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GRASPTrack: Geometry-Reasoned Association via
Segmentation and Projection for Multi-Object

Tracking
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Abstract—Multi-object tracking (MOT) in monocular videos
is fundamentally challenged by occlusions and depth ambiguity,
issues that conventional tracking-by-detection (TBD) methods
struggle to resolve owing to a lack of geometric awareness. To ad-
dress these limitations, we introduce GRASPTrack, a novel depth-
aware MOT framework that integrates monocular depth estima-
tion and instance segmentation into a standard TBD pipeline to
generate high-fidelity 3D point clouds from 2D detections, thereby
enabling explicit 3D geometric reasoning. These 3D point clouds
are then voxelized to enable a precise and robust Voxel-Based 3D
Intersection-over-Union (IoU) for spatial association. To further
enhance tracking robustness, our approach incorporates Depth-
aware Adaptive Noise Compensation, which dynamically adjusts
the Kalman filter process noise based on occlusion severity
for more reliable state estimation. Additionally, we propose a
Depth-enhanced Observation-Centric Momentum, which extends
the motion direction consistency from the image plane into 3D
space to improve motion-based association cues, particularly
for objects with complex trajectories. Extensive experiments on
the MOT17, MOT20, and DanceTrack benchmarks demonstrate
that our method achieves competitive performance, significantly
improving tracking robustness in complex scenes with frequent
occlusions and intricate motion patterns.

I. INTRODUCTION

Multi-object tracking (MOT) is a critical task in computer
vision with many applications, such as autonomous driving [1],
robotic navigation [2], and sports analytics [3]. Most MOT
methods typically follow the tracking-by-detection (TBD)
paradigm, where objects are detected independently in each
frame and associated across frames based on motion and
appearance cues. These MOT methods typically rely on 2D
bounding box detection and frame-wise association through
metrics such as the Intersection-over-Union (IoU). Despite
their efficiency, these approaches inherently lack geometric
awareness, making them vulnerable to object interactions,
depth ambiguity, and occlusions.

Current MOT methods face several challenges in real-
world scenarios. One critical problem is the occlusion. When
multiple objects at different depths overlap in the 2D image
plane, even short-term partial occlusions can result in heavy
overlap, leading to identity switches that IoU-based matching
struggles to resolve. Another significant challenge is accurately
modelling motion. For instance, objects moving along the
optical axis of the camera may undergo substantial 3D motion
with minimal 2D positional changes, leading to erroneous

∗ Equal Contribution.
† Corresponding author.

Frame T+1Matching Method

Detections：

Tracks：

2D IoU

Voxel-Based 
     3D IoU

2
1

2
1

ID Switch

ID Consistency

Occluded Objects

Frame T

21

Fig. 1: An illustration of associating occluded detections in
crowded scenes. In the presence of heavy occlusion, conven-
tional 2D IoU-based matching can lead to ID switches owing
to spatial ambiguity between overlapping objects. To address
this, we propose a Voxel-Based IoU metric that operates in 3D
space, enabling more accurate association by capturing fine-
grained volumetric overlap and handling partial occlusions
with improved spatial reasoning.

velocity estimates and association failures. To mitigate such
issues, several existing works [4], [5] attempt to infer pseudo-
depth from 2D cues. However, these methods rely on strong
scene assumptions and typically produce imprecise depth esti-
mations. In addition, other methods [6], [7] utilize a monocular
depth estimation model to obtain depth maps, but typically
extract 3D features from the entire 2D bounding box. This
process introduces significant noise from the background and
even occluding objects, degrading the quality of the object’s
3D representation.

To address these limitations, this study proposes a depth-
aware MOT framework that explicitly incorporates geometric
reasoning into the tracking pipeline, called GRASPTrack.
Our approach leverages advanced models in monocular depth
estimation and segmentation to enrich scene understanding
from a single image. Specifically, we use a segmentation
model to generate a precise instance mask for each object. This
mask guides the creation of a clean, high-fidelity 3D point
cloud from the dense depth map produced by a monocular
depth estimation model. To enhance spatial matching, these
point clouds are transformed into voxel representations, en-
abling a Voxel-Based 3D IoU for robust association and better
reflecting their true spatial extent.

Additionally, we enhance motion modeling in the presence
of occlusions. Traditional Kalman Filters [8] rely on fixed

ar
X

iv
:2

50
8.

08
11

7v
1 

 [
cs

.C
V

] 
 1

1 
A

ug
 2

02
5

https://arxiv.org/abs/2508.08117v1


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

process noise assumptions, which fail to adapt to the in-
creased uncertainty introduced by occlusions. We propose a
Depth-aware Adaptive Noise Compensation (DANC) method
that dynamically adjusts the process noise covariance in the
Kalman filter based on the severity of occlusion, ensuring
more conservative and reliable state updates under uncertainty.
Furthermore, the Observation-Centric Momentum (OCM) in-
troduced in OC-SORT [9] leverages motion direction con-
sistency to improve association robustness. We introduce a
Depth-enhanced Observation-Centric Momentum (DOCM) to
extend motion direction consistency modeling from 2D to 3D
space. By calculating the motion direction consistency using
full 3D state vectors, our method provides a more robust
motion cue, leading to more reliable data association. We
evaluate our method on several challenging datasets, such as
MOT17 [10], MOT20 [11] and DanceTrack [12]. Experimental
results show that our method achieves highly competitive
performance among tracking-by-detection methods.

The main contributions of this study are as follows:
• We propose GRASPTrack, a novel depth-aware MOT

framework that integrates geometric reasoning into the
tracking pipeline, significantly enhancing robustness un-
der occlusion. We leverage monocular depth estima-
tion and segmentation masks to reconstruct high-fidelity
3D point clouds from 2D detection. These are vox-
elized to enable Voxel-Based 3D IoU for object associa-
tion, while mask-guided refinement effectively suppresses
background and occluder noise.

• We introduce DANC, a dynamic Kalman filter process
noise adjustment mechanism that accounts for occlusion
severity. In addition, we extend the Kalman filter state
vector using depth information to enable accurate spatial
state estimation in 3D space.

• We propose DOCM to extend the motion direction con-
sistency in 3D space, improving motion-based association
under complex scenarios.

• Extensive experimental results and comparison are con-
ducted on challenging benchmark datasets.

II. BACKGROUND AND RELATED WORK

A. Tracking by Detection

Many current multi-object tracking methods follow the TBD
paradigm [9], [13]–[15]. These methods use a detector to
detect objects in each frame and associate them across various
frames. Early TBD methods, such as SORT [13], relied on
the Kalman Filter for motion prediction and the IoU between
predicted and detected bounding boxes for association. Deep-
SORT [16] introduced a ReID-based appearance similarity
in the cost matrix to enhance robustness and handle longer-
term occlusions where the IoU would fail. ByteTrack [14]
introduced a simple and effective heuristic for associating
low-confidence detections separately to recover objects during
occlusion. OCSORT [9] enhanced the robustness of handling
occlusions by improving the linear motion assumption in the
Kalman filter. Deep OC-SORT [17] integrated appearance
features and camera motion compensation. UCMCTrack [18]
proposed a method that handles camera motion in object

tracking by replacing the standard IoU metric with a Mapped
Mahalanobis Distance on the ground plane. TBD methods
have shown that the combination of a strong detector with
a simple association strategy can yield competitive tracking
performance. Therefore, we chose to follow the TBD paradigm
in this study.

B. Depth Information in MOT

Adding depth information as a form of spatial context is
a key strategy for making multi-object tracking more robust,
particularly in crowded scenes. In the domain of 3D MOT,
trackers such as AB3DMOT [19] and CenterPoint [20] lever-
age explicit 3D sensors, such as LiDAR, to track objects in true
3D space. However, these approaches depend on specialized
and costly hardware, which restricts their widespread appli-
cation. This has motivated the development of methods that
can infer 3D information from a more accessible single 2D
image, which implicitly contains depth cues through perspec-
tive projection. Approaches using a single camera have largely
followed two directions. The first uses pseudo-depth heuristics
to infer a relative depth order from an object’s position in the
2D frame. SparseTrack [4] leveraged pseudo-depth to separate
objects along the depth axis and divided the detected objects
into multiple sparse subsets at different depths. CAMOT [5]
incorporated a pseudo-depth state directly into its Kalman
filter. The second direction involves the use of a monocular
depth estimation model to generate a depth map. QuoVadis
[6] used these maps to create a bird’s-eye view (BEV)
representation for forecasting. However, these prior studies
are limited because they either relied on coarse geometric
heuristics or used depth information merely as an auxiliary cue
to improve tracking performance. In this study, we propose a
more robust and holistic integration of 3D geometric reasoning
by integrating more precise depth information to enhance the
robustness of the tracker in complex and occluded scenes.

III. METHOD

GRASPTrack enhances the TBD paradigm with a depth-
aware framework composed of three main components. We
first introduce a Depth-Aware Voxelization and 3D IoU Com-
putation module, which converts segmented depth maps into
voxel grids for geometric matching. This is followed by a
DANC module that incorporates depth cues into state pre-
diction. Finally, a DOCM module models motion consistency
in 3D space. All components are coherently designed around
depth, forming a fully integrated framework for depth-aware
multi-object tracking.

A. Depth-Aware Voxelization and 3D IoU

As illustrated in Figure 2(c), GRASPTrack recovers accurate
3D spatial representations of objects from monocular RGB
images. The monocular image is fed into two foundational
models in parallel: Depth Anything v2 [21], which performs
high-quality depth estimation with enhanced cross-scene gen-
eralization and improved reconstruction of fine-grained depth
details, and EfficientTAM [22], which generates segmentation
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Fig. 2: The pipeline of the proposed GRASPTrack. (a) Representation: We estimate the probable location of each tracked object
in the current frame by leveraging a Kalman filter. To reconstruct the 3D geometry of an object, we apply a mask-guided
projection that combines depth estimation and instance segmentation cues. To facilitate more accurate and efficient association,
the resulting point cloud is voxelized to enable voxel-based 3D reasoning. For each detection, we first assess its occlusion
state and accordingly adapt the Kalman filter’s noise covariance in subsequent frames; (b) Association: We compute the Voxel-
Based 3D IoU and DOCM (Depth-enhanced Observation-Centric Momentum) to capture geometric similarity, while appearance
similarity is measured using a ReID model. In the OCR association stage, only the Voxel-Based 3D IoU is employed; and (c)
Process of our Mask-Guided Projection.

masks for the objects using box prompts. For each input frame
It ∈ RH×W×3, we estimate a dense depth map Dt ∈ RH×W

using a monocular depth estimation network as follows:

Dt = fdepth(It), (1)

where fdepth(·) denotes the depth estimation model.
Given a set of bounding boxes Bt = {bti}

Nt
i=1 from both

the detector and tracker, with each bti = [xi
1, y

i
1, x

i
2, y

i
2, s

t
i],

we obtain the corresponding binary segmentation masks using
EfficientTAM, i.e.,

M t
i = fseg(It, b

t
i), M t

i ∈ {0, 1}H×W , (2)

where M t
i (u, v) = 1 indicates that pixel (u, v) belongs to

object i at time t.
1) Mask-Guided Projection: Using the estimated depth

map Dt and mask M t
i , we reconstruct a per-object 3D point

cloud by projecting pixels within the mask region into camera
coordinates using the standard camera model. For each pixel
within the segmentation mask, the 3D coordinates are com-
puted using the standard pinhole camera projection equations:

Z = Dt(u, v), X =
(u− cx)Z

fx
, Y =

(v − cy)Z

fy
, (3)

where (u, v) are pixel coordinates of the projection plane,
Z is the depth value, (cx, cy) is the center point of the box
corresponding to the object, and (fx, fy) are the focal lengths
in the x and y directions, respectively. For each object i at
time t, we construct a 3D point cloud by collecting all valid
projected points within its segmentation mask, i.e.,

Pt
i = {p = [X,Y, Z]⊤ | M t

i (u, v) = 1, Dt(u, v) > 0}, (4)

where M t
i (u, v) = 1 indicates pixels within the object’s

segmentation mask, and Dt(u, v) > 0 ensures valid depth

values. This formulation ensures that only valid depth values
within the precise segmentation boundary of the object are
considered, providing a more accurate 3D representation than
using entire bounding boxes. This mask-guided projection
eliminates the background and occluder pixels, ensuring that
only valid object regions contribute to the 3D geometry.

2) Voxelization Process: While 3D point clouds Pt
i offer

fine-grained geometric details, traditional 3D IoU computa-
tions typically rely on fitting coarse 3D bounding boxes, which
fail to capture the true object shape [23]. To better preserve ge-
ometric fidelity while enabling efficient pairwise comparison,
we adopt a voxel-based representation that discretizes each Pt

i

into a binary occupancy grid. This allows us to compute the
3D Intersection-over-Union (IoU) directly on the volumetric
shape, yielding a more accurate and robust similarity metric.
Unlike the voxelization adopted in detection frameworks [24],
which is used solely for feature extraction before regressing
a bounding box, our voxel grid is used exclusively during
evaluation. Each voxel stores a single binary occupancy value
and does not participate in network training or inference.

To ensure consistent voxelization across different frames
and object pairs, we establish a unified 3D coordinate system.
Given two sets of 3D point clouds Pdet

i and P trk
j representing

detections and tracks respectively, we compute the overall
spatial bounds:

pmin = min( min
p∈Pdet

i

p, min
p∈P trk

j

p), (5)

pmax = max( max
p∈Pdet

i

p, max
p∈P trk

j

p), (6)

where pmin,pmax ∈ R3 define the global 3D bounding
volume that encompasses both point clouds. This way ensures
that all the point clouds share the same voxel coordinate.
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We discretize the continuous 3D space into a regular voxel
grid using a voxel size parameter δv , which determines the spa-
tial resolution of the discretization. The voxel size δv controls
the fundamental trade-off between computational efficiency
and spatial precision, smaller values provide finer granularity
but increase memory usage and computation time. In our
implementation, we set δv = 0.4 to balance the accuracy
and efficiency for typical object scales in multi-object tracking
scenarios.

For each point cloud P , we transform the 3D coordinates
into discrete voxel indices as follows:

v(p) =

⌊
p− pmin

δv

⌋
, (7)

where p = [x, y, z]⊤ is a 3D point, and v(p) represents the
corresponding voxel index. To ensure valid indices, we apply
boundary constraints to keep all indices within the computed
grid dimensions. Since multiple points may map to the same
voxel, we perform de-duplication by retaining only unique
voxel indices.

We create a sparse binary occupancy grid V ∈
{0, 1}Nx×Ny×Nz where each voxel is marked as occupied
if it contains at least one point from the object. This sparse
representation is crucial for computational efficiency because
typical object point clouds occupy only a small fraction of
the total voxel space. The resulting occupancy grid provides a
discretized volumetric representation that captures the essential
3D structure of each object while enabling efficient intersec-
tion and union operations for the IoU computation. Building
upon this sparse volumetric encoding, we next describe how
3D IoU is efficiently computed between voxelized objects.

3) Voxel-Based 3D IoU Computation: Given two voxelized
occupancy grids Vi and Vj representing objects i and j
respectively, we compute the 3D IoU between objects, as
illustrated in Figure 1, following the standard intersection-
over-union formulation adapted to voxelized volumes, i.e.,

IoU3D(Vi,Vj) =
|Vi ∩ Vj |
|Vi ∪ Vj |

. (8)

The intersection |Vi∩Vj | counts the number of voxels occupied
in both grids, which is computed through element-wise logical
AND operations across all voxel positions. Similarly, the union
|Vi ∪ Vj | counts the voxels occupied in either grid, obtained
through element-wise logical OR operations. This voxel-based
IoU computation provides several advantages over the tradi-
tional 2D IoU. First, it captures precise volumetric overlap
rather than only projected area overlap, making it robust
to changes in the viewpoint and camera motion. Second, it
naturally handles complex object shapes and partial occlusions
by considering the 3D spatial occupancy.

B. Depth-Aware Adaptive Noise Compensation

The traditional KF in current MOT methods [9], [13]–[15]
use a fixed process noise parameter, which limits the robust-
ness of the tracking algorithm under occlusion and geometric
ambiguity. Occluded objects may exhibit unpredictable motion
patterns that are not captured by simple constant velocity
models. To enhance tracking performance in such challenging

conditions, we propose the DANC, which dynamically adjusts
process noise parameters.

1) Extended State Representation.: We extend the Kalman
filter state vector to incorporate the object depth and its
velocity, enabling 3D-aware motion modeling:

xt = [x, y, s, r, d, ẋ, ẏ, ṡ, ḋ]⊤, (9)

where (x, y) denotes the object center in image coordinates, s
is the object area, r is the aspect ratio, and d is the estimated
object depth. The terms (ẋ, ẏ, ṡ, ḋ) represent the respective
velocities. The depth value d is obtained by first employing
EfficientTAM to generate precise object segmentation masks
within detection bounding boxes, and then computing the av-
erage depth from the corresponding segmented regions in the
depth map provided by Depth Anything v2, ensuring accurate
depth representation that focuses solely on the object’s actual
geometry rather than background interference. The extended
state representation enables a depth-aware adjustment of the
Kalman noise to maintain stable predictions when the targets
approach or recede rapidly.

2) Occlusion Status Determination: We dynamically adjust
process noise covariance based on the occlusion level of the
detected object. When an object is occluded, the reliability of
both its motion model and measurements decreases, increasing
the uncertainty in the Kalman filter. Let D = {1, 2, ..., N}
represent all detections in the current frame, where N is the
total number of detections. To determine whether an object
i ∈ D is occluded, the IoU is calculated between i and all
other objects j ∈ D \ {i}. The occlusion status is determined
using a depth-based criterion:

occ(i) =


True, if ∃j ∈ D \ {i} : IoU(bi, bj)

> τIoU and di > dj ,

False, otherwise,
(10)

where bi and bj are the bounding boxes of objects i and j
respectively, di and dj are their corresponding depth values,
and τIoU is the spatial overlap threshold. This process ensures
that object i is evaluated against all other objects in the frame
to comprehensively detect the occlusion scenarios.

3) Adaptive Noise Scaling: For occluded objects, we adap-
tively scale the process noise to account for the increased un-
certainty. We compute the occlusion score Oi as the maximum
IoU overlap with all occluding objects:

Oi = max
j∈D\{i}

{IoU(bi, bj) | occ(i) = True} . (11)

The adaptive noise scaling λi is then determined based on the
occlusion strength:

λi =

{
1 + α×Oi, if occ(i) = True,
1, otherwise,

(12)

where α is the occlusion sensitivity factor that controls the am-
plification intensity of noise scaling in response to occlusion
severity. Therefore, the process noise covariance is adjusted
accordingly as follows:

Qadaptive
t = λi ·Qbase, (13)
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Tracker MOT17 MOT20
HOTA↑ IDF1↑ MOTA↑ AssA↑ HOTA↑ IDF1↑ MOTA↑ AssA↑

Motion:
ByteTrack [14] 63.1 77.3 80.3 62.0 61.3 75.2 77.8 59.6
C-BIoU [25] 64.1 79.7 81.1 63.7 - - - -
MotionTrack [26] 65.1 80.1 81.1 65.1 62.8 76.5 78.0 61.8
OC-SORT [9] 63.2 77.5 78.0 63.4 62.4 76.3 75.7 62.5
SparseTrack [4] 65.1 80.1 81.0 65.1 63.4 77.3 78.2 62.8
UCMCTrack [18] 65.8 81.1 80.5 66.6 62.8 77.4 75.7 63.4
Motion & Appearance:
Quo Vadis [6] 63.1 77.7 80.3 62.1 61.5 75.7 77.8 59.9
Bot-SORT [27] 65.0 80.2 80.5 65.5 63.3 77.5 77.8 62.9
GHOST [28] 62.8 77.1 78.7 - 61.2 75.2 73.7 -
StrongSORT [29] 64.4 79.5 79.6 64.4 62.6 77.0 73.8 64.0
Deep OCSORT [17] 64.9 80.6 79.4 65.9 63.9 79.2 75.6 65.7
DiffMOT [30] 64.5 79.3 79.8 64.6 61.7 74.9 76.7 60.5
OFTrack [31] 64.1 78.8 80.1 63.3 63.4 76.9 75.6 62.7
GRASPTrack 66.1 81.7 80.4 66.9 64.5 80.1 77.5 66.1

TABLE I: Performance comparison on the MOT17 & MOT20 test set. The best results are shown in bold.

where Qbase denotes the default noise. This mechanism ensures
more conservative updates in the presence of occlusions.
Multiplying the process covariance by the scale factor λi delib-
erately widens the predicted uncertainty, boosting the Kalman
gain so that fresh measurements dominate whenever an object
is occluded. Because λi grows linearly with the occlusion
score, the filter shifts smoothly from normal confidence to
a more cautious mode under heavy occlusion, all without
retuning the base noise matrix.

C. Depth-Enhanced Observation-Centric Momentum.
The OCM introduced in OC-SORT considers the motion

direction consistency modeling of an object in the association.
The original OCM calculates motion direction angles using
2D center coordinates, where the angle θ is computed as
θ = arctan(

vj−vi
uj−ui

) for two points (ui, vi) and (uj , vj)
representing object center coordinates at different time steps.
Although effective in 2D scenarios, this approach cannot
adequately model motion consistency when depth variations
are significant. However, the OCM only relies on the velocity
direction of an object in the 2D image plane and fails to
capture depth-related motion consistency, particularly when
objects exhibit significant displacements along the depth axis.

To address this, we propose DOCM, which operates in
3D space. Instead of computing the motion direction solely
from 2D center displacements, we extend the representation
to incorporate depth-aware trajectories. Let (ui, vi, di) and
(uj , vj , dj) denote the 2D center coordinates and depth values
of objects at two different time steps. The corresponding 3D
displacement vector v3D is defined as:

v3D = [uj − ui, vj − vi, dj − di]
⊤. (14)

We evaluate the motion consistency by measuring the co-
sine similarity between the historical and current 3D motion
vectors:

CVDC =
vhist · vcurr

∥vhist∥ · ∥vcurr∥
, (15)

where vhist connects two previous observations on the same
trajectory and vcurr links the last track position with the current
detection.

Tracker HOTA↑ IDF1↑ MOTA↑ AssA↑
Motion:
ByteTrack 47.3 52.5 89.5 31.4
C-BIoU 60.6 61.6 91.6 45.4
MotionTrack 58.2 58.6 91.3 41.7
OC-SORT 55.1 54.9 92.2 40.4
SparseTrack 55.5 58.3 91.3 39.1
UCMCTrack 63.6 65.0 88.9 51.3
Motion & Appearance:
GHOST 56.7 57.7 91.3 39.8
StrongSORT 55.6 55.2 91.1 38.6
Deep OCSORT 61.3 61.5 92.3 45.8
DiffMOT 62.3 63.0 92.8 47.2
OFTrack 63.4 65.6 91.2 48.7
GRASPTrack 65.3 66.2 92.4 52.1

TABLE II: Performance comparison on the DanceTrack test
set. The best results are shown in bold.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Datasets.: We evaluate our proposed framework on
three MOT benchmarks: MOT17 [10], MOT20 [11] and
DanceTrack [12]. MOT17 and MOT20 datasets are standard
benchmarks commonly employed in the MOT community,
featuring various challenging real-world scenarios including
dense crowds, frequent occlusions, and diverse camera an-
gles. MOT17 provides annotated pedestrian tracking data
with sequences captured from different perspectives, while
MOT20 presents denser scenes to evaluate tracking methods
under extreme occlusion and crowd conditions. In contrast,
DanceTrack specifically targets challenging tracking scenarios
characterized by uniform appearances and complex, diverse
motions in dance performance scenes. Utilizing these diverse
benchmarks allows for a comprehensive evaluation of our
framework across various and realistic tracking challenges.

2) Evaluation.: We adopt standard evaluation metrics com-
monly used in MOT, including MOTA [32], IDF1 [33], HOTA
[34], and AssA [34]. MOTA evaluates overall tracking accu-
racy, combining detection accuracy with identity consistency,
while IDF1 specifically measures the accuracy of maintaining
object identities throughout tracking. AssA is used to evalu-
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ate the association performance. HOTA provides a balanced
evaluation, capturing both association accuracy and detection
performance.

3) Implementation Details.: Our proposed framework
builds upon the OC-SORT baseline, integrating additional
modules for depth estimation and segmentation. Specifically,
we utilize the pretrained ViT-B Depth Anything v2 model
[21] for zero-shot monocular depth estimation and ViT-S
EfficientTAM [22] for precise instance segmentation. Depth
maps are predicted with Depth Anything v2 and linearly scaled
to the interval [0, 255]. For a fair comparison, we use the
publicly available YOLOX [35] detector weights developed
by ByteTrack [14]. Because the evaluated video sequences
lack camera intrinsics (fx, fy), we first estimate them by
interactively aligning a projected ground-plane grid with each
image, following the method introduced in UCMCTrack [18].
The voxel size parameter δv for Voxel-Based 3D IoU com-
putation is set to 0.4, balancing computational efficiency and
accuracy. For our Depth-Aware Adaptive Noise Compensation
(DANC), the occlusion sensitivity factor α that controls the
amplification intensity of noise scaling is set to 3. The spatial
overlap threshold τIoU, used to determine pairwise occlusion
based on 3D IoU, is set to 0.6. During the association phase,
we performed separate matching processes for high- and low-
score detections, following the ByteTrack, with thresholds
set to 0.6 and 0.1, respectively. We also employ the ReID
model following the same settings as in DiffMOT [30]. All
the experiments were conducted using a GeForce NVIDIA
A100 GPU.

B. Comparison with State-of-the-art Methods
1) MOT Challenge.: In Table I, we compare the perfor-

mance of GRASPTrack with the state-of-the-art TBD methods
on the MOT17 and MOT20 datasets. To ensure fairness,
all methods are evaluated using the same detection results
and standardized evaluation protocols. From the compari-
son, our method demonstrates superior performance on both
MOT17 and MOT20, achieving HOTA scores of 66.1 and
64.5, respectively. The results demonstrate the good efficiency
and robustness of our method against complex scenes with
occlusions.

2) DanceTrack.: To demonstrate the performance of our
method in complex and occluded scenarios, we test our model
on the DanceTrack dataset, as shown in Table II. Our results
demonstrate superior performance compared to other methods
and obtain a 65.3 HOTA score. The results indicate that our
method can effectively handle challenging scenes with diverse
motions and occlusions.

C. Ablation Study
To validate the effectiveness of our proposed depth-aware

multi-object tracking framework, we conduct comprehensive
ablation studies on the validation set of DanceTrack. The
ablation experiments are designed to analyze four key aspects:
(1) the contribution of each proposed component, (2) the
impact of the Voxel Grid Size parameter, (3) the influence
of the Occlusion Sensitivity Factor, and (4) the impact of the
3D Point Cloud Generation Strategy.

Appearance 3D IoU DANC DOCM HOTA ↑ AssA ↑ IDF1 ↑
52.1 35.3 51.6

✓ 58.0 42.3 57.7
✓ ✓ 61.5 47.5 61.6
✓ ✓ 58.9 42.6 58.6
✓ ✓ ✓ 62.3 48.1 63.6
✓ ✓ ✓ ✓ 62.8 49.2 64.2

TABLE III: Ablation study of the GRASPTrack components.
3D IoU is Voxel-Based 3D IoU.

VGS (δv) HOTA ↑ AssA ↑ IDF1 ↑ FPS
0.2 62.3 48.9 63.8 9.3
0.4 62.8 49.2 64.2 13.1
0.6 62.0 48.8 63.4 14.0
0.8 61.8 48.6 63.1 14.8
1.0 61.6 48.5 62.9 15.1

TABLE IV: Impact of Voxel Grid Size (VGS) δv on the
validation set of DanceTrack.

1) Component Ablation: In Table III, we systematically
evaluated the contribution of each proposed component of
GRASPTrack by progressively incorporating them into the
OC-SORT baseline. The three key innovations are Voxel-
Based 3D IoU, DANC and DOCM. Our experiments demon-
strate that each component provides substantial improvements
to baseline performance. The Voxel-Based 3D IoU computa-
tion enhances object association by replacing the traditional
2D IoU with volumetric similarity measures, enabling robust
tracking in complex scenes with occlusions. The DANC
improves tracking robustness by dynamically adjusting the
process noise parameters based on detected occlusion events,
which is particularly beneficial in occluded scenarios. The
integration of DOCM provides the most substantial perfor-
mance gain by extending motion consistency modeling from
2D to 3D space, effectively capturing complex motion patterns.
The cumulative effect of all three components results in a
comprehensive depth-aware MOT framework that significantly
outperforms the baseline OC-SORT method on the Dance-
Track dataset.

2) Voxel Grid Size: In Table IV, we conducted extensive
experiments to determine the optimal voxel grid size parameter
δv for our Voxel-Based 3D IoU, systematically varying its
value from 0.2 to 1.0 in increments of 0.2. The experimental
results demonstrate that δv = 0.4 achieves the highest tracking
performance on the DanceTrack dataset, yielding the best
balance among HOTA (62.8), AssA (49.2), and IDF1 (64.2)
metrics. When δv is too small (0.2), the voxel grid becomes
excessively fine-grained, leading to sparse occupancy patterns
that are sensitive to depth estimation noise and resulting in
increased computational overhead, as indicated by the lowest
FPS (9.3). Conversely, when δv is too large (0.8-1.0), the
voxel grid becomes overly coarse, losing critical spatial details
required for accurate object discrimination, though FPS perfor-
mance improves (14.8 to 15.1 FPS). The optimal value of 0.4
not only provides sufficient spatial resolution to capture mean-
ingful volumetric overlaps and maintains robustness against
depth estimation uncertainties but also achieves a reasonable
computational efficiency (13.1 FPS).
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OSF (α) HOTA ↑ AssA ↑ IDF1 ↑
1 61.9 48.6 63.7
2 62.3 49.1 63.8
3 62.8 49.2 64.2
4 62.2 49.0 64.0
5 61.8 48.7 63.5

TABLE V: Impact of OSF (Occlusion Sensitivity Factor) α
on the validation set of DanceTrack.

Method HOTA ↑ AssA ↑ IDF1 ↑
Mask-Guided Proj. 62.8 49.2 64.2
BoundingBox Proj. 61.7 48.4 63.1

TABLE VI: Performance impact of the 3D point cloud gener-
ation strategy on the validation set of DanceTrack.

3) Occlusion Sensitivity Factor: We investigated the im-
pact of the occlusion sensitivity factor α in our depth-aware
Kalman filtering mechanism by systematically varying its
value from 1 to 5. As shown in Table V, our results reveal that
α = 3 provides the optimal balance for robust tracking perfor-
mance on the DanceTrack dataset. This parameter controls the
intensity of the process noise amplification during the occlu-
sion events. When α is too small (1–2), the noise compensation
mechanism becomes insufficient to account for the increased
uncertainty during occlusion events, resulting in overconfi-
dent motion predictions that fail to adapt to unpredictable
motion patterns. Conversely, when α is too large (4–5), the
noise compensation becomes excessive, causing the Kalman
filter to become overly permissive and potentially associate
incorrect detections with existing tracks, leading to identity
switches. The optimal value of 3 effectively addresses the
motion uncertainty introduced by occlusion while maintaining
sufficient discriminative power for accurate data association,
and is particularly well suited for the dynamic and interactive
motion patterns characteristic of group dancing scenarios.

4) 3D Point Cloud Generation Strategy: In Table VI, we
conducted experiments to validate the effectiveness of our
mask-guided 3D point cloud generation strategy by comparing
it with alternative approaches. We compare two different
strategies: (1) Mask-guided projection using EfficientTAM
to obtain segmentation masks of objects (our method) and
(2) Full bounding box projection using all pixels within the
detection boxes. Our experimental results on the DanceTrack
dataset demonstrate that the mask-guided approach achieves
the best performance with a HOTA score improvement of
1.1% over the full bounding box method. The mask-guided
strategy effectively eliminates background noise and occluder
interference, leading to cleaner 3D point clouds and more
accurate voxel-based 3D IoU calculations. In contrast, the full
bounding box approach suffers from background contamina-
tion, particularly in crowded scenes where objects frequently
overlap. Furthermore, we observe that stronger base detectors
significantly enhance the effectiveness of our method. Detailed
experimental results and ablation studies are provided in the
Appendix.

V. CONCLUSION

This paper presents GRASPTrack, a depth-aware multi-
object tracking framework that combines monocular depth es-
timation and instance segmentation to reconstruct high-fidelity
3D point clouds for individual objects, enabling explicit 3D
geometric reasoning beyond the 2D plane. By voxelizing
these mask-guided point clouds, we compute Voxel-Based
3D IoU for robust object association under heavy occlusion.
We further introduce DANC, which adaptively scales Kalman
filter process noise based on occlusion severity, and DOCM,
which incorporates depth into motion modeling to enhance
trajectory continuity. Extensive experiments demonstrate the
effectiveness and robustness of our approach in comparison to
the state-of-the-art methods.
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