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ABSTRACT
Magnetic materials at the nanoscale are important for science and technology. A key aspect for their research and advancement is
the understanding of the emerging magnetization vector field configurations within samples and devices. A systematic parameter space
exploration—varying for example material parameters, temperature, or sample geometry—leads to the creation of many thousands of field
configurations that need to be sighted and classified. This task is usually carried out manually, for example by looking at a visual represen-
tation of the field configurations. We report that it is possible to automate this process using an unsupervised machine learning algorithm,
greatly reducing the human effort. We use a combination of convolutional auto-encoder and density-based spatial clustering of applications
with noise (DBSCAN) algorithm. To evaluate the method, we create the magnetic phase diagram of a FeGe disc as a function of changing
external magnetic field using computer simulation to generate the configurations. We find that the classification algorithm is accurate, fast,
requires little human intervention, and compares well against the published results in the literature on the same material geometry and range
of external fields. Our study shows that machine learning can be a powerful tool in the research of magnetic materials by automating the
classification of magnetization field configurations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000686

I. INTRODUCTION

Magnetic materials play important roles in domains ranging
from geology to data storage and medicine. Computer simulation
have enabled research advances in materials research in fundamen-
tal science and virtual design optimization in industry. A particular
strength of the simulation based parameter space exploration is
the ability to quickly generate many possible designs or magne-
tization configurations. The analysis and evaluation of such large
datasets typically requires considerable human effort. In this work,
we explore the suitability of Machine Learning (ML) to provide auto-
matic classification of large sets of vector field configurations, in the
context of vector fields describing magnetization fields.

ML is the branch of Artificial Intelligence which automates
the process of approximating an analytical model from the pro-
vided data. ML has found numerous applications in physical sci-

ences, for example in material discovery,1 quantum chemistry,2 pro-
tein folding,3 molecular dynamics,4 collider physics,5 astrophysics,6
plasma control in tokamak,7 etc. In the field of magnetism, ML has
been used in calculation of magnetization equilibrium states8 and
dynamics,9 magnetic phase discovery,10–13 etc. Particularly, the task
of magnetic phase diagram construction14,15 lends itself well to ML
methods as the exploration of states is done with large amounts of
data which needs to be clustered and classified.

Previous attempts at magnetic phase identification with ML
have been focused on systems modeled using the Ising model.10,11,13

A global phase exploration using the Ising Model was also under-
taken by combining Principal Component Analysis (PCA) with an
unsupervised clustering technique.12

Here, we repeat parts of a published study14 to explore the
suitability of ML-based classification of the simulation results to cre-
ate the phase diagram computed in Ref. 14. Following the original
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study, we use micromagnetic simulations to generate magnetiza-
tion field configurations for a range of applied external fields in a
disc geometry. The states are then clustered into different classes
using an unsupervised clustering algorithm: density-based spatial
clustering of applications with noise16 (DBSCAN). First, a feature
space of reduced dimensionality compared to the simulation results
is obtained through a purpose-build convolutional auto-encoder.
Next, we feed the feature space to the clustering algorithm to obtain
different classes.

We find a good agreement of the clustering results we obtain
using ML-assisted automatic classification when comparing with the
published study in which the data was analyzed manually.

II. METHODS
Each vector field configuration m(r) under consideration is

a mapping from a subregion r ∈ S ⊂ R3 to a subregion V ⊂ R3 of
space: m : {S→ V , r↦ m(r)}. In our particular context of vector
fields representing magnetization, the domain S is typically repre-
senting the magnetic material, or some discretized form of space
containing magnetic material. The values of the vector field m ∈ V
are generally limited in magnitude by the saturation magnetization.
For the micromagnetics used here m is normalized so that ∣m∣ = 1
(Sec. II A).

The simulations were performed using the ubermag17 Python
meta-package for finite-difference micromagnetic simulations,

which uses OOMMF18 for energy minimization. For training the
auto-encoder we use tensorflow19,20 and for clustering we use
scikit-learn.21

A. Micromagnetic simulations
We consider a FeGe disc geometry of diameter 160 nm and

thickness 10 nm. The different equilibrium states are obtained in
the presence of an external magnetic field (μ0H) along the pos-
itive z axis. Simulations are performed for 345 randomly chosen
field strengths between 0 T and 1.2 T. We take into account
energy contributions from the ferromagnetic exchange interaction,
Dzyaloshinskii–Moriya interaction (DMI), external magnetic field
and demagnetization field:

E = ∫
V
[−Am ⋅∇2m+Dm ⋅(∇×m)−μ0Msm ⋅H−

1
2

μ0Msm ⋅Hd]dV.

Here, m is the normalized magnetization vector field, A is the
exchange stiffness constant, D is the DMI constant, Ms is the sat-
uration magnetization, H is the external magnetic field, and Hd is
the demagnetization field of the material.

The total energy of the system is minimized using a conjugate
gradient algorithm to obtain an equilibrium magnetization con-
figuration. It is important to note that the equilibrium state thus
obtained depends strongly on the initial (starting) configuration.
Hence, in order to obtain a full set of configurations possible in
the system, the simulations at each external field value are initiated

FIG. 1. Convolutional auto-encoder architecture used to reduce the dimensionality of the simulation magnetization array from 19200 (80 × 80 × 3) to 12 (12 × 1). The input
array is a simulated magnetization configuration, for example a skyrmion state. The auto-encoder is expected to reduce the dimensions of the feature space (encoder), and
subsequently recreate the input from the space of reduced dimensionality (decoder) as the output. Hence, in the training process it learns a meaningful representation of the
data in a lower dimensional space. The exact architecture of the auto-encoder is provided in the supplementary material.22
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from several different magnetization configurations representing the
analytical solutions of the magnetization configurations of the given
energy contributions.14,22

To discretize the geometry, we create a mesh of cubic cells of
size 2 nm, which is well below the exchange length (≈10nm) and
long-range helical period (≈70nm) of the material. The magnetiza-
tion vector fields m of the equilibrium states for changing external
field values are stored as omf files and the corresponding value of
external field and total energy in json files.

The material parameters14 used to simulate FeGe are A = 8.78
× 10−12 J m−1, D = 1.58 × 10−3 J m−2, and Ms = 384 kAm−1. We
have 3010 equilibrium states in total, which are to be clustered into
individual classes based on their magnetization configuration.

B. Dimensionality reduction: Auto-encoder
With the simulation cell size of 2 nm for a disc of diameter

160 nm and thickness 10 nm, the simulation result m is given
by a 80 × 80 × 5 × 3 array representing the magnetization field on
80 × 80 × 5 spatial discretization points, each providing three com-
ponents for the local m vector. We consider only a slice of the m-field
at the center of the disc thickness for the clustering task. Since the

thickness of the disc is small compared to the length scales at which
one expects to observe inhomogeneities in the magnetization for this
material, a central slice is a reasonable representation of the full con-
figuration. This reduces the dimensionality of the feature space by
a factor of five to 80 × 80 × 3, however, the resulting space is still
19200 dimensional. Clustering on data with dimensionality this high
can lead to poor results: often referred to as the curse of dimension-
ality. To elaborate, the high dimensional data is at the risk of being
very sparse in the feature space if the number of instances are not
high enough. This can negatively impact the performance of a clus-
tering algorithm. Moreover, the computation time of the clustering
can improve significantly if the dimensionality of the feature space is
reduced. In the micromagnetic framework, the magnetization field
is changing slowly in space. Hence, magnetization vectors in nearby
cells are highly correlated, which indicates the theoretical possibility
of dimensionality reduction.

For the dimensionality reduction, we employ a convolutional
auto-encoder.23 We feed the simulation results as the input and
expect the same as the output (Fig. 1). The architecture and the num-
ber of trainable parameters of the first half (encoder) and the second
half (decoder) of the auto-encoder are kept as close to each other
as possible.22 We use mean squared error (MSE) as the loss function

FIG. 2. Magnetization configurations of 13 different clustered classes and their distribution as a function of changing external field (μ0H). The y axis shows the energy
difference of a given configuration with respect to the ground state at that external field. Additionally to the clustered classes, we obtain outlier configurations, which are not
part of any class. We find the results to be in a good agreement with the Fig. 3b of Ref. 14 of the published study on the same material geometry and range of external fields.
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and the adaptive moment estimation (ADAM)24 optimizer for train-
ing the network. For the optimizer, the learning rate is initialized
to 0.001, the momentum decay hyper-parameter β1 to 0.9, and the
scaling decay hyper-parameter β2 to 0.999.

Once the auto-encoder is trained to a sufficient accuracy, the
encoder is used to obtain the feature space of reduced dimension-
ality. We find that it is possible to reduce the dimensionality from
19200 to 12 (Fig. 1) without impacting the MSE of the auto-encoder.

C. Clustering: DBSCAN
We use DBSCAN to cluster the feature space. The algorithm

clusters on the basis of density of instances in a neighborhood in
the feature space. It calculates the number of instances within an
ε Euclidean distance of an instance. If the number of instances
are greater than a specified minimum number of instances, the
instance becomes a core instance of a class and the instances in the
neighborhood become the members of that class. Hence, the two
hyper-parameters ε and the minimum number of instances needs
to be optimized for the clustering task.

Since the number of configurations in our case are relatively
small, one can use a small number for the minimum instances to
create individual classes. We find that a value of 5 for the minimum
instances works well in our case. An intuition for the value of the
ε distance is obtained by plotting the distribution of the distances
of the 5th nearest-neighbors of each instance in the feature space in
an ascending order.16 For our case, a value of 0.86 works well for ε.
However, it is important to note that this value will change depend-
ing on the different models used for the dimensionality reduction.
Hence, it is always advisable to plot the distribution of distances to
get an intuition of this value.

Using these hyper-parameters for the DBSCAN clustering, we
obtain 13 classes (Fig. 2) which are discussed below.

III. RESULTS
The magnetization configurations and the distribution of the

clustered classes as a function of external magnetic field are shown
in Fig. 2. The left plot shows the energy differences of the individual
equilibrium states with respect to the ground state at a given external
field. Using this approach, it is possible to clearly identify the differ-
ent classes visually as they form distinct trend lines. This is useful in
determining the accuracy of the clustering algorithm visually. More-
over, the plot helps in making a one-to-one comparison with the
published study.

As mentioned earlier, we obtain 13 different clusters of equi-
librium configurations: isolated skyrmion, two skyrmions, four
skyrmions, five skyrmions, target skyrmion 1 and 2, helical type
1 and 2, horseshoe type 1 and 2, cross type 1 and 2, and quasi-
saturation state. The algorithm also produced six outlier configura-
tions, which are not part of any of the clusters, with three unique
configurations as shown in Fig. 2. Within each of the 13 clustered
classes, we find no intermixing of magnetization configurations, i.e.,
all the instances of a given class are visually similar.

The configurations found in the automatic classification agree
well with the published study14 on the same material geometry. The
trend lines corresponding to the isolated skyrmion, two skyrmions,
target skyrmion 2, helical type 1, and quasi-saturation state are in

very good agreement with Fig. 3b of Ref. 14. The study here identifies
and reports additional configurations, such as the 4 and 5 skyrmion
configurations which were outside the scope of the Ref. 14. Our
study did not find 3-skyrmion configurations. This might be due to
our study using finite difference simulations whereas finite element
discretization was used in Ref. 14. We note that there is a slight dif-
ference in the initial configurations used to obtain the equilibrium
configurations in both the studies.

We note the absence of rotational invariance in the clustered
classes (e.g., the two horseshoe type states are identified as separate
classes). A possible reason for this can be the auto-encoder being
insensitive to the rotational symmetry of the system since the no
effort has been made to address this during the training process.

The study was performed on Intel(R) Xeon(R) CPU E5-2670
@ 2.60 GHz with 16 physical cores and 24GB of RAM. The wall time
for training the auto-encoder was 35 s and for clustering the feature
space using DBSCAN was 8.04 μs.

IV. CONCLUSION AND OUTLOOK
The study shows that machine learning can be a powerful tool

to automate the process of vector field classification. We demon-
strate this here for the classification of equilibrium magnetization
states in the study of magnetic materials. We find that the method is
accurate, fast, and requires no human supervision (other than tuning
hyperparameters). ML-assisted classification can substantially ease
the time-consuming and error-prone task of manual analysis of large
simulation datasets.

Due to the flat geometry for the disc studied here, we have
assumed that the magnetization does not vary substantially along the
z-direction, and thus treated the system as essentially two dimen-
sional in the x-y plane (although the vectors defined at those posi-
tions have three components). Going forward, a natural next step
is to investigate clustering of magnetization configurations that are
defined in 3 dimensions.

Another avenue of further exploitation is to use the approach
to classify experimentally obtained datasets.
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