting views. Therefore, we will introduce intuitive definitions that are simple,
 84 clear-cut and easy to operationalise. We will also clarify both the similarities and distinctions between side
 85 channels and covert channels.
- 86 • Second, we will establish a taxonomy to map, structure and qualitatively evaluate the ASCs discovered to date.
 87 We will also propose a structured framework to analyse countermeasures proposed to address these ASCs.
- 88 • Third, we will conduct a meta-analysis of the state of the art, identifying its strengths and weaknesses. In doing
 89 so, we will also provide new insights and highlight research gaps as well as future research directions.
- 90 • Last but not the least, we link side channels and inverse problems, two fields that have developed in isolation
 91 but have deep connections.

The rest of this article is organized as follows. In Section 2, we summarize the core weakness of existing studies, i.e., the ambiguity, confusion, and possible root causes of ASCs and their definitions, and then we introduce a new definition of ASC. By reviewing the family of ASC works, we propose a new taxonomy of ASCs in Section 3. We classify them into nine different categories, analyze their characteristics, and summarize their differences. Section 4 introduces the key techniques of implementing ASC attacks, including the general attack process and details of each stage. In Section 5, we introduce a taxonomy and comparative analysis of countermeasures. Section 6 discusses the findings of our investigation, the challenges of existing research and the possibility of future work. In Section 7, we present a new perspective linking ASC and inverse problem and analyze the potential of this direction.

2 Clarifying side channel literature

The literature on side channels is substantial but suffers from disorganisation and ambiguity. We will discuss the ambiguous use of terminology and the resulting confusion.

2.1 Ambiguity, Confusion and Possible Root Causes

Determining whether an attack qualifies as a side channel is not always straightforward and can sometimes be tricky. Misconceptions have proliferated in the literature, leading to incorrect classifications. For instance, a widely cited paper on voice assistant security [24] erroneously labeled the DolphinAttack [86] as a side-channel attack, when in reality, it is a signal injection attack with no side-channel involvement. Similarly, the same paper misclassified the Long-Range DolphinAttack [67] and the "Light Commands" attack [74] as side-channel attacks in [24], though neither falls into this category.

Conversely, some attacks (e.g. [22, 87–89]) were indeed acoustic side-channel attacks (ACSSs), yet their authors did not explicitly identify them as such. Many more such examples exist, raising an important question: What has caused this ambiguity, confusion, and even errors? After careful consideration, we identify three potential root causes:

Root cause 1: no clear, concise, and complete definition that is both *widely applicable* and *easy to operationalise*.

Many papers in the literature use the term "side channel" without explicitly defining it. While this practice may have been acceptable in the early stages of the field when attacks were clearly either side channels or not, and fewer variants existed—the lack of a widely accepted and broadly applicable definition has led to ambiguity and confusion.

On the other hand, numerous definitions of side channels do exist, but they often conflict with one another and are of limited practical use. Some are overly narrow, while others are not *operational* – meaning they cannot be readily applied to determine whether a given attack qualifies as a side channel. Below, we examine several definitions from the literature.

'An attack enabled by leakage of information from a physical cryptosystem. Characteristics that could be exploited in a side channel attack include timing, power consumption, and electromagnetic and acoustic emissions.' [60]. This NIST definition was driven by side channel cryptanalysis, and it did not cover non-cryptanalytic side channels. This definition is also difficult to apply in practice.

'Physical side channel attacks extract information from computing systems by measuring unintended effects of a system on its physical environment. They have been used to violate the security of numerous cryptographic implementations, both on small embedded devices and, more recently, on complex devices such as laptops, PCs, and smartphones. Physical emanations were used to recover information from peripheral input/output devices such as screens.' Used in a recent paper from a premier conference [28], this definition is hard to operationalise and focuses only on physical side channels.

¹⁵⁷ ‘This can often be accomplished by means of a side channel attack, whereby an unintended information source is
¹⁵⁸ leveraged.’ Introduced in a recent Oakland SoK paper [55], this definition was neat but too brief, too abstracted and of
¹⁵⁹ limited operational value.
¹⁶⁰

¹⁶¹ ‘... a side channel attack is any attack based on information gained from the implementation of a computer system,
¹⁶² rather than weaknesses in the implemented algorithm itself (e.g. cryptanalysis and software bugs).’ From Wikipedia, this
¹⁶³ definition is clearly driven by cryptanalysis and of a limited scope.
¹⁶⁴

¹⁶⁵ **Root cause 2: side channels and covert channels have subtle differences**

¹⁶⁶ First, side channels and covert channels are two concepts that are related and easy-to-confuse. For example, Covert-
¹⁶⁷ Band [57] examined the privacy implication of tracking human movements with acoustics. It created a clever covert
¹⁶⁸ channel that leaked victims’ private information, e.g. whether someone was in a room or not, or whether she was
¹⁶⁹ moving or standing still. However, this was not a side-channel attack, as the leakage was intentional rather than
¹⁷⁰ unintentional.
¹⁷¹

¹⁷² Second, the definitions of side channels quoted earlier *all* fail to provide a perspective that clearly differentiates side
¹⁷³ channels from covert channels. The second and third definitions emphasised the “unintended” aspect; however, in both
¹⁷⁴ side channels and covert channels, the leakage may be unintended from the system’s perspective—that is, not what the
¹⁷⁵ system was designed, planned, or meant to produce.
¹⁷⁶

¹⁷⁷ Third, as we will clarify later in Section 2.2, some new class of attacks (e.g. active side channels) make it much harder
¹⁷⁸ than before—even for experts—to determine whether they are side or covert channels.
¹⁷⁹

¹⁸⁰ **Root cause 3: The surge of acoustic attacks that resemble ASCs but are not has further complicated the ¹⁸¹ conceptual ambiguity and confusion in the field.**

¹⁸² Acoustic security has expanded rapidly and substantially in recent years. Acoustic attacks such as the Dolphinattack
¹⁸³ [86], the long-range dolphin attack [67] and the ‘light commands’ attack [74], discussed earlier, are but one case of
¹⁸⁴ attacks that share a similarity – the presence of an unintended communication channel between sender and receiver
¹⁸⁵ pairs. However, Dolphinattack is signal injection whereas the lightcommands attack is a transducer side-channel attack
¹⁸⁶ (audio to light). The presence of some sort of audio traces combined with an unintended communication channel does
¹⁸⁷ not necessarily imply an acoustic side-channel.
¹⁸⁸

¹⁸⁹ Another set of acoustic attacks eavesdrop and recover human speech by picking up vibrations via motion sensors,
¹⁹⁰ cameras, laser or lidar, e.g. [3, 34, 54, 55, 59, 66]. They represent another source of confusion. These attacks involved side
¹⁹¹ channels, though not necessarily acoustic ones. For example, a gyroscope’s readings are sensitive to sound vibrations,
¹⁹² and Stanford researchers Michalevsky et al. [54] exploited this to recover human speech. This qualifies as a vibration-
¹⁹³ based side-channel attack, but not an acoustic one, for a subtle reason: the follow-up investigation [77] suggested that
¹⁹⁴ Gyophone picked up more vibration signals from the table surface than directly from the air. The Lamphone attack [59]
¹⁹⁵ recovers human speech by measuring vibrations of a light bulb caused by acoustic waves. However, it exploits an
¹⁹⁶ optical side channel, rather than an acoustic one, to recover the sound.
¹⁹⁷

¹⁹⁸ **2.2 Our Definitions**

¹⁹⁹ We first give an informal definition. A *side channel* is where information leaks accidentally via some medium or mechanism
²⁰⁰ that was not designed or intended for communication. Originated by Butler Lampson [47], the notion of covert channels
²⁰¹ bears some similarity; namely, it is a mechanism that was not intended for information transfer but which can nonetheless
²⁰² be abused to communicate information in a way which the security policy does not allow. In contrast to a side channel,
²⁰³ a covert channel is characterised by intentional rather than accidental leakage.
²⁰⁴

209 Here, we clarify an example that could otherwise cause confusion, namely, why SonarSnoop [17, 18] is a side-channel
 210 attack rather than a covert channel. In SonarSnoop, speakers are used to emit human inaudible acoustic signals and the
 211 echo is recorded via microphones, turning the acoustic system of a smart phone into a sonar system. The echo signal
 212 from a user’s finger movements can be inferred to steal Android phone unlock patterns. In this attack, indeed acoustic
 213 signals were intentionally induced, but the researchers measured only echos from finger movements, which did not
 214 deliberately leak information. Instead, the leak was accidental. Therefore, SonarSnoop was a side channel attack.
 215

216 Side channels can be either *passive* or *active*. A passive side channel exploits pre-existing leakages that arise naturally
 217 from a system’s normal operation; the attacker merely observes these leakages without altering the system or its
 218 environment. In contrast, an active side channel is facilitated by the attacker, who manipulates the system or environment
 219 (e.g., by introducing acoustic or light fields) to induce or amplify unintentional leakage. For instance, SonarSnoop [17, 18],
 220 an active side channel, introduces an ultrasound field which is modulated by the victim’s finger movements to leak
 221 smartphone authentication credentials. By contrast, all covert channels are inherently active, since the leakage is
 222 deliberately introduced rather than incidental. While covert channels and active side channels both involve an active
 223 component, they remain fundamentally distinct classes of attacks.
 224

225 For simplicity, we outline as follows a possible way to formally define side channels and covert channels, but omit
 226 the full formalism.
 227

228 A side channel is defined over a system with confidential system inputs, where the system **unintentionally** acts as
 229 a sender of confidential inputs via a not-by-design communication channel facilitated by the system. The recipient is
 230 the attacker, who exploits the side channel to gain access to a noisy version of the inputs. In a side channel there is no
 231 active agent that manipulates the system inputs.
 232

233 A covert channel is similarly defined over a system with an embedded not-by-design communication channel. In
 234 contrast to side channels, covert channels are defined between sender-receiver pairs where the sender is a compromised
 235 system-insider that **intentionally** manipulates the system to leak information over a communication channel to
 236 the receiver (also the attacker). Covert channels and side channels are similar in their leverage of a not-by-design
 237 communication medium, but distinct in their definition of sender-receiver pairs – the sender of a covert-channel is
 238 an active insider whereas in a side-channel the system is the sender that unintentionally leaks inputs. Informally, a
 239 not-by-design communication channel is a side-channel, if the system itself is unintentionally the sender. If the system
 240 is transmitting intentionally, then it is a covert channel.
 241

242 Often, a direct measurement of the output from a side channel does not immediately give the information leaked
 243 via the channel. And the channel output is more like meta data, from which attackers deduce the leaked information
 244 in a sensible way to complete their attacks. An exception is transient execution attacks such as Meltdown [48] and
 245 Spectre [41], which are side channels that leak actual data, rather than meta data. In contrast, traditional micro-
 246 architectural side channels leak only metadata, such as memory access patterns.
 247

248 **An acoustic side channel (ASC) is where information is accidentally leaked via acoustic signals.** This is our
 249 attempt for an intuitive definition that is easy to operationalise. We use this definition to determine whether an acoustic
 250 attack should be covered in this paper.
 251

252 3 Acoustic Side Channels: A Taxonomy

253 In this section, we propose the first taxonomy for ASCs, aiming to capture and highlight their most significant
 254 characteristics. We will structure and qualitatively evaluate the ASCs discovered to date. As detailed in Section 6, a
 255

261 quantitative and fair evaluation is not feasible—even if we were to reimplement each ASC from scratch, which would
 262 require substantial effort and lies beyond the scope of this paper.
 263

264 **3.1 Rationale and Process**

265 Constructing a cohesive taxonomy is not a trivial task; it must satisfy at least the following three requirements
 266 simultaneously [82]: (1) each category should be clearly defined and mutually exclusive; (2) the union of all categories
 267 should be complete, i.e., covering all known cases while allowing for future ones; and (3) the taxonomy should employ
 268 a consistent naming system.
 269

270 To classify ASCs, we consider (1) attack scenarios along with the attack’s characteristics; (2) the leaking source, the
 271 information leaked, and the medium through which the leakage occurs; and (3) the properties of the acoustic signals.
 272 We followed a three-step process to derive our taxonomy, as described below.
 273

274 1. Grouping. We first group ASCs by the medium through which the leakage occurs. Most leakages occur via air,
 275 while some occur via VoIP.
 276

277 2. Categorising. We include all VoIP-related ASCs in a single category. The remaining ASCs are then divided into
 278 different categories based on their leakage sources. In many cases, the leakage sources are the devices themselves, such
 279 as keyboards, touchscreens, sensors, and printers, with similar devices grouped together. However, another interesting
 280 type of leakage source is not tied to a particular device, but arises from human-computer interaction.
 281

282 3. Naming. Our first priority is to retain well-known names such as keyboard emanation, acoustic cryptanalysis,
 283 device fingerprinting and physical-key leakage. Other categories are assigned names that accurately reflect their
 284 inherent characteristics while clearly distinguishing them from other categories.
 285

286 We classify all the known ASCs into **nine** categories, namely *Keyboard Emanation, Acoustic Finger-tapping Emissions,*
 287 *Acoustic Motion Detection, Acoustic Device Fingerprinting, ASC based on Device Hum, Physical-key Leakage, Acoustic*
 288 *Cryptanalysis, DNA Synthesis, and VoIP Hitchhiking ASC*. Table 1 shows our taxonomy.
 289

290 Moreover, a high-level logical structure (as illustrated in Figure 1) is embedded in our taxonomy. With this structure,
 291 Table 1 also clearly shows, for each ASC:
 292

- 293 • The leakage, including the leaking source and the information leaked;
- 294 • The ASC’s characteristics, such as its purpose (offensive, defensive or both), whether it is an active or passive
 295 attack, whether it is intrusive, and the proximity between the attacker and the target;
- 296 • The acoustic signal properties, such as whether the signal is audible or ultrasonic, and its sampling frequency.
 297

298 From the table, it is also clear how each ASC is similar to, and differs from, the others.

299 It is worth noting that the structure in Figure 1 also uses dashed lines to indicate potential new characteristic
 300 combinations, for which no papers have yet been published. Such combinations may give rise to interesting novel ASCs
 301 in the future.
 302

303 **Coverage.** We considered all publications from the following tier-I and tier-II conferences within the network and
 304 systems security area between dates 2000 and 2024. These are as follows: (tier-I) S&P (Oakland), CCS, USENIX Security,
 305 NDSS, Crypto, Eurocrypt, (tier-II) ESORICS, RAID, ACSAC, DSN, IMC, ASIACCS, PETS, EuroS&P, CSF (CSFW), SOUPS,
 306 Asiacrypt, TCC, CHES, and FC¹. Our literature review also included an examination of top-tier journals, including IEEE
 307 transactions on information forensics and security, IEEE Transactions on Mobile Computing, International Journal of
 308 Information Security, ACM Transactions on Cyber-Physical Systems, ACM Transactions on Measurement and Analysis
 309

310 ¹The full title of the conferences and the complete list can be found here: https://people.engr.tamu.edu/guofei/sec_conf_stat.htm

of Computing Systems, ACM Transactions on Information and System Security, and Sensors. We shortlisted all papers that contained one of the following keywords within the body: {side-channel, acoustic, sound, information-leakage, and emissions}. We then manually post-processed them to verify if they were describing an acoustic side-channel and discarded all papers discussing other types of information leakage. Our post-processed list identified nearly fifty key papers as the main subjects of our study.

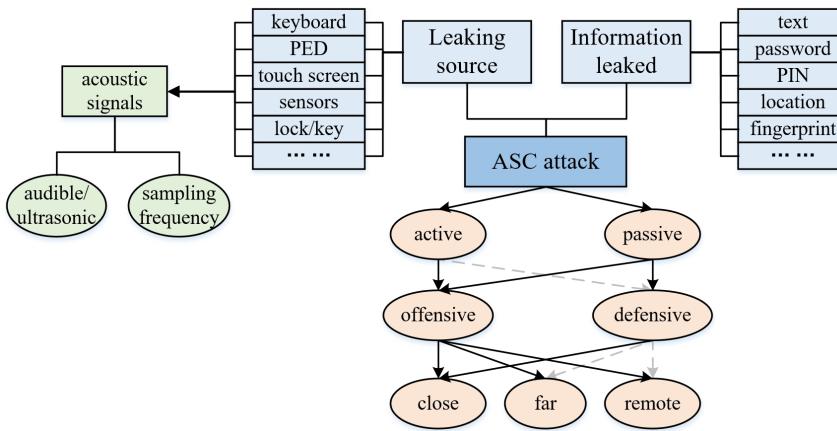


Fig. 1. The logical structure of our ASC taxonomy: a high-level view. Dashed lines represent possible combinations, although no such papers have been published yet.

3.2 Keyboard Emanation

Asonov and Agrawal [4] was the first to observe that each physical key has a unique acoustic (sound) signature as a fundamental property of keyboard design. Their main insight was that the physical plate beneath the keys causes each key to produce a different sound (frequency) depending on its location on the plate thus these keystroke sounds can be used to steal what is being entered. Zhuang et al. [91] combined per-key acoustic fingerprints with a language model in an unsupervised learning setting (K-Means+Hidden Markov Model (HMM)) improving inference efficiency from 52% to 67%. Berger et al. [10] introduced a comprehensive language model via a password dictionary.

An alternative to acoustic frequency spectrum is to leverage signal timing. Zhu et al. [90] observed that the relative time-of-arrival of an acoustic signal is dependent on the distance between the sensor and the originating keypress measured as the time-difference-of-arrival (TDoA) at attacker microphones placed 1m apart. Reported inference accuracy is 72%. Tu et al. [76] examined both the physics and signal characteristics of keystroke sounds at a fine granularity, and achieved a high precision of differentiating compactly spaced keys via acoustics from a distance. Their experiments worked well with unconstrained text inputs. Also, it was remarkable that in the case of covert typing, where a typist blocks the keys while typing, they could largely recover localisation information from refracted keystroke sounds.

Combining both signal timing and acoustic features, Liu et al. [49], report a recovery rate of 94% of keystrokes. Their main insight was that combining signal warfare (TDoA) techniques with the frequency spectrum (MFCC) effectively replaced the benefits accorded by a language model, and simply running K-Means over the fingerprint vector was enough to cluster them by the key. This is significant since security practices around password construction may not permit content that is compatible with a language model.

Table 1. Acoustic side channels: a taxonomy

Categories	Ref.	Source	Accidental Leakage Information	Purpose	ASC Characteristics	Proximity ¹	Signal Properties
				Active	Intrusive		Audible Sampling frequency
Keyboard emanation	Asonov'04 [4]	Physical keyboard	Typed text	offensive	✗	✗	close, far ✓ 44.1KHz
	Zhuang'05 [91]	Physical keyboard	Typed text	offensive	✗	✗	close, far ✓ 44.1KHz
	Berger'06 [10]	Physical keyboard	Typed text	offensive	✗	✗	close ✓ 44.1KHz
	Zhu'14 [90]				✗	✗	close, far ✓ 44.1KHz
	Helavi'15 [33]				✗	✗	close ✓ 44.1KHz
	Slater'19 [72]				✗	✗	close ✓ 44.1KHz
	Tu'23 [76]				✗	✗	close ✓ 44.1KHz
	Liu'15[49]	Physical Keyboard	Typed text	offensive	✗	✗	close ✓ 48KHz, 192KHz
	Martinasek'15[51]	Physical keyboard	Typed text	offensive	✗	✗	close ✓ 48KHz
	Ranade'09 [65]	PED	Key taps	offensive	✗	✗	close ✓ 44.1KHz
	Cardaioli'20 [16]	PED	Key taps	offensive	✗	✗	close ✓ 48KHz
	Panda'20 [62]	PED	Key taps & User identity	offensive & defensive	✗	✗	close ✓ 48KHz
	Toreini'15 [75] (Enigma)	Enigma keyboard	Key taps	offensive	✗	✗	close ✓ 44.1KHz
Acoustic finger-tapping emissions	Narain'14 [58]	Touch screen	Typed text	offensive	✗	✓	close ✗ 48KHz
	Simon'13 [71] (PIN Skimmer)	Touch screen	Typed text	offensive	✗	✓	close ✗ 16KHz
	Shumailov'19 [70]	Touch screen	Typed text	offensive	✗	✓	close ✗ 44.1KHz
	Zarandy'20 [85]	Touch screen	Typed text	offensive	✗	✓	close ✗ 48KHz
Acoustic motion detection	Cheng'18 [17] (SonarSnooper)	Human-Computer Interaction	Gesture password	offensive	✓	✓	close ✗ 48KHz
	Lu'19 [50] (KeyListener)	Human-Computer Interaction	Typed text	offensive	✓	✓	close ✗ 20KHz
	Zhou'18 [88] (PatternListener) Zhou'19 [87] (PatternListener+)	Human-Computer Interaction	Gesture password	offensive	✓	✓	remote ✗ 48KHz
Acoustic device fingerprinting	Das'14 [22]	Internal sensors	Device ID	offensive	✗	✓	close, far ✓ 8KHz, 22.05KHz 44.1KHz
	Zhou'14 [89]	Internal sensors	Device ID	offensive	✗	✓	close, far ✗ 44.1KHz
	Kotropoulos'14 [44]	Internal sensors	Phone module	offensive	✗	✗	close ✓ 16KHz
ASC based on Device Hum	Briol'91 [13]	Dot-matrix printer	Printed text	offensive	✗	✗	close ✓ 96KHz
	Backes'10 [6]	3D printer & CNC mill	Proprietary IPR info	offensive	✗	✗	close ✓ 44.1KHz
	Hojjati'16 [35]	3D printer	Proprietary IPR info	offensive	✗	✗	close ✓ 44.1KHz
	Song'16 [73]	3D printer	Proprietary IPR info	offensive	✗	✗	close ✓ 44.1KHz
	Faruque'16 [26]	3D printer	Proprietary IPR info	offensive	✗	✗	close ✓ 96KHz
	Chhetri'18 [20]	3D printer	Proprietary IPR info	offensive	✗	✗	close ✓ >40KHz
	Rokka'16 [19] (KCAD)	3D printer	Control signals	defensive	✗	✗	close ✓ >40KHz
Physical-key leakage	Bayens'17 [7]	3D printer	Fill pattern	defensive	✗	✗	close ✓ 44.1KHz
	Belikovetsky'19 [8]	3D printer	Audio fingerprint	defensive	✗	✗	close ✓ 44.1KHz
	Islam'18 [36]	Cooling fan	Electrical load	offensive	✗	✗	close ✓ 8KHz
Physical-key leakage	Ramesh'20 [63] (SpiKey)	Mechanical lock and key	Physical key	offensive	✗	✗	close ✓ 44.1KHz
	Ramesh'21 [64] (Keyenergy)	Mechanical lock and key	Physical key	offensive	✗	✗	close ✓ 44.1KHz 192KHz
Acoustic cryptanalysis	Genkin'14 [29]	Motherboard	Crypto keys	offensive	✗	✓	close,far ✗ 192KHz
	Genkin'17 [30]	DNA synthesizers	DNA sequence	offensive	✗	✗	close ✓ 48KHz
VoIP hitchhiking ASC	Faezi'19 [25] (Oligo-Snooper)	Keyboard	Key taps	offensive	✗	✗	remote ✓ 44.1KHz
	Compagno'17 [21] (Skype & Type)	Keyboard	Key taps	offensive	✗	✓	close, remote ✓ 44.1KHz
	Anand'18 [2]	Keyboard	Key taps	offensive	✗	✓	close, remote ✓ 44.1KHz
	Genkin'19 [28] (Synesthesia)	LCD monitor (power bank)	Display contents	offensive	✗	✗	close, far, remote ✗ 40KHz, 192KHz
	Genkin'22 [27] (LendMeYourEar)	EM fields (via acoustics)	Computation dependent leakage	offensive	✗	✗	remote ✓ 48KHz
	Jeon'18 [37]	Electricity network	Physical location	offensive	✗	✗	remote ✓ 1KHz
	Nagaraja'21 [56] (VoIPLoc)	Rooms	Physical location	offensive	✗	✗	remote ✓ 44.1KHz

¹ The proximity between the attacker and the target. Close: the attacker is physically near the target (up to 3 meters). Far: typically 10 to 100 meters. Remote: the attacker can only access the target remotely, usually through a network connection.

417 Halevi et al. [33] evaluated the impact of typing styles in key recovery rates. They observed that while keys have
 418 unique sound signatures, touch typing significantly reduces the signal-to-noise ratio reducing recovery rates to 56% in
 419 the supervised case. They also found a significant decrease in key recovery rates when training and testing writing
 420 styles differ. Martinasek et al. [51] and Slater et al. [72] utilized neural networks to complete classification and Slater et
 421 al. found that deep learning approaches are well suited to the task of key recovery in noisy environments.
 422

423 Specialist keyboards such as Pin Entry Devices (PEDs) and ATM/PoS keypads are equally vulnerable to key transcription
 424 attacks via sound side-channels and the attacks leverage the sound produced by a keypress on ATM keypads [65]
 425 and Enigma keyboards [75]. Cardaioli et al. [16] found that using inter-key delays extracted from signal arrival information
 426 works well too. This is an important improvement over Asonov's sound-of-the-key approach, since it only
 427 uses signal timing information via a single sensor (as opposed to the multi-sensor TDoA approach of Zhu et al. [90]).
 428 Panda et al. [62] also recovered PIN keys from the keypress acoustic emanation, but they used the interval between two
 429 keystrokes as the main feature. In addition to exploiting this ASC for offensive purposes, the researchers in [62] also
 430 explored it for defensive purposes. Namely, the keystroke dynamics emitted via acoustics could work as behavioural
 431 biometrics for each user, offering additional protection for their PINs in theory.
 432

433 In summary, keyboards, PEDs, and keypads, are all vulnerable to key transcription attacks owing to the unique
 434 sound produced by each key as a fundamental property of keyboard design. Signal information is present in acoustic
 435 frequency (only in multi-plate keyboards) and signal timing. With some care, this signal can be isolated from ambient
 436 noise even in low SNR conditions. A number of fully passive and non-intrusive attacks have leveraged this side channel
 437 via signal processing methods in conjunction with learning and natural language processing (NLP) methods to achieve
 438 ASC transmission accuracy of 94%.
 439

440 3.3 Acoustic Finger-tapping Emissions

441 This category of attacks targets touchscreen keyboards on smartphones and tablets, instead of physical keyboards.
 442 When a user taps the screen, a fixed glass plate, with a finger, the tap generates a sound wave that propagates on the
 443 screen surface and in the air. Although signal strength is weaker than keystrokes from physical keyboards, it is well
 444 above the noise floor.
 445

446 Early efforts were multi-modal—they combined acoustic information with other sources to isolate keypresses. Narain
 447 et al. [58] proposed a passive attack to infer the text content created by taps on a touchscreen keyboard by using a
 448 Trojan application to capture sensed data from stereoscopic microphones and gyroscope. Simon et al. [71] developed
 449 PIN Skimmer which combines device microphones to detect touch events and device orientation information from the
 450 video camera inputs, to estimate the position of the tapped number.
 451

452 The first to propose a fully acoustic passive ASC attack was Shumailov et al. [70] on touchscreen keyboards. They
 453 observed that acoustic waves passing through the glass bounce off the screen sides creating unique acoustic patterns
 454 observable from the internal microphones. Authors record the audio through the built-in microphones and demonstrate
 455 that simple TDoA allows the attacker to decipher PIN rows, while more complex machine learning models can use
 456 acoustic information to recover the actual PIN code, as well as, the text typed in.
 457

458 Building on findings of [70], Zarandy et al. [85] observed that voice assistants such as Amazon Alexa and Google
 459 Home can be abused by an attacker to echolocate the sounds of a key tap on a different device. The authors demonstrate
 460 that it is possible to perform the attack up to half a meter away from the voice assistant.
 461

462 In summary, touchscreen taps emit identifiable acoustic patterns, enabling side-channel attacks. Early efforts fused
 463 microphone/gyroscope data to achieve a side-channel with 55% transmission; TDOA methods over stereo-microphone
 464

469 data (Shumailov et al. [70]) recover 61%; finally, voice-assistants can capture taps on another device significantly
 470 enhancing the transmission distance of ASC from half a meter or so to the scale of the globe. These demonstrate serious
 471 vulnerabilities in touch input systems requiring new defenses.
 472

473 3.4 Acoustic Motion Detection

474 An *active* attacker can exploit system behaviour by introducing a *new side-channel*. SonarSnoop [17] is the first active
 475 ASC attack of its kind, designed to infer confidential information from users' finger motions. The attacker deploys
 476 malware on a victim's smartphone to generate ultra-sound chirps. By analysing echoes (chirp reflection), the dynamic
 477 motion of the fingers can be reconstructed in a fine-grained resolution to support recovery of pattern passwords. In this
 478 attack, the active component is the introduction of a stealthy sound-field outside human-audible range. The attacker
 479 exploits the property that the victim unintentionally modulates the attacker signal with confidential information. The
 480 unintentional transmission is a key characteristic of a side-channel. Zhou et al. [87, 88] explored a similar approach to
 481 recover gesture passwords. Acoustic motion detection can also be used to localise virtual keyboard inputs. In 2019,
 482 KeyListener [50] developed an active ASC attack that leveraged the change in Doppler effects due to finger movement
 483 within an induced sound field, to isolate touchscreen taps. All three works are active ASC as they require an active
 484 agent (malware or external device) to induce the sound field.
 485

486 In summary, defending a system against passive ASC is hard. Defending it against active ASC is harder still, as it is
 487 challenging for the defender to deal with an attacker who exploits physics to ensure that victims own actions modulate
 488 a stealthy (inaudible) sound field.
 489

490 3.5 Acoustic Device Fingerprinting

491 Microphones and speakers can be fingerprinted by variations in sensing and actuation respectively, introduced by
 492 variations in their physical properties. Das et al. [22] note that variations in the chemical compositions of diaphragm
 493 material, aging-related changes in the mount point, the glue used, wear-and-tear in manufacturing machines, humidity,
 494 and temperature levels during manufacturing all play a role in ensuring that no two microphones or speakers come off
 495 the assembly line working identically. Given an audio sample, they were able to trace 98% of the samples to the sensing
 496 device by using short-term power-spectrum features (MFCC) features of recorded audio. Both Zhou et al. [89] and
 497 Kotropoulos et al. [44] independently discovered the same phenomena and devised a speaker fingerprinting method
 498 based on high-frequency power spectrum. Kotropoulos et al. also identified MFCC features through machine learning
 499 and deep learning methods, while Zhou et al. chose to match the FFT features of different devices. Both approaches
 500 achieved success rates comparable to that of Das et al. (97.6% and 99%, respectively).
 501

502 In summary, manufacturing imperfections have been successfully exploited to attribute audio recordings to specific
 503 devices.
 504

505 3.6 ASC based on Device Hum

506 **Printer hum:** Often, electro-mechanical devices with moving physical parts are vulnerable to ASCs. Moving mechanical
 507 parts create vibrations that leak into the surroundings either as sound or as acoustic vibrations through the body of
 508 the device. In many cases, the movement of the mechanical components such as motors, fans, base plates, pins, and
 509 drums, is a function of user input leading to information leakage through acoustic channels. Briol [13] was the first to
 510 report an ASC in dot-matrix printers. Dot-matrix printers use multiple rows of needles. When printing a character,
 511 a subset of needles strike the paper surface mounted on a backing plate, a mechanical action that generates a sound
 512 Manuscript submitted to ACM

521 wave. It turns out that printed characters generate a unique sound for each character printed (just as keyboards). It is
 522 therefore natural to expect that the approach and techniques developed for key transcription attacks are applicable
 523 to printer inference attacks. Backes et al. [6] confirm this—recording the sound from a microphone close enough to
 524 the printer, and passing it through a standard pipeline of basic signal processing to extract the MFCC in the relevant
 525 frequency band ($> 20\text{KHz}$). The main difference with keyboards, is the characters are printed at a higher rate than
 526 human keypresses. Due to this, acoustics of keys get mixed up due to time-overlapping signals. Interestingly, the sound
 527 of printers is above 20KHz band whereas keyboards emit sound at $2\sim 4\text{KHz}$ band. This means key transcription and
 528 printer inference do not interfere with each other, and can be executed simultaneously, if required. In comparison
 529 with key transcription attacks, printer information leakage is relatively less developed. We know of no works that
 530 apply TDoA of printer sound, learning-based inference, and signal-timing information (inter-character delay period).
 531 The application of these ideas may improve the state-of-the-art in printer transcription attacks, especially the issue of
 532 separating overlapped signals.

533 **3D printer hum:** Different from toner-based printers, 3D printers use a motorised filament extruder which deposits
 534 layers of material via an extrusion arm, whose location is controlled by multiple stepper motors to precisely control
 535 where filament is delivered on a base plate. The amount of current supplied to the various motors depends on the
 536 (confidential) printer input. Fundamentally, motors emit sound waves as a direct result of the current applied [15], arising
 537 first from *magnetostriction*: change in material dimensions in proportion to passing current in fixed electromagnets
 538 in the motor; *electrostriction*: change in dimensions of the conducting coil within the motor in proportion to current
 539 passing in rotor coil; and, third, in certain brushless and stepper motors, the air gap between rotor (rotating part) and
 540 stator (fixed part), varies drastically with rotor rotation while the radial forces causing rotation vary with current. In all
 541 three causes, the current applied (confidential printer input) causes a proportional change in the size of an air column,
 542 resulting the production of sound waves with frequency components originating from motor hum, stator hum, and
 543 coil hum. Faruque et al. [26] exploited this sound to propose the first attack against 3D printers. Using similar tools
 544 as keyboard side-channel attacks, namely the use of signal frequency features and supervised learning, they could
 545 extract the 3D printer style files corresponding to various objects with a recovery rate of 78% in FDM printers. This
 546 approach of exploiting motor acoustics to infer inputs applies to all 3D printers based on motors including FDM and
 547 laser sintering. In [20], Chhetri et al. utilized MODWT (Maximal Overlap Discrete Wavelet Transform) to capture a
 548 better fingerprint, increasing the recovery rate from 78% to 86%. Song et al. [73] use a smartphone stereo microphone
 549 and magnetometer together to better capture signal characteristics (Hojjati et al. [35] proposed the same for CNC milling
 550 machines). This approach has only incremental benefits since all motor inputs are already converted into acoustic sound
 551 due to magnetostriction, electrostriction, and radial forces on the rotor. Therefore combining acoustic with magnetic
 552 side-channels results in no fundamental improvement over audio side-channels. A number of works leverage acoustic
 553 side-channels to defend 3D printers. KCad [19] were the first to observe that integrity compromising attacks—false
 554 inputs in STereoLithography (STL) files that encode the CAD model), the GCodes, or firmware compromise—necessarily
 555 lead to acoustic emissions. Bayens et al. [7] leveraged acoustic and other spatial layers emanations to verify the unseen
 556 internal fill structure present in 3D printed objects. Their defense can verify 40%~60% of fill-pattern modification attacks.
 557 Belikovetsky et al. [8] build on both the above approaches, to extend the defense coverage to 100% of fill-modification
 558 attacks using a Principal Component Analysis (PCA) over the spectrogram of recorded sound.

559 **Fan hum:** A simple power-acoustic transduction occurs when heat triggers system cooling. Islam et al. [36] analyse
 560 fan noise to determine power consumption thus developing a timing power attack rooted in acoustic signal analysis.

573 In summary, among ASCs that exploit device-generated hum, attacks targeting dot-matrix printers were the first to
 574 be discovered, yet this area has seen limited further exploration. Backes et al.'s work [6] demonstrated the feasibility of
 575 such attacks, though their method achieved relatively modest success rates, ranging from 60.5% to 71.8%. In contrast,
 576 ASCs based on 3D printers have been the most extensively studied within this category. Four notable studies employed
 577 machine learning classifiers to identify acoustic features ([19, 20, 26, 73]), with Song et al. [73] reporting the highest
 578 accuracy, nearly 95%. Other approaches include Bayen's work [7], which utilized an audio fingerprinting classifier
 579 (Dejavu) to achieve 98.52% accuracy, and Hojjati et al. [35] who applied cross-correlation over STFT features and
 580 achieved perfect accuracy (100%). Attacks targeting fan noise are rare. Using a simple threshold-based method, Islam et
 581 al. [36] only achieved 48% accuracy.
 582

583 3.7 Physical-key Leakage

584 Pin tumbler locks are widely used to secure homes and office spaces around the world. Recent work has developed
 585 methods to clone physical keys from the sounds emitted when a key is inserted. Ramesh et al. [63] proposed SpiKey,
 586 which exploits the fact that each pin in the tumbler makes a unique sound when depressed (just like a keyboard key).
 587 An attacker who can record the sound (perhaps via an IoT doorbell or smartphone with a trojaned app), can record the
 588 low-frequency acoustic fingerprint of a lock, and compute the adjacent inter-ridge distances which can be utilized to
 589 infer the relative differences of adjacent bitting depths via click timestamps. When evaluating 330,424 keys, Spikey
 590 can provide less than 10 effective candidate keys for more than 94% of keys. In follow up work [64], they combined
 591 the acoustic signal with visual information and compared the performance with acoustic-only and video-only attacks,
 592 showing that combining video information into acoustic signals can achieve better keyspace reduction (66% on average).
 593

594 3.8 Acoustic Cryptanalysis

595 In 2004, Shamir et al. [69] found that the sound signals generated by a computer as the CPU load changes might be
 596 leveraged to identify different RSA keys since the spectral characteristics of the sounds varied through operations
 597 modulo the different secret primes. But it was not implemented. In 2014, Genkin et al. [29] introduced a passive acoustic
 598 cryptanalysis attack to extract full 4096-bit RSA keys using the sound generated by the computer during the decryption
 599 of some ciphertexts. Using a phone or a sensitive microphone to record the sounds, the processed signals were then
 600 computed through a designed modular exponentiation which was based on the mathematical analysis of GnuPG (GNU
 601 Privacy Guard). In 2017, the same team [30] further expanded [29]. The main improvement of the key extraction is the
 602 time decision computation when performing the additional multiplication for every key bit. Compared to the previous
 603 version, this work built more detailed experiments to analyze the relevant code of GnuPG and experimentally showed
 604 that this acoustic distinguishability of cryptographic keys is also possible on other ciphers, such as AES and DES, and
 605 other versions of GnuPG. By employing cross-correlation algorithms to analyze median frequency spectrums, both
 606 studies achieved 100% accuracy in recovering cryptographic keys.
 607

608 3.9 DNA Synthesis

609 Faezi et al. [25] proposed the first ASC attack on DNA synthesizer, Oligo-snoop, where compromising confidentiality
 610 will leak valuable information on nucleotide sequences. Two sound sources were leveraged: 1) the unstable noise
 611 radiation caused by vibration when the DNA synthesizer transports materials through the pipeline, 2) the audible
 612 click produced by the DNA synthesizer when it opens and closes the flow of material. In the threat model, the DNA
 613 synthesizer can be connected to computers, external drives, and Ethernet cables, and it is impossible to tamper with the
 614 Manuscript submitted to ACM
 615

625 machine or access the output DNA sequence. The attacker must place at least one microphone to the DNA synthesizer
 626 within close physical proximity, which is a passive but non-invasive ASC. To identify the content of each nucleotide,
 627 Oligo-snoop combined multiple machine learning algorithms into an ensemble classifier to classify the acoustic signals,
 628 recovering 86% of the target nucleotide sequences.
 629

630 3.10 VoIP Hitchhiking ASC

631 It is natural to explore whether side channels can span (hitch-hike over) Voice over Internet Protocol (VoIP) sessions.
 632 Theoretically, this should be possible as human-voice frequency (20~20KHz) overlaps with keyboard sound frequency
 633 range (2~4KHz). Compagno et al. [21] confirm this via real-world experiments over the Skype network (Opus Codec)
 634 as long as the bandwidth is more than 20bps. The technical mechanism is largely based on the same attack components
 635 as prior art (MFCC-based acoustic signature features mated with a supervised learning inference mechanism). Anand
 636 et al. [2] confirm that keypads and ATM PEDs are equally vulnerable to key transcription side-channel attacks over
 637 VoIP sessions as they are close-proximity attacks. This means that scammers who get victims to hand over account
 638 information and then persuade them to walk over to an ATM to ‘check balance’ whilst on a call to the scammer, may
 639 steal their victim’s PIN as well as their account information.
 640

641 In addition to leaking keystroke information, VoIP may even leak remote screen content. In this attack, a display’s
 642 instantaneous power consumption, which varies with the screen content, causes power-circuit components to vibrate
 643 due to electrostriction. This creates a power-acoustic transducer, converting variations in power into audible sound. A
 644 microphone then captures these audio traces from the display’s power supply. Since the attacker has access to the VoIP
 645 channel, they can remotely acquire these audio traces and reconstruct the images shown on the screen. Synesthesia [28]
 646 developed a passive ASC attack that leverages this phenomenon. It exploited power-acoustic transduction to extract
 647 images from the audio traces of the display power supply, which a remote attacker can access via a VoIP channel.
 648 More recently, Genkin et al. [27] observed that the built-in microphones of PCs can inadvertently capture computation-
 649 dependent leakage with electromagnetic (EM) fields within the computer even at a remote distance. It is possible
 650 because CPU computation leaks through audio signals. They demonstrated the efficacy by exploiting the leakage to
 651 perform attacks in three different scenarios—website identification, cryptographic key recovery, and multiplayer games
 652 cheating, via remote VoIP communication.
 653

654 When using VoIP to communicate, the created audio and data streams always include electrical network frequency
 655 (ENF) signals and other acoustic-reflection signals except for audible sounds. These signals always have specific
 656 characteristics and some important information, such as time and location. Therefore, it is possible to use those signals
 657 as signatures for location inference. Jeon et al. [37] proposed an attack to identify the physical location of where a
 658 target video or sound was recorded or streamed from. This work is considered a passive ASC attack because all the
 659 targeted information is essentially leaked from the acoustic signals of multimedia streaming data. Different from those
 660 that require installing a specific malicious application on a victim’s device, this attack can be performed with existing
 661 VoIP applications or online streaming services, which means the only data needed is a target multimedia file and it is
 662 non-intrusive. Nagaraja et al. [56] also proposed a passive attack for a location inference on VoIP calls via ASCs, called
 663 VoIPLoc. Specifically, it exploited the acoustic-reflection characteristics of the physical space of a VoIP user. Using the
 664 speaker voice as the impulse signal, it extracted signals and then utilized a multi-layer classifier to map the fingerprint
 665 to a location.
 666

667 In summary, existing works have confirmed that VoIP leaks some significant information through ASCs in remote
 668 proximity. Early attacks ([21],[2],[37],[56]) achieved the goals by employing machine-learning algorithms to identify
 669

MFCCs extracted from the keytaps or achieve physical location fingerprinting with 60% ~ 88% accuracies. In contrast, the latest work (Synesthesia [28] and LendMeYourEar [27]) utilized convolutional neural networks (CNNs) to recover targeted information, achieving higher accuracies ranging from 88% to 100%.

4 Attack Techniques

Here, we investigate technical details of all the ASC attacks. Typically, each attack performs a number of *sequential* steps including acoustic signal collection, feature extraction, and target information recovery. We summarise the general process of ASCs in Figure 2 and technical details of each attack in Table 2.

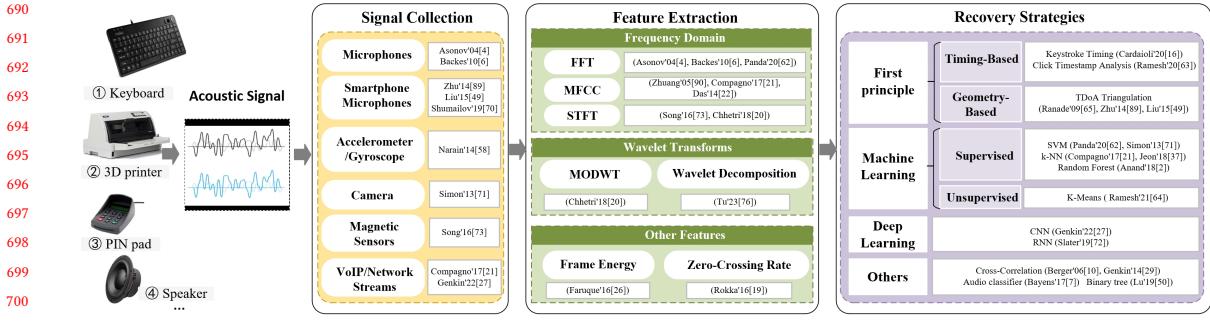


Fig. 2. The overview of ASC techniques.

4.1 Acoustic signal collection

Acoustic signal collection is critical because the quality of collected data directly affects the chance of a successful attack. Intuitively and as confirmed by Table 2, microphones are the most used for collecting acoustic signals. They are placed in physical proximity near the victim. Using microphones has several advantages: non-intrusiveness, anonymity, and capability for both local and remote attacks.

Cameras and built-in motion sensors like gyroscopes and accelerometers are occasionally used for collecting signals when the attack utilized both acoustic and non-acoustic signals. To do so, the attacker had to trick the victim to install a malicious application, which would then require access permissions to the sensors. Since such permission requests are common with modern applications, they do not always trigger suspicion. Beyond these conventional methods, acoustic signals can also be captured through more sophisticated or unconventional means. For example, laser microphones enable remote eavesdropping by detecting sound-induced vibrations on surfaces (e.g., a windowpane) from a significant distance, offering a highly non-intrusive collection method without direct interaction with the target's immediate environment. Furthermore, research has highlighted the potential of unconventional device components acting as de facto acoustic sensors in [46], where the mechanical assembly of a hard disk drive was demonstrated to transduce ambient sound into measurable variations, which could then be interpreted by an attacker with firmware-level access to reconstruct speech.

Table 2. Summary of different ASC attack approaches

Categories	Ref	Data collection	Feature extraction (Key features)	Key techniques	Accuracy
First principle -based	Cardioli'20 [16]	Microphone	Audio signals	Keystrokes timings comparison, Euclidean distance ranking	44%~89%
	Ramesh'20 [63] (SpiKey)	Smartphone microphone	Click timestamps	Inter-Ridge distance computation, Inter-Bitstring sequence computation	94%
	Ranade'09 [65]	Laptop microphone	FFT, time features	Triangulation (TDoA)	87.5%
	Zhu'14 [90]	Smartphone microphone	Acoustic signal	TDoA calculation	72.2%
	Liu'15 [49]	Smartphone dual-microphone	Acoustic signal, MFCC	TDoA, K-means	94%
ML-based	Zhuang'05 [91]	PC microphone	Cepstrum features	K-means+HMM, n-gram language model, Linear classification, GMM, NN	90%~96% (characters), 75%~90% (words)
	Toreini'15 [75] (Enigma)	Hand-held microphone	MFCC	DA, NB, three-layer NN	67.14%~84.31%
	Panda'20 [62]	Video mic recorder	FFT	SVM, LR, Gaussian Naive Bayes	60% (PIN recovery), 88% (user Verification)
	Cheng'18 [17] (SonarSnoop)	Smartphone speaker, microphone	Acoustic signals, echo profile matrix, IFFT	Medium Gaussian SVM	29%
	Compagno'17 [21] (Skype&Type)	Two laptop microphones	MFCC	k-NN, LR	59.8%~83.23%
	Anand'18 [2]	Microphone	MFCC	Simple LR, Multinomial LR, J48, RF, SMO, LNN	66.88%~73.17%
	Narain'14 [58]	Accelerometer, gyroscope, microphones	Gyroscope orientations, acoustic signals	Meta-Algorithm+DT, NB, k-NN	55%~95%
	Simon'13 [71] (PIN Skinner)	Camera & microphone	Homography Matrix	SVM	30%~60%
	Shumailov'19 [70]	Smartphone microphone	Raw quefrency	LDA	61%
	Jeon'18 [37]	Online streaming services	ENF, QIFFT	k-NN+Euclidean distance	76%
DL-based	Nagaraja'21 [56] (VoIPLoc)	Audio recordings	CQT	Xmeans algorithm + SVM	60%~88%
	Das'14 [22]	Microphone	MFCC	k-NN, GMM	98%
	Backes'10 [6]	Microphone	FFT+MFCC	HMMs+Viterbi algorithm	60.5%~71.8%
	Song'16 [73]	Smartphone's magnetic sensors and microphone	FFT, MFCC	SVM	90.33%~94.13%
	Faruque'16 [26]	Microphone	FE, SE, MFCC, STFT	DT regression model + DT Classifier	78.35%
	Chhetri'18 [20]	Microphone	FE, SE, STFT, MODWT	DT regression model + DT Classifier	86%
	Rokka'16 [19] (KCAD)	Audio recorder	Zero Crossing Rate, Energy Entropy, SE, MFCC	GBR, LR	77.45%
	Ramesh'21 [64] (Keynergy)	Smartphone microphone & camera	WSF, DFT	K-means	offensive
	Faezi'19 [25] (Oligo-Snoop)	Zoom H6 portable handy recorder tool kit	Acoustic signal	An ensemble of AdaBoost, SVM, NB, MLP, RF, and Voting-based ensemble	88.07%
	Asonov'04 [4]	PC microphone	FFT	JavaNNS	79%
Others	Martinasek'15 [51]	Laptop microphone	Spectrogram	Two-layer NN	72.3%~86.5%
	Slater'19 [72]	Microphone	Spectrogram	CNN+RNN+CTC	84.59%~92.59%
	Genkin'22 [27] (LendMeYourEar)	Microphone's internal audio interface	Spectrogram	CNN	96%
	Zarandy'20 [85]	External microphone	FFT and MFCC	LDA, CNN	40%
	Kotropoulos'14 [44]	Mobile-phone microphone	MFCC	SVM, RBF-NN, MLP	97.6%
	Genkin'19 [28] (Synesthesia)	Brüel & Kjaer 4190 microphone capsule	Acoustic signals (HPF)	LR, CNN	88%~100%
	Bayens'17 [7]	Microphone	FFT	Audio classifier (dejavu)	98.52%
	Berger'06 [10]	PC microphone	Similarity matrix	Cross-correlation	73%
	Helavi'15 [33]	PC microphone	Acoustic signal, FFT	Time-frequency classification, cross-correlation	64%, 40%
	Tu'23 [76]	Microphone	Wavelet	Multi-round keystroke tracking, cross-correlation	90.8%~100%

¹ GMM: Gaussian Mixture Module; NN: Neural Networks; DA: Discriminative analysis; NB: Naive Bayes; IFFT: Inverse Fast Fourier Transform; RF: Random Forest; LNN: Linear Nearest Neighbor; LDA: Linear Discriminant Analysis; QIFFT: Quadratic interpolated fast Fourier transform; CQT: Constant-Q transform; DT: Decision Trees; FE: Frame energy; SE: Spectral Entropy; GBR: Gradient Boosting Regressor; WSF: weighted spectral flux; DFT: discrete Fourier transform; MODWT: Maximal Overlap Discrete Wavelet Transform; PCA: Principal Component Analysis; NMF: non-negative matrix factorization; MLP: Multi-layer Perceptron; HPF: high-pass filter;

781 4.2 Feature extraction

782 The second step is to extract useful features from acoustic signals. The choices of features and suitable signal processing
 783 techniques vary, depending on the nature of tasks and the type of information the attacker aims to recover. Table 2
 784 indicates that the majority of researchers tend to focus on analyzing sound signals in the frequency domain.
 785

786 Typically, the Fast Fourier Transform (FFT) is used to convert a time-domain signal into its frequency-domain
 787 representation. Optimized computationally, FFT algorithms are efficient for real-time acoustic signal processing, e.g.
 788 in [4, 62, 65, 89]. The process involves using the FFT to convert the keystroke audio signal from the time domain
 789 to the frequency domain, a critical step for identifying the unique spectral characteristics of each key press. This
 790 transformation allows for the extraction of specific features, such as frequency peaks, that a neural network can then use
 791 to classify and distinguish between different keys. Short Time Fourier Transform (STFT) is also often used to process the
 792 audio features, yielding spectrograms which are valuable for visual analysis and as input to machine learning models,
 793 especially deep learning ones. This visual representation can make it relatively easy to detect patterns, anomalies, and
 794 features from the raw signals, which might not be tractable in the time domain. Moreover, researchers often choose
 795 MFCCs, which are derived from the raw signals with FFT, as a common primary acoustic feature for classification tasks
 796 due to their perceptual relevance, e.g. in [2, 21, 22, 75]. In [22], the magnitudes of the coefficients vary across different
 797 handsets (e.g. coefficient 3 and 5), which makes MFCC a suitable feature to fingerprint smartphones in this type of
 798 tasks. Other cepstral-domain features like general cepstrum [91] or frequency [70] are also utilized.
 799

800 Unlike the sound of a key (on a keyboard), the sound of a 3d printed object does not have a fixed frequency
 801 fingerprint—motor, stator, and coil hum frequencies change based on current applied. For this reason, it is not ideal to
 802 extract the frequency component using MFCC. Instead, Chhetri et al. [20] used a wavelet variant to capture a better
 803 fingerprint than with MFCC. Wavelet transforms, including specialized forms like the Constant-Q Transform (CQT)
 804 [56], are generally effective for analyzing non-stationary signals by capturing joint time-frequency information.
 805

806 To investigate the internal structure of keystroke signals, Tu et al. [76] decomposed the signals with wavelets, which
 807 are advantageous for processing such short signals and can capture their transient components—these components
 808 were essential for this work to make a difference.
 809

810 In addition to these spectral and cepstral representations, various statistical and temporal features are extracted
 811 for machine learning purposes. Some other research (e.g. [19, 20, 26]) used frame energy, Zero Crossing Rate, energy
 812 entropy, and PCA. Features such as Weighted Spectral Flux (WSF) [64], and in multi-modal attacks, data from other
 813 sensors like gyroscopes [58] or cameras [71], are also incorporated to enrich the feature set for classifiers. Filtering
 814 was also used sometimes to enhance certain features of the acoustic signals or remove noise, e.g. in [16, 28, 36]. The
 815 timestamps of the peaks of the processed signal are easily determined after applying this strategy.
 816

817 4.3 Recovery strategies

818 The attackers typically applied the following four categories of strategies to recover information leaked from an acoustic
 819 side channel, distinguished by their approach to inferring causality between the observed acoustic phenomena and the
 820 target information: first principle-based, machine learning-based, deep learning-based, and others.
 821

822 **1) First principle-based.** This category typically relies on a clear and definitive causal inference link stemmed from
 823 the first principles of physics. There are two main implementations: timing-based and geometry-based. Timing-based
 824 attacks focus on the precise timing of acoustic emissions produced by the target device and are mostly used in keystroke
 825 reconstruction. They record the acoustic emissions and exploit variations in the timing of sound events to infer specific
 826

833 activities or patterns. The attacker then computes the distance between each keystroke based on the timing information
 834 using the speed of sound. By correlating the distance between clicks with known typing patterns, the attacker can
 835 make guesses with confidence from high to low about the typed keystroke sequence [16, 63].

836 In geometry-based strategies, the attacker sets up a number of microphones in a known geometrical configuration
 837 with precise positions. Often, a geometry-based attack also exploits time information. One of the most used metrics,
 838 TDoA, leverages the differences in the arrival times of sound signals at multiple microphones to precisely determine the
 839 location of the sound source. By measuring the differences in arrival times of sound signals at the microphones, they
 840 calculate the TDoA values for each microphone pair, which can then be used to determine the direction and distance of
 841 the sound source. Using the TDoA information and the known positions of the microphones, attackers can triangulate
 842 the position of the sound source in three-dimensional space [49, 65, 90].

843 **2) Machine learning-based.** This category relies on some plausible causal inference. These methods are prized for
 844 their ability to discern complex patterns from noisy acoustic data, even when a direct, first-principle causal model is
 845 difficult to formulate. Crucially, the efficacy of these ML strategies is heavily dependent on the input features derived from
 846 the raw acoustic signals, which encapsulate observable acoustic phenomena (detailed in Section 4.2 and summarized
 847 for specific attacks in Table 2) that are presumed to have a causal or correlational link to the target information.
 848 Attackers typically employ supervised learning paradigms. After collecting acoustic signals and transforming them into
 849 meaningful feature representations, ML models are trained on labeled data to learn the mapping from these features to
 850 targeted information.

851 For different ML algorithms, they are fed different features and learn different statistical relationships between
 852 features and outcomes. For instance, Support Vector Machines (SVMs) are frequently chosen for their effectiveness in
 853 high-dimensional feature spaces (e.g., MFCCs or spectrogram-derived data) (e.g., [17, 71, 73]). Simpler linear models
 854 like Logistic Regression (LR) (e.g., [19, 62]) or probabilistic classifiers such as Naive Bayes learn more direct statistical
 855 dependencies. Unsupervised methods like K-Means clustering (e.g., [64, 91]) can identify inherent groupings in feature
 856 data, which might correspond to different underlying states or events. Instance-based learners like k-Nearest Neighbors
 857 (k-NN) (e.g., [21, 22]) infer based on feature similarity. Ensemble methods like Random Forests (e.g., [2]) and other
 858 Decision Tree (DT) based approaches (e.g., [20, 26, 58]) can model more complex, non-linear relationships. Sequential
 859 models like Hidden Markov Models (HMMs) are suited for inferring sequences of events based on observed acoustic
 860 sequences [6, 91]. While these models establish strong correlations, the learned causal pathways are often implicit
 861 within the model structure and learned parameters rather than being explicitly defined by physical laws.

862 Compared to first principle-based methods, ML-based approaches can automate and streamline the attacking process,
 863 particularly when dealing with large datasets or subtle acoustic distinctions where direct modeling is challenging.
 864 Furthermore, they can be advantageous in real-time attack scenarios due to their potential for rapid inference once
 865 trained.

866 **3) Deep learning-based.** In many contexts, deep neural networks often operate closer to end-to-end or "black-box"
 867 inference models, where the causal chain from input to output can be highly complex and opaque. They require
 868 no feature engineering, but instead automatically learn and evaluate a wide range of potential features. They have
 869 demonstrated superior performance compared to traditional MLs, particularly in tasks involving image and multimedia
 870 data. For the same reason, some ASC researchers applied convolutional neural networks (CNNs) and recurrent neural
 871 networks (RNNs) for their attacks [4, 27, 28, 44, 51, 72, 85]. In theory and in practice, deep neural networks can potentially
 872 learn intricate hierarchical features and non-linear mappings directly from the acoustic signals (often directly from
 873 raw or minimally processed data like spectrograms, as discussed in Section 4.2) without explicit feature engineering

885 based on prior causal assumptions. This allows them to outperform traditional ML in some cases, and generalize better
 886 with large datasets, though it may come at the cost of longer training times and reduced interpretability of the learned
 887 causal relationships.
 888

889 **4) Others.** The ways which other researchers exploit extracted acoustic features differ from all the above. For
 890 example, cross-correlation is widely used to compare the similarity of recorded sounds and template data, e.g. in
 891 [10, 29, 30, 33, 76]. Helavi et al. [33] combined correlation and frequency calculation to choose the best matching.
 892 Bayens et al. [7] used an audio classifier to process recorded emanations of 3D printers. Belikovetsky et al. [8] compared
 893 the recorded audio signal with the original by calculating their cosine similarity to test 3D printing integrity. Lu et
 894 al. [50] inferred victims' continuous keystrokes in a context-aware manner via a binary tree search.
 895

897 5 Countermeasures

898 To analyze countermeasures against Acoustic Side Channels (ASCs) in a structured manner, we use a four-dimensional
 899 framework comprising four different defense principles: *Impediment, Interference, Masking and Obfuscation*. In essence,
 900 impediment blocks signal reception, interference degrades the signal by reducing its clarity, masking hides the presence
 901 of the signal, and obfuscation hides the meaning of the signal.
 902

903 More specifically, impediment involves physically, structurally, or logically obstructing an adversary's ability to
 904 observe an ASC, thereby preventing access to the acoustic signal altogether. Interference and masking, by contrast, aim
 905 to reduce the signal-to-noise ratio, making an ASC harder to detect despite still being technically accessible. Obfuscation,
 906 on the other hand, targets the information carried by acoustic signals and typically employs randomization techniques
 907 to obfuscate the information. A common example is randomizing the keyboard layout to disrupt or prevent the possible
 908 causal inference between keystroke sounds and their corresponding keys.
 909

910 Despite their similarities, interference and masking differ significantly in terms of mechanism, effect on the signal,
 911 and nature. Interference distorts, degrades, or completely disrupts the ASC signal. It works by injecting noise or some
 912 other source of distortion, thereby reducing signal integrity and corrupting the ASC. In other words, interference causes
 913 signals to physically overlap and combine destructively. Unlike interference, the essence of masking is perceptual. It
 914 works by introducing extraneous sound signals to hide the true acoustic-leakage signal from an adversary. While the
 915 original ASC signal is left intact in this case, it becomes buried beneath the other signals, making it effectively much
 916 harder to perceive and detect for an adversary. A classic example of masking is to run water or play music to conceal a
 917 human conversation. We note that from a mathematical point of view, there is little difference between interference
 918 and masking – both processes can be described by linear filtering.
 919

920 We summarise these countermeasures in Table 3, and note whether each of them was evaluated empirically or not.
 921

922 5.1 Impediment

923 Considering that getting access to target devices/systems or collecting useful acoustic signals is a necessary precondition
 924 for ASC attacks, to stop attackers from acquiring such acoustics, i.e. Impediment, is naturally an intuitive defense. An
 925 impediment aims to suppress the side-channel by reducing its signal-to-noise ratio. It is often input agnostic, with
 926 the working principle being along the lines of adding generic noise or generic signal dampening. Approaches include
 927 noise-dampening material or blocking the malicious application before access.
 928

929 Asonov et al. [4] explore impediment defenses based on keyboard structure. They observed that keys located at
 930 different positions on a single mechanical plate will produce unique acoustic fingerprints, like tapping a drum in
 931 different places. They suggested developing *silent* keyboards with multiple sound-dampening plates and locating keys
 932 Manuscript submitted to ACM

937 in acoustically equivalent locations to mitigate the attack. Zhuang et al. [91] and Zarandy et al. [85] also discussed
 938 these ideas and claimed that for mechanical keyboard emanations, the use of a silent keyboard is not an effective
 939 countermeasure, as the signal is still above the noise floor, unless each key is mounted on a separate plate. Zarandy et
 940 al. [85] also mentioned that using phone cases or screen protectors may provide some measure of protection against
 941 acoustic side-channel snooping.

942 In the case of 3D printers and physical locks (both low-frequency ASC), noise reduction is a direct and effective
 943 measure. Regarding countermeasures against ASC attacks on printers, Backes et al. [6] tested the effectiveness of using
 944 acoustic shielding foam, placing the microphone at a larger distance, and placing the printer in another room. They found
 945 that ensuring the absence of sound collections in the printer's room is sufficient to resist most eavesdropping. A similar
 946 countermeasure was also considered in DNA synthesizer defense [25]—prevent unauthorized person from entering
 947 the room. Faruque et al. [26] and Song et al. [73] also suggested that shielding the 3D printer with a sound-proofing
 948 material can be considered as a countermeasure. Hojjati et al. [35] recommended improving shield motors, such as using
 949 composites to cover the stepper motors in manufacturing equipment, can help protect it from broadcasting sensitive
 950 information to an adversary. In the case of physical keys, Ramesh et al. [64] suggested modifying the lock design, such
 951 as making the key with noise-reducing material and removing the vulnerable key.

Table 3. Acoustic side channels: Countermeasures

ASCs	Countermeasures								Evaluation	
	Principles				Techniques					
	Im	In	Ma	Ob	Acoustic shielding/ dampening	Stricter access control	Alert	Add noise		
Asonov'04 [4]	✓		✓			✓			Place the keys not in one plate ✓	
Zarandy'20 [85]	✓	✓			✓		✓		Use phone cases or screen protectors ✗	
Backes'10 [6]	✓				✓	✓			Longer distance ✓	
Faruque'16 [26]	✓		✓		✓				Make the motor loads similar ✗	
Hojjati'16 [35]	✓	✓			✓		✓	✓	Enlarge machine's enclosures; ✗	
Ramesh'21 [64] (Keynergy)	✓	✓			✓		✓		✗	
Simon'13 [71] (PIN Skimmer)	✓					✓	✓		✗	
Narain'14 [58]	✓					✓			Reduce sampling rate of the sensors ✗	
Cheng'18 [17, 18] (SonarSnoop)	✓	✓				✓	✓		Disable the sound system; modify sensor design ✗	
Zhou'18 [88] (PatternListener)	✓		✓			✓	✓		Limit the frequency range of the speaker and mic ✗	
Zhou'19 [87] (PatternListener+)								✓		
Shumailov'19 [70]	✓	✓	✓			✓			Inject fake taps; introduce timing jitter ✗	
Genkin'19 [28] (Synesthesia)	✓	✓	✓				✓		Make variations on software mitigations ✗	
Genkin'17 [30]	✓	✓	✓	✓		✓		✓	Placing the machine in a noisy environment ✗	
Yu'19 [84] (KeyListener)	✓		✓			✓		✓	✗	
Faezi'19 [25] (Oligo-Snoop)	✓	✓	✓			✓	✓	✓	✗	
Zhuang'05 [91]	✓		✓		✓		✓	✓	✗	
Anand'16 [1]			✓				✓	✓	✗	
Compagno'17 [21] (Skype & Type)		✓				✓			Perform a short random transformation ✗	
Anand'18 [2]			✓				✓		✓	
Nagaraja'21 [56] (VoIPLoc)		✓	✓						Use acoustic jitter and network jitter ✗	
Song'16 [73]	✓	✓	✓		✓		✓	✓	Inject additional dummy tasks ✗	

943 Im: Impediment, In: Interference, Ma: Masking, Ob: Obfuscation, ✗: partially evaluated.

989 Early approaches to implementing the impedance have been crude—both these works suggest notifying users of
 990 the existence of side channels—in effect, asking the user to solve the sensor deadlock problem. To impede PIN inference
 991 attacks, Simon et al. [71] suggested using activity detection components at the OS level. When an activity is used to
 992 collect sensitive information from users, the component informs the OS and the OS will deny access to shared resources
 993 from other applications. Narain et al. [58] suggested blocking sensors in a mutually exclusive manner when a sensitive
 994 app runs. Cheng et al. [17] also proposed similar countermeasures to disable the sound system or notify users of a
 995 present sound signal in the high frequency range during sensitive operations to deal with gesture unlocking attacks
 996 which actively emit sound signals and use echoes to attack. Zhou et al. [87, 88] discussed preventing the microphone
 997 from being used in the background and limiting the frequency range of the speaker and microphone. However, all
 998 these works fail to discuss how to deal with deadlocks that will naturally arise such as when app A has locked the
 999 accelerometer and waiting for the camera and app B does the same in reverse order. Another defense proposed by [17]
 1000 is to modify sensor design to limit the supported frequency range, but this is challenging because deciding the threshold
 1001 for cutoff is hard. A third approach as Zhou et al. [87, 88], Yu et al. [84] and Shumailov et al. [70] proposed is to notify
 1002 the user and let them deal with it by disabling sound and/or sensors except touch screen during sensitive operations,
 1003 this also seems inappropriate, indicating that there is much further work to be done in impedance-based access control
 1004 research. For attacks of cryptographic key leaking and desktop display leaking, Genkin et al. [28, 30] propose acoustic
 1005 shielding, however, this does not sit well with the need for air circulation to cool the heat.
 1006

1011 5.2 Interference

1012 The working principle of interference defences is to drive the signal features the attack relies upon to well under the
 1013 noise floor. Notably different from impedance, interference defences directly target the side-channel by generating
 1014 noise that is signal-aware and precisely designed to cancel-out one or more signal components to interfere with
 1015 signal-inference that underpins the side-channel.
 1016

1017 The ASC attack for keyboard input has reached a certain degree of accuracy—attackers are exploring different
 1018 advanced signal processing and classification algorithms to continuously improve the effectiveness of the attack,
 1019 therefore disrupting the feature construction and classification process is a basic way for defenders.
 1020

1021 The same is true for defense against remote attacks via VoIP. Compagno et al. [21] proposed to perform a short
 1022 random transformation of the sound when a keystroke is detected. The intuitive method is to apply a random multi-band
 1023 equalizer on multiple small frequency bands of the frequency spectrum or mix the victim’s microphone with a masking
 1024 signal to prevent remote attacks. Anand et al. [2] also believed that a noisy defense mechanism is feasible by generating
 1025 a masking signal with speakers at the victim’s end, and those strategies were experimentally proved to be effective in
 1026 protecting victims’ important information.
 1027

1028 Nagaraja et al. [56] also discussed a countermeasure for ASC attack on VoIP calls, while their target is to prevent
 1029 location fingerprint leakage. Defenders may use acoustic jitter to damage the fingerprint information, such as using
 1030 a constant amplitude signal at a room’s characteristic frequencies (50~2KHz) can cause a decrease in VoIPLoc’s
 1031 performance. But it is hard to deploy because even small amounts of audible noise will negatively impact the voice
 1032 quality, which is the first issue to be considered in VoIP.
 1033

1034 In fact, this defense strategy of interfering with the original audio is effective for other different attack scenarios.
 1035 Shumailov et al. [70] introduced timing jitter into the microphone data stream to prevent attackers from reliably
 1036 identifying tap locations when using virtual keyboards. Another feasible countermeasure is to inject false positives into
 1037 the data stream by randomly playing some distracting noises that are close to pressing when the virtual keyboard is
 1038 Manuscript submitted to ACM

1041 used [85]. Cheng et al. [17] suggested a possible countermeasure against active ASC attacks is to block the propagation
 1042 of inaudible sounds, such as generating inaudible noise to interfere, and when possible, refuse to receive low-frequency
 1043 or high-frequency sound signals.

1044 The interference can still be applied to ASC attacks on 3D printers and physical key leaking. Song et al. [73] also
 1045 suggested introducing more interference like strong electromagnetic noises during printing. Ramesh et al. [64] thought
 1046 that injecting noise to corrupt key insertion sounds is also a hopeful direction to improve security. When a key insertion
 1047 event is detected, they can play inaudible sounds of frequency greater than 15KHz to destroy the original signals. In
 1048 the DNA synthesizer ASC scenario, Faezi et al. [25] also suggested introducing additional noise by adding redundant
 1049 physical components.

1052 5.3 Masking

1053 With the approach of masking, the original signal is left intact but becomes indistinguishable from irrelevant overlapping
 1054 signals aimed to mask the true acoustic leakage, making the side channel much harder to detect. Masking examples
 1055 could include emitting synthetic keyboard sounds, injecting fake taps, or increasing background noises.

1056 Zhuang et al. [91] pointed out that quieter keyboards (Impediment) are useless. They believe that the ASC attack can
 1057 be resisted by reducing the quality of the sound signal that the attacker may obtain, that is, adding masking noise while
 1058 typing. However, noise may also be separated, especially when faced with a microphone array attack, which records
 1059 and distinguishes multiple channels of sound based on the location of the sound source. When an attacker is able to
 1060 collect more data, this defense may also be ineffective. Anand et al. [1] proposed a defense mechanism against keyboard
 1061 attacks which had good performance in the face of geometric measurement, feature classification, and other attack
 1062 methods. The specific measure is to use background sounds to cover up the audio leakage. Their another work [2] also
 1063 proposed using masking signals to protect keyboard emissions from ASC.

1064 To prevent attackers from reliably identifying tap locations when using virtual keyboards, Shumailov et al. [70]
 1065 claimed that injecting decoy tap sounds into the microphone data stream. As the taps themselves are pretty unnoticeable
 1066 for humans, this should not disturb applications that run in the background. To protect 3D printing, Hojjati et al. [35]
 1067 obfuscated the ASC emissions from manufacturing equipment by playing audio recordings of similar but flawed
 1068 processes during production. Their experiments showed that such interference can make it harder for the attacker to
 1069 separate the target audio stream from the others and reconstruct the object's exact dimensions or process parameters.
 1070 In the screen display attack, Genkin et al. [28] mentioned that acoustic noise generators can be used to mask the signal,
 1071 while it needs a cost in design, manufacturing, and ergonomic disruption since the masking ought to have adequate
 1072 energy and spectrum coverage. Placing the machine in a noisy environment has been discussed in Genkin et al.'s
 1073 work [30], but the noise is easily filtered by a high-pass filter due to the low frequency (below 10kHz) of the generated
 1074 noise.

1075 5.4 Obfuscation

1076 One significant factor that causes keyboard acoustic attacks is that the keyboard always has a unified key layout, which
 1077 makes an attacker easily infer the keys since the fixed location results in a distance pattern. Employing some dynamic
 1078 configurations or randomizing the keys' location (soft keyboard) can obfuscate the information carried by acoustic
 1079 signals, thus hampering an adversary to infer the information correctly.

1080 This countermeasure is useful and convenient to implement for the virtual keyboard on the touch screen, and it will
 1081 not seriously affect the user experience. Compared with the physical keyboard, the layout of the touch screen virtual
 1082

1093 keyboard is easier to be customized, especially when inputting the PINs, the user's input habits can be temporarily
 1094 ignored. For KeyListener [84], it needs prior knowledge of QWERTY keyboard layout to map localized keystroke
 1095 positions to accurate characters. Therefore, Yu et al. [84] proposed that generating a random layout of the QWERTY
 1096 keyboard is an effective way to resist touchscreen keystroke eavesdropping attacks. For the on-screen gesture unlocking
 1097 leakage, a similar defense is to randomize the layout of the pattern grid [87]. For physical keyboards, it is hard and
 1098 impractical to change their layout; however, Asonov et al. [4] suggested that placing the keys not in one plate may be a
 1099 solution to this problem.
 1100

1102 In addition to changing the position of the keys, randomization also plays a role in the defense against other attacks,
 1103 such as cryptographic key leaking. Genkin et al. pointed out that their attack aimed at cryptanalysis can be prevented
 1104 by some algorithmic countermeasures, such as ciphertext normalization and randomization [30].
 1105

1106 As for computer screen leaking, attacks can be defended against by changing the screen content. Genkin et al. [28]
 1107 proposed that a more promising approach is software mitigation. Specifically, these programs cover leaks by changing
 1108 the content on the screen, such as font filtering. By changing the font, all letters on the screen project the same
 1109 horizontal intensity, avoiding the loss of information within a single pixel line. They also proposed two ways of
 1110 shielding (impediment) and masking, but these countermeasures are more difficult to achieve.
 1111

1112 In fact, the defense strategy of obfuscation is also to prevent an attacker from extracting reliable information
 1113 with distinct distinguishing characteristics. Nagaraja et al. [56] proposed a similar strategy, which is to use network
 1114 jitter to induce packet latencies encouraging standard codec implementations to drop packets containing reverberant
 1115 components, thus preventing the sender from extracting a credible room fingerprint. Moreover, Obfuscation can also
 1116 be used for 3D printer and DNA synthesizer attacks. Faruque et al. [26] suggested that creating similar loads on each
 1117 motor and incorporating random motor movements can obfuscate the acoustic emissions. Song et al. [73] considered
 1118 adopting dynamic printing configurations in the process of G-code generation and injecting additional dummy tasks
 1119 (e.g. use random trajectories). Faezi et al. [25] suggested that operators could randomly select redundant steps of varying
 1120 durations before delivery, or execute steps unrelated to the core delivery process to obfuscate signals.
 1121

1122

1123

6 Findings and Discussions

1124 We draw a number of interesting observations, which either reflect the strengths and weaknesses of the state of the art,
 1125 or shed light on promising future research directions.
 1126

1127 **Ever expanding attack surfaces.** Early work largely concentrated on physical keyboard emanation, and therefore
 1128 targeted devices were PCs, laptops, payment devices and the like. The range of attack surfaces has been significantly
 1129 expanded to date, covering smartphones, LCD displays, motherboards, mechanical locks, specialised equipment such as
 1130 3D printers and DNA synthesizers, and even computer-human interactions. Particularly, smartphones and 3D printers
 1131 have attracted considerable attention in recent years.
 1132

1133 Overall, keyboard emanations have been the most studied among the ASCs. The second most studied is touchscreen
 1134 leaking; followed by 3D printer leaking. Those less-studied categories are likely to offer more opportunities for future
 1135 research, except for dot-matrix printers – a possible explanation on why this category was less developed is that these
 1136 devices are not used any more. Where else to look for new ASCs? New devices and equipment where noise and sound
 1137 are emitted will deserve a look.
 1138

1139 **More nuanced nature of ASCs.** Early ASCs were passive ones, but recently active ASCs emerged [17, 50, 88].
 1140 Active ASCs are intriguing, as they involve with both intentional and accidental elements. Although acoustic signals
 1141

1142

1143

1144 Manuscript submitted to ACM

1145 were intentionally introduced by an attacker in active attacks, the signal-responses from the victim unintentionally
1146 leak information.

1147 Overall, most ASCs identified to date are passive ones, and only a few are active ones. Research into active ASCs is
1148 an interesting direction for future research.

1150 We would not be surprised if many real-world attacks in the future will exploit a combination of active and passive
1151 ASCs, or exploit a combination of acoustic and other side channels, or simply amplify an ASC with non-side-channel
1152 attacks or vice versa. Certainly, researchers with imagination and creativity will be able to discover exciting new attacks
1153 along these directions, and only the sky is the limit.

1155 **Constructive applications of ASCs.** Most research in this area employed ASCs for offensive purposes only, and
1156 several exceptions such as [7, 8, 19, 62] looked into constructive or defensive applications of ASCs. Panda et al [62]
1157 investigated both offensive and defensive aspects of ASCs, where they attempted PIN guessing via keyboard emanation,
1158 as well as user verification via keystroke dynamics, which is a known behavioural biometric. The basic idea of using
1159 ASCs to build security defenses is that acoustic signals emitted by devices can also be considered a fingerprint of the
1160 system or the program and used to protect the identification systems. It can be used alone or in combination with other
1161 protection mechanisms. This can be an exciting and promising direction for future research.

1164 **Imbalance in attack and defence research.** The literature has put significant effort into discovering new ASCs and
1165 their exploitation, rather than investigating countermeasures to them. In fact, we could only name a small portion that
1166 covered and discussed countermeasures. For this very reason, Table 3 is significantly shorter than Table 1. Defending
1167 against ASC is fundamentally hard. Sound from air columns in vibrating devices acting as carriers is challenging to
1168 stop because air easily forms resonant standing waves that amplify system noise, and its low damping allows sound to
1169 persist. Fundamental to their persistence is that devices efficiently transfer energy into the air as a function of user or
1170 machine input, while rigid boundaries reflect the waves, reinforcing the sound. Solutions such as damping materials or
1171 active noise control can help, but they often demand substantial redesign of a vast landscape of system electronics and
1172 involve trade-offs in form, cost or performance, making complete silencing difficult to achieve without addressing the
1173 root cause: resonance and energy coupling.

1175 **Inadequate evaluations of countermeasures.** What is worse, among those investigating countermeasures,
1176 only a small portion attempted empirical evaluations. Most countermeasures proposed remain theoretical. Practical
1177 implementations and empirical evaluations are often limited, if any.

1178 Clearly, countermeasure investigations, in particular their empirical evaluations, have been under-appreciated and
1179 inadequate. Countermeasures lag behind attacks, and this may well suggest that the former may be much harder to
1180 deliver than the latter. However, all these no doubt warrant fertile grounds for future research.

1182 **Systems Verification as an opportunity.** The persistence of ASCs can also be harnessed for verification purposes,
1183 exploiting acoustic artifacts that are specific to a process or user input. This enables designers to develop systematic
1184 defenses. For example, keyboard ASCs could authenticate physical keyboards or verify compliance with policies
1185 requiring that a digital wallet be unlocked via a password typed on a local keyboard – rather than one injected by
1186 malware into the wallet-authentication protocol. Other possibilities include verifying print processes by their unique
1187 acoustic signatures or confirming human-computer interactions through acoustic motion detection. In this way, ASCs
1188 can authenticate devices or processes via their acoustic fingerprints, turning their persistence into an advantage. This
1189 approach opens the door to a suite of functional verification tools for transactional authorisation and system integrity.

1191 **Research methodology.** Experimentation is an intrinsic element of ASC research. However, experimental details
1192 are often under-reported in the literature. Thus, reproducibility can be a significant challenge.

1197 Moreover, many studies were mostly controlled experiments, conducted in strict laboratory settings or similar
 1198 environments. There was inadequate effort in considering or pursuing whether the results could be generalized to other
 1199 settings, in particular to the naturalistic real-world setting. Still much effort is required to demonstrate the ecological
 1200 validity of these ASC studies.
 1201

1202 In terms of rigor and validity, ASC experiments in general remain far behind those in the field of keystroke dynamics.
 1203 In a series of well-written papers [39, 52, 53, 78], Maxion's team at Carnegie Mellon meticulously examined keystroke
 1204 dynamics, achieving a high standard for repeatable, reproducible, well-grounded and generalizable experiments in
 1205 security research. There is much for ASC researchers to learn from them.
 1206

1207 Specifically, (a) developing a standardised measurement framework for measuring side-channel quality, (b) creating
 1208 reusable, high-quality standardised datasets for ASC benchmarking, and (c) establishing standardized experimental
 1209 setups and procedures (e.g. as shared operational protocols for experiments) would significantly enhance open, replicable
 1210 and comparable research. They would enable direct comparisons of attack and countermeasure studies conducted by
 1211 different teams, improving the rigor, validity and scientific foundation of ASC research and advancing the state of the
 1212 art in an efficient, cost-effective way.
 1213

1214 **Lack of human, social and economic perspectives.** Only a few papers (e.g. [1, 70]) considered usability and
 1215 human factors, although some ASC countermeasures may potentially impact many users. On the other hand, monetary
 1216 and computational costs incurred by potential countermeasures are rarely considered.
 1217

1218 Side channels could be hugely serious, with a far-reaching social and economic impact at a large scale, e.g. multi-
 1219 billion dollar consequences. For example, following the discovery of differential power analysis [42], smart cards had to
 1220 be redesigned for banking and other stakeholders all over the world. The microarchitectural (cache) side-channels like
 1221 Meltdown [48] and Spectre [41] suggested a major revisit of CPU designs, too. ASCs do not appear to be as serious.
 1222

1223 However, how serious can and will ASCs be in the future? Some security economic analysis can be relevant and
 1224 interesting. To have an answer, it is critical to understand the severity, practicality, and impact of the various acoustic
 1225 side channels in the real world. Which acoustic side channels pose a real threat? Or, most of them will remain of
 1226 academic interest only? There are many interesting open problems.
 1227

1228 **Data analysis and machine learning.** The power of data analysis is critical for ASCs, as it hinges on the capability
 1229 of extracting signals from often noisy data. There is a clear trend that ASC research evolved from simpler (or traditional)
 1230 ML methods (e.g. k-NN, SVM) to more sophisticated deep learning (DL) methods like CNNs and RNNs. As ML advances,
 1231 it helps advance side-channel research.
 1232

1233 Traditional ML is the most used among all the recovery strategies adopted by ASC attacks. It appears in almost every
 1234 attack scenario (except cryptanalysis) in Table 2, including keyboard emanation, finger-tapping emissions, motion
 1235 detection, and printer emanation. It has been used in ASC attacks since 2005, and still used nowadays. Two technical
 1236 reasons may explain its popularity: 1) for most classification tasks in ASCs (except for e.g. [76]), the number of classes
 1237 that need to be classified is relatively small, e.g. merely classifying a limited number of characters. ML is effective in
 1238 tackling such tasks. 2) ML algorithms require only a small set of training samples, which is handy for attacks.
 1239

1240 Language models, when relevant, can help with attacks. For example, Zhuang et al. [91] used HMM and an n-gram
 1241 language model to help correct spelling and fix grammar errors; Backes et al. [6] used HMM to increase recognition
 1242 rate of English text.
 1243

1244 It is interesting to note that, among all the ML-based attacks, only Zhuang et al [91] employed unsupervised learning,
 1245 which used *unlabeled* samples to train the classifier. The language model explained their secret. With sufficient unlabeled
 1246 training samples, they expected to establish a most-likely mapping between the acoustic classes and actual typed
 1247 Manuscript submitted to ACM

1249 characters using the language constraints. They used K-Means to cluster the keystrokes and then utilized the language
 1250 model to correct the preliminary results.

1251 As summarised in Table 2, DL has been used far less than ML methods (7 vs. 19) in ASCs. Also, the number of ASC
 1252 scenarios where DL was applied is less than that of ML. These discrepancies could be partly explained by the fact that
 1253 DL did not gain traction in security until the recent decade. We discuss pros, cons and possible future directions of
 1254 applying DL in ASC research as follows.

1255 First, the combination of DL (which often has a good capability for classification tasks) and some complex rep-
 1256 resentation of signal data (which is information rich) can be powerful. For example, a spectrogram often captures
 1257 a high-dimension of telltale features. When spectrogram images are fed into a CNN classifier, DL can achieve high
 1258 recognition results for classifying acoustic signals without explicit feature engineering. However, it may be difficult for
 1259 traditional ML methods to process spectrogram information this way. We expect this type of combination or the like
 1260 will report superior results in future ASC research.

1261 Second, acoustic signals often exhibit temporal patterns, and RNNs are well suited to model and process such
 1262 sequential signals effectively. The combination of CNNs and RNNs has merit in ASC research, too.

1263 Third, DL often requires a large set of labeled data for training, which may not always be possible. Generative AI has
 1264 been used effectively to create various synthetic acoustic data, e.g. WaveGAN [23] and HifiGAN [43]. Similarly, one day
 1265 it may be used in future ASC research, e.g. for generating training samples. We have not seen such an approach in the
 1266 ASC literature yet.

1267 It is unnecessary that the more sophisticated the learning methods, the better. DL may not always outperform simpler
 1268 ML algorithms. The nature of signals and the features of datasets collected all play an important role in choosing
 1269 appropriate analysis methods. For example, to classify digits and letters via acoustics, Zarandy et al. [85] achieved 40%
 1270 success by using Linear Discriminant Analysis (LDA) on MFCC features, but only 30% success when using CNN on
 1271 Fourier features. As another example, Gohr [31] reported at CRYPTO'19 some impressive cryptanalysis results achieved
 1272 by DL. However, Benamira et al [9] showed at Eurocrypt'21 that, after stripping down Gohr's deep neural network to a
 1273 bare minimum, they achieved a similar accuracy using simple standard ML tools.

1274 In cases where DL outperforms simple ML methods, its black-box nature can cause interpretability issues. It may be
 1275 unclear why the DL method has worked. What are its weaknesses? And, how to improve it? For example, Gohr [31]
 1276 fared poorly in their DL approach's explainability, whereas Benamira et al. [9] achieved a complete interpretability of
 1277 both their method and decision process.

1278 Finally, as a solid study and an inspiring tale, Tu et al [76] did not use DL, but achieved an impressively high
 1279 precision in keystroke recognition in various challenging settings. Their secret lies in 1) exploring the physics and
 1280 signal characteristics of keyboard sounds more deeply than everybody else, and 2) innovations of signal processing.

1281 7 Side Channels and Inverse Problems

1282 In unclassified worlds, side channels are a young field, with a history of less than forty years. Inverse problems have
 1283 been studied for more than a century. However, side channels and inverse problems appear to be two fields that are
 1284 completely isolated from each other ².

1285 A problem is *inverse* because it starts with the observable effects to calculate or infer the causes, such as determining
 1286 causal factors and unknown parameters from a set of measurements of a system of interest. It is the inverse of a

1287 ²Some of the analyses in this section were initially developed for [12].

1301 forward—or direct—(physical) problem, which starts with the causes and then deduces or calculates the effects, such as
 1302 modelling a system from known parameters.
 1303

1304 The field of inverse problems has deep and historical roots in mathematics, pioneered by giants like Hermann
 1305 Weyl and Jacques Hadamard [32, 40, 79]. The main source of inverse problems is science and engineering. These
 1306 problems have pushed not only the development of mathematical theories and tools, but also scientific and technological
 1307 innovations in a wide range of disciplines, including astronomy, geophysics, biology, medical imaging, optics, and
 1308 computer vision, among others. Classical achievements of inverse problems include computed tomography (CT) and
 1309 magnetic resonance imaging (MRI), where the inverse Radon transform is foundational.
 1310

1311 7.1 Side Channels versus Inverse Problems

1312 In a side channel, information leaks accidentally via some medium or mechanism that was not designed or intended
 1313 for communication. Often, a direct measurement of the output from a side channel does not immediately give away
 1314 the information leaked. Instead, the direct output measurement is akin to metadata, from which attackers deduce the
 1315 leaked information.
 1316

1317 Therefore, **every side channel implies or involves an inverse problem, but not vice versa.**

1318 In some instances, a side channel may involve a relatively straightforward inverse problem. For example, Kuhn
 1319 demonstrated a classical optical side-channel, where the information displayed on a computer monitor could be
 1320 reconstructed remotely by decoding the light scattered from the face or shirt of a user sitting in front of the computer
 1321 [45]. A sophisticated attack was required to successfully exploit this side channel. However, its key insight was the
 1322 fact that the whole screen information was available as a time-resolved signal, rather than solving a complex inverse
 1323 problem. On the other hand, not all inverse problems involved in side channels are straightforward to solve. For example,
 1324 active acoustic side channels such as SonarSnoop [17], KeyListener [50], and PatternListener [88] all involved a rather
 1325 complex inverse problem.
 1326

1327 7.2 Potential Impact on Side Channels

1328 How do the fields of inverse problems and side channels inform each other? We believe that the problem-formalisation
 1329 strategies, theoretical models, mathematical techniques, algorithms, and concepts developed in inverse problems have
 1330 significant potential to benefit and inspire future research of side channels (including acoustic ones).
 1331

1332 **The field of inverse problems can significantly influence key aspects of side channels.** Decades of research in
 1333 inverse problems provide formalism, models, and techniques that could enable side-channel attacks and countermeasures
 1334 to be characterized more rigorously. Framing side channels as inverse problems would support consistent evaluations and
 1335 comparisons, as well as the systematic identification of new types of side channels and countermeasures. Furthermore,
 1336 side-channel countermeasures could be better optimized, benchmarking them against fundamental theoretical limits of
 1337 adversarial reconstruction—or against reconstruction algorithms—that are associated with the corresponding inverse
 1338 problems. This could lead to provable bounds on side-channel resilience, and guide the design of more secure systems
 1339 with lower attack-success likelihood, alongside their rigorous verification. Finally, cross-pollination between the two
 1340 fields may reshape current thinking, inspiring novel concepts and methods that have not yet emerged in isolation.
 1341

1342 In what follows, we describe in greater technical detail how specific aspects of the field of inverse problems can
 1343 benefit side-channel research.
 1344

1345 **First, it helps to properly navigate between the languages used in both fields.** This will, for instance, help to
 1346 identify similarities and differences, to clarify misconceptions, and to unify terminologies. For example, *information*,
 1347 Manuscript submitted to ACM

1353 which is the set of relevant parameters approximated by the solution to the inverse problem, conceptually differs from
 1354 *measurements*, which are the physically leaked raw-data input of the inverse problem and which can contain various
 1355 amounts of useful information.

1356 In a unified language that is understandable to both communities, blocking a side-channel attack essentially amounts
 1357 to making the corresponding inverse problem unsolvable, intractable, harder to model, or at least harder to compute
 1358 efficiently. Accordingly, there are the following three scenarios where one could: (a) prove that the inverse problem
 1359 becomes impossible to solve by getting rid of the information that is present in the measurements, in such a way that the
 1360 analysed measurements contain nothing relevant; (b) make the inverse problem much harder to model mathematically
 1361 or solve computationally; (c) get rid of the leakage (e.g. physically) so that there are no measurements to exploit
 1362 whatsoever, regardless of whether the said measurements would have contained meaningful information or not. Adding
 1363 random perturbations such as noise is an example of a classical mechanism that makes an inverse problem unsolvable
 1364 or harder to model.

1365 In accordance with the sequential steps described in Section 4, *features* in ‘feature extraction’ are conceptually distinct
 1366 from *measurements* stated above. Specifically, while measurements are the raw data obtained from signal collection,
 1367 features are what is extracted from the measurements as an intermediate step towards target information recovery. In
 1368 some scenarios, measurements are directly used as features *as is*. For instance, in the acoustic side channels of [16, 90],
 1369 time information is central to the problem and the information leaked from the side channel is thus recovered from
 1370 the native time-domain signals. In other scenarios, measurements in the native domain are not deemed adequate for
 1371 information recovery (or parameter estimates as in inverse problem literature), and features are thus derived from the
 1372 measurements in some transformed domain. For instance, in the acoustic side channel of [8], audio fingerprinting cannot
 1373 be done with time signals, and instead is done with acoustic features consisting in frequency-domain coefficients of the
 1374 transformed time signal, with subsequent dimensionality reduction through PCA. In the inverse-problem literature,
 1375 the recovery problem often follows a general mathematical formulation, as opposed to a step-wise approach: the
 1376 solution is directly expressed as a function of the measurements themselves, and any intermediate step of signal
 1377 transformation or dimensionality reduction may remain hidden in the recovery method itself, unlike in the literature
 1378 of side channels where those intermediate steps are prominently visible. Furthermore, while transforms such as FFT
 1379 and the corresponding transformed-domain representations are internally exploited as a way to optimize performance,
 1380 which is crucial for some operations such as signal filtering, inverse-problem modelling remain flexible enough to
 1381 conveniently allow for the switching from one domain to the other. Such increased flexibility might inspire and inform
 1382 future side-channel research to construct its own general mathematical formulation and treatment.

1383 **Second, the perspective of inverse problems offers a new lens for examining side channels.** As first elaborated
 1384 by Jacques Hadamard, a fundamental challenge in inverse problems is they are typically ill posed in terms of the
 1385 solution’s *existence*, *uniqueness*, and *stability*, whereas their corresponding forward problems may be well posed in all
 1386 these regards [40]. The stability property means that a solution depends continuously on the available measurements
 1387 (i.e. the observed data). Accordingly, a problem lacks stability if adding or removing data leads to a radically different
 1388 solution. If a problem lacks stability, the computed solution will inevitably deviate from the true solution.

1389 Some studies of side channels (e.g. [17, 18]) may amount to only proving the existence of a solution for the cor-
 1390 responding inverse problem, rather than investigating the two related properties, namely, uniqueness and stability.
 1391 Therefore, looking into these other properties, as studied from the perspective of inverse problems, will likely give
 1392 security researchers a new lens for examining side channels, as well as their countermeasures.

1405 For example, examining the stability property alone warrants interesting research to answer the following questions.
 1406 How will the side channel be impacted if less, or more, measurement data are collected for experiments? How much
 1407 measurement data is necessary for the side channel to be stable, in such a way that the retrieved information depends
 1408 continuously on the data, as opposed to varying abruptly across nearly similar datasets? Could specific countermea-
 1409 surens, such as adding some type of physical disturbance or interference, influence the observed output from the side
 1410 channel in such a way that stability decreases? Answers to these questions could allow better optimising side-channel
 1411 countermeasures, accurately simulating their expected effect before implementing them (e.g. in the case of optical side
 1412 channels as demonstrated in [12, 81]), quantifying their efficiency, and providing a robust framework to compare them
 1413 in a systematic and rigorous manner.

1414 This new perspective also suggests a novel strategy for systems design—one in which the impact of specific
 1415 countermeasures on side channels is systematically evaluated, and in which the system of interest is refined to mitigate
 1416 the impact of these side channels, all while preserving the system’s intended functionality. Practically, this could
 1417 be done iteratively through simulations to ensure cost effectiveness and avoid building or implementing the system
 1418 multiple times. This strategy can be seen as an adversarial counterpart to the so-called co-design strategy, which also
 1419 fundamentally relies on the inverse-problem formalism. In co-design, system hardware and computational algorithms
 1420 are jointly optimized to maximize the recoverable information, as exemplified by the field of computational imaging [11].
 1421 In contrast, the proposed adversarial approach seeks to optimize the system along with any potential adversarial attack
 1422 to minimize the information that can be inferred from the side channels. Specifically, we want to optimize the system
 1423 in a way so that no reconstruction algorithm can exploit any related side channels. This could potentially inform an
 1424 entirely new approach to secure system design, mitigating side channels by design.

1425 **Third, some theoretical results on inverse problems are relevant to side channels.** One such result is
 1426 reconstruction guarantees for several types of problem structures, such as lower bounds on reconstruction errors
 1427 (Cramér-Rao bounds [83]). These reconstruction guarantees are often only tied to the forward model mapping the
 1428 relationship between the information of interest and measurements, in the sense that they do not depend on any specific
 1429 algorithm or solution used. Another useful result is the extent to which the recovery is affected by noise or other
 1430 non-idealities [5, 14]—which amount to mitigating side-channel attacks in security and cryptanalysis. Such results could
 1431 inform one on how to best characterise various side channels—including acoustic, EM, and optical ones—and how to best
 1432 design and evaluate their countermeasures. In particular, the interference and obfuscation countermeasures elaborated
 1433 in Section 5 can substantially benefit from the perspective of inverse-problem research due to their operational nature,
 1434 even though impediment and some elements of obfuscation countermeasures may be out of scope for inverse problems.

1435 Essentially, the inverse-problem framework provides us with robust tools to verify a system’s design and its side-
 1436 channel vulnerability. This allows for both verification of an existing design and its optimization through iterative
 1437 refinement.

1438 To solve challenging inverse problems, mathematics has been applied to accurately describe the forward model as
 1439 well as assumptions on the solution, if any. For instance, sound statistical modelling allows reducing the dimensionality
 1440 of the parameter spaces and producing accurate solutions [38, 68], and specific algorithms also allow maximizing
 1441 computational efficiency. These may prove inspiring for side channel research, too.

1442 Finally, it will be intriguing to explore possible connections between the optimality³ of a side channel in a given
 1443 scenario and the uniqueness and stability of the solution to the corresponding inverse problem. In some cases, it appears

1444 ³By optimality, we mean that the maximum amount of information that can in theory be leaked from a side channel is fully extracted.

1457 that the latter indeed implies an optimal side channel. However, in many other scenarios, whether such a connection
 1458 holds or not has no straightforward answers. Instead, these will be interesting areas for future research.
 1459

1460 8 Conclusions

1462 We have seen steady progress in ASC research in the past twenty years. Some creative or even surprising results have
 1463 emerged, such as acoustic cryptanalysis [29], keyboard emanation [4] and Synesthesia [28], to name a few.
 1464

1465 We have laid down some foundations to clear conceptual ambiguity, and put together a framework to structure our
 1466 collective understanding of existing ASCs and their countermeasures. We have also identified gaps in the research,
 1467 which point to promising future directions.

1468 We hope this paper sounds the marching bugle, attracting ambitious and creative researchers to further grow the
 1469 field of ASCs, where imagination can make a difference.
 1470

1471 Finally, we have made an attempt to bridge side channels and inverse problems. Although we used mostly acoustic
 1472 examples, our discussions are generally applicable to all side-channel attacks, not only to acoustic ones. In general,
 1473 every side channel implies (or involves) an inverse problem, but not vice versa. Although it may be a small step forward
 1474 at this stage, it is perhaps the start of an aspiration that will grow in the future. We believe that this bridge has the
 1475 potential to foster cross-field collaboration and inspire several new research directions, for example, building a more
 1476 rigorous and effective scientific foundation for side channel research, and encouraging the possibility for ideas and
 1477 techniques originated in one field to enjoy a wider applicability than was previously anticipated.
 1478

1479 Acknowledgments

1480 This paper is dedicated to the loving memory of Professor Ross J. Anderson — our mentor, friend, and colleague —
 1481 whose insightful comments and suggestions, as always, greatly inspired our work. We thank Ilia Shumailov (Google
 1482 Deepmind) for his contribution, and Roy Maxion (Carnegie Mellon) for discussing experimental methods. PW and HCG
 1483 were supported in part by the National Key R&D Program of China (2023YFB3107505), the Natural Science Foundation
 1484 of China (62302371), the Postdoctoral Fellowship Program of CPSF (GZC20232035), and the China Postdoctoral Science
 1485 Foundation (2025M771552). This work was conceived and led by JY and has been partially supported by the University
 1486 of Southampton Interdisciplinary Research Pump-Priming Fund.
 1487

1488 References

- 1493 [1] S Abhishek Anand and Nitesh Saxena. 2016. A sound for a sound: Mitigating acoustic side channel attacks on password keystrokes with active
 1494 sounds. In *International Conference on Financial Cryptography and Data Security*. Springer, 346–364.
- 1495 [2] S Abhishek Anand and Nitesh Saxena. 2018. Keyboard emanations in remote voice calls: Password leakage and noise (less) masking defenses. In
 1496 *Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy*. 103–110.
- 1497 [3] S Abhishek Anand and Nitesh Saxena. 2018. Speechless: Analyzing the threat to speech privacy from smartphone motion sensors. In *2018 IEEE
 1498 Symposium on Security and Privacy (SP)*. 1000–1017.
- 1499 [4] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In *IEEE Symposium on Security and Privacy, 2004. Proceedings*. IEEE, 3–11.
- 1500 [5] Richard C Aster, Brian Borchers, and Clifford H Thurber. 2018. *Parameter estimation and inverse problems*. Elsevier.
- 1501 [6] Michael Backes, Markus Dürmuth, Sebastian Gerling, Manfred Pinkal, and Caroline Sporleder. 2010. Acoustic Side-Channel Attacks on Printers. In
 1502 *Proc. USENIX Security’10*.
- 1503 [7] Christian Bayens, Tuan Le, Luis Garcia, Raheem Beyah, Mehdi Javanmard, and Saman Zonouz. 2017. See no evil, hear no evil, feel no evil, print no
 1504 evil? malicious fill patterns detection in additive manufacturing. In *26th {USENIX} Security Symposium ({USENIX} Security 17)*. 1181–1198.
- 1505 [8] Sofia Belikovetsky, Yosef A Solewicz, Mark Yampolskiy, Jinghui Toh, and Yuval Elovici. 2018. Digital audio signature for 3D printing integrity. *IEEE
 1506 Transactions on Information Forensics and Security* 14, 5 (2018), 1127–1141.
- 1507 [9] Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. 2021. A deeper look at machine learning-based cryptanalysis. In *Advances in
 1508 Cryptology–EUROCRYPT 2021: 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia*,

1509 *October 17–21, 2021, Proceedings, Part I 40*. Springer, 805–835.

1510 [10] Yigael Berger, Avishai Wool, and Arie Yeredor. 2006. Dictionary attacks using keyboard acoustic emanations. In *Proceedings of the 13th ACM*
1511 *conference on Computer and communications security*. 245–254.

1512 [11] Ayush Bhandari, Achuta Kadambi, and Ramesh Raskar. 2022. *Computational Imaging*. MIT Press.

1513 [12] Aurélien Bourquard and Jeff Yan. 2022. Differential imaging forensics: a feasibility study. *arXiv preprint arXiv:2207.04548* (2022).

1514 [13] Roland Briol. 1991. Emanation: How to keep your data confidential. In *Proceedings of Symposium on Electromagnetic Security For Information*
1515 *Protection*. 225–234.

1516 [14] Leon Bungert, Martin Burger, Yury Korolev, and Carola-Bibiane Schönlieb. 2020. Variational regularisation for inverse problems with imperfect
1517 forward operators and general noise models. *Inverse Problems* 36, 12 (2020), 125014.

1518 [15] D.E. Cameron, J.H. Lang, and S.D. Umans. 1992. The origin and reduction of acoustic noise in doubly salient variable-reluctance motors. *IEEE Trans.*
1519 *on Industry Applications* 28, 6 (1992), 1250–1255. <https://doi.org/10.1109/28.175275>

1520 [16] Matteo Cardiaioli, Mauro Conti, Kiran Balagani, and Paolo Gasti. 2020. Your PIN Sounds Good! Augmentation of PIN Guessing Strategies via Audio
1521 Leakage. In *European Symposium on Research in Computer Security*. Springer, 720–735.

1522 [17] Peng Cheng, Ibrahim Ethem Bagci, Utz Roedig, and Jeff Yan. 2018. SonarSnoop: Active Acoustic Side-Channel Attacks. *CoRR* abs/1808.10250 (2018).
arXiv:1808.10250

1523 [18] Peng Cheng, Ibrahim Ethem Bagci, Utz Roedig, and Jeff Yan. 2020. SonarSnoop: Active acoustic side-channel attacks. *International J. of Information*
1524 *Security* 19, 2 (2020), 213–228.

1525 [19] Sujit Rokka Chhetri, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. 2016. Kcad: kinetic cyber-attack detection method for cyber-physical
1526 additive manufacturing systems. In *2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*. IEEE, 1–8.

1527 [20] Sujit Rokka Chhetri, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. 2018. Confidentiality Breach Through Acoustic Side-Channel in
1528 Cyber-Physical Additive Manufacturing Systems. *ACM Transactions on Cyber-Physical Systems* 2, 1 (2018), 3.

1529 [21] Alberto Compagno, Mauro Conti, Daniele Lain, and Gene Tsudik. 2017. Don't skype & type! acoustic eavesdropping in voice-over-ip. In *Proceedings*
1530 *of the 2017 ACM on Asia Conference on Computer and Communications Security*. 703–715.

1531 [22] Anupam Das, Nikita Borisov, and Matthew Caesar. 2014. Do you hear what I hear? Fingerprinting smart devices through embedded acoustic
1532 components. In *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security*. 441–452.

1533 [23] Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Adversarial audio synthesis. *arXiv preprint arXiv:1802.04208* (2018).

1534 [24] Jide S Edu, Jose M Such, and Guillermo Suarez-Tangil. 2020. Smart home personal assistants: a security and privacy review. *ACM Computing*
1535 *Surveys (CSUR)* 53, 6 (2020), 1–36.

1536 [25] Sina Faezi, Sujit Rokka Chhetri, Arnav Vaibhav Malawade, John Charles Chaput, William Grover, Philip Brisk, and Mohammad Abdullah Al Faruque.
2019. Oligo-snoop: A non-invasive side channel attack against dna synthesis machines. In *Network and Distributed Systems Security (NDSS)*
1537 *Symposium 2019*.

1538 [26] Al Faruque, Mohammad Abdullah, Sujit Rokka Chhetri, Arquimedes Canedo, and Jiang Wan. 2016. Acoustic Side-Channel Attacks on Additive
1539 Manufacturing Systems. In *Proc. ICPS'16*.

1540 [27] Daniel Genkin, Noam Nissan, Roei Schuster, and Eran Tromer. 2022. Lend Me Your Ear: Passive Remote Physical Side Channels on {PCs}. In *31st*
1541 *USENIX Security Symposium (USENIX Security 22)*. 4437–4454.

1542 [28] Daniel Genkin, Mihir Pattani, Roei Schuster, and Eran Tromer. 2019. Synesthesia: Detecting screen content via remote acoustic side channels. In
1543 *2019 IEEE Symposium on Security and Privacy (SP)*. IEEE, 853–869.

1544 [29] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis. In *CRYPTO'14*. Springer,
444–461.

1545 [30] Daniel Genkin, Adi Shamir, and Eran Tromer. 2017. Acoustic Cryptanalysis. *J. Cryptology* 30 (2017), 392–443. <https://doi.org/10.1007/s00145-015-9224-2>

1546 [31] Aron Gohr. 2019. Improving attacks on round-reduced speck32/64 using deep learning. In *Advances in Cryptology—CRYPTO 2019: 39th Annual*
1547 *International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II 39*. Springer, 150–179.

1548 [32] Jacques Hadamard. 1923. *Lectures on Cauchy's problem in linear partial differential equations*. Vol. 15. Yale university press.

1549 [33] Tzipora Halevi and Nitesh Saxena. 2015. Keyboard acoustic side channel attacks: exploring realistic and security-sensitive scenarios. *International*
1550 *Journal of Information Security* 14, 5 (2015), 443–456.

1551 [34] Jun Han, Albert Jin Chung, and Patrick Tague. 2017. Pitchln: eavesdropping via intelligible speech reconstruction using non-acoustic sensor fusion.
1552 In *Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks*. 181–192.

1553 [35] Avesta Hojjati, Anku Adhikari, Katarina Struckmann, Edward Chou, Thi Ngoc Tho Nguyen, Kushagra Madan, Marianne S. Winslett, Carl A. Gunter,
1554 and William P. King. 2016. Leave Your Phone at the Door: Side Channels That Reveal Factory Floor Secrets. In *Proc. CCS'16*.

1555 [36] Mohammad A Islam, Luting Yang, Kiran Ranganath, and Shaolei Ren. 2018. Why some like it loud: Timing power attacks in multi-tenant data
1556 centers using an acoustic side channel. *Proceedings of the ACM on Measurement and Analysis of Computing Systems* 2, 1 (2018), 1–33.

1557 [37] Youngbae Jeon, Minchul Kim, Hyunsoo Kim, Hyoungshick Kim, Jun Ho Huh, and Ji Won Yoon. 2018. I'm Listening to your Location! Inferring User
1558 Location with Acoustic Side Channels.. In *Proceedings of the 2018 World Wide Web Conference*. 339–348.

1559 [38] Jari Kaipio and Erkki Somersalo. 2006. *Statistical and computational inverse problems*. Vol. 160. Springer Science & Business Media.

1560 Manuscript submitted to ACM

1561 [39] Kevin S Killourhy and Roy A Maxion. 2009. Comparing anomaly-detection algorithms for keystroke dynamics. In *2009 IEEE/IFIP International*
 1562 *Conference on Dependable Systems & Networks*. IEEE, 125–134.

1563 [40] Andreas Kirsch. 2021. *An Introduction to the Mathematical Theory of Inverse Problems* (3. ed.). Springer.

1564 [41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
 1565 et al. 2020. Spectre attacks: Exploiting speculative execution. *Commun. ACM* 63, 7 (2020), 93–101.

1566 [42] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In *Advances in Cryptology—CRYPTO’99: 19th Annual International*
 1567 *Cryptology Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings* 19. Springer, 388–397.

1568 [43] Jungil Kong, Jaehyeon Kim, and Jaekyung Bae. 2020. HiFi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis.
 1569 *Advances in Neural Information Processing Systems* 33 (2020), 17022–17033.

1570 [44] Constantinos Kotropoulos and Stamatios Samaras. 2014. Mobile phone identification using recorded speech signals. In *2014 19th International*
 1571 *Conference on Digital Signal Processing*. IEEE, 586–591.

1572 [45] Markus G Kuhn. 2002. Optical time-domain eavesdropping risks of CRT displays. In *Proceedings 2002 IEEE Symposium on Security and Privacy*. IEEE,
 1573 3–18.

1574 [46] Andrew Kwong, Wenyuan Xu, and Kevin Fu. 2019. Hard drive of hearing: Disks that eavesdrop with a synthesized microphone. In *2019 IEEE*
 1575 *symposium on security and privacy (SP)*. IEEE, 905–919.

1576 [47] Butler W Lampson. 1973. A note on the confinement problem. *Commun. ACM* 16, 10 (1973), 613–615.

1577 [48] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
 1578 et al. 2020. Meltdown: Reading kernel memory from user space. *Commun. ACM* 63, 6 (2020), 46–56.

1579 [49] Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser. 2015. Snooping keystrokes with mm-level audio ranging on a single
 1580 phone. In *Proceedings of the 21st Annual International Conference on Mobile Computing and Networking*. 142–154.

1581 [50] Li Lu, Jiadi Yu, Yingying Chen, Yanmin Zhu, Xiangyu Xu, Guangtao Xue, and Minglu Li. 2019. Keylistener: Inferring keystrokes on qwerty keyboard
 1582 of touch screen through acoustic signals. In *IEEE INFOCOM 2019—IEEE Conference on Computer Communications*. IEEE, 775–783.

1583 [51] Zdenek Martinasek, Vlastimil Clupek, and Krisztina Trasy. 2015. Acoustic attack on keyboard using spectrogram and neural network. In *2015 38th*
 1584 *International Conference on Telecommunications and Signal Processing (TSP)*. IEEE, 637–641.

1585 [52] Roy Maxion. 2012. *Making experiments dependable*. Vol. 19. NSA. <https://www.nsa.gov/portals/75/documents/resources/everyone/digital-media-center/publications/the-next-wave/TNW-19-2.pdf>

1586 [53] Roy Maxion. 2020. Reproducibility: Buy Low, Sell High. *IEEE Security & Privacy* 18, 6 (2020), 33–41.

1587 [54] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. 2014. Gyrophone: Recognizing speech from gyroscope signals. In *23rd {USENIX} Security*
 1588 *Symposium ({USENIX} Security 14)*. 1053–1067.

1589 [55] John V Monaco. 2018. Sok: Keylogging side channels. In *2018 IEEE Symposium on Security and Privacy (SP)*. IEEE, 211–228.

1590 [56] Shishir Nagaraja and Ryan Shah. 2021. VoIPLoc : passive VoIP call provenance using acoustic side-channels, In 14th ACM Conference on Security
 1591 and Privacy in Wireless and Mobile Networks 2021. *14th ACM Conference on Security and Privacy in Wireless and Mobile Networks 2021*.

1592 [57] Rajalakshmi Nandakumar, Alex Takakuwa, Tadayoshi Kohno, and Shyamnath Gollakota. 2017. CovertBand: Activity Information Leakage using
 1593 Music. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies* 1, 3 (2017), 87.

1594 [58] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. 2014. Single-stroke Language-agnostic Keylogging Using Stereo-microphones and Domain
 1595 Specific Machine Learning. In *Proc. WiSec’14*.

1596 [59] Ben Nassi, Yaron Pirutin, Adi Shamir, Yuval Elovici, and Boris Zadov. 2020. Lamphone: Real-time passive sound recovery from light bulb vibrations.
 1597 *Cryptology ePrint Archive* (2020).

1598 [60] NIST. [n. d.]. Side-Channel Attack. [EB/OL]. https://csrc.nist.gov/glossary/term/side_channel_attack Accessed Oct 17, 2021.

1599 [61] NSA. 1982. NACSIM 5000: TEMPEST Fundamentals. *National Security Agency, Fort George G. Meade, Maryland* (1982). <http://cryptome.org/nacsim-5000.htm>

1600 [62] Sourav Panda, Yuanzhen Liu, Gerhard Petrus Hancke, and Umair Mujtaba Qureshi. 2020. Behavioral Acoustic Emanations: Attack and Verification
 1601 of PIN Entry Using Keypress Sounds. *Sensors* 20, 11 (2020), 3015.

1602 [63] Soundarya Ramesh, Harini Ramprasad, and Jun Han. 2020. Listen to your key: Towards acoustics-based physical key inference. In *Proceedings of the*
 1603 *21st International Workshop on Mobile Computing Systems and Applications*. 3–8.

1604 [64] Soundarya Ramesh, Rui Xiao, Anindya Maiti, Jong Taek Lee, Harini Ramprasad, Ananda Kumar, Murtuza Jadliwala, and Jun Han. 2021. Acoustics to
 1605 the Rescue: Physical Key Inference Attack Revisited. In *30th USENIX Security Symposium*. 3255–3272.

1606 [65] Vinayak Ranade, Jeremy Smith, and Ben Switala. 2009. Acoustic side channel attack on atm keypads.

1607 [66] Nirupam Roy and Romit Roy Choudhury. 2016. Listening through a vibration motor. In *Proceedings of the 14th Annual International Conference on*
 1608 *Mobile Systems, Applications, and Services*. 57–69.

1609 [67] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury. 2018. Inaudible voice commands: The long-range attack and defense. In
 1610 *15th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 18)*. 547–560.

1611 [68] John A Scales and Luis Tenorio. 2001. Prior information and uncertainty in inverse problems. *Geophysics* 66, 2 (2001), 389–397.

1612 [69] Adi Shamir and Eran Tromer. 2004. Acoustic cryptanalysis: On noisy people and noisy machines. *Eurocrypt2004 Rump Session, May* (2004).

1613 [70] Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson. 2019. Hearing your touch: A new acoustic side channel on smartphones. *arXiv preprint*
 1614 *arXiv:1903.11137* (2019).

1613 [71] Laurent Simon and Ross Anderson. 2013. PIN Skimmer: Inferring PINs Through the Camera and Microphone. In *Proceedings of the Third ACM*
 1614 *Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM'13)* (Berlin, Germany). ACM, New York, NY, USA, 67–78.

1615 [72] David Slater, Scott Novotney, Jessica Moore, Sean Morgan, and Scott Tenaglia. 2019. Robust keystroke transcription from the acoustic side-channel.
 1616 In *Proceedings of the 35th Annual Computer Security Applications Conference*. 776–787.

1617 [73] Chen Song, Feng Lin, Zhongjie Ba, Kui Ren, Chi Zhou, and Wenyao Xu. 2016. My smartphone knows what you print: Exploring smartphone-based
 1618 side-channel attacks against 3d printers. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security*. 895–907.

1619 [74] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin Fu. 2020. Light Commands: Laser-Based Audio Injection Attacks on
 1620 Voice-Controllable Systems. In *29th USENIX Security Symposium*. USENIX Association, 2631–2648.

1621 [75] Ehsan Toreini, Brian Randell, and Feng Hao. 2015. *An Acoustic Side Channel Attack on Enigma*. Computing Science Technical Report, Newcastle
 1622 University.

1623 [76] Yazhou Tu, Liqun Shan, Md Imran Hossen, Sara Rampazzi, Kevin Butler, and Xiali Hei. 2023. Auditory Eyesight: Demystifying { μ -Precision}
 1624 Keystroke Tracking Attacks on Unconstrained Keyboard Inputs. In *32nd USENIX Security Symposium (USENIX Security 23)*. 175–192.

1625 [77] Payton Walker and Nitesh Saxena. 2021. Sok: assessing the threat potential of vibration-based attacks against live speech using mobile sensors. In
 1626 *Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks*. 273–287.

1627 [78] Mark A Wetherell, Shing-Hon Lau, and Roy A Maxion. 2023. The effect of socially evaluated multitasking stress on typing rhythms. *Psychophysiology*
 1628 60, 8 (2023), e14293.

1629 [79] Hermann Weyl. 1911. Über die asymptotische Verteilung der Eigenwerte. *Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse* 1911 (1911), 110–117.

1630 [80] Peter Wright. 1987. *Spy Catcher: The Candid Autobiography of a Senior Intelligence Officer*. Viking Adult.

1631 [81] Jeff Yan and Aurélien Bourquard. 2017. POSTER: Who was Behind the Camera? - Towards Some New Forensics. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017*, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 2595–2597. <https://doi.org/10.1145/3133956.3138848>

1632 [82] Jeff Yan and Brian Randell. 2005. A systematic classification of cheating in online games. In *Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games*. 1–9.

1633 [83] Jong Chul Ye, Yoram Bresler, and Pierre Moulin. 2003. Cramer-Rao bounds for parametric shape estimation in inverse problems. *IEEE transactions on image processing* 12, 1 (2003), 71–84.

1634 [84] Jiadi Yu, Li Lu, Yingying Chen, Yanmin Zhu, and Linghe Kong. 2019. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. *IEEE Trans. on Mobile Computing* (2019).

1635 [85] Almos Zarandy, Ilia Shumailov, and Ross Anderson. 2020. Hey Alexa what did I just type? Decoding smartphone sounds with a voice assistant. *arXiv preprint arXiv:2012.00687* (2020).

1636 [86] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan Xu. 2017. *DolphinAttack: Inaudible Voice Commands*. Association for Computing Machinery, New York, NY, USA, 103–117. <https://doi.org/10.1145/3133956.3134052>

1637 [87] Man Zhou, Qian Wang, Jingxiao Yang, Qi Li, Peipei Jiang, Yanjiao Chen, and Zhibo Wang. 2019. Stealing your android patterns via acoustic signals. *IEEE Transactions on Mobile Computing* (2019).

1638 [88] Man Zhou, Qian Wang, Jingxiao Yang, Qi Li, Feng Xiao, Zhibo Wang, and Xiaofeng Chen. 2018. Patternlistener: Cracking android pattern lock using acoustic signals. In *Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security*. 1775–1787.

1639 [89] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang. 2014. Acoustic fingerprinting revisited: Generate stable device id stealthily with inaudible sound. In *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security*. 429–440.

1640 [90] Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free Attacks Using Keyboard Acoustic Emanations. In *Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, CCS'14 (Scottsdale, Arizona, USA)*. ACM, 453–464.

1641 [91] Li Zhuang, Feng Zhou, and JD Tygar. 2005. Keyboard acoustic emanations revisited. In *Proceedings of the 12th ACM conference on Computer and communications security*. 373–382.

1652 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009