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H I G H L I G H T S

• Novel PCE-ANN framework delivers real-time UQ for catalytic combustion.

• 1000x speedup with no loss of accuracy.

• Inlet temperature dominates uncertainty.

• Flow velocity, concentration & catalyst deactivation are secondary effects.

• High temperatures (>950 K) reduce uncertainty; higher velocity increases it.
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A B S T R A C T

Ultra-lean methane oxidation via catalytic combustion is critical for mitigating greenhouse gas emissions from 

fugitive methane sources. However, the catalytic oxidation process exhibits significant uncertainties that hin-

der its widespread implementation. To address this challenge, the present study develops a robust machine 

learning-based framework for quantifying combustion uncertainties, enabling more effective emission control 

strategies. The work presents a novel hybrid methodology integrating polynomial chaos expansion (PCE) with 

artificial neural networks (ANN), achieving real-time prediction of methane conversion rates and their uncer-

tainties in monolith reactors. The machine learning model reduces computational time from hours to seconds 

while achieving excellent agreement with detailed 1D plug-flow reactor simulations. The investigation reveals 

that variations in methane concentration (0.2 %–1.3 %, ± 10 %), inlet temperature (800–1000 K, ± 2 %), and in-

let velocity (0.8–1.2 m/s, ± 5 %) significantly influence conversion uncertainty, with inlet temperature identified 

as the dominant parameter (C V 

≈ 75 %). Stability improves at elevated temperatures (>950 K) and lower flow 

velocities (C V 

≈ 10 %) compared to higher velocities (C V 

= 17 %–22 %). Additionally, catalyst deactivation, rep-

resented by reduced coating length, decreases methane conversion rates and increases uncertainty, with longer 

coatings providing greater stability at higher inlet temperatures. This work advances the fundamental under-

standing of uncertainty propagation in ultra-lean catalytic methane combustion and establishes a generalisable, 

computationally efficient PCE-ANN framework applicable to catalytic combustion of diverse fuels.

1. Introduction

Climate change, driven largely by greenhouse gas (GHG) emissions 

from human activities, is one of the most critical global challenges. 

Methane, CH 4 

, with a global warming potential 28–36 times higher than 

CO 2 

over a 100-year period, has emerged as the second most significant 

anthropogenic GHG, contributing roughly 30 % to global temperature 

rise [1,2]. The energy sector is a major source of CH 4 

emissions, with

significant contributions from oil production (≈50 Mt), natural gas sys-

tems (≈30 Mt), and coal mining (≈40 Mt) annually [3]. In coal mining, 

ventilation air methane (VAM) which maintains CH 4 

concentrations be-

low 5 vol% for safety, accounts for over 70 % of mine CH 4 

emissions, 

despite its low concentration (≤1.5 vol%, typically <0.5 vol%) [4]. 

Mitigating these ultra-lean CH 4 

emissions remains challenging due to 

operational issues such as large air volumes, fluctuating concentrations,
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Nomenclature 

Latin Symbols

A Arrhenius constant

ANNs Artificial Neural Networks

C k PCE coefficients

CV Coefficient of variation

CMC Catalytic methane combustion

CPU Central processing unit

CSTR Continuous stirred-tank reactor

d Dimension

E a 

Activation energy for the reaction

GHG Greenhouse gas

GPR Gaussian Process Regression

GWP Global warming potential

HPC High performance computing 

IDT Ignition delay time 

LU Legendre-Uniform distribution 

MAE Mean Absolute Error 

MC Monte Carlo

ML Machine learning 

NISP Non-intrusive spectral projection 

NNs Neural Networks

n Temperature exponent

N ord Parameter used for quadrature point generation

OP Orthogonal polynomials

P Total order

PCE Polynomial chaos expansion

Pd Palladium

PDF Probability Density Function

PFR Plug-flow reactor 

Pt Platinum

R Universal gas constant

R 

2 Coefficient of determination 

R c Reactor catalyst coated length

ReLU Rectified Linear Unit 

S i 

 Main sensitivity of a fuel composition

S L 

Laminar flame speed

SFR Stagnation-flow reactor

T in Inlet temperature 

UQ Uncertainty quantification 

UQTk Uncertainty Quantification Toolkit

VAM Ventilation air methane

Var[𝛽] Total variance of methane conversion

V in Inlet velocity

Greek Symbols

𝛽CH4
Uncertainty associated with catalytic methane conversion

rate

𝛾𝜃 Relative uncertainty of input parameters

Γ Catalyst surface site density

ε i 

Rate coefficient dependencies on the surface coverage 

𝜃 Randomly sampled input parameters

Ψ k Multidimensional orthogonal polynomials

μ i Rate coefficient dependencies on the surface coverage

ξ Quadrature points (germs)

π Probability density function (PDF)

𝜎 Standard deviation

Ø Equivalence ratio

dust, and humidity [5]. Conventional combustion requires CH 4 

concen-

trations within flammability limits (5 %–17 vol %) and risks producing 

NO x 

emissions at high temperatures [6]. Catalytic methane combustion 

(CMC) offers a superior alternative by enabling CH 4 

oxidation at con-

centrations well below the flammability limit and at significantly lower 

temperatures (as low as 400 

° C), substantially reducing both GHG im-

pact and NO x 

formation [7]. The oxidation process of CMC converts CH 4 

to CO 2 

, a far less potent GHG, reducing the climate impact substantially. 

Additionally, capturing CH 4 

from VAM exhaust is more challenging than 

absorbing CO 2 

[7]. Thus, converting fugitive CH 4 

to low-GWP CO 2 

in 

the energy sector supports climate change mitigation and improves air 

quality.

Noble metal catalysts, particularly platinum (Pt) and palladium (Pd) 

on Al 2 

O 3 

supports, are widely used for CMC due to their high activity

and low-temperature CH 4 

conversion rates [7]. While Pd-based cata-

lysts exhibit higher activity, Pt catalysts are preferred for ultra-lean 

CH 4 

combustion due to better resistance to poisoning and lower costs 

[8,9]. Su and Yu [10] demonstrated this by developing a 25 kWe pro-

totype using Pd/Al 2 

O 3 for lean CH 4 

combustion from VAM systems. 

The prototype successfully operated with 0.8 % CH 4 

, generating 19–21 

kWe without requiring cooling, air dilution, or nozzle injection. Burch 

et al. [11] compared Pt/Al 2 

O 3 and Pd/Al 2 

O 3 under various conditions, 

finding Pt superior in CH 4 

-rich environments and Pd more effective in 

O 2 

-rich (diluted) conditions. In addition to supported noble metals, re-

cent reviews of Co 3 

O 4-based nanostructured catalysts, including noble

metal doping strategies, have demonstrated the potential for enhanced 

catalytic performance and stability in lean methane combustion appli-

cations [12]. Furthermore, recent experimental studies on hierarchical 

monolith catalysts with self-supporting structures have demonstrated 

enhanced performance for lean methane catalytic oxidation [13].

Catalytic combustion in microreactors has gained attention due to 

their compact sub-millimetre-scale designs, offering advantages such

as high surface-to-volume ratios, enhanced heat and mass transfer,

and shorter diffusion times [9]. Honeycomb monolith reactors further 

improve performance with lower pressure drops, minimised external 

diffusion limitations, and prevention of hotspots due to their structured 

channels (round, square, or finned) [9]. These channels can be coated 

with thin, uniform catalyst layers, increasing fuel–catalyst contact area 

and enabling efficient use of noble metals. He et al. [14] experimentally

investigated Pt/𝛾-Al 2 

O 3 

catalysts in various microreactor channel types 

for CH 4 

combustion. They tested Pt loadings (1.5–5.0 wt%), CH 4 

flow 

rates (150-500 mL/min), O 2 

:CH 4 

ratios (0.5–6.0), and temperatures

(300–500 

° C), finding that CH 4 

conversion increases with Pt loading 

but decreases with higher flow rates, especially at higher loadings. The

optimal O 2 

:CH 4 

ratio was 1.5 (vs. the stoichiometric 2.0), balancing 

O 2 and CH 4 

on the catalyst surface. The double serpentine channel de-

sign achieved the highest CH 4 

conversion due to its larger coating area, 

longer residence time, and improved gas mixing. Hunt et al. [15] studied 

ultra-lean CH 4 

combustion in a wavy channel microreactor with Pt cat-

alyst, showing that strategic catalyst placement (using only 25 % of the 

coating) achieved 60 % of the CO 2 

production of fully coated channels. 

The wavy design increased CO 2 

production rates, per unit surface area of 

the catalyst, by up to 400 % compared to straight channels, highlighting 

the importance of channel configuration.

Dupont et al. [16] studied catalytic honeycomb monolith reactors 

with Pd and Pt catalysts for CH 4 

combustion, highlighting their critical 

role in ignition and steady-state operation for complete CH 4 

conversion 

to CO 2 

. They found that monolith length could be reduced by 70 % 

(from 50.8 mm) without performance loss, as the reaction zone is con-

fined to the first 10–15 mm of the channels, offering significant cost 

savings in noble metal usage. Higher flow rates, however, pushed the re-

action zone deeper into the monolith and reduced combustion stability 

[16]. Kumaresh et al. [17] numerically studied lean CH 4 

combustion in 

Pt-coated honeycomb monoliths, showing complete CH 4 

conversion
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within 42 mm at 400 

° C, 3 % fuel/air ratio, and 20 m/s inlet veloc-

ity. Higher inlet temperatures and fuel/air ratios, combined with lower 

velocities, shifted the reaction zone upstream, reducing the required 

reactor length. Deutschmann et al. [18] numerically investigated CH 4 

combustion on Pt foil using a detailed surface reaction mechanism, suc-

cessfully predicting complex phenomena like ignition, extinction, and 

hysteresis [18].

VAM systems face significant variability challenges due to ultra-

lean CH 4 

concentrations (0.1 %–1.5 %) and large ventilation air flows 

(100–300 m 

3 /s) [19]. These variations, caused by mining activities 

and underground pressure changes, affect gas quality, flow rate, and 

purity [4,19]. Rahimi et al. [20] emphasised designing ventilation sys-

tems to account for gas emission uncertainties, ensuring safety against 

fires, explosions, and financial losses from coal seam gas fluctuations. 

Combustion systems for VAM must handle these uncertainties, as sudden 

flow reductions disrupt combustion stability, while rapid CH 4 

concen-

tration increases risk equipment damage and higher NO x 

emissions 

[9]. Additionally, low-concentration CH 4 

often contains contaminants 

like dust, NO x 

, H 2 

O, H 2 

S, and SO 2 

, which can poison and deacti-

vate catalysts [9]. Catalyst deactivation in monolithic reactors remains 

a challenge due to uncontrolled emissions and incomplete combus-

tion [21]. Temperature is critical, affecting reaction kinetics, catalyst 

activity, and stability. While catalytic combustion occurs at lower tem-

peratures [7], precise temperature control is essential to avoid thermal 

stress, mechanical degradation, and accelerated deactivation [21,22]. 

Uncontrolled temperature variations, especially when using waste heat, 

further complicate system performance [23]. These operational chal-

lenges underscore the need for systematic approaches to quantify and 

manage uncertainty in catalytic fugitive methane combustion.

Although previous studies discussed the presence of uncertainty in 

VAM systems, there remains a significant gap in the literature regard-

ing systematic uncertainty quantification (UQ) in catalytic ultra-lean 

CH 4 

combustion applications. Both experimental and computational 

approaches inherently contain unavoidable uncertainties, while tradi-

tional numerical models employ fixed parameters [24]. These uncer-

tainties can be effectively quantified and reduced through mathematical 

modelling techniques. Uncertainties generally fall into two categories: 

epistemic and aleatoric. Epistemic uncertainty stems from lack of knowl-

edge or information about the system and can potentially be decreased 

through improved understanding and enhanced measurement tech-

niques. Conversely, aleatoric uncertainty arises from the probabilistic 

nature of random processes and is irreducible, even with complete 

system knowledge [25]. In this study, the computational framework 

primarily focuses on epistemic uncertainty through the analysis of 

parametric variations in inlet conditions (temperature, velocity, and 

concentration) and catalyst coating length. These variations represent 

uncertainties that could theoretically be reduced with improved mea-

surement, control systems, and catalyst design. By quantifying how these 

epistemic uncertainties propagate through the catalytic system, the pa-

rameters that contribute most significantly to variability in methane 

conversion performance can be identified. Uncertainty quantification 

methods use mathematical modelling to measure and manage uncer-

tainties in experimental and computational settings [24,26,27]. While 

Monte Carlo (MC) methods traditionally address epistemic uncertain-

ties, they are computationally expensive for complex models requiring 

large sample sizes [28]. Surrogate models, such as Gaussian processes 

[29,30] or Polynomial Chaos Expansion (PCE) [31,32], provide effi-

cient alternatives to computationally expensive MC methods for UQ. 

For complex simulations, UQ-PCE is more cost-effective and efficient 

than UQ-MC; several studies have successfully applied PCE-based UQ 

methods to combustion problems [33–36].

While PCE significantly improves efficiency for UQ, it still remains 

demanding for complex catalytic systems requiring high-fidelity simula-

tions with detailed chemistry and transport phenomena. Soyler et al. 

[36] demonstrated this computational burden by using PCE for UQ 

in NH 3 

/H 2 

/N 2 

/air combustion, completing over 21,000 simulations

(6000 CPU hours) on an HPC cluster. In a follow-up study, they per-

formed 70,000 simulations to analyse uncertainties in partially cracked 

NH 3 

/syngas combustion [37]. Similarly, Zhang and Jiang [31,38,39] 

demonstrated the need for extensive simulations in PCE-based UQ for 

combustion research. This computational burden presents a significant 

obstacle to the practical implementation of UQ for real-world catalytic 

applications, particularly for real-time monitoring and control systems 

necessitating more efficient approaches. The novel integration of ma-

chine learning (ML) with UQ techniques offers a promising solution to 

overcome this limitation by drastically reducing computational costs 

while maintaining accuracy [40], and enabling robust analysis of un-

certainty propagation in catalytic methane combustion systems. ML 

techniques efficiently capture complex relationships between uncertain 

parameters and system outputs, enabling analysis of non-linearities and 

interactions without extensive model evaluations. Recent research has 

explored various ML algorithms for combustion properties, including 

laminar flame speed (S L 

) [41,42], ignition delay time (IDT) [43], and 

reforming processes [44]. Among these approaches, artificial neural 

networks (ANNs) have proven their effectiveness in combustion applica-

tions and their ability to model highly non-linear relationships between 

multidimensional input and output spaces [45], making them especially 

suited for catalytic conversion processes where multiple interacting 

parameters influence reaction outcomes. ML-based UQ frameworks en-

able robust design and optimisation of catalytic reactors under varying 

conditions, making them particularly valuable for catalytic VAM sys-

tems, where real-time prediction and optimisation under uncertainty are 

critical for practical implementation.

To the best of authors’ knowledge, no prior studies have explored 

ML-based UQ for catalytic combustion systems, revealing a significant 

research gap. While ML and UQ have been applied to combustion mod-

elling, their integration for directly predicting uncertainty metrics in 

catalytic systems remains unexplored. This study addresses this gap 

by developing a novel ML framework to predict uncertainty bounds, 

sensitivity indices, and probabilistic performance metrics for catalytic 

CH 4 

oxidation. The specific objectives of this work include several key 

components. First, an ML model (ANN) for predicting catalytic CH 4 

con-

version rates in monolith reactors is developed and validated. Second, 

the effects of varying CH 4 

concentration, inlet temperature, and inlet 

flow velocity on uncertainty in CH 4 

conversion are quantified using a 

surrogate UQ method (PCE). Third, the influence of catalyst deactivation 

on conversion performance and uncertainty propagation is investigated. 

Fourth, dominant parameters driving uncertainty in ultra-lean catalytic 

CH 4 

combustion are identified. Finally, the computational efficiency 

of the PCE-ANN framework compared to conventional approaches is 

demonstrated.

Once trained, the ML model delivers a remarkable computational ad-

vantage, reducing analysis time from hours to seconds while preserving 

high-fidelity uncertainty predictions. This hybrid PCE-ANN approach 

advances catalytic systems modelling in two crucial dimensions: the-

oretically, by elucidating the nonlinear propagation mechanisms of 

parametric uncertainties through complex surface reactions; and prac-

tically, by providing rapid assessment tools essential for robust fugitive 

CH 4 

oxidation technology design. By quantitatively mapping how input 

uncertainties transform into performance variability, this framework es-

tablishes science-based safety margins, optimise operating conditions, 

and implements targeted control strategies that maximise conversion re-

liability while minimising catalyst deactivation. The resulting decision 

support capability addresses a critical gap in the development of resilient 

catalytic combustion systems for GHG mitigation applications.

2. Methodology 

2.1. Uncertainty quantification method

In this work, PCE was employed to construct a surrogate model for 

UQ using the open-source Uncertainty Quantification Toolkit (UQTk)
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Table 1 

Surface reaction mechanism for CH 4 

combustion over Pt catalyst from Deutschmann et al. [50].

Reaction A (cm, mol, s) n E (kJ/mol)a  ε i 

, μ i 

(kJ/mol)

(1) H 2 

+ 2Pt(s) → 2 H(s) 4.60 × 10 

-2 μP =t(s)  -1 

∗

(2) 2 H(s) → H 2 

+ 2Pt(s) 3.70 × 10 

21 0.0 67.4 ε =H(s)  6

(3) H + Pt(s) → H(s) 1.00 

∗

(4) O 2 

+ 2Pt(s) → 2O(s) 1.80 × 10 

21 −0.5 0.0

(5) O 2 

+ 2Pt(s) → 2O(s) 2.30 × 10 

-2∗

(6) 2O(s) → 2Pt(s) + O 2 3.70 × 10 

21 0.0 213.2 ε O(s) = 60

(7) O + Pt(s) → O(s) 1.00 

∗

(8) H 2 

O + Pt(s) → H 2 

O(s) 0.75 

∗

(9) H 2 

O(s) → H 2 

O + Pt(s) 1.00 × 10 

13 0.0 40.3

(10) OH + Pt(s) → OH(s) 1.00 

∗

(11) OH(s) → OH + Pt(s) 1.00 × 10 

13 0.0 192.8

(12) O(s) + H(s) → OH(s) + Pt(s) 3.70 × 10 

21 0.0 11.5

(13) H(s) + OH(s) → H 2 

O(s) + Pt(s) 3.70 × 10 

21 0.0 17.4

(14) OH(s) + OH(s) → H 2 

O(s) + O(s) 3.70 × 10 

21 0.0 48.2

(15) CO + Pt(s) → CO(s) 8.40 × 10 

-1∗ μ P t(s) = 1

(16) CO(s) → CO + Pt(s) 1.00 × 10 

13 0.0 125.5

(17) CO 2 

(s) → CO 2 

+ Pt(s) 1.00 × 10 

13 0.0 20.5

(18) CO(s) + O(s) → CO2  

(s) + Pt(s) 3.70 × 10 

21 0.0 105.0

(19) CH 4 + 2Pt(s) → CH 3 

(s) + H(s) 1.00 × 10 

-2∗ μ P t(s) = 0.3

(20) CH 3 

(s) + Pt(s) → CH 2 

(s) + H(s) 3.70 × 10 

21 0.0 20.0

(21) CH 2 

(s) + Pt(s) → CH(s) + H(s) 3.70 × 10 

21 0.0 20.0

(22) CH(s) + Pt(s) → C(s) + H(s) 3.70 × 10 

21 0.0 20.0

(23) C(s) + O(s) → CO(s) + Pt(s) 3.70 × 10 

21 0.0 62.8

(24) CO(s) + Pt(s) → C(s) + O(s) 1.00 × 10 

18 0.0 184.0

k = AT 

n e(-Ea/RT ) , k is the rate constant for the reaction, A is the Arrhenius constant, n is the temperature exponent, 

E isa  the activation energy for the reaction, and R is the universal gas constant. 

εi and μ arei  

 

the rate coefficient dependences on the surface coverage.
∗ symbol represents the sticking coefficient.

version 3.1.4 [46]. The mathematical formulation of the PCE surro-

gate model is briefly described below. The uncertainty in simulation 

parameters is expressed as:

𝜃 sample 

= 𝜃 mean 

± 𝜎 𝜃 × ξ d (1) 

where 𝜃 sample 

represents a randomly sampled set of parameters for cat-

alytic CH 4 

oxidation, such as inlet temperature (T in 

), inlet velocity (V in 

),

or equivalence ratio (Ø). The mean values of these parameters are de-

noted by 𝜃 mean 

, and their standard deviations by 𝜎 𝜃 

. The random variable 

germs, ξ d 

= (ξTin
, ξVin

, ξ Ø 

), are generated using orthogonal polynomials

based on the distribution type [47,48]. These germs represent the stan-

dardised basis for constructing PCE, where each element corresponds to 

a specific uncertain input parameter (inlet temperature, inlet velocity, 

and equivalence ratio, respectively). The orthogonal polynomials are se-

lected to match the probability distribution of each parameter (Hermite 

polynomials for normal distributions and Legendre polynomials for uni-

form distributions), ensuring optimal convergence of the expansion. For 

this study, a Legendre-Uniform (LU) distribution was assumed, with ran-

dom variables uniformly distributed in the interval [-1, 1]. The standard 

deviation of each parameter is calculated as follows:

𝜎 𝜃 

= 𝜃 mean 

× 𝛾 𝜃 (2)

where 𝛾 represents𝜃  the relative uncertainty: 5 % for inlet velocity

(𝛾 forV = ().()5), 10 %  equivalence ratio (   ), and 2 % for inlet
in

𝛾Ø 

= ().1()
temperature (𝛾Tin

= ().()2). 
The number of quadrature points (ξ d 

) is calculated as (N ord 

) 

d , where

N ord = P + 1 is the expansion order, and d is the number of uncertain 

parameters. With P = 5, this results in (5 + 1) 

3 = 216 quadrature points. 

Higher-order expansions can lead to excessive quadrature points with-

out improving UQ results [36]. The selection of P = 5 was based on 

the authors’ previous implementation in similar combustion UQ stud-

ies [36,37], where they demonstrated that orders higher than P = 5 

did not provide significant improvement in accuracy while substantially 

increasing computational cost. For this catalytic system with 3 uncer-

tain parameters, P = 5 is sufficient to capture the output variance while 

maintaining computational load with 216 evaluation points per case.

The multidimensional PCE for catalytic CH 4 

conversion is expressed

as:

𝛽CH4
=

P
∑

k=()
C kΨ k 

(ξ d ) (3)

where 𝛽 CH4 

represents CH 4 

conversion with quantified uncertainty, 

C k 

are the PCE coefficients (spectral mode strengths), and Ψ k 

(ξ d ) are

Legendre-Uniform orthogonal polynomials up to order P . The PCE co-

efficients are determined using the non-intrusive spectral projection 

(NISP) method via Gauss-Legendre quadrature integration:

C k = 

1
〈Ψ2

k(ξ)〉 ∫

1

-1
𝛽(ξ)Ψ k 

(ξ)π(ξ) dξ, k = (), ... , P (4)

where π(ξ) is the probability density function, and ξ represents the germ 

samples for each input parameter.

In addition to quantifying uncertainties in CH 4 

conversion, a

variance-based global sensitivity analysis [49] was conducted to evalu-

ate the impact of input uncertainties on output uncertainty. This method

assesses how individual parameter uncertainties contribute to the total

uncertainty in CH 4 conversion. The first-order sensitivity indices (S i) are

calculated as:

S i =
∑

C 

2
i 〈Ψ

2
i 〉

Var[𝛽]
(5)

where (i) denotes a specific input parameter, and Var[𝛽] represents the 

total variance of CH 4 

conversion. The total variance is expressed as:

Var[𝛽] = 

∑ 

k>()
C 

2
k〈Ψ

2
k〉 (6)

2.2. Validation of surface reaction mechanism

The surface reaction mechanism developed by Deutschmann et al. 

[50] was used, comprising 24 chemical reactions involving 11 surface 

species and 7 gas-phase species (Table 1). Pt catalyst was modelled with
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a surface site density (Γ) of 2.72 × 1() 

9 mol/cm 

2 , where Pt(s) represents 

uncovered surface sites available for adsorption.

The mechanism was validated using two models: a stagnation-flow 

reactor (SFR) and a plug-flow reactor (PFR). The SFR configuration, 

where gas flow impinges perpendicularly onto a catalytic surface, is 

ideal for studying gas-surface interactions and reaction kinetics. Its 1D 

nature simplifies analysis by focusing on the centreline, where variables 

depend only on the distance from the surface, making it suitable for 

validating detailed reaction mechanisms [18].

For catalytic CH 4 

combustion simulations in a SFR, Cantera [51] was 

used to solve the surface chemistry reactions. The simulations were con-

ducted under specified initial conditions to validate the surface reaction 

mechanism. A premixed gas mixture of 9.5 % CH 4 

in air was introduced 

with a uniform inlet velocity of 6 cm/s at 100 mm from the catalytic 

surface. The initial CH 4 

-air mixture and surface temperatures were set 

to 300 K and 1000 K, respectively, under atmospheric pressure.

The surface reaction mechanism was validated against the results 

of Deutschmann et al. [18] using an SFR configuration. Fig. 1 compares 

species mole fractions as a function of distance from the catalytic surface. 

The continuous lines represent the current numerical results, while the 

marker points show data from Deutschmann et al. [18]. The simulation 

captures the key features of species evolution: O 2 

and CH 4 

are consumed 

near the surface, while CO 2 

and H 2 

O are formed. A small amount of 

CO appears as an intermediate species, peaking near the surface before 

being oxidised to CO 2 

. The excellent agreement between the simulations 

and reference data validates the implementation of the surface reaction 

mechanism.

Fig. 1. Validation of surface reaction mechanism using SFR simulations. 

Continuous lines represent numerical results from this study, while markers 

denote reference data from Deutschmann et al. [18].

The PFR represents a steady-state 1D flow system where species 

concentrations and temperature vary along the reactor length without 

diffusion. In this model, the reaction mixture flows uniformly at constant 

velocity, ensuring complete radial mixing and no backflow. The PFR is 

particularly suitable for catalytic systems, as surface reactions at the wall 

promote radial mixing. Its computational efficiency makes it an excel-

lent tool for validating detailed kinetic mechanisms under steady-state 

conditions.

In this work, catalytic CH 4 

combustion simulations were performed 

in a single-channel PFR with a length of 200 mm and a hydraulic 

diameter of 1.27 mm. The reactor simulated lean premixed CH 4 

-air com-

bustion over a Pt catalyst at atmospheric pressure. Cantera was used 

to model the PFR as a chain of 201 continuous stirred-tank reactors 

(CSTRs). The governing equations for the 1D steady-state PFR model

are detailed elsewhere [51]. The first CSTR was fed a lean CH 4 

/air mix-

ture (fuel/air ratio 2.94 %) at an inlet temperature of 645 

° C and an 

inlet velocity of 16.7 m/s.

The surface reaction mechanism from Deutschmann et al. [50] was 

further validated against the results of Kumaresh and Kim [17] using 

a PFR configuration. Fig. 2 compares the current results (continuous 

lines) with data from Kumaresh and Kim [17] (marker points). Initially, 

the Pt surface is predominantly covered by adsorbed oxygen O(s), with 

a coverage of approximately 0.9 at the reactor entrance.

Fig. 2. Validation of Deutschmann’s surface mechanism with the results from 

Kumaresh and Kim by using PFR reactor. Continuous lines are from this study, 

marker points are from Kumaresh and Kim [17].

As reactions proceed, O(s) coverage decreases while free Pt(s) in-

creases, stabilising at about 0.7 after 60 mm. The adsorbed methyl 

species CH 3 

(s) (scaled by 1() 

8 for clarity) peaks at 40–50 mm, indicating 

the region of most active CH 4 

decomposition, before being consumed in 

subsequent reactions. The formation of CO 2 

and H 2 

O (scaled by 1() 

2 for 

clarity) increases until reaching steady-state values after about 80 mm. 

The excellent agreement between our simulations and the reference 

data validates both the surface mechanism implementation and the PFR 

model assumptions under the specified conditions.

2.3. Machine learning (ML)

In this work, ML models were developed to predict how variations 

in input parameters affect ultra-lean catalytic CH 4 

conversion rates, 

efficiently capturing complex reaction behaviours under different op-

erational conditions. This section describes the data generation process, 

including associated uncertainties for 1D simulations using Cantera, fol-

lowed by an introduction to the ANN methodology. Fig. 3 presents a 

detailed overview of the PCE-ANN framework employed in this study, 

illustrating the integration of UQTk, Cantera, ANN development, and 

potential applications.

2.3.1. Data generation

Honeycomb monolith reactors are widely used for emission reduc-

tion due to their high surface area, low pressure drop, uniform flow 

distribution, thermal stability, durability, and versatility [52]. These 

reactors consist of numerous small-diameter channels coated with cata-

lysts on their interior surfaces. In this work, a single channel is analysed, 

as each channel exhibits similar behaviour [50].

To train the ML models, operational input parameters with associated 

uncertainties were generated using UQTk software, and a comprehen-

sive dataset was created through 1D simulations in Cantera [51]. The 

simulations focused on ultra-lean catalytic CH 4 

combustion in a PFR,
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Fig. 3. Overview of the PCE-ANN framework with potential applications.

representing one channel of a honeycomb monolith reactor. A total of 

180 cases were investigated, examining four key operational parameters 

(Table 2): CH 4 

concentration in ventilation air (%), T in 

, V in 

, and catalyst 

length (R c 

) in mm.

Ultra-lean CH 4 

concentrations ranged from 0.2 % to 1.3 % in air, 

with ± 10 % uncertainty, reflecting varying emission scenarios and cor-

responding to Ø of 0.017 to 0.138. Inlet temperatures varied from 800 K 

to 1000 K (± 2 % uncertainty), as temperature significantly impacts re-

action kinetics and catalyst performance. Temperatures below 800 K 

were avoided due to insufficient O 2 

desorption for CH 4 

adsorption,

while temperatures above 1200 K promote homogeneous CH 4 

combus-

tion without a catalyst [9]. Additionally, PtO 2 

, formed during catalytic 

oxidation, becomes unstable below 700 K [53], and temperatures above 

900 K risk catalyst degradation and thermal NO x 

formation. Inlet ve-

locities ranged from 0.8 to 1.2 m/s (± 5 % uncertainty), capturing the 

effects of flow velocity on CH 4 

conversion, residence time, and heat 

transfer.

The UQ for each case required 216 individual simulations ((5+1) 

3 

= 216), as detailed in Section 2.1, due to the propagation of uncertain-

ties through the system. This resulted in a total of 38,880 data points,

Table 2 

Data parameters with applied uncertainty used in ANN algorithm for 1D simulations.

CH 4 

(%) ± 10 %

CH 4 

% Equivalence Ratio (Ø)

in the air Min/max Mean T in 

(K) ± 5 % V in 

(m/s) ± 2 % Catalyst length(mm)

1.3 0.138/0.113 0.125

800–1000 0.8, 1.0, and 1.2 20, 30, and 50
0.9 0.095/0.078 0.086

0.6 0.063/0.052 0.057

0.2 0.021/0.017 0.019
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sufficient for training reliable ANN models and accurately quantifying 

uncertainties.

2.3.2. Model development and optimisation

The relationship between ANN performance and architectural com-

plexity is highly problem-dependent, necessitating a systematic evalua-

tion of various configurations. Prior to ANN training, the input dataset 

underwent power transformation for normalisation and random shuf-

fling to prevent sequence-based biases. Training employed a batch size of 

128, a maximum of 3000 epochs, an initial learning rate of 5 × 1() 

-3 with 

a decay rate of 1 × 1() 

-4 , and the Adam optimiser with early stopping 

after 100 consecutive epochs without improvement in the loss function. 

The Rectified Linear Unit (ReLU) activation function was used across all 

hidden layers to mitigate gradient vanishing issues. The loss function, 

mean absolute error (MAE), is defined as:

MAE = 

1
m

m
∑ 

i=1
|CH 4 

% - 

︿ CH 4 

%| (7)

For ANN architecture optimisation, a design space of 2–10 layers 

and 4–40 neurons per layer was explored, encompassing 81 distinct 

ANN evaluations. This hyper-parameter optimisation study was com-

pleted in approximately 6 hours using an NVIDIA RTX 2000 Ada GPU, 

demonstrating the efficiency of modern computational resources.

Fig. 4. Accuracy map of ANN architectures in terms of neurons per hidden layer 

and hidden layers, represented by loss term on the validation set. The red star in-

dicates the lowest MAE, while black circles denote individual ANN evaluations. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)

The validation set loss term landscape (Fig. 4) revealed optimal con-

figurations for predictive performance. The lowest MAE values were 

concentrated in regions with shallow networks (3–5 layers) and 10–15 

neurons. The highest accuracy was achieved with a 4-layer, 32-neuron 

configuration (marked with a red star), chosen for the remainder of this 

study (Fig. 5).

This architecture achieved an MAE of 0.062 with a minimal gen-

eralisation gap between train and validation losses. Networks with 

increased depth (5–10 layers) maintained stable performance across var-

ious neuron counts, suggesting width contributes more significantly to 

robustness than depth. The steepest error gradients occurred in the lower 

left corner, where the MAE values rapidly increased to 0.60 and above, 

indicating inadequate fitting. These findings highlight the importance of 

systematic hyper-parameter optimisation in ANN design.

To ensure robust model validation, a 5-fold cross-validation strat-

egy was implemented using R 

2 scoring Eq. (8) as the evaluation metric 

on the final model. The cross-validation results demonstrated negligible

standard deviation and achieved R 

2 = 0.995 ± 0.002 with MAE = 

0.068 ± 0.013.

R2 = 1 -
∑m

i=1 (CH 4 

% i - 

︿ CH 4 % i) 

2

∑m
i=1 (CH 4 % i 

- CH 4 %) 

2 

(8)

Fig. 5. Schematic of the optimised neural network structure for the given dataset.

The model’s predictive accuracy was evaluated by comparing pre-

dicted values against ground truth data for the test set (Fig. 6). The

comparison plot shows excellent agreement between predictions and ac-

tual values across the full range of CH 4 

conversion rates (0 %–100 %).

Data points closely follow the ideal diagonal line, indicating strong 

predictive performance. The colour gradient, representing temperature 

(800–1100 K), demonstrates consistent accuracy across all temperature

ranges, with no significant bias or degradation at extremes. The tight 

clustering of test set predictions along the diagonal confirms the model’s 

ability to generalise to unseen data without overfitting, validating the 

chosen architecture and training parameters.

Fig. 6. Ground truth versus predicted values for the test set using the optimal 

ANN architecture. The dashed lines represent ± 5 % of the ground truth values.

In terms of computational performance, a direct quantitative com-

parison is not rigorous due to differences in computational resources. 

Training of the final ML model took around 10 CPU hours on a 13th 

Gen Intel i7-13850HX CPU. Once trained, the ANN model achieves re-

markably fast batch inference, processing the entire training dataset 

of 38,800 data points in 0.2 s on a single CPU, while data genera-

tion required approximately 2500 CPU hours on a high-performance 

computing cluster.
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2.3.3. Model validation

The ML model was validated against 1D Cantera simulations by 

comparing probability density functions (PDFs) of CH 4 

conversion for 

different operating conditions. The Cantera simulations used a PFR 

model, which assumes perfect radial mixing and considers axial vari-

ations in species concentrations and temperature. This model is suitable 

for monolithic reactor channels due to their high length-to-diameter ra-

tio and laminar flow conditions. In UQ studies, validating PDF results 

is critical, as it demonstrates the model’s ability to predict the mean 

values and the complete distribution of outcomes and their likelihood. 

This is essential for understanding uncertainty propagation and assessing 

prediction reliability under varying conditions.

Fig. 7 compares PDFs for various inlet velocities (V in 

= 0.8, 1.0, and 

1.2 m/s) and temperatures (850 K to 950 K). The ML model shows ex-

cellent agreement with Cantera results across all conditions, accurately 

capturing both the magnitude and shape of the PDF distributions. This 

indicates that the ML model has successfully learned the underlying 

uncertainty propagation mechanisms in the system.

Fig. 7. Validation of CH 4 

conversion from Cantera and ML at different T in 

and 

V in 

: (a) 0.8 m/s, (b) 1.0 m/s, (c) 1.2 m/s.

3. Results and discussion 

3.1. Effects of CH 4 concentration in air

The effects of CH 4 

concentration on the uncertainty in CH 4 

con-

version were analysed for various T in 

, with a constant coated channel 

length of 50 mm and V in 

of 0.8 m/s. Fig. 8 shows CH 4 

conversion 

as a function of T in 

, where continuous lines represent mean conver-

sion values, and shaded areas indicate uncertainty bands. Both CH 4 

concentration and T in 

significantly influence the conversion rate and 

its uncertainty. As concentration increases from 0.6 %–1.3 %, the co-

efficient of variation (C V 

) peaks at approximately 75 % at 850 K for 

1.3 % CH 4 

, indicating higher variability in conversion rates. However, 

uncertainty decreases significantly at elevated temperatures (>950 K), 

regardless of CH 4 

concentration, demonstrating more stable operations 

at higher temperatures.

For further insight, Fig. 9 shows PDFs of CH 4 

conversion rates at vari-

ous temperatures and CH 4 

concentrations. At lower T in 

(850 K), PDFs for 

higher CH 4 

concentrations exhibit wider distributions, consistent with 

the uncertainty bands in Fig. 8. As T in 

increases, PDFs for higher CH 4 

concentrations become narrower and sharply peaked in the high conver-

sion region (80 %–100 %), supporting the stability of CH 4 

conversion at 

elevated temperatures.

3.2. Effects of inlet velocity (V in)

Inlet velocity, which controls ventilation airflow, is critical for safety 

and emission control in industrial settings. Higher ventilation rates

Fig. 8. Effect of uncertainty on CH 4 

conversion for different inlet temperatures. 

Continuous lines represent the mean conversion values, while shaded areas 

indicate the uncertainty bands due to the deviations in input parameters.

Fig. 9. PDFs for different CH 4 

concentrations in air at various temperatures.

ensure safer conditions by diluting CH 4 

below explosive limits but re-

duce catalytic conversion efficiency by decreasing residence time. The 

effect of V in 

on CH 4 

conversion uncertainty was analysed for three veloc-

ities (0.8, 1.0, and 1.2 m/s) at a constant CH 4 

concentration of 0.6 % and 

a catalyst-coated channel length of 50 mm. Fig. 10 shows that CH 4 

con-

version rates are consistently higher at lower V in 

, attributed to increased 

residence time. While C V 

values are similar (around 50 %) at 800 K, they 

diverge with increasing T in 

. For V in 

= 0.8 m/s, C V 

decreases rapidly to 

10 % at 950 K, whereas higher V in 

(1.0 and 1.2 m/s) show slower de-

creases, reaching 17 % and 22 %, respectively. These results highlight
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Fig. 10. Comparison of uncertainty effects on CH 4 

conversion for 0.6 % CH 4 

in air at different inlet velocities. Continuous lines represent the mean conversion values, 

while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

the trade-off between safety and conversion efficiency, emphasising the 

need to optimise operating temperatures based on ventilation rates.

Fig. 11. PDF comparison of CH 4 

conversion for different T in 

and V in 

for a 50 mm 

catalyst-coated reactor with 0.6 % CH 4 

in air.

For further analysis, Fig. 11 shows PDFs of CH 4 

conversion at differ-

ent V in 

and T in 

for a 50 mm catalyst-coated reactor with 0.6 % CH 4 

in air. 

At 950 K, CH 4 

conversion exhibits reduced uncertainty with narrower 

PDFs at lower V in 

. However, at 900 K, PDFs are wider and less stable 

regardless of V in 

, highlighting the importance of temperature control in 

achieving consistent conversion rates.

3.3. Effect of inlet temperature (T in 

)

Inlet temperature plays a crucial role in CH 4 

conversion, as higher 

temperatures enhance catalyst activity, promoting more complete con-

version. Fig. 12 shows the effects of T in 

on CH 4 

conversion rates and

their associated uncertainties for different CH 4 

concentrations. At lower 

T in 

(850 K), CH 4 

conversion rates are low due to limited catalytic ac-

tivity, increasing gradually from 15 % at 0.2 % CH 4 

to 45 % at 1.3 % 

CH 4 

. Uncertainty also increases with T in 

, peaking at 75 % for 1.3 % CH 4 

, 

consistent with the discussion in Section 3.1. At higher T in 

(>900 K), C V 

decreases with CH 4 

concentration, indicating more stable conversion. 

For T in 

= 950 K, CH 4 

conversion rates reach 60 %–100 %, with complete 

conversion at 1.3 % CH 4 

, demonstrating that elevated temperatures 

enhance both conversion rates and process stability.

While V in 

affects CH 4 

conversion uncertainty by influencing resi-

dence time, T in 

has a more fundamental impact. Fig. 13 shows the main 

sensitivity analysis for various T in 

and CH 4 

concentrations (0.2 %–1.3 %) 

at different V in 

. T in 

is the primary contributor to uncertainty, especially 

at lower T in 

and CH 4 

concentrations. Its contribution decreases with 

increasing T in 

and CH 4 

concentration, while the impact of CH 4 

concen-

tration (Ø) and V in 

becomes more significant. At higher T in 

(950 K) and 

CH 4 

concentrations, the order of contribution to uncertainty is T in 

> Ø
> V in 

, highlighting the importance of temperature control for stability

at lower equivalence ratios and flow velocities.

3.4. Effects of catalyst coating length

Catalyst deactivation is a significant challenge in real catalytic 

CH 4 

conversion reactors, particularly in systems processing low-

concentration CH 4 

in air, which often contains contaminants such as 

dust, NO x 

, H 2 

O, H 2 

S, and SO 2 

. These impurities can degrade catalyst 

performance or cause complete deactivation [9]. To understand the im-

pact of deactivation, three catalyst coating lengths (50, 30, and 20 mm) 

were analysed, representing varying stages of catalyst availability. These 

reduced coating lengths serve as a simplified representation of the effec-

tive active catalyst area remaining after partial deactivation. While this 

approach does not capture the full complexity of deactivation dynam-

ics, it provides valuable insights into how reduced catalyst availability 

affects both conversion efficiency and process predictability. Fig. 14 

shows that shorter coating lengths lead to lower CH 4 

conversion rates 

and higher uncertainty. C V 

values decrease with increasing T in 

, but this 

decrease is less pronounced for shorter coating lengths, indicating that
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Fig. 12. Effect of uncertainty on CH 4 

conversion for different CH 4 

concentrations in air at various temperatures. Continuous lines represent the mean conversion 

values, while shaded areas indicate the uncertainty bands due to the deviations in input parameters.

Fig. 13. Main sensitivity analysis at various T in 

and CH 4 

concentrations for different inlet velocities.
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catalyst deactivation reduces both conversion efficiency and process 

predictability.

Fig. 14. Effect of catalyst coating length in the monolith channel on CH 4 

con-

version rate and uncertainty. Continuous lines represent the mean conversion 

values, while shaded areas indicate the uncertainty bands due to the deviations 

in input parameters.

Specifically, at T in 

= 850 K, reducing coating length from 50 mm 

to 20 mm decreases mean CH 4 

conversion from approximately 20 % 

to 10 %, while C V 

decreases from 50 % to 45 %. The more dramatic 

effect is seen at higher temperatures (T in 

= 950 K), conversion drops 

from nearly 100 % to 60 %, demonstrating that deactivation has greater 

absolute impact at conditions where the fresh catalyst would otherwise 

achieve complete conversion. Critically, the uncertainty (C V 

) remains 

elevated even at high temperatures when catalyst is deactivated. For 

the 50 mm coating, C V 

drops to 5 % at 950 K, indicating very stable 

conversion performance. However, for the 20 mm coating, which rep-

resents around 60 % deactivation, C V 

remains at 35 % even at 950 K. 

This persistent uncertainty under deactivated conditions has important 

implications: operators cannot compensate for deactivation simply by in-

creasing temperature, as the system becomes inherently less predictable 

and more sensitive to input variations.

It should be noted that the representation of deactivation solely by re-

duction in coating length is a simplification of the complex deactivation 

phenomena occurring in real systems. In practice, catalyst deactivation 

can occur through multiple mechanisms, including poisoning by sul-

phur compounds, H 2 

O vapour, sintering at higher temperatures, and 

fouling by dust particles, which may alter not only the available sur-

face area but also the intrinsic catalytic activity of remaining sites. The 

current simplified model assumes that the remaining catalyst maintains 

its original activity while the “deactivated” region has zero activity, 

which may not fully capture scenarios where poisoning or sintering re-

duce the intrinsic activity across the entire catalyst bed. Despite these 

limitations, this approach provides valuable first-order insights into how 

reduced catalyst availability affects conversion performance and un-

certainty propagation, with the key finding that deactivation increases 

conversion uncertainty expected to be robust regardless of the specific 

deactivation mechanism.

Fig. 15. PDF comparison of CH 4 

conversion at different V in 

for various catalyst 

coating lengths at 950 K and 0.6% CH 4 

concentration in air.

For further illustration, Fig. 15 shows PDFs of CH 4 

conversion at 

950 K for 0.6 % CH 4 

in air, comparing different V in 

and catalyst coating 

lengths. Longer coating lengths result in higher conversion rates and 

more stable performance, evidenced by narrow, sharply peaked PDFs 

centred at high conversion values. For V in 

= 0.8 m/s with 50 mm 

coating, the PDF shows a sharp peak at 95 % conversion with mini-

mal spread, indicating consistent, reliable performance. In contrast, the 

20 mm coating produces a broader PDF centred at around 75 % con-

version, with significant probability mass between 60 %–85 %. This 

wider distribution indicates that under identical operating conditions, 

the partially deactivated catalyst produces highly variable outcomes, 

sometimes achieving acceptable conversion, other times falling well be-

low target performance. This effect is more pronounced at higher V in 

(1.2 m/s), where the reduced residence time exacerbates the impact of 

deactivation. The 20 mm coating at high velocity produces the broadest 

PDF, spanning 40 %–70 % conversion, making performance predic-

tion difficult and control strategy implementation challenging. These 

results highlight that catalyst deactivation not only reduces mean CH 4 

conversion rates but also fundamentally alters the system’s uncertainty 

characteristics, increasing operational risk and reducing process reliabil-

ity. For V in 

= 0.8 m/s, shorter coatings result in broader PDFs with lower 

peak heights, indicating less stable and lower conversion outcomes. This 

effect is more pronounced at higher V in 

, aligning with the analysis in 

Section 3.2. These results highlight that catalyst deactivation not only re-

duces CH 4 

conversion rates but also increases uncertainty, emphasising 

the need for regular monitoring and maintenance, especially at higher 

flow rates.

4. Conclusions

In this work, the effects of variability in ultra-lean fugitive methane 

combustion were investigated for various CH 4 

concentrations ranging 

from 0.2 % to 1.3 % in air with ±1() % uncertainty, corresponding to 

equivalence ratios (Ø) between 0.017 and 0.138. Additionally, varia-

tions in inlet temperatures from 800 K to 1000 K (±2 % uncertainty) and 

inlet velocities from 0.8 to 1.2 m/s (±5 % uncertainty) were analysed for 

various catalyst lengths (20, 30, and 50 mm). The study employed the 

validated Deutschmann et al. [18] mechanism to simulate a PFR model 

for 1D catalytic CH 4 

combustion over a Pt catalyst. For the first time, a 

data-driven PCE-based UQ method was applied to investigate the impact 

of small parameter variations on CH 4 

conversion in a PFR, representing a
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single channel of a honeycomb reactor. Additionally, catalytic CH 4 

con-

version, along with associated uncertainty, was successfully modelled 

and predicted using an ML approach via an ANN.

Key findings from this study are as follows:

• The ANN model not only showed excellent agreement with 1D PFR

simulations under various conditions but also demonstrated strong 

agreement with probability distributions arising from parameter un-

certainties while reducing computational time from hours to mere 

seconds.

• Uncertainty in catalytic CH 4 

conversion increases with fugitive CH 4

concentration in air, with a C V reaching 75 % for a 1.3 % CH 4

concentration at T in 

= 85() K.

• The uncertainty effect diminishes significantly as T in 

increases, par-

-

-

-

ticularly for T in 

> 95() K, where the catalytic process becomes more 

stable regardless of methane concentration.

• Catalytic CH 4 

conversion is more stable at lower velocities, with

C V 

rapidly decreasing to about 10 % at 950 K, whereas at higher

velocities, C V 

remains in the range of 17 %–22 % under the same 

conditions.

• CH 4 

conversion rate decreases while uncertainty increases as the

catalyst-coated channel length decreases across all operating tem-

peratures. This effect is more pronounced at higher flow velocities.

• Inlet temperature emerged as the dominant factor affecting uncer

tainty, irrespective of other parameters.

These findings underscore the crucial role of temperature control and 

regular catalyst maintenance, particularly when higher ventilation rates 

are required for safety. Overall, parameter variations can induce up to 

75 % uncertainty in catalytic CH 4 

conversion rates. It is important to 

note that the PCE-ANN framework is fuel- and reactor-agnostic, offering 

a versatile computational tool applicable to a wide range of catalytic 

processes where UQ is critical for robust system design and operation. 

Future investigations could focus on exploring different catalyst materi-

als and their influence on UQ, assessing the impact of trace impurities 

such as dust, NO x 

, H 2 

O, and common poisons (e.g., H 2 

S, SO 2 

) on con-

version rate uncertainty and system reliability, and developing more 

comprehensive models to simulate catalyst deactivation and transient 

operating conditions typical of VAM systems. Additionally, evaluat-

ing the framework’s ability to generalise across channel geometries 

and validating these simulations experimentally would provide valu-

able insights into the practical implications of UQ in catalytic methane 

combustion.
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