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Finite difference-based micromagnetic simulations are a powerful tool for the computational investigation of magnetic structures.
In this article, we demonstrate how the discretization of continuous micromagnetic equations introduces a numerical “discretization
anisotropy.”” We demonstrate that, in certain scenarios, this anisotropy operates on an energy scale comparable to that of intrinsic
physical phenomena. Furthermore, we illustrate that selecting appropriate finite difference stencils and minimizing the size of the

discretization cells are effective strategies to mitigate the discretization anisotropy.
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I. INTRODUCTION

OLVING differential equations are fundamental to
physics, describing a wide range of phenomena from heat
transfer to magnetism. Often, analytical solutions to these
equations do not exist; instead, we solve those numerically
using computational techniques. One of the most widely used
methods is the finite difference technique, which involves
discretizing the differential equations onto a regular lattice.
However, such numerical solutions introduce errors due to
this discretization. Anisotropy arising from the discretization
of differential equations onto a regular lattice is a well-known
phenomenon [1], [2], [3], [4], [5], [6]. Despite this, the conse-
quences of discretization anisotropy and strategies to mitigate
it are rarely discussed in the context of micromagnetics [7].
Micromagnetics models the physics of magnetic systems
using a continuum approximation to represent quantities such
as the magnetization, energy density, and effective field. These
approximations take the form of differential equations, which
must be discretized onto a mesh to obtain numerical solutions.
The aspect ratio, size, and geometry of the discretization
cells can significantly impact the results of these simulations.
Simulations may employ coarse discretization to reduce com-
putational effort; however, this can introduce additional errors,
leading to preferred directions and the creation of artificial
magnetization structures. These errors can be seen both in
the magnetization structures and their derived quantities [8].
In this study, we focus on the errors introduced by using finite
difference approximations in micromagnetic simulations.

II. FINITE DIFFERENCE APPROXIMATIONS

In micromagnetics, finite difference approximations dis-
cretize the magnetization vector field m : R* — R3 onto
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a regular grid. Typically, a cuboidal discretization is utilized
with grid spacings (hy, hy, h;) along each spatial direction.
These finite difference techniques transform the continuous
micromagnetic equations into discrete equations, which can
be numerically solved on the grid to approximate spatial
derivatives.

Three-point stencils are commonly used to evaluate these
derivatives in widely adopted simulation software, such as
OOMMF [9] and Mumax [10]. These stencils provide efficient
and accurate approximations for derivatives of various orders.
Specifically, in the x-direction (indicated as e,), the three-
point stencils for the first and second-order derivatives of the
magnetization vector field m can be expressed at any point
r = (x, Yy, z) as follows:

om(r) m(r + h,X) — m(r — i,X)

2
ox 2h, + O(h)‘)
9’m(r)  m(r+ %) +m(r — h,X) — 2m(r) 5
ox2 - hi + O(hx)'

These approximations are second-order accurate. Higher order
stencils can further improve the precision of derivative approx-
imations. For example, a five-point stencil for the first
derivative is fourth-order accurate.

III. ENERGY FUNCTIONAL
A. Exchange Interaction

In the continuum approximation, the energy density due to
the exchange interaction can be expressed as follows:

Wexe = —Am(r) - V’m(r) (1)

where A € R+ is the exchange stiffness.

This energy density is isotropic in the continuum model.
To examine this isotropy, we can define a helical ansatz in a
helical coordinate system with ¢z || k

m(r) = cos(k-r)e; +sin(k-r)ey +0e;3 2)

A A

é1, ¢z, and e3 are the orthogonal basis vectors, k is the wave
vector, and M, is the saturation magnetization.
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Fig. 1. Anisotropy of the energy density of (a) exchange and (b) DMI, for a
cubic discretization cell with a three-point finite difference stencil. The radial
distance from center represents the energy density w* of a helix propagating
in that direction. (a) Exchange. (b) DMIL.

By substituting (2) into (1), the exchange interaction energy
density of a magnetic helix in the continuum model reads

Wexe = Ak2 (3)

This can also be written as the sum of contributions from each
direction

Wexec = Z Wexc,a (4)

ae{x,y,z}

where
Wexe,x = AKZ. )

These equations are isotropic, and there is no preferential
direction for the propagation of the helix.

However, when numerically evaluated using three-point
stencils in a finite difference scheme, the energy density takes
the form
2 —2cos(kqh
% (6)

o

ae{x,y,z}

where h, is the size of the discretization in the « direction.’
This can also be written as a modification of the original

energy term
. T
Wexe.a sinc? (—) (8)
Ny

where n, is the number of cells per period in direction «.
This highlights the modification from the original energy term
due to discretization as n gets larger this modification factor
approaches 1. It also provides a good way to quickly estimate
the error of the energy term.

In this discrete form,
anisotropic.

Fig. 1(a) depicts the anisotropy for exchange energy density
for a cubic discretization cell. This shows that helices with

*
Wexe =

aefx,y.z}

the energy density becomes

UIf the exchange energy is evaluated using first order derivatives such as
follows:

Wex = AVM(r) - Vmm(r) 7

rather than (1) then the numerical solution is equivalent to (6) with & — 2h.
Even though in the continuum model they are equivalent, the error due to
discretization is different and thus they are only equivalent as 7 — 0.
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Fig. 2. Exchange energy density for Cu;OSeO3 system for a helix of 60 nm
with k in the (0, —1, 1) plane and a cubic discretization cell. The circles show
data calculated using OOMMEF [9], [12] and the solid lines are (6) (top). The
analytical energy as given by (3). Comparison of three-point and five-point
stencils for the exchange interaction (bottom).

k || (1,0,0) are energetically favorable, whereas those with
k || (1, 1, 1) are more costly.

To quantify the scale of this phenomenon, we introduce a
quantity termed the “amplitude of discretization anisotropy.”
This represents the difference between the maximum and
minimum values of the energy density (due to discretization).
The amplitude of discretization anisotropy is labeled in Fig. 2.
Without discretization, such as for the analytical solution (3),
the discretization amplitude is O.

To verify the analytic equation for the three-point-stencil
exchange, we compare (6) with the OOMMEF calculator in
Ubermag [9], [11], [12] in Fig. 2(a) using Cu,0OSeO3 material
parameters and the helical ansatz [13]. OOMMEF is a finite
difference micromagnetic software that implements three-point
stencils to approximate the exchange interaction. These equa-
tions very accurately describe the numerical implementations
of the micromagnetic software.

Using higher order stencils, such as a five-point stencil,
the amplitude of discretization anisotropy decreases while the
overall shape remains similar. For instance, with the five-point
stencil for the discretized exchange energy density is given by

A7 — 8cos(kghy) + cos?(kyhy)
30 '

©)

aefx,y.z}
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Fig. 2(b) depicts the improvement of five-point stencils com-
pared to three-point stencils.

B. Dzyaloshinskii—-Moriya Interaction

Similar calculations can also be performed for the
Dzyaloshinskii—-Moriya interaction (DMI). In the continuum

description, the bulk DMI energy density is given by
Wami = Dm(r) - (V x m(r)) (10)

where D € R is the DMI constant. Evaluating the continuum
model with the helical ansatz (2) yields the energy density

(11

Like the exchange interaction, this equation is isotropic and
can be written as the sum of contributions from each direction

Wami = —DIK|.

Wami = D, Wamia 12)
ae{x,y,z}
where
k2
o= —D-X%. 13
Wdmi, K| (13)

However, when (10) is discretized and numerically eval-
uated using three-point stencils, the energy density also
becomes anisotropic

(14)

. sin(kghy) ko

wi=— >, pinlel ke
he K|

aefx,y,z}

Similar to the exchange interaction, the DMI can also be

written as a modification of the original energy term
2r
* .
Wami = z }wdmi.oz smc(z)

ae{x,y,z
where n, is the number of cells per period in direction «.

Fig. 1(b) depicts the anisotropy of DMI energy density for
a cubic discretization cell. It can be seen that for DMI helices
with k || (1,1, 1) are energetically favorable. Interestingly,
this discretization anisotropy is opposite to that observed in the
exchange interaction, where helices aligned along the principal
axes are more favorable.

Similar to exchange, using higher order stencils, reduces
the amplitude of the discretization anisotropy. The equation
of the five-point DMI stencil can be produced using the
supplementary material.

15)

C. Other Interactions

Not all terms commonly present in the micromag-
netic Hamiltonian contribute to the discretization anisotropy.
Specifically, it is only introduced by energy terms that involve
spatial derivatives of the magnetization vector field m. For
example, terms such as the Zeeman interaction and crys-
talline anisotropy depend only on the local orientation of
the magnetization and therefore do not introduce any dis-
cretization anisotropy. To evaluate the discretization anisotropy
arising from energy terms that include spatial derivatives,
we first apply finite difference stencils to the Hamiltonian
and then substitute a helical ansatz. We provide Python code
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Fig. 3. Mean energy density for Cu;OSeO3 system for a helix with 60 nm
with k in the (0, —1, 1) plane and a cubic discretization cell. The anisotropic
nature of the cubic anisotropy terms causes the continuous form of the energy
density to no longer be a flat line.

in the supplementary information to demonstrate this process,
enabling the reader to evaluate and visualize the discretization
anisotropy for their own energy terms more conveniently [14].

D. Total Energy

The total energy density of a system in micromagnetics is
the sum of all contributions in the Hamiltonian. For a system
with just exchange and DMI, the discretized total energy
density reads

* o E
wtol -

ae{x,y,z}

A 2 —2cos(kyhy) sin(kyhy) ko
h2 he

. (16
K| (16)

Not only is there a competition between the energy terms
but there is also a competition between the discretization
anisotropies of these terms.

We can calculate the total amplitude of discretization
anisotropy for a cubic discretization cell (h = h, =h, = h;)

h2|k|3

18

If this amplitude is positive, then the discretization anisotropy
due to the DMI dominates and the system favors k || (1, 1, 1).
Whereas, if this amplitude is negative, then the discretization
anisotropy due to the exchange dominates and the system
favors k || (1,0,0). The magnitude of the amplitude could
be minimized by minimizing the value 2D — A|k|, which is,
however, generally not possible as we usually wish to simulate
real systems and hence do not have a free choice of any
of these variables. For a system with only exchange and
DMLI, in equilibrium k| = D/2A, therefore the discretization
anisotropy amplitude will be positive and helices will tend to
propagate in a diagonal direction.

In most cases, the best way to minimize the amplitude
of discretization anisotropy is minimizing the size of the
discretization cell h.

Utilizing five-point stencils, for instance, noticeably reduces
the anisotropy in the energy density. The following expression

(2D — Alk]) + O(h%). (17)
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(b) (©

Discretization anisotropy of the DMI energy density, for cuboidal discretization cells with varying aspect ratios for a three-point finite difference

stencil. (a) hy = hy, and h; = 0.5h,. (b) hy = hy and h; = 1.5hx. (c) hy = 0.5h, and h, = 1.5h,.

illustrates the reduced amplitude of the anisotropy resulting
from the use of a five-point stencil:

4n* kP

——— (3D — AKk|) + O(h°).

15— (D — Alk) + O(k°)

This expression reveals how the use of more sophisticated
stencils can lead to more physically accurate simulations
by minimizing the anisotropic effects inherent in simpler
discretization approaches.

(18)

IV. IMPACT

While many consequences of this numerical phenomenon
can be minor, in certain circumstances, the discretization
anisotropy is of a similar order of magnitude as the physical
phenomenon we wish to study. For example, Cu,OSeO3 can
be modeled with exchange, bulk-type DMI, and cubic
anisotropy [13]. While exchange and DMI are isotropic, the
cubic anisotropy causes the continuous total energy density
to become anisotropic with the helical state to be favored
along the (1,0, 0) directions. This means rather than a flat
line as a function of direction, the continuous solution should
be anisotropic. Fig. 3 shows the average energy density of
the system for a helix with 60nm with k in the (0, —1, 1)
plane and cubic discretization cells calculated using OOMMEF.
For small A, the solution approaches the theoretically expected
value from the continuous approximation. However, if & is
large enough, the characteristics of the system drastically
change, leading to a non-physical preferred orientation of the
helix along (1, 1, 1).

Another critical factor influencing discretization anisotropy
is the aspect ratio of the discretization cells. Fig. 4 shows the
discretization anisotropy for the DMI energy using a three-
point stencil. This highlights the preference of the propagation
direction of a helix is biased away from grid directions with
larger discretization.

V. SUMMARY

In summary, the discretization of continuous micromagnetic
equations onto a finite difference grid introduces anisotropy.
We prove that a helical magnetic state preferentially aligns

along certain directions relative to the grid. However, this
methodology can be generalized to other magnetic states.
These anisotropic effects can be mitigated by selecting appro-
priate stencils and reducing the grid spacing.

The impact of discretization anisotropy is wide-ranging and
includes phenomena such as the energy-minimizing rotation
of magnetic structures. Consequently, in many micromagnetic
simulations, magnetic structures can be observed propagating
along certain directions even when the systems are isotropic.
More generally, discretization can lead to the formation of
nonphysical magnetic structures, often reflecting the underly-
ing symmetries of the discretization. A thorough understanding
of these effects is important for the accurate interpretation
of simulation results and for enhancing the overall fidelity of
micromagnetic modeling.

DATA AVAILABILITY

We use SymPy [15] for symbolic derivations, with the full
setup and analysis scripts [16], [17], [18], [19], detailed in the
electronic supplementary materials [14].
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