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Acoustic side channels (ASCs) have been discovered for several decades, highlighting the tangible security risks posed by
unintended sound emissions from computing and electronic systems. Their existence has drawn considerable attention from
researchers, driving rapid progress in both attack methodologies and defense mechanisms across a wide range of scenarios.
In this paper, we provide a state-of-the-art analysis of ASCs, covering all the significant academic research in the area.
First, we clarify existing ambiguities and conceptual confusion, proposing a clear definition of ASC. Second, we analyse the
characteristics of known ASCs, discuss their security implications, and propose the first taxonomy. Next, we summarise attack
techniques, discuss countermeasures, and identify areas for future research. We also link side channels and inverse problems,
two fields that appear to be completely isolated from each other but have deep connections.
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1 Introduction

Security engineers have long known that information leaks where you least expect it. While much effort has
been expended on securing networks from DDoS and hosts from zero-days, a significant vulnerability is the
sound computing devices make while working. From the clatter of a keyboard to the whine of a CPU under load,
acoustic emissions betray secrets with shocking fidelity. Indeed all electronic and mechanical devices emit sound
during operation - sound which can be weaponized to steal private and sensitive data.

The idea is not new. In the 1950s [61, 80], TEMPEST standards addressed radio-frequency leaks from Cold War
cipher machines. By the 2000s, Adi Shamir and others showed that you could extract RSA keys by listening to a
laptop’s CPU noise [69]. More recently, researchers demonstrated that neural networks can decode keyboard taps
from Zoom meeting recordings with 95% accuracy. Even industrial control systems are not safe—the rhythmic
clunk of a robotic arm might reveal proprietary manufacturing processes, these are simply refined versions of
privacy-attacks on dot-matrix printers where acoustic emanations were leveraged to reconstruct the printed
text [13].
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Why does this matter? Because while we have spent decades hardening software, we have ignored the physics
of computation. Encryption does not stop your fan from speeding up during a cryptographic operation, or your
GPU from emitting a high-pitched whine while rendering sensitive data. Worse, the Internet of Things has
turned this into a surveillance goldmine. Your smart speaker is not just listening for "Hey Alexa"—it is capable of
capturing the sound of your PIN entry at the nearby ATM, while smartphones leak pins when presented with an
ultrasound field. These attacks are particularly insidious because they bypass traditional security defenses like
firewalls and encryption, as the leaked data originates from unintended physical behaviors rather than digital
exploits.

For example, advanced machine learning models can analyze keystroke sounds recorded via a smartphone
microphone to reconstruct typed passwords with alarming accuracy, while fluctuations in a'server’s cooling
fan noise have been shown to reveal cryptographic key operations [29]. The risks extend beyond computers:
industrial systems, ATMs, and even medical devices can inadvertently leak data through operational sounds.
With the proliferation of smart devices equipped with always-on microphones, the attack surface for acoustic
eavesdropping has expanded dramatically, enabling attackers to conduct surveillance passively and at scale.

Mitigation is a nightmare. You cannot just patch this with an update. Soundproofing is expensive, and masking
noise with white sound risks being impractical. Some systems resort to "acoustic jamming," but that is like fighting
fire with fire—and just as messy. The goal of our work is to systematize the work on sound-based unintentional
leakages (or Acoustic Side-Channels), including those cases where other physical elements like power, heat, and
even the vibrations in your server rack, are converted into acoustic signals. Until we design systems with these
leaks in mind, attackers will keep eavesdropping—not just on our networks, but on the very noises our machines
make.

Our paper represents the first (comprehensive) effort in systematising knowledge of ASCs discovered to date.
We aim to make the following contributions.

e First, we clarify conceptual ambiguity within side-channel literature. Key concepts lack clarity, hence
the literature as a whole is confusing and chaotic. While some ASCs are not recognised as ASCs, other
side-channel attacks that are not ASCs are termed as such. For example, does the Dolphinattack [86]-
which induces inaudible voice commands in ultrasound into an Acoustic Speech Recognition system-—
constitute an ASC or a signal injection attack? Is Lamphone [59]-using a hanging lamp as a noisy acoustic-
to-optical transducer — an acoustic or an optical side-channel attack? How do side channels differ from
covert channels? A number of authors have presented confusing and conflicting views. Therefore, we will
introduce intuitive definitions that are simple, clear-cut and easy to operationalise. We will also clarify
both the similarities and distinctions between side channels and covert channels.

e Second, we will establish a taxonomy to map, structure and qualitatively evaluate the ASCs discovered to
date. We will also propose a structured framework to analyse countermeasures proposed to address these
ASCs.

o Third, we will conduct a meta-analysis of the state of the art, identifying its strengths and weaknesses. In
doing so, we will also provide new insights and highlight research gaps as well as future research directions.

o Last but not the least, we link side channels and inverse problems, two fields that have developed in isolation
but have deep connections.

The rest of this article is organized as follows. In Section 2, we summarize the core weakness of existing studies,
i.e., the ambiguity, confusion, and possible root causes of ASCs and their definitions, and then we introduce a new
definition of ASC. By reviewing the family of ASC works, we propose a new taxonomy of ASCs in Section 3. We
classify them into nine different categories, analyze their characteristics, and summarize their differences. Section
4 introduces the key techniques of implementing ASC attacks, including the general attack process and details
of each stage. In Section 5, we introduce a taxonomy and comparative analysis of countermeasures. Section 6
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discusses the findings of our investigation, the challenges of existing research and the possibility of future work.
In Section 7, we present a new perspective linking ASC and inverse problem and analyze the potential of this
direction.

2 Clarifying side channel literature

The literature on side channels is substantial but suffers from disorganisation and ambiguity. We will discuss the
ambiguous use of terminology and the resulting confusion.

2.1 Ambiguity, Confusion and Possible Root Causes

Determining whether an attack qualifies as a side channel is not always straightforward and can sometimes
be tricky. Misconceptions have proliferated in the literature, leading to incorrect classifications. For instance, a
widely cited paper on voice assistant security [24] erroneously labeled the DolphinAttack [86] as a side-channel
attack, when in reality, it is a signal injection attack with no side-channel involvement. Similarly, the same paper
misclassified the Long-Range DolphinAttack [67] and the "Light Commands" attack [74] as side-channel attacks
in [24], though neither falls into this category.

Conversely, some attacks (e.g. [22, 87-89]) were indeed acoustic side-channel attacks (ACSs), yet their authors
did not explicitly identify them as such. Many more such examples exist, raising an important question: What
has caused this ambiguity, confusion, and even errors? After careful consideration, we identify three potential
root causes:

Root cause 1: no clear, concise, and complete definition that is both widely applicable and easy to
operationalise.

Many papers in the literature use the term "side channel” without explicitly defining it. While this practice
may have been acceptable in the early stages of the field when attacks were clearly either side channels or not,
and fewer variants existed—the lack of a widely accepted and broadly applicable definition has led to ambiguity
and confusion.

On the other hand, numerous definitions of side channels do exist, but they often conflict with one another
and are of limited practical use. Some are overly narrow, while others are not operational - meaning they cannot
be readily applied to determine whether a given attack qualifies as a side channel. Below, we examine several
definitions from the literature.

‘An attack enabled by leakage of information from a physical cryptosystem. Characteristics that could be exploited
in a side channel attack include timing, power consumption, and electromagnetic and acoustic emissions.’[60]. This
NIST definition was driven by side channel cryptanalysis, and it did not cover non-cryptanalytic side channels.
This definition is also difficult to apply in practice.

‘Physical side channel attacks extract information from computing systems by measuring unintended effects
of a system on its physical environment. They have been used to violate the security of numerous cryptographic
implementations, both on small embedded devices and, more recently, on complex devices such as laptops, PCs, and
smartphones. Physical emanations were used to recover information from peripheral input/output devices such as
screens.” Used in a recent paper from a premier conference [28], this definition is hard to operationalise and
focuses only on physical side channels.

‘This can often be accomplished by means of a side channel attack, whereby an unintended information source is
leveraged.’ Introduced in a recent Oakland SoK paper [55], this definition was neat but too brief, too abstracted
and of limited operational value.

... a side channel attack is any attack based on information gained from the implementation of a computer system,
rather than weaknesses in the implemented algorithm itself (e.g. cryptanalysis and software bugs).” From Wikipedia,
this definition is clearly driven by cryptanalysis and of a limited scope.
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Root cause 2: side channels and covert channels have subtle differences

First, side channels and covert channels are two concepts that are related and easy-to-confuse. For example,
CovertBand [57] examined the privacy implication of tracking human movements with acoustics. It created
a clever covert channel that leaked victims’ private information, e.g. whether someone was in a room or not,
or whether she was moving or standing still. However, this was not a side-channel attack, as the leakage was
intentional rather than unintentional.

Second, the definitions of side channels quoted earlier all fail to provide a perspective that clearly differentiates
side channels from covert channels. The second and third definitions emphasised the "unintended" aspect; however,
in both side channels and covert channels, the leakage may be unintended from the system’s perspective—that is,
not what the system was designed, planned, or meant to produce.

Third, as we will clarify later in Section 2.2, some new class of attacks (e.g. active side channels) make it much
harder than before—even for experts—to determine whether they are side or covert channels:

Root cause 3: The surge of acoustic attacks that resemble ASCs but are not has further complicated
the conceptual ambiguity and confusion in the field.

Acoustic security has expanded rapidly and substantially in recent years. Acoustic attacks such as the Dol-
phinattack [86], the long-range dolphin attack [67] and the ‘light commands’ attack [74], discussed earlier, are
but one case of attacks that share a similarity — the presence of an unintended communication channel between
sender and receiver pairs. However, Dolphinattack is signal injection whereas the lightcommands attack is a
transducer side-channel attack (audio to light). The presence of some sort of audio traces combined with an
unintended communication channel does not necessarily imply an acoustic side-channel.

Another set of acoustic attacks eavesdrop and recover human speech by picking up vibrations via motion
sensors, cameras, laser or lidar, e.g. [3, 34, 54, 55, 59, 66]. They represent another source of confusion. These
attacks involved side channels, though not necessarily acoustic ones. For example, a gyroscope’s readings are
sensitive to sound vibrations, and Stanford researchers Michalevsky et al. [54] exploited this to recover human
speech. This qualifies as a vibration-based side-channel attack, but not an acoustic one, for a subtle reason: the
follow-up investigation [77] suggested that Gyrophone picked up more vibration signals from the table surface
than directly from the air. The Lamphone attack [59] recovers human speech by measuring vibrations of a light
bulb caused by acoustic waves. However, it exploits an optical side channel, rather than an acoustic one, to
recover the sound.

2.2 Our Definitions

We first give an informal definition. A side channel is where information leaks accidentally via some medium or
mechanism that was not designed or intended for communication. Originated by Butler Lampson [47], the notion of
covert channels bears some similarity; namely, it is a mechanism that was not intended for information transfer
but which can nonetheless be abused to communicate information in a way which the security policy does not
allow. In contrast to a side channel, a covert channel is characterised by intentional rather than accidental leakage.

Here, we clarify an example that could otherwise cause confusion, namely, why SonarSnoop [17, 18] is a
side-channel attack rather than a covert channel. In SonarSnoop, speakers are used to emit human inaudible
acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smart phone into a
sonar system. The echo signal from a user’s finger movements can be inferred to steal Android phone unlock
patterns. In this attack, indeed acoustic signals were intentionally induced, but the researchers measured only
echos from finger movements, which did not deliberately leak information. Instead, the leak was accidental.
Therefore, SonarSnoop was a side channel attack.

Side channels can be either passive or active. A passive side channel exploits pre-existing leakages that arise
naturally from a system’s normal operation; the attacker merely observes these leakages without altering the
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system or its environment. In contrast, an active side channel is facilitated by the attacker, who manipulates the
system or environment (e.g., by introducing acoustic or light fields) to induce or amplify unintentional leakage.
For instance, SonarSnoop [17, 18], an active side channel, introduces an ultrasound field which is modulated by
the victim’s finger movements to leak smartphone authentication credentials. By contrast, all covert channels are
inherently active, since the leakage is deliberately introduced rather than incidental. While covert channels and
active side channels both involve an active component, they remain fundamentally distinct classes of attacks.

For simplicity, we outline as follows a possible way to formally define side channels and covert channels, but
omit the full formalism.

A side channel is defined over a system with confidential system inputs, where the system unintentionally
acts as a sender of confidential inputs via a not-by-design communication channel facilitated by the system. The
recipient is the attacker, who exploits the side channel to gain access to a noisy version of the inputs. In a side
channel there is no active agent that manipulates the system inputs.

A covert channel is similarly defined over a system with an embedded not-by-design communication channel.
In contrast to side channels, covert channels are defined between sender-receiver pairs where the sender is a
compromised system-insider that intentionally manipulates the system to leak information over a communica-
tion channel to the receiver (also the attacker). Covert channels and side channels are similar in their leverage of
a not-by-design communication medium, but distinct in their definition of sender-receiver pairs — the sender of a
covert-channel is an active insider whereas in a side-channel the system is the sender that unintentionally leaks
inputs. Informally, a not-by-design communication channel is a side-channel, if the system itself is unintentionally
the sender. If the system is transmitting intentionally, then it is a covert channel.

Often, a direct measurement of the output from a side channel does not immediately give the information
leaked via the channel. And the channel output is more like meta data, from which attackers deduce the leaked
information in a sensible way to complete their attacks. An exception is transient execution attacks such as
Meltdown [48] and Spectre [41], which are side channels that leak actual data, rather than meta data. In contrast,
traditional micro-architectural side channels leak only metadata, such as memory access patterns.

An acoustic side channel (ASC) is where information is accidentally leaked via acoustic signals. This is
our attempt for an intuitive definition that is easy to operationalise. We use this definition to determine whether
an acoustic attack should be covered in this paper.

3 Acoustic Side Channels: A Taxonomy

In this section, we propose the first taxonomy for ASCs, aiming to capture and highlight their most significant
characteristics. We will structure and qualitatively evaluate the ASCs discovered to date. As detailed in Section 6,
a quantitative and fair evaluation is not feasible—even if we were to reimplement each ASC from scratch, which
would require substantial effort and lies beyond the scope of this paper.

3.1 Rationale and Process

Constructing a cohesive taxonomy is not a trivial task; it must satisfy at least the following three requirements
simultaneously [82]: (1) each category should be clearly defined and mutually exclusive; (2) the union of all
categories should be complete, i.e., covering all known cases while allowing for future ones; and (3) the taxonomy
should employ a consistent naming system.

To classify ASCs, we consider (1) attack scenarios along with the attack’s characteristics; (2) the leaking source,
the information leaked, and the medium through which the leakage occurs; and (3) the properties of the acoustic
signals. We followed a three-step process to derive our taxonomy, as described below.

1. Grouping. We first group ASCs by the medium through which the leakage occurs. Most leakages occur via
air, while some occur via VolIP.
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2. Categorising. We include all VoIP-related ASCs in a single category. The remaining ASCs are then divided into
different categories based on their leakage sources. In many cases, the leakage sources are the devices themselves,
such as keyboards, touchscreens, sensors, and printers, with similar devices grouped together. However, another
interesting type of leakage source is not tied to a particular device, but arises from human-computer interaction.

3. Naming. Our first priority is to retain well-known names such as keyboard emanation, acoustic cryptanalysis,
device fingerprinting and physical-key leakage. Other categories are assigned names that accurately reflect their
inherent characteristics while clearly distinguishing them from other categories.

We classify all the known ASCs into nine categories, namely Keyboard Emanation, Acoustic Finger-tapping
Emissions, Acoustic Motion Detection, Acoustic Device Fingerprinting, ASC based on Device Hum, Physical-key
Leakage, Acoustic Cryptanalysis, DNA Synthesis, and VoIP Hitchhiking ASC. Table 1 shows our taxonomy.

Moreover, a high-level logical structure (as illustrated in Figure 1) is embedded in our taxonomy. With this
structure, Table 1 also clearly shows, for each ASC:

o The leakage, including the leaking source and the information leaked,;

e The ASC’s characteristics, such as its purpose (offensive, defensive or both), whether it is an active or
passive attack, whether it is intrusive, and the proximity between the attacker and the target;

e The acoustic signal properties, such as whether the signal is audible or ultrasonic, and its sampling frequency.

From the table, it is also clear how each ASC is similar to, and differs from, the others.

It is worth noting that the structure in Figure 1 also uses dashed lines to indicate potential new characteristic
combinations, for which no papers have yet been published. Such combinations may give rise to interesting novel
ASCs in the future.

Coverage. We considered all publications from the following tier-I and tier-II conferences within the network
and systems security area between dates 2000 and 2024. These are as follows: (tier-I) S&P (Oakland), CCS, USENIX
Security, NDSS, Crypto, Eurocrypt, (tier-II) ESORICS, RAID, ACSAC, DSN, IMC, ASIACCS, PETS, EuroS&P,
CSF (CSFW), SOUPS, Asiacrypt, TCC, CHES, and FC!. Our literature review also included an examination of
top-tier journals, including IEEE transactions on information forensics and security, IEEE Transactions on Mobile
Computing, International Journal of Information Security, ACM Transactions on Cyber-Physical Systems, ACM
Transactions on Measurement and Analysis of Computing Systems, ACM Transactions on Information and
System Security, and Sensors. We shortlisted all papers that contained one of the following keywords within the
body: {side-channel, acoustic, sound, information-leakage, and emissions}. We then manually post-processed
them to verify if they were describing an acoustic side-channel and discarded all papers discussing other types of
information leakage. Our post-processed list identified nearly fifty key papers as the main subjects of our study.

3.2 Keyboard Emanation

Asonov and Agrawal [4] was the first to observe that each physical key has a unique acoustic (sound) signature
as a fundamental property of keyboard design. Their main insight was that the physical plate beneath the keys
causes each key to produce a different sound (frequency) depending on its location on the plate thus these
keystroke sounds can be used to steal what is being entered. Zhuang et al. [91] combined per-key acoustic
fingerprints with a language model in an unsupervised learning setting (K-Means+Hidden Markov Model (HMM))
improving inference efficiency from 52% to 67%. Berger et al. [10] introduced a comprehensive language model
via a password dictionary.

An alternative to acoustic frequency spectrum is to leverage signal timing. Zhu et al. [90] observed that the
relative time-of-arrival of an acoustic signal is dependent on the distance between the sensor and the originating
keypress measured as the time-difference-of-arrival (TDoA) at attacker microphones placed 1m apart. Reported
inference accuracy is 72%. Tu et al. [76] examined both the physics and signal characteristics of keystroke sounds

IThe full title of the conferences and the complete list can be found here: https://people.engr.tamu.edu/guofei/sec_conf_stat.htm
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keyboard Leaki S . toxt
PED caKing nformation e —r
acoustic touch screen source leaked PIN
signals Sensors \—I—I location
lock/key fingerprint
""" ASC attack

Fig. 1. The logical structure of our ASC taxonomy: a high-level view. Dashed lines represent possible combinations, although
no such papers have been published yet.

at a fine granularity, and achieved a high precision of differentiating compactly spaced keys via acoustics from a
distance. Their experiments worked well with unconstrained text inputs. Also, it was remarkable that in the case
of covert typing, where a typist block the keys while typing, they could largely recover localisation information
from refracted keystroke sounds.

Combining both signal timing and acoustic features, Liu et al. [49], report a recovery rate of 94% of keystrokes.
Their main insight was that combining signal warfare (TDoA) techniques with the frequency spectrum (MFCC)
effectively replaced the benefits accorded by a language model, and simply running K-Means over the fingerprint
vector was enough to cluster them by the key. This is significant since security practices around password
construction may not permit content that is compatible with a language model.

Halevi et al. [33] evaluated the impact of typing styles in key recovery rates. They observed that while keys
have unique sound signatures, touch typing significantly reduces the signal-to-noise ratio reducing recovery
rates to 56% in the supervised case. They also found a significant decrease in key recovery rates when training
and testing writing styles differ. Martinasek et al. [51] and Slater et al. [72] utilized neural networks to complete
classification and Slater et al. found that deep learning approaches are well suited to the task of key recovery in
noisy environments.

Specialist keyboards such as Pin Entry Devices (PEDs) and ATM/PoS keypads are equally vulnerable to key
transcription attacks via sound side-channels and the attacks leverage the sound produced by a keypress on ATM
keypads [65] and Enigma keyboards [75]. Cardaioli et al. [16] found that using inter-key delays extracted from
signal arrival information works well too. This is an important improvement over Asonov’s sound-of-the-key
approach, since it only uses signal timing information via a single sensor (as opposed to the multi-sensor TDoA
approach of Zhu et al. [90]). Panda et al. [62] also recovered PIN keys from the keypress acoustic emanation, but
they used the interval between two keystrokes as the main feature. In addition to exploiting this ASC for offensive
purposes, the researchers in [62] also explored it for defensive purposes. Namely, the keystroke dynamics emitted
via acoustics could work as behavioural biometrics for each user, offering additional protection for their PINs in
theory.

In summary, keyboards, PEDs, and keypads, are all vulnerable to key transcription attacks owing to the unique
sound produced by each key as a fundamental property of keyboard design. Signal information is present in
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Table 1. Acoustic side channels: a taxonomy

Accidental Leakage ASC Characteristics Signal Properties
Categories Ref. Source Information Purpose Active Intrusive Proximity | Audible Sampling frequency
Asonov’04 [4] | Physical keyboard Typed text | offensive X X close, far | v 44.1KHz
Kevboard Zhuang’05 [91] | Physical keyboard Typed text | offensive X X close, far | v 44.1KHz
eyboar
emanation Berger 06 [10]
Zhu’14 [90]
Hlelav1 15 ESS]] Physical keyboard Typed text offensive X X close v 44.1KHz
Slater’19 [72
Tu’23 [76]
Liu’15[49] | Physical Keyboard Typed text | offensive X X close | v 48KHz, 192KHz
Martinasek’15[51] |  Physical keyboard Typed text | offensive X X close | v 48KHz
Ranade’09 [65] | PED Key taps | offensive X X close | v 44.1KHz
Cardaioli’20 [16] | PED Key taps | offensive X X close | v 48KHz
Key taps & offensive &
Panda’20(62] | PED U | & x x dose | v 48KHz
Toreini’15 [75] Eni keyboard Key te fFensi 1 v KH.
(Enigma nigma keyboar ey taps offensive X X close 44.1KHz
Acoustic Narain’14 [58] | Touch screen Typed text | offensive X v close | X 48KHz
finger-tapping
emissions (‘l”llrln\losnk}r?u[xﬁr]) ‘ Touch screen Typed text ‘ offensive X v close ‘ X 16KHz
Shumailov’19 [70] | Touch screen Typed text | offensive X v close | X 44.1KHz
Zarandy’20 [85] | Touch screen Typed text | offensive X v close | X 48KHz
. Cheng’18 [17] Human-Computer Gesture .
é[‘ig&f)‘r‘lc (SonarSnoop) Interaction password offensive v v close X 48KHz
detection (I(Iéhy‘/ﬂfst[gx?gr) ‘ Hux};ia(r;ggtrix:};uter Typed text ‘ offensive v v close ‘ X 20KHz
Zhou’18 [88]
Gatemiion | HugmnCompuer - Gte | oive 0 0 e | skt
(PanernLlsteneH—)
Acoustic Das’14 [22] ‘ Internal sensors Device ID ‘ offensive X v close, far ‘ v 8KH4‘4 %IZGQISZKH‘
device -
fingerprinting Zhou’14 [89] | Internal sensors Device ID | offensive X v close, far | X 44.1KHz
Kotropoulos'14 [44] | Internal sensors Phone module | offensive X X close | v 16KHz
}];aréﬁlesgll (glﬁs]] ‘ Dot-matrix printer Printed text ‘ offensive X X close ‘ v 96KHz
ASC
qused}cfn Hojjati’16 [35] ‘ 3D printer & CNC mill P‘i%%“:g)ry ‘ offensive X X close ‘ v 44.1KHz
evice Hum
Song’16 [73] ‘ 3D printer Pli%l]J{ii‘::i{gl’Y ‘ offensive X X close ‘ v 44.1KHz
%agﬁgﬁf 1186 [[2281]] ‘ 3D printer Pli%%rii;tify ‘ offensive X X close ‘ v 96KHz
Rokka’16 [19] (KCAD) | 3D printer Control signals | defensive X X close | v >40KHz
Bayens’17 [7] | 3D printer Fill pattern | defensive X X close | v 44.1KHz
Belikovetsky’19 [8] | 3D printer Audio fingerprint | defensive X X close | v 44.1KHz
Islam’18 [36] ‘ Cooling fan Elelf)t:écal ‘ offensive X X close ‘ v 8KHz
Physical-key Ran(‘;:ls)}liKZC(;’)“S ‘ 1211023?122; Physical key ‘ offensive X X close ‘ v 44.1KHz
eakage
Ramesh’21 [64] Mechanical . . R 44.1KHz
(Keynergy) lock and key Physical key offensive X X close v 192KHz,
cr}épclgl;;iltycsis ggxlﬁg 14; gg] ‘ Motherboard Crypto keys ‘ offensive X v close,far ‘ X 192KHz
. Faezi’'19 [25 DNA DNA .
DNA synthesis (Oligo- Sn[oog) ‘ synthesizers sequence ‘ offensive X X close ‘ v 48KHz
C?ST%%]E 'II‘Z’P[:)I] ‘ Keyboard Key taps ‘ offensive X remote ‘ v 44.1KHz
VoIP
hitc/l;gg(ing Anand’18 [2] | Keyboard Key taps | offensive X v close, remote | v/ 44.1KHz
Genkin’19 [28] LCD monitor Displa " close, far,
(Synesthesia) (power bank) confents offensive X remote X 40KFHz, 192KHz
Genkin’22 [27] Computation .
(LendMeYourEar) ‘ EM fields (via acoustics) dependent leakage offensive X X remote v 48KHz
Jeon’18 [37] | Electricity network Physical location | offensive X X remote | 1KHz
Nag(?;ggizolc)[Sé] ‘ Rooms ll’glcy;stiigzl ‘ offensive X X remote ‘ v 44.1KHz

The proximity between the attacker and the target. Close: the attacker is physically near the target (up to 3 meters). Far: typically 10 to 100 meters. Remote:
the attacker can only access the target remotely, usually through a network connection.
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acoustic frequency (only in multi-plate keyboards) and signal timing. With some care, this signal can be isolated
from ambient noise even in low SNR conditions. A number of fully passive and non-intrusive attacks have
leveraged this side channel via signal processing methods in conjunction with learning and natural language
processing (NLP) methods to achieve ASC transmission accuracy of 94%.

3.3 Acoustic Finger-tapping Emissions

This category of attacks targets touchscreen keyboards on smartphones and tablets, instead of physical keyboards.
When a user taps the screen, a fixed glass plate, with a finger, the tap generates a sound wave that propagates on
the screen surface and in the air. Although signal strength is weaker than keystrokes from physical keyboards, it
is well above the noise floor.

Early efforts were multi-modal—they combined acoustic information with other sources to isolate keypresses.
Narain et al. [58] proposed a passive attack to infer the text content created by taps on a touchscreen keyboard by
using a Trojan application to capture sensed data from stereoscopic microphones and gyroscope. Simon et al. [71]
developed PIN Skimmer which combines device microphones to detect touch events and device orientation
information from the video camera inputs, to estimate the position of the tapped number.

The first to propose a fully acoustic passive ASC attack was Shumailov et al. [70] on touchscreen keyboards.
They observed that acoustic waves passing through the glass bounce off the screen sides creating unique acoustic
patterns observable from the internal microphones. Authors record the audio through the built-in microphones
and demonstrate that simple TDoA allows the attacker to decipher PIN rows, while more complex machine
learning models can use acoustic information to recover the actual PIN code, as well as, the text typed in.

Building on findings of [70], Zarandy et al. [85] observed that voice assistants such as Amazon Alexa and
Google Home can be abused by an attacker to echolocate the sounds of a key tap on a different device. The
authors demonstrate that it is possible to perform the attack up to half a meter away from the voice assistant.

In summary, touchscreen taps emit identifiable acoustic patterns, enabling side-channel attacks. Early efforts
fused microphone/gyroscope data to achieve a side-channel with 55% transmission; TDOA methods over stereo-
microphone data (Shumailov et al. [70]) recover 61%; finally, voice-assistants can capture taps on another device
significantly enhancing the transmission distance of ASC from half a meter or so to the scale of the globe. These
demonstrate serious vulnerabilities in touch input systems requiring new defenses.

3.4 Acoustic Motion Detection

An active attacker can exploit system behaviour by introducing a new side-channel. SonarSnoop [17] is the first
active ASC attack of its kind, designed to infer confidential information from users’ finger motions. The attacker
deploys malware on a victim’s smartphone to generate ultra-sound chirps. By analysing echoes (chirp reflection),
the dynamic motion of the fingers can be reconstructed in a fine-grained resolution to support recovery of pattern
passwords. In this attack, the active component is the introduction of a stealthy sound-field outside human-
audible range. The attacker exploits the property that the victim unintentionally modulates the attacker signal
with confidential information. The unintentional transmission is a key characteristic of a side-channel. Zhou et
al. [87, 88] explored a similar approach to recover gesture passwords. Acoustic motion detection can also be used
to localise virtual keyboard inputs. In 2019, KeyListener [50] developed an active ASC attack that leveraged the
change in Doppler effects due to finger movement within an induced sound field, to isolate touchscreen taps. All
three works are active ASC as they require an active agent (malware or external device) to induce the sound field.

In summary, defending a system against passive ASC is hard. Defending it against active ASC is harder still,
as it is challenging for the defender to deal with an attacker who exploits physics to ensure that victims own
actions modulate a stealthy (inaudible) sound field.
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3.5 Acoustic Device Fingerprinting

Microphones and speakers can be fingerprinted by variations in sensing and actuation respectively, introduced
by variations in their physical properties. Das et al. [22] note that variations in the chemical compositions of
diaphragm material, aging-related changes in the mount point, the glue used, wear-and-tear in manufacturing
machines, humidity, and temperature levels during manufacturing all play a role in ensuring that no two
microphones or speakers come off the assembly line working identically. Given an audio sample, they were
able to trace 98% of the samples to the sensing device by using short-term power-spectrum features (MFCC)
features of recorded audio. Both Zhou et al. [89] and Kotropoulos et al. [44] independently discovered the same
phenomena and devised a speaker fingerprinting method based on high-frequency power spectrum. Kotropoulos
et al. also identified MFCC features through machine learning and deep learning methods, while Zhou et al. chose
to match the FFT features of different devices. Both approaches achieved success rates comparable to that of Das
et al. (97.6% and 99%, respectively).

In summary, manufacturing imperfections have been successfully exploited to attribute audio recordings to
specific devices.

3.6 ASC based on Device Hum

Printer hum: Often, electro-mechanical devices with moving physical parts are vulnerable to ASCs. Moving
mechanical parts create vibrations that leak into the surroundings either as sound or as acoustic vibrations
through the body of the device. In many cases, the movement of the mechanical components such as motors,
fans, base plates, pins, and drums, is a function of user input leading to information leakage through acoustic
channels. Briol [13] was the first to report an ASC in dot-matrix printers. Dot-matrix printers use multiple rows
of needles. When printing a character, a subset of needles strike the paper surface mounted on a backing plate, a
mechanical action that generates a sound wave. It turns out that printed characters generate a unique sound for
each character printed (just as keyboards). It is therefore natural to expect that the approach and techniques
developed for key transcription attacks-are applicable to printer inference attacks. Backes et al. [6] confirm
this—recording the sound from a microphone close enough to the printer, and passing it through a standard
pipeline of basic signal processing to extract the MFCC in the relevant frequency band (> 20KHz). The main
difference with keyboards, is the characters are printed at a higher rate than human keypresses. Due to this,
acoustics of keys get mixed up due to time-overlapping signals. Interestingly, the sound of printers is above 20KHz
band whereas keyboards emit sound at 2~4KHz band. This means key transcription and printer inference do not
interfere with each other, and can be executed simultaneously, if required. In comparison with key transcription
attacks, printer information leakage is relatively less developed. We know of no works that apply TDoA of printer
sound, learning-based inference, and signal-timing information (inter-character delay period). The application of
these ideas may improve the state-of-the-art in printer transcription attacks, especially the issue of separating
overlapped signals.

3D printer hum: Different from toner-based printers, 3D printers use a motorised filament extruder which
deposits layers of material via an extrusion arm, whose location is controlled by multiple stepper motors to
precisely control where filament is delivered on a base plate. The amount of current supplied to the various
motors depends on the (confidential) printer input. Fundamentally, motors emit sound waves as a direct result
of the current applied [15], arising first from magnetostriction: change in material dimensions in proportion to
passing current in fixed electromagnets in the motor; electrostriction: change in dimensions of the conducting coil
within the motor in proportion to current passing in rotor coil; and, third, in certain brushless and stepper motors,
the air gap between rotor (rotating part) and stator (fixed part), varies drastically with rotor rotation while the
radial forces causing rotation vary with current. In all three causes, the current applied (confidential printer input)
causes a proportional change in the size of an air column, resulting the production of sound waves with frequency
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components originating from motor hum, stator hum, and coil hum. Faruque et al. [26] exploited this sound to
propose the first attack against 3D printers. Using similar tools as keyboard side-channel attacks, namely the use
of signal frequency features and supervised learning, they could extract the 3D printer style files corresponding
to various objects with a recovery rate of 78% in FDM printers. This approach of exploiting motor acoustics to
infer inputs applies to all 3D printers based on motors including FDM and laser sintering. In [20], Chhetri et al.
utilized MODWT (Maximal Overlap Discrete Wavelet Transform) to capture a better fingerprint, increasing the
recovery rate from 78% to 86%. Song et al. [73] use a smartphone stereo microphone and magnetometer together
to better capture signal characteristics (Hojjati et al. [35] proposed the same for CNC milling machines). This
approach has only incremental benefits since all motor inputs are already converted into acoustic sound due to
magnetostriction, electrostriction, and radial forces on the rotor. Therefore combining acoustic with magnetic
side-channels results in no fundamental improvement over audio side-channels. A number of works leverage
acoustic side-channels to defend 3D printers. KCad [19] were the first to observe that integrity compromising
attacks—false inputs in STereoLithograhy (STL) files that encode the CAD model), the GCodes, or firmware
compromise—necessarily lead to acoustic emissions. Bayens et al. [7] leveraged acoustic and other spatial layers
emanations to verify the unseen internal fill structure present in 3D printed objects. Their defense can verify
40%~60% of fill-pattern modification attacks. Belikovetsky et al. 8] build on both the above approaches, to extend
the defense coverage to 100% of fill-modification attacks using a Principal Component Analysis (PCA) over the
spectrogram of recorded sound.

Fan hum: A simple power-acoustic transduction occurs when heat triggers system cooling. Islam et al. [36]
analyse fan noise to determine power consumption thus developing a timing power attack rooted in acoustic
signal analysis.

In summary, among ASCs that exploit device-generated hum, attacks targeting dot-matrix printers were the
first to be discovered, yet this area has seen limited further exploration. Backes et al’s work [6] demonstrated the
feasibility of such attacks, though their method achieved relatively modest success rates, ranging from 60.5%
to 71.8%. In contrast, ASCs based on 3D printers have been the most extensively studied within this category.
Four notable studies employed machine learning classifiers to identify acoustic features ([19, 20, 26, 73]), with
Song et al. [73] reporting the highest accuracy, nearly 95%. Other approaches include Bayen’s work [7], which
utilized an audio fingerprinting classifier (Dejavu) to achieve 98.52% accuracy, and Hojjati et al. [35] who applied
cross-correlation over STFT features and achieved perfect accuracy (100%). Attacks targeting fan noise are rare.
Using a simple threshold-based method, Islam et al. [36] only achieved 48% accuracy.

3.7 Physical-key Leakage

Pin tumbler locks are widely used to secure homes and office spaces around the world. Recent work has developed
methods to clone physical keys from the sounds emitted when a key is inserted. Ramesh et al. [63] proposed
SpiKey, which exploits the fact that each pin in the tumbler makes a unique sound when depressed (just like a
keyboard key). An attacker who can record the sound (perhaps via an IoT doorbell or smartphone with a trojaned
app), can record the low-frequency acoustic fingerprint of a lock, and compute the adjacent inter-ridge distances
which can be utilized to infer the relative differences of adjacent bitting depths via click timestamps. When
evaluating 330,424 keys, Spikey can provide less than 10 effective candidate keys for more than 94% of keys. In
follow up work [64], they combined the acoustic signal with visual information and compared the performance
with acoustic-only and video-only attacks, showing that combining video information into acoustic signals can
achieve better keyspace reduction (66% on average).
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3.8 Acoustic Cryptanalysis

In 2004, Shamir et al. [69] found that the sound signals generated by a computer as the CPU load changes
might be leveraged to identify different RSA keys since the spectral characteristics of the sounds varied through
operations modulo the different secret primes. But it was not implemented. In 2014, Genkin et al. [29] introduced a
passive acoustic cryptanalysis attack to extract full 4096-bit RSA keys using the sound generated by the computer
during the decryption of some ciphertexts. Using a phone or a sensitive microphone to record the sounds, the
processed signals were then computed through a designed modular exponentiation which was based on the
mathematical analysis of GnuPG (GNU Privacy Guard). In 2017, the same team [30] further expanded [29]. The
main improvement of the key extraction is the time decision computation when performing the additional
multiplication for every key bit. Compared to the previous version, this work built more detailed experiments
to analyze the relevant code of GnuPG and experimentally showed that this acoustic distinguishability of
cryptographic keys is also possible on other ciphers, such as AES and DES, and other versions of GnuPG. By
employing cross-correlation algorithms to analyze median frequency spectrums, both studies achieved 100%
accuracy in recovering cryptographic keys.

3.9 DNA Synthesis

Faezi et al. [25] proposed the first ASC attack on DNA synthesizer, Oligo-snoop, where compromising confiden-
tiality will leak valuable information on nucleotide sequences. Two sound sources were leveraged: 1) the unstable
noise radiation caused by vibration when the DNA synthesizer transports materials through the pipeline, 2) the
audible click produced by the DNA synthesizer when it opens and closes the flow of material. In the threat model,
the DNA synthesizer can be connected to computers, external drives, and Ethernet cables, and it is impossible to
tamper with the machine or access the output DNA sequence. The attacker must place at least one microphone
to the DNA synthesizer within close physical proximity, which is a passive but non-invasive ASC. To identify
the content of each nucleotide, Oligo-snoop combined multiple machine learning algorithms into an ensemble
classifier to classify the acoustic signals, recovering 86% of the target nucleotide sequences.

3.10  VolP Hitchhiking ASC

It is natural to explore whether side channels can span (hitch-hike over) Voice over Internet Protocol (VoIP)
sessions. Theoretically, this should be possible as human-voice frequency (20~20KHz) overlaps with keyboard
sound frequency range (2~4KHz). Compagno et al. [21] confirm this via real-world experiments over the Skype
network (Opus Codec) as long as the bandwidth is more than 20bps. The technical mechanism is largely based
on the same attack components as prior art (MFCC-based acoustic signature features mated with a supervised
learning inference mechanism). Anand et al. [2] confirm that keypads and ATM PEDs are equally vulnerable to
key transcription side-channel attacks over VoIP sessions as they are close-proximity attacks. This means that
scammers who get victims to hand over account information and then persuade them to walk over to an ATM to
‘check balance’ whilst on a call to the scammer, may steal their victim’s PIN as well as their account information.

In addition to leaking keystroke information, VoIP may even leak remote screen content. In this attack,
a display’s instantaneous power consumption, which varies with the screen content, causes power-circuit
components to vibrate due to electrostriction. This creates a power-acoustic transducer, converting variations in
power into audible sound. A microphone then captures these audio traces from the display’s power supply. Since
the attacker has access to the VoIP channel, they can remotely acquire these audio traces and reconstruct the
images shown on the screen. Synesthesia [28] developed a passive ASC attack that leverages this phenomenon.
It exploited power-acoustic transduction to extract images from the audio traces of the display power supply,
which a remote attacker can access via a VoIP channel. More recently, Genkin et al. [27] observed that the
built-in microphones of PCs can inadvertently capture computation-dependent leakage with electromagnetic
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(EM) fields within the computer even at a remote distance. It is possible because CPU computation leaks through
audio signals. They demonstrated the efficacy by exploiting the leakage to perform attacks in three different
scenarios—website identification, cryptographic key recovery, and multiplayer games cheating, via remote VoIP
communication.

When using VoIP to communicate, the created audio and data streams always include electrical network
frequency (ENF) signals and other acoustic-reflection signals except for audible sounds. These signals always
have specific characteristics and some important information, such as time and location. Therefore, it is possible
to use those signals as signatures for location inference. Jeon et al. [37] proposed an attack to identify the physical
location of where a target video or sound was recorded or streamed from. This work is considered a passive
ASC attack because all the targeted information is essentially leaked from the acoustic signals of multimedia
streaming data. Different from those that require installing a specific malicious application on a victim’s device,
this attack can be performed with existing VoIP applications or online streaming services, which means the only
data needed is a target multimedia file and it is non-intrusive. Nagaraja et al. [56] also proposed a passive attack
for a location inference on VoIP calls via ASCs, called VoIPLoc. Specifically, it exploited the acoustic-reflection
characteristics of the physical space of a VoIP user. Using the speaker voice as the impulse signal, it extracted
signals and then utilized a multi-layer classifier to map the fingerprint to a location.

In summary, existing works have confirmed that VoIP leaks some significant information through ASCs in
remote proximity. Early attacks ([21],[2],[37],[56] ) achieved the goals by employing machine-learning algorithms
to identify MFCCs extracted from the keytaps or achieve physical location fingerprinting with 60% ~ 88%
accuracies. In contrast, the latest work (Synethesia [28] and LendMeYourEar [27]) utilized convolutional neural
networks (CNNs) to recover targeted information, achieving higher accuracies ranging from 88% to 100%.

4 Attack Techniques

Here, we investigate technical details of all the ASC attacks. Typically, each attack performs a number of sequential
steps including acoustic signal collection, feature extraction, and target information recovery. We summarise the
general process of ASCs in Figure 2 and technical details of each attack in Table 2.
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Fig. 2. The overview of ASC techniques.

4.1 Acoustic signal collection

Acoustic signal collection is critical because the quality of collected data directly affects the chance of a successful
attack. Intuitively and as confirmed by Table 2, microphones are the most used for collecting acoustic signals. They
are placed in physical proximity near the victim. Using microphones has several advantages: non-intrusiveness,
anonymity, and capability for both local and remote attacks.
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Table 2. Summary of different ASC attack approaches

Feature extraction

Categories Ref ‘ Data collection are ractl Key techniques Accuracy
Keystrokes timings comparison,
Cardaioli’20 [16] ‘ Microphone Audio signals e]{:\cﬁ‘i’d:;n‘3};{‘5;;;’2&‘;;“?“ 44%~89%
First principle -based
1 (6] (G . . Inter-Ridge dist tati
Ramesh’20 [63] (SpiKey) ‘ Smartphone microphone Click timestamps Inr;;‘&;“%‘; S‘esqi‘l‘e‘;i :ig;g;u'“‘t;{’lgn 94%
Ranade’09 [65] | Laptop microphone FET, time features Triangulation (TDoA) 87.5%
Zhu'14 [90] | Smartphone microphone Acoustic signal TDoA calculation 72.2%
Liu'15 [49] | Smartphone dual-microphone Acoustic signal, MECC TDoA, K-means 94

Zhuang 05 [91]

PC microphone Cepstrum features

K-means+HMM,
n-gram language model,
Linear classification,

NN

90%~96% (characters),
75%~90% (words)

Lu’19 [50]
(KeyListener)

Smartphone speaker,

Acoustic signals,
‘microphone

phase changes, Doppler shifts

Binary tree-based search 49.1%~90.7%

Zhou’18 [88]
(PatternListener)

Microphone, motion sensors

Acoustic signals, C/O component

LEVD+TPI 94.8%~99.7%

Zhou'19 [87]
(PatternListener+)

Microphone, motion sensors

Acoustic signals, I/Q component

TAI+MMSE 95.1%~97.5%

Toreini'15 [75] (Enigma) |  Hand-held microphone MFCC DA, NB, three-layer NN 67.147,~84.31%
] . SVM, LR, 60%(PIN recovery),
ML based Panda’20 [62] ‘ Video mic recorder FFT Gaussian Naive Bayes 88%(user Verification)
ML-base
Cheng'18 [17] Smartphone speaker, Acoustic signals, DS
(SonarSnoop) ‘microphone echo profile matrix, [FFT Medium Gaussian SVM 29%
Compagno’17 [21] (Skype&Type) | Two laptop microphones MFCC kNN, LR 50.87%~83.23%
) - Simple LR, Multinomial LR,
Anand’18 [2] ‘ Microphone MFCC ‘ml} 4“& RE, 9‘&1(‘)"(1’_%‘13 66.88%~73.17%
Accelerometer, Gyroscope orientations, Meta-Algorithm+DT,
Narain'14 [58] ‘ gyroscope, microphones acoustic signals NE, k-NN S5
Simon’13 [71] (PIN Skimmer) |  Camera & micophone Homography Matrix SVM 30%~60%
Shumailov'19 [70] | Smartphone microphone Raw quefrency LDA 61%
Jeon'18 [37] | Online streaming services ENF, QIFFT k-NN+Euclidean distance 76%
Nagaraja'21 [56] (VoIPLoc) | Audio recordings CQT Xmeans algorithm + SVM 60%~88%
Das'14 [22] | Microphone MFCC k-NN, GMM 98%
Backes'10 [6] | Microphone FFT+MFCC HMMs+Viterbi algorithm 60.5%~71.8%
Smartphone’s magnetic 21 3
Song’16 [73] ‘ sensors and microphone FFT, MFCC SVM 90.33%~94.13%
) < DT i del .
Faruque'16 [26] ‘ Microphone FE, SE, MFCC, STFT BT Clacsifier 78.35%
DT ss del
Chhetri’18 [20] ‘ Microphone FE, SE, STFT, MODWT S Con. fhace 86%
Zero Crossing Rate,
Rokka'16 [19] (KCAD) ‘ Audio recorder P e L v GBR, LR 77.45%
Ra&;;l:l ezrlg )[34] ‘ Smartphone microphone WSE, DT Kemeans offensive
An ensemble of AdaBoost,
Faezi'19 [25] (Oligo-Snoop) o 200m H6 portable Acoustic signal SVM, RF, 85.07%
andy recorder t0o g8 and Voting-based ensemble
Asonov'04 [4] | PC microphone: FFT JavaNNS 79%
DL-based Martinasek'15 [51] | Laptop microphone Spectrogram Two-layer NN 72.3%~86.5%
Slater’19 [72] | Microphone Spectrogram CNN+RNN+CTC 84.59%~92.59%
Genkin’22 [27] Microphone’s o >
(LendMeYourEar) internal audio interface Spectrogram CNN 96%
Zarandy'20 [85] | External microphone FFT and MFCC LDA, CNN 40%
Kotropoulos'14 [44] | Mobile-phone microphone MFCC SVM, RBF-NN, MLP 97.6%
Genkin'19 [28] Britel & Kjaer . ;
(Synesthesia) 4190 microphone capsule Acoustic signals (HPF) LR, CNN 88%~100%
Bayens'17 [7] | Microphone FFT Audio classifier (dejavu) 98.52%
Berger'06 [10] | PC microphone Similarity matrix Cross-correlation 73%
o Time-fi cy classification, B
Others Helavi’15 [33] ‘ PC microphone Acoustic signal, FFT ol aon 64%, 40%
. Multi-round keystroke tracking,
Tu'23 [76] ‘ Microphone Wavelet A s otion & 90.8%~100%
Belikovetsky’19 [8] | Smartphone microphone FET Cosine similarity, PCA 77.45%
Hojjati'16 [35] | Smartphone microphone, STFT, magnetometer data Cross-correlation 100%
Islam'18 [36] | Studio microphone Acoustic signals (HPF+ NMF) Threshold-based strategy 48%
Genkin'14 [29] & 17 [30] | Microphone Median frequency spectrum Cross-correlation 100%
|

Zhou'14 [89]

Microphone FFT

Feature matching algorithm 99%

GMM: Gaussian Mixture Module; NN: Neural Networks; DA: Discriminative analysis; NB: Naive Bayes; IFFT:
Inverse Fast Fourier Transform; RF: Random Forest; LNN: Linear Nearest Neighbor; LDA: Linear Discriminant
Analysis; QIFFT: Quadratic interpolated fast Fourier transform; CQT: Constant-Q transform; DT: Decision
Trees; FE: Frame energy; SE: Spectral Entropy; GBR: Gradient Boosting Regressor; WSF: weighted spectral
flux; DFT: discrete Fourier transform; MODWT: Maximal Overlap Discrete Wavelet Transform; PCA: Principal
Component Analysis NMF: non-negative matrix factorization; MLP: Multi-layer Perceptron; HPF: high-pass

filter;
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Cameras and built-in motion sensors like gyroscopes and accelerometers are occasionally used for collecting
signals when the attack utilized both acoustic and non-acoustic signals. To do so, the attacker had to trick the
victim to install a malicious application, which would then require access permissions to the sensors. Since such
permission requests are common with modern applications, they do not always trigger suspicion. Beyond these
conventional methods, acoustic signals can also be captured through more sophisticated or unconventional
means. For example, laser microphones enable remote eavesdropping by detecting sound-induced vibrations
on surfaces (e.g., a windowpane) from a significant distance, offering a highly non-intrusive collection method
without direct interaction with the target’s immediate environment. Furthermore, research has highlighted the
potential of unconventional device components acting as de facto acoustic sensors in [46], where the mechanical
assembly of a hard disk drive was demonstrated to transduce ambient sound into measurable variations, which
could then be interpreted by an attacker with firmware-level access to reconstruct speech.

4.2 Feature extraction

The second step is to extract useful features from acoustic signals. The choices of features and suitable signal
processing techniques vary, depending on the nature of tasks and the type of information the attacker aims
to recover. Table 2 indicates that the majority of researchers tend to focus on analyzing sound signals in the
frequency domain.

Typically, the Fast Fourier Transform (FFT) is used to convert a time-domain signal into its frequency-domain
representation. Optimized computationally, FFT algorithms are efficient for real-time acoustic signal processing,
e.g. in [4, 62, 65, 89]. The process involves using the FFT to convert the keystroke audio signal from the time
domain to the frequency domain, a critical step for identifying the unique spectral characteristics of each key
press. This transformation allows for the extraction of specific features, such as frequency peaks, that a neural
network can then use to classify and distinguish between different keys. Short Time Fourier Transform (STFT)
is also often used to process the audio features, yielding spectrograms which are valuable for visual analysis
and as input to machine learning models, especially deep learning ones. This visual representation can make it
relatively easy to detect patterns, anomalies, and features from the raw signals, which might not be tractable in
the time domain. Moreover, researchers often choose MFCCs, which are derived from the raw signals with FFT, as
a common primary acoustic feature for classification tasks due to their perceptual relevance, e.g. in [2, 21, 22, 75].
In [22], the magnitudes of the coefficients vary across different handsets (e.g. coefficient 3 and 5), which makes
MFCC a suitable feature to fingerprint smartphones in this type of tasks. Other cepstral-domain features like
general cepstrum [91] or frequency [70] are also utilized.

Unlike the sound of a key (on a keyboard), the sound of a 3d printed object does not have a fixed frequency
fingerprint—motor, stator, and coil hum frequencies change based on current applied. For this reason, it is not
ideal to extract the frequency component using MFCC. Instead, Chhetri et al. [20] used a wavelet variant to
capture a better fingerprint than with MFCC. Wavelet transforms, including specialized forms like the Constant-Q
Transform (CQT) [56], are generally effective for analyzing non-stationary signals by capturing joint time-
frequency information.

To investigate the internal structure of keystroke signals, Tu et al. [76] decomposed the signals with wavelets,
which are advantageous for processing such short signals and can capture their transient components—these
components were essential for this work to make a difference.

In addition to these spectral and cepstral representations, various statistical and temporal features are extracted
for machine learning purposes. Some other research (e.g. [19, 20, 26]) used frame energy, Zero Crossing Rate,
energy entropy, and PCA. Features such as Weighted Spectral Flux (WSF) [64], and in multi-modal attacks,
data from other sensors like gyroscopes [58] or cameras [71], are also incorporated to enrich the feature set for
classifiers. Filtering was also used sometimes to enhance certain features of the acoustic signals or remove noise,
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e.g. in [16, 28, 36]. The timestamps of the peaks of the processed signal are easily determined after applying this
strategy.

4.3 Recovery strategies

The attackers typically applied the following four categories of strategies to recover information leaked from
an acoustic side channel, distinguished by their approach to inferring causality between the observed acoustic
phenomena and the target information: first principle-based, machine learning-based, deep learning-based, and
others.

1) First principle-based. This category typically relies on a clear and definitive causal inference link stemmed
from the first principles of physics. There are two main implementations: timing-based and geometry-based.
Timing-based attacks focus on the precise timing of acoustic emissions produced by the target device and are
mostly used in keystroke reconstruction. They record the acoustic emissions and exploit variations in the timing
of sound events to infer specific activities or patterns. The attacker then computes the distance between each
keystroke based on the timing information using the speed of sound. By correlating the distance between clicks
with known typing patterns, the attacker can make guesses with confidence from high to low about the typed
keystroke sequence [16, 63].

In geometry-based strategies, the attacker sets up a number of microphones in a known geometrical configura-
tion with precise positions. Often, a geometry-based attack also exploits time information. One of the most used
metrics, TDoA, leverages the differences in the arrival times of sound signals at multiple microphones to precisely
determine the location of the sound source. By measuring the differences in arrival times of sound signals at the
microphones, they calculate the TDoA values for each microphone pair, which can then be used to determine
the direction and distance of the sound source. Using the TDoA information and the known positions of the
microphones, attackers can triangulate the position of the sound source in three-dimensional space [49, 65, 90].

2) Machine learning-based. This category relies on some plausible causal inference. These methods are
prized for their ability to discern complex patterns from noisy acoustic data, even when a direct, first-principle
causal model is difficult to formulate. Crucially, the efficacy of these ML strategies is heavily dependent on
the input features derived from the raw acoustic signals, which encapsulate observable acoustic phenomena
(detailed in Section 4.2 and summarized for specific attacks in Table 2) that are presumed to have a causal or
correlational link to the target information. Attackers typically employ supervised learning paradigms. After
collecting acoustic signals and transforming them into meaningful feature representations, ML models are trained
on labeled data to learn the mapping from these features to targeted information.

For different ML algorithms, they are fed different features and learn different statistical relationships between
features and outcomes. For instance, Support Vector Machines (SVMs) are frequently chosen for their effectiveness
in high-dimensional feature spaces (e.g., MFCCs or spectrogram-derived data) (e.g., [17, 71, 73]). Simpler linear
models like Logistic Regression (LR) (e.g., [19, 62]) or probabilistic classifiers such as Naive Bayes learn more
direct statistical dependencies. Unsupervised methods like K-Means clustering (e.g., [64, 91]) can identify inherent
groupings in feature data, which might correspond to different underlying states or events. Instance-based
learners like k-Nearest Neighbors (k-NN) (e.g., [21, 22]) infer based on feature similarity. Ensemble methods
like Random Forests (e.g., [2]) and other Decision Tree (DT) based approaches (e.g., [20, 26, 58]) can model
more complex, non-linear relationships. Sequential models like Hidden Markov Models (HMMs) are suited for
inferring sequences of events based on observed acoustic sequences [6, 91]. While these models establish strong
correlations, the learned causal pathways are often implicit within the model structure and learned parameters
rather than being explicitly defined by physical laws.

Compared to first principle-based methods, ML-based approaches can automate and streamline the attacking
process, particularly when dealing with large datasets or subtle acoustic distinctions where direct modeling is
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challenging. Furthermore, they can be advantageous in real-time attack scenarios due to their potential for rapid
inference once trained.

3) Deep learning-based. In many contexts, deep neural networks often operate closer to end-to-end or
"black-box" inference models, where the causal chain from input to output can be highly complex and opaque.
They require no feature engineering, but instead automatically learn and evaluate a wide range of potential
features. They have demonstrated superior performance compared to traditional MLs, particularly in tasks
involving image and multimedia data. For the same reason, some ASC researchers applied convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) for their attacks [4, 27, 28, 44, 51, 72, 85]. In theory and
in practice, deep neural networks can potentially learn intricate hierarchical features and non-linear mappings
directly from the acoustic signals (often directly from raw or minimally processed data like spectrograms, as
discussed in Section 4.2) without explicit feature engineering based on prior causal assumptions. This allows
them to outperform traditional ML in some cases, and generalize better with large datasets, though it may come
at the cost of longer training times and reduced interpretability of the learned causal relationships.

4) Others. The ways which other researchers exploit extracted acoustic features differ from all the above.
For example, cross-correlation is widely used to compare the similarity of recorded sounds and template data,
e.g.in [10, 29, 30, 33, 76]. Helavi et al. [33] combined correlation and frequency calculation to choose the best
matching. Bayens et al. [7] used an audio classifier to process recorded emanations of 3D printers. Belikovetsky
et al. [8] compared the recorded audio signal with the original by calculating their cosine similarity to test 3D
printing integrity. Lu et al. [50] inferred victims’ continuous keystrokes in a context-aware manner via a binary
tree search.

5 Countermeasures

To analyze countermeasures against Acoustic Side Channels (ASCs) in a structured manner, we use a four-
dimensional framework comprising four different defense principles: Impediment, Interference, Masking and
Obfuscation. In essence, impediment blocks signal reception, interference degrades the signal by reducing its
clarity, masking hides the presence of the signal, and obfuscation hides the meaning of the signal.

More specifically, impediment involves physically, structurally, or logically obstructing an adversary’s ability
to observe an ASC, thereby preventing access to the acoustic signal altogether. Interference and masking, by
contrast, aim to reduce the signal-to-noise ratio, making an ASC harder to detect despite still being technically
accessible. Obfuscation, on the other hand, targets the information carried by acoustic signals and typically
employs randomization techniques to obfuscate the information. A common example is randomizing the keyboard
layout to disrupt or prevent the possible causal inference between keystroke sounds and their corresponding
keys.

Despite their similarities, interference and masking differ significantly in terms of mechanism, effect on the
signal, and nature. Interference distorts, degrades, or completely disrupts the ASC signal. It works by injecting
noise or some other source of distortion, thereby reducing signal integrity and corrupting the ASC. In other words,
interference causes signals to physically overlap and combine destructively. Unlike interference, the essence of
masking is perceptual. It works by introducing extraneous sound signals to hide the true acoustic-leakage signal
from an adversary. While the original ASC signal is left intact in this case, it becomes buried beneath the other
signals, making it effectively much harder to perceive and detect for an adversary. A classic example of masking
is to run water or play music to conceal a human conversation. We note that from a mathematical point of view,
there is little difference between interference and masking - both processes can be described by linear filtering.

We summarise these countermeasures in Table 3, and note whether each of them was evaluated empirically or
not.
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5.1 Impediment

Considering that getting access to target devices/systems or collecting useful acoustic signals is a necessary
precondition for ASC attacks, to stop attackers from acquiring such acoustics, i.e. Impediment, is naturally an
intuitive defense. An impediment aims to suppress the side-channel by reducing its signal-to-noise ratio. It is
often input agnostic, with the working principle being along the lines of adding generic noise or generic signal
dampening. Approaches include noise-dampening material or blocking the malicious application before access.

Asonov et al. [4] explore impediment defenses based on keyboard structure. They observed that keys located at
different positions on a single mechanical plate will produce unique acoustic fingerprints, like tapping a drum in
different places. They suggested developing silent keyboards with multiple sound-dampening plates and locating
keys in acoustically equivalent locations to mitigate the attack. Zhuang et al. [91] and Zarandy et al. [85] also
discussed these ideas and claimed that for mechanical keyboard emanations, the use of a silent keyboard is not
an effective countermeasure, as the signal is still above the noise floor, unless each key is mounted on a separate
plate. Zarandy et al. [85] also mentioned that using phone cases or screen protectors may provide some measure
of protection against acoustic side-channel snooping.

In the case of 3D printers and physical locks (both low-frequency ASC), noise reduction is a direct and
effective measure. Regarding countermeasures against ASC attacks on printers, Backes et al. [6] tested the
effectiveness of using acoustic shielding foam, placing the microphone at a larger distance, and placing the
printer in another room. They found that ensuring the absence of sound collections in the printer’s room is
sufficient to resist most eavesdropping. A similar countermeasure was also considered in DNA synthesizer
defense [25]—prevent unauthorized person from entering the room. Faruque et al. [26] and Song et al. [73] also
suggested that shielding the 3D printer with a sound-proofing material can be considered as a countermeasure.
Hojjati et al. [35] recommended improving shield motors, such as using composites to cover the stepper motors
in manufacturing equipment, can help protect it from broadcasting sensitive information to an adversary. In
the case of physical keys, Ramesh et al. [64] suggested modifying the lock design, such as making the key with
noise-reducing material and removing the vulnerable key.

Early approaches to implementing the impediment have been crude—both these works suggest notifying users
of the existence of side channels—in effect, asking the user to solve the sensor deadlock problem. To impede
PIN inference attacks, Simon et al. [71] suggested using activity detection components at the OS level. When an
activity is used to collect sensitive information from users, the component informs the OS and the OS will deny
access to shared resources from other applications. Narain et al. [58] suggested blocking sensors in a mutually
exclusive manner when a sensitive app runs. Cheng et al. [17] also proposed similar countermeasures to disable
the sound system or notify users of a present sound signal in the high frequency range during sensitive operations
to deal with gesture unlocking attacks which actively emit sound signals and use echoes to attack. Zhou et
al. [87, 88] discussed preventing the microphone from being used in the background and limiting the frequency
range of the speaker and microphone. However, all these works fail to discuss how to deal with deadlocks that
will naturally arise such as when app A has locked the accelerometer and waiting for the camera and app B does
the same in reverse order. Another defense proposed by [17] is to modify sensor design to limit the supported
frequency range, but this is challenging because deciding the threshold for cutoff is hard. A third approach as
Zhou et al. [87, 88], Yu et al. [84] and Shumailov et al. [70] proposed is to notify the user and let them deal with it
by disabling sound and/or sensors except touch screen during sensitive operations, this also seems inappropriate,
indicating that there is much further work to be done in impediment-based access control research. For attacks of
cryptographic key leaking and desktop display leaking, Genkin et al. [28, 30] propose acoustic shielding, however,
this does not sit well with the need for air circulation to cool the heat.
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Table 3. Acoustic side channels: Countermeasures

‘ Countermeasures ‘
‘ Principles ‘ Techniques ‘
Acoustic .
ASCs Im In Ma Ob | shielding/ Stricter Alert A‘.id Use masking Randomization Other techniques Evaluation
. access control noise signals
dampening
Asonov’04 [4] ‘ v v ‘ v Place the keys not in one plate ‘ N
Zarandy’20 [85] ‘ v v ‘ v v Use phone cases or screen protectors ‘ X
Backes’10 [6] ‘ v ‘ v v Longer distance ‘ v
Faruque’16 [26] ‘ v v ‘ v v Make the motor loads similar ‘ X
Hojjati’16 [35] ‘ v v ‘ v v v Enlarge machines’s enclosures; ‘ N
Ramesh’21 [64] v v v v X
(Keynergy)
Simon’13 [71]
(PIN Skimmer) ‘ v ‘ v v ‘ x
Narain’14 [58] ‘ v ‘ v Reduce sampling rate of the sensors ‘ X
Cheng’18 [17, 18] v v v v Dlsable‘ the sound systcm; X
SonarSnoop) modify sensor design
Zhou'18 [88]
(PatternListener) Limit the frequency range
Zhou’19 [87] v v v v of the speaker and mic o
(PatternListener+)
Shumailov’19 [70] ‘ v v v ‘ v Inject fake taps; introduce timing jitter ‘ X
Genkin'19 [28] v v v v v Make variations on software mitigations X
(Synesthesia)
Genkin’17 [30] ‘ v v v v ‘ v v M Placing the machine in a noisy environment ‘ X
Yu'19 [84]
(KeyListener) ‘ v 4 ‘ v J ‘ X
Faezi’'19 [25]
(Oligo-Snoop) ‘ v v ‘ v > v ‘ X
Zhuang'05 [91] | v v \ v v v | x
Anand’16 [1] | \ v v \ X
Compagno’17 [21] S ) SPS
(Skype & Type) ‘ v ‘ v Perform a short random transformation ‘ N
Anand’18 [2] ‘ v ‘ v ‘ v
Nagaraja’21 [56] N S -
(VoIPLoc) v v Use acoustic jitter and network jitter X
Song’16 [73] ‘ v v ‘ v v v Inject additional dummy tasks ‘ X

Im: Impediment, In: Interference, Ma: Masking, Ob: Obfuscation, W partially evaluated.

5.2 Interference

The working principle of interference defences is to drive the signal features the attack relies upon to well under
the noise floor. Notably different from impediment, interference defences directly target the side-channel by
generating noise that is signal-aware and precisely designed to cancel-out one or more signal components to
interfere with signal-inference that underpins the side-channel.

The ASC attack for keyboard input has reached a certain degree of accuracy—attackers are exploring different
advanced signal processing and classification algorithms to continuously improve the effectiveness of the attack,
therefore disrupting the feature construction and classification process is a basic way for defenders.

The same is true for defense against remote attacks via VoIP. Compagno et al. [21] proposed to perform a
short random transformation of the sound when a keystroke is detected. The intuitive method is to apply a
random multi-band equalizer on multiple small frequency bands of the frequency spectrum or mix the victim’s
microphone with a masking signal to prevent remote attacks. Anand et al. [2] also believed that a noisy defense
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mechanism is feasible by generating a masking signal with speakers at the victim’s end, and those strategies
were experimentally proved to be effective in protecting victims’ important information.

Nagaraja et al. [56] also discussed a countermeasure for ASC attack on VoIP calls, while their target is to
prevent location fingerprint leakage. Defenders may use acoustic jitter to damage the fingerprint information,
such as using a constant amplitude signal at a room’s characteristic frequencies (50~2KHz) can cause a decrease
in VoIPLoc’s performance. But it is hard to deploy because even small amounts of audible noise will negatively
impact the voice quality, which is the first issue to be considered in VoIP.

In fact, this defense strategy of interfering with the original audio is effective for other different attack scenarios.
Shumailov et al. [70] introduced timing jitter into the microphone data stream to prevent attackers from reliably
identifying tap locations when using virtual keyboards. Another feasible countermeasure is to inject false positives
into the data stream by randomly playing some distracting noises that are close to pressing when the virtual
keyboard is used [85]. Cheng et al. [17] suggested a possible countermeasure against active ASC attacks is to
block the propagation of inaudible sounds, such as generating inaudible noise to interfere, and when possible,
refuse to receive low-frequency or high-frequency sound signals.

The interference can still be applied to ASC attacks on 3D printers and physical key leaking. Song et al. [73]
also suggested introducing more interference like strong electromagnetic noises during printing. Ramesh et
al. [64] thought that injecting noise to corrupt key insertion sounds is also a hopeful direction to improve security.
When a key insertion event is detected, they can play inaudible sounds of frequency greater than 15KHz to
destroy the original signals. In the DNA synthesizer ASC scenario, Faezi et al. [25] also suggested introducing
additional noise by adding redundant physical components.

5.3 Masking

With the approach of masking, the original signal is left intact but becomes indistinguishable from irrelevant
overlapping signals aimed to mask the true acoustic leakage, making the side channel much harder to detect.
Masking examples could include emitting synthetic keyboard sounds, injecting fake taps, or increasing background
noises.

Zhuang et al. [91] pointed out that quieter keyboards (Impediment) are useless. They believe that the ASC
attack can be resisted by reducing the quality of the sound signal that the attacker may obtain, that is, adding
masking noise while typing. However, noise may also be separated, especially when faced with a microphone
array attack, which records and distinguishes multiple channels of sound based on the location of the sound
source. When an attacker is able to collect more data, this defense may also be ineffective. Anand et al. [1]
proposed a defense mechanism against keyboard attacks which had good performance in the face of geometric
measurement, feature classification, and other attack methods. The specific measure is to use background sounds
to coverup the audio leakage. Their another work [2] also proposed using masking signals to protect keyboard
emissions from ASC.

To prevent attackers from reliably identifying tap locations when using virtual keyboards, Shumailov et al. [70]
claimed that injecting decoy tap sounds into the microphone data stream. As the taps themselves are pretty
unnoticeable for humans, this should not disturb applications that run in the background. To protect 3D printing,
Hojjati et al. [35] obfuscated the ASC emissions from manufacturing equipment by playing audio recordings of
similar but flawed processes during production. Their experiments showed that such interference can make it
harder for the attacker to separate the target audio stream from the others and reconstruct the object’s exact
dimensions or process parameters. In the screen display attack, Genkin et al. [28] mentioned that acoustic
noise generators can be used to mask the signal, while it needs a cost in design, manufacturing, and ergonomic
disruption since the masking ought to have adequate energy and spectrum coverage. Placing the machine in a
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noisy environment has been discussed in Genkin et al’s work [30], but the noise is easily filtered by a high-pass
filter due to the low frequency (below 10kHz) of the generated noise.

5.4 Obfuscation

One significant factor that causes keyboard acoustic attacks is that the keyboard always has a unified key layout,
which makes an attacker easily infer the keys since the fixed location results in a distance pattern. Employing
some dynamic configurations or randomizing the keys’ location (soft keyboard) can obfuscate the information
carried by acoustic signals, thus hampering an adversary to infer the information correctly.

This countermeasure is useful and convenient to implement for the virtual keyboard on the touch screen, and
it will not seriously affect the user experience. Compared with the physical keyboard, the layout of the touch
screen virtual keyboard is easier to be customized, especially when inputting the PINs, the user’s input habits
can be temporarily ignored. For KeyListener [84], it needs prior knowledge of QWERTY keyboard layout to map
localized keystroke positions to accurate characters. Therefore, Yu et al. [84] proposed that generating a random
layout of the QWERTY keyboard is an effective way to resist touchscreen keystroke eavesdropping attacks. For
the on-screen gesture unlocking leakage, a similar defense is to randomize the layout of the pattern grid [87]. For
physical keyboards, it is hard and impractical to change their layout; however, Asonov et al. [4] suggested that
placing the keys not in one plate may be a solution to this problem.

In addition to changing the position of the keys, randomization also plays a role in the defense against other
attacks, such as cryptographic key leaking. Genkin et al. pointed out that their attack aimed at cryptanalysis can
be prevented by some algorithmic countermeasures, such as ciphertext normalization and randomization [30].

As for computer screen leaking, attacks can be defended against by changing the screen content. Genkin et
al. [28] proposed that a more promising approach is software mitigation. Specifically, these programs cover leaks
by changing the content on the screen, such as font filtering. By changing the font, all letters on the screen project
the same horizontal intensity, avoiding the loss of information within a single pixel line. They also proposed two
ways of shielding (impediment) and masking, but these countermeasures are more difficult to achieve.

In fact, the defense strategy of obfuscation is also to prevent an attacker from extracting reliable information
with distinct distinguishing characteristics. Nagaraja et al. [56] proposed a similar strategy, which is to use
network jitter to induce packet latencies encouraging standard codec implementations to drop packets containing
reverberant components, thus preventing the sender from extracting a credible room fingerprint. Moreover,
Obfuscation can also be used for 3D printer and DNA synthesizer attacks. Faruque et al. [26] suggested that creating
similar loads on each motor and incorporating random motor movements can obfuscate the acoustic emissions.
Song et al. [73] considered adopting dynamic printing configurations in the process of G-code generation and
injecting additional dummy tasks (e.g. use random trajectories). Faezi et al. [25] suggested that operators could
randomly select redundant steps of varying durations before delivery, or execute steps unrelated to the core
delivery process to obfuscate signals.

6 Findings and Discussions

We draw a number of interesting observations, which either reflect the strengths and weaknesses of the state of
the art, or shed light on promising future research directions.

Ever expanding attack surfaces. Early work largely concentrated on physical keyboard emanation, and
therefore targeted devices were PCs, laptops, payment devices and the like. The range of attack surfaces has been
significantly expanded to date, covering smartphones, LCD displays, motherboards, mechanical locks, specialised
equipment such as 3D printers and DNA synthesizers, and even computer-human interactions. Particularly,
smartphones and 3D printers have attracted considerable attention in recent years.
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Overall, keyboard emanations have been the most studied among the ASCs. The second most studied is
touchscreen leaking; followed by 3D printer leaking. Those less-studied categories are likely to offer more
opportunities for future research, except for dot-matrix printers — a possible explanation on why this category
was less developed is that these devices are not used any more. Where else to look for new ASCs? New devices
and equipment where noise and sound are emitted will deserve a look.

More nuanced nature of ASCs. Early ASCs were passive ones, but recently active ASCs emerged [17, 50, 88].
Active ASCs are intriguing, as they involve with both intentional and accidental elements. Although acoustic
signals were intentionally introduced by an attacker in active attacks, the signal-responses from the victim
unintentionally leak information.

Overall, most ASCs identified to date are passive ones, and only a few are active ones. Research into active
ASCs is an interesting direction for future research.

We would not be surprised if many real-world attacks in the future will exploit a combination of active and
passive ASCs, or exploit a combination of acoustic and other side channels, or simply amplify an ASC with
non-side-channel attacks or vice versa. Certainly, researchers with imagination and creativity will be able to
discover exciting new attacks along these directions, and only the sky is the limit.

Constructive applications of ASCs. Most research in this area employed ASCs for offensive purposes only,
and several exceptions such as [7, 8, 19, 62] looked into constructive or defensive applications of ASCs. Panda
et al [62] investigated both offensive and defensive aspects of ASCs, where they attempted PIN guessing via
keyboard emanation, as well as user verification via keystroke dynamics, which is a known behavioural biometric.
The basic idea of using ASCs to build security defenses is that acoustic signals emitted by devices can also be
considered a fingerprint of the system or the program and used to protect the identification systems. It can be
used alone or in combination with other protection mechanisms. This can be an exciting and promising direction
for future research.

Imbalance in attack and defence research. The literature has put significant effort into discovering new
ASCs and their exploitation, rather than investigating countermeasures to them. In fact, we could only name a
small portion that covered and discussed countermeasures. For this very reason, Table 3 is significantly shorter
than Table 1. Defending against ASC is fundamentally hard. Sound from air columns in vibrating devices acting as
carriers is challenging to stop because air easily forms resonant standing waves that amplify system noise, and its
low damping allows sound to persist. Fundamental to their persistence is that devices efficiently transfer energy
into the air as a function of user or machine input, while rigid boundaries reflect the waves, reinforcing the sound.
Solutions such as damping materials or active noise control can help, but they often demand substantial redesign
of a vast landscape of system electronics and involve trade-offs in form, cost or performance, making complete
silencing difficult to achieve without addressing the root cause: resonance and energy coupling.

Inadequate evaluations of countermeasures. What is worse, among those investigating countermeasures,
only a small portion attempted empirical evaluations. Most countermeasures proposed remain theoretical.
Practical implementations and empirical evaluations are often limited, if any.

Clearly, countermeasure investigations, in particular their empirical evaluations, have been under-appreciated
and inadequate. Countermeasures lag behind attacks, and this may well suggest that the former may be much
harder to deliver than the latter. However, all these no doubt warrant fertile grounds for future research.

Systems Verification as an opportunity. The persistence of ASCs can also be harnessed for verification
purposes, exploiting acoustic artifacts that are specific to a process or user input. This enables designers to develop
systematic defenses. For example, keyboard ASCs could authenticate physical keyboards or verify compliance
with policies requiring that a digital wallet be unlocked via a password typed on a local keyboard — rather
than one injected by malware into the wallet-authentication protocol. Other possibilities include verifying print
processes by their unique acoustic signatures or confirming human-computer interactions through acoustic
motion detection. In this way, ASCs can authenticate devices or processes via their acoustic fingerprints, turning
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their persistence into an advantage. This approach opens the door to a suite of functional verification tools for
transactional authorisation and system integrity.

Research methodology. Experimentation is an intrinsic element of ASC research. However, experimental
details are often under-reported in the literature. Thus, reproducibility can be a significant challenge.

Moreover, many studies were mostly controlled experiments, conducted in strict laboratory settings or similar
environments. There was inadequate effort in considering or pursuing whether the results could be generalized
to other settings, in particular to the naturalistic real-world setting. Still much effort is required to demonstrate
the ecological validity of these ASC studies.

In terms of rigor and validity, ASC experiments in general remain far behind those in the field of keystroke
dynamics. In a series of well-written papers [39, 52, 53, 78], Maxion’s team at Carnegie Mellon meticulously exam-
ined keystroke dynamics, achieving a high standard for repeatable, reproducible, well-grounded and generalizable
experiments in security research. There is much for ASC researchers to learn from them.

Specifically, (a) developing a standardised measurement framework for measuring side-channel quality, (b)
creating reusable, high-quality standardised datasets for ASC benchmarking, and (c) establishing standardized
experimental setups and procedures (e.g. as shared operational protocols for experiments) would significantly
enhance open, replicable and comparable research. They would enable direct comparisons of attack and counter-
measure studies conducted by different teams, improving the rigor, validity and scientific foundation of ASC
research and advancing the state of the art in an efficient, cost-effective way.

Lack of human, social and economic perspectives. Only a few papers (e.g. [1, 70]) considered usability
and human factors, although some ASC countermeasures may potentially impact many users. On the other hand,
monetary and computational costs incurred by potential countermeasures are rarely considered.

Side channels could be hugely serious, with a far-reaching social and economic impact at a large scale, e.g.
multi-billion dollar consequences. For example, following the discovery of differential power analysis [42], smart
cards had to be redesigned for banking and other stakeholders all over the world. The microarchitectural (cache)
side-channels like Meltdown [48] and Spectre [41] suggested a major revisit of CPU designs, too. ASCs do not
appear to be as serious.

However, how serious can and will ASCs be in the future? Some security economic analysis can be relevant
and interesting. To have an answer, it is critical to understand the severity, practicality, and impact of the various
acoustic side channels in the real world. Which acoustic side channels pose a real threat? Or, most of them will
remain of academic interest only? There are many interesting open problems.

Data analysis and machine learning. The power of data analysis is critical for ASCs, as it hinges on the
capability of extracting signals from often noisy data. There is a clear trend that ASC research evolved from
simpler (or traditional) ML methods (e.g. k-NN, SVM) to more sophisticated deep learning (DL) methods like
CNNs and RNNs. As ML advances, it helps advance side-channel research.

Traditional ML is the most used among all the recovery strategies adopted by ASC attacks. It appears in almost
every attack scenario (except cryptanalysis) in Table 2, including keyboard emanation, finger-tapping emissions,
motion detection, and printer emanation. It has been used in ASC attacks since 2005, and still used nowadays.
Two technical reasons may explain its popularity: 1) for most classification tasks in ASCs (except for e.g. [76]),
the number of classes that need to be classified is relatively small, e.g. merely classifying a limited number of
characters. ML is effective in tackling such tasks. 2) ML algorithms require only a small set of training samples,
which is handy for attacks.

Language models, when relevant, can help with attacks. For example, Zhuang et al. [91] used HMM and an
n-gram language model to help correct spelling and fix grammar errors; Backes et al. [6] used HMM to increase
recognition rate of English text.

It is interesting to note that, among all the ML-based attacks, only Zhuang et al [91] employed unsupervised
learning, which used unlabeled samples to train the classifier. The language model explained their secret. With
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sufficient unlabeled training samples, they expected to establish a most-likely mapping between the acoustic
classes and actual typed characters using the language constraints. They used K-Means to cluster the keystrokes
and then utilized the language model to correct the preliminary results.

As summarised in Table 2, DL has been used far less than ML methods (7 vs. 19) in ASCs. Also, the number
of ASC scenarios where DL was applied is less than that of ML. These discrepancies could be partly explained
by the fact that DL did not gain traction in security until the recent decade. We discuss pros, cons and possible
future directions of applying DL in ASC research as follows.

First, the combination of DL (which often has a good capability for classification tasks) and some complex
representation of signal data (which is information rich) can be powerful. For example, a spectrogram often
captures a high-dimension of telltale features. When spectrogram images are fed into a CNN classifier, DL can
achieve high recognition results for classifying acoustic signals without explicit feature engineering. However, it
may be difficult for traditional ML methods to process spectrogram information this way. We expect this type of
combination or the like will report superior results in future ASC research.

Second, acoustic signals often exhibit temporal patterns, and RNNs are well suited to model and process such
sequential signals effectively. The combination of CNNs and RNNs has merit in ASC research, too.

Third, DL often requires a large set of labeled data for training, which may not always be possible. Generative
Al has been used effectively to create various synthetic acoustic data, e.g. WaveGAN [23] and HifiGAN [43].
Similarly, one day it may be used in future ASC research, e.g. for generating training samples. We have not seen
such an approach in the ASC literature yet.

It is unnecessary that the more sophisticated the learning methods, the better. DL may not always outperform
simpler ML algorithms. The nature of signals and the features of datasets.collected all play an important role in
choosing appropriate analysis methods. For example, to classify digits and letters via acoustics, Zarandy et al.
[85] achieved 40% success by using Linear Discriminant Analysis (LDA) on MFCC features, but only 30% success
when using CNN on Fourier features. As another example, Gohr [31] reported at CRYPTO’19 some impressive
cryptanalysis results achieved by DL. However, Benamira et al [9] showed at Eurocypt’21 that, after stripping
down Gohr’s deep neural network to a bare minimum, they achieved a similar accuracy using simple standard
ML tools.

In cases where DL outperforms simple ML methods, its black-box nature can cause interpretability issues. It
may be unclear why the DL method has worked. What are its weaknesses? And, how to improve it? For example,
Gohr [31] fared poorly in their DL approach’s explainability, whereas Benamira et al. [9] achieved a complete
interpretability of both their method and decision process.

Finally, as a solid study and an inspiring tale, Tu et al [76] did not use DL, but achieved an impressively high
precision in keystroke recognition in various challenging settings. Their secret lies in 1) exploring the physics
and signal characteristics of keyboard sounds more deeply than everybody else, and 2) innovations of signal
processing.

7 Side Channels and Inverse Problems

In unclassified worlds, side channels are a young field, with a history of less than forty years. Inverse problems
have been studied for more than a century. However, side channels and inverse problems appear to be two fields
that are completely isolated from each other 2.

A problem is inverse because it starts with the observable effects to calculate or infer the causes, such as
determining causal factors and unknown parameters from a set of measurements of a system of interest. It is the
inverse of a forward—or direct—(physical) problem, which starts with the causes and then deduces or calculates
the effects, such as modelling a system from known parameters.

2Some of the analyses in this section were initially developed for [12].
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The field of inverse problems has deep and historical roots in mathematics, pioneered by giants like Hermann
Weyl and Jacques Hadamard [32, 40, 79]. The main source of inverse problems is science and engineering. These
problems have pushed not only the development of mathematical theories and tools, but also scientific and
technological innovations in a wide range of disciplines, including astronomy, geophysics, biology, medical
imaging, optics, and computer vision, among others. Classical achievements of inverse problems include computed
tomography (CT) and magnetic resonance imaging (MRI), where the inverse Radon transform is foundational.

7.1 Side Channels versus Inverse Problems

In a side channel, information leaks accidentally via some medium or mechanism that was not designed or
intended for communication. Often, a direct measurement of the output from a side channel does not immediately
give away the information leaked. Instead, the direct output measurement is akin to metadata, from which
attackers deduce the leaked information.

Therefore, every side channel implies or involves an inverse problem, but not vice versa.

In some instances, a side channel may involve a relatively straightforward inverse problem. For example, Kuhn
demonstrated a classical optical side-channel, where the information displayed on a computer monitor could
be reconstructed remotely by decoding the light scattered from the face or shirt of a user sitting in front of
the computer [45]. A sophisticated attack was required to successfully exploit this side channel. However, its
key insight was the fact that the whole screen information was available as a time-resolved signal, rather than
solving a complex inverse problem. On the other hand, not all inverse problems involved in side channels are
straightforward to solve. For example, active acoustic side channels such as SonarSnoop [17], KeyListener [50],
and PatternListener [88] all involved a rather complex inverse problem.

7.2 Potential Impact on Side Channels

How do the fields of inverse problems and side channels inform each other? We believe that the problem-
formalisation strategies, theoretical models, mathematical techniques, algorithms, and concepts developed in
inverse problems have significant potential to benefit and inspire future research of side channels (including
acoustic ones).

The field of inverse problems can significantly influence key aspects of side channels. Decades of
research in inverse problems provide formalism, models, and techniques that could enable side-channel attacks and
countermeasures to be characterized more rigorously. Framing side channels as inverse problems would support
consistent evaluations and comparisons, as well as the systematic identification of new types of side channels and
countermeasures. Furthermore, side-channel countermeasures could be better optimized, benchmarking them
against fundamental theoretical limits of adversarial reconstruction—or against reconstruction algorithms—that
are associated with the corresponding inverse problems. This could lead to provable bounds on side-channel
resilience, and guide the design of more secure systems with lower attack-success likelihood, alongside their
rigorous verification. Finally, cross-pollination between the two fields may reshape current thinking, inspiring
novel concepts and methods that have not yet emerged in isolation.

In what follows, we describe in greater technical detail how specific aspects of the field of inverse problems
can benefit side-channel research.

First, it helps to properly navigate between the languages used in both fields. This will, for instance,
help to identify similarities and differences, to clarify misconceptions, and to unify terminologies. For example,
information, which is the set of relevant parameters approximated by the solution to the inverse problem,
conceptually differs from measurements, which are the physically leaked raw-data input of the inverse problem
and which can contain various amounts of useful information.

ACM Comput. Surv.



26 + P.Wangetal

In a unified language that is understandable to both communities, blocking a side-channel attack essentially
amounts to making the corresponding inverse problem unsolvable, intractable, harder to model, or at least
harder to compute efficiently. Accordingly, there are the following three scenarios where one could: (a) prove
that the inverse problem becomes impossible to solve by getting rid of the information that is present in the
measurements, in such a way that the analysed measurements contain nothing relevant; (b) make the inverse
problem much harder to model mathematically or solve computationally; (c) get rid of the leakage (e.g. physically)
so that there are no measurements to exploit whatsoever, regardless of whether the said measurements would
have contained meaningful information or not. Adding random perturbations such as noise is an example of a
classical mechanism that makes an inverse problem unsolvable or harder to model.

In accordance with the sequential steps described in Section 4, features in ‘feature extraction*are conceptually
distinct from measurements stated above. Specifically, while measurements are the raw data obtained from
signal collection, features are what is extracted from the measurements as an intermediate step towards target
information recovery. In some scenarios, measurements are directly used as features as is. For instance, in the
acoustic side channels of [16, 90], time information is central to the problem and the information leaked from the
side channel is thus recovered from the native time-domain signals. In other scenarios, measurements in the
native domain are not deemed adequate for information recovery (or parameter estimates as in inverse problem
literature), and features are thus derived from the measurements in some transformed domain. For instance, in
the acoustic side channel of [8], audio fingerprinting cannot be done with time signals, and instead is done with
acoustic features consisting in frequency-domain coefficients of the transformed time signal, with subsequent
dimensionality reduction through PCA. In the inverse-problem literature, the recovery problem often follows a
general mathematical formulation, as opposed to a step-wise approach: the solution is directly expressed as a
function of the measurements themselves, and any intermediate step of signal transformation or dimensionality
reduction may remain hidden in the recovery method itself, unlike in the literature of side channels where those
intermediate steps are prominently visible. Furthermore, while transforms such as FFT and the corresponding
transformed-domain representations are internally exploited as a way to optimize performance, which is crucial
for some operations such as signal filtering, inverse-problem modelling remain flexible enough to conveniently
allow for the switching from one domain to the other. Such increased flexibility might inspire and inform future
side-channel research to construct its own general mathematical formulation and treatment.

Second, the perspective of inverse problems offers a new lens for examining side channels. As first
elaborated by Jacques Hadamard, a fundamental challenge in inverse problems is they are typically ill posed in
terms of the solution’s existence, uniqueness, and stability, whereas their corresponding forward problems may be
well posed in all these regards [40]. The stability property means that a solution depends continuously on the
available measurements (i.e. the observed data). Accordingly, a problem lacks stability if adding or removing data
leads to a radically different solution. If a problem lacks stability, the computed solution will inevitably deviate
from the true solution.

Some studies of side channels (e.g. [17, 18]) may amount to only proving the existence of a solution for the
corresponding inverse problem, rather than investigating the two related properties, namely, uniqueness and
stability. Therefore, looking into these other properties, as studied from the perspective of inverse problems, will
likely give security researchers a new lens for examining side channels, as well as their countermeasures.

For example, examining the stability property alone warrants interesting research to answer the following
questions. How will the side channel be impacted if less, or more, measurement data are collected for experiments?
How much measurement data is necessary for the side channel to be stable, in such a way that the retrieved
information depends continuously on the data, as opposed to varying abruptly across nearly similar datasets?
Could specific countermeasures, such as adding some type of physical disturbance or interference, influence
the observed output from the side channel in such a way that stability decreases? Answers to these questions
could allow better optimising side-channel countermeasures, accurately simulating their expected effect before
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implementing them (e.g. in the case of optical side channels as demonstrated in [12, 81]), quantifying their
efficiency, and providing a robust framework to compare them in a systematic and rigorous manner.

This new perspective also suggests a novel strategy for systems design—one in which the impact of specific
countermeasures on side channels is systematically evaluated, and in which the system of interest is refined to
mitigate the impact of these side channels, all while preserving the system’s intended functionality. Practically,
this could be done iteratively through simulations to ensure cost effectiveness and avoid building or implementing
the system multiple times. This strategy can be seen as an adversarial counterpart to the so-called co-design
strategy, which also fundamentally relies on the inverse-problem formalism. In co-design, system hardware
and computational algorithms are jointly optimized to maximize the recoverable information, as exemplified
by the field of computational imaging [11]. In contrast, the proposed adversarial approach seeks to optimize
the system along with any potential adversarial attack to minimize the information that can be inferred from
the side channels. Specifically, we want to optimize the system in a way so that no reconstruction algorithm
can exploit any related side channels. This could potentially inform an entirely new approach to secure system
design, mitigating side channels by design.

Third, some theoretical results on inverse problems are relevant to side channels. One such result is
reconstruction guarantees for several types of problem structures, such as lower bounds on reconstruction errors
(Cramér-Rao bounds [83]). These reconstruction guarantees are often only tied to the forward model mapping the
relationship between the information of interest and measurements, in the sense that they do not depend on any
specific algorithm or solution used. Another useful result is the extent to which the recovery is affected by noise
or other non-idealities [5, 14]—which amount to mitigating side-channel attacks in security and cryptanalysis.
Such results could inform one on how to best characterise various side channels—including acoustic, EM, and
optical ones—and how to best design and evaluate their countermeasures. In particular, the interference and
obfuscation countermeasures elaborated in Section 5 can substantially benefit from the perspective of inverse-
problem research due to their operational nature, even though impediment and some elements of obfuscation
countermeasures may be out of scope for inverse problems.

Essentially, the inverse-problem framework provides us with robust tools to verify a system’s design and its
side-channel vulnerability. This allows for both verification of an existing design and its optimization through
iterative refinement.

To solve challenging inverse problems, mathematics has been applied to accurately describe the forward model
as well as assumptions on the solution, if any. For instance, sound statistical modelling allows reducing the
dimensionality of the parameter spaces and producing accurate solutions [38, 68], and specific algorithms also
allow maximizing computational efficiency. These may prove inspiring for side channel research, too.

Finally, it will be intriguing to explore possible connections between the optimality® of a side channel in a given
scenario and the uniqueness and stability of the solution to the corresponding inverse problem. In some cases,
it appears that the latter indeed implies an optimal side channel. However, in many other scenarios, whether
such a connection holds or not has no straightforward answers. Instead, these will be interesting areas for future
research.

8 Conclusions

We have seen steady progress in ASC research in the past twenty years. Some creative or even surprising results
have emerged, such as acoustic cryptanalysis [29], keyboard emanation [4] and Synesthesia [28], to name a few.

We have laid down some foundations to clear conceptual ambiguity, and put together a framework to structure
our collective understanding of existing ASCs and their countermeasures. We have also identified gaps in the
research, which point to promising future directions.

3By optimality, we mean that the maximum amount of information that can in theory be leaked from a side channel is fully extracted.
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We hope this paper sounds the marching bugle, attracting ambitious and creative researchers to further grow
the field of ASCs, where imagination can make a difference.

Finally, we have made an attempt to bridge side channels and inverse problems. Although we used mostly
acoustic examples, our discussions are generally applicable to all side-channel attacks, not only to acoustic ones.
In general, every side channel implies (or involves) an inverse problem, but not vice versa. Although it may be a
small step forward at this stage, it is perhaps the start of an aspiration that will grow in the future. We believe that
this bridge has the potential to foster cross-field collaboration and inspire several new research directions, for
example, building a more rigorous and effective scientific foundation for side channel research, and encouraging
the possibility for ideas and techniques originated in one field to enjoy a wider applicability than was previously
anticipated.
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