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Abstract

Ultra-lean methane oxidation via catalytic combustion is critical for mitigating greenhouse gas
emissions from fugitive methane sources. However, the catalytic oxidation process exhibits sig-
nificant uncertainties that hinder its widespread implementation. To address this challenge, the
present study develops a robust machine learning-based framework for quantifying combustion
uncertainties, enabling more effective emission control strategies. The work presents a novel hy-
brid methodology integrating polynomial chaos expansion (PCE) with artificial neural networks
(ANN), achieving real-time prediction of methane conversion rates and their uncertainties in mono-
lith reactors. The machine learning model reduces computational time from hours to seconds while
achieving excellent agreement with detailed 1D plug-flow reactor simulations. The investigation
reveals that variations in methane concentration (0.2-1.3%, £10%), inlet temperature (800-1000
K, £2%), and inlet velocity (0.8-1.2 m/s, £5%) significantly influence conversion uncertainty, with
inlet temperature identified as the dominant parameter (Cy ~ 75%). Stability improves at ele-
vated temperatures (>950 K) and lower flow velocities (Cy ~ 10%) compared to higher velocities
(Cy = 17-22%). Additionally, catalyst deactivation, represented by reduced coating length, de-
creases methane conversion rates and increases uncertainty, with longer coatings providing greater
stability at higher inlet temperatures. This work advances the fundamental understanding of un-
certainty propagation in ultra-lean catalytic methane combustion and establishes a generalisable,
computationally efficient PCE-ANN framework applicable to catalytic combustion of diverse fuels.
Keywords:

Fugitive methane; Ultra-lean catalytic combustion; Uncertainty quantification; Polynomial-chaos

expansion (PCE); Machine learning (ANN); Monolith reactors.
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Orthogonal polynomials

Total order
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Universal gas constant
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Uncertainty Quantification Toolkit
Ventilation air methane

Total variance of methane conversion
Inlet velocity

Rate coefficient dependences on the
surface coverage
Quadrature points (germs)

Probability density function (PDF)
Standard deviation
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1. Introduction

Climate change, driven largely by greenhouse gas (GHG) emissions from human activities, is

one of the most critical global challenges. Methane, CH,, with a global warming potential 28-

36 times higher than CO, over a 100-year period, has emerged as the second most significant

anthropogenic GHG, contributing roughly 30% to global temperature rise [1, 2|. The energy

sector is a major source of CH, emissions, with significant contributions from oil production (/50
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Mt), natural gas systems (/30 Mt), and coal mining (=40 Mt) annually [3]. In coal mining,
ventilation air methane (VAM) which maintains CH, concentrations below 5 vol% for safety,
accounts for over 70% of mine CH, emissions, despite its low concentration (<1.5 vol%, typically
<0.5 vol%) [4]. Mitigating these ultra-lean CH, emissions remains challenging due to operational
issues such as large air volumes, fluctuating concentrations, dust, and humidity [5]. Conventional
combustion requires CH4 concentrations within flammability limits (5-17 vol%) and risks producing
NO, emissions at high temperatures [6]. Catalytic methane combustion (CMC) offers a superior
alternative by enabling CH, oxidation at concentrations well below the flammability limit and at
significantly lower temperatures (as low as 400 °C), substantially reducing both GHG impact and
NO, formation [7]. The oxidation process of CMC converts CHy to COs, a far less potent GHG,
reducing the climate impact substantially. Additionally, capturing CH, from VAM exhaust is more
challenging than absorbing CO, [7]. Thus, converting fugitive CHy to low-GWP COy in the energy
sector supports climate change mitigation and improves air quality.

Noble metal catalysts, particularly platinum (Pt) and palladium (Pd) on Al,O3 supports, are
widely used for CMC due to their high activity and low-temperature CH, conversion rates [7].
While Pd-based catalysts exhibit higher activity, Pt catalysts are preferred for ultra-lean CHy
combustion due to better resistance to poisoning and lower costs [8, 9]. Su and Yu [10] demon-
strated this by developing a 25 kWe prototype using Pd/Al,O3 for lean-CH4 combustion from
VAM systems. The prototype successfully operated with 0.8% CH,, generating 19-21 kWe with-
out requiring cooling, air dilution, or nozzle injection. Burch et al. [11] compared Pt/Al,O3 and
Pd/Al,O3 under various conditions, finding Pt superior in CHy-rich environments and Pd more
effective in Oq-rich (diluted) conditions. In addition to supported noble metals, recent reviews of
Co304-based nanostructured catalysts, including noble metal doping strategies, have demonstrated
the potential for enhanced catalytic performance and stability in lean methane combustion appli-
cations [12|. Furthermore, recent experimental studies on hierarchical monolith catalysts with
self-supporting structures have demonstrated enhanced performance for lean methane catalytic
oxidation [13].

Catalytic combustion in microreactors has gained attention due to their compact sub-millimetre-
scale designs, offering advantages such as high surface-to-volume ratios, enhanced heat and mass
transfer, and shorter diffusion times [9]. Honeycomb monolith reactors further improve perfor-

mance with lower pressure drops, minimised external diffusion limitations, and prevention of
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hotspots due to their structured channels (round, square, or finned) [9]. These channels can
be coated with thin, uniform catalyst layers, increasing fuel-catalyst contact area and enabling
efficient use of noble metals. He et al. [14| experimentally investigated Pt/v-AlyO3 catalysts in
various microreactor channel types for CH; combustion. They tested Pt loadings (1.5-5.0 wt%),
CH, flow rates (150-500 mL /min), O9:CHy4 ratios (0.5-6.0), and temperatures (300-500 °C), finding
that CH4 conversion increases with Pt loading but decreases with higher flow rates, especially at
higher loadings. The optimal Os:CHy ratio was 1.5 (vs. the stoichiometric 2.0), balancing O,
and CHy4 on the catalyst surface. The double serpentine channel design achieved the highest CH,4
conversion due to its larger coating area, longer residence time, and improved gas mixing. Hunt
et al. [15] studied ultra-lean CH4 combustion in a wavy channel microreactor with Pt catalyst,
showing that strategic catalyst placement (using only 25% of the coating) achieved 60% of the
COy production of fully coated channels. The wavy design increased CO, production rates, per
unit surface area of the catalyst, by up to 400% compared to straight channels, highlighting the
importance of channel configuration.

Dupont et al. [16] studied catalytic honeycomb monolith reactors with Pd and Pt catalysts for
CH, combustion, highlighting their critical role in ignition and steady-state operation for complete
CH, conversion to COs. They found that monolith length could be reduced by 70% (from 50.8 mm)
without performance loss, as the reaction zone is confined to the first 10-15 mm of the channels,
offering significant cost savings in noble metal usage. Higher flow rates, however, pushed the
reaction zone deeper into the monolith and reduced combustion stability [16]. Kumaresh et al. [17]
numerically studied lean CH; combustion in Pt-coated honeycomb monoliths, showing complete
CH,4 conversion within 42 mm at 400 °C, 3% fuel/air ratio, and 20 m/s inlet velocity. Higher
inlet temperatures and fuel/air ratios, combined with lower velocities, shifted the reaction zone
upstream, reducing the required reactor length. Deutschmann et al. [18] numerically investigated
CH, combustion on Pt foil using a detailed surface reaction mechanism, successfully predicting
complex phenomena like ignition, extinction, and hysteresis [18|.

VAM systems face significant variability challenges due to ultra-lean CH4 concentrations (0.1-
1.5%) and large ventilation air flows (100-300 m?/s) [19]. These variations, caused by mining
activities and underground pressure changes, affect gas quality, flow rate, and purity [4, 19].
Rahimi et al. [20] emphasised designing ventilation systems to account for gas emission uncertain-

ties, ensuring safety against fires, explosions, and financial losses from coal seam gas fluctuations.
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Combustion systems for VAM must handle these uncertainties, as sudden flow reductions disrupt
combustion stability, while rapid CH4 concentration increases risk equipment damage and higher
NO, emissions [9]. Additionally, low-concentration CH, often contains contaminants like dust,
NO,, HyO, H,S, and SO, which can poison and deactivate catalysts [9]. Catalyst deactivation in
monolithic reactors remains a challenge due to uncontrolled emissions and incomplete combustion
[21]. Temperature is critical, affecting reaction kinetics, catalyst activity, and stability. While
catalytic combustion occurs at lower temperatures [7|, precise temperature control is essential to
avoid thermal stress, mechanical degradation, and accelerated deactivation |21, 22]. Uncontrolled
temperature variations, especially when using waste heat, further complicate system performance
[23]|. These operational challenges underscore the need for systematic approaches to quantify and
manage uncertainty in catalytic fugitive methane combustion.

Although previous studies discussed the presence of uncertainty in VAM systems, there remains
a significant gap in the literature regarding systematic uncertainty quantification (UQ) in catalytic
ultra-lean CH4 combustion applications. Both experimental and computational approaches inher-
ently contain unavoidable uncertainties, while traditional numerical models employ fixed param-
eters [24]. These uncertainties can be effectively quantified and reduced through mathematical
modelling techniques. Uncertainties generally fall into two categories: epistemic and aleatoric.
Epistemic uncertainty stems from lack of knowledge or information about the system and can
potentially be decreased through improved understanding and enhanced measurement technique.
Conversely, aleatoric uncertainty arises from the probabilistic nature of random processes and is
irreducible, even with complete system knowledge [25|. In this study, the computational frame-
work primarily focuses on epistemic uncertainty through the analysis of parametric variations in
inlet conditions (temperature, velocity, and concentration) and catalyst coating length. These
variations represent uncertainties that could theoretically be reduced with improved measurement,
control systems, and catalyst design. By quantifying how these epistemic uncertainties propa-
gate through the catalytic system, the parameters that contribute most significantly to variability
in methane conversion performance can be identified. Uncertainty quantification methods use
mathematical modelling to measure and manage uncertainties in experimental and computational
settings |24, 26, 27]. While Monte Carlo (MC) methods traditionally address epistemic uncer-
tainties, they are computationally expensive for complex models requiring large sample sizes [28].

Surrogate models, such as Gaussian processes [29, 30] or Polynomial Chaos Expansion (PCE)
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[31, 32|, provide efficient alternatives to computationally expensive MC methods for UQ. For com-
plex simulations, UQ-PCE is more cost-effective and efficient than UQ-MC; several studies have
successfully applied PCE-based UQ methods to combustion problems [33-36].

While PCE significantly improves efficiency for UQ), it still remains demanding for complex
catalytic systems requiring high-fidelity simulations with detailed chemistry and transport phe-
nomena. Soyler et al. [36] demonstrated this computational burden by using PCE for UQ in
NH;/Hy/Ny/air combustion, completing over 21,000 simulations (6000 CPU hours) on an HPC
cluster. In a follow-up study, they performed 70,000 simulations to analyse uncertainties in par-
tially cracked NHj/syngas combustion [37]. Similarly, Zhang and Jiang [31, 38, 39| demonstrated
the need for extensive simulations in PCE-based UQ for combustion research. This computational
burden presents a significant obstacle to the practical implementation of UQ for real-world cat-
alytic applications, particularly for real-time monitoring and control systems necessitating more
efficient approaches. The novel integration of machine learning (ML) with UQ techniques offers a
promising solution to overcome this limitation by drastically reducing computational costs while
maintaining accuracy [40], and enabling robust analysis of uncertainty propagation in catalytic
methane combustion systems. ML techniques efficiently capture complex relationships between
uncertain parameters and system outputs, enabling analysis of non-linearities and interactions
without extensive model evaluations. Recent research has explored various ML algorithms for
combustion properties, including laminar flame speed (S;) [41, 42|, ignition delay time (IDT)
[43], and reforming processes [44]. Amongst these approaches, artificial neural networks (ANNS)
have proven their effectiveness in combustion applications and their ability to model highly non-
linear relationships between multidimensional input and output spaces [45], making them especially
suited for catalytic conversion processes where multiple interacting parameters influence reaction
outcomes. MIL-based UQ frameworks enable robust design and optimisation of catalytic reactors
under varying conditions, making them particularly valuable for catalytic VAM systems, where
real-time prediction and optimisation under uncertainty are critical for practical implementation.

To the best of authors” knowledge, no prior studies have explored ML-based UQ for catalytic
combustion systems, revealing a significant research gap. While ML and UQ have been applied
to combustion modelling, their integration for directly predicting uncertainty metrics in catalytic
systems remains unexplored. This study addresses this gap by developing a novel ML framework to

predict uncertainty bounds, sensitivity indices, and probabilistic performance metrics for catalytic
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CH, oxidation. The specific objectives of this work include several key components. First, an
ML model (ANN) for predicting catalytic CH4 conversion rates in monolith reactors is developed
and validated. Second, the effects of varying CH, concentration, inlet temperature, and inlet flow
velocity on uncertainty in CH4 conversion are quantified by using a surrogate UQ method (PCE).
Third, the influence of catalyst deactivation on conversion performance and uncertainty propa-
gation is investigated. Fourth, dominant parameters driving uncertainty in ultra-lean catalytic
CH, combustion are identified. Finally, the computational efficiency of the PCE-ANN framework
compared to conventional approaches is demonstrated.

Once trained, the ML model delivers a remarkable computational advantage, reducing analy-
sis time from hours to seconds while preserving high-fidelity uncertainty predictions. This hybrid
PCE-ANN approach advances catalytic systems modelling in two crucial dimensions: theoretically,
by elucidating the nonlinear propagation mechanisms of parametric uncertainties through complex
surface reactions; and practically, by providing rapid assessment tools essential for robust fugitive
CH, oxidation technology design. By quantitatively mapping how input uncertainties transform
into performance variability, this framework establishes science-based safety margins, optimise
operating conditions, and implement targeted control strategies that maximise conversion relia-
bility while minimising catalyst deactivation. The resulting decision support capability addresses
a critical gap in the development of resilient catalytic combustion systems for GHG mitigation

applications.

2. Methodology

2.1. Uncertainty quantification method

In this work, PCE was employed to construct a surrogate model for UQ using the open-source
Uncertainty Quantification Toolkit (UQTk) version 3.1.4 [46]. The mathematical formulation of
the PCE surrogate model is briefly described below. The uncertainty in simulation parameters is

expressed as:

esample - emean + Og X gd (1)

where Osample represents a randomly sampled set of parameters for catalytic CHy oxidation, such
as inlet temperature (7},), inlet velocity (V4,), or equivalence ratio (¢). The mean values of these

parameters are denoted by 6c.n, and their standard deviations by oy. The random variable
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germs, & = (én,,&v,, &), are generated using orthogonal polynomials based on the distribution
type |47, 48]. These germs represent the standardised basis for constructing PCE, where each
element corresponds to a specific uncertain input parameter (inlet temperature, inlet velocity, and
equivalence ratio, respectively). The orthogonal polynomials are selected to match the probability
distribution of each parameter (Hermite polynomials for normal distributions and Legendre poly-
nomials for uniform distributions), ensuring optimal convergence of the expansion. For this study,
a Legendre-Uniform (LU) distribution was assumed, with random variables uniformly distributed

in the interval [—1,1]. The standard deviation of each parameter is calculated as follows:

09 = Qmean X g <2)

where 4 represents the relative uncertainty: 5% for inlet velocity (v, = 0.05), 10% for equivalence
ratio (7, = 0.10), and 2% for inlet temperature (yp, = 0.02).

The number of quadrature points (&;) is calculated as (Ngq)?, where Nog = P + 1 is the
expansion order, and d is the number of uncertain parameters. With P = 5, this results in
(5 + 1)3 = 216 quadrature points. Higher-order expansions can lead to excessive quadrature
points without improving UQ results [36]. The selection of P = 5 was based on the authors’
previous implementation in similar combustion UQ studies [36, 37|, where they demonstrated that
orders higher than P = 5 did not provide significant improvement in accuracy while substantially
increasing computational cost. For this catalytic system with 3 uncertain parameters, P = 5 is
sufficient to capture the output variance while maintaining computational load with 216 evaluation
points per case.

The multidimensional PCE for catalytic CH4 conversion is expressed as:

Pen, = Z CrVi(&q) (3)

where Scp, represents CHy conversion with quantified uncertainty, C are the PCE coefficients
(spectral mode strengths), and W (&,) are Legendre-Uniform orthogonal polynomials up to order
P. The PCE coefficients are determined using the non-intrusive spectral projection (NISP) method

via Gauss-Legendre quadrature integration:

1

k= ey

/_ BOWEREdE k=0.....P (4)
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where 7(€) is the probability density function, and & represents the germ samples for each input
parameter.

In addition to quantifying uncertainties in CH, conversion, a variance-based global sensitivity
analysis [49] was conducted to evaluate the impact of input uncertainties on output uncertainty.
This method assesses how individual parameter uncertainties contribute to the total uncertainty

in CH, conversion. The first-order sensitivity indices (.S;) are calculated as:

O
Si = Var[j3] (5)

where (i) denotes a specific input parameter, and Var[3] represents the total variance of CHy

conversion. The total variance is expressed as:

Var[] =) " CR{T}) (6)

k>0

2.2. Validation of Surface Reaction Mechanism

The surface reaction mechanism developed by Deutschmann et al. [50] was used, comprising 24
chemical reactions involving 11 surface species and 7 gas-phase species (Table 1). Pt catalyst was
modelled with a surface site density (T') of 2.72 x 10 mol/cm?, where Pt(s) represents uncovered
surface sites available for adsorption.

The mechanism was validated using two models: a stagnation-flow reactor (SFR) and a plug-
flow reactor (PFR). The SFR configuration, where gas flow impinges perpendicularly onto a cat-
alytic surface, is ideal for studying gas-surface interactions and reaction kinetics. Its 1D nature
simplifies analysis by focusing on the centreline, where variables depend only on the distance from
the surface, making it suitable for validating detailed reaction mechanisms [18§].

For catalytic CH, combustion simulations in a SFR, Cantera [51] was used to solve the surface
chemistry reactions. The simulations were conducted under specified initial conditions to validate
the surface reaction mechanism. A premixed gas mixture of 9.5% CHj in air was introduced with a
uniform inlet velocity of 6 cm/s at 100 mm from the catalytic surface. The initial CHy-air mixture
and surface temperatures were set to 300 K and 1000 K, respectively, under atmospheric pressure.

The surface reaction mechanism was validated against the results of Deutschmann et al. [18]
using an SFR configuration. Fig. 1 compares species mole fractions as a function of distance

from the catalytic surface. The continuous lines represent the current numerical results, while the



Table 1: Surface reaction mechanism for CHy combustion over Pt catalyst from Deutschmann et al. [50].

Reaction A (cm, mol, s) n E, (kJ/mol) i, 1i(kJ /mol)
(1) Hz + 2Pt(s) — 2H(s) 4.60 x 1072 [py(s) = —1°
(2)  2H(s) — Ha + 2Pt(s) 3.70 x 1021 0.0 67.4 €r(s) = 6
(3) H + Pt(s) — H(s) 1.00*
(4)  Og + 2Pt(s) — 20(s) 1.80x 1021 -0.5 0.0
(5) Oz + 2Pt(s) — 20(s) 2.30x1072*
(6)  20(s) — 2Pt(s) + Oo 3.70x102! 0.0 213.2 €o(s) = 60
(7) O+ Pt(s) = O(s) 1.00*
(8)  H20 + Pt(s) — HoO(s) 0.75*
(9)  H20(s) — H20 + Pt(s) 1.00x 1013 0.0 40.3
(10)  OH + Pt(s) — OH(s) 1.00*
(11)  OH(s) — OH + Pt(s) 1.00x 1013 0.0 192.8
(12)  O(s) + H(s) — OH(s) + Pt(s) 3.70x 102! 0.0 11.5
(13)  H(s) + OH(s) — Ha0(s) + Pt(s) 3.70x10%! 0.0 17.4
(14)  OH(s) + OH(s) — H20(s) + O(s) 3.70x102! 0.0 48.2
(15)  CO + Pt(s) — CO(s) 8.40x10~1* Bpis) = 1
(16) CO(s) — CO + Pt(s) 1.00x 1013 0.0 125.5
(17)  COa2(s) — CO2 + Pt(s) 1.00x1013 0.0 20.5
(18)  CO(s) + O(s) = CO2(s) + Pt(s) 3.70x102! 0.0 105.0
(19) CHy + 2Pt(s) — CHz(s) + H(s 1.00x10~2* ppt(s) = 0.3
(20)  CHs(s) + Pt(s) — CHa(s) + H(s) 3.70x 102! 0.0 20.0
(21)  CHa(s) + Pt(s) — CH(s) + H(s) 3.70x10%! 0.0 20.0
(22)  CH(s) + Pt(s) — C(s) + H(s) 3.70x102! 0.0 20.0
(23)  C(s) + O(s) — CO(s) + Pt(s) 3.70x10%! 0.0 62.8
(24)  CO(s) + Pt(s) — C(s) + O(s) 1.00x1018 0.0 184.0

k= AT"e(~Ea/RT) "k is the rate constant for the reaction, A is the Arrhenius constant, n is the temperature exponent,
E, is the activation energy for the reaction, and R is the universal gas constant.

e; and p,; are the rate coefficient dependences on the surface coverage.

* symbol represents the sticking coefficient.

marker points show data from Deutschmann et al. [18]. The simulation captures the key features
of species evolution: O, and CH, are consumed near the surface, while CO5 and H5O are formed.
A small amount of CO appears as an intermediate species, peaking near the surface before being
oxidised to CO,. The excellent agreement between the simulations and reference data validates

the implementation of the surface reaction mechanism.
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Figure 1: Validation of surface reaction mechanism using SFR simulations. Continuous lines represent numerical
results from this study, while markers denote reference data from Deutschmann et al. [18].

The PFR represents a steady-state 1D flow system where species concentrations and temper-
ature vary along the reactor length without diffusion. In this model, the reaction mixture flows
uniformly at constant velocity, ensuring complete radial mixing and no backflow. The PFR is
particularly suitable for catalytic systems, as surface reactions at the wall promote radial mixing.
Its computational efficiency makes it an excellent tool for validating detailed kinetic mechanisms
under steady-state conditions.

In this work, catalytic CH, combustion simulations were performed in a single-channel PFR
with a length of 200 mm and a hydraulic diameter of 1.27 mm. The reactor simulated lean premixed
CHj-air combustion over a Pt catalyst at atmospheric pressure. Cantera was used to model the
PFR as a chain of 201 continuous stirred-tank reactors (CSTRs). The governing equations for the
1D steady-state PFR model are detailed elsewhere [51|. The first CSTR was fed a lean CHy/air
mixture (fuel/air ratio 2.94%) at an inlet temperature of 645 °C and an inlet velocity of 16.7 m/s.

The surface reaction mechanism from Deutschmann et al. [50] was further validated against

the results of Kumaresh and Kim [17] using a PFR configuration. Fig. 2 compares the current

11
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results (continuous lines) with data from Kumaresh and Kim [17| (marker points). Initially, the
Pt surface is predominantly covered by adsorbed oxygen O(s), with a coverage of approximately

0.9 at the reactor entrance.
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Figure 2: Validation of Deutschmann’s surface mechanism with the results from Kumaresh and Kim by using PFR
reactor. Continuous lines are from this study, marker points are from Kumaresh and Kim [17].

As reactions proceed, O(s) coverage decreases while free Pt(s) increases, stabilising at about
0.7 after 60 mm. The adsorbed methyl species CHs(s) (scaled by 10® for clarity) peaks at 40-50
mm, indicating the region of most active CH, decomposition, before being consumed in subsequent
reactions. The formation of CO, and H,O (scaled by 10? for clarity) increases until reaching steady-
state values after about 80 mm. The excellent agreement between our simulations and the reference
data validates both the surface mechanism implementation and the PFR model assumptions in

the specified conditions.
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2.83. Machine learning (ML)

In this work, ML models were developed to predict how variations in input parameters affect
ultra-lean catalytic CH, conversion rates, efficiently capturing complex reaction behaviours under
different operational conditions. This section describes the data generation process, including
associated uncertainties for 1D simulations using Cantera, followed by an introduction to the

ANN methodology. Fig. 3 presents a detailed overview of the PCE-ANN framework employed
in this study, illustrating the integration of UQTk, Cantera, ANN development, and potential

applications.
UQtk . .
Cantera Identify uncertain
Python parameters
Keras
G e N ( A
Sampling Cantera Surrogate model
. J/ . J/
UQTk b Bcu, = ) CeWi(a)
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Real-time Applications Safety and
monitoring & design
control VAM Reactor optimisation
systems design

Figure 3: Overview of the PCE-ANN framework with potential applications.
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2.3.1. Data Generation

Honeycomb monolith reactors are widely used for emission reduction due to their high surface
area, low pressure drop, uniform flow distribution, thermal stability, durability, and versatility [52].
These reactors consist of numerous small-diameter channels coated with catalysts on their interior
surfaces. In this work, a single channel is analysed, as each channel exhibits similar behaviour [50].

To train the ML models, operational input parameters with associated uncertainties were gen-
erated using UQTk software, and a comprehensive dataset was created through 1D simulations
in Cantera [51]. The simulations focused on ultra-lean catalytic CH, combustion in a PFR, rep-
resenting one channel of a honeycomb monolith reactor. A total of 180 cases were investigated,
examining four key operational parameters (Table 2): CHy concentration in ventilation air (%),
Tin, Vin, and catalyst length (R,) in mm.

Ultra-lean CH, concentrations ranged from 0.2% to 1.3% in air, with +£10% uncertainty, re-
flecting varying emission scenarios and corresponding to ¢ of 0.017 to 0.138. Inlet temperatures
varied from 800 K to 1000 K (+2% uncertainty), as temperature significantly impacts reaction
kinetics and catalyst performance. Temperatures below 800 K were avoided due to insufficient
O, desorption for CH, adsorption, while temperatures above 1200 K promote homogeneous CHy
combustion without a catalyst [9]. Additionally, PtOs, formed during catalytic oxidation, becomes
unstable below 700 K [53], and temperatures above 900 K risk catalyst degradation and thermal
NO, formation. Inlet velocities ranged from 0.8 to 1.2 m/s (5% uncertainty), capturing the

effects of flow velocity on CH4 conversion, residence time, and heat transfer.

Table 2: Data parameters with applied uncertainty used in ANN algorithm for 1D simulations.

CH, (%) +10% T (K) Via (m/s) Catalyst
CH, % Equivalence Ratio (¢) +5% +2% length(mm)

in the air Min/max Mean
13 0.133/0113 0125
0.9  0.095/0.078  0.086 0.8, 1.0, 20, 30,
0.6 00630052 0057  S0-000 g1 and 50

0.2 0.021/0.017 0.019

The UQ for each case required 216 individual simulations ((5+1)3 = 216), as detailed in Section
2.1, due to the propagation of uncertainties through the system. This resulted in a total of 38,880

data points, sufficient for training reliable ANN models and accurately quantifying uncertainties.
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2.83.2. Model Development and Optimisation

The relationship between ANN performance and architectural complexity is highly problem-
dependent, necessitating a systematic evaluation of various configurations. Prior to ANN training,
the input dataset underwent power transformation for normalisation and random shuffling to
prevent sequence-based biases. Training employed a batch size of 128, a maximum of 3000 epochs,
an initial learning rate of 5 x 1073 with a decay rate of 1 x 107%, and the Adam optimiser
with early stopping after 100 consecutive epochs without improvement in the loss function. The
Rectified Linear Unit (ReLU) activation function was used across all hidden layers to mitigate

gradient vanishing issues. The loss function, mean absolute error (MAE), is defined as:

1 & —
MAE = — ; |CH4% — CH, %] (7)

For ANN architecture optimisation, a design space of 2 to 10 layers and 4 to 40 neurons per
layer was explored, encompassing 81 distinct ANN evaluations. This hyper-parameter optimi-
sation study was completed in approximately 6 hours using an NVIDIA RTX 2000 Ada GPU,
demonstrating the efficiency of modern computational resources.

The validation set loss term landscape (Fig. 4) revealed optimal configurations for predictive
performance. The lowest MAE values were concentrated in regions with shallow networks (3-5
layers) and 10-15 neurons. The highest accuracy was achieved with a 4-layer, 32-neuron configu-
ration (marked with a red star), chosen for the remainder of this study (Fig. 5). This architecture
achieved an MAE of 0.062 with a minimal generalisation gap between train and validation losses.
Networks with increased depth (5-10 layers) maintained stable performance across various neuron
counts, suggesting width contributes more significantly to robustness than depth. The steepest
error gradients occurred in the lower left corner, where the MAE values rapidly increased to 0.60
and above, indicating inadequate fitting. These findings highlight the importance of systematic

hyper-parameter optimisation in ANN design.
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Figure 4: Accuracy map of ANN architectures in terms of neurons per hidden layer and hidden layers, represented
by loss term on the validation set. The red star indicates the lowest MAE, while black circles denote individual
ANN evaluations.
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Figure 5: Schematic of the optimised neural network structure for the given dataset.

300 To ensure robust model validation, a 5-fold cross-validation strategy was implemented using
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R? scoring (Eq. (8)) as the evaluation metric on the final model. The cross-validation results
demonstrated negligible standard deviation and achieved R2 = 0.995 + 0.002 with M AE = 0.068
+ 0.013.

S (CH % — CH,%;)?

R2=1- e
S (CH%; — CH%)?

(8)

The model’s predictive accuracy was evaluated by comparing predicted values against ground
truth data for the test set (Fig. 6). The comparison plot shows excellent agreement between predic-
tions and actual values across the full range of CHy conversion rates (0-100%). Data points closely
follow the ideal diagonal line, indicating strong predictive performance. The colour gradient, repre-
senting temperature (800-1100 K), demonstrates consistent accuracy across all temperature ranges,
with no significant bias or degradation at extremes. The tight clustering of test set predictions
along the diagonal confirms the model’s ability to generalise to unseen data without over fitting,
validating the chosen architecture and training parameters.

In terms of computational performance, a direct quantitative comparison is not rigorous due
to differences in compute resources. Training of the final ML model took around 10 CPU hours
on a 13th Gen Intel i7-13850HX CPU. Once trained, the ANN model achieves remarkably fast
batch inference, processing the entire training dataset of 38,800 data points in 0.2 seconds on a
single CPU, while data generation required approximately 2,500 CPU hours on a high-performance

computing cluster.
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Figure 6: Ground truth versus predicted values for the test set using the optimal ANN architecture. The dashed
lines represent +5% of the ground truth values.
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2.3.3. Model Validation

The ML model was validated against 1D Cantera simulations by comparing probability density
functions (PDFs) of CH, conversion for different operating conditions. The Cantera simulations
used a PFR model, which assumes perfect radial mixing and considers axial variations in species
concentrations and temperature. This model is suitable for monolithic reactor channels due to their
high length-to-diameter ratio and laminar flow conditions. In UQ studies, validating PDF results
is critical, as it demonstrates the model’s ability to predict the mean values and the complete
distribution of outcomes and their likelihood. This is essential for understanding uncertainty
propagation and assessing prediction reliability under varying conditions.

Fig. 7 compares PDFs for various inlet velocities (Vi, = 0.8, 1.0, and 1.2 m/s) and temperatures
(850 K to 950 K). The ML model shows excellent agreement with Cantera results across all condi-
tions, accurately capturing both the magnitude and shape of the PDF distributions. This indicates
that the ML model has successfully learned the underlying uncertainty propagation mechanisms

in the system.

—— 1D-Cantera ---- ML
0.5 0.5
(a) V;,=0.8 m/s 950K (b) Vi,=1.0 m/s
0.4 0.4
0.3 0.3
950K
0.2 1 0.2 1 850K
850K \S
0-11 900K 0.11 900K
u‘
Q o0 T T < AN 0.0 : < — r
a 0 20 40 60 80 100 0 20 40 60 80 100
0.5
(c) Vi,=1.2 m/s
0.4
0.3
850K
0.2 1
950K
0.1 900K
0.0 . m . /
0 20 40 60 80 100

CHa4 (%)

Figure 7: Validation of CHy conversion from Cantera and ML at different T;, and Vi,: (a) 0.8 m/s, (b) 1.0 m/s,
(c) 1.2 m/s.
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3. Results and Discussion

3.1. Effects of CHy Concentration in Air

The effects of CH4 concentration on the uncertainty in CH4 conversion were analysed for various
Tin, with a constant coated channel length of 50 mm and Vj, of 0.8 m/s. Fig. 8 shows CHy con-
version as a function of T},, where continuous lines represent mean conversion values, and shaded
areas indicate uncertainty bands. Both CHy concentration and Ty, significantly influence the con-
version rate and its uncertainty. As concentration increases from 0.6% to 1.3%, the coefficient of
variance (Cy) peaks at approximately 75% at 850 K for 1.3% CHy, indicating higher variability in
conversion rates. However, uncertainty decreases significantly at elevated temperatures (>950 K),

regardless of CH, concentration, demonstrating more stable operations at higher temperatures.
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Figure 8: Effect of uncertainty on CH,4 conversion for different inlet temperatures. Continuous lines represent the
mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.
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For further insight, Fig. 9 shows PDFs of CH, conversion rates at various temperatures and
CH, concentrations. At lower T, (850 K), PDFs for higher CHy concentrations exhibit wider
distributions, consistent with the uncertainty bands in Fig. 8. As Ty, increases, PDFs for higher
CH, concentrations become narrower and sharply peaked in the high conversion region (80-100%),

supporting the stability of CH, conversion at elevated temperatures.
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Figure 9: PDFs for different CHy concentrations in air at various temperatures.

3.2. Effects of Inlet Velocity (Vi)

Inlet velocity, which controls ventilation air flow, is critical for safety and emission control
in industrial settings. Higher ventilation rates ensure safer conditions by diluting CH4 below
explosive limits but reduce catalytic conversion efficiency by decreasing residence time. The effect
of Vi, on CHy conversion uncertainty was analysed for three velocities (0.8, 1.0, and 1.2 m/s) at a
constant CH, concentration of 0.6% and a catalyst-coated channel length of 50 mm. Fig. 10 shows
that CH,4 conversion rates are consistently higher at lower Vj,, attributed to increased residence

time. While Cy values are similar (around 50%) at 800 K, they diverge with increasing Ty,. For
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Vin = 0.8 m/s, Cy decreases rapidly to 10% at 950 K, whereas higher Vi, (1.0 and 1.2 m/s) show
slower decreases, reaching 17% and 22%, respectively. These results highlight the trade-off between
safety and conversion efficiency, emphasising the need to optimise operating temperatures based

on ventilation rates.
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Figure 10: Comparison of uncertainty effects on CHy conversion for 0.6% CHy in air at different inlet velocities.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.

For further analysis, Fig. 11 shows PDFs of CH, conversion at different V;, and Ty, for a 50
mm catalyst-coated reactor with 0.6% CHy in air. At 950 K, CH, conversion exhibits reduced

uncertainty with narrower PDFs at lower V;,. However, at 900 K, PDFs are wider and less
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stable regardless of V;,, highlighting the importance of temperature control in achieving consistent

conversion rates.

Figure 11: PDF comparison of CH,4 conversion for different Tj, and Vi, for a 50 mm catalyst-coated reactor with
0.6% CHy in air.

3.3. Effect of Inlet Temperature (Ty,)

Inlet temperature plays a crucial role in CH, conversion, as higher temperatures enhance cat-
alyst activity, promoting more complete conversion. Fig. 12 shows the effects of T;, on CHy
conversion rates and their associated uncertainties for different CH, concentrations. At lower Tj,
(850 K), CHy4 conversion rates are low due to limited catalytic activity, increasing gradually from
15% at 0.2% CHy to 45% at 1.3% CH,. Uncertainty also increases with T;,, peaking at 75% for
1.3% CHy, consistent with the discussion in Section 3.1. At higher Tj, (>900 K), Cy decreases
with CH,4 concentration, indicating more stable conversion. For Ty, = 950 K, CH4 conversion rates
reach 60-100%, with complete conversion at 1.3% CH,, demonstrating that elevated temperatures

enhance both conversion rates and process stability.
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Figure 12: Effect of uncertainty on CHy conversion for different CH4 concentrations in air at various temperatures.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.
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While V;, affects CH4 conversion uncertainty by influencing residence time, T;, has a more
fundamental impact. Fig. 13 shows the main sensitivity analysis for various Tj, and CH,4 concen-
trations (0.2% to 1.3%) at different Vi,. Ty, is the primary contributor to uncertainty, especially
at lower T, and CHy concentrations. Its contribution decreases with increasing T;, and CHy
concentration, while the impact of CH, concentration (¢) and Vi, becomes more significant. At
higher Ty, (950 K) and CHy concentrations, the order of contribution to uncertainty is Ty, > ¢
> Vi, highlighting the importance of temperature control for stability at lower equivalence ratios

and flow velocities.
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Figure 13: Main sensitivity analysis at various Ty, and CH,4 concentrations for different inlet velocities.

3.4. Effects of Catalyst Coating Length

Catalyst deactivation is a significant challenge in real catalytic CH4 conversion reactors, par-
ticularly in systems processing low-concentration CH, in air, which often contains contaminants
such as dust, NO, H,O, HyS, and SO,. These impurities can degrade catalyst performance or
cause complete deactivation [9]. To understand the impact of deactivation, three catalyst coating

lengths (50, 30, and 20 mm) were analysed, representing varying stages of catalyst availability.
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These reduced coating lengths serve as a simplified representation of the effective active catalyst
area remaining after partial deactivation. While this approach does not capture the full complexity
of deactivation dynamics, it provides valuable insights into how reduced catalyst availability affects
both conversion efficiency and process predictability. Fig. 14 shows that shorter coating lengths
lead to lower CH,4 conversion rates and higher uncertainty. Cy values decrease with increasing T,
but this decrease is less pronounced for shorter coating lengths, indicating that catalyst deacti-
vation reduces both conversion efficiency and process predictability. Specifically, at T;, = 850 K,
reducing coating length from 50 mm to 20 mm decreases mean CH, conversion from approximately
20% to 10%, while Cy decreases from 50% to 45%. The more dramatic effect is seen at higher
temperatures (T;, = 950 K), conversion drops from nearly 100% to 60%, demonstrating that deac-
tivation has greater absolute impact at conditions where the fresh catalyst would otherwise achieve
complete conversion. Critically, the uncertainty (Cy) remains elevated even at high temperatures
when catalyst is deactivated. For the 50 mm coating, Cy drops to 5% at 950 K, indicating very
stable conversion performance. However, for the 20 mm coating, which represents around 60%
deactivation, Cy remains at 35% even at 950 K. This persistent uncertainty under deactivated
conditions has important implications: operators cannot compensate for deactivation simply by
increasing temperature, as the system becomes inherently less predictable and more sensitive to
input variations.

It should be noted that the representation of deactivation solely by reduction in coating length
is a simplification of the complex deactivation phenomena occurring in real systems. In practice,
catalyst deactivation can occur through multiple mechanisms, including poisoning by sulphur com-
pounds, HyO vapour, sintering at higher temperatures, and fouling by dust particles, which may
alter not only the available surface area but also the intrinsic catalytic activity of remaining sites.
The current simplified model assumes that the remaining catalyst maintains its original activ-
ity while the “deactivated” region has zero activity, which may not fully capture scenarios where
poisoning or sintering reduce the intrinsic activity across the entire catalyst bed. Despite these lim-
itations, this approach provides valuable first-order insights into how reduced catalyst availability
affects conversion performance and uncertainty propagation, with the key finding that deactiva-
tion increases conversion uncertainty expected to be robust regardless of the specific deactivation

mechanism.
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Figure 14: Effect of catalyst coating length in the monolith channel on CHy conversion rate and uncertainty.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.

For further illustration, Fig. 15 shows PDFs of CH, conversion at 950 K for 0.6% CH, in air,
comparing different Vy, and catalyst coating lengths. Longer coating lengths result in higher con-
version rates and more stable performance, evidenced by narrow, sharply peaked PDFs centred
at high conversion values. For Vi, = 0.8 m/s with 50 mm coating, the PDF shows a sharp peak
at 95% conversion with minimal spread, indicating consistent, reliable performance. In contrast,

the 20 mm coating produces a broader PDF centred at around 75% conversion, with significant
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probability mass between 60-85%. This wider distribution indicates that under identical operat-
ing conditions, the partially deactivated catalyst produces highly variable outcomes, sometimes
achieving acceptable conversion, other times falling well below target performance. This effect
is more pronounced at higher Vi, (1.2 m/s), where the reduced residence time exacerbates the
impact of deactivation. The 20 mm coating at high velocity produces the broadest PDF, spanning
40-70% conversion, making performance prediction difficult and control strategy implementation
challenging. These results highlight that catalyst deactivation not only reduces mean CH, con-
version rates but also fundamentally alters the system’s uncertainty characteristics, increasing
operational risk and reducing process reliability. For Vi, = 0.8 m/s, shorter coatings result in
broader PDFs with lower peak heights, indicating less stable and lower conversion outcomes. This
effect is more pronounced at higher Vy,, aligning with the analysis in Section 3.2. These results
highlight that catalyst deactivation not only reduces CH,4 conversion rates but also increases un-
certainty, emphasising the need for regular monitoring and maintenance, especially at higher flow

rates.
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Figure 15: PDF comparison of CH4 conversion at different Vi, for various catalyst coating lengths at 950 K and
0.6% CH, concentration in air.

4. Conclusions

In this work, the effects of variability in ultra-lean fugitive methane combustion were investi-
gated for various CHy concentrations ranging from 0.2% to 1.3% in air with £10% uncertainty,
corresponding to equivalence ratios (¢) between 0.017 and 0.138. Additionally, variations in inlet
temperatures from 800 K to 1000 K (£2% uncertainty) and inlet velocities from 0.8 to 1.2 m/s
(£5% uncertainty) were analysed for various catalyst lengths (20, 30, and 50 mm). The study em-
ployed the validated Deutschmann et al. [18] mechanism to simulate a PFR model for 1D catalytic
CH,4 combustion over a Pt catalyst. For the first time, a data-driven PCE-based UQ method was
applied to investigate the impact of small parameter variations on CH, conversion in a PFR, rep-
resenting a single channel of a honeycomb reactor. Additionally, catalytic CH4 conversion, along
with associated uncertainty, was successfully modelled and predicted using an ML approach via

an ANN.
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Key findings from this study are as follows:

The ANN model not only showed excellent agreement with 1D PFR simulations under various
conditions but also demonstrated strong agreement with probability distributions arising

from parameter uncertainties while reducing computational time from hours to mere seconds.

e Uncertainty in catalytic CH, conversion increases with fugitive CH, concentration in air,

with a Cy reaching 75% for a 1.3% CH, concentration at T}, = 850 K.

e The uncertainty effect diminishes significantly as 7}, increases, particularly for 73, > 950 K,

where the catalytic process becomes more stable regardless of methane concentration.

e Catalytic CH, conversion is more stable at lower velocities, with Cy rapidly decreasing to
about 10% at 950 K, whereas at higher velocities, Cy remains in the range of 17-22% under

the same conditions.

e CH, conversion rate decreases while uncertainty increases as the catalyst-coated channel
length decreases across all operating temperatures. This effect is more pronounced at higher

flow velocities.

e Inlet temperature emerged as the dominant factor affecting uncertainty, irrespective of other

parameters.

These findings underscore the crucial role of temperature control and regular catalyst main-
tenance, particularly when higher ventilation rates are required for safety. Overall, parameter
variations can induce up to 75% uncertainty in catalytic CH, conversion rates. It is important to
note that the PCE-ANN framework is fuel- and reactor-agnostic, offering a versatile computational
tool applicable to a wide range of catalytic processes where UQ) is critical for robust system design
and operation. Future investigations could focus on exploring different catalyst materials and their
influence on UQ), assessing the impact of trace impurities such as dust, NO,, HyO, and common
poisons (e.g., HyS, SO,) on conversion rate uncertainty and system reliability, and developing more
comprehensive models to simulate catalyst deactivation and transient operating conditions typical
of VAM systems. Additionally, evaluating the framework’s ability to generalise across channel
geometries and validating these simulations experimentally would provide valuable insights into

the practical implications of UQ in catalytic methane combustion.
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