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Abstract

The human visual system can effectively sense optical information through the retina and process
it at the visual cortex. Compared with conventional machine vision, it demonstrates superiority in
terms of energy efficiency, adaptability, and accuracy. The retina-inspired machine vision systems
can process information near or within the sensors at the front end, thereby compressing the raw
sensory data and optimising the input to back-end processor for high-level computing tasks. In
recent years, amid surge of interest in artificial intelligence technology, research in retinomorphic
devices has achieved breakthroughs in both academic and industrial settings. Herein, we present

a comprehensive review of this emerging field -based on several materials classes, such as halide
perovskites, two-dimensional materials, organic materials and metal oxides. We discuss the steps
taken towards achieving not only static pattern recognition, but also dynamic motion tracking and
we identify the key challenges that need to be addressed by the community to push this technology
forward.

1. Introduction

The term ‘retinomorphic’ is derived from the biological retina, the light-sensitive layer at the back of
the human eye responsible for converting light into neural signals. In the context of optoelectronics
and neuromorphic engineering, retinomorphic devices are engineered systems that mimic the structure
and/or functionalities of the biological retina. The latter serves as an exemplary model for creating effi-
cient, low-power, and high-speed optoelectronic systems.

Retinomorphic devices aim to replicate the retina’s ability to receive and transduce visual information
in a highly efficient and parallel manner. The genesis of retinomorphic devices can be tracked back to
the early explorations in neuromorphic engineering in the late 1980s. The first attempts at incorporat-
ing retinal functions into analogue silicon circuits were centred on the work led by Carver Mead [1-3],
whose group established and fabricated motion detecting circuits using principles found in the human
eye, such as the centre-surround spatial derivative mechanism. Later, implementations based on silicon
intended for image recognition [4], edge detection [5], image Boolean processing [6], and local adapta-
tion to varied background intensity [7, 8] have been studied in both device and system architectures as
well as in algorithmic approaches.

In the era of big data, the massive influx of information and increasingly complex external envir-
onments demand more advanced multi-functional artificial intelligence (AI) chips. Since visual percep-
tion plays a key role in gathering environmental information, there is a growing need for devices that
can sense, store, and process visual data with higher speed, greater efficiency, and reduced power con-
sumption. While traditional machine vision technology has significantly impacted various aspects of
human life, such as industrial automation of parts inspection and assembly, it is becoming increasingly
inadequate for more complex tasks, like real-time object recognition and fast decision-making that is
required in autonomous vehicles, due to limitations in current computing architectures, known as the
von Neumann bottleneck. As a result, developing smarter machine vision technologies to meet today’s

© 2025 The Author(s). Published by IOP Publishing Ltd
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evolving demands has become a crucial area of innovation in the post-Moore’s Law era [9]. Meanwhile,
the evolution of retinomorphic devices has been significantly influenced by advancements in mater-

ials science, particularly through the development of novel semiconductors, memristive devices, and
nanostructured components [10—-12]. In this review, we will summarise recent developments with novel
device architectures and materials classes other than silicon that are attractive for this emerging applica-
tion field.

2. Biological principles

The human eye, a miracle of nature’s engineering, exhibits remarkable capability that surpasses cur-
rent technological counterparts in several aspects. The primary functions of the human visual system
can be categorised into two aspects: image perception and pre-processing, which occur in the eye, and
recognition and memory processing, which take place in the cerebral cortex’s visual centre [13]. Its abil-
ity to process vast amounts of visual information with minimal energy consumption, adapt to vary-

ing light conditions, and perform real-time image processing are key features that inspire technological
innovation [14].

2.1. The function of the biological retina

Light from the environment, including that reflected from external objects, enters the eye through the
pupil and passes through the crystalline lens, where it is refracted before reaching the retina. The retina
has the remarkable ability to convert light stimuli into electrical signals, which forms the basis for visual
perception in living organisms. This process is highly efficient due to the optically superior and structur-
ally compact design of the natural vision system. Key attributes of this system include high sensitivity,
high resolution, a wide field of view, and a broad colour gamut [15]. Its superiority roots on the various
cells that compose the retina, each contributing uniquely to the perception, processing and transmission
of visual information [15-18]. Understanding these functionalities of retina cells is of prime importance
for designing retinomorphic devices that accurately emulate biological vision. The retina itself has a well-
defined hierarchical structure, which consists of five main types of cells, namely photoreceptors, hori-
zontal, bipolar, amacrine, and ganglion cells, as shown in figure 1(A).

(a) There are two types of photoreceptors, i.e. rods, and cones (figure 1(B)). Rods are specialised for
low-light (scotopic) vision and essential for night vision and peripheral vision. Rods have high
sensitivity to light but do not contribute to colour perception. Cones are responsible for colour
vision and visual acuity, and function optimally in bright light conditions (photopic). There are
three types of cones, each sensitive to different wavelength, corresponding to red, green, and blue
light.

(b) Bipolar cells serve as intermediates between photoreceptors and ganglion cells. They receive input
from multiple photoreceptors and transmit the processed signals to ganglion cells, playing a crucial
role in signal amplification and integration.

(c) Amacrine and horizontal cells are laterally intensive interneurons in the inner and outer retina,
respectively. General functions attributed to amacrine cells include surround inhibition, some forms
of adaptation, signal averaging, and noise reduction [19, 20], while, horizontal cells are believed to
be responsible for perceiving the low-contrast details under bright light [21]. Through regulation of
amacrine cells, redundant and unstructured data are filtered out, leaving only the refined visual data
being transmitted [18].

(d) Ganglion cells are the final output neurons of the retina, whose axons form the fibres of the optic
nerve. They receive input from bipolar and amacrine cells and transmit visual information to the
brain via the optic nerve. Ganglion cells are responsible for encoding information regarding light
intensity, colour, motion, and central-surround contrast [13].

Recent research has revealed a greater diversity of retinal cell types and subtypes than previously
understood, with many of their distinct roles and functionality still under investigation [24]. However,
there is a consensus on some fundamental roles they play in visual processing. The principal functional
categories of retinal cells can be summarised as follows [25]:

(a) Sensitivity to light transients: Certain retinal cells are highly responsive to transient changes in light
intensity. This transient sensitivity enables quick visual detection, contributing to motion perception
and alerting the visual system to dynamic changes in the environment.
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Figure 1. (A) Schematic diagram of the retinal circuit. Reproduced from [22]. CC BY 4.0. (B) The retina adapts to different illu-
mination intensities through photoreceptors (including cones and rods) and horizontal cells. The objects under extreme light
conditions can be well perceived for accurate representation by visual adaptation. Reproduced from [23], with permission from
Springer Nature.

(b) Adaptability to sustained luminance: Other retinal cells are adaptive to sustained levels of ambient
luminance, or ongoing light intensity. These cells help regulate visual responses based on
background light levels, adapting the sensitivity of other retinal neurons accordingly.

(c) Sensitivity to direction of motion: Some retinal cells, particularly certain types of ganglion cells, are
specialised in detecting the direction of motion. These directionally selective cells respond
preferentially to movement in specific directions across the retina, providing the brain with
important information about the trajectory of moving objects.

(d) Sensitivity to spatial contrast (centre-surround antagonism): A key aspect of retinal processing is
spatial contrast sensitivity, which arises from the centre-surround antagonistic organisation of
receptive fields in the retina. This arrangement enables the detection of edges, borders, and fine
details within the visual scene by highlighting contrasts between light and dark regions.

2.2. Biomimetic imager
Inspired by the optical sophistication of biological eyes, researchers have been developing artificial sys-
tems that replicate these essential sensing functions by achieving innovations in imaging optics, bioin-
spired lenses, light filtering components, and adjustable apertures. In retinomorphic devices, emulation
of these functionalities involves replicating the processes of signal detection, processing, and transmis-
sion. Photoreceptors are typically emulated by photodetectors, bipolar cells by signal amplifiers or integ-
rators, and ganglion cells by output transducers or neural interfaces. Advanced and emerging retino-
morphic systems also strive to incorporate lateral and feedback mechanisms analogous to horizontal and
amacrine cells to extend image processing and computing capabilities, such as edge detection, motion
sensing and pattern recognition. Despite these advances, challenges remain, particularly in replicating
the full range of the biological eye’s capabilities, such as its seamless adaptability and durability [26-32].
Together with the development of optical/photonic fabrication techniques, it is expected that tailored
optical components in artificial vision systems will enable efficient future machine vision.

In this review, we focus on the advancements made in image processing and computation tasks
rather than sensing.
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3. Retinomorphic optoelectronic devices for machine vision

The study of the retina has inspired the development of advanced machine vision that mimics the
human visual system with the aim to combine functions, including imaging, processing, and visual
information storing in a way that responds quickly to complex environments [33-38]. The novel retino-
morphic systems exhibit obvious performance improvement compared with traditional complementary
metal-oxide—semiconductor (CMOS)-based machine vision systems [39].

The pre-processing occurring at the retina reduces the burden on the brain’s visual cortex and
accelerates cognitive processes [17]. Depending on whether the image sensors can perform in-situ pre-
processing or not, retinomorphic vision systems can be divided into two types: homogeneous and het-
erogeneous, respectively (figure 2).

In the heterogeneous configuration, the image sensors are only responsible for sensing and the visual
information obtained by them is further transmitted to processing units. In some contexts, peripheral
control units are also needed to change the sensors’ states and output in a predefined way to achieve
pre-processing [5, 40]. The processing units could be near-sensor or peripheral, executing specific signal
pre-processing (data compressing and filtering, local gain adaptation) to mimic retina’s functionality. A
more ambitious attempt is to integrate an artificial neural network (ANN) hardware that reproduces the
ability of visual cortex to perform image recognition and objects tracking. The heterogeneous architec-
ture is advantageous for tasks requiring high adaptability and cognitive functions, as it separates the data
acquisition and processing phases, allowing each component to specialise in its respective functions [41].
One direction of research focus of heterogeneous integration is on the design of peripheral computing
units, aiming at both hardware and algorithmic innovations. Another approach is to develop near-sensor
monolithic devices that offer first-stage processing of the signal received from sensor, such as compress-
ing, filtering and storing, leveraging the unique analogue non-linearity of emerging materials or device
architectures [42].

A homogeneous system integrates pre-processing capabilities directly within the image sensors. This
integration can lead to faster processing, and reduced latency, since initial data processing is performed
in-situ. In addition, by removing near-sensor/peripheral processing units, this integration could be more
energy efficient and compact. Integrating computing capabilities with sensors demands careful design,
considering the sensors’ dynamics. As the computing process unfolds, the states of the sensors may
change, affecting their ability to accurately sense the environment. This dynamic interplay requires a
sophisticated approach to ensure that the sensing and computing work in harmony. Successful integra-
tion means designing systems that can adapt to these changes without compromising performance or
efficiency.

It is important to note that the proposed classification framework is not rigid and may not be uni-
versally applicable to all device configurations. For instance, consider a sensor that is electrically connec-
ted to and physically proximal to a memristive device [43]. Such memristive devices, which may be as
simple as a capacitor or a memristor, together with the sensors appearing as one integration, present an
interesting classification challenge. The distinction is intuitive and context-dependent, often influenced
by the specific architectural and functional relationships between the components. In this study, for con-
sistency and clarity, we classify such configurations as heterogeneous integration.

It should be also noted, that retinomorphic devices, in a broader sense, include any hardware imple-
mentation inspired by the principles of retinomorphic signal processing. These devices are not limited
to incorporating photo-sensors specifically. Instead, they focus on the processing of spatial and temporal
sensory information, which can extend beyond just visual data [3, 38, 44-47]. As such, these devices can
handle various types of information, improving their versatility and application scope. This approach
allows for innovative uses in fields where diverse sensory inputs must be processed efficiently, leveraging
the retinomorphic paradigm beyond traditional visual systems.

3.1. Heterogeneous integration

The implementation of vision system at its early stage was mostly based on the heterogeneous paradigm
incorporating silicon-based technologies fabricated with CMOS techniques [7, 8, 48-50]. The pioneering
works by the Mead lab focused on the design of dynamically configurable analogue circuits together with
photosensors, particularly suitable for retinomorphic computing [7, 8, 48, 51]. The active elements were
constructed with numerous transistors and resistors that receive signal from and send feedback to the
sensors. These systems were more sensitive to either temporal or spatial changes than the constant back-
ground and introduced the address-event-representation (AER) communication protocol. By enhancing
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Figure 2. Schematic of homogeneous and heterogeneous configurations. In the homogeneous configuration, both light signal
sensing and the first stage of processing occur within the sensors through the state switching of the sensors themselves. In the
heterogeneous configuration, sensors are solely dedicated to sensing and outputting data to processing units, which could be
simple circuits located near the sensors or peripheral processing units. The processing performed in both configurations typ-
ically encompasses a range of operations, including sensing adaptation, image convolution tasks, such as noise removal and
edge enhancement, as well as image storage. These processes serve to compress the raw sensory data and extract critical features,
thereby optimising the input for subsequent stages of post-processing.

features at finer spatial and temporal scale, facial recognition was made easier [52] and provided spati-
otemporal reference for motion tracking. These systems, thus, represented an early step in creating more
sophisticated image processing technologies, mimicking the biological retina.

Another type of retinomorphic system was developed in the early nineties by Lange et al [5], which
consisted of a 64 X 64 array of photodiodes and a peripheral control unit. By sending binary voltages
to each row, the control unit manipulated the photodiodes in the same row to exhibit either positive
or negative photosensitivity. This adaptability was crucial for implementing simple convolution kernels,
which are fundamental operations in image processing. When combined with a neural network, com-
plex tasks, such as image compression and character recognition, can be effectively executed. Unlike the
pioneering work of Mead, where near-sensor adaptive circuitry played a central role, system’s design
shifts the emphasis towards algorithmic innovation and neural network integration rather than hard-
ware adaptability near the sensor. Although the neural network model in most studies was implemented
through a standard computer (i.e. based on the von Neumann architecture), rather than a hardware-
based neuromorphic processor, at present efforts to merge retinomorphic sensors with neuromorphic
processors have been persistent. This persistence is unsurprising, given the growing interest in neur-
omorphic computing.

Neuromorphic computing, inspired by breakthroughs in neuroscience, represents a revolutionary
computational paradigm that emulates the structural and functional properties of neural circuits in the
brain. This approach seeks to replicate the brain’s efficiency, adaptability, and parallel processing capab-
ilities, promising a solution to the memory-computation bottleneck found in traditional von Neumann
architectures [3, 10, 53]. Neuromorphic devices have already demonstrated remarkable potential, partic-
ularly in terms of energy efficiency. In conventional computing systems, a substantial amount of energy
is consumed by the transfer of redundant data between sensors, memory, and processors. Neuromorphic
devices, by performing front-end pre-processing of raw data, inherently reduce these energy costs. Yao
et al for example, showed that electronic synapses could operate with 1000 times less energy than an
Intel Xeon Phi processor, while performing similar facial recognition tasks [39].
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for processing. Each SNN core can be simply considered as a spiking convolution layer with an integrated pooling layer. (I)
Asynchronous event-driven convolution. Reproduced from [57]. CC BY 4.0.

A heterogeneous architecture that integrates sensors with neuromorphic devices has emerged as a sig-
nificant approach for enhancing the efficiency of visual information processing. This integration has the
potential to optimise system performance and reduce latency and energy consumption [43, 54-56]. With
the progression of neuromorphic hardware, a hardware implementation of a comprehensive sensing-
processing-learning-actuating system, known as CAVIAR, was demonstrated in 2009 [50]. The CAVIAR
system incorporates a sensor array, convolution chips, and neural network chips to create a complete
machine vision system. With 45 000 neurons and 5 million synapses, the system can perform approxim-
ately 12 billion synaptic operations per second, demonstrating the potential of neuromorphic hardware
to revolutionise real-time image processing and computational efficiency in machine vision applications.

The latest breakthrough is a sensing-computing neuromorphic system on chip (SoC) known as
‘Speck’ (figure 3), which was developed by SynSense Corporation in 2024 [57]. Speck is claiming to be
the world’s first fully event-driven neuromorphic vision SoC using the dynamic vision sensing and the
spiking neural network (SNN) technology. It integrates a 128 x 128 dynamic vision sensor (DVS) array
with asynchronous neuromorphic chip (over 330 000 neurons) all on a die of 6.1 x 4.9 mm, using a
65 nm low-power COMS logic process. Furthermore, it comprises an attention-based dynamic com-
puting framework, which can assist SNN in discriminative regulation of power consumption based on
the importance of input. The high integration intensity and new attention-based framework cut the
energy consumption to ultra-low levels, with resting power 0.42 mW and real time power less than
5 mW, while maintaining the 0.1 ms latency and high accuracy. For comparison, thousands of times
more power (30 W) is needed to achieve same accuracy for the same gesture recognition task performed
with same model deployed on general GPUs. Speck represents a notable step toward energy-efficient,
dynamic neuromorphic computing, offering a strong foundation for future research and integration into
real-world machine vision systems.
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3.2. Homogeneous integration

Homogeneous integration refers to a single device designed to exhibit multiple functions, such as image
perception, storage, and pre-processing. It switches between different operating modes or states to
perform different tasks. The switching could be triggered passively by the signal it is receiving or actively
by using control units. Upon embedding functionalities within the sensors, homogeneous systems can
efficiently handle tasks, for instance, image memorisation [43], light intensity adaptation [41, 58], edge
detection [59], and colour recognition [34].

The key to enable the in-sensor computing is to have configurable and readable states that can be
retained. The states’ control spans over electric, optic, magnetic, spintronic and ionic. So far, many
reports have been published about monolithic optoelectronic devices, which demonstrated switching of
the optically activated states, mimicking sensory plasticity of the biologic visual system. Most of them
have shown the capability of memory with different retention times ranging from milliseconds [60] to
millions of seconds [61], corresponding to short-term and long-term plasticity.

The optical switching has been investigated and applied to memory devices for decades. In 1971,
Frohman [62] invented the erasable programmable read-only memory (EPROM), which was the first
non-volatile semiconductor memory that was both erasable and reprogrammable, as its name implies,
with erasing in EPROM relying on photoelectric effect from UV exposure. Both optical erasing and writ-
ing has been attempted in optoelectronic memory devices, with Samori et al introducing in 2017 a non-
volatile optical thin-film transistor (TFT) device, capable of achieving over 256 distinct memory states
and all-optically controllable writing and erasing [61, 63].

The development of homogeneous integration has been extensively reported in the literature. These
devices leverage intrinsic working principles that define their unique architectures and functionalities,
often leading to significant variability and complexity. Depending on the predominant working prin-
ciple, reported studies include phase-change materials, photochromic mechanisms, ferroelectric effects,
charge trapping, photo-electrochemical processes, and photo-capacitive effects. Notably, the boundaries
between these mechanisms are not strictly defined, with some overlaps occurring, for instance, between
phase-change and ferroelectric materials, and between photochromic and photo-electrochemical switch-
ing. Furthermore, certain devices integrate multiple mechanisms to enhance performance and efficiency
[64]. Representative examples of devices operating under these mechanisms are shown in table 1.

Phase-change material-based memory relies on materials, such as chalcogenide glasses and metal
dichalcogenides, utilising reversible phase transitions between amorphous and crystalline states to store
information. These transitions occur on sub-nanosecond timescales, offering compatibility and flexibility
for optoelectronic applications [78—80]. While most studies emphasise optical properties, such as refract-
ive index variations, for photonic memory devices, some studies have also explored resistance transitions
during phase changes, broadening the scope of their applicability [65].

Ferroelectric-based devices utilise polarisation switching and have long been studied for their elec-
trical manipulation capabilities. More recently, the dual optical and electrical control of resistance states
has emerged as a critical topic of interest for retinomorphic applications. Two primary device types
dominate this field: ferroelectric tunnel junctions (FTJs) and ferroelectric TFTs. Optical control of res-
istance states in FTJs has been proposed as a highly energy-efficient and ultrafast process, with sub-
nanosecond response times [81]. In both types of devices, polarisation can be modulated through photo-
excited charge and electric field redistribution, stemming either from the absorption properties of fer-
roelectric materials themselves, such as a-In,Se; [41] or BaTiOs; [64], or via photosensitive materials in
their vicinity [68, 70, 82].

Photochromic materials have traditionally been explored for their optical memory and switching
capabilities [83, 84]. Recent research has expanded to investigate their electrical properties [85, 86].
Upon light stimulation, the energetic transitions of photochromic materials can alter overall resist-
ance states when blended with organic semiconductors. For instance, in systems comprising diary-
lethene (DAE) and poly(3-hexylthiophene) (P3HT), the photo-transition between DAE isomers shifts
the HOMO energy level within or outside the P3HT bandgap, creating trapping centres and yielding
high-resistance states [61, 63]. A key advantage of photochromic materials is their optically reversible
transitions, which can be controlled entirely by optical stimuli, facilitating optical writing and erasing for
retinomorphic applications [87, 88].

Photo-electrochemical devices leverage photon-mediated electrochemical reactions, for instance, dop-
ing processes in P3HT [74-76], or silver conductive filament formation [73]. Some devices exhibit func-
tional similarities to biological neurons due to their electronic and ionic interactions within electrolytic
environments, making them particularly suited for neuromorphic applications.

Charge trapping mechanisms, commonly utilised in floating-gate transistors, have also been adapted
for retinomorphic devices. In such devices, charges injected into a trapping layer, tunnelling through

7



Table 1. Representative examples of retinomorphic devices as per their operating hboxmechanism.

Mechanism Device structure Device type Modulation control Year References
Phase Change ITO/Ge;Sb,Tes (GST)/ ITO MIM? Voltage: Refractive index, conductance 2014 [65]
Ge,Sb,Tes (GST) MIM Voltage: Refractive index, conductance 2018 [66]
Ge,Sb,Tes (GST) MIM on Metal Heater Voltage: Refractive index 2021 [67]
Ferroelectric P(VDF-TrFE)/Al,O3/AZTO Transistor Voltage: Transconductance 2010 [68]
MoS; /BaTiOs/ SrRuOs3 Diode Light & voltage: Polarisation 2018 [69]
STO/Lay/3Sr1;3MnQO3/ BaTiO3/Pt MIM Light: Conductance 2021 [64]
o-Iny Ses Transistor Light: Transconductance 2022 [41]
PMMA/Cs-BTBT /P(VDF-TrFE) Transistor Light: Transconductance 2024 [70]
Charge Trapping P3HT:PCBM/PVCN/PDPP3T:PCBM/PVA Transistor Voltage & light: Photoresponsivity 2021 [58]
Ti-Au/ZrO,/TiN/HZO/TiN/Si Transistor Light: Photoresponsivity 2022 [71]
Al,O3/Pt/Al,O3/WSe; Transistor & Diode Voltage & light: D-S Conductance, photoresponsivity 2024 [72]
Photo-electrochemical Ag/ CsPb,Brs/PVA/FTO MIM Voltage & light: Conductance 2021 [73]
azo-tz-PEDOT:PSS/PBS ECT® Light: D-S Conductance, absorptance 2023 [74]
P3HT:PCBM/PEGDA:HMP ECT Voltage & light: D-S Conductance 2023 [75]
PEDOT:PSS/Dyes :Bi,S3 ECT Light: D-S conductance 2024 [76]
Photo-capacitor ITO/P3HT:PCBM/SiO,/Si Diode Light: Photoresponsivity 2021 [60]
Ag/Teflon/MoO3/CDT-TQ:PCBM/Sn0O,/ITO Diode Light: Photoresponsivity 2023 [77]
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b ECT: Electrochemical transistors
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a dielectric, remain trapped. Retinomorphic phototransistors extend this architecture by introducing a
photosensitive layer between the gate electrode and the trapping layer. Under illumination, photoexcited
charges diffuse to the trapping layer and remain trapped, analogous to applying a gate voltage [71, 72].
This architecture also demonstrates photo-capacitive effects due to the existence of dielectric layer [58].

Finally, the photo-capacitive effect has gained attention for its value in retinomorphic applications
despite its characteristic slow response time for sensing. The memory retention time in photo-capacitive
devices is short but recent studies emphasise its potential in event-triggered sensing, broadening its
applicability in functional retinomorphic systems [60, 77].

To explore their full potential as first stage processing unit of a vision system, the integration of
sensing arrays with neuromorphic computing units is usually needed to complete some complex tasks,
such as pattern recognition and motion tracking. Considering the complexity of scaling up, a small
size array of devices is fabricated, or sometimes simulated, based on single device characterisation to
serve as a proof of concept. In the study by Park et al an ANN was constructed whose 784 synaptic
weight connections were simulated based on a single photo-synaptic device. The Modified National
Institute of Standards and Technology (MNIST) handwriting recognition task was performed through
this ANN, and the recognition rate was found to be improved significantly from 36% to 50% or from
49% to 62%, depending on the number of weight states used in simulation (20 and 100, respectively)
[89]. In another work, Liao et al fabricated an 8 x 8 sensor array to demonstrate in-sensor scotopic
and photopic adaptations [23]. Experimental results showed enhanced image contrast and accuracy in
low (6 uW ¢cm™?) and high (60 mW cm™?) light intensity environments. With a simulated 28 x 28
sensor array connected to an ANN classifier, the recognition accuracy improved significantly from less
than 40% without adaptation, gradually with increased adaptation time to >96% [23]. The concept and
main results are presented in figure 4. This research showed the great potential of in-sensor processing in
reducing circuitry and complex algorithmic requirements compared to the heterogeneous integration.

4. Materials for retinomorphic devices

Unlike the heterogeneous integration, in which traditional materials like silicon have been dominating,
several pioneering homogeneous machine vision technologies based on emerging materials have created
breakthroughs, within which two-dimensional (2D) materials, metal halide perovskite (MHP) materials,
metal oxides and organic materials attract the most attention and will be discussed below.

4.1. Organic materials

Organic semiconductor materials have been heavily investigated and applied in various optoelectronic
areas, for example, photovoltaics, photodetectors and light emitting diodes, due to their unique advant-
ages, such as light weight, flexibility, and bandgap tunability. Organic semiconductors’ use in memory
devices has attracted particular interest for application in neuromorphic computing due to their higher
degree of biocompatibility and responsivity to analytes in biological media [90-93]. In addition, high
switching ratios [68] and low operating voltages [94] have been demonstrated, while they also offer the
possibility to be integrated onto flexible substrates [95, 96].

As discussed in previous sections, various mechanisms have been proposed in the operation of ret-
inomorphic devices and almost for each mechanism, reports of utilising organic materials could be
seen, although with varying roles in the device structure. The majority of such materials, for instance
poly(3-hexylthiophene) (P3HT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT),
have been successfully employed in organic phototransistors [25, 70]. Organic ferroelectric mater-
ials, such as polyvinylidene fluoride (PVDF) [82], and electrochemical materials, such as poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) [76], have been combined with other
photo-responsive materials for retinomorphic applications. The utilisation of multispectral response of
organic materials, where organic materials are only responsible for photopic sensing, is also reported for
multi-colour perception [76].

The electronic modulation of conduction states in polyethylene and polypropylene in a simple
metal-insulator-metal (MIM) configuration can be traced back to the 1970s [97-99]. The metal ions
injected into the organic films introduce impurity bands or tunnelling pathways [100]. The optical
modulation of conduction was investigated in early 2000s in systems, such as poly[2-methoxy-5-(2’-
ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) [101] and potassium tetracyanoquinodimethane
(K-TCNQ) [102], both of which are well-known for their versatile applications in the field of organic
electronics. For both materials, states switching was controlled by photochromic reactions, and syner-
gistic functions combining light sensing and switching were demonstrated.
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Figure 4. (A)—(B) Schematic of an 8 X 8 array demonstrating the in-sensor (A) scotopic and (B) photopic adaptation under
different illumination intensities. (C)—(D) Time courses of the (C) scotopic and (D) photopic adaptation of the digit ‘8’ (E)-(G)
Schematic of simulated 28 X 28 array combined with neural network. MNIST recognition accuracy improved from less than 40%
to up to >96% after adaptation. Reproduced from [23], with permission from Springer Nature.

Another champion material, P3HT, which has been playing an important role in the development
of organic photovoltaics and transistors in the last two decades [103—105], now finds its position in
retinomorphic devices technology. P3HT has high absorption coefficient, spectral response in the vis-
ible range and decent carrier mobilities. P3HT has been applied to floating-gate phototransistors [58],
photochromic transistors [61], photoelectrochemical devices [75, 96] and photodiodes [60]. A flexible,
non-volatile optical TFT device capable of achieving over 256 distinct memory states was developed
using a blend of P3HT and a well-studied photochromic molecule, namely diarylethene (DAE) [61, 63].
The device leverages reversible isomerisation of DAE molecules under UV and green light to modulate
the conductivity of the blend film, enabling multilevel data storage. In the transistor configuration, its
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states could be also modulated electrically; however, its capability for all-optical modulation, UV eras-
ing and green light writing, is apparently more impressive. The authors also demonstrated non-volatility
characteristics, with state retention times lasting over 500 d, although endurance is currently limited to
70 write-erase cycles. Interestingly, the mobility of the blend films was found to be dependent on the
ratio of the two DAE isomers (open and closed form), changing over several times continuously with
increased light dose. This work represents a good example of translating bistable molecules (DAE) into
multiple states memory devices by a simple blending strategy, and the ability to control such high num-
ber of states presents great potential for neuromorphic computing.

Another example of multiple states was reported by Mei et al in 2023, also with a simple architecture
[75]. The synaptic weight was modulated by photon mediated electrochemical doping in P3HT:phenyl-
C61-butyric acid methyl ester (PCBM) film through protons, H. Even though gate voltage domin-
ates the conductance modulation, only small bias below 1 V needs to be applied. The electrochemical
doping process mimics ion flux-driven synaptic activities seen in biological systems, allowing for effi-
cient perception, processing, and memorisation of visual information. The synaptic devices demon-
strate up to 280 distinct states with excellent reproducibility and stability over more than 10 000 cycles.
Furthermore, the devices exhibited short-term and long-term plasticity, adaptive learning, and memory
retention, proving their effectiveness in replicating human-like cognitive functions. A prototype array
with 18 000 transistors on a 2.5 x 5.0 cm? glass substrate was fabricated, showcasing excellent uniform-
ity in photonic responses. A 64 x 64 synaptic array was simulated to demonstrate the potential of these
devices in constructing artificial retinas capable of facial recognition.

In principle, a wide range of organic semiconductors can be employed in the fabrication of retino-
morphic devices, provided they are integrated within a suitably engineered device architecture. One
of the most straightforward configurations involves a transistor structure, wherein a multilayer stack
of organic materials forms the channel. Within this channel, specific layers are designated for pho-
togeneration of charge carriers, while others serve memory-related functions. For instance, Shao et al
demonstrated a retinomorphic transistor utilising poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(4-sec-
butylphenyl)diphenylamine)] (TFB) as the photosensitive layer and pentacene as the channel material
[106]. TFB exhibits strong ultraviolet (UV) absorption and contributes to charge trapping, enabling the
device to exhibit both short-term memory and long-term memory characteristics depending on the UV
exposure dose. Prolonged UV illumination leads to a diminished modulation of the device’s conduct-
ance, effectively mimicking the progressive degradation observed in retinal injury.

Similar transistor-based architectures have been explored using various organic semiconductors.
These include indacenodithiophene-benzothiadiazole (IDTBT) and poly[[N,N’-bis(2-octyldodecyl)-
naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl] -alt-5,5'-(2,2’-bithiophene)] (N2200) [107], poly[2,5-
bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) [108], and poly[9,9-dioctylfluorenyl-2,7-
diyl-co-bithiophene] (F8T2) [109].

Following the fast progress in neuromorphic computing, researchers have dedicated their efforts not
only to optoelectronic performance optimisation at the single device level, but also to the exploration
of the integration within neural networks [93]. The goal is then to achieve collaborative innovations
from image perception and storage to computing functions to develop new types of human-like vision
chips based on organic materials. In 2024, Matrone et al developed an end-to-end spiking neural path-
way with organic materials [110]. Their circuits were designed to mimic the spiking coding circuitry and
the adjustable synaptic plasticity of human nervous system (figure 5). This neuromorphic pathway, com-
bined with a photosensor, is intended to replicate the retina’s role as the initial processing stage of visual
information, thus allowing signal transmission to resume toward higher-level neural centres.

4.2. Metal oxides

Metal oxides have played a critical role in a new type of non-volatile memory devices, which can be

as fast as random-access memory (RAM) but more energy efficient, examples being ferroelectric RAM
(FeRAM) based on oxide perovskites, such as BaTiO; [64] or PbTiO3 [111], and resistive RAM (RRAM)
based on transition metal binary oxides. RRAM is a particularly attractive type of memory due to its
simple constituents, high density, low power, large endurance, fast write and read speeds and excellent
scalability. The dominant mechanisms of RRAM are ion migration and charge trapping [112]. Because
of the simplicity of the materials and good compatibility with silicon CMOS fabrication process, research
activities have been focused on binary oxides, such as NiO,, TiO,, CuO,, ZnO,, HfO,, AlO,, MoO,, to
name but a few. In 2004 Samsung demonstrated NiO memory array integrated with the 0.18 pm silicon
CMOS technology [113]. As to the retinomorphic application, neural networks based on circuits com-
bining CMOS and crossbar resistive memory with Al,O3/TiO,_, were developed for pattern recognition
in 2015, showing the great potential for scalability of metal oxide-based RRAM [114].
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Figure 5. (A) Sensory coding of light stimuli and dopamine regulated neuromodulation of human retina. (B) Schematic of mod-
ular neural pathway including a photoreceptor, spiking neuron consisting of inverter pair and a switch, and synaptic modulator
comprising a biohybrid synapse using PEDOT:PSS. (C) Sensory coding of light stimulus, showing an increasing spike frequency
with increasing light intensity and increasing output voltage of the light sensor. (D) Neuromodulation regulated by dopamine of
different concentration. Reproduced from [110]. CC BY 4.0.

For homogeneous configuration, in 2018, the research work by Sun et al introduced a photo-synaptic
device leveraging indium-gallium—zinc oxide (IGZO) and alkylated graphene oxide (GO) hybrid struc-
tures to emulate synaptic functionalities, where GO provides the trapping centres and IGZO acts as
charge transporting layer in a transistor configuration [89]. The device demonstrated key synaptic
properties, such as excitatory and inhibitory postsynaptic currents (EPSC/IPSC), short-term plasticity
(STP), and long-term potentiation/depression (LTP/LTD). By integrating light- and voltage-controlled
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weight updating mechanisms, the conductance changes (AG) under mixed light and voltage gate spikes
increased from 2.32 nS to 5.95 nS compared to voltage-only control. In ANN simulations for MNIST
recognition task, the recognition rate improved significantly from 36% to 50% for 20 weight states and
from 49% to 62% for 100 weight states, showcasing the device’s potential for efficient, low-power neur-
omorphic applications. Later in 2019, Zhou et al presented an optoelectronic RRAM (ORRAM) device
designed to emulate retinomorphic vision, integrating sensing, memory, and processing functions within
a simple two-terminal structure of Pd/MoO,/ITO [115]. The device demonstrated UV light-triggered
non-volatile resistance switching and tuneable synaptic behaviours, including short-term and long-term
plasticity. Through a combination of experimental and theoretical analyses, the authors elucidated the
mechanism underlying the low-resistance state (LRS) switching in the ORRAM device. They demon-
strated that UV light exposure induces a valence transition of Mo ions from Mot to Mo*", facilitated
by the incorporation of protons. This transition shifts the valence band and leads to the formation of a
H,MoOx conductive percolation network within the MoOx thin film. The device’s memory capabilit-
ies and nonlinear photoresponsivity enable real-time image processing tasks, including noise reduction
and contrast enhancement. Experimentally validated ORRAM arrays demonstrated robust functionalit-
ies in image sensing and contrast enhancement, while simulations of ORRAM arrays incorporated into
ANNSs revealed significantly improved image recognition accuracy and processing efficiency. This work
highlights the promising potential of ORRAM devices for neuromorphic visual systems, offering reduced
system complexity and fully light-configurable synaptic plasticity (albeit limited to potentiation).

4.3. 2D materials
2D materials are promising candidates for the retinomorphic devices because of their atomic scale thick-
ness, tunable bandgap [116], high carrier mobility [117], immunity to short channel effects [118], excel-
lent light matter interactions [119], mechanical flexibility [120], high transparency, and strong quantum
confinement [121]. The operation of a retinomorphic device includes the transformation of optical stim-
uli into electrical signals by photoconduction, photogating, and photovoltaic effect [122]. 2D materi-
als have the advantage that their persistent photoconductivity (PPC) allows the photocurrent to last
even after the light stimulus is removed. The PPC is due to a number of factors, such as defect medi-
ated carrier trapping, phase changes, ion migration and energy barriers that suppress the charge car-
rier recombination. The device resistance acts as synaptic weight, and by controlling the transport and
recombination of photogenerated carriers, the device resistance can be precisely modulated. The charge
trapping and de-trapping also has an effect on the photogenerated carriers’ transport [122, 123]. The
most common 2D materials applied for retinomorphic devices are transition metal dichalcogenides
(TMDCs) [124], MXenes [125], group IV elements, such as graphene [126, 127], and group III-V com-
pounds, such as h-BN [37], In,Se; [128] and black phosphorous (BP) [129].

Graphene has a hexagonal honeycomb lattice with single atom layer structure. It is environment-
ally stable, flexible, optically transparent, and has high carrier mobility [130]. Fu et al [126] fabricated
graphene/MoS,_ O, /graphene photo-memristor that combines the optical sensing and memory in a
single device. The device showed multistate photoresponse with tunable intensity, high endurance over
100 cycles, and state retention for more than 1000 s. It demonstrated image pre-processing (e.g. edge
detection, Gaussian blur) using photo-memristor arrays (PMAs) configured with different response states
and acted as a classifier by implementing a single-layer perceptron (SLP) to recognise patterns from
the MNIST dataset with 96.44% accuracy. Han et al [127] also fabricated a WSe, phototransistor with
graphene as asymmetric electrodes to facilitate charge transport and enhance device functionality. The
device generated a bidirectional photocurrent in response to light, regulated by the polarity of the gate
voltage. The device emulated the photoreceptor layer (light detection) and bipolar cell layer (ON/OFF
signal polarity) of the human retina and reproduced biological visual processes like motion detection
and edge enhancement. This research marks a significant step toward low-power artificial visual systems
by integration of sensing, memory, and processing into a single device.

2D hexagonal boron nitride (h-BN) also has honeycomb structure like graphene with a wide
bandgap of ~6 eV. h-BN is optically transparent and has low light absorption in the range of 250-
900 nm wavelength [131, 132]. h-BN has thickness dependent dielectric properties and its monolayer
shows a dielectric constant comparable to SiO, with a dangling bond-free surface tolerant to high
temperatures [133]. Therefore, in 2D heterogeneous structures for optoelectronic applications, it is
mostly used as a gate dielectric to suppress interface scattering and reduce fabrication induced impurities
[37].

Black phosphorus shows semiconducting properties due to its puckered honeycomb structure formed
by sp® hybridised phosphorous atoms [134]. It exhibits p-type semiconducting characteristics and has
high carrier mobility. Unlike TMDCs, BP shows direct bandgap characteristics irrespective of thickness
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Figure 6. Retina-inspired BP/Al,O3/WSe,/h-BN retinomorphic hardware for motion detection and recognition. (A)—(B) the
optical perception and response of the 2D materials replicate the signal collection and conversion of the photoreceptors. The

gate pulse-programmable positive and negative non-volatile on/off states mimic the antagonistic shunting and memory of
bipolar cells. Also, the laser pulse intensity, number and width modulation mimic the multi-signal regulation abilities of amac-
rine and ganglion cells to achieve efficient motion detection and recognition (MDR). (C) BP/Al,O3/WSe,/h-BN heterogeneous
device structure and scanning transmission electron microscope (STEM) and energy dispersive x-ray spectroscopy (EDS) ele-
mental mapping is shown with scales of 5 nm (left) and 20 nm (right), respectively. Reproduced from [37], with permission from
Springer Nature.

[135]. Lee et al [129] demonstrated a phototransistor array based on BP for multispectral infrared ima-
ging and in-sensor computing for efficient and adaptive vision in distributed environment. Ahmed et al
[136] introduced a few-layer BP based optically stimulated artificial synapses for retinotopic applications.
By using the oxidation related defects in BP, the device uses 280 nm illumination to induce the excit-
atory postsynaptic current and a 365 nm illumination to generate IPSC to replicate the light sensitive
behaviour of retinal ganglion cells.

TMDC:s are layered materials with a general formula MX,, where M denotes transition metals,
such as Mo, W, Pt, Re, and X denotes chalcogen atoms, such as S, Se, and Te. Due to its higher car-
rier mobility and optical transparency, MoS, is widely employed in optoelectronic applications [137—
139]. Zhang et al [37] presented a motion detection and recognition (MDR) unit using a retina-inspired
hardware device based on a 2D BP/Al,O3/WSe,/h-BN heterostructure (figure 6). This device integrated
optical perception, memory and computing into a single unit, enabling compact and efficient MDR sys-
tems. The device showed progressively tunable positive and negative photoconductivity to replicate the
photoreceptors, bipolar cells, amacrine and ganglions in the retina. The device supported MDR with
high accuracy and low complexity. Frame difference calculations were used to detect motion efficiently,
while the device can perform trichromatic (red, green, blue) motion separation with no ghosting.

Peng et al [72] introduced a hardware based artificial vision system that emulates the human vis-
ion system which includes the retina and visual cortex. They used 2D WSe; to replicate human vision’s
multifunctional capabilities, such as colour processing. The hardware explained the cause of red—green
colour blindness (failure in R—G pathways) and replicates this deficiency in experiments. The hardware
demonstrated how the visual pathway detects and processes shape, using double layer sparse neural net-
work with a recognition accuracy above 95%. It implements Barlow Levick model used by humans for
direction selective motion tracking in one dimension and two-dimension planes with precise timing.
This work has applications in machine vision, autonomous vehicles, brain computer interfaces, and intel-
ligent robotics. The crossbar array of 2D WSe, split-floating gate device is used for emulating the retinal
and cortical neural functions and the integration of peripheral circuits for connecting retinal functions
to cortical level processing. It worked both in photovoltaic mode, which simulates the retina by creat-
ing centre-surround receptive fields for light intensity processing, and bipolar transistor mode, which
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replicates the neural network of the visual cortex for computations like matrix multiplication. It utilised
nearly zero standby power in diode mode and less than one picojoule per operation in transistor mode.
Wu et al [140] fabricated a biomimetic tetrachromatic photoreceptor using a fully light-controlled WSe,
p-type transistor, integrating UV-—visible light detection, optical synaptic plasticity, and in-sensor pro-
cessing with lower power consumption.

Wang et al [141] presented a 2D mid-infrared optoelectronic retina that simultaneously perceive and
encode mid-infrared light stimuli into neural-like spike trains. This retinomorphic system integrates the
narrow bandgap and high mid-infrared (MIR) absorption efficiency of black arsenic-phosphorous (b-
AsP) and the near-infrared (NIR) sensitivity of MoTe, 2D van der Waals heterostructures and operates
using all optical mechanisms. In perception, the MIR light generates a photocurrent in the b-AsP/MoTe,.
While encoding, the NIR pulses modulate these photocurrents. A spike is generated when the current
surpasses a threshold, mimicking the spike-based encoding seen in biological systems. In visual adapta-
tion, the retina can handle both the high power and low power MIR targets, and the dynamic range is
tuned by changing the mean and variance of the NIR pulse distribution. This demonstrated high MIR
detectivity and a fast NIR photo-response time of 600 ns. The SNN achieved excellent accuracy of 96%
for image classification tasks, proving the efficiency of the encoded spike data.

Li et al [128] developed a 2D ferroelectric field effect transistor (Fe-FET) retinomorphic sensor that
combines perception memory and computation for ANNs. Their work addressed the limitations of
existing 2D materials by introducing a new gate dielectric In,Se;_,Oy, formed via oxygen plasma treat-
ment, while a few layered MoSe; is used as the photosensitive channel material. The device exhibits high
responsivity (2.4 A W™1), fast response (<20 ms), and achieved 87.9% accuracy in handwritten digit
recognition (MNIST dataset). Other commonly used TMDCs for retinomorphic design includes PtSe,
[142], PtTe, [139], and ReS, [143, 144].

MZXenes are transition-metal carbides, nitrides, and carbonitrides, derived from MAX phase precurs-
ors through selective chemical etching. They are layered structures offering high electrical conductivity
and tunable work function by adjusting the surface functional group [145, 146]. Zhao et al [125] fab-
ricated a bioinspired photoelectric artificial synaptic transistor using 2D Ti;C, T, MXenes as a floating
gate, TiO, as tunnelling layer and zinc tin oxide (ZnSnO) as n-type channel material to mimic biological
synaptic behaviour for neuromorphic applications. The device responds to UV light stimulation [125].

4.4. Metal halide perovskites

Metal halide perovskite (MHP) materials have been explored as promising candidates for a variety of
optoelectronic devices, such as solar cells [147], light-emitting diodes (LEDs) [148], memristors [149]
and photodetectors [150]. MHP materials have unique optoelectronic properties, such as long carrier
diffusion length [151], low defect density [152], high absorption coefficient [153], high mobility [154],
small exciton binding energy [155], and tuneable bandgap [156]. Moreover, owing to the excellent device
efficiency and versatile processability (solution deposition) [157, 158], MHPs have established themselves
as the next generation of high-performance semiconductors in the past decade.

In contrast to conventional inorganic semiconductors like metal oxides, MHPs exhibit good ionic
conductivity derived from their soft lattice and dynamically disordered crystal structure [147, 157]. Slow
moving ionic migration has been postulated as the underlying mechanism for anomalous hysteresis
behaviour in perovskite solar cells. The ionic conductivity can be detrimental in applications areas, such
as photovoltaics [159], LEDs [160], and photodetectors, but such behaviour is promising for machine
vision systems [161].

Traditional silicon-based photoelectric sensors, due to their fixed photosensitivity, struggle to deliver
high-precision imaging under extreme lighting conditions, such as overly bright or dim environments
[162]. To address this limitation, Chen efal [163] developed a self-adaptive retinomorphic system based
on ternary cation CsgosFAg g1 MAg14Pbl;55Brg45 (CsSFAMA) lead (Pb) halide perovskite. This system
integrates ‘sensor-memory-processor’ functionalities in a single device and enables optimised imaging
quality. Both light exposure and electric bias can tune the device’s responsivity, a result of ion migration
within the perovskite layer. Furthermore, a multilayer perceptron neural network (PNN) was employed
for real-time computational tasks. The perovskite memristor effectively filters background noise, allowing
overexposed images of objects like aircraft, vehicles, and birds (which share similar morphological fea-
tures) to be distinguished with an accuracy improvement of up to 263% after 4.2 s of adaptation time.
However, these results, including the device’s multiply-accumulate operations and neuromorphic com-
puting capabilities, were obtained through simulations, emphasising the need for experimental verifica-
tion with real device arrays before practical implementation.
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To explore large-scale integration prospects, Zhu et al [164] introduced a flexible 32 x 32 sensor
array and its functional demonstration in a retinomorphic system. The array consists of phototran-
sistors with a buried-gate structure, where the channel consists of high-purity semiconducting carbon
nanotubes (CNTs) and perovskite CsPbBr; quantum dots (QDs) that act as active materials for elec-
trical transport and photon absorption, respectively. This device combines photodetection and synaptic
functions, showcasing both high responsivity and the ability to regulate synaptic plasticity. The array
exhibited excellent uniformity and high image sensing quality, mimicking human vision by reinforcing
familiar patterns with repeated exposure. Simulations confirmed enhanced learning of facial features with
increased training pulses, achieving 95% accuracy after 200 pulses. While reinforcement learning is a key
brain-like function, the ability to forget is equally vital. Investigating how electrical/optical pulses can
gradually weaken stored signals at the hardware level remains an important area for future research.

Ng et al [34] presented a retinomorphic colour perception system, leveraging perovskite bipolar pho-
todetectors to achieve efficient and biologically relevant colour processing. Using a p—i—n—i—p device
architecture, employing red—green opponent photodetector (RT™G™), FAPbBr; (2.2 eV bandgap) per-
ovskite is used as a green absorber, while MAPbI; (1.5 eV bandgap) perovskite is employed as a red
absorber, as shown in figure 7. These channels replicate the retina’s centre-surround antagonistic pro-
cessing, enabling effective colour differentiation and compression of visual data. This design reduces data
transmission requirements by 33% compared to traditional RGB systems, while maintaining minimal
loss of colour fidelity. The device’s capability extends to high-contrast edge detection and in-sensor con-
volution by employing interchangeable filters (resembling convolution kernels). The system performs
edge detection and sharpening locally, enhancing spatial resolution and object recognition with minimal
computational overhead. A significant advancement of this system lies in its adaptive colour perception
under varying illumination conditions.

Figure 7(D) illustrates the chromatic cancellation mechanism, where the device adjusts its respons-
ivity to compensate for lighting changes, such as saturation or brightness variations. This adaptation
ensures partial colour constancy, which is critical for real-world applications like dynamic visual envir-
onments or colour-sensitive tasks in robotics and Al. Another crucial feature of this system is its self-
powered operation, enabled by the energy-harvesting properties of perovskites. This eliminates the need
for external power sources, making the device scalable and sustainable for widespread deployment. The
use of reversible, ion-mediated processes for responsivity adjustments ensures stability and reliability,
with minimal degradation over time. By combining data compression, noise filtering, and edge enhance-
ment with adaptive perception, it provides a versatile platform for applications in machine vision, neur-
omorphic computing, and advanced robotics. This pioneering technology sets a new benchmark in arti-
ficial colour vision, bridging the gap between sensing and neural-like processing.

Long et al [32] presents a new paradigm for artificial vision by integrating filter-free colour vision,
adaptive optics, and neuromorphic pre-processing into a hemispherical bionic eye. Leveraging per-
ovskite nanowires and hybrid nanostructures, the device overcomes longstanding limitations of tra-
ditional imaging systems, offering energy-efficient and accurate visual capabilities. At the core of this
innovation is the hemispherical retina composed of high-density CsPbls; perovskite nanowires, integ-
rated with SnO,/NiO double-shell nanotubes. This unique design replicates photoreceptor functionality,
while enabling wavelength-sensitive bidirectional synaptic photoresponses. The CsPbl; nanowires, with a
narrow bandgap (~1.8 eV), cover the visible spectrum, while the surrounding gate effects in the hybrid
structure differentiate between blue and red/green light based on photocurrent polarity and amplitude.
This property eliminates the need for conventional colour filters, providing a compact, efficient solution
for colour recognition. Additionally, the hemispherical geometry ensures superior optical absorption,
and a broader field-of-view (FoV) compared to planar devices. The device incorporates adaptive optical
elements, including an artificial crystalline lens and an electronic iris made from liquid crystals. These
components dynamically control focal lengths and light intensity, mimicking human eye functional-
ity. Unlike mechanical optics, the liquid crystal-based elements are faster, more compact, and energy-
efficient, enhancing the bionic eye’s versatility in imaging tasks like depth perception and 3D vision.
The adaptive optics, combined with the hemispherical retina, contribute to an impressive FoV of over
140°, surpassing the ~86° of traditional planar sensors. Under zero-bias conditions, the device generates
positive photocurrent under blue light and negative photocurrent under red/green light, distinguishing
colours based on polarity and amplitude. When external bias is applied, colour selectivity is enhanced,
enabling high-fidelity image reconstruction. Reconstructed images, processed through convolutional
neural networks (CNNs), achieve superior classification accuracy compared to conventional monochro-
matic image sensors. The system demonstrated noise filtering by enhancing contrast between target pat-
terns and noise signals, particularly in images with high Gaussian noise. The CNN-based classification of
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these processed images achieved 99.4% accuracy, compared to only 11.2% without pre-processing. This
highlights the potential of the bionic eye in handling complex visual tasks with enhanced efficiency.

Despite its advancements, challenges remain, such as scaling the device for higher resolution and
addressing slower operational speeds under blue light. Nevertheless, this study marks a significant step
towards artificial vision systems that emulate biological vision, integrating colour perception, neur-
omorphic processing, and optical adaptability into a single, compact device.

5. Motion detection with retinomorphic devices

Motion detection has long been recognised as a critical capability for retinomorphic sensors, empower-
ing devices to emulate the advanced functionalities of biological vision systems. The pioneering work of
Mead et al in the 1980s laid the groundwork for this field by implementing motion detection in retina-
inspired devices using CMOS circuitry [1-3, 165]. Conventional image sensors face significant limita-
tions rooted in their architectural design. These sensors capture visual data in discrete frames at fixed
intervals, regardless of dynamic changes in the environment. As a result, the temporal quantisation of
visual information at predefined frame rates often fails to align with real-time environmental dynam-
ics. Moreover, traditional sensors capture data from all pixels within a frame, even if many pixels record
redundant information identical to the previous frame. This redundancy not only constrains temporal
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resolution but also imposes substantial demands on data transmission and storage, highlighting the inef-
ficiencies of conventional approaches.

In contrast, biological vision systems demonstrate remarkable efficiency by dynamically responding
to events in the visual scene without reliance on fixed intervals or external control signals. The retina
processes spatiotemporal information from incident light and converts it into spike trains in particular
patterns, which are transmitted to the visual cortex. This highly evolved adaptive filtering and sampling
mechanism enhances coding efficiency and minimises data redundancy [21, 22, 166]. Inspired by these
biological systems, a frameless, event-driven imaging paradigm for artificial vision has been proposed.
This paradigm decentralises control by enabling individual pixels to autonomously capture new inform-
ation in response to changes in their immediate input. Such event-based designs offer transformative
potential for imaging, reducing data redundancy, improving compression, expanding dynamic range,
enhancing temporal resolution, and optimising power efficiency [167].

To date, significant research on event cameras has focused on spiking coding and AER communic-
ation protocols, first introduced by Boahen in 1996 [8]. Following these foundational developments,
numerous designs for event cameras have emerged, exemplified by the widely recognised DVS. Over sev-
eral generations of iteration, DVS technology has been refined and commercialised in the last decade
[168—171]. The DVS responds asynchronously and independently to intensity changes for each pixel,
producing a sequence of ‘events’ or ‘spikes’. Each event corresponds to a brightness change at a spe-
cific pixel and time, and includes polarity information (‘ON’ for positive changes, ‘OFF for negative
changes), which is transmitted through the AER bus alongside pixel coordinates (x, y) and a timestamp.
The bandwidth of the readout circuit is then critical to prevent saturation of the AER bus during
high-frequency event emissions, with readout rates ranging from 2 Meps (mega events per second)

[172] to 1300 Meps [170]. Event cameras are inherently difference-driven, with output dependence on
motion or brightness changes in the scene. Faster motion leads to higher event emission rates, with
events timestamped at microsecond resolution and transmitted with sub-millisecond latency [173].
Furthermore, the DVS exhibits high dynamic range and illumination invariance, making it particularly
suitable for motion detection. However, its inability to provide absolute intensity measurements and
static outputs limits its applicability in some scenarios.

To address these limitations, hybrid designs, such as the asynchronous time-based image sensor
(ATIS) [174] and the dynamic and active pixel vision sensor (DVAIS) [172, 175], have been developed.
The ATIS integrates a DVS subpixel with an additional subpixel to measure absolute intensity, emit-
ting events that encode the duration required for a predefined threshold of intensity change. Despite its
innovation, ATIS suffers from doubled pixel area and inaccuracies in low-light conditions due to exten-
ded durations that may be interrupted. Conversely, DVAIS combines a conventional active pixel sensor
(APS) with a DVS within the same pixel, sharing a photodiode to measure both intensity changes and
absolute values. This hybrid design offers a smaller pixel footprint and operates using both event-driven
and frame-based imaging, with APS frames triggered at fixed intervals or in response to DVS events.

The spike-based nature of event cameras requires new paradigms for information extraction and pro-
cessing. Recent efforts have focused on developing algorithms and hardware implementations to meet
these challenges. Event processing typically involves pre-processing at the sensor level, feature extraction
and analysis, and post-processing for output. SNNs, convolutional neural networks and graph neural
networks have been employed across these stages [176, 177]. Events can be transformed into various rep-
resentations based on the processing methods, with sophisticated approaches discussed extensively by
Gallego et al [173].

Event cameras are particularly advantageous for real-time applications, such as robotics, autonomous
vehicles, and wearable electronics, where they are used for object tracking, monitoring, and recognition
[178]. Additional applications include HDR image reconstruction [179], structured light 3D scanning
[180], and optical flow estimation [181]. The asynchronous, low-latency, and high-dynamic-range capab-
ilities of event cameras enable efficient motion detection and tracking. However, event-based algorithms
still lag behind frame-based methods in accuracy. Hybrid detectors, combining event- and frame-based
modalities, preserve the advantages of both, achieving high-speed tracking (e.g. 5 kHz equivalent frame
rates) with bandwidth comparable to conventional 45 fps (frame per second) cameras [35, 182, 183].

Despite these advancements, the pursuit of high-speed vision systems has also explored alternat-
ive approaches, such as photonic neural networks [184, 185]. Optical computing methods leverage the
inherently high bandwidth and computational speed of photonics, achieving end-to-end latencies in the
nanosecond range, while minimising power consumption [186—188].

Most current motion detection systems rely on heterogeneous architectures, where encoding and pro-
cessing algorithms dominate research efforts. Homogeneous architectures present a promising alternative.
One notable possibility is the development of sensors capable of generating spikes like those in event
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Figure 8. (A) The motion consists of three frames (50 ms illumination per frame) and they are played at three speeds: slow
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obtained after playing the last frame with Vi,;,s = 1.0 V. The last frame contains hidden states representing imprints of previ-
ous two frames. (C) Portion of imprints from previous frames, calculated by averaging the normalised memory of pixels. High
speed results in a stronger imprint because of the rate dependence of hidden memory states. The error bars represent the stand-
ard deviation. (D) Training and validation accuracy of the readout network. (E) Confusion matrix of motion speed recognition,
showing 100% test accuracy. (F) The system for motion prediction. X, indicates the first frame for prediction, AE is the autoen-
coder network, and Y; is the predicted output frame. (G)—(H) Prediction of an object moving to the left (G) and the right (H)
with input X;. The predicted output frame of the autoencoder is . The final output Y is obtained by applying a step function
to h. (I) Predicted position and moved distance (D) at t = 9 s following the detection of an object moving to the right at three
different speeds. Reproduced from [36]. CC BY 4.0.

cameras, but without requiring external circuitry. For instance, vertically stacking photodiode structures,
composed of photosensitive materials sandwiched between two metallic layers, function analogously to
resistor—capacitor (RC) circuits. These structures exhibit charging and discharging behaviour in response
to changes in illumination intensity [77, 189]. However, their output is inherently analogue rather than
digital (binary). The spike height represents the rate of change in intensity, making these outputs incom-
patible with AER protocols without additional analogue-to-digital converter. Nevertheless, the analogue
output of these sensors offers a wealth of rich information, making them well-suited for analogue com-
puting approaches, such as reservoir computing [190].

Originally conceived as a framework of recurrent neural networks (RNNs), reservoir computing
is particularly proficient at processing temporal and sequential information. The nonlinear dynamic
response of such sensors, driven by the evolving states during sensing, positions them as natural candid-
ates for use as reservoirs. Reports have demonstrated their potential for motion detection and prediction,
achieving low training costs and high accuracy [36, 191, 192].

For example, Tan and van Dijken [36] developed a machine vision system comprising a 5 x 5 PMA
integrated with readout neural networks. This system effectively detected and predicted the motion
trajectory of a defined object, underscoring its potential for real-time perception in dynamic machine
vision applications. The photo-memristor is a two-terminal device with a structure of ITO/ZnO/Nb-
doped SrTiO; (NSTO), exhibiting dynamic optoelectronic memristive responses characterised by slowly
decaying photocurrents after light is turned off. These properties enable the PMA to sense and tem-
porally store optical information. The duration of optical exposure influences the persistence of the
imprinted memory, allowing the PMA to embed spatiotemporal information from previous sequential
frames as hidden states in the final frame. In their demonstration, three pixelated frames of a moving
human figure were projected onto the PMA at varying speeds, 1 fps, 2 fps, and 5 fps, corresponding to
‘slow’, ‘medium, and ‘fast’ speeds, as shown in figure 8. The data from the final frame were then fed
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into a readout neural network designed as a classifier with three outputs. Remarkably, after 100 training
epochs, the system achieved near 100% accuracy in speed classification. For motion trajectory prediction,
three sequential frames were input into an autoencoder network for training. After training, the system
demonstrated the ability to predict future frames using a single input frame. By combining the speed
recognition and trajectory prediction networks, the system could accurately forecast the future position
of the moving object at different speeds.

6. Challenges and outlook

The concept of retinomorphic devices, which mimic the biological vision system, was introduced nearly
half a century ago. In recent years, the development of these devices has witnessed a remarkable surge,
driven by the fast-growing interest in developing novel Al hardware technology. Significant innovations
have emerged, aiming to address the limitations of conventional machine vision paradigms at the mater-
ial, device, and integrated system levels. Whilst promising progress has been made, substantial challenges
and opportunities remain to be explored.

At materials level, the use of emerging materials, particularly 2D materials and perovskites, has
demonstrated notable advantages over conventional silicon in laboratory settings. These materials exhibit
unique properties, such as higher photoresponsivity, fast response and tuneable optoelectronic character-
istics. However, their reproducibility, long-term stability, and scalability must be addressed to transition
from laboratory demonstrations to real-world applications [193—195]. Similarly, while organic materi-
als currently face challenges related to scalability and relatively deficient performance compared to sil-
icon, their potential biocompatibility positions them as promising candidates for biomedical applications,
such as retinal prostheses. Metal oxides, on the other hand, present a more promising pathway for large-
scale production due to their compatibility with existing CMOS industrial manufacturing technologies.
Their success is evidenced by the commercialisation of resistive RAM (RRAM) devices, such as those
based on HfOx and NiOx [113, 196], as well as TFTs for flat-panel displays based on IGZO [197, 198].
Table 2 presents a summary of the performance characteristics of retinomorphic devices according to
each material class.

At device level, the homogeneous configuration embodies a synergy between photo-sensing and
photo-memory. The physical mechanisms underlying the interplay between photo-electron conver-
sion and state switching require further investigation, particularly in the context of emerging materi-
als. Advancing the performance of such devices also hinges on the development of innovative archi-
tectures tailored to the distinct physical mechanisms. Drawing inspiration from established designs of
memory devices and photodetectors could serve as a valuable strategy. However, a critical challenge lies
in the absence of standardised characterisation protocols and benchmarking methodologies for homo-
geneous retinomorphic devices. For example, energy consumption, a key performance metric, is often
inconsistently evaluated. In many cases, reports only consider electric energy consumption during read
operations, while excluding the light energy required for write operations or state switching, leading
to incomplete assessments [200]. As a subset of neuromorphic hardware, benchmarking frameworks
for retinomorphic devices at both the device and system levels could be adapted from methodologies
already established for neuromorphic devices [203]. This adaptation not only provides a foundation for
performance evaluation but also highlights the critical need for the co-development of retinomorphic
devices and their associated external interfaces. The overall performance of a retinomorphic system,
encompassing key metrics, such as processing speed and energy consumption, is determined by the
integration of the devices and their supporting circuits [10]. Therefore, their design, optimisation, and
characterisation must proceed in tandem to ensure a seamless integration and performance improve-
ment. It should be noted that direct comparison of this performance with silicon-based/CMOS devices
and systems is not always straightforward, as the latter comprise high density pixel arrays and integration
of readout and processing units. Therefore, the figures of merit are defined differently in these hetero-
geneous systems than monolithic devices in homogeneous configurations. For example, the characterisa-
tion of energy consumption needs to consider contribution from peripheral units. Table 3 depicts some
examples of the performance of CMOS retinomorphic devices.

At system level, heterogeneous configurations, which integrate imagers with neuromorphic processing
units, have achieved significant breakthroughs. This progress has been well exhibited in the launch of
retinomorphic SoC chips ‘Speck’ [57], while homogeneous configurations have lagged far behind, with
even the scaling up from single devices to functional arrays proving challenging. In many cases, demon-
strations of homogeneous device arrays performing neuromorphic computing rely solely on software
simulations rather than physical implementations. Another pressing challenge lies in algorithm develop-
ment. The cooperative development of more energy efficient neural network models, such as SNNs, is
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Table 2. Summary of retinomorphic sensors in homogeneous configuration.

Material ~ Key material Light intensity Energy Emulated retinal Adaptation/
class configuration Spectral response  range consumption® functions® Retention time  Response time  switching time* On/offratio  Ref
Organic ~ P3HT:PCBM/PVCN/ UV-Vis 1-10° cd m ™2 0.4 uJ (optical) Intensity induced 50 ms 2-100s [58]
PVA/PDPP3T:PCBM (equiv. 1.46— sensitivity
1464 x 10> mW cm? adaptation
@555 nm)
Cs-BTBT/PMMA/P UV 0.2-32 mW cm 2 1.6 pJ (optical) Edge detection >1000 s 4-53 ms 60 ms 10° [82]
(VDF-TrFE) (centre-surround
antagonism)
Cs-BTBT/F16CuPc UV-Vis-NIR 0.3-10 mW cm 2 2.7 uJ (optical) Intensity dependent >50s 5 ms 160 ms [25]
synaptic plasticity
P3HT:DAE UV-Vis 1.5 mJ (optical) Intensity dependent 107 s 100 ns 5s 10° [61]
synaptic plasticity
Organic dyes Vis 1-3 mW cm 2 250 pJ (optical) Multi-colour 100-2000 s 100 ms <ls [76]
hydrogel/ perception channel
Bi,S;/PEDOT:PSS Bipolarity of bipolar
cells
2D WSe,/h-BN UV-Vis-NIR 26-45 7 (optical) Edge detection >1000 s <10 ms 10-150 ms [37]
(centre-surround
antagonism)
ReS; Vis 11-105 mW cm 2 12 f] (optical) Intensity dependent 1500 s <100 ms 100 ms [144]
synaptic plasticity
MoS,/WSe; Vis-NIR 10-10° W cm ™2 0.3-1.1 pJ (optical)  Intensity dependent  90s <20 ms 20 ms [199]
synaptic plasticity
BP UV-Vis 3-10 mW cm 2 924 pJ (electrical) Intensity dependent <100 ms 100 ms [136]
3.5 pJ (optical) synaptic plasticity
Ti3Cy Ty uv 3.75 pJ (electrical) Intensity dependent >200s <100 ms 100 ms [125]
100 f] (optical) synaptic plasticity
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Table 2. (Continued.)

Perovskite

(MAPbI3 )(),75 (FASnI3 )(),25 UV-Vis-NIR

MAPbBr;/PCBM/
MAPbDI3
MAPbBr,Cl/PCBM/
MAPbI3

SnO,/CsPbI3/NiO Vis

Cs0.05FA0.81MAg.14 Vis
Pbly.55Bros

CsPbBr3;-QDs

UV-Vis-NIR

UV-Vis-NIR

1-250 mW cm 2

1-8 mW cm 2

8—4 x 10* pW cm ™2

0.5-256 mW cm 2

10-10’ nW cm ™2

0.6 nJ (electrical)
15 pJ (optical)
6 m] (optical)

0.2 mJ (optical)

10 nJ (optical)

Intensity dependent
synaptic plasticity
Multi- colour
perception channel
Bipolarity of bipolar
cells

Intensity induced
sensitivity
adaptation

Edge enhancement
(centre-surround
antagonism)
Multi-colour
perception channel
Bipolarity of bipolar
cells

Intensity induced
sensitivity
adaptation
Intensity dependent
synaptic plasticity
Intensity (voltage)
induced sensitivity
adaptation
Intensity induced
synaptic plasticity

>30s

300

>60s

>200s

1.2 ms 400 ms 10° [200]
10 ms 20s [34]
<ls 5-10s [32]
<50 ms 50 ms [163]
3.3 ms 20 ms [164]

(Continued.)
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Table 2. (Continued.)

Metal Oxide GO/1GZO uv 7-140 mW cm 2 160 pJ (electrical) Intensity induced 1000 s <50 ms 50 ms
362 pJ (optical synaptic plasticity
MoOy uv 0.2-200 mW cm 2 500 pJ (optical) Intensity induced >10° s <200 ms 200 ms
synaptic plasticity
BaTiO; Vis 12 uJ (optical) Intensity induced >10%s 50s
synaptic plasticity 100 ps (electrical)
VO, NIR 23.5 pJ (optical) Intensity induced >600s 100 ns 150 ms
synaptic plasticity
In,O03/Zn0O uv 0.4—4 mW cm™ Intensity induced >30s 5ms 100 ms
synaptic plasticity

2 If not explicitly addressed as energy consumption per operation, energy consumption is taken as the minimum values of energy that caused noticeable switching of (long-term) synaptic plasticity in the respective article.

® This is in addition to the function of photo detection and imaging.
¢ If not explicitly addressed as the switching/adaption time, it refers to the minimum light exposure time that caused noticeable switching of (long-term) synaptic plasticity in the respective article.
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Table 3. Examples of retinomorphic devices based on CMOS technology.

CMOS technology Pixel array Dynamic range ~ Power/energy consumption®  Types Emulated functions Event rate Frame rate®  References
Silicon 180 nm 240 x 180  130dB 115 nW/pixel Event based Event driven sensing 50 Meps 300 k fps [172]
65 nm 1280 x 960 122 nW/pixel Event based Event driven sensing 1300 Meps [170]
180 nm 64 X 64 35.6 pJ/pixel/frame@510fps Frame based In-pixel differencing 510 fps [204]
2.1 nJ/block/frame @890fps 890 fps
180 nm 304 x 240 143 dB 680 nW/pixel Frame based and Event based ~ Event driven sensing 30-50 k fps [174]

2 Silicon-based retinomorphic sensors are developed mostly in a heterogeneous configuration with high-density pixel arrays and integration of readout and processing units. The figures of merit are defined differently than those of
monolithic devices in homogeneous configuration. For example, the characterisation of energy consumption needs to consider the contribution from peripheral units.
b The equivalent frame rate for event-based sensors is calculated from latency.
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essential. These models are inherently better suited to neuromorphic hardware platforms compared to
conventional GPUs or CPUs [205-207]. Aligning algorithm design with hardware advancements is crit-
ical for unlocking the full potential of retinomorphic devices.

With regard to applications, particularly motion detection and tracking, has emerged as one of the
most compelling areas of exploration since the birth of the retinomorphic concept. The dynamic adapt-
ability, low latency, low data demands, and high efficiency of event-based machine vision could provide
revolutionary advantages over traditional frame-based machine vision in various applications. This
unique capability has not only sparked significant academic interest but also drawn substantial atten-
tion from industry. Commercialisation attempts range from vision restoration and industrial monitoring
to wearable and mobile devices, autonomous vehicles, and robotics, illustrating the broad scope and ver-
satility of retinomorphic technologies [170, 171, 208, 209]. Beyond serving as bio-inspired replacements
or complements to the human eye in retinal prosthetics for vision restoration, retinomorphic devices
can provide low-power, real-time visual processing in compact form factors ideally suited for augmen-
ted and virtual reality (AR/VR) headsets and smart glasses, where conventional image sensors and pro-
cessors are limited by latency and energy consumption. In industrial monitoring, their high dynamic
range and motion sensitivity can enable fault detection in manufacturing lines, structural health mon-
itoring, and predictive maintenance under challenging lighting or environmental conditions. Looking
further ahead in the future, for autonomous vehicles and drones, retinomorphic vision offers faster reac-
tion times to sudden changes in the environment, such as obstacles, pedestrians, or traffic events, which
are crucial for safety and navigation. In robotics, these devices can support adaptive, low-latency vision
for grasping, locomotion, and human-robot interaction, enabling robots to operate more effectively in
unstructured and dynamic environments. Materials enabling lightweight and flexible architectures also
make them promising for wearable health monitoring systems, such as eye-tracking, fatigue detection, or
gesture recognition in mobile electronics. Finally, the combination of retinomorphic sensors with neur-
omorphic processors opens opportunities for energy-efficient edge Al, where perception and computa-
tion are integrated for smart IoT devices that can interpret complex visual scenes without reliance on
cloud-based processing.

In summary, research efforts need to focus on remaining key issues, especially with retinomorphic
devices based on organic, perovskite, and 2D materials, relevant to large-scale integration, long-term
operational stability, and compatibility with CMOS technologies. Continued interdisciplinary collabor-
ation between materials science, device engineering, the development of novel fabrication techniques,
assisted by machine learning, and tailored algorithms through software-hardware co-design will provide
a robust foundation for further evolution of this field. Currently, a significant barrier is the absence of
a clearly defined functional framework and standardised characterisation protocols, especially for homo-
geneous device configurations. These are crucial for validating the advantages of retinomorphic devices
over conventional silicon-based technologies. Despite these challenges, the outlook for retinomorphic
devices for machine vision remains promising. With sustained efforts, they have the potential to revolu-
tionise bio-inspired sensing and computing and open new frontiers in Al, biomedical applications, and
beyond.
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