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ABSTRACT
Background and Aims

The centenary of Archives of Disease in Childhood (ADC) presents an opportunity to reflect on a century of paediatric research and consider how best to leverage this ever-growing repository for future use. While content is indexed via PubMed and MeSH terms, this provides superficial representation of complex journal content leading to limited accessibility. We discuss the potential utility of large language models (LLMs)-advanced AI systems that can understand, summarise and generate human-like language-and demonstrate their feasibility for structuring historical ADC articles, proposing a future pipeline to enhance indexing, retrieval and discoverability.
Methods

For demonstrative purposes, five articles from the ADC December 1999 issue were locally downloaded and processed using a closed deployment of an LLM, Mistral (v0.3, 7B). A structured prompt was used to extract key metadata. Outputs were manually compared to source texts and scored for accuracy. Hallucinations-fabricated or incorrect outputs-were recorded.
Results

The LLM achieved a mean accuracy of 86.9%, aligning with previous benchmarks for medical research assistance. No hallucinations were identified. Some repetition and verbosity were noted, likely due to chunk-based processing, but key fields were accurately extracted when explicitly present.
Conclusion

Archives of Disease in Childhood holds a vast but underutilised body of research. This article shows that lightweight, locally hosted LLMs could structure ADC content without compromising intellectual property. Such methods could enable improved access, support automation of systematic reviews and enhance discoverability through biomedical ontologies-laying the foundation for a searchable, semantically enriched Archives, that bridges historical insight with modern research needs.











What is already known on this topic
The Archives of Disease in Childhood contains 100 years of paediatric research, much of which remains semi-structured and difficult to search or analyse systematically. Large language models (LLMs), generative AI systems, have shown promise in extracting and organising unstructured clinical data, but their application to medical journal archives has not been explored.
What this study adds
We demonstrate a locally deployed, lightweight LLM for extracting structured metadata from historic ADC content. This supports LLM techniques as a viable approach to better access and utilise previous editions. 
How this study might affect research, practice or policy
This work suggests and supports progress towards a searchable, semantically tagged archive of paediatric research, potentially transforming how historical knowledge is accessed and applied in future research and systematic review.











INTRODUCTION 

A hundred years is a long time and, in the life of a medical journal, represents an extraordinary body of research, knowledge and insight. The century-long history of the Archives of Disease in Childhood spans a period of profound societal and cultural change, within which the development of modern paediatric practice in the UK has taken shape. As Scott-Jupp et al reflect in their editorial, “Preparing for our centenary”, the journal has long provided fertile ground for the advancement of the specialty [1]. In retrospect, the relevance of many previous editions to current clinical thinking is striking. Standing now at the threshold of a new century for the journal, we are inspired to consider not only where we have been, but how we might ensure that this vast archive of learning remains accessible and meaningful to future generations of researchers and paediatricians. We must consider how to “Make use of the Archives’ archive”. If we are to continue improving the care we offer children and families we must advance with full regard to the lessons of the past [2].
As impressive as Archives’ legacy is, it brings with it a challenge. Much of the journal’s historical output remains difficult to discover and query, as although PubMed offers robust indexing through metadata (i.e. title, year of publication, subject) and medical subject headings (MeSH) terms, its search capability remains largely limited to surface-level querying [3]. It is highly likely many more in-depth insights contained within the historic archives still hold relevance today - offering clinical wisdom and reflections on disease evolution – however, the effort required to retrieve and synthesise this information is considerable [4]. The sheer scale of the Archives presents a barrier to researchers undertaking review, embarking on new research or simply wishing to understand how paediatric practice has evolved. In an era where access to data shapes the pace of discovery, we must ask how best to ensure that the hard-won knowledge of the past century remains visible, accessible and actionable in the next.
In recent years there has been an explosion in the development of generative artificial intelligence resources, including in large-language models (LLMs) (such as OpenAI’s ChatGPT). LLMs are a type of artificial intelligence, which operate by predicting and assembling sequences of words that are statistically likely to follow from a given text input [5]. These models are often trained on large datasets for this purpose [6]. For a large language model to process text, characters or words are first converted into tokens, which serve as the model’s basic units of input. These tokens are then mapped to embeddings - mathematical representations in a high-dimensional space - that the model can interpret. The sequence of embeddings forms a vector representation that captures semantic relationships and, in turn, conveys meaning. For example, the word “dog” may be assigned a token ID, transformed into an embedding and then combined with other embeddings in a sequence to create a vector that encodes contextual meaning. In a short phrase like “The dog runs,” each word would be converted into its own embedding, and the sequence of these vectors allows the model to capture not only individual word meanings but also their relationships in context. These vectors are processed through many layers that help it understand how the words relate to each other. It then predicts which word is most likely to come next, based on patterns it has learned during training. By choosing one word at a time and repeating this process, the model gradually builds a complete response. In practice, input text is provided, which the model converts into tokens and embeddings before processing [7]. This input can be designed, through a process called “prompt engineering” to produce more accurate or useful outputs. The output is the sequence of tokens generated by the model in response. The quality of the output depends on both the training of the model and the way the input (“prompt”) is expressed [8]. In this way, LLMs can answer complex questions and follow extremely intricate instructions, performing many tasks across multiple domains including education, media and finance [6].
LLMs also have clinical and research utility and have been used to make sense of complex and unstructured information within electronic health records (EHRs), where data may exist as free-text clinic letters, raw medical image files or radiological or histological reports [9]. These tools offer a way to overcome one of modern healthcare’s greatest challenges: that although we record vast quantities of clinical information, much of it remains difficult to retrieve, analyse or compare systematically. Just as these models show promise in structuring clinical data, they could also be leveraged to unlock the full potential of the Archives by transforming its semi-structured, superficially indexed content into accessible, analysable knowledge.
Large language models are adept at handling text and can retrieve relevant information, summarise complex narratives and generate structured outputs. In one study by Van Veen et al., LLM-generated summaries of clinical notes were compared to those written by clinicians in a blinded evaluation. The best-performing models produced outputs judged equivalent to those of medical experts in 45% of cases and superior in 36% [10]. Notably, both human and AI-generated summaries exhibited factual inaccuracies - highlighting that the risk of misrepresentation is not unique to artificial systems and reinforcing that, while LLMs demonstrate comparable performance, there remains room for improvement.
The deployment of LLMs in clinical settings presents practical challenges; data are often sensitive, with controlled access and computational resources are often limited. Proprietary models like OpenAI’s GPT-4 often require data to be processed via externally hosted servers, raising concerns over data governance [11]. Open-source alternative models such as LLaMA (Meta), Mistral (Mistral AI) and Gemma (Google) can be deployed within secure, local infrastructures, preserving data control but demanding significant computational resources [12]. Model fine-tuning strategies can be employed to allow smaller, task-specific models to achieve results comparable to their larger counterparts. Strategies include in-context learning, low-rank adaptation (LoRA) and quantised tuning. In-context learning enables a model to pick up patterns or instructions from examples provided within a single prompt, without retraining. LoRA fine-tunes models by adjusting only a small subset of parameters, reducing memory and computational demands and quantised tuning optimises the model by using lower-precision data, making it faster and more efficient, maintaining performance [10].
A similar set of constraints applies to the use of LLMs for processing journal content. Back catalogues of medical journals, such as Archives of Disease in Childhood, are often subject to licensing restrictions, meaning that large-scale ingestion by proprietary models may breach copyright terms. While full-text analysis holds great promise for structuring historical medical knowledge, it must be conducted within environments that respect intellectual property - just as patient data requires secure, consented use. Open-source or institutionally hosted models offer a viable route for LLM deployment, allowing compliant, large-scale analysis of journal archives while upholding the rights of authors and publishers. While journals are accessible online and often hosted in cloud environments, direct access to the full text for computational processing is limited. Structuring this content using LLMs at scale would therefore require either lightweight models or access to significant cloud computing resources.
To further enhance the utility of LLMs, particularly in clinical research, ontological mapping plays a crucial role. Standardising data using structured vocabularies - such as SNOMED CT or the Human Phenotype Ontology (HPO) - enables semantic interoperability and facilitates integration of text, imaging, demographic and genomic information [13,14]. Biomedical ontologies define hierarchical relationships between clinical concepts, allowing machines to interpret and connect data meaningfully. However, few are designed to capture the full complexity of disease-specific traits. For indexing archive journal content, similar ontologies should be developed for the ease of organising research content, a process which could improve the performance of information retrieval as in the methods applied by Thomo [15].
We aimed to demonstrate the feasibility of using a LLM to structure historical ADC articles, to inform and emphasise the future potential of these techniques to enhance journal indexing, retrieval, and discoverability.


METHODS
To demonstrate the feasibility of deploying a large language model within the ADC, we evaluated the performance of a small, open-weight LLM: Mistral (Mistral AI, v0.3, 7B parameters). This model was selected for its relatively lightweight resource requirements, making it feasible to run in a closed local system - specifically, on CPUs within the University of Southampton - without reliance on commercial data access systems or external servers. This ensured that no ADC content was exposed to proprietary platforms.
We selected the December 1999 edition of Archives of Disease in Childhood for analysis. This issue was chosen both for its symbolic position at the turn of the millennium and its practicality: the content was recent enough to exist in text format (rather than scanned image files), yet far enough in the past to avoid extensive indexing.
Five research articles of varying length and topic were downloaded and saved as .txt files (16–20). A Python-based processing pipeline was developed, incorporating an LLM prompt designed to extract key structured metadata from each article. This prompt was iteratively engineered based on serial deployment on the selected works. The resultant prompt can be visualised as a SUPPLEMENTARY FILE 1. The target fields of interest, for population by the LLM, are included in TABLE 1. 
Given the length of the articles (ranging from approximately 16,000 to 32,000 characters), each article was first split into chunks of 6,000 characters. This chunking strategy balanced the need for contextual completeness with the computational limitations of the model in its quantised form. For each chunk, the model was tasked with identifying relevant structured elements and maintaining local context.
In a second stage, the outputs from all chunks of a single article were aggregated and passed through an additional prompt to generate a single unified structured summary for the full text. 
All outputs were reviewed against the original articles to assess the model’s factual accuracy and to detect any hallucinated or fabricated content. Accuracy was evaluated using a ground truth comparison approach. For each requested field (e.g., Year, PubMed ID, Study Type), a score was allocated based on the following rubric:
· 1 point for a correct match or accurate paraphrase from the source,
· 0.5 points for minor errors or ambiguity, where the information remained understandable and approximately correct,
· 0 points if the content was missing, or clearly incorrect.
In addition to the scoring, the presence of hallucinations in each output was recorded as a raw count, representing any instance of information introduced by the model that was not present in the original article.
RESULTS
The output generated for a single article summarised by the LLM can be visualised in FIGURE 1. The remaining four output files are provided as SUPPLEMENTARY FILES 2-5. 
The ground truth comparison scores for each article and LLM output can be visualised in TABLE 1. A mean accuracy of 86.9% was demonstrated across the total (n=5) articles, in keeping with previous performance of LLMs for the purpose of medical research assistance [21]. No hallucinations were identified. The reduction of hallucinations likely related to the several chunk approach utilised and specific and focussed prompt. The output was noted to include some responses in longer-form free-text which may relate to the accumulation of text from each article chunk. A larger model which can handle the entire article, may be able to perform more concise summaries. Some repetition was noted, also likely stemming from the additive accumulation of information from each chunk. There were instances where the prompt schema was populated by the model using the best information from the original article, without adapting to the article type. For example, from a paper reporting on development of a clinical guideline, in the “Number of Participants” section the model returned a number from a study mentioned in the text. This was assigned “0” points, however further prompt engineering or model training may prevent of inclusion of irrelevant data. 
DISCUSSION
The authors report the demonstration of a LLM technique for structuring historical research content within the ADC and suggest a blueprint for the downstream organisation of medical literature. This demonstrates practical, institutionally viable LLM deployment, without violating copyright or privacy concerns. These methods demonstrate potential for transforming inaccessible Archives into rich, searchable data. 
Despite its simplicity, this LLM model proved effective at extracting structured data from legacy ADC research content. Its strengths lie in its low computational burden, full local deployment (preserving article licence restraints) and prompt-engineering strategy, which likely contributed to the reduction of hallucinations. The chunked processing allowed the model to handle full-length articles while preserving context. However, limitations were also observed. The merging of outputs from multiple chunks occasionally resulted in verbose or duplicative phrasing, especially in narrative fields like "Key Findings" or "Methods." The model also showed variability in precision across fields with sparse mention in the text (e.g., Year, Study Type), underscoring the importance of source structure. Furthermore, while the model's outputs were relatively accurate, the lack of fine-tuning on biomedical literature or ability to map to defined ontological labels constrains standardisation. Moreover, the model performance may vary when applied to the heterogeneous article types of the wider and more historic Archives. Accuracy and precision may vary with the application of these techniques to a wider, more diverse dataset, though the ground truth accuracy provided (86.9%) is encouraging and in keeping with some published data curation tools [21,22]. 
Contemporary comparison of human and AI-generated clinical summaries for factual inaccuracies note an ongoing need for improvement in LLM performance [10]. To address limitations, newer LLM methods might be employed. Such methods include retrieval-augmented generation, which conditions LLMs on relevant information drawn from trusted sources, allowing access real-time information and improving reliability in medical tasks. For example, Jin et al., have developed TrialGPT, which implements a RAG -conditioned LLM to accurately match (87.3%) synthetic patients to clinical trials, correlating with human judgement [23]. This technique has also been applied to the task of searching medical literature, for example, Thomo et al. conditioned a model to improve the accuracy of information retrieval in a PubMed-style medical database. Their study demonstrated that standard models achieved high answer relevance (0.87), indicating strong performance [15]. These results underscore both the promise of conditioning large-language models for the purpose of interacting with biomedical literature and the need for further optimisation to ensure reliability in research settings. It is important to note that the model employed in our demonstration was small and unspecialised for this specific task, with the performance optimised in the prompt engineering only. Onward pipelines might employ larger, computationally intensive models or models trained on similar materials to improve performance and speed. 
Future steps could involve application of these methods to bring about model refinement and training on similar content. The output generated here – i.e. in FIGURE 1 - could be mapped to formal biomedical ontologies or a newly devised “research ontology”. Structured output could also be indexed within the existing PubMed infrastructure. These mappings would allow improved searchability and linking of studies through granular features such as shared methodologies, phenotypes, populations, interventions or outcomes. This would enhance discoverability, support automated review, and enable interoperability with clinical knowledge systems. The structured research metadata generated here provide a foundational layer upon which a searchable, semantically enriched archive of ADC could be built - bridging historical insight with modern data standards and powering a new generation of paediatric research. AI tools, deployed in the clinical sphere are increasingly able to interpret image data, which in turn may prove beneficial for the extraction of pictorial journal data such as scanned historic text, tables and figures [24,25].
CONCLUSION
As we look forward to the next century of Archives of Disease in Childhood, we are presented with a unique opportunity to rethink how past knowledge can inform future care. The journal’s back catalogue represents a deeply valuable but under-indexed resource. By applying similar LLM-powered structuring and standardisation strategies, ADC could pioneer a new model for the medical publishing: a searchable, semantically tagged archive of paediatric research. In this way we would make leaps towards “making use of the Archives’ archive” [2].
Future researchers, with access to this infrastructure, could search across the journal’s entire history for studies involving a specific method, genotype, treatment or outcome - with papers automatically mapped to standardised ontologies and ready for synthesis into systematic review or meta-analyses. Prospective research could be contemporaneously and automatically indexed in this way. Such an initiative would not only enhance transparency and usability of the existing literature but also set a new standard for scholarly publishing. The lessons of the past are valuable and large language models may give us the key to unlock them.
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	ADC_1
	ADC_2
	ADC_3
	ADC_4
	ADC_5
	TOTAL

	Title
	1
	1
	1
	0.5
	1
	4.5

	Authors
	1
	1
	1
	0.5
	1
	4.5

	Journal
	0
	1
	1
	1
	1
	4

	Year
	0
	0
	0
	0.5
	0
	0.5

	PubMed ID/ DOI
	1
	1
	1
	1
	1
	5

	Study Type
	1
	0.5
	1
	1
	1
	4.5

	Number of Subjects
	0.5
	0
	1
	1
	1
	3.5

	Discipline
	1
	1
	1
	1
	1
	5

	Aims
	1
	1
	1
	1
	1
	5

	Methods
	1
	1
	1
	1
	1
	5

	Key Findings
	1
	1
	1
	1
	1
	5

	Conclusions
	1
	1
	1
	1
	1
	5

	Limitations
	1
	1
	1
	1
	1
	5

	Data Collection Period
	1
	1
	1
	1
	1
	5

	Key Measures
	1
	1
	1
	1
	1
	5

	Key Synonyms
	0
	1
	0
	1
	1
	3

	Hallucination Count
	0
	0
	0
	0
	0
	0

	Raw Score
	12.5
	13.5
	14
	14.5
	15
	69.5

	Accuracy (%)
	78.1
	84.4
	87.5
	90.6
	93.8
	86.9

	TABLE 1: The results of ground truth comparison between original historic ADC articles and
Mistral (v0.3, 7B parameter) structured summaries. Mean (%) accuracy result is included for the
total article count





 FIGURE LEGEND

Figure 1: An example output of the historic ADC article, “Randomised trial of different rates of feeding in acute diarrhoea,” structured for key fields using Mistral (v0.3, 7B)









2

