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HIGHLIGHTS

« Novel PCE-ANN framework delivers real-time UQ for catalytic combustion.

« 1000x speedup with no loss of accuracy.

« Inlet temperature dominates uncertainty.

« Flow velocity, concentration & catalyst deactivation are secondary effects.

« High temperatures (>950 K) reduce uncertainty; higher velocity increases it.

ARTICLE INFO ABSTRACT

Keywords: Ultra-lean methane oxidation via catalytic combustion is critical for mitigating greenhouse gas emissions from
Fugitive methane fugitive methane sources. However, the catalytic oxidation process exhibits significant uncertainties that hin-
Ultra-lean catalytic combustion der its widespread implementation. To address this challenge, the present study develops a robust machine
Uncertainty quantification learning-based framework for quantifying combustion uncertainties, enabling more effective emission control

Polynomial-chaos expansion (PCE)
Machine learning (ANN)
Monolith reactors

strategies. The work presents a novel hybrid methodology integrating polynomial chaos expansion (PCE) with
artificial neural networks (ANN), achieving real-time prediction of methane conversion rates and their uncer-
tainties in monolith reactors. The machine learning model reduces computational time from hours to seconds
while achieving excellent agreement with detailed 1D plug-flow reactor simulations. The investigation reveals
that variations in methane concentration (0.2 %-1.3 %, + 10 %), inlet temperature (800-1000 K, + 2 %), and in-
let velocity (0.8-1.2 m/s, + 5 %) significantly influence conversion uncertainty, with inlet temperature identified
as the dominant parameter (Cy ~ 75 %). Stability improves at elevated temperatures (>950 K) and lower flow
velocities (Cy ~ 10 %) compared to higher velocities (Cy = 17 %22 %). Additionally, catalyst deactivation, rep-
resented by reduced coating length, decreases methane conversion rates and increases uncertainty, with longer
coatings providing greater stability at higher inlet temperatures. This work advances the fundamental under-
standing of uncertainty propagation in ultra-lean catalytic methane combustion and establishes a generalisable,
computationally efficient PCE-ANN framework applicable to catalytic combustion of diverse fuels.

1. Introduction significant contributions from oil production (~50 Mt), natural gas sys-
tems (~30 Mt), and coal mining (~40 Mt) annually [3]. In coal mining,
ventilation air methane (VAM) which maintains CH, concentrations be-
low 5 vol% for safety, accounts for over 70 % of mine CH, emissions,
despite its low concentration (<1.5 vol%, typically <0.5 vol%) [4].
Mitigating these ultra-lean CH, emissions remains challenging due to
operational issues such as large air volumes, fluctuating concentrations,

Climate change, driven largely by greenhouse gas (GHG) emissions
from human activities, is one of the most critical global challenges.
Methane, CH,, with a global warming potential 28-36 times higher than
CO, over a 100-year period, has emerged as the second most significant
anthropogenic GHG, contributing roughly 30 % to global temperature
rise [1,2]. The energy sector is a major source of CH, emissions, with
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Nomenclature

Latin Symbols

A Arrhenius constant

ANNs Artificial Neural Networks

Cy PCE coefficients

Cy Coefficient of variation

CMC Catalytic methane combustion
CPU Central processing unit

CSTR Continuous stirred-tank reactor
d Dimension

E, Activation energy for the reaction
GHG Greenhouse gas

GPR Gaussian Process Regression
GWP Global warming potential

HPC High performance computing
IDT Ignition delay time

LU Legendre-Uniform distribution
MAE Mean Absolute Error

MC Monte Carlo

ML Machine learning

NISP Non-intrusive spectral projection
NNs Neural Networks

n Temperature exponent

Nopa Parameter used for quadrature point generation
OP Orthogonal polynomials

P Total order

PCE Polynomial chaos expansion

Pd Palladium

PDF Probability Density Function

PFR Plug-flow reactor

Pt Platinum

R Universal gas constant

R? Coefficient of determination

R. Reactor catalyst coated length

ReLU Rectified Linear Unit

S; Main sensitivity of a fuel composition

S Laminar flame speed

SFR Stagnation-flow reactor

T;, Inlet temperature

UuQ Uncertainty quantification

UQTk Uncertainty Quantification Toolkit

VAM Ventilation air methane

Var[p] Total variance of methane conversion

Vin Inlet velocity

Greek Symbols

Ben, Uncertainty associated with catalytic methane conversion
rate

Yo Relative uncertainty of input parameters
Catalyst surface site density

€; Rate coefficient dependencies on the surface coverage

[4 Randomly sampled input parameters

¥y Multidimensional orthogonal polynomials

H; Rate coefficient dependencies on the surface coverage

I3 Quadrature points (germs)

T Probability density function (PDF)

c Standard deviation

) Equivalence ratio

dust, and humidity [5]. Conventional combustion requires CH, concen-
trations within flammability limits (5 %-17 vol %) and risks producing
NO, emissions at high temperatures [6]. Catalytic methane combustion
(CMCQ) offers a superior alternative by enabling CH, oxidation at con-
centrations well below the flammability limit and at significantly lower
temperatures (as low as 400 °C), substantially reducing both GHG im-
pact and NO,, formation [7]. The oxidation process of CMC converts CH,4
to CO,, a far less potent GHG, reducing the climate impact substantially.
Additionally, capturing CH, from VAM exhaust is more challenging than
absorbing CO, [7]. Thus, converting fugitive CH, to low-GWP CO, in
the energy sector supports climate change mitigation and improves air
quality.

Noble metal catalysts, particularly platinum (Pt) and palladium (Pd)
on Al,05 supports, are widely used for CMC due to their high activity
and low-temperature CH, conversion rates [7]. While Pd-based cata-
lysts exhibit higher activity, Pt catalysts are preferred for ultra-lean
CH,4 combustion due to better resistance to poisoning and lower costs
[8,9]. Su and Yu [10] demonstrated this by developing a 25 kWe pro-
totype using Pd/Al,O5 for lean CH, combustion from VAM systems.
The prototype successfully operated with 0.8 % CH,, generating 19-21
kWe without requiring cooling, air dilution, or nozzle injection. Burch
et al. [11] compared Pt/Al,05 and Pd/Al,O5 under various conditions,
finding Pt superior in CH,-rich environments and Pd more effective in
0O,-rich (diluted) conditions. In addition to supported noble metals, re-
cent reviews of Co304-based nanostructured catalysts, including noble
metal doping strategies, have demonstrated the potential for enhanced
catalytic performance and stability in lean methane combustion appli-
cations [12]. Furthermore, recent experimental studies on hierarchical
monolith catalysts with self-supporting structures have demonstrated
enhanced performance for lean methane catalytic oxidation [13].

Catalytic combustion in microreactors has gained attention due to
their compact sub-millimetre-scale designs, offering advantages such

as high surface-to-volume ratios, enhanced heat and mass transfer,
and shorter diffusion times [9]. Honeycomb monolith reactors further
improve performance with lower pressure drops, minimised external
diffusion limitations, and prevention of hotspots due to their structured
channels (round, square, or finned) [9]. These channels can be coated
with thin, uniform catalyst layers, increasing fuel—catalyst contact area
and enabling efficient use of noble metals. He et al. [14] experimentally
investigated Pt/y-Al,05 catalysts in various microreactor channel types
for CH, combustion. They tested Pt loadings (1.5-5.0 wt%), CH, flow
rates (150-500 mL/min), O,:CH, ratios (0.5-6.0), and temperatures
(300-500 °C), finding that CH, conversion increases with Pt loading
but decreases with higher flow rates, especially at higher loadings. The
optimal O,:CH, ratio was 1.5 (vs. the stoichiometric 2.0), balancing
O, and CH, on the catalyst surface. The double serpentine channel de-
sign achieved the highest CH,4 conversion due to its larger coating area,
longer residence time, and improved gas mixing. Hunt et al. [15] studied
ultra-lean CH4 combustion in a wavy channel microreactor with Pt cat-
alyst, showing that strategic catalyst placement (using only 25 % of the
coating) achieved 60 % of the CO, production of fully coated channels.
The wavy design increased CO, production rates, per unit surface area of
the catalyst, by up to 400 % compared to straight channels, highlighting
the importance of channel configuration.

Dupont et al. [16] studied catalytic honeycomb monolith reactors
with Pd and Pt catalysts for CH, combustion, highlighting their critical
role in ignition and steady-state operation for complete CH, conversion
to CO,. They found that monolith length could be reduced by 70 %
(from 50.8 mm) without performance loss, as the reaction zone is con-
fined to the first 10-15 mm of the channels, offering significant cost
savings in noble metal usage. Higher flow rates, however, pushed the re-
action zone deeper into the monolith and reduced combustion stability
[16]. Kumaresh et al. [17] numerically studied lean CH, combustion in
Pt-coated honeycomb monoliths, showing complete CH, conversion
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within 42 mm at 400 °C, 3 % fuel/air ratio, and 20 m/s inlet veloc-
ity. Higher inlet temperatures and fuel/air ratios, combined with lower
velocities, shifted the reaction zone upstream, reducing the required
reactor length. Deutschmann et al. [18] numerically investigated CH,4
combustion on Pt foil using a detailed surface reaction mechanism, suc-
cessfully predicting complex phenomena like ignition, extinction, and
hysteresis [18].

VAM systems face significant variability challenges due to ultra-
lean CH,4 concentrations (0.1 %-1.5 %) and large ventilation air flows
(100-300 m3/s) [19]. These variations, caused by mining activities
and underground pressure changes, affect gas quality, flow rate, and
purity [4,19]. Rahimi et al. [20] emphasised designing ventilation sys-
tems to account for gas emission uncertainties, ensuring safety against
fires, explosions, and financial losses from coal seam gas fluctuations.
Combustion systems for VAM must handle these uncertainties, as sudden
flow reductions disrupt combustion stability, while rapid CH,4 concen-
tration increases risk equipment damage and higher NO, emissions
[9]. Additionally, low-concentration CH, often contains contaminants
like dust, NO,, H,0, H,S, and SO,, which can poison and deacti-
vate catalysts [9]. Catalyst deactivation in monolithic reactors remains
a challenge due to uncontrolled emissions and incomplete combus-
tion [21]. Temperature is critical, affecting reaction kinetics, catalyst
activity, and stability. While catalytic combustion occurs at lower tem-
peratures [7], precise temperature control is essential to avoid thermal
stress, mechanical degradation, and accelerated deactivation [21,22].
Uncontrolled temperature variations, especially when using waste heat,
further complicate system performance [23]. These operational chal-
lenges underscore the need for systematic approaches to quantify and
manage uncertainty in catalytic fugitive methane combustion.

Although previous studies discussed the presence of uncertainty in
VAM systems, there remains a significant gap in the literature regard-
ing systematic uncertainty quantification (UQ) in catalytic ultra-lean
CH, combustion applications. Both experimental and computational
approaches inherently contain unavoidable uncertainties, while tradi-
tional numerical models employ fixed parameters [24]. These uncer-
tainties can be effectively quantified and reduced through mathematical
modelling techniques. Uncertainties generally fall into two categories:
epistemic and aleatoric. Epistemic uncertainty stems from lack of knowl-
edge or information about the system and can potentially be decreased
through improved understanding and enhanced measurement tech-
niques. Conversely, aleatoric uncertainty arises from the probabilistic
nature of random processes and is irreducible, even with complete
system knowledge [25]. In this study, the computational framework
primarily focuses on epistemic uncertainty through the analysis of
parametric variations in inlet conditions (temperature, velocity, and
concentration) and catalyst coating length. These variations represent
uncertainties that could theoretically be reduced with improved mea-
surement, control systems, and catalyst design. By quantifying how these
epistemic uncertainties propagate through the catalytic system, the pa-
rameters that contribute most significantly to variability in methane
conversion performance can be identified. Uncertainty quantification
methods use mathematical modelling to measure and manage uncer-
tainties in experimental and computational settings [24,26,27]. While
Monte Carlo (MC) methods traditionally address epistemic uncertain-
ties, they are computationally expensive for complex models requiring
large sample sizes [28]. Surrogate models, such as Gaussian processes
[29,30] or Polynomial Chaos Expansion (PCE) [31,32], provide effi-
cient alternatives to computationally expensive MC methods for UQ.
For complex simulations, UQ-PCE is more cost-effective and efficient
than UQ-MC; several studies have successfully applied PCE-based UQ
methods to combustion problems [33-36].

While PCE significantly improves efficiency for UQ, it still remains
demanding for complex catalytic systems requiring high-fidelity simula-
tions with detailed chemistry and transport phenomena. Soyler et al.
[36] demonstrated this computational burden by using PCE for UQ
in NH;3/H,/N,/air combustion, completing over 21,000 simulations
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(6000 CPU hours) on an HPC cluster. In a follow-up study, they per-
formed 70,000 simulations to analyse uncertainties in partially cracked
NH,/syngas combustion [37]. Similarly, Zhang and Jiang [31,38,39]
demonstrated the need for extensive simulations in PCE-based UQ for
combustion research. This computational burden presents a significant
obstacle to the practical implementation of UQ for real-world catalytic
applications, particularly for real-time monitoring and control systems
necessitating more efficient approaches. The novel integration of ma-
chine learning (ML) with UQ techniques offers a promising solution to
overcome this limitation by drastically reducing computational costs
while maintaining accuracy [40], and enabling robust analysis of un-
certainty propagation in catalytic methane combustion systems. ML
techniques efficiently capture complex relationships between uncertain
parameters and system outputs, enabling analysis of non-linearities and
interactions without extensive model evaluations. Recent research has
explored various ML algorithms for combustion properties, including
laminar flame speed (S;) [41,42], ignition delay time (IDT) [43], and
reforming processes [44]. Among these approaches, artificial neural
networks (ANNs) have proven their effectiveness in combustion applica-
tions and their ability to model highly non-linear relationships between
multidimensional input and output spaces [45], making them especially
suited for catalytic conversion processes where multiple interacting
parameters influence reaction outcomes. ML-based UQ frameworks en-
able robust design and optimisation of catalytic reactors under varying
conditions, making them particularly valuable for catalytic VAM sys-
tems, where real-time prediction and optimisation under uncertainty are
critical for practical implementation.

To the best of authors’ knowledge, no prior studies have explored
ML-based UQ for catalytic combustion systems, revealing a significant
research gap. While ML and UQ have been applied to combustion mod-
elling, their integration for directly predicting uncertainty metrics in
catalytic systems remains unexplored. This study addresses this gap
by developing a novel ML framework to predict uncertainty bounds,
sensitivity indices, and probabilistic performance metrics for catalytic
CH, oxidation. The specific objectives of this work include several key
components. First, an ML model (ANN) for predicting catalytic CH, con-
version rates in monolith reactors is developed and validated. Second,
the effects of varying CH, concentration, inlet temperature, and inlet
flow velocity on uncertainty in CH, conversion are quantified using a
surrogate UQ method (PCE). Third, the influence of catalyst deactivation
on conversion performance and uncertainty propagation is investigated.
Fourth, dominant parameters driving uncertainty in ultra-lean catalytic
CH, combustion are identified. Finally, the computational efficiency
of the PCE-ANN framework compared to conventional approaches is
demonstrated.

Once trained, the ML model delivers a remarkable computational ad-
vantage, reducing analysis time from hours to seconds while preserving
high-fidelity uncertainty predictions. This hybrid PCE-ANN approach
advances catalytic systems modelling in two crucial dimensions: the-
oretically, by elucidating the nonlinear propagation mechanisms of
parametric uncertainties through complex surface reactions; and prac-
tically, by providing rapid assessment tools essential for robust fugitive
CH, oxidation technology design. By quantitatively mapping how input
uncertainties transform into performance variability, this framework es-
tablishes science-based safety margins, optimise operating conditions,
and implements targeted control strategies that maximise conversion re-
liability while minimising catalyst deactivation. The resulting decision
support capability addresses a critical gap in the development of resilient
catalytic combustion systems for GHG mitigation applications.

2. Methodology
2.1. Uncertainty quantification method

In this work, PCE was employed to construct a surrogate model for
UQ using the open-source Uncertainty Quantification Toolkit (UQTk)
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Table 1
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Surface reaction mechanism for CH, combustion over Pt catalyst from Deutschmann et al. [50].

Reaction A (cm, mol, s) n E, (kJ/mol) &;, u;(kJ/mol)
€)) H, + 2Pt(s) — 2 H(s) 4.60 x 102 Hpy = —1°
2) 2 H(s) = H, + 2Pt(s) 3.70 x 10%! 0.0 67.4 Epe =6
©)] H + Pt(s) — H(s) 1.00*

(4) 0, + 2Pt(s) — 20(s) 1.80 x 102! -0.5 0.0

(5) 0, + 2Pt(s) — 20(s) 2.30 x 1072

6) 20(s) - 2Pt(s) + O, 3.70 x 10* 0.0 213.2 o) = 60
7) O + Pt(s) — O(s) 1.00*

(8) H,0 + Pt(s) - H,0(s) 0.75*

9 H,0(s) - H,0 + Pt(s) 1.00 x 1013 0.0 40.3

(10) OH + Pt(s) - OH(s) 1.00*

a1 OH(s) - OH + Pt(s) 1.00 x 1013 0.0 192.8

(12) 0O(s) + H(s) - OH(s) + Pt(s) 3.70 x 10% 0.0 11.5

13) H(s) + OH(s) » H,0(s) + Pt(s) 3.70 x 102 0.0 17.4

14) OH(s) + OH(s) — H,0(s) + O(s) 3.70 x 102! 0.0 48.2

15) CO + Pt(s) — CO(s) 8.40 x 107"* Hpisy = 1
16) CO(s) —» CO + Pt(s) 1.00 x 1013 0.0 125.5

a7 CO,(s) = CO, + Pt(s) 1.00 x 1013 0.0 20.5

18) CO(s) + O(s) — CO,(s) + Pt(s) 3.70 x 10%! 0.0 105.0

19) CH, + 2Pt(s) » CH5(s) + H(s) 1.00 x 1072 Hpisy = 0.3
(20) CH,(s) + Pt(s) — CH,(s) + H(s) 3.70 x 102! 0.0 20.0

(21) CH,(s) + Pt(s) — CH(s) + H(s) 3.70 x 10% 0.0 20.0

(22) CH(s) + Pt(s) — C(s) + H(s) 3.70 x 10% 0.0 20.0

(23) C(s) + O(s) — CO(s) + Pt(s) 3.70 x 10* 0.0 62.8

(24) CO(s) + Pt(s) — C(s) + O(s) 1.00 x 10'8 0.0 184.0

k = AT"eE/RD [ is the rate constant for the reaction, A is the Arrhenius constant,  is the temperature exponent,

E, is the activation energy for the reaction, and R is the universal gas constant.
e; and p, are the rate coefficient dependences on the surface coverage.
* symbol represents the sticking coefficient.

version 3.1.4 [46]. The mathematical formulation of the PCE surro-
gate model is briefly described below. The uncertainty in simulation
parameters is expressed as:

esample = Onean £ 09 X &4 ®

where 0, Tepresents a randomly sampled set of parameters for cat-
alytic CH,4 oxidation, such as inlet temperature (T;,), inlet velocity (V;,),
or equivalence ratio (¢). The mean values of these parameters are de-
noted by 6,,,..,, and their standard deviations by ¢,. The random variable
germs, &; = (&g, .Sy, . &), are generated using orthogonal polynomials
based on the distribution type [47,48]. These germs represent the stan-
dardised basis for constructing PCE, where each element corresponds to
a specific uncertain input parameter (inlet temperature, inlet velocity,
and equivalence ratio, respectively). The orthogonal polynomials are se-
lected to match the probability distribution of each parameter (Hermite
polynomials for normal distributions and Legendre polynomials for uni-
form distributions), ensuring optimal convergence of the expansion. For
this study, a Legendre-Uniform (LU) distribution was assumed, with ran-
dom variables uniformly distributed in the interval [—1, 1]. The standard
deviation of each parameter is calculated as follows:

Oy = emean X7 2)

where y, represents the relative uncertainty: 5 % for inlet velocity
(yVin = 0.05), 10 % for equivalence ratio (Vcb = 0.10), and 2 % for inlet
temperature (yTin =0.02).

The number of quadrature points (£,) is calculated as (N,,4)¢, where
Nyq = P + 1 is the expansion order, and d is the number of uncertain
parameters. With P = 5, this results in (5 + 1)* = 216 quadrature points.
Higher-order expansions can lead to excessive quadrature points with-
out improving UQ results [36]. The selection of P = 5 was based on
the authors’ previous implementation in similar combustion UQ stud-
ies [36,37], where they demonstrated that orders higher than P = 5
did not provide significant improvement in accuracy while substantially
increasing computational cost. For this catalytic system with 3 uncer-
tain parameters, P = 5 is sufficient to capture the output variance while
maintaining computational load with 216 evaluation points per case.

The multidimensional PCE for catalytic CH, conversion is expressed
as:

P
Pen, = Z C ¥ (&) 3
k=0

where fcy, represents CH, conversion with quantified uncertainty,
C, are the PCE coefficients (spectral mode strengths), and ¥, (&;) are
Legendre-Uniform orthogonal polynomials up to order P. The PCE co-
efficients are determined using the non-intrusive spectral projection
(NISP) method via Gauss-Legendre quadrature integration:

1
(¥7©)

C, =

1
/1 B (©)n(&)dE, k=0,....P C)

where 7 (&) is the probability density function, and & represents the germ
samples for each input parameter.

In addition to quantifying uncertainties in CH, conversion, a
variance-based global sensitivity analysis [49] was conducted to evalu-
ate the impact of input uncertainties on output uncertainty. This method
assesses how individual parameter uncertainties contribute to the total
uncertainty in CH, conversion. The first-order sensitivity indices (.S;) are
calculated as:

et

= 5
' Var[f] ®

where (i) denotes a specific input parameter, and Var[f] represents the
total variance of CH,4 conversion. The total variance is expressed as:

Var[f] = )| CH{(¥}) (6)

k>0

2.2. Validation of surface reaction mechanism

The surface reaction mechanism developed by Deutschmann et al.
[50] was used, comprising 24 chemical reactions involving 11 surface
species and 7 gas-phase species (Table 1). Pt catalyst was modelled with
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a surface site density (I') of 2.72 x 10° mol/cm?2, where Pt(s) represents
uncovered surface sites available for adsorption.

The mechanism was validated using two models: a stagnation-flow
reactor (SFR) and a plug-flow reactor (PFR). The SFR configuration,
where gas flow impinges perpendicularly onto a catalytic surface, is
ideal for studying gas-surface interactions and reaction kinetics. Its 1D
nature simplifies analysis by focusing on the centreline, where variables
depend only on the distance from the surface, making it suitable for
validating detailed reaction mechanisms [18].

For catalytic CH, combustion simulations in a SFR, Cantera [51] was
used to solve the surface chemistry reactions. The simulations were con-
ducted under specified initial conditions to validate the surface reaction
mechanism. A premixed gas mixture of 9.5 % CH, in air was introduced
with a uniform inlet velocity of 6 cm/s at 100 mm from the catalytic
surface. The initial CH,-air mixture and surface temperatures were set
to 300 K and 1000 K, respectively, under atmospheric pressure.

The surface reaction mechanism was validated against the results
of Deutschmann et al. [18] using an SFR configuration. Fig. 1 compares
species mole fractions as a function of distance from the catalytic surface.
The continuous lines represent the current numerical results, while the
marker points show data from Deutschmann et al. [18]. The simulation
captures the key features of species evolution: O, and CH, are consumed
near the surface, while CO, and H,O are formed. A small amount of
CO appears as an intermediate species, peaking near the surface before
being oxidised to CO,. The excellent agreement between the simulations
and reference data validates the implementation of the surface reaction
mechanism.

0.20 1
0.18t— o2
0.16F

= 0.14F

S r
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Fig. 1. Validation of surface reaction mechanism using SFR simulations.
Continuous lines represent numerical results from this study, while markers
denote reference data from Deutschmann et al. [18].

The PFR represents a steady-state 1D flow system where species
concentrations and temperature vary along the reactor length without
diffusion. In this model, the reaction mixture flows uniformly at constant
velocity, ensuring complete radial mixing and no backflow. The PFR is
particularly suitable for catalytic systems, as surface reactions at the wall
promote radial mixing. Its computational efficiency makes it an excel-
lent tool for validating detailed kinetic mechanisms under steady-state
conditions.

In this work, catalytic CH, combustion simulations were performed
in a single-channel PFR with a length of 200 mm and a hydraulic
diameter of 1.27 mm. The reactor simulated lean premixed CH,4-air com-
bustion over a Pt catalyst at atmospheric pressure. Cantera was used
to model the PFR as a chain of 201 continuous stirred-tank reactors
(CSTRs). The governing equations for the 1D steady-state PFR model
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are detailed elsewhere [51]. The first CSTR was fed a lean CH,/air mix-
ture (fuel/air ratio 2.94 %) at an inlet temperature of 645 °C and an
inlet velocity of 16.7 m/s.

The surface reaction mechanism from Deutschmann et al. [50] was
further validated against the results of Kumaresh and Kim [17] using
a PFR configuration. Fig. 2 compares the current results (continuous
lines) with data from Kumaresh and Kim [17] (marker points). Initially,
the Pt surface is predominantly covered by adsorbed oxygen O(s), with
a coverage of approximately 0.9 at the reactor entrance.

CH;3(S)x108

—— H,0x102
— C0,x10?

pis

.I.l.J‘v-A._A__A_J\_J\__A__A__A__A__A__A_
20 40 60 80 100 120 140 160 180 20%
Distance (mm)

Fig. 2. Validation of Deutschmann’s surface mechanism with the results from
Kumaresh and Kim by using PFR reactor. Continuous lines are from this study,
marker points are from Kumaresh and Kim [17].

As reactions proceed, O(s) coverage decreases while free Pt(s) in-
creases, stabilising at about 0.7 after 60 mm. The adsorbed methyl
species CH;(s) (scaled by 108 for clarity) peaks at 40-50 mm, indicating
the region of most active CH, decomposition, before being consumed in
subsequent reactions. The formation of CO, and H,O (scaled by 10? for
clarity) increases until reaching steady-state values after about 80 mm.
The excellent agreement between our simulations and the reference
data validates both the surface mechanism implementation and the PFR
model assumptions under the specified conditions.

2.3. Machine learning (ML)

In this work, ML models were developed to predict how variations
in input parameters affect ultra-lean catalytic CH, conversion rates,
efficiently capturing complex reaction behaviours under different op-
erational conditions. This section describes the data generation process,
including associated uncertainties for 1D simulations using Cantera, fol-
lowed by an introduction to the ANN methodology. Fig. 3 presents a
detailed overview of the PCE-ANN framework employed in this study,
illustrating the integration of UQTk, Cantera, ANN development, and
potential applications.

2.3.1. Data generation

Honeycomb monolith reactors are widely used for emission reduc-
tion due to their high surface area, low pressure drop, uniform flow
distribution, thermal stability, durability, and versatility [52]. These
reactors consist of numerous small-diameter channels coated with cata-
lysts on their interior surfaces. In this work, a single channel is analysed,
as each channel exhibits similar behaviour [50].

To train the ML models, operational input parameters with associated
uncertainties were generated using UQTk software, and a comprehen-
sive dataset was created through 1D simulations in Cantera [51]. The
simulations focused on ultra-lean catalytic CH, combustion in a PFR,
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Fig. 3. Overview of the PCE-ANN framework with potential applications.

representing one channel of a honeycomb monolith reactor. A total of
180 cases were investigated, examining four key operational parameters
(Table 2): CH,4 concentration in ventilation air (%), T;,, V;,, and catalyst
length (R,) in mm.

Ultra-lean CH, concentrations ranged from 0.2 % to 1.3 % in air,
with + 10 % uncertainty, reflecting varying emission scenarios and cor-
responding to ¢ of 0.017 to 0.138. Inlet temperatures varied from 800 K
to 1000 K (+ 2 % uncertainty), as temperature significantly impacts re-
action kinetics and catalyst performance. Temperatures below 800 K
were avoided due to insufficient O, desorption for CH, adsorption,

Table 2

while temperatures above 1200 K promote homogeneous CH, combus-
tion without a catalyst [9]. Additionally, PtO,, formed during catalytic
oxidation, becomes unstable below 700 K [53], and temperatures above
900 K risk catalyst degradation and thermal NO, formation. Inlet ve-
locities ranged from 0.8 to 1.2 m/s (+ 5 % uncertainty), capturing the
effects of flow velocity on CH, conversion, residence time, and heat
transfer.

The UQ for each case required 216 individual simulations ((5+1)3
= 216), as detailed in Section 2.1, due to the propagation of uncertain-
ties through the system. This resulted in a total of 38,880 data points,

Data parameters with applied uncertainty used in ANN algorithm for 1D simulations.

CH, (%) +10 %

CH, % Equivalence Ratio (¢)
in the air Min/max Mean T, (K) 5% Vi, (m/s) £2% Catalyst length(mm)
1.3 0.138/0.113 0.125
0.9 0.095/0.078 0.086
0.6 0.063/0.052 0.057 800-1000 0.8,1.0,and 1.2 20, 30, and 50
0.2 0.021/0.017 0.019
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sufficient for training reliable ANN models and accurately quantifying
uncertainties.

2.3.2. Model development and optimisation

The relationship between ANN performance and architectural com-
plexity is highly problem-dependent, necessitating a systematic evalua-
tion of various configurations. Prior to ANN training, the input dataset
underwent power transformation for normalisation and random shuf-
fling to prevent sequence-based biases. Training employed a batch size of
128, a maximum of 3000 epochs, an initial learning rate of 5 x 10~ with
a decay rate of 1 x 107, and the Adam optimiser with early stopping
after 100 consecutive epochs without improvement in the loss function.
The Rectified Linear Unit (ReLU) activation function was used across all
hidden layers to mitigate gradient vanishing issues. The loss function,
mean absolute error (MAE), is defined as:

m
1 —
MAE = — CH; % - CH, % 7
le 4 % — CH, % @)

i=1

For ANN architecture optimisation, a design space of 2-10 layers
and 4-40 neurons per layer was explored, encompassing 81 distinct
ANN evaluations. This hyper-parameter optimisation study was com-
pleted in approximately 6 hours using an NVIDIA RTX 2000 Ada GPU,
demonstrating the efficiency of modern computational resources.

40 -0.69
- 35 -0.60
g
= -0.51
=S 30
Z
-0.42 1)
qa 25 <
- 70.332
8 20
g - 0.24
Z 15 §
F\ L0.15
10 .
/ -0.06
2 4 6 8 10 '

Number of Layers

Fig. 4. Accuracy map of ANN architectures in terms of neurons per hidden layer
and hidden layers, represented by loss term on the validation set. The red star in-
dicates the lowest MAE, while black circles denote individual ANN evaluations.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

The validation set loss term landscape (Fig. 4) revealed optimal con-
figurations for predictive performance. The lowest MAE values were
concentrated in regions with shallow networks (3-5 layers) and 10-15
neurons. The highest accuracy was achieved with a 4-layer, 32-neuron
configuration (marked with a red star), chosen for the remainder of this
study (Fig. 5).

This architecture achieved an MAE of 0.062 with a minimal gen-
eralisation gap between train and validation losses. Networks with
increased depth (5-10 layers) maintained stable performance across var-
ious neuron counts, suggesting width contributes more significantly to
robustness than depth. The steepest error gradients occurred in the lower
left corner, where the MAE values rapidly increased to 0.60 and above,
indicating inadequate fitting. These findings highlight the importance of
systematic hyper-parameter optimisation in ANN design.
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To ensure robust model validation, a 5-fold cross-validation strat-
egy was implemented using R? scoring Eq. (8) as the evaluation metric
on the final model. The cross-validation results demonstrated negligible
standard deviation and achieved R2 = 0.995 + 0.002 with MAE =
0.068 + 0.013.

— 2
>, (CHy %; — CHy %;)

R =1- 3 ®
> (CH, %; — CHy %)
R, ag ag eee agp
Vin ay ay oo ay
. . eee . CH4 %

N

Tin as ag coe as
Input layer HL 1 HL 2 HL 4 Output layer

Fig. 5. Schematic of the optimised neural network structure for the given dataset.

The model’s predictive accuracy was evaluated by comparing pre-
dicted values against ground truth data for the test set (Fig. 6). The
comparison plot shows excellent agreement between predictions and ac-
tual values across the full range of CH, conversion rates (0 %-100 %).
Data points closely follow the ideal diagonal line, indicating strong
predictive performance. The colour gradient, representing temperature
(800-1100 K), demonstrates consistent accuracy across all temperature
ranges, with no significant bias or degradation at extremes. The tight
clustering of test set predictions along the diagonal confirms the model’s
ability to generalise to unseen data without overfitting, validating the
chosen architecture and training parameters.

100 % u
— Perfect prediction 7 A
_______ +5% 1050
80 """" —5% ///’/,,
g 1000
= 60 ,,”,/' o
ke 950 3
2 5
2 &
3 40 & 900 £
o)
= o
A =
20 850
800
0 L

0 20 40 60 80 100
Ground truth

Fig. 6. Ground truth versus predicted values for the test set using the optimal
ANN architecture. The dashed lines represent + 5 % of the ground truth values.

In terms of computational performance, a direct quantitative com-
parison is not rigorous due to differences in computational resources.
Training of the final ML model took around 10 CPU hours on a 13th
Gen Intel i7-13850HX CPU. Once trained, the ANN model achieves re-
markably fast batch inference, processing the entire training dataset
of 38,800 data points in 0.2 s on a single CPU, while data genera-
tion required approximately 2500 CPU hours on a high-performance
computing cluster.
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2.3.3. Model validation

The ML model was validated against 1D Cantera simulations by
comparing probability density functions (PDFs) of CH, conversion for
different operating conditions. The Cantera simulations used a PFR
model, which assumes perfect radial mixing and considers axial vari-
ations in species concentrations and temperature. This model is suitable
for monolithic reactor channels due to their high length-to-diameter ra-
tio and laminar flow conditions. In UQ studies, validating PDF results
is critical, as it demonstrates the model’s ability to predict the mean
values and the complete distribution of outcomes and their likelihood.
This is essential for understanding uncertainty propagation and assessing
prediction reliability under varying conditions.

Fig. 7 compares PDFs for various inlet velocities (V;, = 0.8, 1.0, and
1.2 m/s) and temperatures (850 K to 950 K). The ML model shows ex-
cellent agreement with Cantera results across all conditions, accurately
capturing both the magnitude and shape of the PDF distributions. This
indicates that the ML model has successfully learned the underlying
uncertainty propagation mechanisms in the system.

—— 1D-Cantera ---- ML
05 05
(a) Vi,=0.8 m/s 250K (b) Vj;,=1.0 m/s
04 0.4
03 03
950K
0.2 02{  ssok
850K N

0.1 300K 0.1 900K
uw
Q oo 0.0
[ 4 20 40 60 80 100 0 20 40 60 80 100

0.5

(c) Vin=1.2 m/s
0.4

0.3

850K
0.2

950K

0.1 900K
0.0
0 20 40 60 80 100
CHy (%)

Fig. 7. Validation of CH, conversion from Cantera and ML at different T;, and
Vin: (@) 0.8 m/s, (b) 1.0 m/s, (¢) 1.2 m/s.

3. Results and discussion
3.1. Effects of CH, concentration in air

The effects of CH, concentration on the uncertainty in CH, con-
version were analysed for various T;,, with a constant coated channel
length of 50 mm and V;, of 0.8 m/s. Fig. 8 shows CH, conversion
as a function of T;,, where continuous lines represent mean conver-
sion values, and shaded areas indicate uncertainty bands. Both CH,
concentration and T;, significantly influence the conversion rate and
its uncertainty. As concentration increases from 0.6 %-1.3 %, the co-
efficient of variation (Cy) peaks at approximately 75 % at 850 K for
1.3 % CH,, indicating higher variability in conversion rates. However,
uncertainty decreases significantly at elevated temperatures (>950 K),
regardless of CH, concentration, demonstrating more stable operations
at higher temperatures.

For further insight, Fig. 9 shows PDFs of CH, conversion rates at vari-
ous temperatures and CH, concentrations. At lower T;;, (850 K), PDFs for
higher CH, concentrations exhibit wider distributions, consistent with
the uncertainty bands in Fig. 8. As Tj, increases, PDFs for higher CH,
concentrations become narrower and sharply peaked in the high conver-
sion region (80 %-100 %), supporting the stability of CH, conversion at
elevated temperatures.

3.2. Effects of inlet velocity (V;,)

Inlet velocity, which controls ventilation airflow, is critical for safety
and emission control in industrial settings. Higher ventilation rates

Fuel 407 (2026) 137466

100 Length=50 mm, Vin = 0.8 m/s, 0.6% CHa 100 Length=50 mm, Vin = 0.8 m/s, 0.6% CHa
S
80 g 80
c
o
® 60 g 60
- e e S .
S 40 £ 40 .
g
2
20 £ 20
1] .
S e,
g o
00 850 900 950 1000 800 850 900 950 1000
Tin (K) Tin (K)
100 Length=50 mm, Vin = 0.8 m/s, 0.9% CHa 100 Length=50 mm, Vin = 0.8 m/s, 0.9% CHg
80 g 80
c
]
S 60 g 601 I
< <
< <]
G 40 2 40 .
4 2
20 £ 20
@
<1
© 0 e
g 0 850 900 950 1000 800 850 900 950 1000
Tin (K) Tin (K)
100 Length=50 mm, Vin = 0.8 m/s, 1.3% CHa 100 Length=50 mm, Vin = 0.8 m/s, 1.3% CHa
IS
80 g 80 iy
< o,
8 —
$ 60 & 60{."
g S
< el
Ry S
S 40 = 40
2
&2
20 £ 20 :
g .
o o e
8 0 850 900 950 1000 800 850 900 950 1000
Tin (K) Tin (K)

Fig. 8. Effect of uncertainty on CH, conversion for different inlet temperatures.
Continuous lines represent the mean conversion values, while shaded areas
indicate the uncertainty bands due to the deviations in input parameters.

CHy4 % in the air
Il 0.6%
0.9%

¢
100 A

Fig. 9. PDFs for different CH, concentrations in air at various temperatures.

ensure safer conditions by diluting CH, below explosive limits but re-
duce catalytic conversion efficiency by decreasing residence time. The
effect of V;;, on CH, conversion uncertainty was analysed for three veloc-
ities (0.8, 1.0, and 1.2 m/s) at a constant CH, concentration of 0.6 % and
a catalyst-coated channel length of 50 mm. Fig. 10 shows that CH, con-
version rates are consistently higher at lower V;,, attributed to increased
residence time. While Cy, values are similar (around 50 %) at 800 K, they
diverge with increasing T;,. For V;;, = 0.8 m/s, Cy decreases rapidly to
10 % at 950 K, whereas higher V;, (1.0 and 1.2 m/s) show slower de-
creases, reaching 17 % and 22 %, respectively. These results highlight
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the trade-off between safety and conversion efficiency, emphasising the
need to optimise operating temperatures based on ventilation rates.

Fig. 11. PDF comparison of CH, conversion for different T;, and V;, for a 50 mm
catalyst-coated reactor with 0.6 % CH, in air.

For further analysis, Fig. 11 shows PDFs of CH, conversion at differ-
ent V;, and T;, for a 50 mm catalyst-coated reactor with 0.6 % CH, in air.
At 950 K, CH, conversion exhibits reduced uncertainty with narrower
PDFs at lower V;,. However, at 900 K, PDFs are wider and less stable
regardless of V;,, highlighting the importance of temperature control in
achieving consistent conversion rates.

3.3. Effect of inlet temperature (T;,)

Inlet temperature plays a crucial role in CH, conversion, as higher
temperatures enhance catalyst activity, promoting more complete con-
version. Fig. 12 shows the effects of T;, on CH, conversion rates and

their associated uncertainties for different CH, concentrations. At lower
T;, (850 K), CH, conversion rates are low due to limited catalytic ac-
tivity, increasing gradually from 15 % at 0.2 % CH, to 45 % at 1.3 %
CH,. Uncertainty also increases with T;,, peaking at 75 % for 1.3 % CH,,
consistent with the discussion in Section 3.1. At higher T;, (>900 K), Cy
decreases with CH, concentration, indicating more stable conversion.
For T;, = 950 K, CH,4 conversion rates reach 60 %-100 %, with complete
conversion at 1.3 % CH,, demonstrating that elevated temperatures
enhance both conversion rates and process stability.

While V;, affects CH, conversion uncertainty by influencing resi-
dence time, T;;, has a more fundamental impact. Fig. 13 shows the main
sensitivity analysis for various T;, and CH, concentrations (0.2 %-1.3 %)
at different V;,. Ty, is the primary contributor to uncertainty, especially
at lower T;, and CH, concentrations. Its contribution decreases with
increasing Ty, and CH, concentration, while the impact of CH, concen-
tration (¢) and V;, becomes more significant. At higher T;, (950 K) and
CH, concentrations, the order of contribution to uncertainty is T;, > ¢
> Vj,, highlighting the importance of temperature control for stability
at lower equivalence ratios and flow velocities.

3.4. Effects of catalyst coating length

Catalyst deactivation is a significant challenge in real catalytic
CH, conversion reactors, particularly in systems processing low-
concentration CH, in air, which often contains contaminants such as
dust, NO,, H,O, H,S, and SO,. These impurities can degrade catalyst
performance or cause complete deactivation [9]. To understand the im-
pact of deactivation, three catalyst coating lengths (50, 30, and 20 mm)
were analysed, representing varying stages of catalyst availability. These
reduced coating lengths serve as a simplified representation of the effec-
tive active catalyst area remaining after partial deactivation. While this
approach does not capture the full complexity of deactivation dynam-
ics, it provides valuable insights into how reduced catalyst availability
affects both conversion efficiency and process predictability. Fig. 14
shows that shorter coating lengths lead to lower CH, conversion rates
and higher uncertainty. Cy, values decrease with increasing T;,, but this
decrease is less pronounced for shorter coating lengths, indicating that
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catalyst deactivation reduces both
predictability.
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Specifically, at T, = 850 K, reducing coating length from 50 mm
to 20 mm decreases mean CH, conversion from approximately 20 %
to 10 %, while Cy decreases from 50 % to 45 %. The more dramatic
effect is seen at higher temperatures (T;, = 950 K), conversion drops
from nearly 100 % to 60 %, demonstrating that deactivation has greater
absolute impact at conditions where the fresh catalyst would otherwise
achieve complete conversion. Critically, the uncertainty (Cy,) remains
elevated even at high temperatures when catalyst is deactivated. For
the 50 mm coating, Cy drops to 5 % at 950 K, indicating very stable
conversion performance. However, for the 20 mm coating, which rep-
resents around 60 % deactivation, Cy remains at 35 % even at 950 K.
This persistent uncertainty under deactivated conditions has important
implications: operators cannot compensate for deactivation simply by in-
creasing temperature, as the system becomes inherently less predictable
and more sensitive to input variations.

It should be noted that the representation of deactivation solely by re-
duction in coating length is a simplification of the complex deactivation
phenomena occurring in real systems. In practice, catalyst deactivation
can occur through multiple mechanisms, including poisoning by sul-
phur compounds, H,O vapour, sintering at higher temperatures, and
fouling by dust particles, which may alter not only the available sur-
face area but also the intrinsic catalytic activity of remaining sites. The
current simplified model assumes that the remaining catalyst maintains
its original activity while the “deactivated” region has zero activity,
which may not fully capture scenarios where poisoning or sintering re-
duce the intrinsic activity across the entire catalyst bed. Despite these
limitations, this approach provides valuable first-order insights into how
reduced catalyst availability affects conversion performance and un-
certainty propagation, with the key finding that deactivation increases
conversion uncertainty expected to be robust regardless of the specific
deactivation mechanism.
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Fig. 15. PDF comparison of CH, conversion at different V;, for various catalyst
coating lengths at 950 K and 0.6% CH, concentration in air.

For further illustration, Fig. 15 shows PDFs of CH, conversion at
950 K for 0.6 % CH, in air, comparing different V;;, and catalyst coating
lengths. Longer coating lengths result in higher conversion rates and
more stable performance, evidenced by narrow, sharply peaked PDFs
centred at high conversion values. For V;; = 0.8 m/s with 50 mm
coating, the PDF shows a sharp peak at 95 % conversion with mini-
mal spread, indicating consistent, reliable performance. In contrast, the
20 mm coating produces a broader PDF centred at around 75 % con-
version, with significant probability mass between 60 %-85 %. This
wider distribution indicates that under identical operating conditions,
the partially deactivated catalyst produces highly variable outcomes,
sometimes achieving acceptable conversion, other times falling well be-
low target performance. This effect is more pronounced at higher V;,
(1.2 m/s), where the reduced residence time exacerbates the impact of
deactivation. The 20 mm coating at high velocity produces the broadest
PDF, spanning 40 %-70 % conversion, making performance predic-
tion difficult and control strategy implementation challenging. These
results highlight that catalyst deactivation not only reduces mean CH,
conversion rates but also fundamentally alters the system’s uncertainty
characteristics, increasing operational risk and reducing process reliabil-
ity. For V;, = 0.8 m/s, shorter coatings result in broader PDFs with lower
peak heights, indicating less stable and lower conversion outcomes. This
effect is more pronounced at higher V;,, aligning with the analysis in
Section 3.2. These results highlight that catalyst deactivation not only re-
duces CH, conversion rates but also increases uncertainty, emphasising
the need for regular monitoring and maintenance, especially at higher
flow rates.

4. Conclusions

In this work, the effects of variability in ultra-lean fugitive methane
combustion were investigated for various CH, concentrations ranging
from 0.2 % to 1.3 % in air with +10 % uncertainty, corresponding to
equivalence ratios (¢) between 0.017 and 0.138. Additionally, varia-
tions in inlet temperatures from 800 K to 1000 K (+2 % uncertainty) and
inlet velocities from 0.8 to 1.2 m/s (+5 % uncertainty) were analysed for
various catalyst lengths (20, 30, and 50 mm). The study employed the
validated Deutschmann et al. [18] mechanism to simulate a PFR model
for 1D catalytic CH, combustion over a Pt catalyst. For the first time, a
data-driven PCE-based UQ method was applied to investigate the impact
of small parameter variations on CH4 conversion in a PFR, representing a
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single channel of a honeycomb reactor. Additionally, catalytic CH4 con-
version, along with associated uncertainty, was successfully modelled
and predicted using an ML approach via an ANN.

Key findings from this study are as follows:

The ANN model not only showed excellent agreement with 1D PFR
simulations under various conditions but also demonstrated strong
agreement with probability distributions arising from parameter un-
certainties while reducing computational time from hours to mere
seconds.

Uncertainty in catalytic CH, conversion increases with fugitive CH,
concentration in air, with a Cy reaching 75 % for a 1.3 % CH,4
concentration at T;, = 850 K.

The uncertainty effect diminishes significantly as T;, increases, par-
ticularly for T;, > 950 K, where the catalytic process becomes more
stable regardless of methane concentration.

Catalytic CH, conversion is more stable at lower velocities, with
Cy rapidly decreasing to about 10 % at 950 K, whereas at higher
velocities, Cy remains in the range of 17 %-22 % under the same
conditions.

CH, conversion rate decreases while uncertainty increases as the
catalyst-coated channel length decreases across all operating tem-
peratures. This effect is more pronounced at higher flow velocities.
Inlet temperature emerged as the dominant factor affecting uncer-
tainty, irrespective of other parameters.

These findings underscore the crucial role of temperature control and
regular catalyst maintenance, particularly when higher ventilation rates
are required for safety. Overall, parameter variations can induce up to
75 % uncertainty in catalytic CH, conversion rates. It is important to
note that the PCE-ANN framework is fuel- and reactor-agnostic, offering
a versatile computational tool applicable to a wide range of catalytic
processes where UQ is critical for robust system design and operation.
Future investigations could focus on exploring different catalyst materi-
als and their influence on UQ, assessing the impact of trace impurities
such as dust, NO,, H,0, and common poisons (e.g., HyS, SO,) on con-
version rate uncertainty and system reliability, and developing more
comprehensive models to simulate catalyst deactivation and transient
operating conditions typical of VAM systems. Additionally, evaluat-
ing the framework’s ability to generalise across channel geometries
and validating these simulations experimentally would provide valu-
able insights into the practical implications of UQ in catalytic methane
combustion.
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