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We show that Price’s power-law tail for perturbations of Schwarzschild, t−2ℓ−3 as t → ∞, can be
obtained from a sum of Schwarzschild-de Sitter quasinormal modes in the limit Λ → 0+.

INTRODUCTION AND RESULTS

The retarded Green’s function for linear perturbations
around the four-dimensional Schwarzschild black hole is
well known to display a power-law decay at late times,
which is known as Price’s law [1–4]. This behavior can
be attributed to a branch cut of the Green’s function in
the frequency domain.

Analytic investigations of the contribution of the
branch cut in the frequency plane were carried out at
large radius [5–7], at large frequency via WKB techniques
[8, 9], or by using series of confluent hypergeometric func-
tions evaluated on the negative imaginary axis [10–12].
The difficulty of analytically treating the branch cut con-
tribution is due to the presence of an irregular singularity
at radial infinity, around which there are no solutions ad-
mitting a power series expansion with a finite radius of
convergence.

In this work, we overcome this issue by considering
the same class of linear perturbations around the four-
dimensional Schwarzschild-de Sitter solution with a small
cosmological constant Λ. In this way, all singular points
of the perturbation equations are regular, and there al-
ways exist local solutions with finite radius of conver-
gence. Moreover, the branch cut structure present in the
Green’s function in the frequency plane is resolved in a
set of poles along the imaginary axis, whose spacing is
proportional to

√
Λ. See FIG. 1 for illustration. The

computation of the branch cut contribution is then re-
duced to a sum of residues of these poles contributions,
that, by taking the Λ → 0+ limit, matches the expected
time dependence of Price’s law, and with the correct co-
efficient.

Mathematically, the situation is analogous to charged
scalar perturbations of the low-temperature Reissner-
Nördstrom-AdS5 black hole, a mechanism we previously
detailed in [13]. In the present work, temperature is in-
troduced by turning on a small

√
Λ, which serves to heat

up null infinity, converting the irregular singular point
there into a regular one.1

1 Both are governed by a confluence limit of the Heun equation,
and moreover there is a direct mapping between the perturbation
equations for a small black hole in AdS2, and those appearing in
the far region of Schwarzschild-de Sitter at small
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Λ.
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FIG. 1. The analytic structure of the retarded Green’s func-

tion in frequency space, G̃(ω, r, r′), at small |ωRh|, illustrat-
ing the change caused by heating up null infinity with a small
Λ > 0. Left panel: Schwarzschild-de Sitter at small but fi-
nite Λ > 0, which contains QNM poles at de Sitter frequencies
(1) (black points), as well as black hole QNMs at order-1 val-
ues of ωRh (not shown). Right panel: Schwarzschild, show-
ing a logarithmic branch cut obtained in the limit Λ → 0+,
from the coalescence of poles in the left panel. We demon-
strate that the residue sum (blue contour, left panel) repro-
duces the power-law tail, t−2ℓ−3, equal to the branch cut dis-
continuity integral in this limit (blue contour, right panel).

The basic analytical mechanism is most easily illus-
trated by turning to a computation in the near-horizon
region. At small Λ > 0 the frequency-space Green’s
function, G̃(ω, r, r′) contains a set of quasinormal mode
(QNM) poles at frequencies

ω(dS)
n = −i

√
Λ

3
(ℓ+ n+ 1) +O(Λ), n ∈ Z≥0, (1)

which we refer to as the de Sitter QNMs. See the left
panel of FIG. 1. Each such mode has a residue in G̃ given
by cnΛ

ℓ+ 3
2 , with some known cn, so that their contribu-

tion to the time-domain Green’s function G(t, t′, r, r′),
which we denote as GdS(t, t

′, r, r′), is given by the follow-
ing residue sum,

GdS(t, t
′, r, r′) = −2πi

∞∑
n=0

cnΛ
ℓ+ 3

2
e−iω(dS)

n (t−t′)

2π
. (2)

This sum is convergent provided t− t′ + r∗ + r′∗ > 0 and
can be evaluated in closed form. This condition corre-
sponds to a lightray along the lines of the region sep-
arations in [14]. The outcome is a rational function of
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e−
√

Λ
3 (t−t′+r∗+r′∗), which when expanded to leading or-

der in Λ gives,

GdS(t, t
′, r, r′) = CR2ℓ+3

h (t− t′ + r∗ + r′∗)
−2ℓ−3, (3)

where C is a dimensionless constant independent of Λ
given by (59), thus reproducing Price’s law at t → ∞.
Note that we didn’t require a large t expansion to derive
(3) (just t − t′ + r∗ + r′∗ > 0), so our result (3) is exact
in t, rather than asymptotic.

This calculation is equivalent to the integral around the
branch cut of G̃(ω, r, r′) at Λ = 0. In the limit Λ → 0+ we
show analytically that the poles at (1) coalesce to form a
logarithmic cut (see the right panel of FIG. 1). This fol-
lows from a particular arrangement of gamma functions
that appear in Heun connection formulae, detailed in and
around (22). One then obtains the same result (3) from
the corresponding cut discontinuity integral,

GdS(t, t
′, r, r′) = −

∫ 0

−i∞
DiscωG̃(ω, r, r

′)e−iω(t−t′) dω

2π
,

(4)
where

DiscωG̃(ω, r, r
′) ≡ lim

ϵ→0

(
G̃(ω + ϵ, r, r′)− G̃(ω − ϵ, r, r′)

)
=

2πiCR2ℓ+3
h (iω)2ℓ+2e−iω(r∗+r′∗)

Γ(3 + 2ℓ)
+ . . . .(5)

The class of linear perturbations around
Schwarzschild-de Sitter that we consider can be
described by a single ODE having four regular singu-
larities, which is known as the Heun equation [15, 16].
The analytic technique we use to study the differential
equation and perform the near-horizon residue com-
putations comes from the context of Seiberg-Witten
theory and supersymmetric gauge theory [17, 18], and
Liouville conformal field theory (CFT) (see [19, 20] for
detailed reviews), where the Heun equation arises as
the equation satisfied by a correlation function with
four primary insertions plus a degenerate one [21]. The
relevant dual gauge theory (under AGT duality [22])
to Liouville CFT on a four-punctured sphere is the
N = 2 SU(2) supersymmetric gauge theory with Nf = 4
fundamental hypermultiplet. The connection between
black hole perturbation theory and Seiberg-Witten
curves was established in [23] and was then developed
in many subsequent works (see for example [24–31]).
In particular, the solutions to the Heun equation, as
well as the connection coefficients relating the local
solutions around different singular points, can be written
explicitly in terms of conformal block expansions of
the correlation function in the Liouville CFT language
[32, 33], or in terms of Nekrasov partition functions
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FIG. 2. Price’s power-law tail derived from de Sitter QNM
residue sums (red, dashed) compared to a time-domain nu-
merical solution of the Schwarzschild Green’s function PDE
((15) at Λ = 0) using Gaussian initial data of width σ to ap-
proximate the delta function (black, solid). A power law of
(t− t′)−2ℓ−3 with arbitrary normalisation is indicated in blue
as reference. We use parameters s = ℓ = 2, σ = 1, Rh = 1.
Upper panel: Behaviour near the black hole horizon r∗ =
−12.2006, r′∗ = −10.1005. Here, the dS mode infinite residue
sum is computed analytically in the limit Λ → 0, given by (3),
and is shown analytically to be equal to the corresponding cut
discontinuity integral. Lower panel: Behaviour far from the
black hole, r′∗ = 12.0506, r∗ = 16.0508. Here, a partial dS
mode residue sum is computed numerically from solutions to
the Heun differential equation, at small R2

hΛ = 10−6.

[34, 35].2 We follow the conventions set up in the recent
works [37, 38].

It is by using these techniques that we are able to ana-
lytically describe the tail in the near-horizon region, since
in the Λ → 0+ limit, both the local Heun functions and
the confluent Heun ones (resulting from the limiting pro-
cedure) have a finite radius of convergence there. In the
far-region, instead, the strict Λ → 0+ limit would still
need the treatment of the expansion of local solutions
around the irregular singularity. Thus, in this region,
we eschew the analytical treatment, and perform a brute
force residue partial sum numerically at small but finite
Λ, and in doing so we also obtain the Price’s law tail.

2 We will use the latter language, and specifically work in the
Nekrasov-Shatashvili (NS) phase of the Omega-background [36].
We postpone to the supplemental material the conventions used
for the NS functions.
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Our results from both calculations (analytic near the
horizon, and numerical elsewhere) agree precisely with
the tail obtained from a direct numerical solution to the
Schwarzschild PDE ((15) at Λ = 0), as illustrated in FIG.
2.

Previously, it was pointed out that an artificial discreti-
sation of the branch cut can also reproduce the power-law
tail in Schwarzschild [39]. Partial results from this study
were first reported in [14].

SCHWARZSCHILD-DE SITTER AND ITS
GREEN’S FUNCTION

We study linear perturbations around the four-
dimensional Schwarzschild-de Sitter black hole

ds2 = −f(r) dt2 + dr2

f(r)
+ r2 dΩ2

2, (6)

where

f(r) = 1− 2M

r
− Λ

3
r2, (7)

with M being the mass of the black hole, and Λ > 0 the
cosmological constant. Assuming 0 < 9ΛM2 < 1, the
equation r f(r) = 0 has three real roots. We denote with
Rh the event horizon, with R+ > Rh the cosmological
horizon, and with R− < 0 the negative root.

We consider a class of linear perturbations encoded in
the following Regge-Wheeler-like ODE3

ϕ′′(r) +
f ′(r)
f(r)

ϕ′(r) +
ω2 − V (r)

f(r)2
ϕ(r) = 0, (8)

with

V (r) = f(r)

[
ℓ(ℓ+ 1)

r2
+ (1− s2)

(
3Rh − ΛR3

h

3r3

)]
. (9)

The ODE (8) describes a conformally-coupled scalar per-
turbation for s = 04, an electromagnetic perturbation
for s = 1, and vector-type gravitational perturbation for
s = 2.

By defining the variable

z =
Rh

r

r −R−
Rh −R−

, (10)

and redefining the wave function as

ϕ(z) = p(z)ψ(z), (11)

3 The notations used here are in accordance with those in [14].
4 The differential equation for s = 0 reduces to the massless scalar
field perturbation in the flat limit.

where p(z) is given in (35), the ODE satisfied by ψ(z) is
a Heun equation [15, 16] of the form

d2 ψ(z)

d z2
+

[
1
4 − a20
z2

+
1
4 − a21
(z − 1)2

+
1
4 − a2x
(z − x)2

−
1
2 − a21 − a2x − a20 + a2∞ + u

z(z − 1)
+

u

z(z − x)

]
ψ(z) = 0,

(12)
with dictionary given in (34). The black hole horizon
is located at z = 1, and the cosmological horizon is at
z = x, which approaches z = 0 in the Λ → 0+ limit:

x = 2Rh

√
Λ

3
+O (Λ) . (13)

The local solutions selected by the ingoing boundary con-
dition at the horizon and the ougoing boundary condition
at the cosmological horizon are normalised as

ψin(z) = (1− z)
1
2−a1 [1 +O (1− z)] , z → 1,

ψup(z) = (z − x)
1
2−ax [1 +O (1− z)] , z → x,

(14)

respectively, and can be found explicitly in (37) and (38).

The retarded Green’s function in position space
G(t, t′, r, r′), at fixed values of the angular quantum num-
bers, is the solution to the PDE(
−∂2t + ∂2r∗ − V (r)

)
G(t, t′, r, r′) = −δ(t− t′)δ(r∗ − r′∗),

(15)
which vanishes for t < t′, and where r∗ denotes the tor-
toise coordinate. In the Schwarzschild-de Sitter geome-
try, we use the tortoise coordinate in (41). The Green’s
function G(t, t′, r, r′) can be constructed by introducing

the Green’s function G̃(ω, r, r′) in frequency space as

G(t, t′, r, r′) =
∫ ∞+iϵ

−∞+iϵ

dω

2π
G̃(ω, r, r′)e−iω(t−t′), (16)

with G̃(ω, r, r′) defined starting from the homogeneous
solutions of (8) satisfying the previously described
boundary conditions as

G̃(ω, r, r′) =
1

W ×
{
ϕin(r)ϕup(r

′), r < r′

ϕin(r
′)ϕup(r), r > r′,

(17)

where W is the Wronskian W = ϕup∂r∗ϕin − ϕin∂r∗ϕup.

By closing the integration contour of (16) in the lower
half-plane, the Green’s function can be written as a sum
of poles, the QNMs located at zeros of W, plus the large-
frequency arc contribution. We are interested in the late-
time behavior of the Green’s function, where the QNM
sum is convergent and the arc contribution vanishes [14].
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ANALYTIC RESULTS NEAR THE HORIZON

Passing from a small positive Λ to the Λ = 0 case, the
singularity structure of the Green’s function G̃(ω, r, r′)
changes. More precisely, analogously to the mechanism
analysed in [13] for the extremal limit of asymptotically
AdS5 Reissner-Nördstrom planar black hole, there is a
set of QNMs that coalesce in a branch cut in the Λ →
0+ limit. To investigate this structure, we analytically
continue one of the local solutions ψin, ψup to the region
where the other one converges. Since we want also to
consider the Λ → 0+ limit, our choice is to connect to
the near-horizon region, where the local solutions have
a finite radius of convergence also at Λ = 0. In other
words, we write

ψup(z) = Cup,in ψin(z) + Cup,out ψout(z). (18)

The explicit expressions for ψout(z), Cup,in, and Cup,out

can be found in (39),(43),(44).
As a result of the connection procedure, the Green’s

function G̃(ω, r, r′) is split into two terms, only one of
which has poles at the QNMs:

G̃+(ω, z, z
′) =

−3RhR−
Λ (Rh −R−)

p(z)p(z′)
Cup,in

Cup,out

ψin(z)ψin(z
′)

2a1
.

(19)
The full expression for the ratio of the connection coeffi-
cients can be organised as in (47).

The set of poles of (19) includes a branch of longer-
living de Sitter modes, which can be found in the small
Λ regime as poles of the Γ function Γ

(
1
2 + a− ax + a0

)
:

1

2
+ a− ax + a0 = −n, n ∈ Z≥0, (20)

from which we obtain the mode frequencies (1). Here,
a parametrises the composite monodromy around the
points z = 0 and z = x. The parameter a is defined
as an instanton expansion in powers of x as explained
in the Supplemental Material, and the leading order in
the instanton expansion can be found in (51). When the
frequency is of order

√
Λ in the small Λ expansion, as for

the modes (1), the small Λ expansion of a reads

a = ℓ+
1

2
+ a

(1)
Λ Λ +O

(
Λ3/2

)
, (21)

where a
(1)
Λ is given in (52).

In the Λ → 0+ limit, a0 − ax → ∞ and x → 0 with
x (a0 − ax) finite.5 As a consequence, the set of modes
in (1) coalesces into a branch cut, which can be seen
explicitly inside (49) from the limiting procedure

x2a
Γ
(
1
2 + a− ax + a0

)
Γ
(
1
2 − a− ax + a0

) =

x2a (a0 − ax)
2a

[
1 +O

(
1

a0 − ax

)]
→ (−2iωRh)

2a
,

(22)
where we used

Γ(z + α)

Γ(z + β)
= zα−β

[
1 +O

(
1

z

)]
, (23)

for the first equality, and then we took the Λ → 0+ limit.
(22) has a logarithmic branch point at the origin, as can
be seen by expanding at small ω,

(−2iωRh)
2a

=
3 (−2iRhω)

2ℓ+3

2(2ℓ+ 1)
log (−2iωRh)

+(terms regular at ω = 0) (24)

+(subleading terms)

with the cut along the negative imaginary axis. The full
expression is given in (61).

From the black hole perturbation point of view, this
branch cut emerging in the Λ → 0+ limit is known to
be responsible for the late-time power-law decay of the
retarded Green’s function G(t, t′, r, r′). Here, we prove
that the same power-law can be recovered from a sum
over the residues of the poles (1) in (19).

We begin by expanding the ratio of the connection co-
efficients (47) in the small x regime, obtaining the ex-
pression (55).6 We note that the frequencies (1) are not
poles of the leading order term in the first line of (55),
but of the subleading one, scaling with x2a.

To simplify the analytic computation, we work in the
asymptotic r∗, r′∗ → −∞ regime, and replace the wave
functions

ψ̃(z) ≡ ρh p(z)ψin(z), (25)

where ρh can be found in (56), with e−i ω r∗(z). By using
the quantisation condition (20), the contribution of the
set of de Sitter modes (1) to the Green’s function is given
by the sum of residues

5 In the gauge theory language, this is the decoupling limit of a
fundamental multiplet with mass a0−ax, that leads to a Nf = 3
theory starting from the Nf = 4 one.

6 Here, we are also working at leading order in the instanton expan-

sion. We postpone to the supplemental material the discussion
of what this expansion looks like and which conventions we are
using.
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GdS(t, t
′, r, r′) = 2πi

∑
n≥0

3RhR−
Λ (Rh −R−)

e−iω(t−t′+r∗+r′∗)

2π

x2a

2a1 ρ2h
G

(−1)n

n!

(
d(a+ a0 − ax)

dω

)−1 ∣∣∣∣
ω=ωdS

n

, (26)

where the expression of G can be found in (57).
By using the small Λ expansions of quantities appear-

ing in (26), i.e. (21) (58), we arrive at

GdS(t, t
′, r, r′) = CR2ℓ+3

h × (27)

Λℓ+ 3
2

2 3ℓ+
3
2 (ℓ+ 1)

∞∑
j=ℓ+1

e−
√

Λ
3 (t−t′+r∗+r′∗) jj

(
j + ℓ

2ℓ+ 1

)
,

where C is defined in (59). The series appearing in (27) is
a power series with polynomial coefficients, which can be
computed explicitly to give the following rational func-
tion,

(ℓ+ 1)

(
e

√
Λ(t−t′+r∗+r′∗)

√
3 + 1

)
e
−

√
Λ(ℓ−1)(t−t′+r∗+r′∗)

√
3(

e

√
Λ(t−t′+r∗+r′∗)

√
3 − 1

)3(
1− e

−
√

Λ(t−t′+r∗+r′∗)
√

3

)2ℓ
. (28)

Taking the Λ → 0+ limit of the resulting GdS, we find
Price’s law, (3), including the coefficient. As shown in
FIG. 2 this result matches precisely the tail obtained from
a numerical solution to the PDE (15), again, including
the coefficient.

We can alternatively get the same result, (3), by per-
forming a discontinuity integral of the branch cut which
emerges at Λ → 0 via the limiting procedure in (22).7 In-
deed, using the substitutions (22) and (25), we can write

G̃+(ω, z, z
′) as

G̃+(ω, z, z
′) =

−3RhR−
Λ (Rh −R−)

C̃up,in

C̃up,out

e−iω(r∗(z)+r′∗(z
′))

2a1 ρ2h
,

(29)
with C̃up,in/C̃up,out given in (60). The branch cut struc-
ture can be seen explicitly from the logarithm in (61). By
using the small Λ-expansions and the small ω-expansions
in (62) and (63), the computation of GdS(t, t

′, r, r′) re-
duces to the discontinuity integral (4), which again gives
Price’s law (3).

NUMERICAL RESULTS FOR GENERIC r∗, r
′
∗

In the previous section, we derived the tail of the
Schwarzschild Green’s function when r∗, r′∗ are close to
the black hole horizon, as a QNM sum, using analytic

7 We show this result by again expanding all the expressions at
zero instantons.

techniques. In this section, we address the same compu-
tation for generic r∗, r′∗, in particular, not near the hori-
zon. In this case the analytical treatment in the Λ → 0+

limit is complicated by the irregular singularity. Instead,
we utilise a numerical approach at small, but finite Λ,
and sum the first N de Sitter mode residues.
The full expression (17), includingW, can be expressed

in terms of Heun functions, ψin(z) and ψup(z), as given
in (37) and (38) and their derivatives. At finite Λ these
can be numerically evaluated efficiently.8

First, we evaluate the de Sitter mode frequencies, ωdS
n ,

which are roots of W. At small Λ, the ωdS
n are approx-

imated by (1), which serve as an initial guess for root
finding using Newton’s method.
Once ωdS

n are obtained for n = 0, . . . , N − 1, we select
our chosen values for r, r′ and numerically evaluate

resn ≡ res

(
G̃(ω, r, r′)

e−iω(t−t′)

2π
, ωdS

n

)
, (30)

for each n. Practically, this can be achieved by first com-
puting the gradient of W at the root through a numerical
derivative,

Sϵ
n =

W(ωdS
n + ϵ)−W(ωdS

n )

ϵ
, (31)

for some small ϵ. The residue then follows by evaluating
the remaining regular pieces of G̃ and combining with
the gradient of W, i.e.

resϵn =

(
G̃(ω, r, r′)W e−iω(t−t′)

2π

) ∣∣
ω=ω

(dS)
n

Sϵ
n

. (32)

Finally we compute the partial sum G
(N)
dS =

∑N−1
n=0 resϵn,

which is now a function of t − t′ with numerical coeffi-
cients.
Let us denote the longest-lived Schwarzschild QNM

as ωS
0 . In the case of s = 2, ℓ = 2 we have ωS

0 ≃
(±0.747343 − 0.177925i)R−1

h (see e.g. [40]). For the
de Sitter modes to dominate at late times, one there-
fore requires ΛR2

h ≲ 0.0105524. Provided ΛR2
h obeys

this inequality, G(t, t′, r, r′) will decay exponentially at
asymptotically late times by the longest lived de Sitter
mode rate. However, at small enough ΛR2

h and with large

enough N , G
(N)
dS will start to resemble the power-law tail.

Longer tails require smaller ΛR2
h and larger N , and in the

8 We use HeunG in Mathematica.
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limit Λ → 0 the tail becomes the asymptotic behaviour.

In the lower panel of FIG. 2 we show G
(N)
dS with N =

120 and ΛR2
h = 10−6, demonstrating the emergence of

the tail over the timescales shown. We ensure the roots
ωdS
n are converged to 10−100, and we use ϵ = 10−60.
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SUPPLEMENTAL MATERIAL

Longer formulas

The roots R± of the equation r f(r) = 0 are expressed in terms of Rh and Λ by

R± =
−Rh ±

√
12
Λ − 3R2

h

2
. (33)

The dictionary for the differential equation (12) is

x =
Rh(R+ −R−)
R+(Rh −R−)

,

a0 =
3iR−ω

Λ(R− −Rh)(R− −R+)
,

a1 =
3iRhω

Λ(Rh −R−)(R+ −Rh)
,

ax =
3iR+ω

Λ(R+ −Rh)(R+ −R−)
,

a∞ = s,

u =
3ℓ(ℓ+ 1)

Λ
(
R2

h −R2
+

) + 18R2
+ω

2
(
−2R2

h − 2RhR+ +R2
+

)
Λ2(Rh −R+)3(Rh +R+)(Rh + 2R+)2

+
3− 3s2

Λ
(
R2

h −R2
+

) − 2R2
h + 2RhR+ − 2R2

+s
2 +R2

+

2R2
h − 2R2

+

.

(34)
The wave function redefinition in (11) requires the function

p(z) =
1√

z(1− z)
√
Rh(R− +R+(z − 1))−R−R+z

. (35)

In terms of the parameters

α = 1− a0 − a1 − ax + a∞,

β = 1− a0 − a1 − ax − a∞,

γ = 1− 2a0,

δ = 1− 2a1,

ϵ = 1− 2ax,

q =
1

2
+ x

(
a20 + a21 + a2x − a2∞

)
− ax − a1 x+ a0 [2ax − 1 + x (2a1 − 1)] + (1− x)u,

(36)

the local solution satisfying ingoing boundary condition at the horizon is

ψin(z) = zγ/2(1− z)δ/2(z − x)ϵ/2(1− x)−ϵ/2 Heun (1− x, αβ − q, α, β, δ, γ, 1− z) , (37)

and the one satisfying outgoing boundary condition at the cosmological horizon is

ψup(z) = zγ/2(1− z)δ/2x−γ/2(1− x)−δ/2(z − x)ϵ/2 Heun

(
x

x− 1
,
q − αβx

1− x
, α, β, ϵ, δ,

z − x

1− x

)
. (38)

The discarded local solutions (with respect to the QNMs boundary conditions) are the local solution satisfying outgoing
boundary condition at the horizon:

ψout(z) =z
γ/2(1− z)1−δ/2(z − x)ϵ/2(1− x)−ϵ/2

×Heun
(
1− x, [(1− x)γ + ϵ](1− δ) + αβ − q, α+ 1− δ, β + 1− δ, 2− δ, γ, 1− z

)
,

(39)



8

and the local solution satisfying ingoing boundary condition at the cosmological horizon:

ψdown(z) = zγ/2(1− z)δ/2x−γ/2(1− x)−δ/2(z − x)1−ϵ/2

×Heun

(
x

x− 1
,
−q + x (β − γ − δ) (α− γ − δ) + γ (α+ β − γ − δ)

x− 1
,−α+ γ + δ,−β + γ + δ, 2− ϵ, δ,

z − x

1− x

)
.

(40)

We define the tortoise coordinate in the Schwarzschild-de Sitter geometry by

r∗ = −
3
[
Rh(R− −R+) log

(
r
Rh

− 1
)
+R−(R+ −Rh) log

(
r
Rh

− R−
Rh

)
+R+(Rh −R−) log

(
R+

Rh
− r

Rh

)]
Λ(Rh −R−)(Rh −R+)(R− −R+)

+
1

2
Rh

[
log

(
3

ΛR2
h

)
− 1

]
,

(41)

which, in the Λ → 0+ limit, reduces to the Schwarzschild tortoise coordinate

r
(Schw)
∗ = r +Rh log

(
r

Rh
− 1

)
. (42)

The connection coefficients for the Heun equation have the following expressions

Cup,in =
∑
σ=±

Γ (1− 2ax) Γ (−2σa) Γ (1− 2σa) Γ (2a1)∏
± Γ

(
1
2 − ax − σa± a0

)
Γ
(
1
2 − σa+ a1 ± a∞

)x−ax+σae−
σ
2 ∂aF (x)− 1

2∂axF (x)+ 1
2∂a1

F (x), (43)

Cup,out =
∑
σ=±

Γ (1− 2ax) Γ (−2σa) Γ (1− 2σa) Γ (−2a1)∏
± Γ

(
1
2 − ax − σa± a0

)
Γ
(
1
2 − σa− a1 ± a∞

)x−ax+σae−
σ
2 ∂aF (x)− 1

2∂axF (x)− 1
2∂a1

F (x), (44)

Cin,up = e−
1
2∂a1

F (x)
∑
σ=±

Γ (1− 2a1) Γ (−2σa) Γ (1− 2σa) Γ (2ax)∏
± Γ

(
1
2 − a1 − σa± a∞

)
Γ
(
1
2 − σa+ ax ± a0

)xσae−σ
2 ∂aF (x)xaxe

1
2∂axF (x). (45)

Cin,down = e−
1
2∂a1F (x)

∑
σ=±

Γ (1− 2a1) Γ (−2σa) Γ (1− 2σa) Γ (−2ax)∏
± Γ

(
1
2 − a1 − σa± a∞

)
Γ
(
1
2 − σa− ax ± a0

)xσae−σ
2 ∂aF (x)x−axe−

1
2∂axF (x). (46)

The ratio of connection coefficients used in the analytic computations can be written as

Cup,in

Cup,out
= e∂a1F (x)

Cexact
a1,a − Gexact Cexact

a1,−a

Cexact
−a1,a − Gexact Cexact

−a1,−a

, (47)

with

Cexact
a1,a =

Γ(2a1)∏
± Γ

(
1
2 + a1 + a± a∞

) , (48)

Gexact = x2a e−∂aF (x)
Γ(−2a)2

∏
± Γ

(
1
2 − ax + a± a0

)
Γ(2a)2

∏
± Γ

(
1
2 − ax − a± a0

) . (49)

The parameter a is defined as an instanton expansion

a =
∑
k≥0

a
(k)
inst x

k, (50)

as explained in the next Appendix. The zeroth instanton order of a reads

a
(0)
inst =

1

2

√
1 + 4ℓ(ℓ+ 1)− 12R2

hω
2 +O

(√
Λ
)
, (51)
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in the small Λ expansion. By adding more instanton contributions, every order in the small Λ expansion gets modified
if ω is assumed to be of order Λ0. Instead, if the frequency is assumed to be of order

√
Λ, in terms of the rescaled

frequency ω̃ ≡ ω/
√
Λ, the Λ-expansion is consistent with the instanton expansion. In particular, the first order

correction of the parameter a in the small Λ expansion reads9

a
(1)
Λ =

R2
h

(
L
(
15L2 − 6L

(
s2 + 1

)
− s4 + 5s2 − 4

)
− 3ω̃2

(
6(L− 1)s2 + L(15L− 11) + 3s4

))
6(2ℓ+ 1)L(4L− 3)

, (52)

where L = ℓ(ℓ+ 1).

By considering more instanton contributions, it is also possible to find the subleading orders in the frequencies
(1), from the poles of the Γ function Γ

(
1
2 + a− ax + a0

)
. For instance, with the first instanton contribution, the

frequencies read

ω(dS)
n = −i

√
Λ

3
(ℓ+ n+ 1) + ω1 Λ

3/2 +O
(
Λ2
)
, (53)

with

ω1 =− iR2
h

24
√
3ℓ(ℓ+ 1)(2ℓ+ 1)(4ℓ(ℓ+ 1)− 3)

[
ℓ(ℓ+ 1)

(
ℓ2(60n(n+ 1) + 22) + ℓ

(
60n2 + 62n+ 23

)
− n(44n+ 43)− 15

)
+ 4s4

(
2ℓ2 + ℓ(6n+ 5) + 3(n+ 1)2

)
+ 4s2

(
6ℓ3(2n+ 1) + ℓ2(6n(n+ 4) + 11) + ℓ

(
6n2 − 1

)
− 6(n+ 1)2

)]
.

(54)

The small x expansion of the ratio of the connection coefficients Cup,in/Cup,out reads

Cup,in

Cup,out
=

Γ (2a1)

Γ (−2a1)

∏
±

Γ
(
1
2 + a− a1 ± a∞

)
Γ
(
1
2 + a+ a1 ± a∞

)+
x2a

[
Γ (−2a) Γ (1− 2a) Γ (2a1)

∏
± Γ

(
1
2 − ax + a± a0

)
Γ
(
1
2 − a1 + a± a∞

)
Γ (2a) Γ (1 + 2a) Γ (−2a1)

∏
± Γ

(
1
2 − ax − a± a0

)
Γ
(
1
2 + a1 − a± a∞

)
− Γ (−2a) Γ (1− 2a) Γ (2a1)

∏
± Γ

(
1
2 − ax + a± a0

)
Γ
(
1
2 + a− a1 ± a∞

)2
Γ (2a) Γ (1 + 2a) Γ (−2a1)

∏
± Γ

(
1
2 + a+ a1 ± a∞

)
Γ
(
1
2 − ax − a± a0

)
Γ
(
1
2 − a− a1 ± a∞

)]+O
(
x2a+1

)
.

(55)

The ρh factor in (25) is given by

ρh =

(
eΛ

3

) iRhω

2

R
iRhω

(
1+ 3

Λ(Rh−R−)(Rh−R+)

)
h (Rh −R−)

3iRhω

Λ(Rh−R−)(Rh−R+)
+

3iR−ω

Λ(R−−Rh)(R−−R+)

× (−R−)
1
2−

3iRhω

Λ(Rh−R−)(Rh−R+) (R+ −Rh)
1
2+

3iR+ω

Λ(R+−Rh)(R+−R−) .

(56)

The function G appearing in the residue sum (26) is given by

G =
Γ(2a1)Γ(−2a0 − n)Γ(2a0 − 2ax + 2n+ 2)Γ(2a0 − 2ax + 2n+ 1)

∏
± Γ(−a0 − a1 ± a∞ + ax − n)

Γ(−2a1)Γ(−2ax + n+ 1)Γ(−2a0 + 2ax − 2n− 1)Γ(−2a0 + 2ax − 2n)Γ(2a0 − 2ax + n+ 1)

×
[∏

±

1

Γ(a0 + a1 ± a∞ − ax + n+ 1)
−
∏
±

Γ(−a0 − a1 ± a∞ + ax − n)

Γ(−a0 + a1 ± a∞ + ax − n)Γ(a0 − a1 ± a∞ − ax + n+ 1)

]
.

(57)

9 This result is obtained by using the second order in the instanton expansion.
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The following expansion is useful for the terms appearing in the residue sum (26):

3RhR−
Λ (Rh −R−) 2a1 ρ2h

G

(
d(a+ a0 − ax)

dω

)−1 ∣∣∣∣
ω=ωdS

n

=

(−1)ℓ+n− 1
2 (ℓ+ n+ 1) (2ℓ+ n+ 1)! (ℓ!)2 [(ℓ− s)!]2 [(ℓ+ s)!]2

3 [(2ℓ)!]2 [(2ℓ+ 1)!]2
R2

h Λ +O
(
Λ2
)
.

(58)

The coefficient C is given by

C =
(−1)ℓ 22ℓ+2 (ℓ+ 1) (ℓ!)2 [(ℓ− s)!]2 [(ℓ+ s)!]2

[(2ℓ)!]2 (2ℓ+ 1)!
. (59)

Taking the expansion of
Cup,in

Cup,out
at zero instantons using (51), and replacing the term x2a

Γ( 1
2−ax+a0+a)

Γ( 1
2−ax+a0−a)

in Gexact

with (−2iωRh)
2a

(0)
inst from (22), we get

C̃up,in

C̃up,out

∼
Cexact

a1,a
(0)
inst

− Γ
(
−2a

(0)
inst

)2

Γ
(
2a

(0)
inst

)2

Γ
(

1
2−ax+a

(0)
inst−a0

)
Γ
(

1
2−ax−a

(0)
inst−a0

) Cexact

a1,−a
(0)
inst

(−2iωRh)
2a

(0)
inst

Cexact

−a1,a
(0)
inst

− Γ
(
−2a

(0)
inst

)2

Γ
(
2a

(0)
inst

)2

Γ
(

1
2−ax+a

(0)
inst−a0

)
Γ
(

1
2−ax−a

(0)
inst−a0

) Cexact

−a1,−a
(0)
inst

(−2iωRh)
2a

(0)
inst

=
Γ(2a1)

∏
± Γ

(
1
2 + a

(0)
inst − a1 ± a∞

)
Γ(−2a1)

∏
± Γ

(
1
2 + a

(0)
inst + a1 ± a∞

)

+
Γ(−2a

(0)
inst)

2Γ(2a1)Γ
(

1
2 + a

(0)
inst − a0 − ax

)∏
± Γ

(
1
2 + a

(0)
inst − a1 ± a∞

)
Γ(2a

(0)
inst)

2Γ(−2a1)Γ
(

1
2 − a

(0)
inst − a0 − ax

) [
− 1∏

± Γ
(

1
2 − a

(0)
inst + a1 ± a∞

)
+

∏
± Γ

(
1
2 + a

(0)
inst − a1 ± a∞

)
∏

± Γ
(

1
2 − a

(0)
inst − a1 ± a∞

)∏
± Γ

(
1
2 + a

(0)
inst + a1 ± a∞

)] (−2iωRh)
2a

(0)
inst +O

[
(−2iωRh)

4a
(0)
inst

]
.

(60)
The branch cut structure in ω is then explicit by looking at the expansion

(−2iωRh)
2a

(0)
inst = (−2iωRh)

2ℓ+1
+

3 (−2iRhω)
2ℓ+3

2(2ℓ+ 1)
log (−2iωRh) +O

(
ω2ℓ+5

)
. (61)

The coefficient of (−2iωRh)
2a

(0)
inst in (60) admits the expansion

Γ(−2a
(0)
inst)

2Γ(2a1)Γ
(

1
2 + a

(0)
inst − a0 − ax

)∏
± Γ

(
1
2 + a

(0)
inst − a1 ± a∞

)
Γ(2a

(0)
inst)

2Γ(−2a1)Γ
(

1
2 − a

(0)
inst − a0 − ax

)
×

 ∏
± Γ

(
1
2 + a

(0)
inst − a1 ± a∞

)
∏

± Γ
(

1
2 − a

(0)
inst − a1 ± a∞

)∏
± Γ

(
1
2 + a

(0)
inst + a1 ± a∞

) − 1∏
± Γ

(
1
2 − a

(0)
inst + a1 ± a∞

)
 =

π(−1)ℓ(2ℓ+ 1)((ℓ− s)!)2((ℓ+ s)!)2

3 42ℓΓ
(
ℓ+ 1

2

)2
Γ(2ℓ+ 2)2

+O (Λ, ω) .

(62)

The following expansion is also useful for the computation of the integral discontinuity:

−3RhR−
Λ (Rh −R−)

1

2a1 ρ2h
= − i

2ω
+O

(√
Λ, ω0

)
. (63)

The gauge theory framework and conventions

In this section, we introduce the main contributions useful for defining the instanton partition function appearing
in the connection formulas and we introduce the conventions used. We denote with Y⃗ = (Y1, Y2) a pair of Young
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diagrams, with a⃗ = (a1, a2) the vacuum expectation value of the scalar in the vector multiplet, and with ϵ1, ϵ2 the
parameters characterizing the Ω-background. We define the hypermultiplet and vector contributions as

zhyp

(
a⃗, Y⃗ ,m

)
=
∏

k=1,2

∏
(i,j)∈Yk

[
ak +m+ ϵ1

(
i− 1

2

)
+ ϵ2

(
j − 1

2

)]
,

zvec

(
a⃗, Y⃗

)
=

2∏
i,j=1

∏
s∈Yi

1

ai − aj − ϵ1LYj
(s) + ϵ2(AYi

(s) + 1)

∏
t∈Yj

1

−aj + ai + ϵ1(LYi
(t) + 1)− ϵ2AYj

(s)
.

(64)

We always adopt the conventions ϵ1 = 1 and a⃗ = (a,−a). By denoting with m1,m2,m3,m4 the masses of the four
fundamental hypermultiplets, these are defined in terms of the monodromy parameters a0, ax, a1, a∞ as

m1 = −ax − a0, m2 = −ax + a0,

m3 = a∞ + a1, m4 = −a∞ + a1.
(65)

The position of the fourth singularity of the Heun equation, denoted with x, corresponds to the instanton counting
parameter x = e2πiτ , where τ is related to the gauge coupling gYM by

τ =
θ

2π
+ i

4π

g2YM

. (66)

The instanton part of the NS free energy is given as a power series in x by

F (x) = lim
ϵ2→0

ϵ2 log

[
(1− x)−2ϵ−1

2 ( 1
2+a1)( 1

2+ax)
∑
Y⃗

x|Y⃗ |zvec
(
a⃗, Y⃗

) 4∏
i=1

zhyp

(
a⃗, Y⃗ ,mi

)]
, (67)

which can be expanded as

F (x) =

(
4a2 − 4a20 + 4a2x − 1

) (
4a2 + 4a21 − 4a2∞ − 1

)
8− 32a2

x+O
(
x2
)
. (68)

The gauge parameter a parametrizes the composite monodromy around the points z = 0 and z = x, and is expressed
as a series expansion in the instanton counting parameter x, obtained by inverting the Matone relation [41]

u = −1

4
− a2 + a2x + a20 + x ∂xF (x), (69)

where the parameter u, appearing in the differential equation (12) as the accessory parameter, corresponds to the
complex modulus parametrizing the energy of the corresponding Seiberg-Witten curve. The instanton expansion of a
reads

a = ±


√
−1

4
− u+ a2x + a20 +

(
1
2 + u− a2x − a20 − a21 + a2∞

)(
1
2 + u− 2a2x

)
2(1 + 2u− 2a2x − 2a20)

√
− 1

4 − u+ a2x + a20

x+O(x2)

 . (70)

As can be seen, a is in principle defined up to a sign. We always choose the branch for which a has a positive real
part.

In the analytic computations, we work at zero instantons. This means that the expansion of a is truncated at the

first term in (70), a = ±
√
− 1

4 − u+ a2x + a20 , and F (x) = 0.
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