

1 **Machine Learning-Enabled Uncertainty Quantification for**
2 **Thermo-Catalytic Reactors: A Study on Fugitive Methane**
3 **Oxidation in Monolith Reactors**

4 Israfil Soyler^{a,*}, Cihat Emre Üstün^a, Amin Paykani^a, Xi Jiang^a, Nader Karimi^b

^a*School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom*

^b*School of Engineering, University of Southampton, Southampton, SO16 7QF, United Kingdom*

5 **Abstract**

Ultra-lean methane oxidation via catalytic combustion is critical for mitigating greenhouse gas emissions from fugitive methane sources. However, the catalytic oxidation process exhibits significant uncertainties that hinder its widespread implementation. To address this challenge, the present study develops a robust machine learning-based framework for quantifying combustion uncertainties, enabling more effective emission control strategies. The work presents a novel hybrid methodology integrating polynomial chaos expansion (PCE) with artificial neural networks (ANN), achieving real-time prediction of methane conversion rates and their uncertainties in monolith reactors. The machine learning model reduces computational time from hours to seconds while achieving excellent agreement with detailed 1D plug-flow reactor simulations. The investigation reveals that variations in methane concentration (0.2–1.3%, $\pm 10\%$), inlet temperature (800–1000 K, $\pm 2\%$), and inlet velocity (0.8–1.2 m/s, $\pm 5\%$) significantly influence conversion uncertainty, with inlet temperature identified as the dominant parameter ($C_V \approx 75\%$). Stability improves at elevated temperatures (>950 K) and lower flow velocities ($C_V \approx 10\%$) compared to higher velocities ($C_V = 17\text{--}22\%$). Additionally, catalyst deactivation, represented by reduced coating length, decreases methane conversion rates and increases uncertainty, with longer coatings providing greater stability at higher inlet temperatures. This work advances the fundamental understanding of uncertainty propagation in ultra-lean catalytic methane combustion and establishes a generalisable, computationally efficient PCE-ANN framework applicable to catalytic combustion of diverse fuels.

6 **Keywords:**

7 Fugitive methane; Ultra-lean catalytic combustion; Uncertainty quantification; Polynomial-chaos
8 expansion (PCE); Machine learning (ANN); Monolith reactors.

*Corresponding author. Email: i.soyler@qmul.ac.uk

Latin Symbols

A	Arrhenius constant	OP	Orthogonal polynomials
ANNs	Artificial Neural Networks	P	Total order
C_k	PCE coefficients	PCE	Polynomial chaos expansion
CMC	Catalytic methane combustion	Pd	Palladium
CPU	Central processing unit	PDF	Probability Density Function
CSTR	Continuous stirred-tank reactor	PFR	Plug-flow reactor
d	Dimension	Pt	Platinum
E_a	Activation energy for the reaction	R	Universal gas constant
GHG	Greenhouse gas	R^2	Coefficient of determination
GPR	Gaussian Process Regression	R_c	Reactor catalyst coated length
GWP	Global warming potential	$ReLU$	Rectified Linear Unit
HPC	High performance computing	S_i	Main sensitivity of a fuel composition
IDT	Ignition delay time	S_L	Laminar flame speed
LU	Legendre-Uniform distribution	SFR	Stagnation-flow reactor
MAE	Mean Absolute Error	T_{in}	Inlet temperature
MC	Monte Carlo	UQ	Uncertainty quantification
ML	Machine learning	$UQTk$	Uncertainty Quantification Toolkit
NISP	Non-intrusive spectral projection	VAM	Ventilation air methane
NNs	Neural Networks	$Var[\beta]$	Total variance of methane conversion
n	Temperature exponent	V_{in}	Inlet velocity
N_{ord}	Parameter used for quadrature point generation		

Greek Symbols

β_{CH_4}	Uncertainty associated with catalytic methane conversion rate	μ_i	Rate coefficient dependences on the surface coverage
γ_θ	Relative uncertainty of input parameters	ξ	Quadrature points (germs)
Γ	Catalyst surface site density	π	Probability density function (PDF)
ε_i	Rate coefficient dependences on the surface coverage	σ	Standard deviation
θ	Randomly sampled input parameters	ϕ	Equivalence ratio
Ψ_k	Multidimensional orthogonal polynomials		

9 1. Introduction

10 Climate change, driven largely by greenhouse gas (GHG) emissions from human activities, is
 11 one of the most critical global challenges. Methane, CH_4 , with a global warming potential 28-
 12 36 times higher than CO_2 over a 100-year period, has emerged as the second most significant
 13 anthropogenic GHG, contributing roughly 30% to global temperature rise [1, 2]. The energy
 14 sector is a major source of CH_4 emissions, with significant contributions from oil production (≈ 50

15 Mt), natural gas systems (\approx 30 Mt), and coal mining (\approx 40 Mt) annually [3]. In coal mining,
16 ventilation air methane (VAM) which maintains CH_4 concentrations below 5 vol% for safety,
17 accounts for over 70% of mine CH_4 emissions, despite its low concentration (\leq 1.5 vol%, typically
18 $<$ 0.5 vol%) [4]. Mitigating these ultra-lean CH_4 emissions remains challenging due to operational
19 issues such as large air volumes, fluctuating concentrations, dust, and humidity [5]. Conventional
20 combustion requires CH_4 concentrations within flammability limits (5-17 vol%) and risks producing
21 NO_x emissions at high temperatures [6]. Catalytic methane combustion (CMC) offers a superior
22 alternative by enabling CH_4 oxidation at concentrations well below the flammability limit and at
23 significantly lower temperatures (as low as 400 °C), substantially reducing both GHG impact and
24 NO_x formation [7]. The oxidation process of CMC converts CH_4 to CO_2 , a far less potent GHG,
25 reducing the climate impact substantially. Additionally, capturing CH_4 from VAM exhaust is more
26 challenging than absorbing CO_2 [7]. Thus, converting fugitive CH_4 to low-GWP CO_2 in the energy
27 sector supports climate change mitigation and improves air quality.

28 Noble metal catalysts, particularly platinum (Pt) and palladium (Pd) on Al_2O_3 supports, are
29 widely used for CMC due to their high activity and low-temperature CH_4 conversion rates [7].
30 While Pd-based catalysts exhibit higher activity, Pt catalysts are preferred for ultra-lean CH_4
31 combustion due to better resistance to poisoning and lower costs [8, 9]. Su and Yu [10] demon-
32 strated this by developing a 25 kWe prototype using Pd/ Al_2O_3 for lean- CH_4 combustion from
33 VAM systems. The prototype successfully operated with 0.8% CH_4 , generating 19-21 kWe with-
34 out requiring cooling, air dilution, or nozzle injection. Burch et al. [11] compared Pt/ Al_2O_3 and
35 Pd/ Al_2O_3 under various conditions, finding Pt superior in CH_4 -rich environments and Pd more
36 effective in O_2 -rich (diluted) conditions. In addition to supported noble metals, recent reviews of
37 Co_3O_4 -based nanostructured catalysts, including noble metal doping strategies, have demonstrated
38 the potential for enhanced catalytic performance and stability in lean methane combustion appli-
39 cations [12]. Furthermore, recent experimental studies on hierarchical monolith catalysts with
40 self-supporting structures have demonstrated enhanced performance for lean methane catalytic
41 oxidation [13].

42 Catalytic combustion in microreactors has gained attention due to their compact sub-millimetre-
43 scale designs, offering advantages such as high surface-to-volume ratios, enhanced heat and mass
44 transfer, and shorter diffusion times [9]. Honeycomb monolith reactors further improve perfor-
45 mance with lower pressure drops, minimised external diffusion limitations, and prevention of

46 hotspots due to their structured channels (round, square, or finned) [9]. These channels can
47 be coated with thin, uniform catalyst layers, increasing fuel-catalyst contact area and enabling
48 efficient use of noble metals. He et al. [14] experimentally investigated Pt/ γ -Al₂O₃ catalysts in
49 various microreactor channel types for CH₄ combustion. They tested Pt loadings (1.5-5.0 wt%),
50 CH₄ flow rates (150-500 mL/min), O₂:CH₄ ratios (0.5-6.0), and temperatures (300-500 °C), finding
51 that CH₄ conversion increases with Pt loading but decreases with higher flow rates, especially at
52 higher loadings. The optimal O₂:CH₄ ratio was 1.5 (vs. the stoichiometric 2.0), balancing O₂
53 and CH₄ on the catalyst surface. The double serpentine channel design achieved the highest CH₄
54 conversion due to its larger coating area, longer residence time, and improved gas mixing. Hunt
55 et al. [15] studied ultra-lean CH₄ combustion in a wavy channel microreactor with Pt catalyst,
56 showing that strategic catalyst placement (using only 25% of the coating) achieved 60% of the
57 CO₂ production of fully coated channels. The wavy design increased CO₂ production rates, per
58 unit surface area of the catalyst, by up to 400% compared to straight channels, highlighting the
59 importance of channel configuration.

60 Dupont et al. [16] studied catalytic honeycomb monolith reactors with Pd and Pt catalysts for
61 CH₄ combustion, highlighting their critical role in ignition and steady-state operation for complete
62 CH₄ conversion to CO₂. They found that monolith length could be reduced by 70% (from 50.8 mm)
63 without performance loss, as the reaction zone is confined to the first 10-15 mm of the channels,
64 offering significant cost savings in noble metal usage. Higher flow rates, however, pushed the
65 reaction zone deeper into the monolith and reduced combustion stability [16]. Kumaresan et al. [17]
66 numerically studied lean CH₄ combustion in Pt-coated honeycomb monoliths, showing complete
67 CH₄ conversion within 42 mm at 400 °C, 3% fuel/air ratio, and 20 m/s inlet velocity. Higher
68 inlet temperatures and fuel/air ratios, combined with lower velocities, shifted the reaction zone
69 upstream, reducing the required reactor length. Deutschmann et al. [18] numerically investigated
70 CH₄ combustion on Pt foil using a detailed surface reaction mechanism, successfully predicting
71 complex phenomena like ignition, extinction, and hysteresis [18].

72 VAM systems face significant variability challenges due to ultra-lean CH₄ concentrations (0.1-
73 1.5%) and large ventilation air flows (100-300 m³/s) [19]. These variations, caused by mining
74 activities and underground pressure changes, affect gas quality, flow rate, and purity [4, 19].
75 Rahimi et al. [20] emphasised designing ventilation systems to account for gas emission uncertainties,
76 ensuring safety against fires, explosions, and financial losses from coal seam gas fluctuations.

77 Combustion systems for VAM must handle these uncertainties, as sudden flow reductions disrupt
78 combustion stability, while rapid CH₄ concentration increases risk equipment damage and higher
79 NO_x emissions [9]. Additionally, low-concentration CH₄ often contains contaminants like dust,
80 NO_x, H₂O, H₂S, and SO₂, which can poison and deactivate catalysts [9]. Catalyst deactivation in
81 monolithic reactors remains a challenge due to uncontrolled emissions and incomplete combustion
82 [21]. Temperature is critical, affecting reaction kinetics, catalyst activity, and stability. While
83 catalytic combustion occurs at lower temperatures [7], precise temperature control is essential to
84 avoid thermal stress, mechanical degradation, and accelerated deactivation [21, 22]. Uncontrolled
85 temperature variations, especially when using waste heat, further complicate system performance
86 [23]. These operational challenges underscore the need for systematic approaches to quantify and
87 manage uncertainty in catalytic fugitive methane combustion.

88 Although previous studies discussed the presence of uncertainty in VAM systems, there remains
89 a significant gap in the literature regarding systematic uncertainty quantification (UQ) in catalytic
90 ultra-lean CH₄ combustion applications. Both experimental and computational approaches inher-
91 ently contain unavoidable uncertainties, while traditional numerical models employ fixed param-
92 eters [24]. These uncertainties can be effectively quantified and reduced through mathematical
93 modelling techniques. Uncertainties generally fall into two categories: epistemic and aleatoric.
94 Epistemic uncertainty stems from lack of knowledge or information about the system and can
95 potentially be decreased through improved understanding and enhanced measurement technique.
96 Conversely, aleatoric uncertainty arises from the probabilistic nature of random processes and is
97 irreducible, even with complete system knowledge [25]. In this study, the computational frame-
98 work primarily focuses on epistemic uncertainty through the analysis of parametric variations in
99 inlet conditions (temperature, velocity, and concentration) and catalyst coating length. These
100 variations represent uncertainties that could theoretically be reduced with improved measurement,
101 control systems, and catalyst design. By quantifying how these epistemic uncertainties propa-
102 gate through the catalytic system, the parameters that contribute most significantly to variability
103 in methane conversion performance can be identified. Uncertainty quantification methods use
104 mathematical modelling to measure and manage uncertainties in experimental and computational
105 settings [24, 26, 27]. While Monte Carlo (MC) methods traditionally address epistemic uncer-
106 tainties, they are computationally expensive for complex models requiring large sample sizes [28].
107 Surrogate models, such as Gaussian processes [29, 30] or Polynomial Chaos Expansion (PCE)

[31, 32], provide efficient alternatives to computationally expensive MC methods for UQ. For complex simulations, UQ-PCE is more cost-effective and efficient than UQ-MC; several studies have successfully applied PCE-based UQ methods to combustion problems [33–36].

While PCE significantly improves efficiency for UQ, it still remains demanding for complex catalytic systems requiring high-fidelity simulations with detailed chemistry and transport phenomena. Soyler et al. [36] demonstrated this computational burden by using PCE for UQ in NH₃/H₂/N₂/air combustion, completing over 21,000 simulations (6000 CPU hours) on an HPC cluster. In a follow-up study, they performed 70,000 simulations to analyse uncertainties in partially cracked NH₃/syngas combustion [37]. Similarly, Zhang and Jiang [31, 38, 39] demonstrated the need for extensive simulations in PCE-based UQ for combustion research. This computational burden presents a significant obstacle to the practical implementation of UQ for real-world catalytic applications, particularly for real-time monitoring and control systems necessitating more efficient approaches. The novel integration of machine learning (ML) with UQ techniques offers a promising solution to overcome this limitation by drastically reducing computational costs while maintaining accuracy [40], and enabling robust analysis of uncertainty propagation in catalytic methane combustion systems. ML techniques efficiently capture complex relationships between uncertain parameters and system outputs, enabling analysis of non-linearities and interactions without extensive model evaluations. Recent research has explored various ML algorithms for combustion properties, including laminar flame speed (S_L) [41, 42], ignition delay time (IDT) [43], and reforming processes [44]. Amongst these approaches, artificial neural networks (ANNs) have proven their effectiveness in combustion applications and their ability to model highly non-linear relationships between multidimensional input and output spaces [45], making them especially suited for catalytic conversion processes where multiple interacting parameters influence reaction outcomes. ML-based UQ frameworks enable robust design and optimisation of catalytic reactors under varying conditions, making them particularly valuable for catalytic VAM systems, where real-time prediction and optimisation under uncertainty are critical for practical implementation.

To the best of authors' knowledge, no prior studies have explored ML-based UQ for catalytic combustion systems, revealing a significant research gap. While ML and UQ have been applied to combustion modelling, their integration for directly predicting uncertainty metrics in catalytic systems remains unexplored. This study addresses this gap by developing a novel ML framework to predict uncertainty bounds, sensitivity indices, and probabilistic performance metrics for catalytic

139 CH₄ oxidation. The specific objectives of this work include several key components. First, an
140 ML model (ANN) for predicting catalytic CH₄ conversion rates in monolith reactors is developed
141 and validated. Second, the effects of varying CH₄ concentration, inlet temperature, and inlet flow
142 velocity on uncertainty in CH₄ conversion are quantified by using a surrogate UQ method (PCE).
143 Third, the influence of catalyst deactivation on conversion performance and uncertainty propa-
144 gation is investigated. Fourth, dominant parameters driving uncertainty in ultra-lean catalytic
145 CH₄ combustion are identified. Finally, the computational efficiency of the PCE-ANN framework
146 compared to conventional approaches is demonstrated.

147 Once trained, the ML model delivers a remarkable computational advantage, reducing analy-
148 sis time from hours to seconds while preserving high-fidelity uncertainty predictions. This hybrid
149 PCE-ANN approach advances catalytic systems modelling in two crucial dimensions: theoretically,
150 by elucidating the nonlinear propagation mechanisms of parametric uncertainties through complex
151 surface reactions; and practically, by providing rapid assessment tools essential for robust fugitive
152 CH₄ oxidation technology design. By quantitatively mapping how input uncertainties transform
153 into performance variability, this framework establishes science-based safety margins, optimise
154 operating conditions, and implement targeted control strategies that maximise conversion reli-
155 ability while minimising catalyst deactivation. The resulting decision support capability addresses
156 a critical gap in the development of resilient catalytic combustion systems for GHG mitigation
157 applications.

158 2. Methodology

159 2.1. Uncertainty quantification method

160 In this work, PCE was employed to construct a surrogate model for UQ using the open-source
161 Uncertainty Quantification Toolkit (UQTK) version 3.1.4 [46]. The mathematical formulation of
162 the PCE surrogate model is briefly described below. The uncertainty in simulation parameters is
163 expressed as:

$$\theta_{\text{sample}} = \theta_{\text{mean}} \pm \sigma_{\theta} \times \xi_d \quad (1)$$

164 where θ_{sample} represents a randomly sampled set of parameters for catalytic CH₄ oxidation, such
165 as inlet temperature (T_{in}), inlet velocity (V_{in}), or equivalence ratio (ϕ). The mean values of these
166 parameters are denoted by θ_{mean} , and their standard deviations by σ_{θ} . The random variable

167 germs, $\xi_d = (\xi_{T_{\text{in}}}, \xi_{V_{\text{in}}}, \xi_\phi)$, are generated using orthogonal polynomials based on the distribution
 168 type [47, 48]. These germs represent the standardised basis for constructing PCE, where each
 169 element corresponds to a specific uncertain input parameter (inlet temperature, inlet velocity, and
 170 equivalence ratio, respectively). The orthogonal polynomials are selected to match the probability
 171 distribution of each parameter (Hermite polynomials for normal distributions and Legendre poly-
 172 nomials for uniform distributions), ensuring optimal convergence of the expansion. For this study,
 173 a Legendre-Uniform (LU) distribution was assumed, with random variables uniformly distributed
 174 in the interval $[-1, 1]$. The standard deviation of each parameter is calculated as follows:

$$\sigma_\theta = \theta_{\text{mean}} \times \gamma_\theta \quad (2)$$

175 where γ_θ represents the relative uncertainty: 5% for inlet velocity ($\gamma_{V_{\text{in}}} = 0.05$), 10% for equivalence
 176 ratio ($\gamma_\phi = 0.10$), and 2% for inlet temperature ($\gamma_{T_{\text{in}}} = 0.02$).

177 The number of quadrature points (ξ_d) is calculated as $(N_{\text{ord}})^d$, where $N_{\text{ord}} = P + 1$ is the
 178 expansion order, and d is the number of uncertain parameters. With $P = 5$, this results in
 179 $(5 + 1)^3 = 216$ quadrature points. Higher-order expansions can lead to excessive quadrature
 180 points without improving UQ results [36]. The selection of $P = 5$ was based on the authors'
 181 previous implementation in similar combustion UQ studies [36, 37], where they demonstrated that
 182 orders higher than $P = 5$ did not provide significant improvement in accuracy while substantially
 183 increasing computational cost. For this catalytic system with 3 uncertain parameters, $P = 5$ is
 184 sufficient to capture the output variance while maintaining computational load with 216 evaluation
 185 points per case.

186 The multidimensional PCE for catalytic CH_4 conversion is expressed as:

$$\beta_{\text{CH}_4} = \sum_{k=0}^P C_k \Psi_k(\xi_d) \quad (3)$$

187 where β_{CH_4} represents CH_4 conversion with quantified uncertainty, C_k are the PCE coefficients
 188 (spectral mode strengths), and $\Psi_k(\xi_d)$ are Legendre-Uniform orthogonal polynomials up to order
 189 P . The PCE coefficients are determined using the non-intrusive spectral projection (NISP) method
 190 via Gauss-Legendre quadrature integration:

$$C_k = \frac{1}{\langle \Psi_k^2(\xi) \rangle} \int_{-1}^1 \beta(\xi) \Psi_k(\xi) \pi(\xi) d\xi, \quad k = 0, \dots, P \quad (4)$$

191 where $\pi(\xi)$ is the probability density function, and ξ represents the germ samples for each input
192 parameter.

193 In addition to quantifying uncertainties in CH_4 conversion, a variance-based global sensitivity
194 analysis [49] was conducted to evaluate the impact of input uncertainties on output uncertainty.
195 This method assesses how individual parameter uncertainties contribute to the total uncertainty
196 in CH_4 conversion. The first-order sensitivity indices (S_i) are calculated as:

$$S_i = \frac{\sum C_i^2 \langle \Psi_i^2 \rangle}{\text{Var}[\beta]} \quad (5)$$

197 where (i) denotes a specific input parameter, and $\text{Var}[\beta]$ represents the total variance of CH_4
198 conversion. The total variance is expressed as:

$$\text{Var}[\beta] = \sum_{k>0} C_k^2 \langle \Psi_k^2 \rangle \quad (6)$$

199 2.2. Validation of Surface Reaction Mechanism

200 The surface reaction mechanism developed by Deutschmann et al. [50] was used, comprising 24
201 chemical reactions involving 11 surface species and 7 gas-phase species (Table 1). Pt catalyst was
202 modelled with a surface site density (Γ) of $2.72 \times 10^9 \text{ mol/cm}^2$, where Pt(s) represents uncovered
203 surface sites available for adsorption.

204 The mechanism was validated using two models: a stagnation-flow reactor (SFR) and a plug-
205 flow reactor (PFR). The SFR configuration, where gas flow impinges perpendicularly onto a cat-
206 alytic surface, is ideal for studying gas-surface interactions and reaction kinetics. Its 1D nature
207 simplifies analysis by focusing on the centreline, where variables depend only on the distance from
208 the surface, making it suitable for validating detailed reaction mechanisms [18].

209 For catalytic CH_4 combustion simulations in a SFR, Cantera [51] was used to solve the surface
210 chemistry reactions. The simulations were conducted under specified initial conditions to validate
211 the surface reaction mechanism. A premixed gas mixture of 9.5% CH_4 in air was introduced with a
212 uniform inlet velocity of 6 cm/s at 100 mm from the catalytic surface. The initial CH_4 -air mixture
213 and surface temperatures were set to 300 K and 1000 K, respectively, under atmospheric pressure.

214 The surface reaction mechanism was validated against the results of Deutschmann et al. [18]
215 using an SFR configuration. Fig. 1 compares species mole fractions as a function of distance
216 from the catalytic surface. The continuous lines represent the current numerical results, while the

Table 1: Surface reaction mechanism for CH_4 combustion over Pt catalyst from Deutschmann et al. [50].

	Reaction	A (cm, mol, s)	n	E_a (kJ/mol)	ε_i, μ_i (kJ/mol)
(1)	$\text{H}_2 + 2\text{Pt}(\text{s}) \rightarrow 2\text{H}(\text{s})$	4.60×10^{-2}			$\mu_{\text{Pt}(\text{s})} = -1^*$
(2)	$2\text{H}(\text{s}) \rightarrow \text{H}_2 + 2\text{Pt}(\text{s})$	3.70×10^{21}	0.0	67.4	$\varepsilon_{\text{H}(\text{s})} = 6$
(3)	$\text{H} + \text{Pt}(\text{s}) \rightarrow \text{H}(\text{s})$	1.00*			
(4)	$\text{O}_2 + 2\text{Pt}(\text{s}) \rightarrow 2\text{O}(\text{s})$	1.80×10^{21}	-0.5	0.0	
(5)	$\text{O}_2 + 2\text{Pt}(\text{s}) \rightarrow 2\text{O}(\text{s})$	$2.30 \times 10^{-2*}$			
(6)	$2\text{O}(\text{s}) \rightarrow 2\text{Pt}(\text{s}) + \text{O}_2$	3.70×10^{21}	0.0	213.2	$\varepsilon_{\text{O}(\text{s})} = 60$
(7)	$\text{O} + \text{Pt}(\text{s}) \rightarrow \text{O}(\text{s})$	1.00*			
(8)	$\text{H}_2\text{O} + \text{Pt}(\text{s}) \rightarrow \text{H}_2\text{O}(\text{s})$	0.75*			
(9)	$\text{H}_2\text{O}(\text{s}) \rightarrow \text{H}_2\text{O} + \text{Pt}(\text{s})$	1.00×10^{13}	0.0	40.3	
(10)	$\text{OH} + \text{Pt}(\text{s}) \rightarrow \text{OH}(\text{s})$	1.00*			
(11)	$\text{OH}(\text{s}) \rightarrow \text{OH} + \text{Pt}(\text{s})$	1.00×10^{13}	0.0	192.8	
(12)	$\text{O}(\text{s}) + \text{H}(\text{s}) \rightarrow \text{OH}(\text{s}) + \text{Pt}(\text{s})$	3.70×10^{21}	0.0	11.5	
(13)	$\text{H}(\text{s}) + \text{OH}(\text{s}) \rightarrow \text{H}_2\text{O}(\text{s}) + \text{Pt}(\text{s})$	3.70×10^{21}	0.0	17.4	
(14)	$\text{OH}(\text{s}) + \text{OH}(\text{s}) \rightarrow \text{H}_2\text{O}(\text{s}) + \text{O}(\text{s})$	3.70×10^{21}	0.0	48.2	
(15)	$\text{CO} + \text{Pt}(\text{s}) \rightarrow \text{CO}(\text{s})$	$8.40 \times 10^{-1*}$			$\mu_{\text{Pt}(\text{s})} = 1$
(16)	$\text{CO}(\text{s}) \rightarrow \text{CO} + \text{Pt}(\text{s})$	1.00×10^{13}	0.0	125.5	
(17)	$\text{CO}_2(\text{s}) \rightarrow \text{CO}_2 + \text{Pt}(\text{s})$	1.00×10^{13}	0.0	20.5	
(18)	$\text{CO}(\text{s}) + \text{O}(\text{s}) \rightarrow \text{CO}_2(\text{s}) + \text{Pt}(\text{s})$	3.70×10^{21}	0.0	105.0	
(19)	$\text{CH}_4 + 2\text{Pt}(\text{s}) \rightarrow \text{CH}_3(\text{s}) + \text{H}(\text{s})$	$1.00 \times 10^{-2*}$			$\mu_{\text{Pt}(\text{s})} = 0.3$
(20)	$\text{CH}_3(\text{s}) + \text{Pt}(\text{s}) \rightarrow \text{CH}_2(\text{s}) + \text{H}(\text{s})$	3.70×10^{21}	0.0	20.0	
(21)	$\text{CH}_2(\text{s}) + \text{Pt}(\text{s}) \rightarrow \text{CH}(\text{s}) + \text{H}(\text{s})$	3.70×10^{21}	0.0	20.0	
(22)	$\text{CH}(\text{s}) + \text{Pt}(\text{s}) \rightarrow \text{C}(\text{s}) + \text{H}(\text{s})$	3.70×10^{21}	0.0	20.0	
(23)	$\text{C}(\text{s}) + \text{O}(\text{s}) \rightarrow \text{CO}(\text{s}) + \text{Pt}(\text{s})$	3.70×10^{21}	0.0	62.8	
(24)	$\text{CO}(\text{s}) + \text{Pt}(\text{s}) \rightarrow \text{C}(\text{s}) + \text{O}(\text{s})$	1.00×10^{18}	0.0	184.0	

$k = AT^n e^{(-E_a/RT)}$, k is the rate constant for the reaction, A is the Arrhenius constant, n is the temperature exponent, E_a is the activation energy for the reaction, and R is the universal gas constant.

ε_i and μ_i are the rate coefficient dependences on the surface coverage.

* symbol represents the sticking coefficient.

marker points show data from Deutschmann et al. [18]. The simulation captures the key features of species evolution: O_2 and CH_4 are consumed near the surface, while CO_2 and H_2O are formed. A small amount of CO appears as an intermediate species, peaking near the surface before being oxidised to CO_2 . The excellent agreement between the simulations and reference data validates the implementation of the surface reaction mechanism.

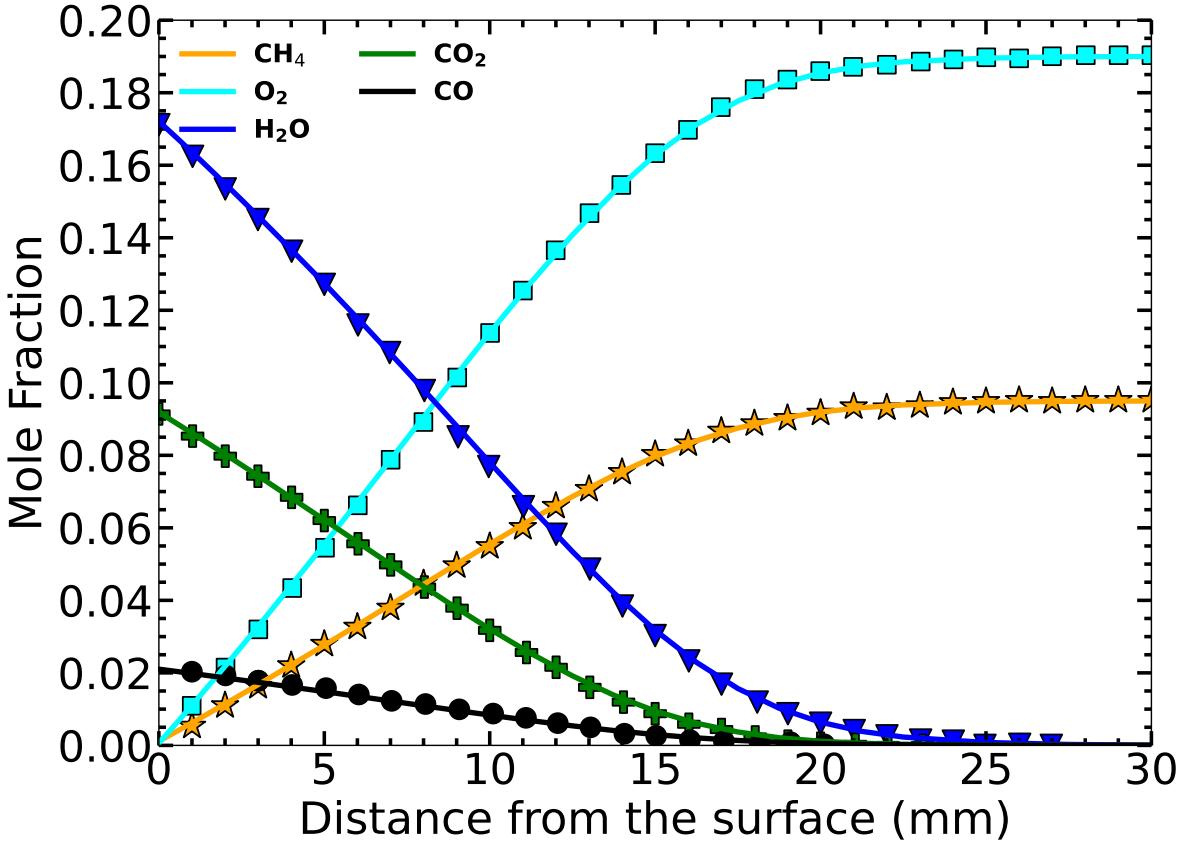


Figure 1: Validation of surface reaction mechanism using SFR simulations. Continuous lines represent numerical results from this study, while markers denote reference data from Deutschmann *et al.* [18].

The PFR represents a steady-state 1D flow system where species concentrations and temperature vary along the reactor length without diffusion. In this model, the reaction mixture flows uniformly at constant velocity, ensuring complete radial mixing and no backflow. The PFR is particularly suitable for catalytic systems, as surface reactions at the wall promote radial mixing. Its computational efficiency makes it an excellent tool for validating detailed kinetic mechanisms under steady-state conditions.

In this work, catalytic CH₄ combustion simulations were performed in a single-channel PFR with a length of 200 mm and a hydraulic diameter of 1.27 mm. The reactor simulated lean premixed CH₄-air combustion over a Pt catalyst at atmospheric pressure. Cantera was used to model the PFR as a chain of 201 continuous stirred-tank reactors (CSTRs). The governing equations for the 1D steady-state PFR model are detailed elsewhere [51]. The first CSTR was fed a lean CH₄/air mixture (fuel/air ratio 2.94%) at an inlet temperature of 645 °C and an inlet velocity of 16.7 m/s.

The surface reaction mechanism from Deutschmann *et al.* [50] was further validated against the results of Kumaresan and Kim [17] using a PFR configuration. Fig. 2 compares the current

236 results (continuous lines) with data from Kumares and Kim [17] (marker points). Initially, the
 237 Pt surface is predominantly covered by adsorbed oxygen O(s), with a coverage of approximately
 238 0.9 at the reactor entrance.

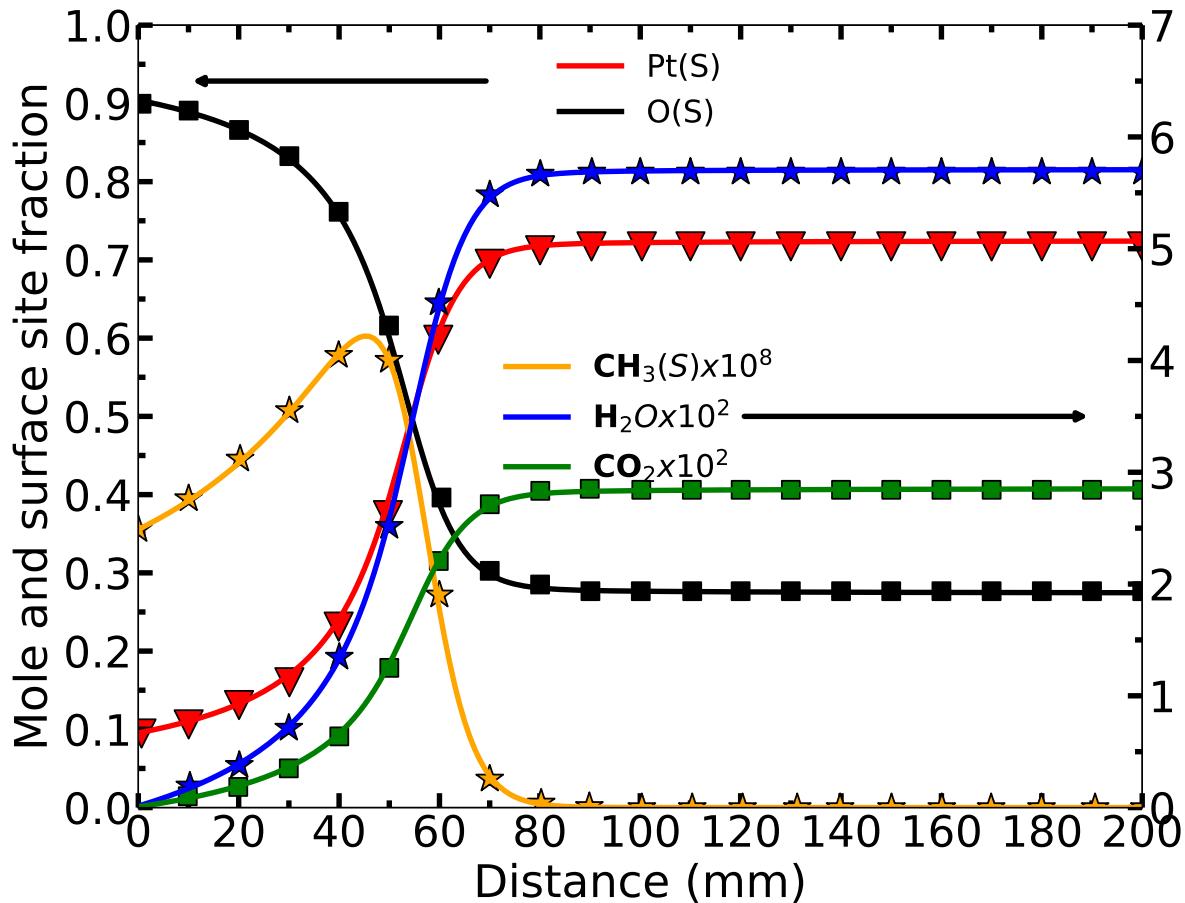


Figure 2: Validation of Deutschmann's surface mechanism with the results from Kumares and Kim by using PFR reactor. Continuous lines are from this study, marker points are from Kumares and Kim [17].

239 As reactions proceed, O(s) coverage decreases while free Pt(s) increases, stabilising at about
 240 0.7 after 60 mm. The adsorbed methyl species CH₃(s) (scaled by 10⁸ for clarity) peaks at 40-50
 241 mm, indicating the region of most active CH₄ decomposition, before being consumed in subsequent
 242 reactions. The formation of CO₂ and H₂O (scaled by 10² for clarity) increases until reaching steady-
 243 state values after about 80 mm. The excellent agreement between our simulations and the reference
 244 data validates both the surface mechanism implementation and the PFR model assumptions in
 245 the specified conditions.

246 2.3. Machine learning (ML)

247 In this work, ML models were developed to predict how variations in input parameters affect
 248 ultra-lean catalytic CH_4 conversion rates, efficiently capturing complex reaction behaviours under
 249 different operational conditions. This section describes the data generation process, including
 250 associated uncertainties for 1D simulations using Cantera, followed by an introduction to the
 251 ANN methodology. Fig. 3 presents a detailed overview of the PCE-ANN framework employed
 252 in this study, illustrating the integration of UQTk, Cantera, ANN development, and potential
 253 applications.

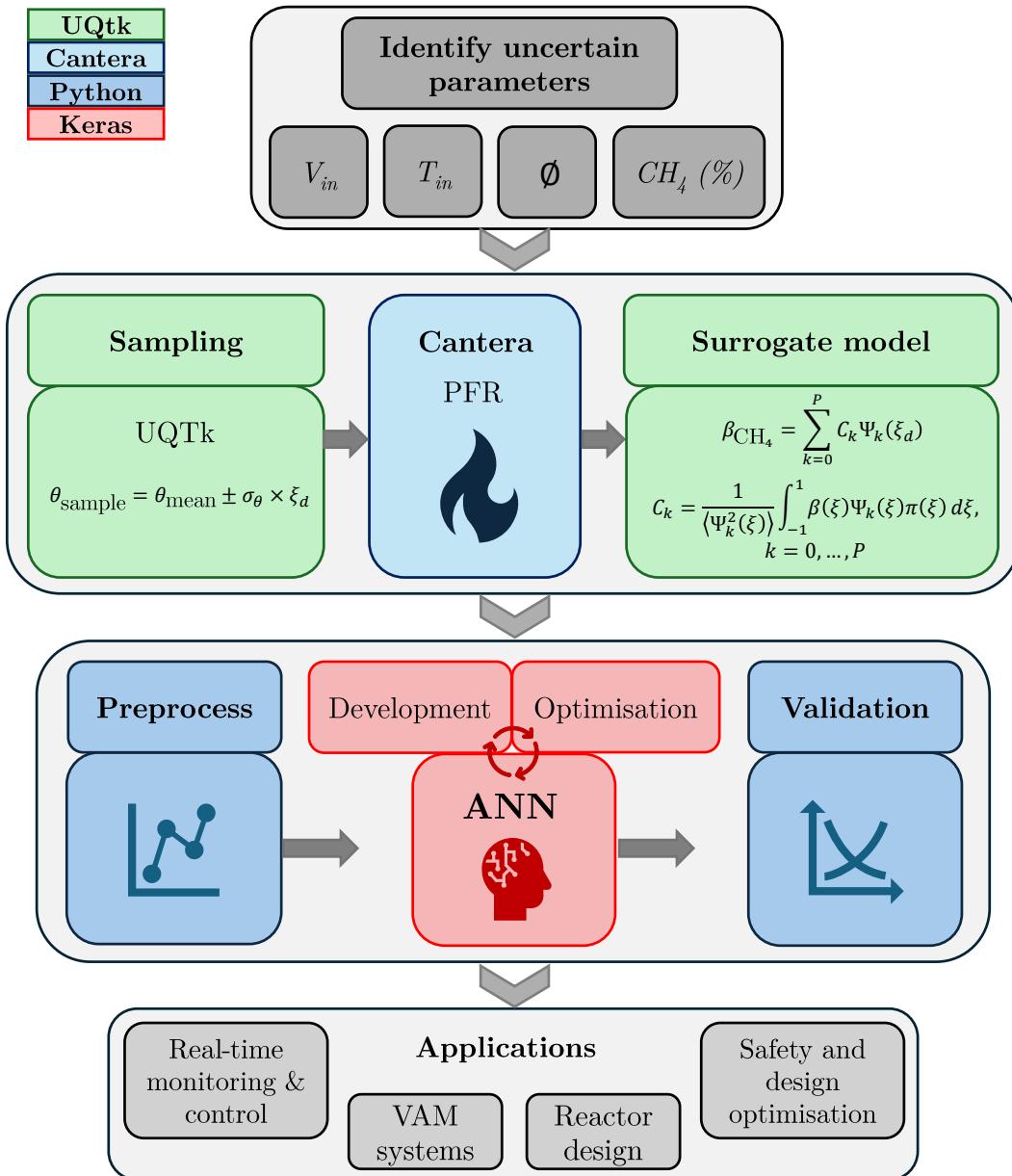


Figure 3: Overview of the PCE-ANN framework with potential applications.

254 *2.3.1. Data Generation*

255 Honeycomb monolith reactors are widely used for emission reduction due to their high surface
 256 area, low pressure drop, uniform flow distribution, thermal stability, durability, and versatility [52].
 257 These reactors consist of numerous small-diameter channels coated with catalysts on their interior
 258 surfaces. In this work, a single channel is analysed, as each channel exhibits similar behaviour [50].

259 To train the ML models, operational input parameters with associated uncertainties were gen-
 260 erated using UQTK software, and a comprehensive dataset was created through 1D simulations
 261 in Cantera [51]. The simulations focused on ultra-lean catalytic CH₄ combustion in a PFR, rep-
 262 resenting one channel of a honeycomb monolith reactor. A total of 180 cases were investigated,
 263 examining four key operational parameters (Table 2): CH₄ concentration in ventilation air (%),
 264 T_{in}, V_{in}, and catalyst length (R_c) in mm.

265 Ultra-lean CH₄ concentrations ranged from 0.2% to 1.3% in air, with $\pm 10\%$ uncertainty, re-
 266 flecting varying emission scenarios and corresponding to ϕ of 0.017 to 0.138. Inlet temperatures
 267 varied from 800 K to 1000 K ($\pm 2\%$ uncertainty), as temperature significantly impacts reaction
 268 kinetics and catalyst performance. Temperatures below 800 K were avoided due to insufficient
 269 O₂ desorption for CH₄ adsorption, while temperatures above 1200 K promote homogeneous CH₄
 270 combustion without a catalyst [9]. Additionally, PtO₂, formed during catalytic oxidation, becomes
 271 unstable below 700 K [53], and temperatures above 900 K risk catalyst degradation and thermal
 272 NO_x formation. Inlet velocities ranged from 0.8 to 1.2 m/s ($\pm 5\%$ uncertainty), capturing the
 273 effects of flow velocity on CH₄ conversion, residence time, and heat transfer.

Table 2: Data parameters with applied uncertainty used in ANN algorithm for 1D simulations.

CH ₄ (%) $\pm 10\%$			T _{in} (K)	V _{in} (m/s)	Catalyst length(mm)
CH ₄ % in the air	Equivalence Ratio (ϕ) Min/max	Mean	$\pm 5\%$	$\pm 2\%$	
1.3	0.138/0.113	0.125			
0.9	0.095/0.078	0.086	800-1000	0.8, 1.0, and 1.2	20, 30, and 50
0.6	0.063/0.052	0.057			
0.2	0.021/0.017	0.019			

274 The UQ for each case required 216 individual simulations ($(5+1)^3 = 216$), as detailed in Section
 275 2.1, due to the propagation of uncertainties through the system. This resulted in a total of 38,880
 276 data points, sufficient for training reliable ANN models and accurately quantifying uncertainties.

277 *2.3.2. Model Development and Optimisation*

278 The relationship between ANN performance and architectural complexity is highly problem-
279 dependent, necessitating a systematic evaluation of various configurations. Prior to ANN training,
280 the input dataset underwent power transformation for normalisation and random shuffling to
281 prevent sequence-based biases. Training employed a batch size of 128, a maximum of 3000 epochs,
282 an initial learning rate of 5×10^{-3} with a decay rate of 1×10^{-4} , and the Adam optimiser
283 with early stopping after 100 consecutive epochs without improvement in the loss function. The
284 Rectified Linear Unit (ReLU) activation function was used across all hidden layers to mitigate
285 gradient vanishing issues. The loss function, mean absolute error (MAE), is defined as:

$$\text{MAE} = \frac{1}{m} \sum_{i=1}^m |\text{CH}_4\% - \widehat{\text{CH}_4\%}| \quad (7)$$

286 For ANN architecture optimisation, a design space of 2 to 10 layers and 4 to 40 neurons per
287 layer was explored, encompassing 81 distinct ANN evaluations. This hyper-parameter optimi-
288 sation study was completed in approximately 6 hours using an NVIDIA RTX 2000 Ada GPU,
289 demonstrating the efficiency of modern computational resources.

290 The validation set loss term landscape (Fig. 4) revealed optimal configurations for predictive
291 performance. The lowest MAE values were concentrated in regions with shallow networks (3-5
292 layers) and 10-15 neurons. The highest accuracy was achieved with a 4-layer, 32-neuron configu-
293 ration (marked with a red star), chosen for the remainder of this study (Fig. 5). This architecture
294 achieved an MAE of 0.062 with a minimal generalisation gap between train and validation losses.
295 Networks with increased depth (5-10 layers) maintained stable performance across various neuron
296 counts, suggesting width contributes more significantly to robustness than depth. The steepest
297 error gradients occurred in the lower left corner, where the MAE values rapidly increased to 0.60
298 and above, indicating inadequate fitting. These findings highlight the importance of systematic
299 hyper-parameter optimisation in ANN design.

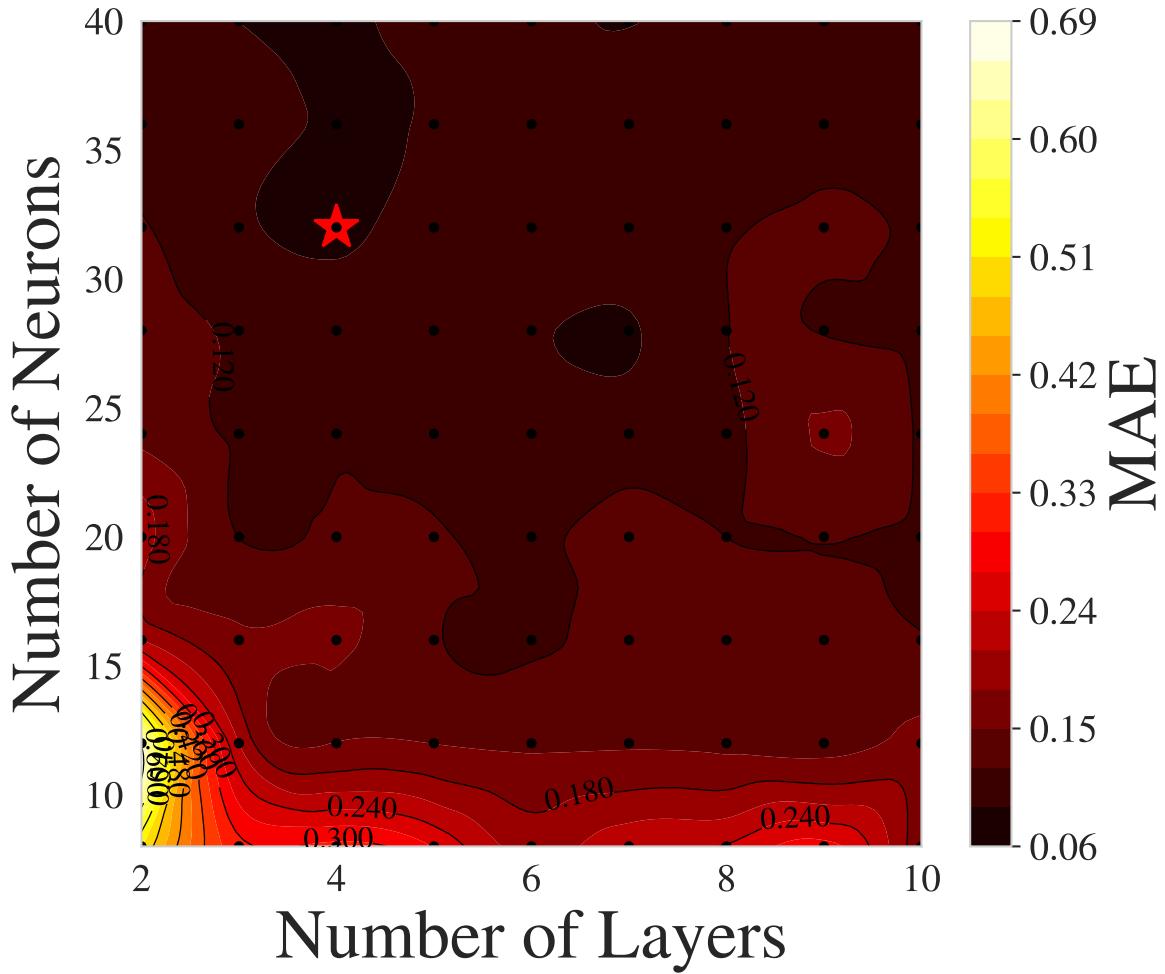


Figure 4: Accuracy map of ANN architectures in terms of neurons per hidden layer and hidden layers, represented by loss term on the validation set. The red star indicates the lowest MAE, while black circles denote individual ANN evaluations.

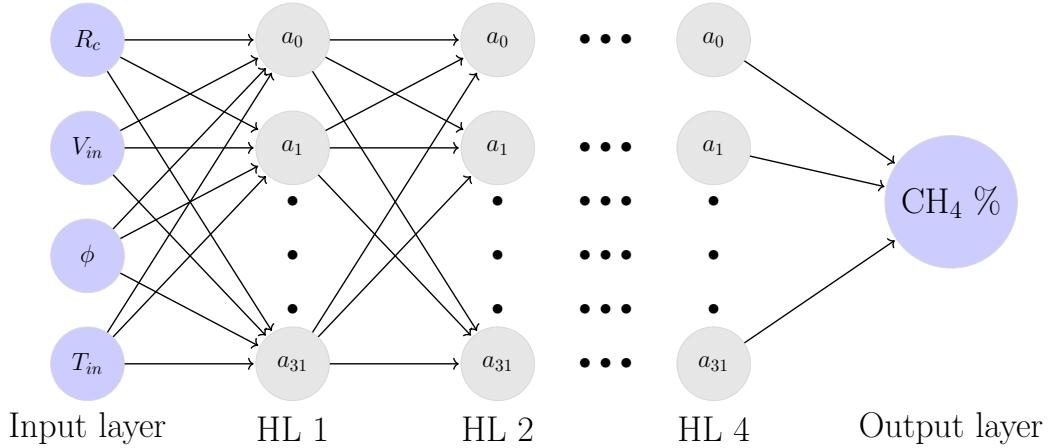


Figure 5: Schematic of the optimised neural network structure for the given dataset.

300

To ensure robust model validation, a 5-fold cross-validation strategy was implemented using

301 R^2 scoring (Eq. (8)) as the evaluation metric on the final model. The cross-validation results
302 demonstrated negligible standard deviation and achieved $\overline{R^2} = 0.995 \pm 0.002$ with $\overline{MAE} = 0.068$
303 ± 0.013 .

$$R^2 = 1 - \frac{\sum_{i=1}^m (CH_4\%_i - \widehat{CH_4\%}_i)^2}{\sum_{i=1}^m (CH_4\%_i - \overline{CH_4\%})^2} \quad (8)$$

304 The model's predictive accuracy was evaluated by comparing predicted values against ground
305 truth data for the test set (Fig. 6). The comparison plot shows excellent agreement between predic-
306 tions and actual values across the full range of CH₄ conversion rates (0-100%). Data points closely
307 follow the ideal diagonal line, indicating strong predictive performance. The colour gradient, repre-
308 senting temperature (800-1100 K), demonstrates consistent accuracy across all temperature ranges,
309 with no significant bias or degradation at extremes. The tight clustering of test set predictions
310 along the diagonal confirms the model's ability to generalise to unseen data without over fitting,
311 validating the chosen architecture and training parameters.

312 In terms of computational performance, a direct quantitative comparison is not rigorous due
313 to differences in compute resources. Training of the final ML model took around 10 CPU hours
314 on a 13th Gen Intel i7-13850HX CPU. Once trained, the ANN model achieves remarkably fast
315 batch inference, processing the entire training dataset of 38,800 data points in 0.2 seconds on a
316 single CPU, while data generation required approximately 2,500 CPU hours on a high-performance
317 computing cluster.

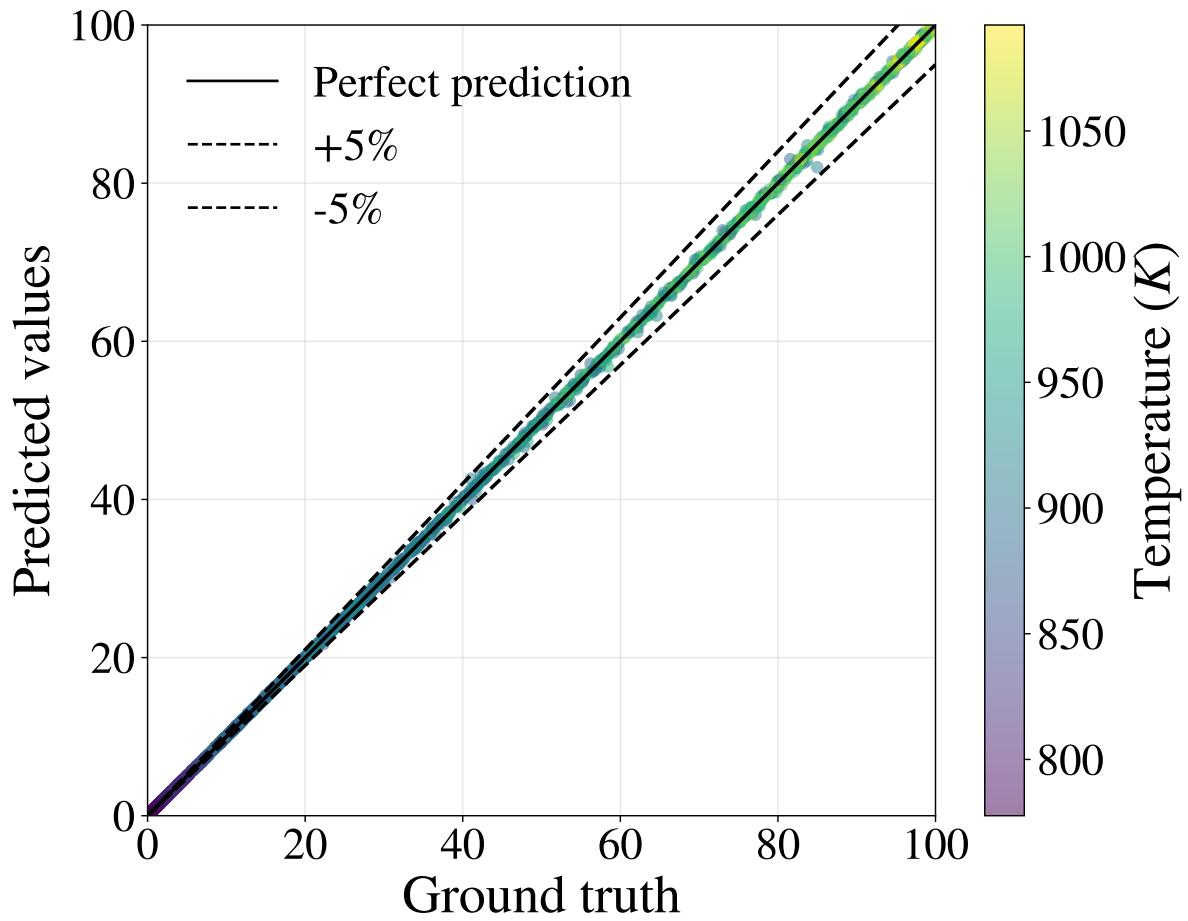


Figure 6: Ground truth versus predicted values for the test set using the optimal ANN architecture. The dashed lines represent $\pm 5\%$ of the ground truth values.

318 2.3.3. Model Validation

319 The ML model was validated against 1D Cantera simulations by comparing probability density
 320 functions (PDFs) of CH_4 conversion for different operating conditions. The Cantera simulations
 321 used a PFR model, which assumes perfect radial mixing and considers axial variations in species
 322 concentrations and temperature. This model is suitable for monolithic reactor channels due to their
 323 high length-to-diameter ratio and laminar flow conditions. In UQ studies, validating PDF results
 324 is critical, as it demonstrates the model's ability to predict the mean values and the complete
 325 distribution of outcomes and their likelihood. This is essential for understanding uncertainty
 326 propagation and assessing prediction reliability under varying conditions.

327 Fig. 7 compares PDFs for various inlet velocities ($V_{in} = 0.8, 1.0, \text{ and } 1.2 \text{ m/s}$) and temperatures
 328 (850 K to 950 K). The ML model shows excellent agreement with Cantera results across all condi-
 329 tions, accurately capturing both the magnitude and shape of the PDF distributions. This indicates
 330 that the ML model has successfully learned the underlying uncertainty propagation mechanisms
 331 in the system.

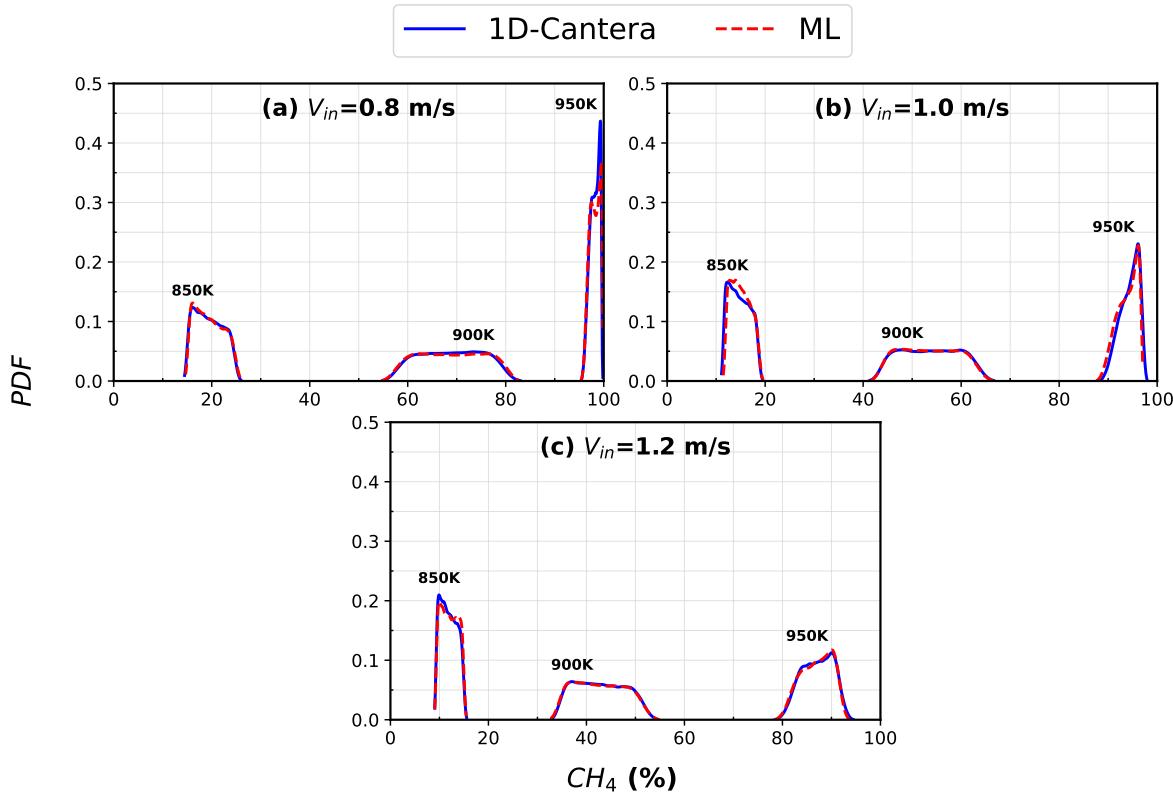


Figure 7: Validation of CH_4 conversion from Cantera and ML at different T_{in} and V_{in} : (a) 0.8 m/s, (b) 1.0 m/s, (c) 1.2 m/s.

332 **3. Results and Discussion**

333 *3.1. Effects of CH₄ Concentration in Air*

334 The effects of CH₄ concentration on the uncertainty in CH₄ conversion were analysed for various
335 T_{in}, with a constant coated channel length of 50 mm and V_{in} of 0.8 m/s. Fig. 8 shows CH₄ con-
336 version as a function of T_{in}, where continuous lines represent mean conversion values, and shaded
337 areas indicate uncertainty bands. Both CH₄ concentration and T_{in} significantly influence the con-
338 version rate and its uncertainty. As concentration increases from 0.6% to 1.3%, the coefficient of
339 variance (C_V) peaks at approximately 75% at 850 K for 1.3% CH₄, indicating higher variability in
340 conversion rates. However, uncertainty decreases significantly at elevated temperatures (>950 K),
341 regardless of CH₄ concentration, demonstrating more stable operations at higher temperatures.

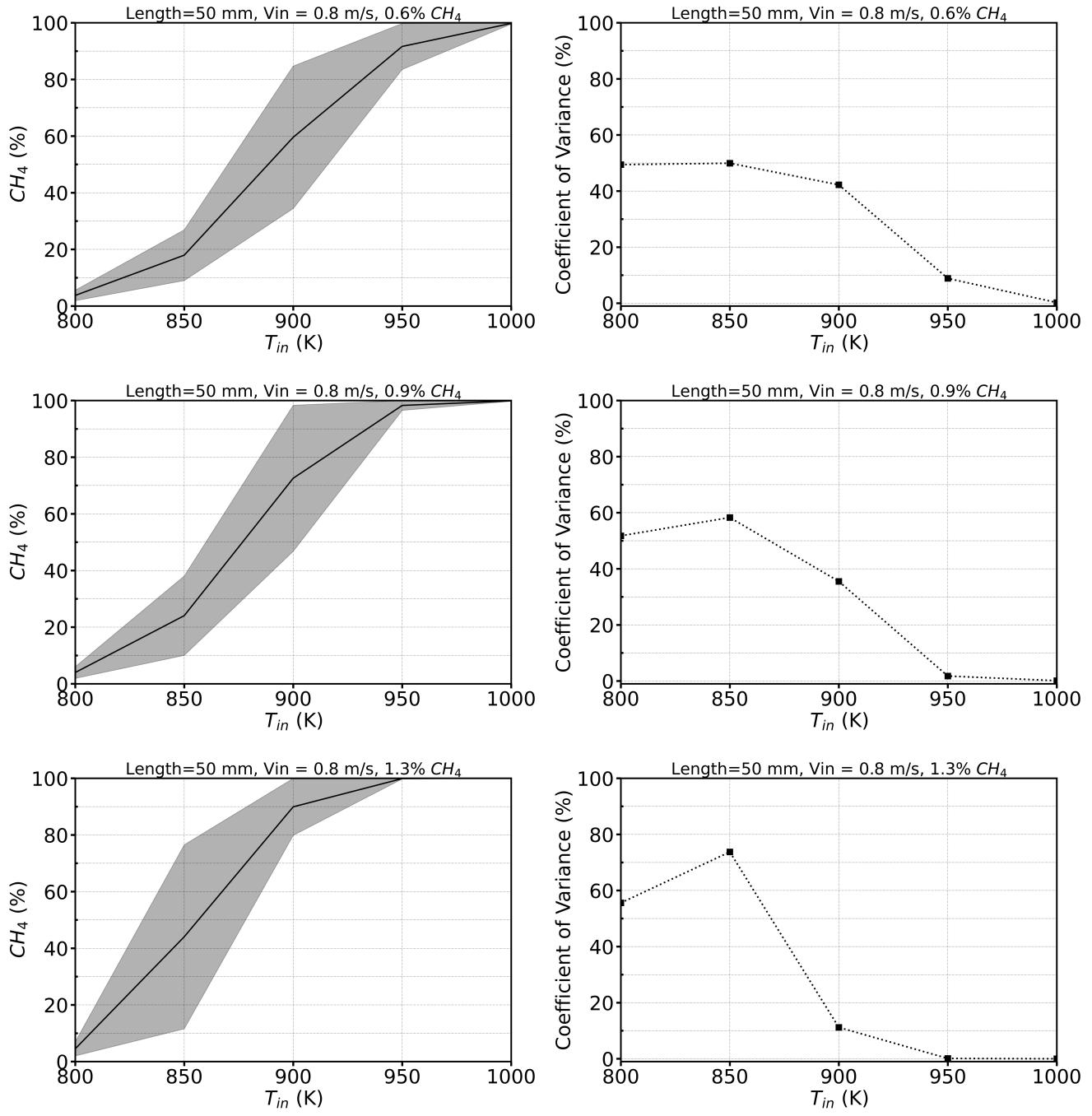


Figure 8: Effect of uncertainty on CH₄ conversion for different inlet temperatures. Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

342 For further insight, Fig. 9 shows PDFs of CH_4 conversion rates at various temperatures and
 343 CH_4 concentrations. At lower T_{in} (850 K), PDFs for higher CH_4 concentrations exhibit wider
 344 distributions, consistent with the uncertainty bands in Fig. 8. As T_{in} increases, PDFs for higher
 345 CH_4 concentrations become narrower and sharply peaked in the high conversion region (80-100%),
 346 supporting the stability of CH_4 conversion at elevated temperatures.

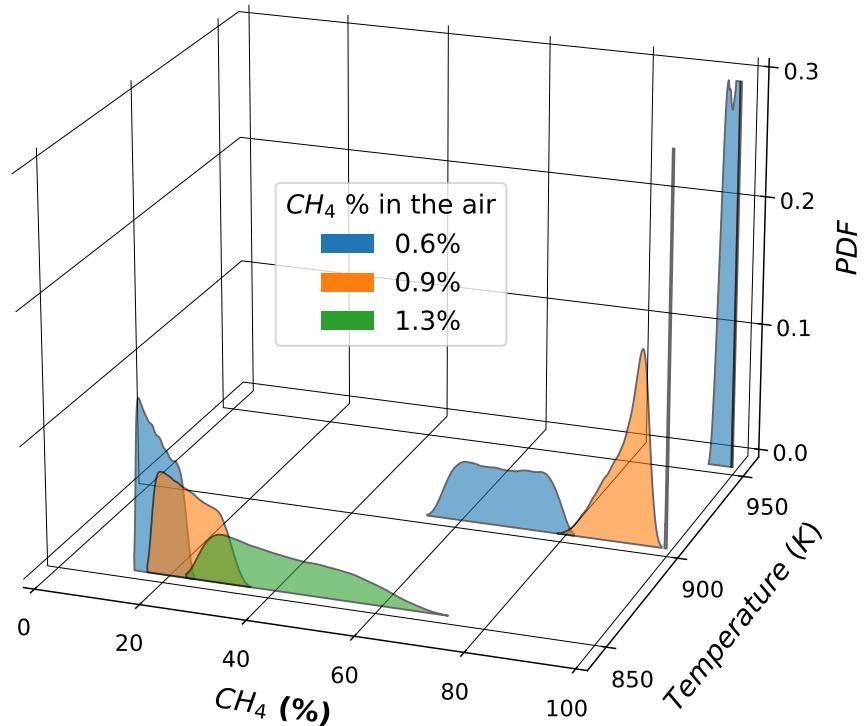


Figure 9: PDFs for different CH_4 concentrations in air at various temperatures.

347 *3.2. Effects of Inlet Velocity (V_{in})*

348 Inlet velocity, which controls ventilation air flow, is critical for safety and emission control
 349 in industrial settings. Higher ventilation rates ensure safer conditions by diluting CH_4 below
 350 explosive limits but reduce catalytic conversion efficiency by decreasing residence time. The effect
 351 of V_{in} on CH_4 conversion uncertainty was analysed for three velocities (0.8, 1.0, and 1.2 m/s) at a
 352 constant CH_4 concentration of 0.6% and a catalyst-coated channel length of 50 mm. Fig. 10 shows
 353 that CH_4 conversion rates are consistently higher at lower V_{in} , attributed to increased residence
 354 time. While C_V values are similar (around 50%) at 800 K, they diverge with increasing T_{in} . For

355 $V_{in} = 0.8 \text{ m/s}$, C_V decreases rapidly to 10% at 950 K, whereas higher V_{in} (1.0 and 1.2 m/s) show
 356 slower decreases, reaching 17% and 22%, respectively. These results highlight the trade-off between
 357 safety and conversion efficiency, emphasising the need to optimise operating temperatures based
 358 on ventilation rates.

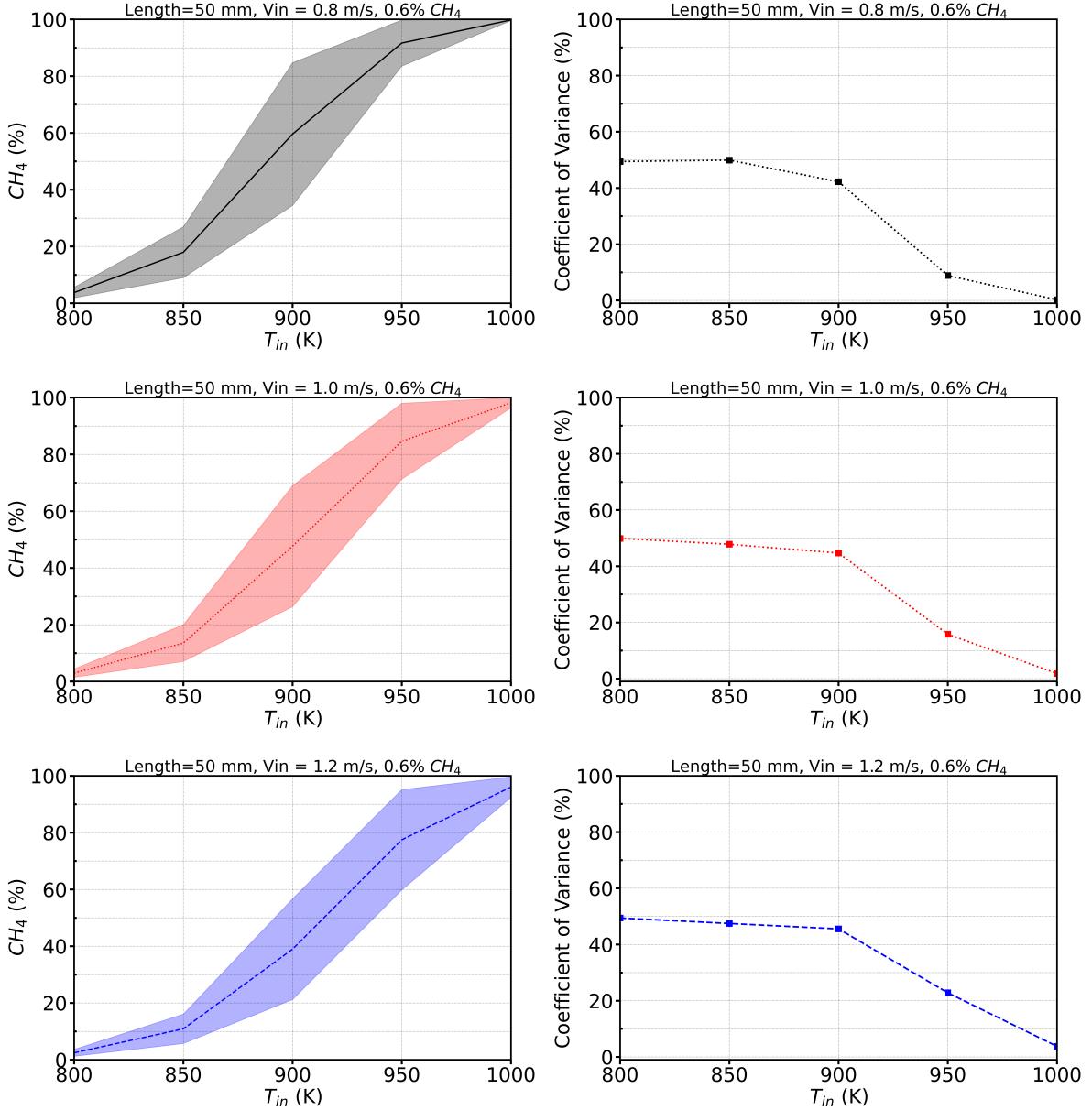


Figure 10: Comparison of uncertainty effects on CH_4 conversion for 0.6% CH_4 in air at different inlet velocities. Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

359 For further analysis, Fig. 11 shows PDFs of CH_4 conversion at different V_{in} and T_{in} for a 50
 360 mm catalyst-coated reactor with 0.6% CH_4 in air. At 950 K, CH_4 conversion exhibits reduced
 361 uncertainty with narrower PDFs at lower V_{in} . However, at 900 K, PDFs are wider and less

362 stable regardless of V_{in} , highlighting the importance of temperature control in achieving consistent
 363 conversion rates.

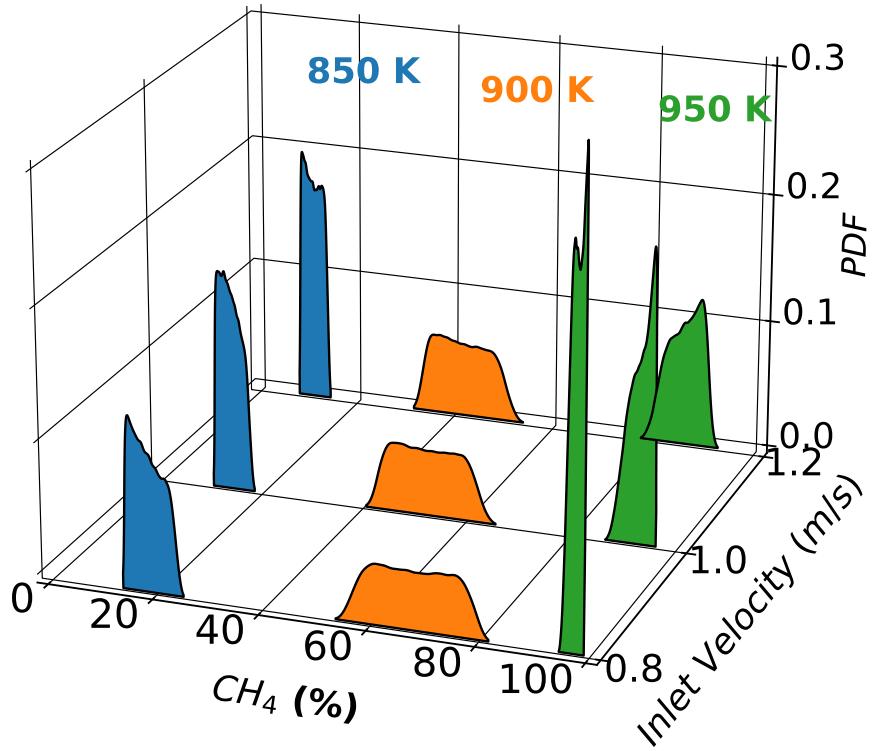


Figure 11: PDF comparison of CH_4 conversion for different T_{in} and V_{in} for a 50 mm catalyst-coated reactor with 0.6% CH_4 in air.

364 *3.3. Effect of Inlet Temperature (T_{in})*

365 Inlet temperature plays a crucial role in CH_4 conversion, as higher temperatures enhance cat-
 366 alyst activity, promoting more complete conversion. Fig. 12 shows the effects of T_{in} on CH_4
 367 conversion rates and their associated uncertainties for different CH_4 concentrations. At lower T_{in}
 368 (850 K), CH_4 conversion rates are low due to limited catalytic activity, increasing gradually from
 369 15% at 0.2% CH_4 to 45% at 1.3% CH_4 . Uncertainty also increases with T_{in} , peaking at 75% for
 370 1.3% CH_4 , consistent with the discussion in **Section 3.1**. At higher T_{in} (>900 K), C_V decreases
 371 with CH_4 concentration, indicating more stable conversion. For $T_{in} = 950$ K, CH_4 conversion rates
 372 reach 60-100%, with complete conversion at 1.3% CH_4 , demonstrating that elevated temperatures
 373 enhance both conversion rates and process stability.

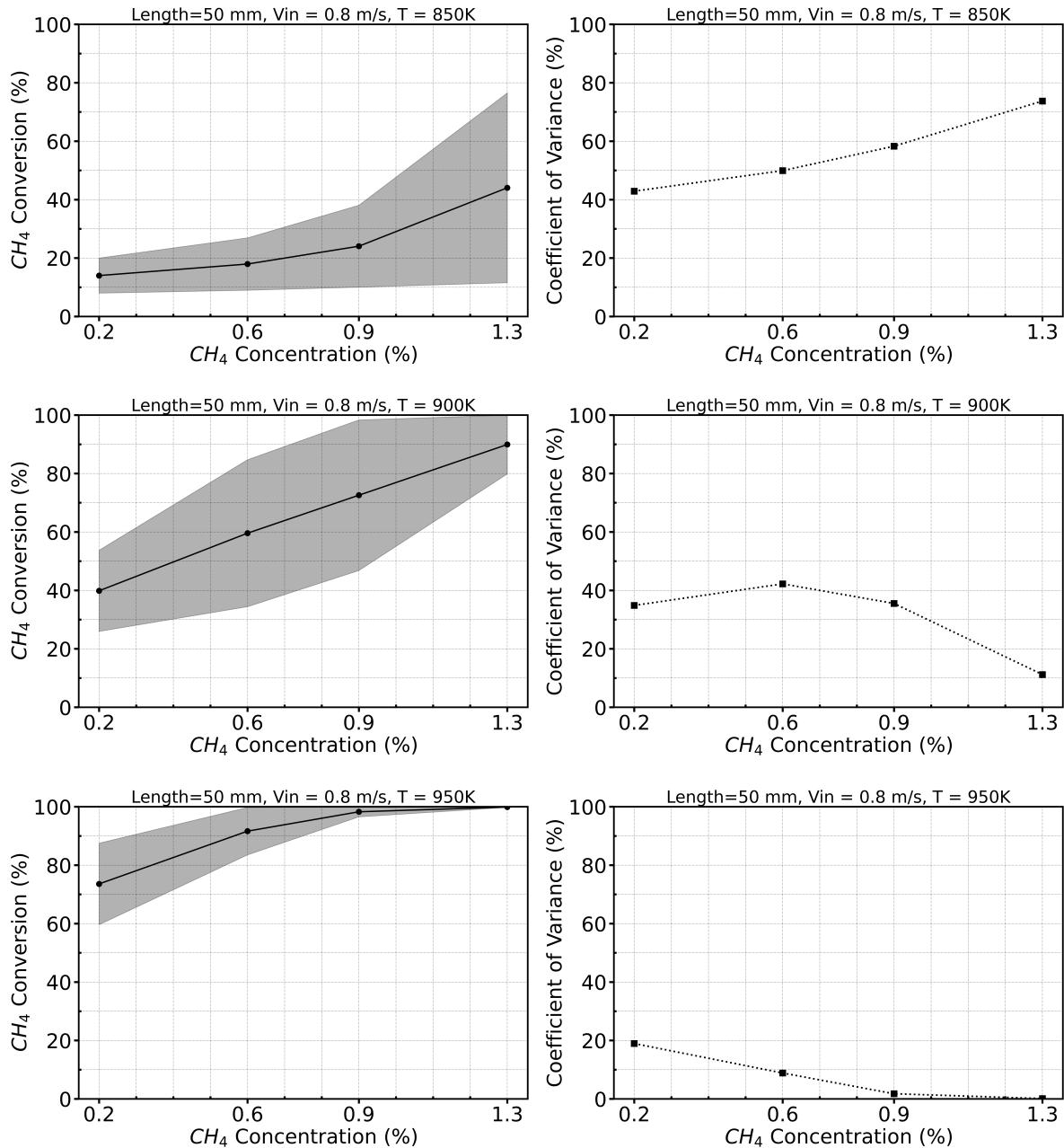


Figure 12: Effect of uncertainty on CH_4 conversion for different CH_4 concentrations in air at various temperatures. Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

374 While V_{in} affects CH_4 conversion uncertainty by influencing residence time, T_{in} has a more
 375 fundamental impact. Fig. 13 shows the main sensitivity analysis for various T_{in} and CH_4 concen-
 376 trations (0.2% to 1.3%) at different V_{in} . T_{in} is the primary contributor to uncertainty, especially
 377 at lower T_{in} and CH_4 concentrations. Its contribution decreases with increasing T_{in} and CH_4
 378 concentration, while the impact of CH_4 concentration (ϕ) and V_{in} becomes more significant. At
 379 higher T_{in} (950 K) and CH_4 concentrations, the order of contribution to uncertainty is $T_{in} > \phi$
 380 $> V_{in}$, highlighting the importance of temperature control for stability at lower equivalence ratios
 381 and flow velocities.

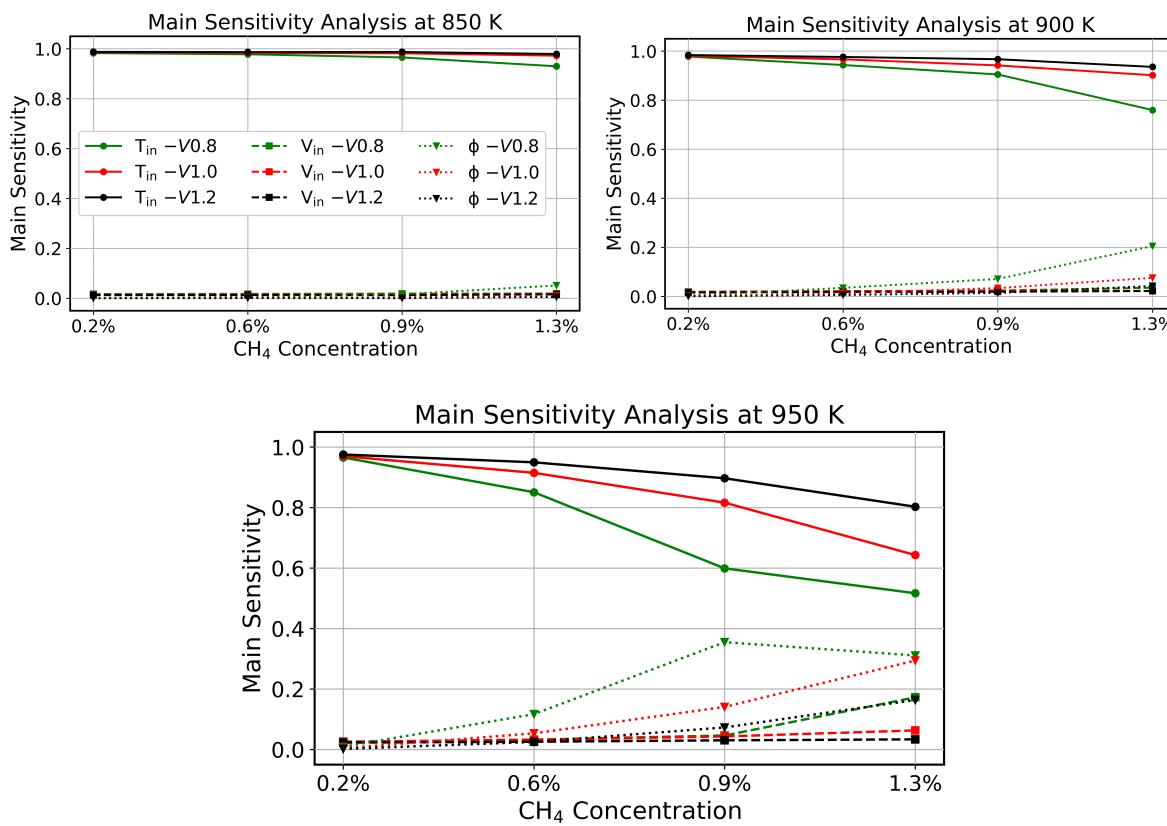


Figure 13: Main sensitivity analysis at various T_{in} and CH_4 concentrations for different inlet velocities.

382 *3.4. Effects of Catalyst Coating Length*

383 Catalyst deactivation is a significant challenge in real catalytic CH_4 conversion reactors, par-
 384 ticularly in systems processing low-concentration CH_4 in air, which often contains contaminants
 385 such as dust, NO_x , H_2O , H_2S , and SO_2 . These impurities can degrade catalyst performance or
 386 cause complete deactivation [9]. To understand the impact of deactivation, three catalyst coating
 387 lengths (50, 30, and 20 mm) were analysed, representing varying stages of catalyst availability.

388 These reduced coating lengths serve as a simplified representation of the effective active catalyst
389 area remaining after partial deactivation. While this approach does not capture the full complexity
390 of deactivation dynamics, it provides valuable insights into how reduced catalyst availability affects
391 both conversion efficiency and process predictability. Fig. 14 shows that shorter coating lengths
392 lead to lower CH_4 conversion rates and higher uncertainty. C_V values decrease with increasing T_{in} ,
393 but this decrease is less pronounced for shorter coating lengths, indicating that catalyst deacti-
394 vation reduces both conversion efficiency and process predictability. Specifically, at $T_{in} = 850$ K,
395 reducing coating length from 50 mm to 20 mm decreases mean CH_4 conversion from approximately
396 20% to 10%, while C_V decreases from 50% to 45%. The more dramatic effect is seen at higher
397 temperatures ($T_{in} = 950$ K), conversion drops from nearly 100% to 60%, demonstrating that deac-
398 tivation has greater absolute impact at conditions where the fresh catalyst would otherwise achieve
399 complete conversion. Critically, the uncertainty (C_V) remains elevated even at high temperatures
400 when catalyst is deactivated. For the 50 mm coating, C_V drops to 5% at 950 K, indicating very
401 stable conversion performance. However, for the 20 mm coating, which represents around 60%
402 deactivation, C_V remains at 35% even at 950 K. This persistent uncertainty under deactivated
403 conditions has important implications: operators cannot compensate for deactivation simply by
404 increasing temperature, as the system becomes inherently less predictable and more sensitive to
405 input variations.

406 It should be noted that the representation of deactivation solely by reduction in coating length
407 is a simplification of the complex deactivation phenomena occurring in real systems. In practice,
408 catalyst deactivation can occur through multiple mechanisms, including poisoning by sulphur com-
409 pounds, H_2O vapour, sintering at higher temperatures, and fouling by dust particles, which may
410 alter not only the available surface area but also the intrinsic catalytic activity of remaining sites.
411 The current simplified model assumes that the remaining catalyst maintains its original activ-
412 ity while the “deactivated” region has zero activity, which may not fully capture scenarios where
413 poisoning or sintering reduce the intrinsic activity across the entire catalyst bed. Despite these lim-
414 itations, this approach provides valuable first-order insights into how reduced catalyst availability
415 affects conversion performance and uncertainty propagation, with the key finding that deacti-
416 vation increases conversion uncertainty expected to be robust regardless of the specific deactivation
417 mechanism.

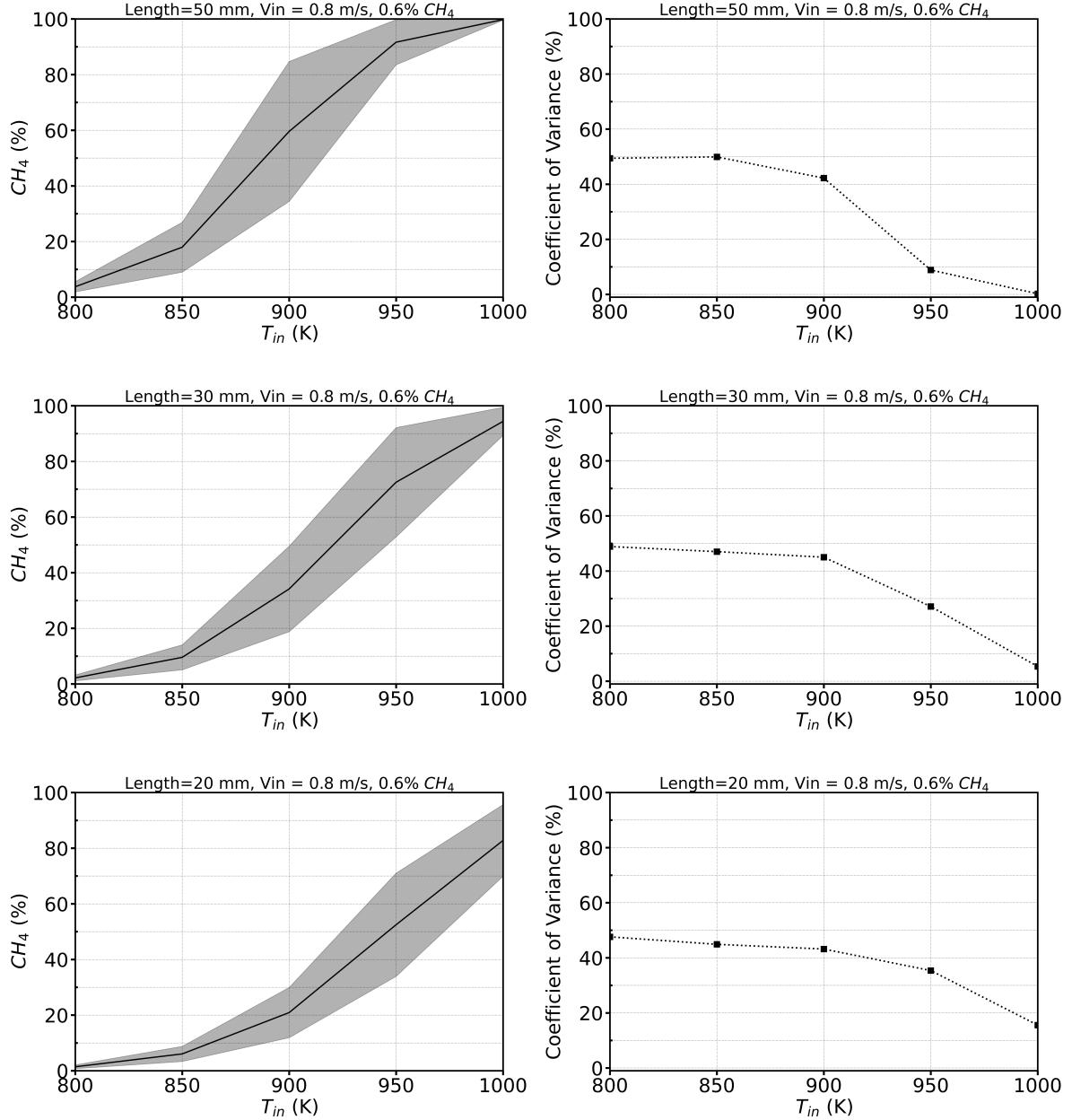


Figure 14: Effect of catalyst coating length in the monolith channel on CH₄ conversion rate and uncertainty. Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

418 For further illustration, Fig. 15 shows PDFs of CH₄ conversion at 950 K for 0.6% CH₄ in air,
 419 comparing different V_{in} and catalyst coating lengths. Longer coating lengths result in higher con-
 420 version rates and more stable performance, evidenced by narrow, sharply peaked PDFs centred
 421 at high conversion values. For $V_{in} = 0.8$ m/s with 50 mm coating, the PDF shows a sharp peak
 422 at 95% conversion with minimal spread, indicating consistent, reliable performance. In contrast,
 423 the 20 mm coating produces a broader PDF centred at around 75% conversion, with significant

424 probability mass between 60-85%. This wider distribution indicates that under identical operat-
425 ing conditions, the partially deactivated catalyst produces highly variable outcomes, sometimes
426 achieving acceptable conversion, other times falling well below target performance. This effect
427 is more pronounced at higher V_{in} (1.2 m/s), where the reduced residence time exacerbates the
428 impact of deactivation. The 20 mm coating at high velocity produces the broadest PDF, spanning
429 40-70% conversion, making performance prediction difficult and control strategy implementa-
430 tion challenging. These results highlight that catalyst deactivation not only reduces mean CH_4 con-
431 version rates but also fundamentally alters the system's uncertainty characteristics, increasing
432 operational risk and reducing process reliability. For $V_{in} = 0.8$ m/s, shorter coatings result in
433 broader PDFs with lower peak heights, indicating less stable and lower conversion outcomes. This
434 effect is more pronounced at higher V_{in} , aligning with the analysis in **Section 3.2**. These results
435 highlight that catalyst deactivation not only reduces CH_4 conversion rates but also increases un-
436 certainty, emphasising the need for regular monitoring and maintenance, especially at higher flow
437 rates.

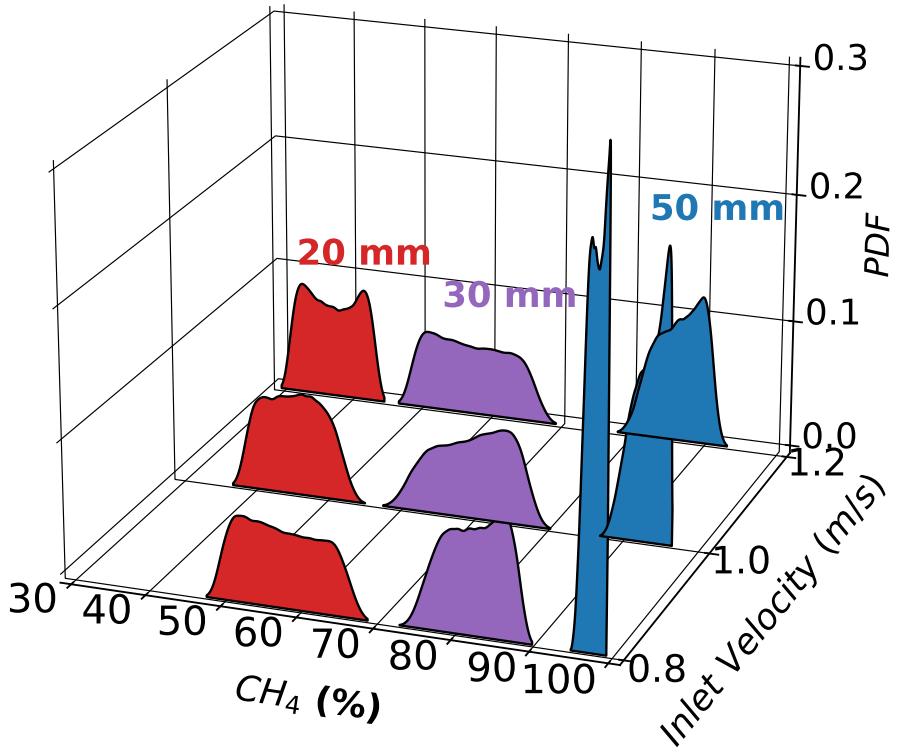


Figure 15: PDF comparison of CH_4 conversion at different V_{in} for various catalyst coating lengths at 950 K and 0.6% CH_4 concentration in air.

438 **4. Conclusions**

439 In this work, the effects of variability in ultra-lean fugitive methane combustion were investi-
 440 gated for various CH_4 concentrations ranging from 0.2% to 1.3% in air with $\pm 10\%$ uncertainty,
 441 corresponding to equivalence ratios (ϕ) between 0.017 and 0.138. Additionally, variations in inlet
 442 temperatures from 800 K to 1000 K ($\pm 2\%$ uncertainty) and inlet velocities from 0.8 to 1.2 m/s
 443 ($\pm 5\%$ uncertainty) were analysed for various catalyst lengths (20, 30, and 50 mm). The study em-
 444 ployed the validated Deutschmann et al. [18] mechanism to simulate a PFR model for 1D catalytic
 445 CH_4 combustion over a Pt catalyst. For the first time, a data-driven PCE-based UQ method was
 446 applied to investigate the impact of small parameter variations on CH_4 conversion in a PFR, rep-
 447 resenting a single channel of a honeycomb reactor. Additionally, catalytic CH_4 conversion, along
 448 with associated uncertainty, was successfully modelled and predicted using an ML approach via
 449 an ANN.

450 Key findings from this study are as follows:

- 451 • The ANN model not only showed excellent agreement with 1D PFR simulations under various
452 conditions but also demonstrated strong agreement with probability distributions arising
453 from parameter uncertainties while reducing computational time from hours to mere seconds.
- 454 • Uncertainty in catalytic CH_4 conversion increases with fugitive CH_4 concentration in air,
455 with a C_V reaching 75% for a 1.3% CH_4 concentration at $T_{\text{in}} = 850$ K.
- 456 • The uncertainty effect diminishes significantly as T_{in} increases, particularly for $T_{\text{in}} > 950$ K,
457 where the catalytic process becomes more stable regardless of methane concentration.
- 458 • Catalytic CH_4 conversion is more stable at lower velocities, with C_V rapidly decreasing to
459 about 10% at 950 K, whereas at higher velocities, C_V remains in the range of 17–22% under
460 the same conditions.
- 461 • CH_4 conversion rate decreases while uncertainty increases as the catalyst-coated channel
462 length decreases across all operating temperatures. This effect is more pronounced at higher
463 flow velocities.
- 464 • Inlet temperature emerged as the dominant factor affecting uncertainty, irrespective of other
465 parameters.

466 These findings underscore the crucial role of temperature control and regular catalyst main-
467 tenance, particularly when higher ventilation rates are required for safety. Overall, parameter
468 variations can induce up to 75% uncertainty in catalytic CH_4 conversion rates. It is important to
469 note that the PCE-ANN framework is fuel- and reactor-agnostic, offering a versatile computational
470 tool applicable to a wide range of catalytic processes where UQ is critical for robust system design
471 and operation. Future investigations could focus on exploring different catalyst materials and their
472 influence on UQ, assessing the impact of trace impurities such as dust, NO_x , H_2O , and common
473 poisons (e.g., H_2S , SO_2) on conversion rate uncertainty and system reliability, and developing more
474 comprehensive models to simulate catalyst deactivation and transient operating conditions typical
475 of VAM systems. Additionally, evaluating the framework's ability to generalise across channel
476 geometries and validating these simulations experimentally would provide valuable insights into
477 the practical implications of UQ in catalytic methane combustion.

⁴⁷⁸ **5. Acknowledgements**

⁴⁷⁹ Israfil Soyler acknowledges the Republic of Türkiye Ministry of National Education for their
⁴⁸⁰ financial support through a PhD scholarship. N. Karimi acknowledges the financial support pro-
⁴⁸¹ vided by EPSRC through grant number EP/X019551/1.

⁴⁸² **6. Declaration**

⁴⁸³ During the preparation of this work the authors used ChatGPT in order to improve the clarity
⁴⁸⁴ of text in some parts of the manuscript. After using this service, the authors reviewed and edited
⁴⁸⁵ the content as needed and take full responsibility for the content of the publication.

486 **References**

487 [1] IPCC, Climate change 2007, Available online, accessed: November 18, 2025(2008).
488 URL <https://www.ipcc.ch/site/assets/uploads/2018/05/ar4-wg1-errata.pdf>

489 [2] International Energy Agency, World energy outlook 2024, Report, IEA, Paris, license: Report:
490 CC BY 4.0; Annex A: CC BY NC SA 4.0 (2024).

491 [3] International Energy Agency, Global methane tracker 2024, Report, IEA, Paris, licence: CC
492 BY 4.0 (2024).
493 URL <https://www.iea.org/reports/global-methane-tracker-2024>

494 [4] U. N. Publications, Best Practice Guidance for Effective Methane Drainage and Use in Coal
495 Mines, ECE energy series, United Nations Economic Commission for Europe, 2016.
496 URL <https://books.google.com.tr/books?id=HfwEDcx6K3YC>

497 [5] Z. Yang, M. Z. Hussain, P. Marín, Q. Jia, N. Wang, S. Ordóñez, Y. Zhu, Y. Xia, Enrichment
498 of low concentration methane: an overview of ventilation air methane, *Journal of Materials
499 Chemistry A* 10 (12) (2022) 6397–6413.

500 [6] J. H. Lee, D. L. Trimm, Catalytic combustion of methane, *Fuel processing technology* 42 (2-3)
501 (1995) 339–359.

502 [7] A. Setiawan, E. M. Kennedy, M. Stockenhuber, Development of combustion technology for
503 methane emitted from coal-mine ventilation air systems, *Energy Technology* 5 (4) (2017)
504 521–538.

505 [8] H. N. Sharma, V. Sharma, A. B. Mhadeshwar, R. Ramprasad, Why pt survives but pd suffers
506 from so x poisoning?, *The journal of physical chemistry letters* 6 (7) (2015) 1140–1148.

507 [9] X. Feng, L. Jiang, D. Li, S. Tian, X. Zhu, H. Wang, C. He, K. Li, Progress and key challenges
508 in catalytic combustion of lean methane, *Journal of Energy Chemistry* 75 (2022) 173–215.

509 [10] S. Su, X. Yu, A 25ákwe low concentration methane catalytic combustion gas turbine prototype
510 unit, *Energy* 79 (2015) 428–438.

511 [11] R. Burch, P. Loader, Investigation of pt/al₂o₃ and pd/al₂o₃ catalysts for the combustion of
512 methane at low concentrations, *Applied Catalysis B: Environmental* 5 (1-2) (1994) 149–164.

513 [12] X. Wei, J. Kang, L. Gan, W. Wang, L. Yang, D. Wang, R. Zhong, J. Qi, Recent advances in
514 co₃o₄-based composites: Synthesis and application in combustion of methane, *Nanomaterials*
515 13 (13) (2023). doi:10.3390/nano13131917.

516 [13] X. Xu, W. Liu, H. Liu, Y. Li, X. Gao, B. Lu, J. Qi, Z. Li, J. Han, Y. Yan,
517 Self-supporting characteristics in hierarchical monolith catalyst with highly accessible
518 active sites for boosting lean methane catalytic oxidation, *Fuel* 405 (2026) 136576.
519 doi:<https://doi.org/10.1016/j.fuel.2025.136576>.

520 [14] L. He, Y. Fan, J. Bellettre, J. Yue, L. Luo, Catalytic methane combustion in plate-type
521 microreactors with different channel configurations: An experimental study, *Chemical Engi-*
522 *neering Science* 236 (2021) 116517.

523 [15] G. Hunt, N. Karimi, A. Mehdizadeh, Intensification of ultra-lean catalytic combustion of
524 methane in microreactors by boundary layer interruptions—a computational study, *Chemical*
525 *Engineering Science* 242 (2021) 116730.

526 [16] V. Dupont, F. Moallemi, A. Williams, S.-H. Zhang, Combustion of methane in catalytic
527 honeycomb monolith burners, *International journal of energy research* 24 (13) (2000) 1181–
528 1201.

529 [17] S. Kumares, M. Y. Kim, Numerical investigation of catalytic combustion in a honeycomb
530 monolith with lean methane and air premixtures over the platinum catalyst, *International*
531 *Journal of Thermal Sciences* 138 (2019) 304–313.

532 [18] O. Deutschmann, F. Behrendt, J. Warnatz, Modelling and simulation of heterogeneous oxi-
533 dation of methane on a platinum foil, *Catalysis Today* 21 (2-3) (1994) 461–470.

534 [19] X. Jiang, D. Mira, D. Cluff, The combustion mitigation of methane as a non-co₂ greenhouse
535 gas, *Progress in Energy and Combustion Science* 66 (2018) 176–199.

536 [20] S. Rahimi, M. Ataee-pour, H. Madani, S. M. Aminossadati, Investigating the impact of gas
537 emission uncertainty on airflow distribution in an auxiliary ventilation system using cfd and
538 monte-carlo simulation, *Building and Environment* 204 (2021) 108165.

539 [21] L. He, Y. Fan, J. Bellettre, J. Yue, L. Luo, A review on catalytic methane combustion at low
540 temperatures: Catalysts, mechanisms, reaction conditions and reactor designs, *Renewable*
541 and *Sustainable Energy Reviews* 119 (2020) 109589.

542 [22] P. Thevenin, A. Ersson, H. Kušar, P. Menon, S. G. Järås, Deactivation of high temperature
543 combustion catalysts, *Applied Catalysis A: General* 212 (1-2) (2001) 189–197.

544 [23] H. Ozcan, E. Kayabasi, Thermodynamic and economic analysis of a synthetic fuel production
545 plant via co2 hydrogenation using waste heat from an iron-steel facility, *Energy Conversion*
546 and *Management* 236 (2021) 114074.

547 [24] H. Wang, Uncertainty quantification and minimization, in: *Computer Aided Chemical Engi-*
548 *neering*, Vol. 45, Elsevier, 2019, pp. 723–762.

549 [25] J. C. Helton, J. D. Johnson, W. L. Oberkampf, C. J. Sallaberry, Representation of analysis
550 results involving aleatory and epistemic uncertainty, *International Journal of General Systems*
551 39 (6) (2010) 605–646.

552 [26] H. Wang, D. A. Sheen, Combustion kinetic model uncertainty quantification, propagation and
553 minimization, *Progress in Energy and Combustion Science* 47 (2015) 1–31.

554 [27] T. Turányi, T. Nagy, I. G. Zsély, M. Cserháti, T. Varga, B. T. Szabó, I. Sedyo, P. T. Kiss,
555 A. Zempleni, H. J. Curran, Determination of rate parameters based on both direct and indirect
556 measurements, *International Journal of Chemical Kinetics* 44 (5) (2012) 284–302.

557 [28] O. M. Knio, H. N. Najm, R. G. Ghanem, et al., A stochastic projection method for fluid flow:
558 I. basic formulation, *Journal of computational Physics* 173 (2) (2001) 481–511.

559 [29] R. Tripathy, I. Bilionis, M. Gonzalez, Gaussian processes with built-in dimensionality reduc-
560 tion: Applications to high-dimensional uncertainty propagation, *Journal of Computational*
561 *Physics* 321 (2016) 191–223.

562 [30] C. E. Üstün, A. Paykani, Probabilistic machine learning framework for chemical source term
563 integration with gaussian processes: H2/air auto-ignition case, *International Journal of Hy-
564 drogen Energy* 81 (2024) 47–55.

565 [31] K. Zhang, X. Jiang, An investigation of fuel variability effect on bio-syngas combustion using
566 uncertainty quantification, *Fuel* 220 (2018) 283–295.

567 [32] H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational
568 fluid dynamics, *Annual review of fluid mechanics* 41 (1) (2009) 35–52.

569 [33] H. N. Najm, B. J. Debusschere, Y. M. Marzouk, S. Widmer, O. Le Maître, Uncertainty
570 quantification in chemical systems, *International journal for numerical methods in engineering*
571 80 (6-7) (2009) 789–814.

572 [34] M. T. Reagan, H. N. Najm, P. P. Pélbay, O. M. Knio, R. G. Ghanem, Quantifying uncertainty
573 in chemical systems modeling, *International journal of chemical kinetics* 37 (6) (2005) 368–382.

574 [35] Y. Tang, M. Hassanaly, V. Raman, B. Sforzo, J. Seitzman, A comprehensive modeling pro-
575 cedure for estimating statistical properties of forced ignition, *Combustion and Flame* 206 (2019)
576 158–176.

577 [36] I. Soyler, K. Zhang, C. Duwig, X. Jiang, N. Karimi, Uncertainty quantification of the pre-
578 mixed combustion characteristics of nh₃/h₂/n₂ fuel blends, *International Journal of Hydrogen
579 Energy* 48 (38) (2023) 14477–14491.

580 [37] I. Soyler, K. Zhang, X. Jiang, N. Karimi, Effects of compositional uncertainties in cracked
581 nh₃/biosyngas fuel blends on the combustion characteristics and performance of a combined-
582 cycle gas turbine: A numerical thermokinetic study, *International Journal of Hydrogen Energy*
583 69 (2024) 504–517.

584 [38] K. Zhang, X. Jiang, Uncertainty quantification of fuel variability effects on high hydrogen
585 content syngas combustion, *Fuel* 257 (2019) 116111.

586 [39] K. Zhang, X. Jiang, An assessment of fuel variability effect on biogas-hydrogen combustion
587 using uncertainty quantification, *International Journal of Hydrogen Energy* 43 (27) (2018)
588 12499–12515.

589 [40] M. Anwar, I. Soyler, N. Karimi, Machine learning-enhanced uncertainty quantifica-
590 tion for renewable-powered hybrid green ammonia and refrigeration systems: Technoe-
591 economic and environmental effects, *Journal of Cleaner Production* 527 (2025) 146702.

592 doi:<https://doi.org/10.1016/j.jclepro.2025.146702>.

593 URL <https://www.sciencedirect.com/science/article/pii/S0959652625020529>

594 [41] C. E. Üstün, M. R. Herfatmanesh, A. Valera-Medina, A. Paykani, Applying machine learning
595 techniques to predict laminar burning velocity for ammonia/hydrogen/air mixtures, *Energy*
596 and *AI* 13 (2023) 100270.

597 [42] C. E. Üstün, S. Eckart, A. Valera-Medina, A. Paykani, Data-driven prediction of laminar burn-
598 ing velocity for ternary ammonia/hydrogen/methane/air premixed flames, *Fuel* 368 (2024)
599 131581.

600 [43] Y. Cui, Q. Wang, H. Liu, Z. Zheng, H. Wang, Z. Yue, M. Yao, Development of the ignition
601 delay prediction model of n-butane/hydrogen mixtures based on artificial neural network,
602 *Energy and AI* 2 (2020) 100033.

603 [44] F. N. Alotaibi, A. S. Berrouk, M. Saeed, Optimization of yield and conversion rates in methane
604 dry reforming using artificial neural networks and the multiobjective genetic algorithm, *In-
605 dustrial & Engineering Chemistry Research* 62 (42) (2023) 17084–17099.

606 [45] L. Zhou, Y. Song, W. Ji, H. Wei, Machine learning for combustion, *Energy and AI* 7 (2022)
607 100128.

608 [46] B. Debusschere, K. Sargsyan, C. Safta, K. Chowdhary, The uncertainty quantification toolkit
609 (uqtk), in: R. Ghanem, D. Higdon, H. Owhadi (Eds.), *Handbook of Uncertainty Quantifica-
610 tion*, Springer, 2017, pp. 1807–1827.

611 URL <http://www.springer.com/us/book/9783319123844>

612 [47] D. Xiu, G. E. Karniadakis, The wiener–askey polynomial chaos for stochastic differential
613 equations, *SIAM journal on scientific computing* 24 (2) (2002) 619–644.

614 [48] F. Xiong, S. Chen, Y. Xiong, Dynamic system uncertainty propagation using polynomial
615 chaos, *Chinese Journal of Aeronautics* 27 (5) (2014) 1156–1170.

616 [49] S. Kucherenko, S. Song, Different numerical estimators for main effect global sensitivity in-
617 dices, *Reliability Engineering & System Safety* 165 (2017) 222–238.

618 [50] O. Deutschmann, L. Maier, U. Riedel, A. Stroemman, R. Dibble, Hydrogen assisted catalytic
619 combustion of methane on platinum, *Catalysis today* 59 (1-2) (2000) 141–150.

620 [51] D. G. Goodwin, H. K. Moffat, R. L. Speth, *Cantera: An object-oriented software toolkit for*
621 *chemical kinetics, thermodynamics, and transport processes* (2018).

622 [52] I. Cornejo, P. Nikrityuk, R. E. Hayes, Heat and mass transfer inside of a monolith honeycomb:
623 From channel to full size reactor scale, *Catalysis Today* 383 (2022) 110–122.

624 [53] P. Gélin, M. Primet, Complete oxidation of methane at low temperature over noble metal
625 based catalysts: a review, *Applied Catalysis B: Environmental* 39 (1) (2002) 1–37.