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Abstract
Objective:

This review assesses the progress of NLP in gastroenterology to date, grades the robustness of the methodology, exposes
the field to a new generation of authors, and highlights opportunities for future research.

Design:

Seven scholarly databases (ACM Digital Library, Arxiv, Embase, IEEE Explore, Pubmed, Scopus and Google Scholar) were
searched for studies published 2015–2023 meeting inclusion criteria. Studies lacking a description of appropriate validation
or NLP methods were excluded, as were studies unavailable in English, focused on non-gastrointestinal diseases and
duplicates. Two independent reviewers extracted study information, clinical/algorithm details, and relevant outcome data.
Methodological quality and bias risks were appraised using a checklist of quality indicators for NLP studies.

Results:

Fifty-three studies were identified utilising NLP in Endoscopy, Inflammatory Bowel Disease, Gastrointestinal Bleeding, Liver
and Pancreatic Disease. Colonoscopy was the focus of 21(38.9%) studies, 13(24.1%) focused on liver disease, 7(13.0%)
inflammatory bowel disease, 4(7.4%) on gastroscopy, 4(7.4%) on pancreatic disease and 2(3.7%) studies focused on
endoscopic sedation/ERCP and gastrointestinal bleeding respectively. Only 30(56.6%) of studies reported any patient
demographics, and only 13(24.5%) scored as low risk of validation bias. 35(66%) studies mentioned generalisability but only
5(9.4%) mentioned explainability or shared code/models.

Conclusion:

NLP can unlock substantial clinical information from free-text notes stored in EPRs and is already being used, particularly to
interpret colonoscopy and radiology reports. However, the models we have so far lack transparency, leading to duplication,
bias, and doubts about generalisability. Therefore, greater clinical engagement, collaboration, and open sharing of
appropriate datasets and code are needed.

Introduction
Electronic healthcare records (EHRs) contain a rich vein of real-world clinical data that can be used to improve understanding
of gastrointestinal diseases. Human clinicians cognitively process this information, organising it into contextualised chunks.
This semi-structured information presents particular challenges for computer analysis because morphology (how words are
formed), syntax (the arrangement of words), semantics (the meaning of words and phrases) and pragmatics (how language
is used)(1) vary depending on the context.

Natural language processing (NLP) describes computerised methods to assess, evaluate, synthesise, generate, and interact
with free text. A spectrum of NLP technologies exists, ranging from Rule-Based (RB) to Machine-Learning (ML) and Deep
Learning (DL) methods(2). The field has accelerated with the advent of DL-based transformer models in 2017(3). Many NLP
models can now interpret complex language in clinical text to help structure clinical information.

DL methods have the advantage of coping with larger volumes of data, typically at the cost of explainability. In particular, bi-
directional encoder representations from transformers (BERT) models(4) and generative pre-trained transformers like GPT-3
in 2020(5), later used to perform a literature review(6), have raised the profile and capabilities of clinical NLP. In contrast, RB
methods often work well with smaller datasets but are more challenging to scale.

Meanwhile, the rapid ongoing expansion in demand for gastrointestinal services worldwide(7–11) is leading to intense and
building pressures on the workforce(12, 13). NLP is already used in other specialities to semi-automate clinical workloads.
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However, as in radiology, significant involvement is needed by both researchers and healthcare professionals to ensure that
these methods are trustworthy(14), robust and representative.

Researchers are increasingly using NLP in Gastroenterology(15), as recently described in a systematic review studying NLP
adenoma detection from free-text colonoscopy reports(16). However, a general overview of the field is required to accelerate
future progress. Learning from recent examples in radiology(17), cardiology(18) and psychiatry(19), this systematic review
aims to provide clinicians with an accessible understanding of NLP. Aim: This review assesses the progress of NLP to date
within gastroenterology, grades the robustness of the methodology, exposes the field to a new generation of authors and
highlights future opportunities for clinical usage and recommendations for research.

Methods
The review was registered on PROSPERO(20) as an original protocol in January 2023, with pre-specified criteria published
beforehand to minimise bias while assessing RB & ML NLP in Gastroenterology.

Article retrieval

This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines(21)
(Supplement A) for reporting in systematic reviews and the AMSTAR checklist(22). Because it is well evidenced that
information specialists best develop search strategies(23), a medical librarian was involved in developing the search strategy
for this review. The Peer Review of Electronic Search Strategies (PRESS) checklist(24) was used for this process, and the
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis checklist (TRIPOD)
checklist(25) was used to rate the methodological robustness of all the prediction studies. Where meta-analysis was
impossible, the Synthesis Without Meta-analysis (SWiM) guidelines (26) were used to maximise reporting robustness. An
adapted Risk of Bias in Non-Randomised Studies – of Interventions (ROBINS-I)(27) checklist was used to assess the Risk of
Bias (ROB) in primary studies. Further details of this are provided in Supplement C.

Articles were searched for in seven scholarly databases covering medicine and computer science: ACM Digital Library, Arxiv,
Embase, IEEE Explore, PubMed, Scopus and Google Scholar between the dates 1/1/2015 through 1/1/2023, available in the
English language. Articles published in abstract form before 2023 were included. 2015 was selected as the starting year for
this review because it covers the climax of the era of RB methods through to the age following the discovery of the attention
mechanism(3), which transformed the field and allowed for part self-supervised DL in clinical NLP.

A combination of search terms relating to NLP and gastroenterology was selected based on the Medical Subject Headings
vocabulary (U.S. National Library of Medicine) with additional terms identified from prior NLP-focused reviews, in particular
the work of Nehme et al. (15) who also collaborated with a medical information specialist. Extensive details of the search
strategy are provided in Supplement B.

Study selection

We used Covidence, specialist software, to manage the production of this systematic review (www.covidence.org)(28).
Studies considered eligible were those using NLP algorithms acting upon clinical free text for (1) diagnosis, (2) investigation,
(3) treatment, (4) monitoring and (5) management of gastrointestinal diseases. RB, ML, and DL algorithms were included, but
only those featuring Type 2a validation or higher, as TRIPOD(25) specified, because Type 1b validation or less is associated
with unacceptable ROB in prediction/classification studies—Table 1.
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Table 1
TRIPOD Model Validation Hierarchy

Level of
Validation

Study Type

Type 1a Development Only

Type 1b Development and Validation Using Resampling

Type 2a Random Split-Sample Development and Validation

Type 2b Non-random split Sample Development and Validation performed robustly, allowing non-random
variations between datasets.

Type 3 Development and Validation Using Separable Data

Type 4 Validation Only

Duplicate references and studies lacking a description of NLP methods and focusing only on gastrointestinal disease risk
factors were also excluded.

Following this strategy, three reviewers (MS, AV, AO) performed two rounds of independent study selection with titles and
abstracts screened in the first round and full texts reviewed in the second round. Disagreements between review authors
over the eligibility of studies were resolved by a senior review author (MG). Agreement between reviewers was measured
using Cohen’s Kappa statistic, with values above 0.8 rated as excellent and above 0.6 representative of good agreement.

Data extraction and synthesis

Data from each included article were independently extracted by two reviewers (MS, BR), and discrepancies were resolved
through discussion. Extracted data included general study information (design, objectives), clinical details (clinical sub-area,
patient characteristics), and NLP details (methods, evaluation metrics and results). To reduce complexity, evaluation metrics
were reported for primary study outcomes only and given as ranges when performance metrics for multiple cohorts or
methods were reported separately. Where the primary outcome measure was not explicitly stated, an attempt was made to
infer this from the study's aims. All reviewers worked with the same understanding of standard NLP terms and methods
described in Table 2.
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Table 2
Glossary of Core Terms and Metrics

Computer Science
Terms

Models and Methods

Natural Language
Processing (NLP)

Natural Language Processing describes a set of techniques which allow computers to extract
meaning from semi-structured textual information.

Electronic Health
Record (EHR)

Electronic Health Record. Software which manages patient and clinical records in typically either
a hospital or primary care setting.

Model A representation of a problem or solution typically in the form of numbers with an underlying
structure/architecture.

Rule-Based (RB) Use of an established set of rules or logic to define a search pattern, which is then executed
deterministically

Machine-learning
(ML)

Semi-automated learning from data using stochastic (~ randomness) models, which vary from
well-known statistical models such as logistic regression to ‘deeper’ models such as
XGBoost/Random Forest typically to make a prediction.

Deep Learning (DL) Computational imitation of human neural networks. It can be used to overcome some of the
limitations of more traditional machine learning models, detecting more subtle or ‘deeper’
patterns hidden in the data to make predictions.

Decision tree (DT) A form of ML model where branching logic is utilized to make decisions by splitting on criteria
thresholds. Simple and easy to understand.

Logistic regression
(LR)

Classification variant of linear regression. Often, it copes reasonably well with limited data but
cannot cope with significant interactions between data points.

Random forest (RF) An ‘ensemble’ of decision trees is built to create a forest of DTs. The forest can better cope with
complexities within the data at a cost to explainability.

Evaluation Methods

Manual annotation Human annotation of concepts of interest or human marking/classification of documents.

Cross-validation (CV) A technique to evaluate predictive models by partitioning the original sample into a training set
to train the model and a test set to evaluate it with reduced risk of overfitting/bias.

Holdout Set A section or part of the data is withheld from the model training process for testing only.

Performance Metrics

Accuracy The percentage of results that were correct among all results from the system. Calc: (TP + 
TN)/(TP + FP + TN + FN).

Precision (PPV) Also called positive predictive value (PPV). The percentage of true positive results among all
results that the system flagged as positive. Calc: TP/(TP + FP).

Negative Predictive
Value (NPV)

The percentage of results that were true negative (TN) among all results that the system flagged
as negative. Calc: TN/(TN + FN).

Recall Also called sensitivity. The percentage of results flagged positive among all results should have
been obtained. Calc: TP/(TP + FN).

Specificity The percentage of results that were flagged negative among all negative results. Calc: TN/(TN + 
FP).

F1-Score The harmonic mean of PPV/precision and sensitivity/recall, in this case unweighted. Calc: 2 ×
(Precision x Recall) / (Precision + Recall).

Area Under the Curve
(AUC)

Typically, it relies on a receiver-operator curve and is synonymous with AUROC – this type of
AUC we refer to in this review. It acts as a measure of model predictive capture, with 0.9 being a
strong predictive model and 0.6 weak.

Abbreviations TP = True Positive, FP = False Positive, FN = False Negative, TP = True Negative
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Specifically, accuracy, precision, recall and harmonic mean (F1-score) were extracted for each study where available.
Additional data extracted is described in the published protocol(20). Synthesis was performed without meta-analysis as per
SWiM.

Quality appraisal of study quality, reporting and risk of bias

Relevant reporting standards specific to NLP research have yet to be established. Therefore, a modified quality appraisal
based on the approach described by Koleck and colleagues(29), which has been used successfully in cardiology(18), was
combined with additional machine-learning quality indicators, as defined by Nascimento(30). This checklist included
evaluation of tuning, generalisability, use of appropriate statistical tests, model costs (time), potential for explainability, code
sharing and documentation. Adequacy of reporting was assessed according to the principles of SwiM (26) by two review
authors (MS, BR), who also independently assessed quality and ROB as high or low according to an adapted ROBINS-I and
Cochrane Specification(27, 31) available in Supplement C. QUADAS-2(32) was not used because of its narrower scope.
Standardised clinical NLP ROB frameworks will hopefully become formalised as internationally recognised NLP benchmarks
are established.

Results
Article screening

After applying the eligibility criteria, 53 articles were included in the review (Fig. 2). 1900 studies were initially retrieved from
scholarly databases; however, 716(39.6%) of these were removed as duplicates. Of 1184 unique references screened by title
and abstract, 679(57.3%) were excluded for not having a gastrointestinal focus and 276(23.3%) for not using NLP or
describing NLP methods or validation. 86(7.3%) of articles were review only, and 16(1.4%) of articles focused only on
gastrointestinal disease risk factors. See Supplement J for details of all abstracts screened and Supplement F for inter-
observer agreement results during screening. A full PRISMA flow diagram is provided in Fig. 2.

During full-text screening 126, studies were mainly excluded for being available only in abstract form 57(45.2%), performing
only weak validation 4(3.2%) or not providing sufficient details about NLP methods or validation 4(3.2%). A total of 3(2.4%)
studies were excluded due to irrelevant indication (limited gastroenterology focus), 2(1.6%) were first published outside the
date range, 2(1.6%) were focused primarily on reviewing the existing literature and one (0.8%) study was a sub-study focused
on consensus building. See Supplement I for full details of the excluded studies.

Key characteristics of included studies

Of the 53 included studies, 29(54.7%) were published in biomedical informatics or computer science journals, 19(35.8%)
were published in gastroenterology clinical journals, and 5(9.4%) were published in non-gastroenterology-focused clinical
journals.

A total of 18(34.0%) studies were based on data from a single centre, and 35(66.0%) were multi-site or registry. Regarding
technological maturity, 47(88.7%) studies were performed in a development/lab environment. In comparison, 6(11.3%)
studies were launched as part of a clinical pilot, and only one (1.9%) was deployed as part of a production clinical human-in-
the-loop system(33). No systems are currently being used unsupervised in production.

In terms of clinical focus, 22(41.5%) studies focused primarily on obtaining additional information from clinical
investigations, compared to 20(37.8%) studies focused on detecting/extracting diagnoses and 10(18.9%) studies focused on
improving the monitoring of a disease or calculating surveillance intervals. Only a single study (1.9%) focused on
treatment/management(34).

The total number of documents available to investigators ranged from 101(35) to 14.6 million(36), with up to 610,684(37)
individual patients in the available sample population. However, given the high costs involved in annotation, high-quality
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manually annotated model development document samples varied only between 101(35) and 6836(38), and manually
annotated validation document samples ranged from 100(39) to 2988(40) in size.

Study tools/methods used

The authors used a wide array of methodologies/tools, including 26(49.1%) studies using RB methods, 15(28.3%) a hybrid
(ML + RB) approach, 10(18.9%) using singular ML models and 2(3.8%) using an ML-ensemble(38, 41). Popular established
open-source tools utilised included CLAMP(42), cTAKES(43) and PyCONtext(44)/MedSpacy(45), with Python 15(28.3%) the
most popular non-structured query language explicitly mentioned, followed by Java 10(18.9%), Prolog 3(5.7%) and PERL
1(1.9%). Four commercial algorithms (I2E™, EHRead™, ClixNLP™ and EasyCIE™) are mentioned across 5(9.4%) studies.
Table 3 provides an overview of the primary open-source NLP tools described.
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Table 3
Key NLP Tools Currently Used in Gastroenterology / Hepatology

Tool Description Link Example Usage

Commonly Used Ontologies / Clinical Data Models

ICD-10 WHO International
Classification of
Diseases version 10

https://icd.who.int/browse10/2010/en Coding of
gastroenterology
diagnoses on discharge
summaries as a
validation standard

SNOMED-CT SNOMED Clinical
Terminology system.

https://www.snomed.org/get-snomed Coding of
gastroenterology
diagnoses on discharge
summaries as a
validation standard

UMLS
Metathesaurus

Open-source
compendium of
controlled
vocabularies curated
by the US Library of
Medicine

http://www.nlm.nih.gov/research/umls/ Standardisation of Free-
Text terms to aid with
tokenisation (breaking
up) of free-text

OMOP Observation of
Medical Outcomes
Partnership Common
Data Model

https://www.ohdsi.org/data-standardization/ Mapping of clinical
information to a
standardised data model
to aid interoperability

Java-Based Open-Source Tools

cTAKES Open-source NLP
system for
information extraction
from electronic
medical record clinical
free text

http://ctakes.apache.org/ Used to process and
extract concepts such as
diarrhoea from free text

GATE Suite of tools for NLP
tasks, including
information extraction

https://gate.ac.uk/ Used to extract concepts
such as hepatitis from
clinical free text

MALLET Java-based package
for statistical NLP,
document
classification,
clustering,

topic modelling and
information extraction

http://mallet.cs.umass.edu/ Used to build a text-to-
model pipeline, perhaps
to diagnose IBD and
perform NLP analysis on
that model

CLAMP Clinical Language
Annotation, Modelling
and Processing
Toolkit

https://clamp.uth.edu/ Used to annotate clinical
free-text, perhaps for
training a model for
diagnosis of pancreatic
cysts in radiology reports

Python-Based Open-Source Tools

NLTK Python’s natural
language processing
toolkit

https://www.nltk.org/ Identify abdominal pain
tokens in clinic letters

Spacy Self-described as
industrial-strength
natural language
processing in python

https://spacy.io/ Label patients with
polyps with colouring
and build a pipeline
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Tool Description Link Example Usage

Commonly Used Ontologies / Clinical Data Models

MedSpacy Successor to
PyContextNLP
combining the original
implementation with
Spacy

https://github.com/medspacy/medspacy Build a fully-functional
app annotating
endoscopy reports

Chexpert-
labeler

Initially developed to
help label chest X-rays
adapted in some
studies to review CTs
and MRIs

https://github.com/stanfordmlgroup/chexpert-
labeler

Label radiology reports
of patients with, for
instance, pancreatic
cysts

Demographics of the included studies

Only 30(56.6%) of studies reported patient demographics. Ages ranged from 16(46) to 85(47) years, while gender balance
ranged from 1.8%(48) to 63%(49) female. Only 17(32.1%) studies reported underlying ethnicity and detailed information on
participant socioeconomic status or comorbidities was provided in only 5(9.4%) of the studies. A full breakdown of the
reported study populations is provided in Supplement G.

Study purpose and primary findings

By subspecialty, 21(39.6%) of studies focused on colonoscopy, 13(24.5%) on liver disease, 7(13.2%) focused on
inflammatory bowel disease (IBD), 4(7.5%) focused on gastroscopy 4(7.5%) focused on pancreatic pathology, 2(3.8%)
focused on gastroscopy, one (1.9%) focused on endoscopic retrograde cholangiopancreatography (ERCP) and one (1.9%)
focused on optimisation of sedation in endoscopic practice more generally. Figure 3 presents a summary of the primary
clinical areas of application.

As anticipated, Classification tasks account for 32(59.2%) studies, given that prediction and automation typically depend
upon accurate classification. 19(59.4%) of these studies focus specifically on disease case identification. A broader array of
clinical tasks exists presently within colonoscopy studies. Complete results of all included studies are provided in
Supplement H.

Colonoscopy

Gourevitch et al. examined pathologist variation in colorectal adenoma classification and reported substantial average
variations in reported adenoma detection rates (ADR) between endoscopists (28.5%-42.4%), dependent purely on the
reporting pathologist(50). Blumenthal et al. managed to predict colonoscopy non-attendance with an AUC of 0.70(51). Li et
al. achieved 100% precision and recall while stratifying a sample of 300 Lynch syndrome mismatch repair status reports(52).
Shi et al. achieved 94% precision and recall in identifying cancers in family histories. Paterson et al. achieved precision and
recall of 0.861 and 0.885, respectively, for predicting colonoscopy indication(53). Hoogendorm et al. achieved an AUC of
0.896 for predicting colorectal cancer at a population level by including information derived from NLP(36).

A systematic review has already been performed regarding the automated detection of adenomas using NLP, finding a
pooled precision of 99.7% for these studies(16). However, the studies included in this review were rule-based and thus likely
brittle. Table 4 summarises the key results of all colonoscopy result extraction studies focusing on polyp detection, where
data was available.
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Table 4
Colonoscopy Result Extraction Studies

Study Study Aim Outcome Model Accuracy Precision Recall F1
Score

Adenoma-Including Studies

Syed 2022(54) Extract clinical
concepts from
colonoscopy reports

Polyp
Detection

DL(BERT) NR 0.91 0.94 0.92

Vithayathil
2022(55)

Develop a large
colonoscopy-based
longitudinal cohort

Adenoma
Detection

RB 1 1 1 1

Nayor 2018(56) Automate calculation
of ADR

Adenoma
Detection

RB 1 1 1 1

Laique
2021(57)

Extract clinical
information from
colonoscopy reports.

Polyp
Detection

RB 0.96 0.99 0.92 0.96

Tinmouth
2023(58)

Identify colorectal
adenomas in
pathology reports

Non-Advanced
Adenomas

RB 0.99 1 0.99 0.99

Lee 2019(47) Identify colonoscopy
quality and polyp
findings.

Polyps > 
10mm

Commercial
– I2E

0.95 1 0.91 0.95

Fevrier
2020(37)

Extracting Polyp
Variables

Adenoma
Detection

RB NR 0.99 0.97 0.98

Bae 2022(59) Focusing on polyp
detection

Adenoma
Detection

RB 0.99 1 0.99 0.99

Non-Adenoma Studies

Redd 2022(60) Identify colorectal
cancer in US military
Veterans.

Colorectal
Cancer

ML – LDA &
DNN

0.99 0.91 0.97 0.94

Parthasarathy
2020(61)

Automatically
Diagnose Serrated
Polyposis Syndrome
(SPS).

Serrated
Polyposis
Syndrome

RB 0.93 NR NR NR

Ternois
2018(62)

Automatic coding
system for
colonoscopies

Attribute
reports to
CCAM codes

RB NR 0.92 0.92 0.92

Footnote: NR-Not Reported. Precision(PPV) = TP/(TP + FP).
Recall(Sensitivity):TP/(TP + FN). Confidence Intervals Reported Only in
a minority of studies
Harrington et al. attempted to personalise colorectal cancer screening follow-up plans, achieving a max AUC of 0.65 for this
task(63). Three studies focused on clinical decision support for colorectal cancer surveillance interval calculation, each
taking a different approach. Wadia et al. ‘s decision support system divided reports into actionable and non-actionable,
achieving precision and recall of 92.8% and 98.9%, respectively(64). Peterson et al.’s algorithm achieved an accuracy of 92%
for assigning recommended surveillance intervals for colonoscopy(39), while Karwa et al. reported 100% accuracy at the
same task(65). Human surveillance judgements, in comparison, exhibited significantly more deviation from guidelines with a
tendency towards earlier surveillance.
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Endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic sedation

Shen et al.’s. Human-in-the-loop clinical decision support system (CDSS) aiming to identify patients at higher risk of sedation
errors pre-emptively(33) reduced the sedation-type error rate from 0.39–0.037%. Although the system had high
recall(sensitivity) of 89.2%, it suffered from low precision (28.5%). Imler et al.’s study focused on automated RB quality metric
extraction for ERCP(66). The model identified 13 pre-, intra and post-procedure quality measures from free text; however, the
algorithm struggled more with complex concepts such as precut sphincterotomy (84% Precision) and pancreatic stent
placement (90% Precision).

Gastrointestinal bleeding

These studies used a combination of RB and ML/DL models to detect gastrointestinal bleeding in clinical free-text - one in
the emergency department (ED)(40) and the other in intensive care (ICU)(67). Taggart et al.’s ICU study achieved precision:
RB:62.7%, ML:55.9% and recall: RB:91.1%, ML:84.9% on MIMIC-III(68), while Shung et al.’s study achieved precision: RB:72.0%,
DL:84.0% and recall: RB:87.0%, DL:90% for detecting bleeding among ED clinical text narratives. In both studies, the NLP
approach exceeded the results of using ICD codes alone, but the transformer-based approach was strongest overall.

Gastroscopy

Half of these studies focused on identifying gastric pathology from reports. The ML-ensemble model proposed by Ding et al.
achieved an AUC of 0.891 for predicting gastric cancer from gastroscopy report text(38). However, even this model was
associated with a 25.6% missed diagnosis rate. Song et al. achieved even more impressive results while attempting to
extract ten different gastric diseases from 1,000 validation gastroscopy reports, achieving a precision of > = 97.2%(69) in
their centre.

McVay et al. used a 250-patient holdout set to detect dysphagia(70) and achieved a precision of 98.6% and an F1 score of
91.1% on this task. Finally, Nguyen Wenker et al. attempted to detect Barrett’s dysplasia in gastroscopy reports. They
achieved 93.2% precision in this task, although the algorithm couldn’t effectively discriminate between low and high-grade
dysplasia(71).

Inflammatory bowel disease (IBD)

Stidham et al. used an RB algorithm to identify the status of many skin, eye and joint-related IBD extra-intestinal
manifestations (EIM), achieving average recalls of 92% for EIM presence(72). Kurowski et al. created a computational
Crohn’s disease state model with symptomatic/asymptomatic, active/inactive and tested/untested states, identifying that
20% of patients were lost to follow-up every 24 months (46). Zand et al. classified flare-line conversations with IBD patients,
finding that 90% of the dialogues could be assigned to one of seven categories(73). Walker et al. achieved a precision of 79%
and recall of 92% for detecting liver-test derangement in an IBD cohort(74).

Montoto et al. achieved precision and recall of 88% and 98%, respectively, for the diagnosis of Crohn’s, 91% and 71% for
disease flare and 86% and 94% for Vedolizumab(75) across a Spanish cohort. Gomollón et al. then built upon this work by
attempting to predict disease flare among that cohort, achieving precision and recall of 67% and 71%, respectively, using a
random forest model and two years of input data(76). Finally, Hou et al. achieved precision and recall of 87% and 96.6% for
detecting low-grade dysplasia in IBD surveillance biopsies within a US cohort(77).

Liver

Bell et al. found that donor text narratives strongly predicted liver utilisation(AUC = 0.81) but not 30-day(AUC = 0.53) or 1-year
mortality(AUC = 0.52)(34). Koola et al. phenotyped hepatorenal syndrome (HRS) with precision and recall ranging from 53–
73% and 65–84%, respectively, with the final phenotyping algorithm achieving an AUC of 0.93(48) on a small cohort.
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Chang et al. achieved 98.4% precision and 90% sensitivity in identifying patients with cirrhosis(78). Redman et al. and Van
Fleck et al. achieved 89-91.8% precision and 90–93% recall for identifying obesity-related liver disease from liver imaging
reports(79, 80). Heidemann et al. attempted to identify drug-induced liver injury (DILI) cases(49). However, with their four-
term RB system, they only achieved precision and recall of 64% and 53%, while in another study, Wang X et al. attempted to
attribute the causality of idiopathic DILI, reaching a precision of 86% and recall of 82% with their system(81).

The six remaining studies focused on identifying liver cancer, predominantly hepatocellular carcinoma (HCC), in radiology
reports are summarised in Table 5.

Table 5
NLP Liver Cancer Identification Results

Study Clinical Focus Imaging Modalities Accuracy Precision Recall F1
Score

Yim
2017(35)

Identifying and Classifying
Tumour-event Attributes

Not Specified NR 0.83–
0.88

0.68–
0.76

0.72

Tariq
2022(82)

HCC US/MR using
templating

NR 0.97 for
MR

0.68 for
US

0.96 for
MR

0.66 for
US

0.95
for MR

0.67
for US

Liu W
2022(41)

Liver Metastases in Colorectal
Cancer

CT/MRI 0.96 NR NR NR

Liu H
2021(83)

Predicting the Phrase:
‘hyperintense enhancement in
the arterial phase.’

CT Only 0.98 0.98 0.99 0.98

Sada
2016(84)

HCC CT/MRI NR 0.68 0.75 0.71

Wang T
2022(85)

HCC Predominantly US
with some CT/MRI

0.99 0.86 1 0.92

Table Footnote: NR- Not Reported. Precision(PPV) = TP/(TP + FP). Recall(Sensitivity): TP/(TP + FN).

Pancreas

Three systems reported precision ranging between 33–99% and recall of 25-99.9% for detecting pancreatic cysts in
radiological examinations(86–88). Collectively, these studies covered 269,221 individual patients, but substantial
heterogeneity of methods, environments, and underlying imaging studies renders reliable meta-analysis challenging. Xie et
al. achieved precision and recall of 85.5–100% and 88.7–98.7% for various chronic pancreatitis features(89), finding a higher
ten-year mortality (32.5% vs 21.2%) in those with more advanced radiological features.

Quality Assessment

Algorithm running costs were explored in only 6(11.3%) studies, while model explainability was only mentioned in 5(9.4%)
studies. However, generalisability was explicitly mentioned by 34(64.1%) of the studies. Open-source code was only made
available in 5(9.3%) studies. Supplement D summarises the quality appraisal results for each study.

Risk of Bias Assessment

Studies were all assessed across ten areas of potential bias. All studies scored low for deviation bias (a measure of unclear
aims). Only 5(9.4%) studies scored a low risk of bias across all domains. Supplement E summarises the ROB results.
Validation bias was the most common, with only 13(24.5%) of studies scoring as low risk in this domain.
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Discussion
Author lists suggest that few research groups are presently active in this field. Most NLP work within gastroenterology is
concentrated on only a few clinical domains, most obviously colonoscopy. A relatively narrow range of clinical tasks, such as
automated endoscopic or radiological report interpretation, is being prioritised. Encouragingly, most studies focus on open-
source software, although code sharing is presently rare.

Employed methodologies were highly heterogeneous, suggesting poor consensus regarding optimal methods at this point,
impeding meta-analysis and consensus building. Positive results have been obtained in some areas, such as automated
adenoma, pancreatic cyst, and hepatocellular carcinoma detection. However, limited external validation and a preference for
rule-based methods cast doubt on model robustness and generalisability.

Most included studies focused on formative algorithm development rather than evaluation of previously developed tools, and
only one study described NLP methods being adopted in routine clinical care as part of a human-in-the-loop system.
However, high false-positive rates (precision-28.5%) may lead to user distrust and substantially reduce cost-effectiveness.

The quality of included studies varied considerably, with explainability, costs, and parameterisation generally being poorly
explored. 43.3% of studies provided no demographic information at all. Where information was provided, patient samples
were predominantly Caucasian and male, potentially limiting the generalizability and usefulness of any trained models. Model
sharing is almost non-existent leading to substantial duplication of effort as highlighted by colonoscopy studies.
Incentivising transparency must become a priority for publishers and grant awarding bodies, or future progress will be
stunted.

Future work should also focus on managing and investigating functional bowel disorders, nutrition, and intestinal failure,
which are presently absent in the peer-reviewed literature. Opportunities for future research abound. Potential future research
directions are suggested in Fig. 4.

Conclusion
NLP can unlock substantial clinical information from free-text notes stored in EPRs and is already being used, particularly to
interpret colonoscopy and radiology reports. However, the models we have so far lack transparency, leading to duplication,
bias, and doubts about generalisability. Therefore, greater clinical engagement, collaboration, and open sharing of
appropriate datasets and code are needed before we see validated, trusted, semi-autonomous NLP systems deployed widely
and significant clinical benefits realised.
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