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Recent evidence suggests that the ecological footprints of pre-Columbian Indigenous

peoples in Amazonia persist in modern forests. Ecological impacts resulting from

European colonization c. 1550 CE and the Amazonian Rubber Boom c. 1850 to

1920 CE are largely unexplored but could be important additive influences on forest The authors declare no competing interest.
structure and tree species composition. Using environmental niche models, we show  This article is a PNAS Direct Submission.

the highest probabilities of pre-Columbian and colonial occupation sites, and hence Copyright © 2025 the Author(s). Published by PNAS.
human-induced ecological influences, occurred in forests along rivers. In many areas, the This article is distributed under Creative Commans
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predicted pre-Columbian and colonial distributions overlap spatially with the potential ~ (ccav-neND).

for superimposed ecological influences. Environmental gradients are known to structure  pnas policy is to publish maps as provided by the
Amazonian vegetation composition, but they are also strong predictors of past human ~ authors.
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influence, both spatially and temporally. Our comparisons of model outputs with relative To whom %""le@s)’””dfnce may be addressed. Email:
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abundances of Amazonian tree species suggest that pre-Columbian and colonial-period o , o ) .

. . A . . This article contains supporting information online at
ecological legacies are associated with modern forest composition. https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.

2514040122/-/DCSupplemental.
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Tropical South America harbors immense biodiversity, including over 85,000 plant species
(1). Amazonian rainforests comprise a ca. 6 million km” area in tropical South America
and are estimated to contain ca. 16,000 tree species and over 390 billion trees (2). Of the
16,000 species, 227 (ca. 1.4%) are termed “hyperdominant” because they comprise half
of the 390 billion trees in the forest. Biogeographic variation (Andean vs. Brazilian/
Guianan plate material) and precipitation are the main drivers of variation in forest com-
position on basin-wide scales across Amazonia (3). Drivers of variation in plant commu-
nities on more local scales include hydrology and soil characteristics (e.g., refs. 4 and 5).

In the last decades, a growing body of evidence points to the possibility that many
Amazonian forests were intentionally modified or indirectly impacted prior to the arrival
of Europeans (hereafter, the pre-Columbian period) (6-9). Evidence of large, complex
pre-Columbian societies has been uncovered in several regions of Amazonia (9-14).
Pre-Columbian Indigenous people have been burning forests, growing crops, and altering
the abundances of certain plant species (either intentionally or unintentionally) where
they lived for thousands of years (15). The forests that were occupied by pre-Columbian
people may still bear some form of imprint, or ecological legacy, on their tree species
composition and carbon dynamics (8, 16-18). Pre-Columbian inhabitants are suggested
to have increased the richness and abundances of domesticated tree species near archae-
ological sites (8), and the distribution of known archaeological sites is significantly and
positively correlated with the distribution of forest plots that are used to measure tree
diversity and abundance (19).

The discussion of ecological legacies of past human activities, however, largely ignores
the colonization period (following European arrival) (20-23). The Great Dying of
pre-Columbian people in the 1500 and 1600s due to disease, warfare, and enslavement
would have resulted in forest regrowth that occurred only a few centuries ago (e.g., ref.
24). Colonial populations began new forms of land management (e.g., plantations), and
the period was also characterized by the collapse, displacement, enslavement, and frag-
mentation of Indigenous populations (20, 25, 26). A particularly formative period for
modern Amazonian population distributions was the “Rubber Boom” from approximately
1850 to 1920 (Common Era, CE). During this period, Amazonia became the center of
extractive industries for not just rubber (derived from the processing of latex harvested
from Hevea brasiliensis trees) but also for precious metals, timber, meat, animal skins, and
natural oils (27, 28). Immigrants swelled the Amazonian populations, sometimes increas-
ing populations of modern cities such as Belém do Pard, Manaus, and Porto Velho (Brazil)
by as much as 400%. At the same time, the Indigenous populations, who constituted the
majority of the labor force, were often relocated to meet the demands of the nascent
industries (29, 30). Wood-burning ships, new colonists, and unprecedented commercial
pressures on the Amazonian landscape led to extensive deforestation in many areas (31-33).
Another wave of population decline happened when rubber trees were exported, and many
plantations were abandoned. Because of the long lifespan of tropical trees, successional
processes are likely ongoing even centuries after forests started to regrow (34, 35).

Wallace and Bates (36), along with other naturalists exploring Amazonia during the
1800s took advantage of the social infrastructure provided by colonists. The naturalists
were heavily reliant on Indigenous peoples, guides, boatmen, and collectors (36-38).
Many of the collection records of those naturalists are now being georeferenced, digitized,
and archived in electronic repositories such as the Global Biodiversity Information Facility
(GBIF; https://www.gbif.org). While explorations sometimes strayed quite far beyond
colonial settlement sites, the locations of these collection records may represent the general
area of collection sites or nearby trading sites because of the dependence of collectors on
colonial infrastructure. Either way, these records arguably provide an estimate of the
distribution of settlement hubs in Amazonia throughout the colonial history. These set-
tlement hubs likely experienced greater forest alterations due to clearing for cultivation
or plantations, construction, wood for steamboat fuel, and the defaunation of large ver-
tebrates for bushmeat and the fur trade (28, 33), than areas farther from settlements.

We use the early GBIF records to create ensemble distribution models (39, 40) that
predict the distribution of people across the landscape from early European colonization
until the end of the Rubber Boom (i.e., 1600 to 1920 CE; hereafter the colonial period)
(Fig. 1A4). Likewise, we use a database containing over 7,363 georeferenced sites in
Amazonia (https://sites.google.com/view/amazonarch/home) to model the distributions
of pre-Columbian people (Fig. 14 and Dataset S1). We compare the modeled probabilities
of pre-Columbian and colonial occupation patterns and compare the model outputs with
the relative abundances of 262 hyperdominant and useful tree species recorded in 1,521
forest inventory plots spread throughout lowland Amazonia (2, 41). We hypothesize that:
i) the relative abundances of hyperdominant tree species are inversely associated with the
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Significance

Amazonian rainforests contain
some of the highest biodiversity
on Earth, but the extent to which
modern forests are shaped by
past human actions is unknown.
Human activities potentially
affect the richness and
abundance of many Amazonian
species, especially those
considered to be useful. For
thousands of years, forest
management may have
cumulatively altered forests that
today appear to be completely
natural. We generate models
predicting the distribution of
pre-Columbian Indigenous
people (prior to 1550 CE) and the
distribution of early colonists
across Amazonia (1600 to 1920
CE). We find that certain common
and useful plants have had their
abundances increased or
depleted by past human
activities. We highlight the
potential role of long-term
human-environment interactions
in shaping modern Amazonian
forests.
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Fig. 1. Occurrence locations and species distribution models of people during the pre-Columbian and colonial periods in Amazonia. (A) Spatially filtered (10 km
grid cell) occurrence locations of pre-Columbian sites from the AmazonArch database of archaeological sites (N = 6,960), and colonial sites represented by GBIF
occurrence locations collected from 1600 to 1920 CE across all biological Kingdoms (N = 1,026). The limits of Amazonia sensu stricto (42) are shown as a gray
polygon, and locations of major rivers (>4th order) are shown as blue lines. (B and C) Probabilities of human occupation during the pre-Columbian and colonial
periods based on species distribution models generated using the site locations in panel A and a suite of environmental predictors (Materials and Methods); (D)
Local Pearson correlation coefficients between the pre-Columbian and colonial model outputs; (E) Joint probability of pre-Columbian and colonial people (e.g.,
areas that were likely inhabited during both periods); and (F) Probability of colonial minus pre-Columbian occupation. Positive numbers indicate areas with higher
probabilities of primarily colonial influences (i.e., Iquitos region—red dashed line) whereas more negative numbers indicate areas with primarily pre-Columbian

influence (i.e., southern regions—blue dashed line).

probability of colonial influence, ii) the abundances of useful tree
species are positively associated with the probability of
pre-Columbian or colonial influence, and iii) the relative abun-
dances of early and mid-successional tree species are positively
associated with high probabilities of colonial influence.

Results

The ensemble distribution model of pre-Columbian people
(Fig. 1B) had an AUC value of 0.82 (Dataset S2). Distance from
river (SI Appendix, Fig. S1) was the most important predictor
variable and accounted for 21.5% of the permutation impor-
tance in the pre-Columbian model. As with the distribution
model of colonial people, settlement probabilities of people were

PNAS 2025 Vol. 122 No.47 2514040122

substantially lower at distances >10 km from a fourth-order river
(SI Appendix, Fig. S2). In both the colonial and pre-Columbian
models, elevation (87 Appendix, Fig. S1) was the second-most
important variable, though it had less than 10% of the permuta-
tion importance (Dataset S3) in either model. Given the flatness
of Amazonia, elevation is functionally a metric of western (higher)
to eastern (lower) geographic placement and thus indicated the
higher occupation likelihood of eastern and central Amazonia
than the western regions.

The compilation of GBIF data collected during the colonial
period and the resulting ensemble distribution model indicated
that the highest likelihoods of colonization were along the main
Amazon River and its major tributaries (Fig. 1C). Probabilities of
settlement during the colonial period ranged from 0.006 to 0.75

https://doi.org/10.1073/pnas.2514040122 3 of 11
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and had an AUC value of 0.76 (Dataset S2). Distance from river
(SI Appendix, Fig. S1) was the most important predictor variable,
accounting for 39.5% of the permutation importance in the colo-
nial ensemble model (Dataset S3). Settlement probabilities
decreased as distance from river increased, particularly beyond
5 km (S Appendix, Fig. S2).

The modeled distributions of people in the pre-Columbian and
colonial periods were positively and significantly correlated (R =
0.56, P < 0.001) (Fig. 1D). The joint probability model outputs,
which reflected the probability of both pre-Columbian and colo-
nial land use, ranged from 0 to 0.47, with the highest values most
visible in central and southwestern Amazonia (Fig. 1E).
Correlations were weaker and even negative in some areas along
the periphery of the basin. The calculation of colonial minus
pre-Columbian distributions shows that colonial influence was
likely stronger than pre-Columbian in the Iquitos region (dashed
red line), but the pre-Columbian (and modern) influence was
likely stronger in the geoglyph and earthworks region of southern
Amazonia (dashed blue line) (Fig. 1F).

At the forest inventory plot locations (N = 1,521), the proba-
bilities of colonial human activity ranged from 0.007 to 0.75,
compared with probabilities of 0.05 to 0.65 for the pre-Columbian
period (Fig. 2). The relative abundances of useful tree species
(summed across all categories of use) were significantly and pos-
itively correlated with both pre-Columbian and colonial influence
(Fig. 2). Summed relative abundances of useful species were high-
est in plots where the probability of pre-Columbian influence
exceeded 0.4, particularly in eastern Amazonia, and the probability
of colonial influence exceeded 0.3, particularly in northwestern
Amazonia (Fig. 2). Correlation coefficients between abundances
and the probabilities of colonial and pre-Columbian settlements
did not differ between life strategies (early successional,
mid-successional, or late successional) (Fig. 3) or category of use
(food, construction, etc.).

Tree species tended to exhibit both pre-Columbian and colonial
enrichment, or both pre-Columbian and colonial depletion
(Fig. 3). Out of the 262 assessed tree species, the abundances of
133 (51%) were significantly correlated with model predictions
of pre-Columbian people, the abundances of 152 species (58%)
were significantly correlated with model predictions of colonial
distributions, and the abundances of 91 species (35%) were sig-
nificantly correlated with predictions of overlapping pre-Columbian
and colonial distributions (Dataset S1). Of the 152 tree species
significantly correlated with probabilities of colonial settlements,
91 had negative correlation coefficients and 61 had positive ones
(Dataset $4). Of the 133 species significantly correlated with prob-
abilities of pre-Columbian settlements, 73 had negative and 60
positive correlation coefficients.

Species rarely exhibited colonial enrichment and pre-Columbian
depletion (Fig. 3). There were, however, some hyperdominant and
useful species, including Berthollettia excelsa (Brazil nut), that
exhibited pre-Columbian enrichment and colonial depletion. The
correlation coeflicients between settlement probability and species
abundances did not show patterns with the use of the plant (e.g.,
plants used for construction did not show negative correlation
coeflicients indicating depletion). Life history strategy also showed
no pattern with colonial and pre-Columbian correlation coefh-
cients (Fig. 3).

Discussion

‘The data supported our hypothesis that useful species abundances
were generally higher in plots where probabilities of pre-
Columbian and colonial influence were higher (Fig. 2). Our

https://doi.org/10.1073/pnas.2514040122
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Fig. 2. Predicted probabilities of pre-Columbian and colonial influence at
1,521 Amazonian forest plots (circles). The colors represent the geographic
region of the plots (sensu 2): CA = Central Amazonia, EA = Eastern Amazonia,
GS = Guiana Shield, NWA = Northwestern Amazonia, SA = Southern Amazonia,
SWA = Southwestern Amazonia. The sizes of the circles represent the
percentages of (A) useful (sensu 75) or (B) hyperdominant (sensu 2) species
found in the plot.

findings, however, did not support the hypotheses that higher
probabilities of colonial influence would decrease the relative
abundances of hyperdominant species and increase the abun-
dances of early successional species (Figs. 2 and 3). As most forest
plots were intentionally placed in structurally mature forests, there
were only 15 early successional species in our dataset, and about
half were related to pre-Columbian or colonial activity (Fig. 3).
Instead, increased abundances of the early successional species are
likely related to modern disturbances, including ongoing and
continual canopy gap dynamics (e.g., refs. 34 and 43).

Spatial Patterns of Pre-Columbian and Colonial Forest
Modifications. Previously published models of pre-Columbian
population distributions (19, 44, 45) were run with a limited set
of (<1,000) occurrence locations based on known archaeological
sites. We updated those original models using the AmazonArch
database, which contained over 7,000 archaeological sites in the
Amazon (before geographic filtering by the model) including ADE

and earthworks where most, but not all, were pre-Columbian in
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Fig. 3. Correlation coefficients between the relative abundances of 262
hyperdominant and useful Amazonian tree species and model predictions of
pre-Columbian and colonial influence. Color indicates whether the species is
a pioneer, mid-successional, or late-successional species.

age (Fig. 1 A and B and Dataset S1). The overall pattern that pre-
Columbian human populations congregated around waterways
remains a predominant feature in the current and previously
published models (19, 44), including those where only material
dated in the pre-Columbian period was used (46). The models
updated with the AmazonArch sites, however, help the model
differentiate probabilities of occupation in interfluvial areas that
were more sparsely populated than those close to rivers.

We also used an ensemble modeling approach, which included
running the environmental data and occurrence points (model
inputs) through a series of algorithms typically used in species
distribution models, evaluating the performance of those models,
and generating an output based on the weighted average of
best-performing models (39). Because the AmazonArch sites
extended past the geographical boundaries of the previous dataset,
the predicted distribution of pre-Columbian has also expanded.
Our updated model (Fig. 1B) generated high probabilities for
occupation in both the terra preta-rich regions of eastern Amazonia
and along the main river channels (44) and the earthwork-rich
regions of southwestern and southern Amazonia (9). These prob-
abilities are more realistic than those previously published because
of the inclusion of smaller archaeological sites in interflu-
vial regions.

Europeans began mapping the coastal region of Amazonia in
1499, and the first expedition navigated the length of the Amazon
River in 1541 CE (47, 48). Our ensemble distribution model
using collection records to predict colonist settlement activity is
in broad agreement with historical descriptions and maps of early
European expeditions, Jesuit mission locations, and hotspots of
the Amazonian Rubber Boom (26, 31-33, 47, 49, 50) (Fig. 1C
and S/ Appendix, Figs. S3—-S5). Historical records document Jesuit
missions and trade networks from 1538 to 1638 CE along the
Marafion and Napo Rivers in Ecuador and Peru, the Rio Negro
inBrazil,andalongthemain AmazonRiver (51) (S] Appendix,Fig. S3).

PNAS 2025 Vol. 122 No.47 2514040122

Historical maps of South America show that only the main
Amazon channel and several of its main tributaries had been
explored by colonists by ca. 1700 CE (52, 53) (SI Appendix,
Fig. $3), but many other tributaries were explored in the next few
decades (54, 55) (SI Appendix, Fig. S4). Early biological collectors,
including Spruce, Wallace, and Bates, traveled through Amazonia
before the onset of the Rubber Boom and described how many
settlements were located on the main channels (36, 38, 56, 57).
During the Rubber Boom (ca. 1850 to 1920 CE), major cit-
ies—e.g., Manaus, Belém, Santarém, Porto Velho, and Rio
Branco—developed as ports servicing the growing industrial
might of Amazonian commerce (31-33, 58, 59) (S/ Appendix,
Fig. S5). At the same time, the Madeira, a white-water river with
fertile floodplains, became a center of timber extraction (32)
(SI Appendix, Fig. S5). With the development of these cities came
a high demand for wood and charcoal to fuel boats back to Europe
(until the onset of oil-fueled boats in the 1920s). The close agree-
ment between historical maps and the collection locations (Fig. 14
and SI Appendix, Figs. S3-S5) suggests that GBIF records provide
a worthy archive to model the distribution of colonists in
Amazonia (Fig. 1C).

Rivers form areas of new colonization opportunity (e.g., sand-
bars) for people and plants. Rivers also determined accessibility,
connectivity, and cultural transmission within the forests, and
played a large role in structuring the distribution of people during
the pre-Columbian and colonial period in Amazonia (44, 60-65)
(Fig. 1). The occupants of Amazonia today also commonly settle
the riverine environments (22, 66). This consistent dependence
on the rivers for accessibility, connectivity, and tradable goods
indicates that some riverine forests have undoubtedly been occu-
pied and abandoned multiple times throughout the last several
millennia, particularly those located within 10 km of a major river
(i.e., a fourth-order river, Fig. 1E and S7 Appendix, Fig. S2) (19,
22). Our models predicted that areas along the main Amazon
River channel from Manaus to Belém were likely occupied both
during the pre-Columbian and colonial period, as were regions
of the Bolivian Beni and western Amazonia (Fig. 1 D and E).
Though it is possible that the dependence on rivers is an artifact
of collection of both ecological and archaeological data, it is
unlikely. The ATDN dataset includes 391 sites that are >10 km
away from a river. In the AmazonArch database, 1,675 out of
7,363 sites were >10 km away from a river. Fire and vegetation
reconstructions from charcoal and phyrtoliths (silica microfossils)
found in western and central Amazonian soils show a lighter
human footprint in the interfluvial regions compared with loca-
tions found within 5 km of a large river (61, 63, 64). Models
predicting the distributions of earthworks and Amazonian Dark
Earths also suggest that interfluvial areas were more sparsely pop-
ulated than riverine locations (9, 44). But while sampling is not
optimal in either case, it is likely that the same factors driving
population distributions today also drove them in the past.

It is important to note that we do not contend that there was
no occupation of forests >10 km from rivers by people during the
pre-Columbian or colonial period. Some archaeological features,
such as the geoglyphs and earthworks in southwestern and south-
ern Amazonia, were created in nonriverine areas during the
pre-Columbian period (9, 11, 67, 68). In the colonial period,
Indigenous people were displaced and fragmented (69, 70). This
displacement, primarily away from rivers and into the terra firme
forests also caused changes in the way Indigenous people used the
lands that they occupied (69). Further, while the areas that were
occupied by the European settlers were primarily along river cor-
ridors, the impacts of activities such as hunting likely extended
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further back into terra firme areas (28). In some locations, how-
ever, Indigenous people managed to resist colonialism and even
impeded efforts of deforestation (71).

Ecological Legacies in Amazonian Forests. Our analyses support
hypotheses that past human activities left lasting ecological
legacies on modern Amazonian forests that may have been direct
or indirect, intentional or unintentional (8, 17-19, 72). Many
studies of legacies focus on the enrichment (increase of local
abundances and/or enlargement of geographic distributions)
of useful species as the primary legacy effect on Amazonian
forests (6, 8, 73). Our data show that both pre-Columbian and
colonial enrichment happened with some species, such as Triplaris
weigeltiana, Astrocaryum murumuru (Arecaceae), Hevea brasiliensis
(Euphorbiaceae), and Spondias mombin (Anacardiaceae) (Fig. 3).
Three of these species are used as either food or construction
but 77 weigeltiana has no known use (Dataset S4). 1. weigeltiana,
however, grows fast and can reproduce vegetatively (is a pioneer)
(74) and likely increased during both the pre-Columbian and
colonial periods via an increase in forest clearing. This species can
even grow as a monodominant on some nutrient poor floodplains
(75). H. brasiliensis was arguably the most exploited and potentially
enriched species in Amazonia during the Rubber Boom (32, 33),
but Indigenous people also used the rubber for medicinal and other
purposes (76) (Fig. 3 and Dataset S4). A. murumuru is used by
multiple Indigenous groups (77) and is a successful gap colonizer
(78). S. mombin is a species in the process of domestication, and
is often planted alongside 7heobroma grandiflorum in agroforestry
systems (79).

Depletions of palms such as Mauritia flexuosa and Iriartea del-
toidea have been documented in recent decades (80-82). Our
results show that depletions have also likely happened over longer
timespans. The relative abundances of several tree species, such as
Brosimum spp. (Moraceae), Euterpe precatoria and 1. deltoidea
(both Arecaceae) were higher in forest inventory plots where the
likelihood of pre-Columbian and colonial occupation was lower
(Fig. 3). I deltoidea is a palm that is commonly used for construc-
tion. Phytolith data from terrestrial soils show that the abundances
of phytoliths produced by these genera are higher when other
signals of human activity (i.e., fire, cultivation) are low (63, 64,
83). Data from lake sediment records have shown that populations
of 1. deltoidea rebound in the centuries following site abandon-
ment (84).

Ecological legacies are complex. Pre-Columbian people likely
enriched some species and colonial people depleted it, but not the
other way round. A key example is Bertholletia excelsa
(Lecythidaceae), known globally as the Brazil Nut (Fig. 3).
However, land use (i.c., fire, cultivation, forest opening) can vary
across geographic region. Brosimum is a mid-succession hardwood
genus, whose members are commonly used for construction, med-
icine, and in some cases food. In our study Brosimum spp. were
in higher abundances when the probabilities of human influence
were lower (Fig. 3).

A significant question arises from these observations: Did peo-
ple select forests rich in favored species as a homesite, or did people
actively enrich or deplete existing forests? This ambiguity between
correlation and causation is difficult to resolve, but is perhaps most
likely to be correlational, i.e., people selecting a naturally rich area
in the cases of long-lived species being targeted for extraction,
such as H. brasiliensis during the Rubber Boom. Both in the past
and even today, people primarily chose to live beside rivers for
many reasons, and then likely adapted to using species from riv-
erine settings. Hence, people and a large subset of useful trees tend
to co-occur naturally at high densities along rivers. Causal
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relationships may be inferred when a species is found outside of
its natural range (8, 9, 85, 86). A blended pattern in which cor-
relational richness of useful species might trigger the initial settle-
ment choice, but subsequent enrichment occurring as a
consequence may shape the history of some forests. For example,
in some forest plots in Bolivia >60% of the individuals are domes-
ticated species (8).

Ecological legacies may also result from soil modifications,
successional processes following human activities (or site aban-
donment), or from defaunation of seed dispersers in the land-
scape (18, 84, 87-89). Up to 84% of Amazonian tree individuals
may be useful in some form (90), but the form of plant usage
can change across space (i.c., between groups of Indigenous
people) and through time, potentially confounding comparisons
of usefulness. Our analysis was also limited to Amazonian trees
that reach >10 cm diameter at breast height (DBH), and it is
likely that many intentionally used plants fall into smaller size
classes as they are easier to manage or produce fruit earlier than
larger species (91). In many cases, these smaller plants (and
cultivated or crop plants) tend to have shorter lifespans, and
the legacy effects on modern forests may not be as strong as
with the trees that obtain larger sizes and often live more than
several hundred years.

Time is important in structuring ecological legacies on vegeta-
tion, both the duration of influence and the time since active
management or abandonment. The earliest inhabitants were
located along the main Amazon River, and began spreading out
through the interfluvial regions shortly afterward (14). The
pre-Columbian influence in some regions could thus have built
over millennia, whereas effects during the colonial period lasted
centuries at most. Some regions experienced compounding eco-
logical legacies from both periods. In northwestern Amazonia, for
example, the city of Iquitos grew from Jesuit missions, but became
a center of power during the colonial era (red dashed line, Fig. 1F)
(26). Paleoecological data, which were not used to build the model
and were completely independent of it, showed that while
pre-Columbian people lived in the Iquitos region for millennia,
their ecological impact was light until the last few hundred years
(92). The paleoecological data also showed that pre-Columbian
human activities seemed to be more frequent and intense in some
areas along the Napo River in Ecuador compared with northern
Peru and Iquitos (63, 64, 93, 94). Not as many colonial records
(Fig. 1) were collected from some of the geoglyph-rich regions of
southern Amazonia (9), so the pre-Columbian influence on plant
communities was likely stronger than the colonial influence (red
dashed lines, Fig. 1 7).

Parsing apart the effects of ecological legacies and environmental
gradients poses challenges. Precipitation gradients structure regional
patterns of species richness and abundance (3, 4, 95-97), which in
turn structure spatial patterns of forest functionality and carbon
storage (98, 99). Soil fertility, hydrological gradients, and topo-
graphical gradients are responsible for shaping their local patterns
(e.g., refs. 4, 5, and 100-103). Forests with lower wood density
tend to occur on richer and less well-drained soils such as alluvial
floodplains (104). Constant river migrations cause alluvial (riverine)
settings to maintain floras rich in early and mid-successional species
(101), which also tend to be recognized as useful species
(Dataset S4). In the riverine settings where both pre-Columbian
and colonial influences were probably highest, ecological legacies
added to the array of environmental factors shaping forest vegeta-
tion. Future research integrating paleoecological data (i.e., phyto-
lith, charcoal, pollen) with soils and vegetation data measured in
both riverine and terra firme forest plots is a promising avenue to
comprehensively assess drivers of local plant composition.
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Our data support the suggestion that ecological studies of mod-
ern systems should consider the potential lasting impacts of past
human activities (e.g., refs. 8, 16, and 105). We show that human
impacts in the pre-Columbian and colonial period are potentially
important factors to consider if modern vegetation dynamics are
to be understood (S Appendix, Figs. S3 and S4). Naturally, the
era of modern disturbance cannot be overlooked (22, 88), but it
is often so obvious as to be unambiguous and readily recognized.
Of more interest to predicting rates of forest change, growth, and
their capacity to absorb carbon accurately are the potentially hid-
den changes that affected forests as recently as 1920 CE (20, 28).
Many of the ATDN forest sites are located within a day’s walk
from villages that were founded during the Rubber Boom. Thus
for at least the last 175 y they have experienced direct or indirect
effects (e.g., hunting) that may be shaping the current abundance
of surveyed trees (106, 107).

Our understanding of Amazonian ecology and carbon budgets
obtained from forest inventory plots may largely be a “shifted
baseline” (108) if the forests that are considered to be mature in
plant surveys are actually still recovering from disturbances that
occurred over the last several decades to centuries. At any given
time, an old-growth forest is composed of a matrix of various
successional states due to gap dynamics (e.g., refs. 34 and 35).
Human activity typically increases gap extent and frequency and
creates edges and edge effects. At the end of the Rubber Boom
period around 1920 CE many of these human-created gaps would
have been abandoned and successional regrowth would have
begun. Less than 100 y later, in the early 2000s, increased rates of
above ground biomass accumulation were documented in
Amazonian forest plots that showed no sign of recent disturbance
(i.e., are not early successional) (109). Biomass accumulation rates
in the plots slowed down a decade later, which was attributed to
increased tree mortality (110). Successional trajectories following
site abandonment in tropical forests typically show similar biomass
accumulation rates that increase for decades but then level off, or
slow down, after more than a century of recovery (111), poten-
tially due to the mortality of high abundances of mid-successional
trees (112). We suggest that the increases and decreases docu-
mented in biomass accumulation rates over the last several decades
may be partially driven by colonial era site abandonment and
forests being in a state of late succession.

Dated charcoal fragments from Amazonian forest plots show
that the time since the last fire ranges from decades to thousands
of years (93, 113-115), and some of these recent fires may still be
affecting modern soil carbon storage patterns (72, 116). Fire can
cause significant changes in forest composition and soil properties
(117) and can alter successional trajectories for hundreds of years
(18, 35). We recommend an increased effort to obtain estimates
of forest age based on dated charcoal fragments and vegetation
histories based on plant microfossils such as phytoliths from
within forest inventory and recensus plots (83, 93, 113, 115) so
that successional stages and trajectories can be considered when
predicting how forests respond to global change. Establishing a
matrix of reference sites where past human impacts were probably
minimal will be critically important for determining the cultural
legacies and long-term influence of people on the ecology and
carbon sequestration patterns of Amazonian forests.

Materials and Methods

Generating Models of the Distributions of Pre-Columbian and Colonial
People. To assess ecological legacies of past human activity on modern forest
composition in Amazonia sensu stricto, which includes all lowland areas <500
masl that drain directly into the Amazon River (42), we required three datasets:
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i) predictions of the distribution of pre-Columbian people, ii) predictions of the
distribution of people during the colonial period, and iii) information on the rel-
ative abundances of plant species as based on modern botanical inventories. We
updated previously published models of the likely distributions of pre-Columbian
people (19, 44) using 7,363 locations within Amazonia sensu stricto from the
AmazonArch database (https://sites.google.com/view/amazonarch) (Dataset S1).
Archaeological site information in the AmazonArch database was compiled, sys-
tematized, and georeferenced by a network of archaeologists with a common goal
of sharing data. We collated data on biological collections and occurrences from
across all biological kingdoms that have been georeferenced to within Amazonia
sensu stricto for the colonial period (early colonization through the end of the
Rubber Boom, 1600 to 1920 CE; N = 109,438) using data publicly available
through the Global Biodiversity Information Facility (https://www.gbif.org). To
reduce the effect of sampling bias on predictive models, all occurrence locations
falling within the same 10 km? grid cell were reduced to a single occurrence
location (118). After spatial filtering, 6,960 and 1,026 occurrence points remained
(Dataset S5 and Fig. 1) for the pre-Columbian and colonial periods, respectively,
and these points were used in subsequent geospatial models.

To generate models predicting the distributions of pre-Columbian and colo-
nial people, we compiled bioclimatic, soil, and terrain-based data layers to use
as predictor variables. Bioclimatic variables (N = 19) describe annual averages
or extreme values in temperature and precipitation, and were obtained at 30
arcsecond resolution (ca. 1 km?) resolution from the WorldClim database (119).
Variables of soil characteristics (N = 22) were retrieved at 30 arc second resolution
from the Harmonized World Soil Database (120). We performed cross-correlation
analyses in each group to reduce the number of predictor variables (44, 121,
122).The Spearman correlation coefficients for all pairwise-comparisons of the
bioclimatic (Dataset S6) and soil variables (Dataset S7) were calculated, and var-
iables with correlation coefficients of >0.75 were considered highly correlated.
Of the highly correlated variables, we retained those that had the least number
of “no-data” values (missing data) or were easiest to interpret ecologically or in
the context of human activities. We retained mean annual temperature (BIO1),
maximum temperature of warmest month (BIO5), total annual precipitation
(BIO12), precipitation of the driest quarter (BI017) and subsoil percentages of
clay, organic carbon, and silt (S/ Appendix, Fig. S2).

We also generated predictor variables based on terrain and hydrological charac-
teristics. Data on rivers were retrieved from the HydroSheds database (https://www.
hydrosheds.org), where rivers were characterized by river order at 15 arc second
spatial resolution (123). We used the HydroRivers dataset with 4th order rivers and
greaterinthe models, where Tstorder rivers are springs or streams with no tributaries
feeding it and the main Amazon River is a 12th order. Fourth-order rivers represent
water channels large enough to remain inundated year-round. We then calculated
the straight-line distance to the nearest defined river for each Amazonian grid cell
at 30 arc second spatial resolution. The resulting raster layer of distance-to-river
was used as a predictor variable (S/ Appendix, Fig. S2). We also used elevation data
obtained from Shuttle Radar Topography Mission at 90-m spatial resolution (124)
(S Appendix, Fig. S2). Using the elevation data, we also generated a metric of terrain
roughness, which is the difference between the maximum and minimum elevation
foragiven grid cell and its eight neighboring grid cells (125) (S Appendix, Fig. S2).
All predictor variablesincluded in the model (N = 10) were generated or resampled
from their native resolution to a common resolution of 5 arc minutes (approx. 10 km?
at the equator) across Amazonia sensu stricto (S/ Appendix, Fig. S2).

Different distribution modeling algorithms (39, 126, 127) will result in dif-
ferent predictions, so we used an ensemble distribution model based on the
weighted averages of the following distribution modeling algorithms: i) a gen-
eralized linear model, ii) a generalized boosted regression model (128), iii) a
generalized additive model (129, 130), iv) a random forest model (131), and v)
a Maxent model (132). Each of these modeling algorithms has been shown to
perform well using simulated species with known distributions and empirical
data on species-environment relationships (133). For each algorithm, we used the
default settings for species distribution modeling using the ensemble_modelling
function of the "SSDM" package (134)in R (135).

Each model relies on the generation of pseudoabsences to compare the
occurrence records with the environmental characteristics, and we used the
settings recommended by Barbet-Massin et al. (136). Each model was run
with fivefold cross-validation and was then repeated ten times to generate
a final model. The performance of each distribution model was evaluated
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using "area under the receiver operating curve” (AUC) scores, which assess the
ability of a model to distinguish presence and absence locations compared
with random expectation (AUC = 0.5) (127, 137). AUC scores of the models
had to exceed 0.6 to be included in the ensemble model. The AUC scores
for each model provided the weighting for the final ensemble distribution
model so that better-performing models had a stronger influence on the
final predicted distribution. Pearson correlation coefficients between the full
model and models lacking individual predictor variables were used to assess
the relative importance of each of the predictor variables in the ensemble
model (138).

We performed ensemble modeling using the occurrence locations for the
pre-Columbian and colonial (individually) periods and then assessed correla-
tions between the two model outputs. We calculated the joint probability of pre-
Columbian and colonial model outputs to identify areas that were most likely to
have been occupied during both periods. We also calculated the local Pearson
correlation coefficients across Amazonia using a moving spatial window of 50 km?
and identified areas that were significantly correlated between the pre-Columbian
and colonial models. We also calculated the direction of those correlation coef-
ficients (positive or negative).

Comparing Pre- and Post-Columbian Model Outputs with Forest
Inventory Data. We compared the pre-Columbian and colonial model
outputs with relative abundance (stems per hectare) estimates for 262 tree
species previously categorized as being hyperdominant (2) or useful, respec-
tively (Dataset S4) censused across 1,521 tree inventory plots included in the
Amazonian Tree Diversity Network (ATDN) (41, 98) (Dataset S8). The Amazon
Tree Diversity Network is a network of botanists, ecologists, and taxonomists
who share data across Amazonia and the Guiana Shield regions (https:/
sites.google.com/naturalis.nl/amazon-tree-diversity-network/homepage).
The 1,521 tree inventory plots used in the analyses were collected across
studies, years, and regions, and include sites from terra firme forests, varzeas,
igapos, and white sand habitats (41). Taxonomic names were standardized
and updated for the analysis (41). For each tree species, we also compiled
characteristics on the type of use, and we assigned each species into catego-
ries of food, construction, food and construction, other (e.g., medicinal use),
or nonuseful hyperdominant. We also assigned each species into life history
strategy categories of either early successional, mid-successional, or mature
forest, which were based on characterizations of genus-level trait data on seed
mass and wood density (Dataset S4) (139). Species were characterized as early
successional if they had a wood density <0.7 and seed mass category < than
five, mid-successional if they had a wood density less than 0.7 but seed mass
category =5, and mature forest if wood density exceeded 0.7 (139). While
this is a simplification, it has been shown to represent most species properly
on the pioneer-old growth trait continuum and is necessary to categorize so
many species (75, 140, 141).

We extracted the predicted values for the likelihood of pre-Columbian and
colonial occupation at each of the 1,521 forest plot locations. Pearson’s correlation
tests were then used to determine associations between pre-Columbian and
colonial model predictions across the plots, and between the model predictions
and the relative abundances of each of the focal tree species. We examined the
distribution of correlation coefficients between categories of use and life history
strategies to test for differential effects of human disturbance on the different
groups of tree species.

All analyses were performed in RStudio Version 1.2 (135) using the "raster”
(142),"rgdal" (143), "rgeos” (143), "SSDM" (134), and "ggplot” (144) packages.

Data, Materials, and Software Availability. All study data are included in the
article and/or supporting information.
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