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Abstract. We show that the quasi-local algebra of a coarse disjoint
union of expander graphs does not contain a Cartan subalgebra iso-
morphic to ℓ∞. N. Ozawa has recently shown that these algebras are
distinct from the uniform Roe algebras of expander graphs, and our
result describes a further difference.

1. Introduction

This paper focuses on the study of Roe-like algebras of metric spaces
arising from expander graphs and their properties. We will in particular
focus on quasi-local algebras associated to such spaces and on their Cartan
algebras.

In a recent breakthrough, N. Ozawa showed that the quasi-local algebra of
a coarse disjoint union of expander graphs is strictly larger than its uniform
Roe algebra ([Oza25, Corollary C]). Up until this result, the question of
whether these algebras coincided was one of the important open problems in
the field (see [ŠT19, ŠZ20, LNvZ21, KLVZ21, BBF+24b]) which went back to
J. Roe (see [Roe96, Page 20]). In his proof, Ozawa showed that uniform Roe
algebras can never contain the product of matrix algebras

∏
n∈NMn(C) while

the quasi-local algebra of expander graphs always contains this product.
This result suggests a new question: how distinct can the quasi-local and
the uniform Roe algebra be? The goal of the present note is to show that the
quasi-local algebra of a coarse disjoint union of expander graphs does not
have a Cartan subalgebra isomorphic to ℓ∞ (see Theorem 1.1), a property
shared by all uniform Roe algebras. The proof of this result relies both on
earlier work on Cartan subalgebras of Willett and White ([WW20]) as well
as on Ozawa’s ([Oza25]); as Ozawa, we use the concentration of measure
phenomenon in order to rule out the existence of such subalgebras.

Let us carefully introduce our objects. In coarse geometry, there are
several algebras of bounded operators which serve as models to code in C∗-
algebraic terms the large scale geometry of metric spaces; these are known
as Roe-like algebras. Important for us are two of these, the uniform Roe and
the quasi-local algebra, which we shall now define. Firstly, as coarse geometry
is the study of metric spaces from afar, local properties of metric spaces are
irrelevant in this context and one can restrict themselves to discrete spaces.
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In fact, throughout these notes, we will only deal with uniformly locally
finite (abbreviated as u.l.f.) metric spaces, i.e., spaces where balls of a given
radius are finite and uniformly bounded in cardinality.

Given a u.l.f. metric space (X, d), ℓ2(X) denotes the Hilbert space of
square-summable functions X → C and B(ℓ2(X)) the algebra of bounded
linear operators on ℓ2(X). Given an operator a ∈ B(ℓ2(X)), its propagation
is given by

prop(a) = sup{d(x, y) | ⟨aδx, δy⟩ ̸= 0},
where (δx)x∈X denotes the canonical orthonormal basis of ℓ2(X); so, prop(a)
is in [0,∞]. The uniform Roe algebra of X, denoted by C∗

u(X), is the norm
closure of all operators in B(ℓ2(X)) whose propagation is finite. Identifying
ℓ∞(X), the C∗-algebra of bounded functions X → C, with the (multiplica-
tion) operators on ℓ2(X) with propagation zero, i.e. the operators which are
diagonal with respect to the basis (δx)x∈X , it is clear that ℓ∞(X) ⊆ C∗

u(X).
In fact, ℓ∞(X) is a Cartan subalgebra of C∗

u(X), in the sense that ℓ∞(X)
is a maximal abelian subalgebra (abbreviated as masa), the normalizer of
ℓ∞(X) in C∗

u(X) generates the whole C∗
u(X) as a C∗-algebra, and there is a

faithful conditional expectation C∗
u(X) → ℓ∞(X) (see [WW20, Proposition

4.1]).
It is straightforward that, for any operator in C∗

u(X), its cutoffs by pro-
jections in ℓ∞(X) given by subsets of X which are far enough apart have
small norm. More precisely, given A ⊆ X, let χA denote the orthogonal
projection of ℓ2(X) onto ℓ2(A). Then, for any a ∈ C∗

u(X), the following
holds:

(1.1) ∀ε > 0 ∃r > 0 ∀A,B ⊆ X if d(A,B) > r then ∥χAaχB∥ ≤ ε.

Indeed, if b is a finite propagation operator with ∥a − b∥ ≤ ε, then r =
prop(b) has the desired property, since ∥χAbχB∥ = 0 for all A,B ⊆ X with
d(A,B) > r. It is readily seen that the subset of all operators in B(ℓ2(X))
satisfying (1.1) forms a C∗-subalgebra of B(ℓ2(X)). We call this C∗-algebra
the (uniform) quasi-local algebra of X and denote it by C∗

ql (X).

By the discussion above, we have that C∗
u(X) ⊆ C∗

ql (X) and, as men-
tioned in the first paragraph of this introduction, it was a long standing
open problem whether these algebras were actually the same, regardless of
X. This is an important problem: in fact, in case quasi-local operators cor-
respond to the operators that can be approximated by finite propagation
operators, one has a method for checking whether an operator belongs to a
uniform Roe algebra merely by estimating norms of off-diagonal block re-
strictions of the operator, without having to explicitly produce finite prop-
agation approximants. This is crucial, for instance, in the work of Engel
(see [Eng14, Eng18]) on the index theory of pseudo-differential operators.
In general, checking whether an operator is quasi-local is much easier than
checking whether it belongs to C∗

u(X).
As of now, the largest class of u.l.f. metric spaces for which it is known

that C∗
u(X) = C∗

ql (X) is the class of spaces satisfying Yu’s property A (see
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[ŠZ20, Theorem 3.3], and [Oza25, Theorem 5] for a much shorter proof).
On the other hand, as proved by Ozawa, these algebras are never the same
if X is the coarse disjoint union of expander graphs ([Oza25, Corollary C]).
Recall that for k ∈ N and h > 0, a finite (undirected) graph G = (V,E) is
a (k, h)-expander if every vertex is incident to at most k edges, and for all
A ⊆ V we have that

A ≤ |V |/2 implies |∂A| ≥ h|A|,
where ∂A = {v ∈ V \A | ∃u ∈ A, (v, u) ∈ E}. This condition readily implies
that G is connected, and thus we consider V as a metric space endowed
with the shortest path distance. Let now (Xn, dn)n∈N be a sequence of finite
metric spaces, each being a vertex set of some (k, h)-expander graph, for
k ∈ N and h > 0 fixed and independent of n ∈ N, and such that |Xn| → ∞
as n → ∞. We endow X =

⊔
n∈NXn with a metric d such that

1. d ↾ Xn ×Xn = dn for all n ∈ N, and
2. d(Xn, Xm) → ∞ as n,m → ∞ with n ̸= m.

We refer to such a disjoint union X as a coarse disjoint union of expander
graphs. Note that while the metric d above is by no means unique, properties
(1) and (2) above characterize d coarsely. For details on expander graphs,
we refer to [Lub10].

We want to understand the possible differences between uniform Roe
and quasi-local algebras in the setting of coarse disjoint union of expander
graphs, with a specific focus on Cartan C∗-subalgebras. While ℓ∞(X) is
always a Cartan subalgebra of C∗

u(X), in the case of expander graphs, not
only ℓ∞(X) is not a Cartan subalgebra of C∗

ql (X), but in fact C∗
ql (X) ad-

mits no Cartan subalgebra isomorphic to ℓ∞. More precisely, we prove the
following in Section 2.

Theorem 1.1. Let X =
⊔

n∈NXn be the coarse disjoint union of expander
graphs. Then C∗

ql (X) does not have a Cartan subalgebra isomorphic to ℓ∞.

As Ozawa’s aforementioned result, Theorem 1.1 is also valid for asymp-
totic expanders, a weaker property than being an expander. We discuss this
is Remark 2.12 below.

We note that any C∗-subalgebra of C∗
ql (X) which is abelian and strongly

closed is of the form ℓ∞(I) for some countable, possibly finite, set I (see
[BBF+24b, Theorem 1.4]). Therefore, Theorem 1.1 implies that the quasi-
local algebra of a coarse disjoint union of expander graphs cannot have a
strongly closed Cartan subalgebra. The following problem remains open.

Problem 1.2. Let X =
⊔

n∈NXn be the coarse disjoint union of expander
graphs. Can C∗

ql (X) have a Cartan subalgebra?

As our motivation is to further distinguish C∗
u(X) from C∗

ql (X), we point
out that it remains open whether the uniform Roe algebras of u.l.f. metric
spaces X and Y are isomorphic if and only if their quasi-local algebras are
isomorphic. While we cannot solve this question, we prove that the forward



4 BRAGA, ŠPAKULA, AND VIGNATI

implication is always true. In fact, the following stronger statement is proved
in Section 3.

Theorem 1.3. Let X and Y be u.l.f. metric spaces and Φ: C∗
u(X) → C∗

u(Y )
be an isomorphism. Then, Φ canonically extends to an isomorphism between
C∗
ql (X) and C∗

ql (Y ).

We leave untouched the problem whether C∗
ql (X) ∼= C∗

ql (Y ) implies C∗
u(X) ∼=

C∗
u(Y ). We note that this is related to the so called strong rigidity problem

for quasi-local algebras, which remains open to date. Indeed, while it was
shown in [BBF+22, Theorem 3.5] that if C∗

ql (X) and C∗
ql (Y ) are isomorphic,

then X and Y are coarsely equivalent. It is still unknown whether this hy-
pothesis is strong enough to imply that X and Y are bijectively coarsely
equivalent. A positive answer to this problem would immediately imply
that C∗

u(X) and C∗
u(Y ) must be isomorphic given that C∗

ql (X) and C∗
ql (Y )

are isomorphic.
We remark that in the non-uniform setting, the rigidity problems have

been completely solved by Mart́ınez and Vigolo [MV24, Corollary 8.3.5],
and the non-uniform analogue of Theorem 1.3 follows from [MV24, Theorem
10.2.1]; see also [MV25, Theorem 4.5].

2. Expander graphs and Cartan subalgebras

The proof of Theorem 1.1 will follow the idea of the proof of [Oza25,
Theorem B]. However, we need a slightly stronger statement than in [Oza25],
see Theorem 2.4 below. Thus for completeness, we recall some definitions
and the statement of the concentration of measure phenomenon. Given n ∈
N, Rn denotes the Euclidean space endowed with its canonical norm, ∂BRn

its unit sphere, and we let σn be the unique probability measure on ∂BRn

which is invariant under orthogonal transformations, i.e., if u : Rn → Rn is
an isometry preserving the origin, then σn(A) = σn(u(A)) for all measurable
A ⊆ ∂BRn . Following common terminology in the literature, as the measures
σn are probability measures, we write P for σn if n ∈ N is clear from the
context. For a complete proof of the next theorem, we refer the reader to
Theorem 12.2.2 in the monograph [AK06].

Theorem 2.1 (Concentration of measure phenomenon). Let n ∈ N and
f : ∂BRn → R be 1-Lipschitz. Then, for all t > 0, we have

P (ξ ∈ ∂BRn | |f(ξ)− Ef | > t) ≤ 4e−
t2n
72π2 .

The next lemma is a version of [Oza25, Lemma 4]. For a subspace V ⊆
Rn, we endow its unit sphere ∂BV with its canonical spherical probability
measure given by an isometry V ∼= Rnγ . As we need to treat the complex
case as well, for a (complex) subspace V ⊆ Cn, we endow its unit sphere ∂BV

with a probability measure by identifying V with R2 dimC(V ) and referring to
the real case. We write EV to denote the expectation over ζ ∈ ∂BV .
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The following notation will be used: given k, n ∈ N and ξ̄ = (ξ1, . . . , ξk)
in (∂BRn)k (or (∂BCn)k), we let pξ̄ denote the orthogonal projection of Rn

(or Cn respectively) onto the real (respectively, complex) span{ξ1, . . . , ξk}.
Henceforth, we employ the convention that the implicit scalars match the
type of the object, unless explicitly stated otherwise.

Lemma 2.2. For all k ∈ N, 0 < δ < 1/10 and δ < γ < 1, there are c, L > 0
and n0 ∈ N such that for all n ∈ N with n ≥ n0 and all subspaces V ⊆ Rn

or V ⊆ Cn with dim(V ) ≥ nγ we have

P

ξ̄ ∈ (∂BV )
k | max

A⊆{1,...,n}
|A|≤nδ

∥χApξ̄∥ ≥ 14π
√
(δ/γ) log (1/δ) k

 ≤ Le−cn

Proof. For simplicity, we assume throughout that nδ and nγ are integers.
Similarly, we restrict our estimates to subsets A ⊆ {1, . . . , n} with exactly
nδ elements.

We shall work in the real setting first, i.e. we assume V ⊆ Rn.

Claim 2.3. EV ∥χAζ∥ is asymptotically at most
√

δ/γ as n → ∞.

Proof. Let pV be the orthogonal projection of Rn onto V ,W = range(pV χA),
and pW be the orthogonal projection of Rn onto W . Then, given ζ ∈ ∂BV ,
we have that ∥χAζ∥ ≤ ∥pW ζ∥. Indeed, to check this, let pζ be the projection
of Rn onto R · ζ and notice that, since pζ = pζpV , we have

∥χAζ∥ = ∥pζχA∥ = ∥pζpV χA∥ ≤ ∥pζpW ∥ = ∥pW ζ∥.
In particular, this implies that

EV ∥χAζ∥ ≤ EV ∥pW ζ∥.
By the definition of W , it is clear that dim(W ) ≤ |A| = nδ. Therefore, W
is a subspace of V of dimension at most (δ/γ) dim(V ). By [Mat02, Lemma

15.2.2], EV ∥pW ζ∥ is asymptotically at most
√
δ/γ as n → ∞.1 □

By the previous claim, for all sufficiently large n ∈ N, we have EV ∥χAζ∥ ≤
2
√
δ/γ. Let ε = 2

√
(δ/γ) log(1/δ). Note that

√
δ/γ < ε/2, hence EV ∥χAζ∥ ≤

ε ≤ πε for sufficiently large n ∈ N. The measure concentration phenomenon
(Theorem 2.1) then implies

P (ξ ∈ ∂BV | ∥χAξ∥ > 7πε) ≤ P (ξ ∈ ∂BV | ∥χAξ∥ > EV ∥χAζ∥+ 6πε)

≤ P (ξ ∈ ∂BV | |∥χAξ∥ − EV ∥χAζ∥| > 6πε)

< 4e−
ε2nγ

2(2.1)

for all n ∈ N.
We now argue that (2.1) holds in the complex case as well. Assume that

V ⊆ Cn. We apply the real case, with 2n in place of n, as follows. Consider
the natural isomorphism cx : R2n ∼= Cn. We observe that for ξ ∈ R2n and

1More precisely, this follows from the last line in the proof of [Mat02, Lemma 15.2.2].
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A ⊆ {1, . . . , n}, we have ∥χÃξ∥ = ∥χA cx(ξ)∥, where Ã = {2k − 1, 2k : k ∈
A} denotes the basis labels that ‘correspond’ to A under cx−1. Thus the
‘complex’ (2.1) follows from the ‘real’ (2.1) applied to cx−1(V ).

The remainder of the proof applies to both R and C at the same time.
Since there are

(
n
nδ

)
subsets A ⊆ {1, . . . , n} with nδ elements, it follows that

P

ξ ∈ ∂BV | max
A⊆{1,...,n}
|A|≤nδ

∥χAξ∥ ≥ 7πε

 ≤ 4

(
n

nδ

)
e−

ε2nγ
2 .

By the definition of ε, a computation using the inequality
(
n
k

)
≤ (ne/k)k

guarantees that
(
n
nδ

)
≤ e

ε2nγ
4 . Hence,

(2.2) P

ξ ∈ ∂BV | max
A⊆{1,...,n}
|A|≤nδ

∥χAξ∥ ≥ 7πε

 ≤ 4e−
ε2nγ

4

for all n ∈ N.
Notice that if ξ̄ = (ξ1, . . . , ξk) ∈ (∂BV )

k is an orthonormal tuple, then

pξ̄ =
∑k

i=1 pξi . Therefore, if ∥χApξ̄∥ ≥ 7πε
√
k, there must be i ∈ {1, . . . , k}

such that ∥χApξi∥ ≥ 7πε. Using that ∥χAξi∥ = ∥χApξi∥ and that k-
randomly picked vectors in ∂BV are asymptotically orthonormal as n → ∞,
we have

P

ξ̄ ∈ (∂BV )
k | max

A⊆{1,...,n}
|A|≤nδ

∥χApξ̄∥ ≥ 7πε
√
k

 ≤ Le−cn,

for all sufficiently large n, where L and c are constants depending only on
k, δ, and γ. □

We can now obtain the strengthening of Theorem B in [Oza25] needed
for our goals.

Theorem 2.4. Let X =
⊔

n∈NXn be the coarse disjoint union of expander
graphs and 0 < γ ≤ 1. For each n ∈ N, let Vn ⊆ ℓ2(Xn) be a sub-
space of dimension at least |Xn|γ. Then, there are an increasing sequence
(n(k))k∈N ⊆ N and a sequence (Wk)k∈N such that

1. each Wk is a subspace of Vn(k),
2. limk→∞ dim(Wk) = ∞, and
3.

∏
k∈N B(ℓ2(Wk)) ⊆ C∗

ql (X).

Proof. Let (δk)k∈N be a decreasing sequence of positive reals converging to
0, such that δ0 < γ, and limk→∞ εk = 0, where

εk = 14π
√

(δk/γ) log(1/δk)k
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for k ∈ N. Since limn→∞ |Xn| = ∞, Lemma 2.2 allows us to find a strictly
increasing sequence (n(k))k∈N in N such that for each k ∈ N, there is a sub-
space Wk ⊆ Vn(k) with dimension k such that, letting pk be the orthogonal

projection of C|Xn(k)| onto Wk, we have

(2.3) max
{
∥χApk∥ | A ⊆ {1, . . . , |Xn(k)|}, |A| ≤ δm|Xn(k)|

}
≤ εm.

for all m ∈ {1, . . . , k}.
Let us show that

∏
k∈N B(Wk) is contained in C∗

ql (X). For that, let a =

SOT-
∑

k ak ∈
∏

k∈N B(Wk), where each ak is an operator in B(Wk), and let
us show that a is quasi-local. Without loss of generality, assume ∥a∥ ≤ 1,
so ∥ak∥ ≤ 1 for all k ∈ N. Fix ε > 0 and pick m ∈ N such that εm < ε. As
X =

⊔
n∈NXn is a coarse disjoint union of expander graphs, there is κ > 1

such that for all n ∈ N and all A,B ⊆ Xn we have

(2.4) min

{
|A|
|Xn|

,
|B|
|Xn|

}
≤ κ−

d(A,B)
2 ;

see [Oza25, Section 3], and [LNvZ21, KLVZ21] for more details about this
type of condition. Therefore, we can choose r > 0 large enough so that for
all n ∈ N and all A,B ⊆ Xn with d(A,B) > r,

(2.5) min

{
|A|
|Xn|

,
|B|
|Xn|

}
≤ δm.

Fix A,B ⊆ X with d(A,B) > r, and for each k ∈ N let Ak = A∩Xn(k) and
Bk = B ∩Xn(k). Thus

∥χAaχB∥ = sup
k∈N

∥χAk
akχBk

∥.

Note that ∥χAk
akχBk

∥ ≤ ε for all k ≥ m. Indeed, fix such k. Since d(A,B) >
r, we also have d(Ak, Bk) > r. Hence, by (2.5), either |Ak| ≤ δm|Xn(k)| or
|Bk| ≤ δm|Xn(k)|. Without loss of generality, assume the former happens.
Therefore, as k ≥ m, (2.3) implies that ∥χAk

pk∥ ≤ εm. Since pk is the
identity of B(Wk) and ∥ak∥ ≤ 1, we have

∥χAk
akχBk

∥ ≤ ∥χAk
pk∥ ≤ εm.

As εm < ε and k ≥ m was arbitrary, we have shown that

∥χAk
akχBk

∥ ≤ ε for all k ≥ m.

Since
∑m

k=1 ak is compact, this finishes the proof. □

The next ingredient for our proof of the main Theorem 1.1 is the following:

Lemma 2.5. Let X =
⊔

n∈NXn be the coarse disjoint union of finite metric
spaces. For F ⊆ N, denote XF =

⊔
n∈F Xn. Suppose that A ⊆ C∗

ql (X)
is Cartan subalgebra isomorphic to ℓ∞. Then there exists a unitary u ∈
B(ℓ2(X)) such that u − 1 is compact (and thus u ∈ C∗

ql (X)), and for every
F ⊆ N we have χXF

∈ uAu∗.
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For its proof, we need to recall some properties of Higson functions. Let
(X, d) be a u.l.f. metric space. A bounded function f : X → C is called a
Higson function if for all ε > 0 and r > 0 there is a finite Z ⊆ X such that
for all x, y /∈ Z with d(x, y) < r we have that |f(x) − f(y)| < ε. Higson
functions form a subalgebra of ℓ∞(X), which we denote by Ch(X). Letting

π : B(ℓ2(X)) → B(ℓ2(X))/K(ℓ2(X))

be the canonical quotient map of B(ℓ2(X)) onto its Calkin algebra, we have
that

(2.6) π[Ch(X)] = Z(C∗
ql (X)/K(ℓ2(X))) = Z(C∗

u(X)/K(ℓ2(X)))

by [BBF+24b, Proposition 3.6], where Z(C) denotes the center of a C*-
algebra C.

Let now X =
⊔

n∈NXn be the coarse disjoint union of metric spaces. For
any F ⊆ N, the function χXF

is a Higson function, since d(Xn, Xm) → ∞
as n,m → ∞ with n ̸= m. In particular, we have that

(2.7) π(χXF
) ∈ Z(C∗

ql (X)/K(ℓ2(X)))

for all F ⊆ N.
Before proving Lemma 2.5, we recall two well-known lemmas.

Lemma 2.6. If p and q are projections in a unital C∗-algebra A with
∥p− q∥ < 1, then there is a unitary u ∈ A with upu∗ = q and ∥1− u∥ <√
2 ∥p− q∥.

Remark 2.7. A conclusion with a less transparent estimate than
√
2 ∥p− q∥

appears in almost every C*-algebra textbook, for example [Bla06, Propo-
sition II.3.3.4(ii)]. The above version follows from the discussion before
Theorem V.1.41 in [Tak79]; for further details see a MathOverflow answer
[Jul13]. In fact, one can use u = (p+ q − 1)|p+ q − 1|−1(2p− 1).

The next lemma follows from straightforward calculations, so we omit its
proof.

Lemma 2.8. Let m ∈ N, ε > 0, and let (pi)
m
i=1 and (qi)

m
i=1 be sequences

of mutually orthogonal projections in B(H). For each i ≤ m, suppose
vi is a partial isometry with domain pi[H] and codomain qi[H] such that
∥viξ − ξ∥ < ε ∥ξ∥ for every ξ ∈ pi[H]. Then for every ξ ∈ (

∑m
i=1 pi)[H] we

have that ∥
∑m

i=1 viξ − ξ∥ < ε ∥ξ∥.

Proof of Lemma 2.5. As C∗
ql (X) contains the compacts, it follows from [WW20,

Lemma 2.5 and Proposition 2.7] that there is a sequence (qn)n∈N in A of
orthogonal projections with rank 1, such that

A = W ∗({qn | n ∈ N}),
i.e., A is the von Neumann algebra generated by (qn)n∈N. As (qn)n∈N is
maximal with this property, we have SOT-

∑
n∈N qn = Idℓ2(X), and A is a

masa (maximal abelian C*-subalgebra) in B(ℓ2(X)).
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For each G ⊆ N, let
qG =

∑
n∈G

qn.

Claim 2.9. For every F ⊆ N we have that π(χXF
) ∈ π[A]. Hence for every

infinite F ⊆ N there is G ⊆ N such that χXF
− qG is compact.

Proof. First, the image of a masa in B(ℓ2(X)) under π is a masa in the Calkin
algebra B(ℓ2(X))/K(ℓ2(X)). Indeed, this is a consequence of a theorem by
Johnson and Parrott (see [JP72, Theorem 2.1]); alternatively, see [BBF+24b,
Theorem 3.5] for a precise derivation of this using Johnson and Parrott’s
theorem. Therefore π[A] is a masa in the Calkin algebra, and thus it is a
masa in C∗

ql (X)/K(ℓ2(X)). Since π(χXF
) ∈ Z(C∗

ql (X)/K(ℓ2(X))) by (2.6),

each masa of C∗
ql (X)/K(ℓ2(X)) must contain π(χXF

) for all F ⊆ N. In

particular, π[A] does.
The second assertion follows from the fact that all projections in π[A]

have the form π(qG) for some G ⊆ N. Indeed, as A = W ∗({qn ∈ n ∈ N}),
A is a von Neumann algebra and, in particular, it has real rank zero. This
implies that projections in π[A] must be the image of projections in A (see,
for instance, [Far19, Lemma 3.1.13] for a proof). □

Claim 2.10. For every ε > 0 there is n ∈ N such that for every finite
F ⊆ N with minF > n there exists a (necessarily finite) G ⊆ N such that
∥χXF

− qG∥ < ε.

Proof. Suppose this is not the case for a given ε > 0. Then there is a disjoint
sequence (Fk)k∈N of finite subsets of N such that ∥χXFk

− qG∥ ≥ ε for all

k ∈ N and all G ⊆ N. Applying [BBF+24a, Lemma 4.3] to the sequences
(pk = χFk

)k∈N and (qk)k∈N, we get that there is a (necessarily infinite)
F ⊆ N such that χXF

− qG is not compact for any G ⊆ N. This contradicts
Claim 2.9. □

Claim 2.11. There is an increasing sequence (nk)k∈N of naturals such that
for every k ∈ N and every F ⊆ N with minF > nk there is G = G(F ) ⊆ N
such that

∥χXF
− qG∥ ≤ 2−k+1.

If k > 2, G is unique.

Proof. We let n0 = 0 and construct (nk)k∈N by induction. If nk has been
defined, let nk+1 > nk be given by Claim 2.10 for ε = 2−k. Suppose now that
F is such that minF > nk. If F is finite, the existence of G is guaranteed
by Claim 2.10 directly. If F is infinite, let

G =
⋃

F ′⊆F, |F ′|<∞

G(F ′).

So,
qG = SOT- lim

F ′⊆F, |F ′|<∞
qG(F ′).
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Since

χXF
= SOT- lim

F ′⊆F, |F ′|<∞
χXF ′ ,

we have that

∥χXF
− qG∥ ≤ lim sup

F ′⊆F,F ′ finite

∥∥χXF ′ − qG(F ′)

∥∥ ≤ 2−k+1.

The uniqueness ofG(F ) for minF > n3 comes from the fact that ∥qG − qG′∥ =
1 for any distinct G and G′. □

We now continue with the proof of Lemma 2.5. Fix F̃ = N \ {0, . . . , n3},
and let H = G(F̃ ). Since∥∥(1− χXF̃

)− (1− qH)
∥∥ =

∥∥χXF̃
− qH

∥∥ ≤ 1

2
,

the projections 1− χXF̃
and 1− qH = qN\H have the same finite rank. Let

v0 be a partial isometry such that v0v
∗
0 = χX{0,...,n3}

and v∗0v0 = qN\H with

the property that for every n ≤ n3 we have that v∗0χXnv0 is of the form qF
for some F ⊆ N \H. This implies that v0qN\Hv∗0 = χX{0,...,n3}

.

Suppose i ≥ 3 and let n ∈ (ni, ni+1]. Since ∥χXn − qG(n)∥ < 2−i+1 we

can find a unitary un ∈ B(ℓ2(X)) such that ∥un − 1∥ <
√
22−i+1 such that

unqG(n)u
∗
n = χXn by Lemma 2.6. We let vn = χXnunqG(n) so that vn is a

partial isometry, vnv
∗
n = χXn and v∗nvn = qG(n) for all n.

By considering (for example) ranks of the projections in the orthogonal
family (χXn)n>n3 , we observe that the projections (qG(n))n>n3 are also pair-
wise orthogonal. Furthermore, since SOT-

∑
n>n3

χXn = χF̃ , we have

SOT-
∑
n>n3

qG(n) = qH .

Consequently, the formula

u = v0 +
∑
n>n3

vn

defines a unitary. Furthermore, by construction, χXF
= uqG(F )u

∗ ∈ uAu∗

for all F ⊆ N.
We are left to show that u − 1 is compact. Pick ε > 0, and let k be

such that 2−k+1 < ε. Let G =
⋃

n≤nk
G(n). Let ξ be a unit vector in the

orthogonal of qG. We can assume that ξ has finite support, so that there is
a finite k′ such that ξ ∈ qS [H] where S =

⋃
n∈(nk,nk′ ]

G(n). In particular,

uξ =
∑

n∈(nk,nk′ ]
vnξ. Since for all such n we have that ∥vnξ − ξ∥ <

√
2ε and

ξ is a unit vector, Lemma 2.8 gives that ∥uξ − ξ∥ <
√
2ε. As ε is arbitrary,

this shows that u− 1 is compact. □

Proof of Theorem 1.1. For a contradiction, suppose that there is a Cartan
subalgebra A ⊆ C∗

ql (X) isomorphic to ℓ∞. Applying Lemma 2.5, we can

assume that each χXF
belongs to A for all F ⊆ N. By [WW20, Proposition
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4.15], there is a u.l.f. coarse space2 (Y, E) and an isomorphism Φ: C∗
ql (X) →

C∗
u(Y ) such that Φ[A] = ℓ∞(Y ). By [BBF+22, Corollary 3.3] applied to the

collection
(
Φ−1(χy)

)
y∈Y , there is θ > 0 and f : X → Y such that

∥Φ(χx)δf(x)∥ ≥ θ

for all x ∈ X.3 Moreover, the map f is a coarse embedding (see [BBF+22,
Theorem 1.12]). In particular, Z = f [X] is metrizable.

For each n ∈ N, let Zn = f [Xn] and pn = Φ−1(χZn). Notice that, since f
is uniformly finite-to-one, there is γ > 0 such that

(2.8) |Zn| ≥ |Xn|γ for all n ∈ N.

If z ∈ Zn, let x be such that z = f(x). We thus have that∥∥Φ−1(χz)χXn

∥∥ ≥
∥∥Φ−1(χz)χx

∥∥ ≥ θ > 0.

Since Φ−1(χz) and χXn commute (as they both belong to A) and Φ−1(χz)
has rank one, then Φ−1(χz) ≤ χXn . As z is arbitrary, then pn ≤ χXn .

Letting Vn = range(pn) for all n ∈ N, we have that each Vn is a subspace
of ℓ2(Xn) with dimension at least |Xn|γ. By Theorem 2.4, there are an
increasing sequence (nk)k∈N of naturals and a sequence (Wk)k∈N such that

1. each Wk is a subspace of Vnk
,

2. limk→∞ dim(Wk) = ∞, and
3.

∏
n∈N B(ℓ2(Wk)) ⊆ C∗

ql (X).

Since Wk is a subspace of Vnk
,

Φ ↾ B(ℓ2(Wk)) ⊆ χZnk
C∗
u(Y )χZnk

⊆ χZC
∗
u(Y )χZ = C∗

u(Z).

Since dimWk → ∞, this provides a copy of
∏

k∈NMmk
(C), for some increas-

ing sequence mk, inside C∗
u(Z), the uniform Roe algebra of the metrizable

space Z. This contradicts [Oza25, Theorem A] and finishes the proof. □

Remark 2.12. We point out that the only property of expander graphs used
in the proof of Theorem 2.4 above is (2.4). This is in fact a weaker condition
than being an expander and it is referred to in the literature as an asymp-
totic expander, see [KLVZ21]. Therefore, Theorem 1.1 and, in particular,
Theorem 1.1 remain valid for asymptotic expanders as well. This is also the
case in [Oza25].

Remark 2.13. It remains open whether metrizability of coarse spaces is a
property stable under isomorphisms. More precisely, suppose that X is a
u.l.f. metric space and Y is a u.l.f. coarse space (see [Roe03] for more details
about coarse spaces). If either C∗

u(X) ∼= C∗
u(Y ) or C∗

ql (X) ∼= C∗
ql (Y ), does

2Y is not necessarily a metric space, only a coarse space (see e.g. [WW20, Section 4]
or [Roe03] for details), as we do not assume co-separability of A. See also Remark 2.13
below.

3Note that while [BBF+22, Corollary 3.3] is stated for the uniform Roe algebra, it also
holds for the quasi-local algebra. This is explicitly noted in [BBF+22, Theorem 3.5].
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it follow that Y is metrizable? If this question had a positive answer, then
Theorem 1.1 would become much more straightforward.

3. Extension of isomorphisms between uniform Roe algebras

As mentioned in the introduction, the question whether C∗
u(X) ∼= C∗

u(Y )
if and only if C∗

ql (X) ∼= C∗
ql (Y ) remains open. In this subsection, we prove

that the forward implication is always valid.

Proof of Theorem 1.3. Let Φ: C∗
u(X) → C∗

u(Y ) be an isomorphism. By
[ŠW13, Lemma 3.1] Φ is spatially implemented, meaning there is a unitary
u : ℓ2(X) → ℓ2(Y ) such that Φ = Ad(u). So, Φ extends to an isomorphism
between B(ℓ2(X)) and B(ℓ2(Y )), which we still denote by Φ. We show that
it restricts to an isomorphism from C∗

ql (X) to C∗
ql (Y ).

Since Φ restricts to an isomorphism between K(ℓ2(X)) and K(ℓ2(Y )), it
induces an isomorphism Ψ between the Calkin algebras of ℓ2(X) and ℓ2(Y )
making the following diagram commute.

B(ℓ2(X))
Φ //

πX

��

B(ℓ2(X))

πY

��

B(ℓ2(X))/K(ℓ2(X))
Ψ
// B(ℓ2(X))/K(ℓ2(Y )).

The isomorphism Ψ restricts to an isomorphism between C∗
u(X)/K(ℓ2(X))

and C∗
u(Y )/K(ℓ2(Y )), which then restricts to an isomorphism between their

centers. As recalled above in (2.6), the centers of these algebras are equal to
the corresponding Higson coronas. Hence, modulo compact operators, iso-
morphisms between uniform Roe algebras send Higson functions to Higson
functions.

Therefore, the fact that Φ restricts to an isomorphism between C∗
ql (X)

and C∗
ql (Y ) follows immediately from [ŠZ20, Theorem 3.3]: given a u.l.f.

metric space Z, an operator a ∈ B(ℓ2(Z)) is in C∗
ql (Z) if and only if [a, h] is

compact for all Higson functions h : Z → C. □

Remark 3.1. It remains open whether an isomorphism between C∗
ql (X) and

C∗
ql (Y ) implies that C∗

u(X) and C∗
u(Y ) are isomorphic. On the other hand,

this is known in case of coarse disjoint unions of expander graphs. In fact,
in this case, isomorphism of quasi-local algebras implies bijective coarse
equivalence of the underlying spaces (this follows from the main result of
[BBF+24a] and considerations made in [MV24]), and thus isomorphism of
their uniform Roe algebras. We mention that it is known that an iso-
morphism C∗

ql (X) → C∗
ql (Y ) does not need to restrict to an isomorphism

C∗
u(X) → C∗

u(Y ). Indeed, this is done in [MV24, Remark 1.3.2.(iv)] for the
non-uniform versions of the Roe algebra and the quasi-local algebra, and it
is straightforward to adapt the argument for the uniform versions.
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