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Abstract—Near-field beamforming enables target discrimination
in both range (axial) and angle (lateral) dimensions. Elevated
sidelobes along either dimension, however, increase susceptibility
to interference and degrade detection performance. Conventional
amplitude tapering techniques, designed for far-field scenarios,
cannot simultaneously suppress axial and lateral sidelobes in
near-field. In this letter, we propose a Slepian-based amplitude
tapering approach that maximizes mainlobe energy concentration,
achieving significant sidelobe reduction in both dimensions.
Numerical results show that the proposed taper improves peak
sidelobe suppression by approximately 24 dB in the lateral domain
and 10 dB in the axial domain compared to a conventional uniform
window.

Index Terms—Near-field, axial and lateral sidelobes, amplitude
weighting, Slepian.

I. INTRODUCTION

ENSING, formally recognized as a key service in 3GPP

release 20, is envisioned as a core capability of sixth gener-
ation (6G) wireless networks. This paradigm shift is driven by
the adoption of millimeter wave (mmWave) bands, coupled with
ultra-massive (UM)-multiple-input multiple-output (MIMO)
architectures, that jointly enable fine spatial resolution through
wide bandwidths and large antenna apertures, respectively [1].
At such scales, electromagnetic propagation occurs in the
radiative near-field (NF) regime, where spherical wavefronts
enable the formation of NF beams. These beams exhibit finite
beamwidth and beamdepth, thereby facilitating target resolution
in both angular (lateral) and range (axial) domains. However,
unlike the far-field (FF), where interference arises solely from
lateral sidelobes (LSLs), NF beams exhibit both axial sidelobes
(ASLs) and LSLs, rendering them susceptible to interference
in both axial and lateral dimensions.

Sidelobe suppression is critical for reliable sensing and
secure communication, as the mainlobe width determines
spatial resolution while sidelobe levels (SLLs) govern suscepti-
bility to interference. Reducing sidelobes enhances sensing
performance by mitigating undesired signal leakage from
interference sources and improves multiuser communication
performance by increasing the achievable sum rate. The overall
lateral beam pattern depends on the product of the element
pattern and array factor; hence, reducing element sidelobes
directly lowers LSLs. Conversely, the element pattern does not
influence the axial beam pattern. In the FF, amplitude weights
are applied in the spatial domain to reduce LSLs in the angular
domain [2]. In contrast, within the NF context, it is essential
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to investigate how a single set of amplitude weights (in the
spatial domain) can simultaneously suppress both ASL and
LSL. Recent findings reveal a fundamental trade-off between
ASL and LSL suppression: optimizing tapering weights for
one domain often degrades performance in the other [3], [4].
This inherent coupling raises a critical research question: Can
we design an amplitude distribution that jointly minimizes ASL
and LSL?

Interestingly, the trade-off between ASL and LSL suppres-
sion mirrors the classical time—frequency uncertainty, in which a
signal cannot be simultaneously time-limited and band-limited.
Slepian sequences address this by maximizing the energy
concentration of a finite-length sequence within a prescribed
bandwidth [5]. These sequences are mutually orthogonal, and
the principal Slepian sequence yields the most effective window
function for sidelobe suppression. Drawing on this analogy,
the NF problem exhibits a similar duality, as range and angle
domains are inherently coupled with unavoidable resolution
trade-offs. Motivated by this parallel, in this letter we first
characterize the NF beam patterns across the range—angle
domain and quantify the underlying trade-offs. We then propose
Slepian-based amplitude tapers for NF beamforming that
jointly suppress ASL and LSL, yielding superior performance
compared to existing windowing methods.

II. SYSTEM MODEL

In this section, we present the NF beam pattern and specify
the metrics to quantify the SLLs.
A. Channel Model
We consider a uniform linear array (ULA) equipped with NV
isotropic antenna elements spaced d = A/2. Based on the planar
wavefront assumption, the normalized FF array response vector
a(f) € CVN*! is formulated as

a(e) — \/% |:1’ efjudsin(G)7 o ,efjud(Nfl) sin (0):|T7 1)
where v = 27” is the wavenumber, and X is the wavelength. On
the other hand, the NF array response vector b(f,7) € CN*1
based on the spherical wave model is given by
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where 7 is the distance between the focal point and the center of
the ULA, while (™ is the distance between the focal point and
the n™ antenna element. The corresponding phase shift /(™) —
r), obtained via the law of cosines, is expressed as V(r(") —
r) =2t (\/7“2 +n2d? — 2rndsin(6) — r). Accordingly, n
component of the NF array response vector can be written as
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The above equation can be simplified by using near field
expansion based on the second-order Taylor expansion as
VI+t~14L— 12 where \/r? + n?d? — 2rndsin(f) —
r ~ ndsin(f) — —n2d2 cos?(0). Hence, b,(0,7) in (3) is
approximated as

B. Problem Formulation
The NF beam pattern is obtained by applying the complex
weights g to the antenna elements as

g(ev 7“) = |gH (907 7"0) b<97 T) ’ ’ ©)
where (6,,7,) denotes the desired beamfocusing location
in angle and range, respectively. The weighting vector g
can be decomposed into element-wise amplitude and phase
components as

—]V{nd sin(0)— £n?d? cos®(0)} ]

“
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where w is the real-valued amplitude vector, el is the
complex phase vector, and ©® denotes the Hadamard (element-
wise) product. In general, the phase component focuses the
beam toward the desired location (6,,7,), while the amplitude
component is designed to control the SLL. For a given
focus point, the phase component ¢/? is obtained using (4).
Substituting the decomposition of g from (6) into the beam
pattern expression in (5) yields

2
G(0,r) = |(w @ b(b,,1,))" b(6,r) (7

Given the peak of the mainlobe is G(6,,r,), the peak sidelobe
level (PSLL) and integrated sidelobe level (ISLL) are defined
as follows:
a) PSLL: The PSLL quantifies the ratio of the highest
sidelobe magnitude to the mainlobe peak, indicating
worst-case sidelobe susceptibility against narrowband

interference.
max G(0,r)
PSLL = 10log,, | &5 ®)
10 9(007 TO) ’

where x denotes either angle (f) or range () depending
on the domain of interest. S corresponds to the set of
points in the sidelobe region.

b) ISLL: The ISLL quantifies the ratio of the total sidelobe
power to the mainlobe power, characterizing the beampat-
tern’s susceptibility against wideband interference.

G(0,7)P do
ISLL = 10logy, | 28— —— | |
/ 1G(6, )2 da
M

where M corresponds to the mainlobe. Fig. 1 illustrates
the mainlobe and sidelobe regions, as well as the PSLL,
for a NF beam pattern in the range domain. Conventional
window designs entail a trade-off between ASL and LSL
suppression, as detailed in Section III-D. To address this
limitation, we propose a window that jointly attenuates
both ASL and LSL in terms of PSLL and ISLL.

III. BEAM PATTERN ANALYSIS
In this section, we derive the beamwidth, beamdepth, and PSLL
of the NF beam in both the angular and range domains, assum-
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Fig. 1: NF beam pattern with mainlobe and .

ing uniform amplitude excitation w = 1. We then highlight
the inherent range—angle trade-off in sidelobe suppression.

A. Angle-Domain

To evaluate the beam pattern in the angular domain, we consider
a distance ring defined by <= (0) Cosze“) [6]. This curve
corresponds to a set of range angle pairs over which the
beamwidth remains approximately invariant. Accordingly, the
beam pattern in the angle domain can be expressed as
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where (a) follows from the relation <= cos®(6) _ M From
(10), half power beamwidth (HPBW) AHgdB is derlved as

0.886X
Abzgp ~ ——— 11
848 N N s 0, (11)
which is identical to the HPBW expression in the FF [7]. The
PSLL of a uniformly weighted array is determined by the
Mt
N sin(z/2)

sin(

secondary maxima of the gain function G = in

(10), where z = v(sin @ — sin§,)d. The mainlobe attains its
peak value of unity at x = 0, while the first sidelobe occurs
at © ~ 3m/N, yielding PSLL ~ 10log,((1/(37/2)%) =~
—13.46 dB, where a small angle approximation is applied
in the denominator to obtain s1n(§’]\}) = 5—}\;

B. Range-Domain

The beam pattern in the range domain is obtained as the inner
product of NF array response vectors pointing to the same
angle 6 but different distances r and 7, [8]

G(6,7) = |b"(8,7) b(6, )|, (12)
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where reg = ‘ 5o | I (2). By introducing the transformation
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, G(0,r) is expressed in terms of



TABLE I: Angular vs. range domain beam pattern.

Property Angular Domain Range Domain
Beam Pattern Sinc Fresnel

Symmetry Symmetric about 6, Asymmetric about 7,
PSLL —13.46 dB —8.7dB

Grating Lobes Present (sinc periodicity) Absent (non-periodic)

Fresnel functions in (b), where v = reff. Further-
more, C(7) fo cos (32?) dx, S(v) = [ sin (52
the Fresnel cosine and sine integrals.

Half power beamdepth (HPBD) 7y, is defined as the distance
interval r € [r™in ymax] where normalized array gain is at
most 3dB lower than its maximum value. For a ULA, [9]

ToTro €082 (0)
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A

) dx are

min

= 15
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where 7y, = QT is the Rayleigh distance and D represents
the aperture length of the ULA. Based on (15) and (16), g, =

roax — rmm is given by
8a3dBr0rRDCOs (0) TRD 2
rep = 4 (TR cos? (0))2—(dazanro)®’ To < Zagap ©O8 0, (17)
T 2
00, Ty 2 7o cos® (),

where oy 2 {v16(0,r)=0.5} denotes the value of ~y, where
G(0,r) reduces to half. Furthermore, ;78— cos (0) defines the
maximum range limit beyond which rBD goes to infinity.

To find the PSLL in the range domain, we solve
d <02(7)+SZ(7)
dy v?
sidelobe occurs at vpsi, &~ 2.28, with G(vpsir) =~ 0.1323,
giving a PSLL of 10log;,(0.1323) = —8.7dB, which is also
highlighted as red dotted line in Fig. 1.
C. Range vs. Angle Beam Pattern
The key differences between the axial and lateral beam
patterns are summarized in Table I. Notably, the angular
pattern is symmetric about the steering angle 6,, whereas the
range pattern is asymmetric, as observed from (15) and (16),
with | — | > ’rn rmin| - Ag derived in Sections I1I-A
and III-B, the PSLL in the range domain is approximately
5dB higher than that in the angular domain. Furthermore, the
periodicity of the sinc function introduces grating lobes in the
angular domain when d > % In contrast, the Fresnel function
is aperiodic, and therefore the range pattern does not exhibit
any grating lobes.
D. Range-Angle Trade-off
The FF beam provides lateral resolution, i.e., the ability to
distinguish targets at the same range but different angles.
The NF beam additionally enables axial resolution, i.e., the
ability to distinguish targets at the same angle but different
ranges. At short ranges, the beamdepth becomes extremely
narrow, whereas the Fourier transform-based angular resolution
degrades significantly. Conversely, at larger distances or wider
angles, the lateral resolution improves while the axial resolution
deteriorates due to the increased beamdepth [9, Fig. 1]. This
trade-off is analogous to the time—frequency uncertainty, which
prevents a function from being simultaneously localized in
both domains. Consequently, conventional window functions
cannot achieve simultaneous sidelobe suppression across both
dimensions.
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Fig. 2: (a) The 1511):-Hamming window effectively sflgpresses the ASLs,
while (b) the conventional Hamming window effectively suppresses
the LSLs.

Standard FF techniques apply amplitude tapering as a(f) ®
w(n), where w(n) suppresses only the LSL. To address this
limitation, a transformation is proposed in [3], which maps
a conventional window w(n) to a modified window w(n),
thereby enabling existing designs to be directly adapted for
ASL suppression
w(n?). (18)
To illustrate further, Fig. 2 compares ASL and LSL for three
window functions: a uniform (untapered) case, a conventional
Hamming window w(n), and its NF-Hamming w(n) obtained
from (18). As observed, the conventional Hamming window
effectively suppresses LSL but increases ASL, whereas the
NF-Hamming window reverses this trade-off by enhancing
ASL suppression at the cost of higher LSL, even exceeding
that of the uniform window.

IV. PROPOSED SLEPIAN-BASED WINDOW FUNCTION
In this section, we first review the classical Slepian window
and then present the proposed window design.

A. Primer on Slepian Window

Slepian window achieves optimal trade-off between time and
frequency resolutions for a given time—bandwidth product
(NW) by maximizing the fraction of their total spectral energy
within a specified band [-W, W], where 0 < W < f,;/2 and
fs is the sampling frequency. Let s(n) denote the Slepian
sequence in the time domain, and S(f) its Fourier transform,
given by S(f) = SNV s(n)e 7277 Ts | where T, = 1/fs.
The objective is to determine s(n) that maximizes the energy
concentration ratio given by [8]

f_W |S(f)Pdf
fs/2

T2 1S

where 0 < A < 1 is the concentration parameter. The above
equation can be solved using Parseval’s theorem to yield [5]
—1N-1

>3 st

A:nOmO

N—1
ZIS(n) ?

where A, ., = %% smc<2W (n — )) The Rayleigh quotient

w(n) = |n|

19)

TA
e
S'S

T
in (20) attains its maximum when s is the eigenvector associated

with the largest eigenvalue of A. This dominant eigenvector
achieves maximal spectral concentration within the specified
band [—-W, W] and serves as the Slepian window.

B. Proposed Slepian-based Window

We propose a Slepian-inspired optimization framework based
on energy concentration within the desired mainlobe region



in the NF. This approach generalizes the classical Slepian
concentration problem in (19) to a two-dimensional range-
angle domain, yielding a solution expressed as a generalized
Rayleigh quotient.

Let us consider a NF beam focused at (6, ), characterized
by a finite beamwidth and beamdepth. We define the limits for
the mainlobe power and the total power of the beam as follows:
the mainlobe power is assumed to be primarily concentrated
within the angular region —Afsgp/2 < 6 < Afsqp/2 and the
range interval r™" < p < pla% where 7™ and r™?* denote
the beamdepth limits defined in (15) and (16), respectively,
and Afsgp is the 3dB beamwidth defined in (11). Furthermore,
the total beam power in the range domain is confined within
r € [pming pmax)where 7™M = (.62,/D3/)\ denotes the
inner boundary of the radiative NF region, and r™®* = ry,
represents its outer boundary. In the angular domain, the beam
is assumed to span 6 € [—7/2, 7r/2}

We recast (4) by defining Q = § 51n(0), which leads to
cos?(8) = A2 Q . Accordingly, the n™ component of the
NF array response vector can be expressed as

1 - _ n242 Q2n2>\
bn(Q,1) = —e J%(Qn s T )7
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Let w,, denote the n™ element of the desired window function.
The Slepian-based concentration formulation, which maximizes
the ratio of mainlobe power to total beam power is given by !

/ / Z wp by (2, 7)) drdQ
Qmin T n=0 (22)
1/2  prmex
/ / Z w} by Q)| drdQ
1/2 Jymin | 20
where Qmin = 0.5 Sln(—AegdB/2)7 Qmax =

assuming d = 2.

0.5sin(Abs45/2) 5. The numerator
corresponds to power concentration within the desired
mainlobe region, while the denominator integrates total
power over the total spatial region. The goal is to maximize
J, analogous to maximizing spectral energy in a band in
the classical Slepian problem. This leads to the following
generalized Rayleigh quotient problem:
wHAw

T = —Hipw (23)
where A and B are N x N Hermitian matrices. The elements
of A are defined as

A / / bo(Q,r)b% () drdQ, (24

Qmin

and the elements of B are given by

pmax

1/2
Byom / / b (2, 7) b, (2, 1) dr dS).
1/2 pmin

The above integrals are intractable to solve; therefore, approx-
imate expressions for computing A and B are provided in
Appendix A. The optimal weight vector w that maximizes the
concentration ratio 7 in (23) is given by the dominant gener-
alized eigenvector of the matrix pair (A, B) [10]. Specifically,
it is the eigenvector associated with the largest generalized

(25)

Ix denotes conjugate operation.

eigenvalue ), satisfying the generalized eigenvalue problem
Aw = ABw. (26)

When both A and B are Hermitian and B is positive definite, all
generalized eigenvalues A\ are real. Moreover, the eigenvectors
{v;} are mutually orthogonal under the inner product induced
by B

viBv, =0, i . (27)
The magnitude of the n™ eigenvalue ), quantifies the energy
concentration of the corresponding eigenvector v,,. Therefore,
the optimal tapering window is selected as the eigenvector

corresponding to the largest eigenvalue
(28)

where |vi,.x| denotes the magnitude of the dominant eigen-
vector. Note that the eigenvectors of the conventional Slepian
sequence are real and mutually orthogonal. In contrast, in our
case, the eigenvectors may be complex and are orthogonal with
respect to the inner product defined by B.
V. SIMULATION RESULTS

We consider a 128-element ULA operating at 15 GHz, with
the NF beam focused at a range of r, = {f3 and an angle
of 8, = 0. The NF array response vector is tapered using
six window functions: the uniform window (no tapering), the
conventional Hamming window, the NF-Hamming window
derived from (18), and three variants of the proposed Slepian
window. In the Slepian window design, the mainlobe limits act
as tunable parameters that are adjusted to achieve the desired
balance between ASL and LSL. In the Slepian-1 configuration,
the angular (Qin, Qmax) and range limits (ri®,  poax) of
the mainlobe in (24) correspond to the 3 dB beamwidth and
beamdepth obtained from (11), (15), and (16) respectively. In
Slepian-2, the 3 dB beamwidth and beamdepth are enlarged by
factors of 5 and 50, respectively, whereas in Slepian-3, these
factors are further increased to 10 and 100.

As illustrated in Fig. 3, the Slepian-1 design exhibits behavior
similar to the uniform window, as it is explicitly constructed to
emulate its characteristics. The Slepian-2 configuration achieves
ASL and LSL suppression levels comparable to those of the NF-
Hamming and Hamming windows, respectively. The Slepian-
3 window, however, surpasses both the Hamming and NF-
Hamming benchmarks in overall performance.

To quantitatively substantiate these observations, Table II
summarizes the PSLL and ISLL across both range and
angular domains. The conventional Hamming window attains
—33.17dB LSL suppression but substantially degrades the
axial response. Moreover, due to the absence of distinct nulls,
identifying the PSLL becomes challenging. It is also noteworthy
that other classical windows exhibit similar degradation in ASL
suppression; hence, the Hamming window is selected here
as a representative case. The NF-Hamming window provides
—12.59dB ASL suppression, while the LSLs rise to —3.73 dB.
Its ISLL value of 2.97 dB further indicates that a considerable
portion of the beam energy leaks into the sidelobes rather than
remaining confined within the mainlobe.

Both the Slepian-2 and Slepian-3 designs achieve concurrent
suppression of ASLs and LSLs. Specifically, the Slepian-2
window performs comparably to the Hamming window in

W = |Vmax| 3
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Fig. 3: Comparison of different windows in suppressing (a) ASLs in
the range domain and (b) LSLs in the angular domain.

the angular domain and to the NF-Hamming window in the
range domain. In terms of PSLL, it offers 5dB lower LSL
suppression than the Hamming window and 0.27dB lower
ASL suppression compared to the NF-Hamming window. The
Slepian-3 configuration further enhances the performance of
Slepian-2, providing 4.47dB higher LSL suppression than
the Hamming window and 6.58 dB greater ASL suppression
relative to the NF-Hamming. The superior performance of
Slepian-3 over Slepian-2, however, comes at the expense of
increased beamwidth and beamdepth. This intrinsic trade-off
between SLL suppression and mainlobe broadening is clearly
reflected in Table II. Overall, the proposed Slepian-based tapers
achieve a favorable balance by concentrating energy within
the mainlobe while effectively suppressing sidelobes in both
range and angular dimensions. Moreover, SLL attenuation
in a specific domain can be flexibly tuned by adjusting the
corresponding mainlobe boundaries, as demonstrated by the
Slepian-2 and Slepian-3 designs.

VI. CONCLUSION
In this paper, we have proposed a Slepian-based amplitude
tapering window to suppress ASLs and LSLs of the NF beam
pattern. The proposed design maximizes energy concentration
within the mainlobe to reduce the SLLs. Simulation results
demonstrate that the proposed window effectively suppresses
both ASLs and LSLs by adjusting the mainlobe limits. Future
work includes exploring density-based array thinning strategies
utilizing the proposed Slepian taper.
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APPENDIX
2
Define A=m—n, X =m+n, a:d— 8 = 2. Then,
we simplify (24) based on (21) and above deﬁnmons
Omax panax )
An = / e]27‘rAQ/ e]27r—(BQ 704) dr dQ
Qmin Tsnin
Qmax . . C(Q) C Q T‘(I)nalx
(@ / eIImAs [7”6]T —jC(Q) Ei(ji( ))] dQ,
Qmin T min

where C(Q2) = 2rAX(BQ* — o), and Ei(-) denotes the
exponential integral function. Step (a) follows by applying
the identity [ e7 Sdr=relt —C Ei ]%) The exponential
integral term arises due to the nonlinear coupling between r
and 2, making a closed-form evaluation of the double integral
intractable.

Instead we approximate A,, ,, numerically by computing
Riemann sum over the angular parameter (2 and the range
parameter 7 on the grid points (£2;,7;) within the concentration
region defined by ©; € [Qmin, Qmax)] and 7; € [rMin, pmax],
The summation uses Ng samples along the angular (£2) axis
and NNV, samples along the range (r) axis.

No Nr

A =3 > b(Qiy15) U5, (i, 15) AQAF

i=1j=1

(29)

where A2 and Ar denote the angular and range step sizes.
Likewise, B,, ,, can be computed from (29) , where the
angle-range grid now spans the entire NF as defined in (25).
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