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Abstract5

Ultra-lean methane oxidation via catalytic combustion is critical for mitigating greenhouse gas

emissions from fugitive methane sources. However, the catalytic oxidation process exhibits sig-

nificant uncertainties that hinder its widespread implementation. To address this challenge, the

present study develops a robust machine learning-based framework for quantifying combustion

uncertainties, enabling more effective emission control strategies. The work presents a novel hy-

brid methodology integrating polynomial chaos expansion (PCE) with artificial neural networks

(ANN), achieving real-time prediction of methane conversion rates and their uncertainties in mono-

lith reactors. The machine learning model reduces computational time from hours to seconds while

achieving excellent agreement with detailed 1D plug-flow reactor simulations. The investigation

reveals that variations in methane concentration (0.2–1.3%, ±10%), inlet temperature (800–1000

K, ±2%), and inlet velocity (0.8–1.2 m/s, ±5%) significantly influence conversion uncertainty, with

inlet temperature identified as the dominant parameter (CV ≈ 75%). Stability improves at ele-

vated temperatures (>950 K) and lower flow velocities (CV ≈ 10%) compared to higher velocities

(CV = 17–22%). Additionally, catalyst deactivation, represented by reduced coating length, de-

creases methane conversion rates and increases uncertainty, with longer coatings providing greater

stability at higher inlet temperatures. This work advances the fundamental understanding of un-

certainty propagation in ultra-lean catalytic methane combustion and establishes a generalisable,

computationally efficient PCE-ANN framework applicable to catalytic combustion of diverse fuels.
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Latin Symbols
A Arrhenius constant OP Orthogonal polynomials
ANNs Artificial Neural Networks P Total order
Ck PCE coefficients PCE Polynomial chaos expansion
CMC Catalytic methane combustion Pd Palladium
CPU Central processing unit PDF Probability Density Function
CSTR Continuous stirred-tank reactor PFR Plug-flow reactor
d Dimension Pt Platinum
Ea Activation energy for the reaction R Universal gas constant
GHG Greenhouse gas R2 Coefficient of determination
GPR Gaussian Process Regression Rc Reactor catalyst coated length
GWP Global warming potential ReLU Rectified Linear Unit
HPC High performance computing Si Main sensitivity of a fuel composition
IDT Ignition delay time SL Laminar flame speed
LU Legendre-Uniform distribution SFR Stagnation-flow reactor
MAE Mean Absolute Error Tin Inlet temperature
MC Monte Carlo UQ Uncertainty quantification
ML Machine learning UQTk Uncertainty Quantification Toolkit
NISP Non-intrusive spectral projection VAM Ventilation air methane
NNs Neural Networks V ar[β] Total variance of methane conversion
n Temperature exponent Vin Inlet velocity
Nord Parameter used for quadrature point

generation

Greek Symbols
βCH4 Uncertainty associated with catalytic

methane conversion rate
µi Rate coefficient dependences on the

surface coverage
γθ Relative uncertainty of input parame-

ters
ξ Quadrature points (germs)

Γ Catalyst surface site density π Probability density function (PDF)
εi Rate coefficient dependences on the

surface coverage
σ Standard deviation

θ Randomly sampled input parameters ϕ Equivalence ratio
Ψk Multidimensional orthogonal polyno-

mials

1. Introduction9

Climate change, driven largely by greenhouse gas (GHG) emissions from human activities, is10

one of the most critical global challenges. Methane, CH4, with a global warming potential 28-11

36 times higher than CO2 over a 100-year period, has emerged as the second most significant12

anthropogenic GHG, contributing roughly 30% to global temperature rise [1, 2]. The energy13

sector is a major source of CH4 emissions, with significant contributions from oil production (≈5014
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Mt), natural gas systems (≈30 Mt), and coal mining (≈40 Mt) annually [3]. In coal mining,15

ventilation air methane (VAM) which maintains CH4 concentrations below 5 vol% for safety,16

accounts for over 70% of mine CH4 emissions, despite its low concentration (≤1.5 vol%, typically17

<0.5 vol%) [4]. Mitigating these ultra-lean CH4 emissions remains challenging due to operational18

issues such as large air volumes, fluctuating concentrations, dust, and humidity [5]. Conventional19

combustion requires CH4 concentrations within flammability limits (5-17 vol%) and risks producing20

NOx emissions at high temperatures [6]. Catalytic methane combustion (CMC) offers a superior21

alternative by enabling CH4 oxidation at concentrations well below the flammability limit and at22

significantly lower temperatures (as low as 400 °C), substantially reducing both GHG impact and23

NOx formation [7]. The oxidation process of CMC converts CH4 to CO2, a far less potent GHG,24

reducing the climate impact substantially. Additionally, capturing CH4 from VAM exhaust is more25

challenging than absorbing CO2 [7]. Thus, converting fugitive CH4 to low-GWP CO2 in the energy26

sector supports climate change mitigation and improves air quality.27

Noble metal catalysts, particularly platinum (Pt) and palladium (Pd) on Al2O3 supports, are28

widely used for CMC due to their high activity and low-temperature CH4 conversion rates [7].29

While Pd-based catalysts exhibit higher activity, Pt catalysts are preferred for ultra-lean CH430

combustion due to better resistance to poisoning and lower costs [8, 9]. Su and Yu [10] demon-31

strated this by developing a 25 kWe prototype using Pd/Al2O3 for lean-CH4 combustion from32

VAM systems. The prototype successfully operated with 0.8% CH4, generating 19-21 kWe with-33

out requiring cooling, air dilution, or nozzle injection. Burch et al. [11] compared Pt/Al2O3 and34

Pd/Al2O3 under various conditions, finding Pt superior in CH4-rich environments and Pd more35

effective in O2-rich (diluted) conditions. In addition to supported noble metals, recent reviews of36

Co3O4-based nanostructured catalysts, including noble metal doping strategies, have demonstrated37

the potential for enhanced catalytic performance and stability in lean methane combustion appli-38

cations [12]. Furthermore, recent experimental studies on hierarchical monolith catalysts with39

self-supporting structures have demonstrated enhanced performance for lean methane catalytic40

oxidation [13].41

Catalytic combustion in microreactors has gained attention due to their compact sub-millimetre-42

scale designs, offering advantages such as high surface-to-volume ratios, enhanced heat and mass43

transfer, and shorter diffusion times [9]. Honeycomb monolith reactors further improve perfor-44

mance with lower pressure drops, minimised external diffusion limitations, and prevention of45
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hotspots due to their structured channels (round, square, or finned) [9]. These channels can46

be coated with thin, uniform catalyst layers, increasing fuel-catalyst contact area and enabling47

efficient use of noble metals. He et al. [14] experimentally investigated Pt/γ-Al2O3 catalysts in48

various microreactor channel types for CH4 combustion. They tested Pt loadings (1.5-5.0 wt%),49

CH4 flow rates (150-500 mL/min), O2:CH4 ratios (0.5-6.0), and temperatures (300-500 oC), finding50

that CH4 conversion increases with Pt loading but decreases with higher flow rates, especially at51

higher loadings. The optimal O2:CH4 ratio was 1.5 (vs. the stoichiometric 2.0), balancing O252

and CH4 on the catalyst surface. The double serpentine channel design achieved the highest CH453

conversion due to its larger coating area, longer residence time, and improved gas mixing. Hunt54

et al. [15] studied ultra-lean CH4 combustion in a wavy channel microreactor with Pt catalyst,55

showing that strategic catalyst placement (using only 25% of the coating) achieved 60% of the56

CO2 production of fully coated channels. The wavy design increased CO2 production rates, per57

unit surface area of the catalyst, by up to 400% compared to straight channels, highlighting the58

importance of channel configuration.59

Dupont et al. [16] studied catalytic honeycomb monolith reactors with Pd and Pt catalysts for60

CH4 combustion, highlighting their critical role in ignition and steady-state operation for complete61

CH4 conversion to CO2. They found that monolith length could be reduced by 70% (from 50.8 mm)62

without performance loss, as the reaction zone is confined to the first 10-15 mm of the channels,63

offering significant cost savings in noble metal usage. Higher flow rates, however, pushed the64

reaction zone deeper into the monolith and reduced combustion stability [16]. Kumaresh et al. [17]65

numerically studied lean CH4 combustion in Pt-coated honeycomb monoliths, showing complete66

CH4 conversion within 42 mm at 400 oC, 3% fuel/air ratio, and 20 m/s inlet velocity. Higher67

inlet temperatures and fuel/air ratios, combined with lower velocities, shifted the reaction zone68

upstream, reducing the required reactor length. Deutschmann et al. [18] numerically investigated69

CH4 combustion on Pt foil using a detailed surface reaction mechanism, successfully predicting70

complex phenomena like ignition, extinction, and hysteresis [18].71

VAM systems face significant variability challenges due to ultra-lean CH4 concentrations (0.1-72

1.5%) and large ventilation air flows (100-300 m3/s) [19]. These variations, caused by mining73

activities and underground pressure changes, affect gas quality, flow rate, and purity [4, 19].74

Rahimi et al. [20] emphasised designing ventilation systems to account for gas emission uncertain-75

ties, ensuring safety against fires, explosions, and financial losses from coal seam gas fluctuations.76
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Combustion systems for VAM must handle these uncertainties, as sudden flow reductions disrupt77

combustion stability, while rapid CH4 concentration increases risk equipment damage and higher78

NOx emissions [9]. Additionally, low-concentration CH4 often contains contaminants like dust,79

NOx, H2O, H2S, and SO2, which can poison and deactivate catalysts [9]. Catalyst deactivation in80

monolithic reactors remains a challenge due to uncontrolled emissions and incomplete combustion81

[21]. Temperature is critical, affecting reaction kinetics, catalyst activity, and stability. While82

catalytic combustion occurs at lower temperatures [7], precise temperature control is essential to83

avoid thermal stress, mechanical degradation, and accelerated deactivation [21, 22]. Uncontrolled84

temperature variations, especially when using waste heat, further complicate system performance85

[23]. These operational challenges underscore the need for systematic approaches to quantify and86

manage uncertainty in catalytic fugitive methane combustion.87

Although previous studies discussed the presence of uncertainty in VAM systems, there remains88

a significant gap in the literature regarding systematic uncertainty quantification (UQ) in catalytic89

ultra-lean CH4 combustion applications. Both experimental and computational approaches inher-90

ently contain unavoidable uncertainties, while traditional numerical models employ fixed param-91

eters [24]. These uncertainties can be effectively quantified and reduced through mathematical92

modelling techniques. Uncertainties generally fall into two categories: epistemic and aleatoric.93

Epistemic uncertainty stems from lack of knowledge or information about the system and can94

potentially be decreased through improved understanding and enhanced measurement technique.95

Conversely, aleatoric uncertainty arises from the probabilistic nature of random processes and is96

irreducible, even with complete system knowledge [25]. In this study, the computational frame-97

work primarily focuses on epistemic uncertainty through the analysis of parametric variations in98

inlet conditions (temperature, velocity, and concentration) and catalyst coating length. These99

variations represent uncertainties that could theoretically be reduced with improved measurement,100

control systems, and catalyst design. By quantifying how these epistemic uncertainties propa-101

gate through the catalytic system, the parameters that contribute most significantly to variability102

in methane conversion performance can be identified. Uncertainty quantification methods use103

mathematical modelling to measure and manage uncertainties in experimental and computational104

settings [24, 26, 27]. While Monte Carlo (MC) methods traditionally address epistemic uncer-105

tainties, they are computationally expensive for complex models requiring large sample sizes [28].106

Surrogate models, such as Gaussian processes [29, 30] or Polynomial Chaos Expansion (PCE)107

5



[31, 32], provide efficient alternatives to computationally expensive MC methods for UQ. For com-108

plex simulations, UQ-PCE is more cost-effective and efficient than UQ-MC; several studies have109

successfully applied PCE-based UQ methods to combustion problems [33–36].110

While PCE significantly improves efficiency for UQ, it still remains demanding for complex111

catalytic systems requiring high-fidelity simulations with detailed chemistry and transport phe-112

nomena. Soyler et al. [36] demonstrated this computational burden by using PCE for UQ in113

NH3/H2/N2/air combustion, completing over 21,000 simulations (6000 CPU hours) on an HPC114

cluster. In a follow-up study, they performed 70,000 simulations to analyse uncertainties in par-115

tially cracked NH3/syngas combustion [37]. Similarly, Zhang and Jiang [31, 38, 39] demonstrated116

the need for extensive simulations in PCE-based UQ for combustion research. This computational117

burden presents a significant obstacle to the practical implementation of UQ for real-world cat-118

alytic applications, particularly for real-time monitoring and control systems necessitating more119

efficient approaches. The novel integration of machine learning (ML) with UQ techniques offers a120

promising solution to overcome this limitation by drastically reducing computational costs while121

maintaining accuracy [40], and enabling robust analysis of uncertainty propagation in catalytic122

methane combustion systems. ML techniques efficiently capture complex relationships between123

uncertain parameters and system outputs, enabling analysis of non-linearities and interactions124

without extensive model evaluations. Recent research has explored various ML algorithms for125

combustion properties, including laminar flame speed (SL) [41, 42], ignition delay time (IDT)126

[43], and reforming processes [44]. Amongst these approaches, artificial neural networks (ANNs)127

have proven their effectiveness in combustion applications and their ability to model highly non-128

linear relationships between multidimensional input and output spaces [45], making them especially129

suited for catalytic conversion processes where multiple interacting parameters influence reaction130

outcomes. ML-based UQ frameworks enable robust design and optimisation of catalytic reactors131

under varying conditions, making them particularly valuable for catalytic VAM systems, where132

real-time prediction and optimisation under uncertainty are critical for practical implementation.133

To the best of authors’ knowledge, no prior studies have explored ML-based UQ for catalytic134

combustion systems, revealing a significant research gap. While ML and UQ have been applied135

to combustion modelling, their integration for directly predicting uncertainty metrics in catalytic136

systems remains unexplored. This study addresses this gap by developing a novel ML framework to137

predict uncertainty bounds, sensitivity indices, and probabilistic performance metrics for catalytic138
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CH4 oxidation. The specific objectives of this work include several key components. First, an139

ML model (ANN) for predicting catalytic CH4 conversion rates in monolith reactors is developed140

and validated. Second, the effects of varying CH4 concentration, inlet temperature, and inlet flow141

velocity on uncertainty in CH4 conversion are quantified by using a surrogate UQ method (PCE).142

Third, the influence of catalyst deactivation on conversion performance and uncertainty propa-143

gation is investigated. Fourth, dominant parameters driving uncertainty in ultra-lean catalytic144

CH4 combustion are identified. Finally, the computational efficiency of the PCE-ANN framework145

compared to conventional approaches is demonstrated.146

Once trained, the ML model delivers a remarkable computational advantage, reducing analy-147

sis time from hours to seconds while preserving high-fidelity uncertainty predictions. This hybrid148

PCE-ANN approach advances catalytic systems modelling in two crucial dimensions: theoretically,149

by elucidating the nonlinear propagation mechanisms of parametric uncertainties through complex150

surface reactions; and practically, by providing rapid assessment tools essential for robust fugitive151

CH4 oxidation technology design. By quantitatively mapping how input uncertainties transform152

into performance variability, this framework establishes science-based safety margins, optimise153

operating conditions, and implement targeted control strategies that maximise conversion relia-154

bility while minimising catalyst deactivation. The resulting decision support capability addresses155

a critical gap in the development of resilient catalytic combustion systems for GHG mitigation156

applications.157

2. Methodology158

2.1. Uncertainty quantification method159

In this work, PCE was employed to construct a surrogate model for UQ using the open-source160

Uncertainty Quantification Toolkit (UQTk) version 3.1.4 [46]. The mathematical formulation of161

the PCE surrogate model is briefly described below. The uncertainty in simulation parameters is162

expressed as:163

θsample = θmean ± σθ × ξd (1)

where θsample represents a randomly sampled set of parameters for catalytic CH4 oxidation, such164

as inlet temperature (Tin), inlet velocity (Vin), or equivalence ratio (ϕ). The mean values of these165

parameters are denoted by θmean, and their standard deviations by σθ. The random variable166
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germs, ξd = (ξTin , ξVin , ξϕ), are generated using orthogonal polynomials based on the distribution167

type [47, 48]. These germs represent the standardised basis for constructing PCE, where each168

element corresponds to a specific uncertain input parameter (inlet temperature, inlet velocity, and169

equivalence ratio, respectively). The orthogonal polynomials are selected to match the probability170

distribution of each parameter (Hermite polynomials for normal distributions and Legendre poly-171

nomials for uniform distributions), ensuring optimal convergence of the expansion. For this study,172

a Legendre-Uniform (LU) distribution was assumed, with random variables uniformly distributed173

in the interval [−1, 1]. The standard deviation of each parameter is calculated as follows:174

σθ = θmean × γθ (2)

where γθ represents the relative uncertainty: 5% for inlet velocity (γVin = 0.05), 10% for equivalence175

ratio (γϕ = 0.10), and 2% for inlet temperature (γTin = 0.02).176

The number of quadrature points (ξd) is calculated as (Nord)
d, where Nord = P + 1 is the177

expansion order, and d is the number of uncertain parameters. With P = 5, this results in178

(5 + 1)3 = 216 quadrature points. Higher-order expansions can lead to excessive quadrature179

points without improving UQ results [36]. The selection of P = 5 was based on the authors’180

previous implementation in similar combustion UQ studies [36, 37], where they demonstrated that181

orders higher than P = 5 did not provide significant improvement in accuracy while substantially182

increasing computational cost. For this catalytic system with 3 uncertain parameters, P = 5 is183

sufficient to capture the output variance while maintaining computational load with 216 evaluation184

points per case.185

The multidimensional PCE for catalytic CH4 conversion is expressed as:186

βCH4 =
P∑

k=0

CkΨk(ξd) (3)

where βCH4 represents CH4 conversion with quantified uncertainty, Ck are the PCE coefficients187

(spectral mode strengths), and Ψk(ξd) are Legendre-Uniform orthogonal polynomials up to order188

P . The PCE coefficients are determined using the non-intrusive spectral projection (NISP) method189

via Gauss-Legendre quadrature integration:190

Ck =
1

⟨Ψ2
k(ξ)⟩

∫ 1

−1

β(ξ)Ψk(ξ)π(ξ) dξ, k = 0, . . . , P (4)
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where π(ξ) is the probability density function, and ξ represents the germ samples for each input191

parameter.192

In addition to quantifying uncertainties in CH4 conversion, a variance-based global sensitivity193

analysis [49] was conducted to evaluate the impact of input uncertainties on output uncertainty.194

This method assesses how individual parameter uncertainties contribute to the total uncertainty195

in CH4 conversion. The first-order sensitivity indices (Si) are calculated as:196

Si =

∑
C2

i ⟨Ψ2
i ⟩

Var[β]
(5)

where (i) denotes a specific input parameter, and Var[β] represents the total variance of CH4197

conversion. The total variance is expressed as:198

Var[β] =
∑
k>0

C2
k⟨Ψ2

k⟩ (6)

2.2. Validation of Surface Reaction Mechanism199

The surface reaction mechanism developed by Deutschmann et al. [50] was used, comprising 24200

chemical reactions involving 11 surface species and 7 gas-phase species (Table 1). Pt catalyst was201

modelled with a surface site density (Γ) of 2.72 × 109 mol/cm2, where Pt(s) represents uncovered202

surface sites available for adsorption.203

The mechanism was validated using two models: a stagnation-flow reactor (SFR) and a plug-204

flow reactor (PFR). The SFR configuration, where gas flow impinges perpendicularly onto a cat-205

alytic surface, is ideal for studying gas-surface interactions and reaction kinetics. Its 1D nature206

simplifies analysis by focusing on the centreline, where variables depend only on the distance from207

the surface, making it suitable for validating detailed reaction mechanisms [18].208

For catalytic CH4 combustion simulations in a SFR, Cantera [51] was used to solve the surface209

chemistry reactions. The simulations were conducted under specified initial conditions to validate210

the surface reaction mechanism. A premixed gas mixture of 9.5% CH4 in air was introduced with a211

uniform inlet velocity of 6 cm/s at 100 mm from the catalytic surface. The initial CH4-air mixture212

and surface temperatures were set to 300 K and 1000 K, respectively, under atmospheric pressure.213

The surface reaction mechanism was validated against the results of Deutschmann et al. [18]214

using an SFR configuration. Fig. 1 compares species mole fractions as a function of distance215

from the catalytic surface. The continuous lines represent the current numerical results, while the216
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Table 1: Surface reaction mechanism for CH4 combustion over Pt catalyst from Deutschmann et al. [50].

Reaction A (cm, mol, s) n Ea (kJ/mol) εi, µi(kJ/mol)
(1) H2 + 2Pt(s) → 2H(s) 4.60 × 10−2 µPt(s) = −1∗

(2) 2H(s) → H2 + 2Pt(s) 3.70 × 1021 0.0 67.4 εH(s) = 6
(3) H + Pt(s) → H(s) 1.00∗
(4) O2 + 2Pt(s) → 2O(s) 1.80×1021 -0.5 0.0
(5) O2 + 2Pt(s) → 2O(s) 2.30×10−2∗

(6) 2O(s) → 2Pt(s) + O2 3.70×1021 0.0 213.2 εO(s) = 60
(7) O + Pt(s) → O(s) 1.00∗
(8) H2O + Pt(s) → H2O(s) 0.75∗
(9) H2O(s) → H2O + Pt(s) 1.00×1013 0.0 40.3
(10) OH + Pt(s) → OH(s) 1.00∗
(11) OH(s) → OH + Pt(s) 1.00×1013 0.0 192.8
(12) O(s) + H(s) → OH(s) + Pt(s) 3.70×1021 0.0 11.5
(13) H(s) + OH(s) → H2O(s) + Pt(s) 3.70×1021 0.0 17.4
(14) OH(s) + OH(s) → H2O(s) + O(s) 3.70×1021 0.0 48.2
(15) CO + Pt(s) → CO(s) 8.40×10−1∗ µPt(s) = 1
(16) CO(s) → CO + Pt(s) 1.00×1013 0.0 125.5
(17) CO2(s) → CO2 + Pt(s) 1.00×1013 0.0 20.5
(18) CO(s) + O(s) → CO2(s) + Pt(s) 3.70×1021 0.0 105.0
(19) CH4 + 2Pt(s) → CH3(s) + H(s) 1.00×10−2∗ µPt(s) = 0.3
(20) CH3(s) + Pt(s) → CH2(s) + H(s) 3.70×1021 0.0 20.0
(21) CH2(s) + Pt(s) → CH(s) + H(s) 3.70×1021 0.0 20.0
(22) CH(s) + Pt(s) → C(s) + H(s) 3.70×1021 0.0 20.0
(23) C(s) + O(s) → CO(s) + Pt(s) 3.70×1021 0.0 62.8
(24) CO(s) + Pt(s) → C(s) + O(s) 1.00×1018 0.0 184.0
k = ATne(−Ea/RT ), k is the rate constant for the reaction, A is the Arrhenius constant, n is the temperature exponent,
Ea is the activation energy for the reaction, and R is the universal gas constant.
εi and µi are the rate coefficient dependences on the surface coverage.
∗ symbol represents the sticking coefficient.

marker points show data from Deutschmann et al. [18]. The simulation captures the key features217

of species evolution: O2 and CH4 are consumed near the surface, while CO2 and H2O are formed.218

A small amount of CO appears as an intermediate species, peaking near the surface before being219

oxidised to CO2. The excellent agreement between the simulations and reference data validates220

the implementation of the surface reaction mechanism.221

10



0 5 10 15 20 25 30
Distance from the surface (mm)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

M
ol

e 
Fr

ac
tio

n
CH4
O2
H2O

CO2
CO

Figure 1: Validation of surface reaction mechanism using SFR simulations. Continuous lines represent numerical
results from this study, while markers denote reference data from Deutschmann et al. [18].

The PFR represents a steady-state 1D flow system where species concentrations and temper-222

ature vary along the reactor length without diffusion. In this model, the reaction mixture flows223

uniformly at constant velocity, ensuring complete radial mixing and no backflow. The PFR is224

particularly suitable for catalytic systems, as surface reactions at the wall promote radial mixing.225

Its computational efficiency makes it an excellent tool for validating detailed kinetic mechanisms226

under steady-state conditions.227

In this work, catalytic CH4 combustion simulations were performed in a single-channel PFR228

with a length of 200 mm and a hydraulic diameter of 1.27 mm. The reactor simulated lean premixed229

CH4-air combustion over a Pt catalyst at atmospheric pressure. Cantera was used to model the230

PFR as a chain of 201 continuous stirred-tank reactors (CSTRs). The governing equations for the231

1D steady-state PFR model are detailed elsewhere [51]. The first CSTR was fed a lean CH4/air232

mixture (fuel/air ratio 2.94%) at an inlet temperature of 645 °C and an inlet velocity of 16.7 m/s.233

The surface reaction mechanism from Deutschmann et al. [50] was further validated against234

the results of Kumaresh and Kim [17] using a PFR configuration. Fig. 2 compares the current235
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results (continuous lines) with data from Kumaresh and Kim [17] (marker points). Initially, the236

Pt surface is predominantly covered by adsorbed oxygen O(s), with a coverage of approximately237

0.9 at the reactor entrance.238

0 20 40 60 80 100 120 140 160 180 200
Distance (mm)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ol

e 
an

d 
su

rfa
ce

 si
te

 fr
ac

tio
n Pt(S)

O(S)

0

1

2

3

4

5

6

7

CH3(S)x108

H2Ox102

CO2x102

Figure 2: Validation of Deutschmann’s surface mechanism with the results from Kumaresh and Kim by using PFR
reactor. Continuous lines are from this study, marker points are from Kumaresh and Kim [17].

As reactions proceed, O(s) coverage decreases while free Pt(s) increases, stabilising at about239

0.7 after 60 mm. The adsorbed methyl species CH3(s) (scaled by 108 for clarity) peaks at 40-50240

mm, indicating the region of most active CH4 decomposition, before being consumed in subsequent241

reactions. The formation of CO2 and H2O (scaled by 102 for clarity) increases until reaching steady-242

state values after about 80 mm. The excellent agreement between our simulations and the reference243

data validates both the surface mechanism implementation and the PFR model assumptions in244

the specified conditions.245
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2.3. Machine learning (ML)246

In this work, ML models were developed to predict how variations in input parameters affect247

ultra-lean catalytic CH4 conversion rates, efficiently capturing complex reaction behaviours under248

different operational conditions. This section describes the data generation process, including249

associated uncertainties for 1D simulations using Cantera, followed by an introduction to the250

ANN methodology. Fig. 3 presents a detailed overview of the PCE-ANN framework employed251

in this study, illustrating the integration of UQTk, Cantera, ANN development, and potential252

applications.253
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Figure 3: Overview of the PCE-ANN framework with potential applications.
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2.3.1. Data Generation254

Honeycomb monolith reactors are widely used for emission reduction due to their high surface255

area, low pressure drop, uniform flow distribution, thermal stability, durability, and versatility [52].256

These reactors consist of numerous small-diameter channels coated with catalysts on their interior257

surfaces. In this work, a single channel is analysed, as each channel exhibits similar behaviour [50].258

To train the ML models, operational input parameters with associated uncertainties were gen-259

erated using UQTk software, and a comprehensive dataset was created through 1D simulations260

in Cantera [51]. The simulations focused on ultra-lean catalytic CH4 combustion in a PFR, rep-261

resenting one channel of a honeycomb monolith reactor. A total of 180 cases were investigated,262

examining four key operational parameters (Table 2): CH4 concentration in ventilation air (%),263

Tin, Vin, and catalyst length (Rc) in mm.264

Ultra-lean CH4 concentrations ranged from 0.2% to 1.3% in air, with ±10% uncertainty, re-265

flecting varying emission scenarios and corresponding to ϕ of 0.017 to 0.138. Inlet temperatures266

varied from 800 K to 1000 K (±2% uncertainty), as temperature significantly impacts reaction267

kinetics and catalyst performance. Temperatures below 800 K were avoided due to insufficient268

O2 desorption for CH4 adsorption, while temperatures above 1200 K promote homogeneous CH4269

combustion without a catalyst [9]. Additionally, PtO2, formed during catalytic oxidation, becomes270

unstable below 700 K [53], and temperatures above 900 K risk catalyst degradation and thermal271

NOx formation. Inlet velocities ranged from 0.8 to 1.2 m/s (±5% uncertainty), capturing the272

effects of flow velocity on CH4 conversion, residence time, and heat transfer.273

Table 2: Data parameters with applied uncertainty used in ANN algorithm for 1D simulations.

CH4 (%) ±10% Tin (K) Vin (m/s) Catalyst
CH4 % Equivalence Ratio (ϕ) ±5% ±2% length(mm)

in the air Min/max Mean
1.3 0.138/0.113 0.125

20, 30,
and 50

0.9 0.095/0.078 0.086
0.6 0.063/0.052 0.057
0.2 0.021/0.017 0.019

800-1000
0.8, 1.0,
and 1.2

The UQ for each case required 216 individual simulations ((5+1)3 = 216), as detailed in Section274

2.1, due to the propagation of uncertainties through the system. This resulted in a total of 38,880275

data points, sufficient for training reliable ANN models and accurately quantifying uncertainties.276
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2.3.2. Model Development and Optimisation277

The relationship between ANN performance and architectural complexity is highly problem-278

dependent, necessitating a systematic evaluation of various configurations. Prior to ANN training,279

the input dataset underwent power transformation for normalisation and random shuffling to280

prevent sequence-based biases. Training employed a batch size of 128, a maximum of 3000 epochs,281

an initial learning rate of 5 × 10−3 with a decay rate of 1 × 10−4, and the Adam optimiser282

with early stopping after 100 consecutive epochs without improvement in the loss function. The283

Rectified Linear Unit (ReLU) activation function was used across all hidden layers to mitigate284

gradient vanishing issues. The loss function, mean absolute error (MAE), is defined as:285

MAE =
1

m

m∑
i=1

|CH4%− ĈH4%| (7)

For ANN architecture optimisation, a design space of 2 to 10 layers and 4 to 40 neurons per286

layer was explored, encompassing 81 distinct ANN evaluations. This hyper-parameter optimi-287

sation study was completed in approximately 6 hours using an NVIDIA RTX 2000 Ada GPU,288

demonstrating the efficiency of modern computational resources.289

The validation set loss term landscape (Fig. 4) revealed optimal configurations for predictive290

performance. The lowest MAE values were concentrated in regions with shallow networks (3-5291

layers) and 10-15 neurons. The highest accuracy was achieved with a 4-layer, 32-neuron configu-292

ration (marked with a red star), chosen for the remainder of this study (Fig. 5). This architecture293

achieved an MAE of 0.062 with a minimal generalisation gap between train and validation losses.294

Networks with increased depth (5-10 layers) maintained stable performance across various neuron295

counts, suggesting width contributes more significantly to robustness than depth. The steepest296

error gradients occurred in the lower left corner, where the MAE values rapidly increased to 0.60297

and above, indicating inadequate fitting. These findings highlight the importance of systematic298

hyper-parameter optimisation in ANN design.299
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by loss term on the validation set. The red star indicates the lowest MAE, while black circles denote individual
ANN evaluations.
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To ensure robust model validation, a 5-fold cross-validation strategy was implemented using300
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R2 scoring (Eq. (8)) as the evaluation metric on the final model. The cross-validation results301

demonstrated negligible standard deviation and achieved R2 = 0.995 ± 0.002 with MAE = 0.068302

± 0.013.303

R2 = 1−
∑m

i=1(CH4%i − ĈH4%i)
2∑m

i=1(CH4%i − CH4%)2
(8)

The model’s predictive accuracy was evaluated by comparing predicted values against ground304

truth data for the test set (Fig. 6). The comparison plot shows excellent agreement between predic-305

tions and actual values across the full range of CH4 conversion rates (0-100%). Data points closely306

follow the ideal diagonal line, indicating strong predictive performance. The colour gradient, repre-307

senting temperature (800-1100 K), demonstrates consistent accuracy across all temperature ranges,308

with no significant bias or degradation at extremes. The tight clustering of test set predictions309

along the diagonal confirms the model’s ability to generalise to unseen data without over fitting,310

validating the chosen architecture and training parameters.311

In terms of computational performance, a direct quantitative comparison is not rigorous due312

to differences in compute resources. Training of the final ML model took around 10 CPU hours313

on a 13th Gen Intel i7-13850HX CPU. Once trained, the ANN model achieves remarkably fast314

batch inference, processing the entire training dataset of 38,800 data points in 0.2 seconds on a315

single CPU, while data generation required approximately 2,500 CPU hours on a high-performance316

computing cluster.317
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Figure 6: Ground truth versus predicted values for the test set using the optimal ANN architecture. The dashed
lines represent ±5% of the ground truth values.
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2.3.3. Model Validation318

The ML model was validated against 1D Cantera simulations by comparing probability density319

functions (PDFs) of CH4 conversion for different operating conditions. The Cantera simulations320

used a PFR model, which assumes perfect radial mixing and considers axial variations in species321

concentrations and temperature. This model is suitable for monolithic reactor channels due to their322

high length-to-diameter ratio and laminar flow conditions. In UQ studies, validating PDF results323

is critical, as it demonstrates the model’s ability to predict the mean values and the complete324

distribution of outcomes and their likelihood. This is essential for understanding uncertainty325

propagation and assessing prediction reliability under varying conditions.326

Fig. 7 compares PDFs for various inlet velocities (Vin = 0.8, 1.0, and 1.2 m/s) and temperatures327

(850 K to 950 K). The ML model shows excellent agreement with Cantera results across all condi-328

tions, accurately capturing both the magnitude and shape of the PDF distributions. This indicates329

that the ML model has successfully learned the underlying uncertainty propagation mechanisms330

in the system.331
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Figure 7: Validation of CH4 conversion from Cantera and ML at different Tin and Vin: (a) 0.8 m/s, (b) 1.0 m/s,
(c) 1.2 m/s.
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3. Results and Discussion332

3.1. Effects of CH4 Concentration in Air333

The effects of CH4 concentration on the uncertainty in CH4 conversion were analysed for various334

Tin, with a constant coated channel length of 50 mm and Vin of 0.8 m/s. Fig. 8 shows CH4 con-335

version as a function of Tin, where continuous lines represent mean conversion values, and shaded336

areas indicate uncertainty bands. Both CH4 concentration and Tin significantly influence the con-337

version rate and its uncertainty. As concentration increases from 0.6% to 1.3%, the coefficient of338

variance (CV) peaks at approximately 75% at 850 K for 1.3% CH4, indicating higher variability in339

conversion rates. However, uncertainty decreases significantly at elevated temperatures (>950 K),340

regardless of CH4 concentration, demonstrating more stable operations at higher temperatures.341
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Figure 8: Effect of uncertainty on CH4 conversion for different inlet temperatures. Continuous lines represent the
mean conversion values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.
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For further insight, Fig. 9 shows PDFs of CH4 conversion rates at various temperatures and342

CH4 concentrations. At lower Tin (850 K), PDFs for higher CH4 concentrations exhibit wider343

distributions, consistent with the uncertainty bands in Fig. 8. As Tin increases, PDFs for higher344

CH4 concentrations become narrower and sharply peaked in the high conversion region (80-100%),345

supporting the stability of CH4 conversion at elevated temperatures.346
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Figure 9: PDFs for different CH4 concentrations in air at various temperatures.

3.2. Effects of Inlet Velocity (Vin)347

Inlet velocity, which controls ventilation air flow, is critical for safety and emission control348

in industrial settings. Higher ventilation rates ensure safer conditions by diluting CH4 below349

explosive limits but reduce catalytic conversion efficiency by decreasing residence time. The effect350

of Vin on CH4 conversion uncertainty was analysed for three velocities (0.8, 1.0, and 1.2 m/s) at a351

constant CH4 concentration of 0.6% and a catalyst-coated channel length of 50 mm. Fig. 10 shows352

that CH4 conversion rates are consistently higher at lower Vin, attributed to increased residence353

time. While CV values are similar (around 50%) at 800 K, they diverge with increasing Tin. For354
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Vin = 0.8 m/s, CV decreases rapidly to 10% at 950 K, whereas higher Vin (1.0 and 1.2 m/s) show355

slower decreases, reaching 17% and 22%, respectively. These results highlight the trade-off between356

safety and conversion efficiency, emphasising the need to optimise operating temperatures based357

on ventilation rates.358

Figure 10: Comparison of uncertainty effects on CH4 conversion for 0.6% CH4 in air at different inlet velocities.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.

For further analysis, Fig. 11 shows PDFs of CH4 conversion at different Vin and Tin for a 50359

mm catalyst-coated reactor with 0.6% CH4 in air. At 950 K, CH4 conversion exhibits reduced360

uncertainty with narrower PDFs at lower Vin. However, at 900 K, PDFs are wider and less361
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stable regardless of Vin, highlighting the importance of temperature control in achieving consistent362

conversion rates.363
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Figure 11: PDF comparison of CH4 conversion for different Tin and Vin for a 50 mm catalyst-coated reactor with
0.6% CH4 in air.

3.3. Effect of Inlet Temperature (Tin)364

Inlet temperature plays a crucial role in CH4 conversion, as higher temperatures enhance cat-365

alyst activity, promoting more complete conversion. Fig. 12 shows the effects of Tin on CH4366

conversion rates and their associated uncertainties for different CH4 concentrations. At lower Tin367

(850 K), CH4 conversion rates are low due to limited catalytic activity, increasing gradually from368

15% at 0.2% CH4 to 45% at 1.3% CH4. Uncertainty also increases with Tin, peaking at 75% for369

1.3% CH4, consistent with the discussion in Section 3.1. At higher Tin (>900 K), CV decreases370

with CH4 concentration, indicating more stable conversion. For Tin = 950 K, CH4 conversion rates371

reach 60-100%, with complete conversion at 1.3% CH4, demonstrating that elevated temperatures372

enhance both conversion rates and process stability.373

24



Figure 12: Effect of uncertainty on CH4 conversion for different CH4 concentrations in air at various temperatures.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.
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While Vin affects CH4 conversion uncertainty by influencing residence time, Tin has a more374

fundamental impact. Fig. 13 shows the main sensitivity analysis for various Tin and CH4 concen-375

trations (0.2% to 1.3%) at different Vin. Tin is the primary contributor to uncertainty, especially376

at lower Tin and CH4 concentrations. Its contribution decreases with increasing Tin and CH4377

concentration, while the impact of CH4 concentration (ϕ) and Vin becomes more significant. At378

higher Tin (950 K) and CH4 concentrations, the order of contribution to uncertainty is Tin > ϕ379

> Vin, highlighting the importance of temperature control for stability at lower equivalence ratios380

and flow velocities.381

Figure 13: Main sensitivity analysis at various Tin and CH4 concentrations for different inlet velocities.

3.4. Effects of Catalyst Coating Length382

Catalyst deactivation is a significant challenge in real catalytic CH4 conversion reactors, par-383

ticularly in systems processing low-concentration CH4 in air, which often contains contaminants384

such as dust, NOx, H2O, H2S, and SO2. These impurities can degrade catalyst performance or385

cause complete deactivation [9]. To understand the impact of deactivation, three catalyst coating386

lengths (50, 30, and 20 mm) were analysed, representing varying stages of catalyst availability.387
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These reduced coating lengths serve as a simplified representation of the effective active catalyst388

area remaining after partial deactivation. While this approach does not capture the full complexity389

of deactivation dynamics, it provides valuable insights into how reduced catalyst availability affects390

both conversion efficiency and process predictability. Fig. 14 shows that shorter coating lengths391

lead to lower CH4 conversion rates and higher uncertainty. CV values decrease with increasing Tin,392

but this decrease is less pronounced for shorter coating lengths, indicating that catalyst deacti-393

vation reduces both conversion efficiency and process predictability. Specifically, at Tin = 850 K,394

reducing coating length from 50 mm to 20 mm decreases mean CH4 conversion from approximately395

20% to 10%, while CV decreases from 50% to 45%. The more dramatic effect is seen at higher396

temperatures (Tin = 950 K), conversion drops from nearly 100% to 60%, demonstrating that deac-397

tivation has greater absolute impact at conditions where the fresh catalyst would otherwise achieve398

complete conversion. Critically, the uncertainty (CV) remains elevated even at high temperatures399

when catalyst is deactivated. For the 50 mm coating, CV drops to 5% at 950 K, indicating very400

stable conversion performance. However, for the 20 mm coating, which represents around 60%401

deactivation, CV remains at 35% even at 950 K. This persistent uncertainty under deactivated402

conditions has important implications: operators cannot compensate for deactivation simply by403

increasing temperature, as the system becomes inherently less predictable and more sensitive to404

input variations.405

It should be noted that the representation of deactivation solely by reduction in coating length406

is a simplification of the complex deactivation phenomena occurring in real systems. In practice,407

catalyst deactivation can occur through multiple mechanisms, including poisoning by sulphur com-408

pounds, H2O vapour, sintering at higher temperatures, and fouling by dust particles, which may409

alter not only the available surface area but also the intrinsic catalytic activity of remaining sites.410

The current simplified model assumes that the remaining catalyst maintains its original activ-411

ity while the “deactivated” region has zero activity, which may not fully capture scenarios where412

poisoning or sintering reduce the intrinsic activity across the entire catalyst bed. Despite these lim-413

itations, this approach provides valuable first-order insights into how reduced catalyst availability414

affects conversion performance and uncertainty propagation, with the key finding that deactiva-415

tion increases conversion uncertainty expected to be robust regardless of the specific deactivation416

mechanism.417
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Figure 14: Effect of catalyst coating length in the monolith channel on CH4 conversion rate and uncertainty.
Continuous lines represent the mean conversion values, while shaded areas indicate the uncertainty bands due to
the deviations in input parameters.

For further illustration, Fig. 15 shows PDFs of CH4 conversion at 950 K for 0.6% CH4 in air,418

comparing different Vin and catalyst coating lengths. Longer coating lengths result in higher con-419

version rates and more stable performance, evidenced by narrow, sharply peaked PDFs centred420

at high conversion values. For Vin = 0.8 m/s with 50 mm coating, the PDF shows a sharp peak421

at 95% conversion with minimal spread, indicating consistent, reliable performance. In contrast,422

the 20 mm coating produces a broader PDF centred at around 75% conversion, with significant423
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probability mass between 60-85%. This wider distribution indicates that under identical operat-424

ing conditions, the partially deactivated catalyst produces highly variable outcomes, sometimes425

achieving acceptable conversion, other times falling well below target performance. This effect426

is more pronounced at higher Vin (1.2 m/s), where the reduced residence time exacerbates the427

impact of deactivation. The 20 mm coating at high velocity produces the broadest PDF, spanning428

40-70% conversion, making performance prediction difficult and control strategy implementation429

challenging. These results highlight that catalyst deactivation not only reduces mean CH4 con-430

version rates but also fundamentally alters the system’s uncertainty characteristics, increasing431

operational risk and reducing process reliability. For Vin = 0.8 m/s, shorter coatings result in432

broader PDFs with lower peak heights, indicating less stable and lower conversion outcomes. This433

effect is more pronounced at higher Vin, aligning with the analysis in Section 3.2. These results434

highlight that catalyst deactivation not only reduces CH4 conversion rates but also increases un-435

certainty, emphasising the need for regular monitoring and maintenance, especially at higher flow436

rates.437
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Figure 15: PDF comparison of CH4 conversion at different Vin for various catalyst coating lengths at 950 K and
0.6% CH4 concentration in air.

4. Conclusions438

In this work, the effects of variability in ultra-lean fugitive methane combustion were investi-439

gated for various CH4 concentrations ranging from 0.2% to 1.3% in air with ±10% uncertainty,440

corresponding to equivalence ratios (ϕ) between 0.017 and 0.138. Additionally, variations in inlet441

temperatures from 800 K to 1000 K (±2% uncertainty) and inlet velocities from 0.8 to 1.2 m/s442

(±5% uncertainty) were analysed for various catalyst lengths (20, 30, and 50 mm). The study em-443

ployed the validated Deutschmann et al. [18] mechanism to simulate a PFR model for 1D catalytic444

CH4 combustion over a Pt catalyst. For the first time, a data-driven PCE-based UQ method was445

applied to investigate the impact of small parameter variations on CH4 conversion in a PFR, rep-446

resenting a single channel of a honeycomb reactor. Additionally, catalytic CH4 conversion, along447

with associated uncertainty, was successfully modelled and predicted using an ML approach via448

an ANN.449
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Key findings from this study are as follows:450

• The ANN model not only showed excellent agreement with 1D PFR simulations under various451

conditions but also demonstrated strong agreement with probability distributions arising452

from parameter uncertainties while reducing computational time from hours to mere seconds.453

• Uncertainty in catalytic CH4 conversion increases with fugitive CH4 concentration in air,454

with a CV reaching 75% for a 1.3% CH4 concentration at Tin = 850 K.455

• The uncertainty effect diminishes significantly as Tin increases, particularly for Tin > 950 K,456

where the catalytic process becomes more stable regardless of methane concentration.457

• Catalytic CH4 conversion is more stable at lower velocities, with CV rapidly decreasing to458

about 10% at 950 K, whereas at higher velocities, CV remains in the range of 17–22% under459

the same conditions.460

• CH4 conversion rate decreases while uncertainty increases as the catalyst-coated channel461

length decreases across all operating temperatures. This effect is more pronounced at higher462

flow velocities.463

• Inlet temperature emerged as the dominant factor affecting uncertainty, irrespective of other464

parameters.465

These findings underscore the crucial role of temperature control and regular catalyst main-466

tenance, particularly when higher ventilation rates are required for safety. Overall, parameter467

variations can induce up to 75% uncertainty in catalytic CH4 conversion rates. It is important to468

note that the PCE-ANN framework is fuel- and reactor-agnostic, offering a versatile computational469

tool applicable to a wide range of catalytic processes where UQ is critical for robust system design470

and operation. Future investigations could focus on exploring different catalyst materials and their471

influence on UQ, assessing the impact of trace impurities such as dust, NOx, H2O, and common472

poisons (e.g., H2S, SO2) on conversion rate uncertainty and system reliability, and developing more473

comprehensive models to simulate catalyst deactivation and transient operating conditions typical474

of VAM systems. Additionally, evaluating the framework’s ability to generalise across channel475

geometries and validating these simulations experimentally would provide valuable insights into476

the practical implications of UQ in catalytic methane combustion.477
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