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Abstract 
Despite advancements in fracture prediction tools and osteoporosis management, hip fractures remain a significant consequence of bone 
fragility, carrying a 22% 1-yr mortality rate. Hip geometric measures (GMs) have been associated with fracture risk; however, their strong 
correlation hinders the identification of independent influences, leaving their relative predictive value unclear. Statistical shape modeling (SSM) 
provides a more holistic assessment of hip shape compared to using predetermined GMs. This study aimed to evaluate whether SSM-derived 
hip shape from DXA scans can predict hip fracture, independently of individual GMs. Previously, we applied SSM to left hip DXA images in 
UK Biobank—a large prospective cohort with linked hospital records—generating 10 orthogonal hip shape modes (HSMs) that explained 86% 
of shape variance. Additionally, FN width (FNW), femoral head diameter (FHD), and hip axis length (HAL) were derived from these DXAs. In 
the current analysis, Cox proportional hazard models, adjusted for age, sex, height, weight, BMD, and GMs (FNW, HAL, and FHD), were used 
to examine t he longitudinal associations between each HSM and first incident hospital diagnosed hip fracture. A Bonferroni adjusted p-value 
threshold (p < .004) was used to account for the 13 exposures. Among the 38 123 participants (mean age 63.7 yr; 52% female; mean follow-
up 5 yr), 133 (0.35%) experienced subsequent hip fracture. HSM2, characterized by a narrower FNW, a higher neck shaft angle, and reduced
acetabular coverage, showed a strong association with hip fracture risk (HR: 1.32, 95% CI: 1.11-1.58, p: 1.47 × 10−3), which persisted after full 
adjustment (1.30, 1.09-1.55, 3.27 × 10−3). There was no evidence for an association with other HSMs. These findings suggest that DXA-derived 
hip shape is associated with hip fracture risk independently of BMD and GMs. Incorporating global hip shape into fracture risk assessment tools 
could enhance prediction accuracy and inform targeted interventions.
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Lay S ummary 
Despite improvements in hip fracture prevention, they remain a major problem, with 22% of people dying within a year of sustaining one. 
This study looked at medical images from 38 123 individuals in UK Biobank to assess the shape of their hip using computer-aided statistical 
techniques. The results indicate that a hip shape variation describing a narrower FN and a larger angle linking the neck and the femoral shaft is 
linked to fracture. This association persisted after accounting for other known hip shape measures related to fracture risk. Therefore, hip shape
could help to improve prediction and prevention of hip fractures.

Introduction 
The annual number of hip fractures in the UK is projected 
to rise by 32% over the next 4 yr,1 highlighting the need 
for accurate prediction of hip fracture risk. These fractures 
represent a significant consequence of o steoporosis-related 
bone fragility and carry a 1-yr mortality rate of 22%.2 How-
ever, not all individuals who sustain a hip fracture meet 
the diagnostic criteria for osteoporosis,3 which is primar-
ily based on BMD. Clinical risk assessment tools, such as

FRAX4—widely used in over 100 international guidelines— 
and the UK-specific Qfracture,5 have been developed to better 
predict the risk of incident fractures, but still lack optimal
sensitivity.6,7 Consequently, incorporating additional factors 
not currently considered in existing tools could h elp improve 
the accuracy of fracture risk prediction.8 

Variation in hip shape is increasingly recognized as a 
contributor to hip fracture,9,10 having also been linked to 
osteoarthritis.11 Hip shape can be assessed through measuring
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individual geometric measures (GMs), or by evaluating the 
overall shape. Common examples of GMs include hip axis 
length (HAL), neck shaft angle (NSA), FN width (FNW), 
and femoral head diameter (FHD), which can all be derived 
from DXA scans, either manually or using software, such as
hip structural analysis.12 Although evidence linking GMs to 
fracture risk is inconsistent, a recent meta-analysis found that 
increased HAL, NSA, and FNW are associated with higher 
fracture risk, with pooled odds ratios (OR) of 1.53, 1.47,
and 2.68, respectively.10 This did not account for factors, 
such as age and sex. Nonetheless, the International Society 
of Clinical Densitometry recommends using only HAL for 
assessing hip fracture risk in females, and advises against
using GMs to guide treatment decisions.12 Moreover, the 
high correlation between GMs, such as FNW and HAL,11 

as well as the correlation between GMs and body size,13 

complicates the evaluation of their individual contributions 
to hip fracture risk. In contrast, assessing hip shape as a whole, 
rather than focusing on individual GMs, may provide a more 
comprehensive understanding of hip health and fracture risk 
by accounting for overall morphology and the relationships
between different features.14 

Statistical shape modeling (SSM), a computer-aided tech-
nique designed to capture the statistical variability of shapes 
within a dataset,15 can  be  used  to  provide  a  more  holistic  
measure of hip shape. Statistical shape modeling uses out-
line points derived from hip images and employs principal 
component analysis (PCA) to produce orthogonal modes of
shape variation, termed hip shape modes (HSMs),16 which 
each capture a different aspect of hip morphology. Although 
research linking HSMs to hip fracture risk is limited, one 
study that applied SSM to radiographs found that a HSM 
characterized by a longer FN, smaller femoral head and a 
narrower FNW was associated with a higher fracture risk
(OR 2.48).8 Studies comparing SSM-derived measures of hip 
shape to GMs in the context of hip fractures have been 
limited to small studies,9 which have been unable to show that 
SSM-derived hip fracture risk is independent of GMs. This 
underscores the need for a comparative analysis to identify 
the most effective predictors of hip fracture risk. In our recent 
work using UK Biobank (UKB), we developed a machine-
learning algorithm that automatically places outline points on
high-resolution hip DXA images,17 facilitating the generation 
of hip shape measures in large numbers.

In the present study, we aimed to establish whether SSM-
derived hip shape, obtained using our automated point place-
ment method, is associated with hip fracture risk indepen-
dently of established risk factors and hip GMs, while also 
analyzing potential sex differences within these associations
in the UKB cohort.

Materials and methods 
Population 
UK Biobank is a prospective cohort study that recruited 
∼500 000 males and females, aged 40-69 yr, from 22 
assessment centers across the UK between 2006 and
2010.18 Baseline genetic and phenotypic information was 
obtained through questionnaires, physical measurements, 
and biological samples. In 2014, UKB launched the Image 
Enhancement study, which aims to gather imaging data, 
including hip DXA scans, from 100 000 participants.19 This 

Figure 1. An example hip DXA scan from UKB showing the points placed 
around the hip joint. 

study is overseen by the UKB Ethics Advisory Committee, 
and ethical approval was given by the National Information 
Governing Board for Health and Social Care and North-West 
Multi-centre Research Ethics Committee (11/NW/0382). All 
participants provided informed consent for their data to be
used in the study.

Acquisition of DXA-derived hip shape 
Hip DXA images were acquired following a standardized pro-
tocol using an iDXA scanner (GE-Lunar), with participants’ 
legs positioned at an internal rotation of 15◦-25◦.19 A  Ran-
dom Forest-based machine learning algorithm20 (BoneFinder, 
The University of Manchester) had been previously used to 
automatically place the hip outline points.17 This algorithm 
was initially trained on a subset of ∼7000 manually marked-
up images before being applied to the remaining ∼33 000 
images. A total of 85 outline points were placed around the 
femoral head and acetabulum, including the greater and lesser
trochanters (Figure 1). The placement of the outline points 
was manually verified, with only 10% requiring adjustment 
and an average correction distance of 1.9 mm.21 

Once outlined, PCA was performed to generate a set of 
orthogonal HSMs, which collectively explain 100% of the
variance.17 To minimize the burden of multiple testing, this 
analysis focused on the first ten HSMs (Figure 2), which 
accounted for 86% of the shape variance within the data 
set. Subsequent HSMs explained minimal additional shape 
variance and are unlikely to hold clinical signif icance. Each 
individual is given a SD score (mean 0) for each HSM and 
this describes their propensity toward the positive or negative
shapes shown in Figure 2. Additionally, FNW, FHD, and HAL 
were previously derived from the DXA scans using an openly 
available custom Python script, as described elsewhere.11,22 

Ascertainment of hip fr acture 
Hip fracture data were obtained through linkage to hospital 
episode statistics (HES), which uses the International Classi-
fication of Diseases (ICD) 10th revision codes. Hip fractures 
were identified based on the following codes: fractured
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Figure 2. The 10 hip shape modes (HSMs). The solid line shows the shape +2 SD from the mean, and the dotted line shows the shape −2 SDs from 
the mean. 

neck of femur (S72.0), pertrochanteric fracture (S72.1), 
subtrochanteric fracture (S72.2), stress fracture, not elsewhere 
classified (pelvic region and thigh) (M84.359), or pathological 
fracture, not elsewhere classified (pelvic region and thigh)
(M84.459) (Table S 1). Recording of HES data began on the 
April 1, 1997. Hip fracture data were downloaded in August 
2023, capturing information up until the end of October
2022.

Statistical analysis 
Descriptive statistics, including means, SDs, and ranges, were 
used to summarize population characteristics and the dis-
tributions of HSMs and GMs. Histograms were plotted for 
each HSM to confirm normal distribution. The correlations 
between each HSM, GM, BMD, and demographic factors 
(height, weight, and age), were assessed using Pearson corre-
lation coefficient (r). Cox proportional hazard models were 
used to examine the longitudinal associations between each 
HSM and hip fracture risk, as well as between each GM 
(FNW, FHD, and HAL), BMD, ratios of GMs (FNW/FHD and 
FNW/HAL), and hip fracture risk. The follow-up period con-
cluded at the earliest event, which was either the first incident 
hip fracture during follow-up, withdrawal, censoring due to 
death or until the end of the study (October 31, 2022). Indi-
viduals who had a hip fracture before attending the imaging 
assessment, that is, before the DXA scan, were excluded from 
the analysis. The Cox proportional hazards assumption was 
tested using the Schoenfeld residuals approach. A Bonferroni 
adjusted p-value threshold (p < .004) was used to account for 
the 13 exposures tested (10 HSMs and 3 GMs). In a subsam-
ple with repeat imaging, concordance correlation coefficient 
(CCC) and coefficient of variation (CV) were used to assess 
variation in measures across 2 time points. Coefficient of 
variation data could not be calculated for HSMs, as they are 
centered on 0. Kaplan–Meier survival analysis was conducted 
for HSM2 and each of the GMs. Results are shown as hazard 
ratios (HR), which represent the relative risk of experiencing 
a hip fracture over time, with 95% CI and p-values. Hazard 
ratios are reported per one SD increase in each HSM or GM.
Results are presented across 4 models: Model 1 is unadjusted;
Model 2 adjusts for demographic characteristics (age, sex,
height, and weight); Model 3 additionally adjusts for left

hip total femoral BMD; and Model 4 further adjusts for
GMs (FNW, FHD, and HAL). When a GM is the exposure,
model 4 adjusts for the other 2 GMs. Both combined-sex and
sex-stratified analyses were conducted to account for known
disparities in fracture risk23 and hip shape24 between males 
and females. Ethnicity was not included within adjustment 
models due to 96.7% of the cohort being of white ethnic back-
ground, with only 2 fractures observed within participants of
other ethnic groups (Table S 2). All statistical analyses were 
performed using ST ATA version 18 (Stata Corp).

Composite models 
To investigate the overall at-risk hip shape for fracture, a 
composite HSM figure was plotted by combining all HSMs. 
Briefly, to do this, unadjusted beta coefficients for the associ-
ations between HSMs and fracture were first computed. Each 
beta was then multiplied by 10 to enhance the visualization of 
shapes, and subsequently multiplied by the HSM-specific SD 
to account for the contribution of each HSM to the overall 
shape variance. These adjusted values were combined into a
single vector to assess the collective impact of hip shape on
hip fracture.

Results 
Baseline character istics 
A total of 41 160 left hip DXA images were available prior to 
the point placement, 40 340 were retained after exclusion for 
poor image quality, image error, and withdrawal of consent. 
From these 2217 were excluded due to hip fracture occurring 
prior to the DXA scan or incomplete covariate data. This 
resulted in 38 123 left-hip DXA images with outline points
delineating the bone contour, which were included in this
analysis (Figure S1). The mean age was 63.7 yr, and 52% 
of participants were female (Table 1). Mean BMD of the left 
femur was 0.99 g/cm2, with females having a lower mean 
BMD (0.93 g/cm2) compared to males (1.06 g/cm2). A total 
of 133 participants (0.35%) had a hip fracture, with a higher 
prevalence among females (89 cases, 0.45%) compared with 
males (44 cases, 0.24%). Mean HSM values differed between 
sexes, with the greatest difference seen in HSM1, HSM3, and
HSM9. For the GMs, the combined sex mean for FNW was
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Table 1. Descriptive statistics of UK Biobank participants included in this st udy. 

Combined Female Male 

N = 38 123 N = 19 820 (52%) N = 18 303 (48%) 
Exposures Mean [SD, range] Mean [SD, range] Mean [SD, r ange] 
Age (yr) 63.7 [7.6, 44 to 82] 63.0 [7.4, 45 to 82] 64.3 [7.7, 44 to 81] 
Height (cm) 170.2 [9.4, 135 to 204] 163.7 [6.4, 135 to 196] 177.2 [6.6, 150 to 204] 
Weight (kg) 75.4 [15.1, 34 to 171] 68.2 [12.9, 34 to 169] 83.2 [13.4, 47 to 171] 
Left total femoral BMD (g/cm 2) 0.99 [0.16, 0.00 to 1.68] 0.93 [0.14, 0.13 to 1.67] 1.06 [0.14, 0.00 to 1.68] 
Hip shape mode 1 0.0 [1.0, −4.6 to 3.9] 0.3 [0.9, −3.8  to  3.9] −0.3 [1.0, −4.6 to 3.6] 
Hip shape mode 2 0.0 [1.0, −4.7 to 4.5] −0.0 [1.0, −4.7 to 4.2] 0.0 [1.0, −4.5  to  4  .5]  
Hip shape mode 3 0.0 [1.0, −4.1 to 4.3] −0.3 [0.9, −4.1 to 4.0] 0.3 [1.0, −3.6  to  4  .3]  
Hip shape mode 4 0.0 [1.0, −4.4 to 4.0] −0.1 [1.0, −4.4 to 4.0] 0.1 [1.0, −3.8  to  4  .0]  
Hip shape mode 5 0.0 [1.0, −4.5 to 3.5] 0.0 [1.1, −4.4  to  3.4] −0.0 [0.9, −4.5 to 3.5] 
Hip shape mode 6 0.0 [1.0, −4.6 to 5.0] 0.2 [1.0, −3.4  to  5.0] −0.2 [1.0, −4.6 to 3.9] 
Hip shape mode 7 0.0 [1.0, −4.9 to 5.0] 0.1 [1.0, −4.9  to  4.7] −0.1 [1.0, −4.6 to 5.0] 
Hip shape mode 8 0.0 [1.0, −4.4 to 4.5] −0.1 [1.0, −4.4 to 4.0] 0.1 [1.0, −4.0  to  4  .5]  
Hip shape mode 9 0.0 [1.0, −4.1 to 5.0] −0.3 [0.9, −4.1 to 4.5] 0.3 [1.0, −3.7  to  5  .0]  
Hip shape mode 10 0.0 [1.0, −4.1 to 3.8] 0.0 [1.0, −4.1  to  3.8] −0.0 [1.0, −4.1 to 3.8] 
Narrowest neck width (mm) 31.6 [3.5, 21.4 to 45.8] 29.0 [2.0, 21.4 to 37.8] 34.5 [2.4, 22.9 to 45.8] 
Diameter of femoral head (mm) 45.9 [3.8, 33.4 to 64.4] 43.0 [2.3, 33.4 to 53.7] 49.0 [2.6, 34.7 to 64.4] 
Hip axis length (mm) 96.7 [8.0, 68.1 to 127.1] 90.8 [4.8, 68.1 to 115.5] 103.1 [5.5, 76.9 to 127.1] 

Number fractured [%] Number fractured [%] Number fractured [%] 
Hospital diagnosed fracture 133 [0.35] 89 [0.45] 44 [0.24] 

Mean [SD, range] Mean [SD, range] Mean [SD, r ange] 
Time to end of study (yr) 5.0 [1.5, 0.2 to 8.5] 5.0 [1.5, 0.1 to 8.5] 5.0 [1.5, 0.2 to 8.5] 

Population characteristics of the UK Biobank participants included in t his study with complete data for all covariates. 

31.6 mm, FHD was 45.9 mm, and HAL was 96.7 mm. Males 
had a greater mean FNW, FHD, and HAL than females. The 
mean follow-up period was 5.0 yr (median = 4.6 yr, IQR = 3.8-
6.2 yr). The incidence rate for hip fractures were 0.69 fractures 
per 1000 person years.

Geometric measures, their inter-relationships, and 
r eliability

Femoral head diameter, FNW, and HAL were all highly cor-
related  with  each  ot  her  (r: 0.81-0.89) and with height (r:
0.75-0.81) (Figure S2). Weight was moderately correlated 
with FHD, FNW, HAL, height, and BMD (r: 0.52-0.57). The 
HSMs were orthogonal by design. Similarly, no correlation 
was observed between the HSMs and the other covariates. 
In a subsample of 354 individuals with imaging on average 
2.3 yr later, good agreement was seen between GM, BMD,
and HSM measures (CCC: 0.70-0.99) except HSM5 (CCC:
0.51) (Table S 3). 

Geometric measures and their association to hip 
fractur e
Femoral neck wid th 
In the unadjusted analysis of all participants (Figure 3, 
Table S 4), FNW was not associated with hip fracture (Model 
1: 1.15, 0.97-1.36, 0.11). However, a strong association 
was seen between a wider FNW and hip fracture following 
adjustment for demographic characteristics and BMD (Model
3: 1.77, 1.30-2.43, 3.26 × 10−4). In sex-stratified analysis 
(Table S 4), a wider FNW showed a strong association with 
hip fracture in both sexes, both in the unadjusted model 
and following adjustment for demographic characteristics. 
In males, the strongest association was observed in the
unadjusted model (Model 1: 2.17, 1.44-3.25, 1.99 × 10−4). 
The association weakened with adjustment for BMD (Model 
3: 1.75, 1.08-2.82, 0.02). A similar trend was noted in females, 

with the strongest association being in the unadjusted model 
(Model 1: 2.88, 2.05-4.06, 1.40 × 10−9). Further adjustment 
for BMD resulted in attenuation (Model 3: 1.70, 1.11-2.59, 
0.01). The effect sizes were greater in females compared to 
males in models 1 and 2, with a similar effect size seen in both
sexes in model 3.

Femoral head diameter 
In the unadjusted analysis of all participants, there was 
little evidence for an observed association between FHD 
and hip fracture (Model 1: 1.12, 0.95-1.53, 0.17) (Figure 3, 
Table S 4). However, a strong positive association was 
seen when adjusting for BMD (Model 3: 1.89, 1.39-2.57,
4.48 × 10−5). In the unadjusted sex-stratified analysis, a 
larger FHD demonstrated a greater effect size in females 
compared with males (Model 1—females: 2.43, 1.73-4.30,
2.60 × 10−7; males: 2.30, 1.54-3.44, 4.50 × 10−5). When 
adjusting for BMD, a larger effect size was seen in males 
compared with females (Model 3—males: 2.01, 1.28-3.14,
2.26 × 10−3; females: 1.70, 1.11-2.60, 0.01). 

Hip axis length 
Similar to FNW and FHD, HAL did not show an association 
with hip fracture in unadjusted analysis of all participants 
(Model 1: 1.08, 0.91-1.28, 0.39) (Figure 3, Table S 4). How-
ever, an increased HAL was associated with hip fracture after 
adjusting for BMD (Model 3: 1.61, 1.18-2.21, 3.08 × 10−3). 
When compared with FNW and FHD, HAL exhibited the 
smallest effect size across all models. A strong positive asso-
ciation was seen only in the unadjusted sex-stratified analy-
sis (Model 1—males: 2.07, 1.37-3.11, 4.84 × 10−4; females: 
2.05, 1.48-2.85, 1.58 × 10−5) (Table S4), with the associations 
seen diminishing after further adjustment for BMD (Model 
3—males: 1.84, 1.11-3.04, 0.02; females: 1.40, 0.92-2.13,
0.11).
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Figure 3. Cox proportional hazard results for the association between each geometric measure (GM) and hip fracture in combined sex analysis. Hazard 
ratios (HR) with 95% CIs are plotted. Hazard ratios are reported per 1 SD increase in each hip shape mode. Square = unadjusted (model 1); circle = adjusted 
for age, sex, height, and w eight (model 2); triangle = adjusted for model 2 plus BMD (model 3); diamond = fully adjusted for model 3 plus the other 2 GMs 
(model 4). Abbreviations: FHD, femoral head diameter; FNW, femoral nec k width; HAL, hip axis length.

Mutual adjustment and ratios of g eometric 
measur es

When each GM was mutually adjusted for the other 2 GMs, 
along with demographic characteristics and BMD, there was 
less evidence for an association with hip fracture in both 
combined and sex-stratified analysis. All results fell below the
statistical significance threshold for multiple testing (Figure 3, 
Table S 4). Ratios of GMs were analyzed to account for the 
high correlations between individual measures. In combined-
sex analysis, the FNW/HAL ratio was significantly associated 
with hip fracture after adjusting for demographic characteris-
tics (1.33, 1.11-1.59, 1.92 × 10−3). In sex-stratified analyses, 
none of the ratios were statistically significant in males. In 
females, both ratios were associated with hip fracture in the 
unadjusted model, but only the FNW/HAL ratio remained 
significant after adjustment for demographic characteristics
(1.41, 1.12-1.77, 3.27 × 10−3)  (Table S 4). 

Association between HSMs and hip fracture 
Each HSM was initially assessed for its association with 
hip fracture. In the unadjusted combined-sex analysis, there 
was evidence of a strong positive association between HSM2
(Figure 4) and hip fracture (Model 1—HR: 1.32, 95% CI: 
1.11-1.56, p = 1.47 × 10−3)  (Figure 5, Table 2). This associa-
tion persisted upon adjustment for demographic characteris-
tics and BMD (Model 3: 1.31, 1.11-1.55, 1.51 × 10−3). Put 
simply, fracture risk is increased by approximately 30% in 
individuals with HSM2 values exceeding 1 SD, representing 
approximately 15.4% of the population. HSM2 captures 
features of a narrower FNW, a higher NSA, and reduced
acetabular coverage (Figure 2). No other HSMs were found 
to be associated with hip fracture in combined-sex analysis.

In female sex-stratified analysis (Table S 5), HSM2 showed 
a positive association with hip fracture when adjusted for 
demographic characteristics (Model 2: 1.37, 1.11-1.68,
2.79 × 10−3). Apart from this, sex-stratified analyses failed to 
show statistical evidence for an association with hip fracture 
potentially, because they were underpowered.

To evaluate the association between each HSM and hip 
fracture risk, independent of the hip shape components 
captured by GMs, each HSM was further adjusted for all 
3 GMs (FNW, FHD, and HAL) (Figure 5, Table 2). Analysis 
of all participants showed that the associations seen in Models 
1, 2, and 3 were maintained after adjusting for demographic 
characteristics, BMD, and GMs. HSM2 emerged as the only 
HSM to show strong evidence of an association with hip 

fracture in this model (Model 4: 1.30, 1.09-1.55, 3.27 × 10−3). 
In sex-stratified analysis (Table S 5), none of the associations 
met the Bonferroni-adjusted p-value threshold. However, 
HSM2 showed weak evidence of an association with hip 
fracture when fully adjusted in both females and males 
(Model 4—females: 1.27, 1.03-1.57, 0.02; males: 1.34, 0.96-
1.84, 0.06). HSM9, characterized by larger lesser trochanters 
and a narrower FN, continued to show weak evidence of a 
negative association with hip fracture risk in males after full 
adjustment (Model 4: 0.66, 0.48-0.89, 0.01). No other HSM 
was associated with hip fracture when fully adjusted in either
sex. Kaplan–Meier survival analyses stratified for HSM2 and
each GM are included in Figure S3. 

Association between BMD and hip fr acture r isk

For comparison, higher total left femoral BMD was strongly 
associated with a reduced risk of hip fracture in combined-sex 
(Model 2: 0.36, 0.30-0.43, 2.86 × 10−28) and sex-stratified 
analysis (Model 2—females: 0.34, 0.27-0.43, 2.71 × 10−20; 
males: 0.38, 0.28-0.53, 4.74 × 10−9)  (Table S 6). 

Composite model 
The composite model (Figure 6) showed that the overall at-
risk shape, which is represented by the solid line, included a 
narrower FNW, reduced acetabular coverage, smaller greater 
trochanters, and a smaller FHD. This closely reflects HSM2,
which shares these shape characteristics.

Discussion 
This large, longitudinal cohort study explored the relationship 
between DXA-derived HSMs and GMs with hip fracture risk. 
The findings indicate that HSM2, characterized by a narrower 
FNW, higher NSA, smaller femoral head, and reduced acetab-
ular coverage, was positively associated with hip fracture risk, 
even after adjusting for age, sex, height, weight and BMD. 
While GMs (FNW, FHD, and HAL) also showed associations 
with hip fracture when adjusted for the same covariates, these 
relationships attenuated upon mutual adjustment, confirming 
their inter-relatedness. In contrast, HSM2 retained its associ-
ation with hip fracture after accounting for GMs, suggesting
that HSM2 captures additional information beyond these 3
measures of hip geometry.

Currently, there are few comparative studies in the literature 
that have investigated the association between SSM-derived 
hip shape and hip fractures. Furthermore, these studies have
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Figure 4. DXA images illustrating high, zero, and low HSM2 scores in women aged 60 yr. The high HSM2 value represents a value >2 SDs above the 
mean; the average image corresponds to a score of 0; and the low HSM2 value represents a value <2 SDs below the mean. (A) T he low HSM2 image 
shows an individual with a HSM2 score of −3.03. (B) The zero HSM2 image shows an individual with a HSM2 score of 0.01. (C) The high HSM2 image 
shows an individual with a HSM2 score of 2.56. Abbreviation: HSM, hip shape mode. 

Figure 5. Cox proportional hazard results for the association between each hip shape mode (HSM) and hip fracture in combined sex analysis. Hazard ratios 
(HRs) with 95% CI are plotted. Hazard ratios are reported per 1 SD increase in each hip shape mode. Square = unadjusted (model 1); circle = adjusted for 
age, sex, height, and weight (model 2); triangle = adjusted for model 2 plus BMD (model 3); diamond = fully adjusted for model 3 plus the 3 GMs (model 
4). Fracture risk is increased by approximately 30% in those who HSM2 value exceeds 1 SD, representing a pproximately 15.4% of the population.

Table 2. Cox proportional hazard results for the association between each hip shape mode and hip fracture in combined sex analy sis. 

Model 1 Model 2 Model 3 Model 4 

Exposure HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value HR [95% CI] p-value 

Hip shape mode 1 1.01 [0.85-1.20] .91 0.94 [0.79-1.13] .52 1.11 [0.92-1.33] .27 1.12 [0.90-1.40] .33 
Hip shape mode 2 1.32 [1.11-1.56] 1.47 × 10−3 1.36 [1.15-1.62] 3.3 × 10−4 1.31 [1.11-1.55] 1.51 × 10−3 1.30 [1.09-1.55] 3.27 × 10−3 

Hip shape mode 3 0.99 [0.84-1.18] .94 1.13 [0.94-1.35] .19 1.16 [0.97-1.39] .10 1.10 [0.91-1.31] .33 
Hip shape mode 4 0.87 [0.74-1.03] .11 0.84 [0.71-1.00] .05 0.88 [0.74-1.05] .17 0.88 [0.71-1.07] .20 
Hip shape mode 5 0.97 [0.82-1.15] .74 0.98 [0.84-1.16] .86 1.02 [0.87-1.21] .79 0.99 [0.83-1.17] .89 
Hip shape mode 6 1.09 [0.92-1.29] .31 1.00 [0.84-1.19] 1.00 0.96 [0.80-1.14] .63 0.96 [0.79-1.16] .68 
Hip shape mode 7 0.96 [0.81-1.14] .66 0.99 [0.84-1.17] .93 1.05 [0.88-1.24] .60 1.11 [0.93-1.31] .25 
Hip shape mode 8 1.00 [0.84-1.19] .99 1.02 [0.86-1.21] .82 0.95 [0.80-1.12] .53 1.00 [0.83-1.21] .98 
Hip shape mode 9 0.89 [0.75-1.06] .19 0.96 [0.81-1.15] .68 0.99 [0.82-1.18] .87 0.90 [0.75-1.08] .26 
Hip shape mode 10 0.99 [0.84-1.18] .93 0.95 [0.80-1.13] .59 0.97 [0.82-1.15] .74 0.91 [0.76-1.09] .30 

Hazard ratios (HR) with 95% CI and p-values are shown for each hip shape mode and their association to hip fracture. Hazard ratios are reported per 1 SD 
increase in each hip shape mode. Model 1 = unadjusted; model 2 = adjusted for age, sex, height, and weight; model 3 = adjusted for model 2 plus BMD; model 
4 = adjusted for model 3 plus the g eometric measures.  

derived their SSM from different populations, meaning it is 
not possible to draw direct comparisons between specific 
HSMs. For instance, Gregory et al. applied a SSM consisting 
of 29 points outlining the femoral head and neck to stan-
dard radiographs in a small group of females (26 cases, 24
controls).9 They found that SSM-derived hip shape predicted 
fracture risk after adjusting for height and weight. Specifically, 
a HSM with a longer, narrower FN and a higher NSA was 

more likely to fracture, reflecting the at-risk shape identified 
in this study. However, their sample size was considerably 
smaller than that of our current study and the outline points 
on the radiographs used to perform SSM did not include the 
lesser trochanter . Baker-LePain et al. used a similar approach
in a nested case-control study involving Caucasian females
(168 cases, 231 controls).8 They employed a larger number 
of outline points (n = 60) than Gregory et al. (n = 29), and
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Figure 6. Composite image of the 10 hip shape modes. The solid line 
shows the shape at risk of fracture, the dotted line shows the mean shape. 

their model included the lesser trochanter. They found that 
hips exhibiting extreme values of HSM4, characterized by a 
narrower FNW, increased FN length, and a smaller femoral 
head, were associated with hip fracture. These features closely 
resemble the at-risk hip shape identified in this study (nar-
rower FNW and smaller femoral head). Although Baker-
LePain et al. adjusted for age, body mass index, and FN BMD, 
they, like Gregory et al., only included females within their 
analyses, leaving it unclear whether the observed relationships 
are sex-specif ic. Goodyear et al. performed SSM using 72
outline points on DXA scans of females aged over 75 yr
(182 subjects, 364 controls).25 The authors identified a hip 
shape associated with fracture that also closely resembles the 
findings of our study, including a narrower FNW, greater NSA, 
reduced acetabular coverage, and smaller greater trochanters. 
This study offers the closest comparison to the present anal-
ysis, as it was performed on DXA scans and used similar 
outline points, including the acetabulum and lesser trochanter. 
However, the sample size was smaller, and analysis focused on 
females only. This limitation is significant, because HSMs are
known to be influenced by sex,26 and our study found notable 
differences in HSMs between the sexes. Furthermore, none of 
the studies adjusted for GMs.

Although the at-risk hip shape (HSM2) identified in this 
study was characterized by a narrower FNW, the analy-
sis of GMs and hip fracture revealed that a wider FNW
was associated with hip fracture (Figure 3, Table S 4). Our 
findings are consistent with a recent meta-analysis, as we 
also observed that a greater FNW and HAL were associated 
with an increased risk of hip fracture.10 This finding has 
been reported in other observational studies,27–29 including 
a recent genetic analysis30 that found that individuals with 
a genetic predisposition to a greater FNW were at higher 

risk of fracture. The seemingly contradictory findings between 
HSM and GMs regarding FNW and fracture risk may be 
attributable to several factors. Geometric measures objectively 
quantify individual aspects of hip morphology, meaning that 
bone size can impact the magnitude of the measurement. 
For example, larger individuals are likely to have a bigger 
femur across all dimensions; thus, a taller and heavier person 
would be expected to have a larger FNW and HAL. More-
over, FNW is highly correlated with height and moderately
correlated with weight (Figure S2), a relationship that has 
been consistently reported in other studies,11,31 highlighting 
the significant influence of demographic characteristics, such 
as height and weight, on FNW. In contrast, SSM employs 
Procrustes analysis to align and scale hip outlines based on 
shape, effectively capturing bone morphology while excluding 
the influence of individual size. This ability to isolate shape 
from size is important, because HSM2 remained associated 
with hip fracture risk, independent of FNW, FHD , and HAL. 
This suggests that these individual measures are not inde-
pendently driving hip fracture risk. Instead, the interactions 
and combined influence of these factors, effectively captured 
by SSM, likely contribute to fracture risk. Ratios of GMs
have been suggested as an alternative, aiming to reduce the
influence of correlation by standardizing measures against
one GM.13 However, SSM still outperformed ratio values in 
a previous small study.9 In this study, ratios of GMs were not 
more strongly associated with hip fracture than individual 
GMs, suggesting that these ratios do not provide additional 
predictive value beyond individual measures or SSM.

The addition of BMD attenuated the association between 
HSM2 and subsequent hip fracture risk. This is likely due to 
BMD being a composite of BMC and bone area,32 the latter 
of which overlaps with bone shape and geometry. Although 
BMD is a strongly validated predictor of hip fracture4 and was 
more predictive in this study population, our results suggest 
that SSM derived hip shape could provide complementary 
information. Further work is needed to determine whether 
incorporating SSM-derived hip shape into fracture risk mod-
els, such as FRAX, would provide significant improvement to
justify its inclusion.

Previous research has explored sex differences in hip 
shape24,26,33,34; few studies have examined these differences 
within the context of hip fractures. HSM2 showed similar 
effect sizes between the sexes, but a notable difference was
seen with HSM9 (Table S 5). Studies of individual hip shape 
measures have shown that females tend to have a smaller 
FHD, narrower FNW, and shorter FN length compared
to males,34 which likely reflects that females are typically 
smaller than males. Similarly, Frysz et al. found sex differences 
in HSMs, with females exhibiting a narrower FNW and 
smaller lesser trochanter compared with males.26 This finding 
is noteworthy, particularly given the weak evidence of a 
negative association with hip fracture seen with HSM9
in males (Table S 5). HSM9 was characterized by a larger 
lesser trochanter but a narrower FN, suggesting that a 
larger lesser trochanter, a feature more common in male 
hip shapes, could offer some protective effect against hip 
fracture. Since the lesser trochanter serves as the insertion
point for hip flexor muscles,35 its size could be indicative of 
muscle mass. Given that sarcopenia (loss of muscle mass and
function)36,37 is a known risk factor for hip fracture,38–41 

a larger lesser trochanter may represent a proxy for muscle 
strength and function, potentially reducing fracture risk in
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males. Additionally, innate female hip shape characteristics 
may predispose females to a higher fracture risk, as they often 
exhibit features linked to fractures, such as a narrower FNW. 
Interestingly, although HSM9 included a narrower FNW, 
similar to the fracture-prone HSM2, this reinforces the idea 
that fracture risk is influenced by multiple interacting shape
constituents rather than any single measurement.

This study has several key strengths. Its large sample size 
and population-based design greatly enhances the representa-
tiveness of the findings, thereby improving the reliability of 
effect estimates. By using a CCC and CV, we have shown that 
our measures are reliable over a two year time frame, and that 
HSM2 was the most reliable HSM (CCC: 0.93). The study 
also simultaneously examined the relationship between SSM-
derived hip shape and GMs with hip fracture, allowing for a 
direct comparison of these 2 methods and an evaluation of 
their independent associations with fracture risk. One of the 
limitations of SSM is that each study uses a different popu-
lation to derive their HSMs, thus you cannot compare across 
models. This UKB model could provide a reference for other 
populations. Both the SSM-derived hip shape and the GMs 
were semi-automatically derived from DXA scans, requiring 
minimal manual point correction. Given the widespread use
of DXA scans in clinical practice for assessing osteoporosis,
this approach makes accommodating SSM-derived hip shape
measures through tools like FRAX a feasible option. Previous
studies have shown that SSM can be applied to the DXAs
obtained from different types of scanner, with comparable
results.42 Although further work is justified to confirm this 
before clinical adoption of these methods. Additionally, the 
inclusion of both combined and sex-stratified analyses repre-
sents a significant strength of this study. While many studies 
primarily examine post-menopausal females, this study also 
included male participants, providing valuable insights into
male hip shape and its role in fracture risk.

There are limitations to this study. As an observational 
study, it cannot establish causality. Further research to under-
stand the factors driving the association between HSM2 and 
hip fracture risk is needed, although a recent study using 
genetic data found evidence of a causal association between
HSM2 and hip fracture in the same population.43 Neck 
shaft angle could not be derived from the DXA scans due 
to the limited view of the femoral shaft. Given that prior 
studies have linked higher NSA to hip fracture, and HSM2 
represents a higher NSA, we were unable to determine if the
association between HSM2 and hip fracture was independent
of NSA.10,31 The predominantly Caucasian study popula-
tion may limit the generalizability of the findings. Notably, 
differences in hip shape have been reported between UKB 
participants and the exclusively Chinese Shanghai Changfeng
cohort.44 The mean age of participants (63.7 yr) may have 
reduced the study’s power, as hip fractures predominantly 
occur in older individuals.45 However, as participants con-
tinue to be followed-up and additional DXA images from 
UKB become available, analysis can be repeated with more 
hip fracture cases, potentially strengthening findings. It should 
be acknowledged that while hip structural analysis is read-
ily available, implementing SSM in clinical practice would 
require additional resources and technology. Since the analysis 
focused only on left hip DXA scans, and the side of the 
body the hip fracture occurred on is unknown, it is plausible 
that effect estimates could be biased toward the null. As a 
result, the true effect of hip shape on fracture risk may be 

underestimated or not fully captured in the analysis. Fur-
thermore, using 2D DXA scans to assess the shape of a 3D
structure may result in the loss of spatial detail; however,
SSM can help mitigate these limitations by using proportional
rather than absolute values of hip shape as described by GMs.9 

In conclusion, this study examined SSM-derived hip shape 
using high-resolution DXA scans from a large cohort of 
UKB participants, demonstrating risk of incident hip frac-
ture is higher with a narrower FN, a higher FN angle and 
reduced acetabular coverage. Importantly, these associations 
were independent of a wide range of covariates including 
established measures of femoral geometry. Given that DXA 
scans are already routinely used to assess osteoporosis risk, 
further work is justified to investigate whether SSM-derived 
measures of hip shape could be accommodated into existing 
fracture risk tools, such as FRAX, to improve prediction. This 
approach could facilitate targeted preventative treatments
for individuals with hip shapes resembling HSM2, thereby
reducing the risk of hip fractures and alleviating the resultant
morbidity and mortality.
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