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Abstract: Soft-sediment deformation structures
(SSDS) in water-saturated, unconsolidated sediments
are the product of various causes and provide a
valuable record of environmental and geological
perturbations. We report a record of SSDS preserved
in a ~166 m-long drill core (DX-2) extracted from the
Late Pleistocene Diexi Palaeolake, eastern Tibetan
Plateau. Two factors make this an outstanding site for
studying SSDS: (1) it is among the most seismically
active regions on Earth, and (2) it has experienced
extremely fast sedimentation rates (~15 mm/yr)
thanks to the prodigious sediment supply from
seismically perturbed hillslopes and rivers upstream.
We describe and interpret 13 SSDS types within the
DX-2 based on detailed sedimentological,
morphological, and lithological analysis. We consider
the genesis of the abundant SSDS observed in the DX-
2 core with several possibilities: mass movement, rock
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avalanche-driven tsunamis, rapid sedimentation, and
seismic shaking as the most probable triggering
mechanisms. We suggest high-intensity earthquakes of
VI (Modified Mercalli Intensity) or greater as drivers of
SSDS in the DX-2. Based on our observations, we
propose a conceptual model that attempts to explain
the transition from ductile to brittle SSDS behaviour
with progressive accumulation and consolidation of
the sediment pile. This paper highlights the value of
SSDS analysis in palaeo-earthquake identification,
aiming to improve the applicability of SSDS as a
palaeo-earthquake marker in alpine and canyon areas.
Keywords: Sedimentology; Sedimentation;
Earthquake; DX-2 core

1 Introduction

Soft-sediment deformation structures (SSDS) in
water-saturated, unconsolidated sediments provide a



valuable record of environmental and geological
perturbations through time. SSDS are attributed to a
wide variety of causes that can be grouped into six
main (non-exclusive) mechanisms: (1) gravity-induced
loading and slumping (Monecke et al. 2004; Alsop and
Marco 2013), (2) stream floods (Monecke et al. 2004;
Gilli et al. 2013), (3) mass movements (Schnellmann et
al. 2007; Kremer et al. 2015), (4) debris flows (Kiefer
et al. 2021; Staley et al. 2021), (5) rapid sedimentation
(Moretti et al. 2001), and (6) earthquakes. Of the five
mechanisms, seismically-induced SSDS have received
by far the greatest attention, typically with the aim of
inverting seismic information from the SSDS record
(Seilacher 1969; Obermeier 1996; Moretti and Sabato
2007; Pandey et al. 2009; Ettensohn et al. 2011; Owen
et al. 2011; Ghosh et al. 2012; Moretti and Van Loon
2014; Zheng et al. 2015; Shanmugam 2016; Miiller et
al. 2021). In this regard, SSDS have been employed to
(1) analyse the magnitude, intensity, depth, epicentre
location, and direction to/from the source (Sims 1975;
Allen 1986; Marco and Agnon 1995; Jones and Omoto
2000; Moretti 2000; Moretti et al. 2002; Neuwerth et
al. 2006; Berra and Felletti 2011; Ghosh et al. 2012;
Deev et al. 2019; Molenaar et al. 2024); (2) determine
the recurrence intervals of seismicity and sedimentary
responses (Sims 1973; Obermeier 1996; Calvo et al.
1998; Gibert et al. 2011; Moura-Lima et al. 2011;
Rossetti et al. 2011; Wallace and Eyles 2015; Zheng et
al. 2015); and (3) assess seismic risk (Suter et al. 2011;
Gladkov et al. 2016; Deev et al. 2019).

Despite considerable research, identifying and
discriminating the formation mechanisms of SSDS
remain a major challenge given their differing tectonic,
sedimentary, and lithological boundary conditions.
Not least among these difficulties is that, as long as
they exist in an unconsolidated state, SSDS are likely
to experience multiple perturbations, resulting in
broadscale overprinting of processes and forms
(Agnon et al. 2006; Alsop and Marco 2011; Molenaar
et al. 2019; 2021). This problem is especially marked in
tectonically active mountain belts.

Two approaches characterise SSDS classifications:

(1) the genetic approach, which attempts to identify the
physical mechanisms that were active during the
deformation (Neuwerth et al. 2006), and (2) the
morphological, non-genetic approach, which accepts
the limited knowledge of SSDS genesis and seeks to
describe the structures in detail without attributing
direct formative mechanisms. Attempts to combine
these two approaches have also been proposed (e.g.,
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Lowe 1975; Brenchley and Newall 1977; Allen 1982;
Mills 1983; Owen 1987, 2003; Neuwerth et al. 2006).
Much of the previous work identifying and classifying
SSDS has been conducted on exposed sedimentary
sections, which may provide a three-dimensional view
of the structures (Montenat et al. 2007; Ettensohn et
al. 2011; Qiao and Guo 2011; Rana et al. 2013; Wallace
and Eyles 2015). Nevertheless, drill cores can offer
much longer continuous vertical sequences, greatly
multiplying the number of possible SSDS observations
and facilitating the study of the entire active period of
seismogenic faults (Kog¢ Taggin et al. 2011; Ezquerro et
al. 2015; Zheng et al. 2015; Ezquerro et al. 2016; Toré
and Pratt 2016). We apply genetic and morphological
approaches here in our study of SSDS within a drill
core from the Diexi Palaeolake in Sichuan, China.

Two factors make the Diexi Palaeolake an
outstanding site for studying SSDS: (1) it is among the
most seismically active regions on Earth, having
experienced 18 earthquakes with M > 6 since 1930
(Chai and Liu 2002; Ma 2017), and (2) it is the locus of
exceptionally rapid sedimentation rates (Wang et al.
2012). Here, we analyse SSDS within a ~166 m-long
drill core (DX-2) extracted from the palaeolake. Based
on a detailed sedimentological, morphological, and
lithological analysis, we describe and interpret 13 SSDS
types within DX-2. We then propose formative
mechanisms to explain the SSDS, including how they
may relate to the strong and frequent seismicity of the
Diexi area.

2 Study Area

Diexi is located close to the eastern margin of the
Tibetan Plateau within the upper reaches of the
Minjiang River (Fig. 1). The Minjiang Valley is 60 to
300 m wide (Yang 2005; Jiang et al. 2016; Ma 2017;
Zhang 2019) and is flanked by steep 30°—35° hillslopes
with up to 3000 m of local relief (Zhang et al. 2011; Guo
2018). The largest dammed lake on the Minjiang River,
Diexi Palaeolake, formed when a landslide (Fig. 1c)
created a 400 m-high dam that blocked the valley at
least 35 ka (Wang et al. 2020; Fan et al. 2021). The
palaeolake measures ~26 km in length, 21.4 km? in
area, and the total thickness of lacustrine sediments is
~370 m (Dai et al. 2023; Li et al. 2024). Sedimentation
within the trough ended ~27 ka (Li et al. 2024) when
the Minjiang River cut a new parallel epigenetic
bedrock gorge (Fig. 1).
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The Tibetan Plateau and surrounding areas are
subject to intense and frequent earthquakes linked to
active tectonism (Yang et al. 1982; Chen and Lin 1993;
Li and Fang 1998; Shi et al. 1999; Hou et al. 2001; Lu
et al. 2004). The upper Minjiang River lies within the
well-known 'north-south earthquake tectonic zone'
(Tang et al. 1983; Huang et al. 2003; Yang 2005; Deng
et al. 2013). Seismicity is primarily concentrated
around the fault zones (Fig. 1b) (Shen 2014; Ren et al.
2018; Zhang 2019). The Diexi area is situated on the
Minjiang Fault, a major south-to-north-trending
thrust fault linked to at least six palaeoseismic events
during the Holocene (Zhang et al. 2013; Li et al. 2018).
Moreover, numerous other seismically active faults are
located sufficiently close to cause notable shaking at
Diexi (Fig. 1b, Table 1). Since 1930, the Diexi area has
experienced thousands of earthquakes, including 57
events with M > 4.7, among which 18 were of M > 6
(Chai and Liu 2002; Ma 2017). Earthquakes are the
primary cause of landslides (Wang et al. 2007; Gorum
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et al. 2011; Fan et al. 2017; Fan et al. 2018; Fan et al.
2019; Wu et al. 2019; Zhao et al. 2019; Dai et al. 2021),
for example, at least 27 major landslides have been
observed in the Diexi area: seven on the Songpinggou
tributary (Fig. 1) and 20 on the Minjiang River (Zhao
et al. 2019), including the giant landslide that formed
Diexi Palaeolake (Wang et al. 2005; Wang et al. 2007;
Wang et al. 2012; Fan et al. 2022) and the multiple
devastating landslides caused by the 1933 Diexi
earthquake (Chai et al. 1995; Dai et al. 2021). The
frequent and voluminous sedimentary inputs have
delivered high rates of sediment supply to the river
channel network, which in turn produced extremely
fast rates of sedimentation in Diexi Palaeolake,
averaging ~15 mm/yr (Wang et al. 2012).

Between 40-30 ka, the regional palaeoclimate
underwent three transitions from cold-dry to warm-
humid conditions (Zhang et al. 2009), followed by
more than ten alternations between cold and warm
during 30-10 ka (Wang 2009; Wang et al. 2014).

Table 1 Active faults in the Diexi area and approximate recurrence activity according to previous studies

Faults Characteristics Active
period
Minjiang Fault  North-south thrust fault 10.23 ka—
present
Northwest-trending right-lateral  32.7ka—
e Feuls strike-slip fault present
Songpinggou  Northwest-trending left-lateral 20 ka—
Fault thrust fault present
Northeast-southwest right-lateral
Wenmao Fault strike-slip reverse fault 50—20ka
Qingchuan Northeast right-lateral strike-slip —roka
Fault reverse fault 7175
Yingxiu- Northeast-trending right-lateral 432 ka—
Beichuan Fault strike-slip reverse fault present
Anding- . 14.3 ka—
Guanxian Fault Northeast-trending reverse fault St
Northeast-trending right-lateral
Wulong Fault i e by i 92—36 ka
Shuangshi- Northeast-trending strike-slip 57.4 ka—
Xiling Fault fault present
. Northeast-trending right-lateral ~ 17.8—-5.08
Lol strike-slip reverse fault ka
Longquanshan - ¢4 3 st belt 9oka—
Fault present
Maqgin-Maqu  Southwest left-lateral strike-slip
Fault reverse fault
Awancang Northwest left-lateral strike-slip (I;[:t o8
Fault reverse fault ka ~0-85
Tazang Fault golﬂr:llwest left-lateral strike-slip
Bailongjiang Northwest left-hand strike-slip 17.4—0.6
Fault reverse fault ka

Palaeoseismic Approx.

number recurrence References

(events) interval#
Zhang et al. (2013);

>6 <I705¥T  Tietal. (2018)

- - Zhou et al. (2006)

B B Tang et al. (1983); Ren et al.
(2018); Zhao et al. (2023)
Deng et al. (1994); Zhou et al.

— - (2006); Chen et al. (2007);
Wang et al. (2017)

>2 <4250yr  Fanetal. (2008); Sun (2015)

. 5 Deng et al. (1994); Zhou et al.

Several times (2006); Chen et al. (2007)
Dengetal. (1994);

2 7150 yr Chen et al. (2007)
Yang et al. (1999);

3 30,700 hang and Li (2010)
Yang et al. (1999);

>1 <57A400YT pensmore et al. (2007)

4 4450y Ren et al. (2013)

B B Deng et al. (1994);
Wang and Lin (2017)

- - Lin et al. (2002); Li (2009)

>4 <32,500yr Lietal. (2016)

2(2840&

320 cal BP) 1420 yr Fuetal. (2012)

- Huang et al. (2023)

Note: # Approximate recurrence is calculated by dividing the active period by the number of events.
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3 Materials and Methods

In January 2019, we extracted a 166.4 m-long
sediment core (DX-2) from the lowermost Tuanjie
terrace, T1 (32°2'N, 103°40’E; Fig. 1c, 1d), using a
percussive-rotary drill (1.5 m continuous core length,
88 mm diameter). The DX-2 core reached the base of
the bedrock trough and was located 26 km down-valley
from the upstream extent of the former palaeolake and
2 to 5 km from two tributary inputs. Core recovery was
~98% (~3 m of loss) (Fig. 2). The core was split
lengthwise by a saw blade, and half was wrapped in
plastic and stored at ~3°C. Cutting and photography
were conducted at the Institute of Earth Environment,
Chinese Academy of Sciences, Xi’an. We consider the
SSDS identified in the central part of the core and
exclude wall-induced disturbances associated with the
coring process. Nine samples for optically stimulated
luminescence (OSL) (Appendix 1) and thirty-one
samples for radiocarbon (C) dating (Appendix 2)
were collected to establish the chronological
framework of DX-2, although the dating was
unsuccessful.

4 Results

4.1 General core description

The DX-2 core was subdivided into three sections
based on lithological characteristics (Fig. 2). The lower
section (166.4—124.6 m) is characterised by cross-
bedding and mainly comprises yellow to greyish-
yellow coarse to fine sands, with larger rounded and
scattered clasts (0.2—2 ¢cm) near the base, as well as five
units (4.17—0.17 m in thickness) consisting of angular
clasts with 1-5 cm in size (Fig. 3a), interbedded with
yellow clayey silt. These characteristics indicate that
the lower section is mainly a fluvial environment with
a short-term shallow lacustrine environment. The
middle section (124.6—61.9 m) primarily contains dark
grey to grey sandy silts, with some sporadic yellow
sandy clays. This segment is mainly cross-bedded, plus
three units (0.22—0.2 m in thickness) consisting of
angular clasts with 0.5-2 cm in size (Fig. 3b). The upper
section (61.9—0 m) consists of dark grey to grey clayey
sands or clays and yellow sandy clays with abundant
rhythmic varves. Except where beds are cross-bedded
or deformed, the lamination is essentially horizontal.
Based on the sedimentary characteristics, the middle
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and upper sections are interpreted as a lacustrine
environment.

4.2 Soft-sediment deformation structures:
description and interpretation

Based on visual characteristics and previous SSDS
references, we identified at least 13 types of SSDS
(Table 2), most frequently load and water escape
structures, described as follows. Liquefaction
represents the preservation of the original structure
after grain mobility, while in the case of fluidisation,
this original structure is not preserved (Kahle 2002).
Hydroplastic deformation is characterised by water
saturation and sediment cohesiveness and develops in
incompletely lithified sediments when the fluid
pressure is less than the weight of the particles (Kahle
2002; Alsop and Marco 2013; Valentine et al. 2020).
Under the influence of differential compaction, pore
pressure within the sediments varies. Sediments with
a high compaction and low saturation tend to exhibit
brittle deformation, such as fractured laminae, breccia
clasts, normal and reverse faults (Kahle 2002; Druguet
et al. 2009), whereas those with low compaction and
high saturation display ductile deformation (Mohindra
and Bagati 1996; Rossetti 1999; Rossetti and Goes
2000; Neuwerth et al. 2006), for example, folds (Kahle
2002; Druguet et al. 2009). Ductile and brittle
deformation may coexist, with the transition from
ductile to brittle behaviour primarily driven by vertical
driving forces (Rodriguez-Pascua et al. 2000).

4.2.1 Load structures

The load structures in DX-2 include load casts,
droplets, ball-pillow structures, and injection
structures (dome and flame-shaped) (Anketell et al.
1970; Alfaro et al. 1997; Pandey et al. 2009).

Load Casts. These tend to occur along
lithological boundaries in the upper and middle
sections of the core. The large load casts (Fig. 4a)
consist of several deformed laminae, which include
complexes of smaller symmetrical or asymmetrical
deformations with upturned curved morphology and
have minor fractures inside or outside, with a total
thickness of 10-25 mm and a width of 55—75 mm.
Small load casts lack continuity (Fig. 4b) and are
irregular and asymmetrical. The thickness varies
between 2 and 15 mm. Some load casts fill with a mix
and aggregation of surrounding sediments. For
example, the load casts in Fig. 4c have a mixture of
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Fig. 2 Stratigraphic column of core DX-2 and the SSDS discussed in this paper (colours approximate those observed

within the core).

yellow and dark grey coarser sediments. The thickness

varies between 3 and 10 mm.

Load casts are denser sediments that sink into the
underlying strata, triggered by liquefaction in a

gravitationally unstable density gradient. Load casts
always occur at the sand-mud interface with reversed
density gradients (Sims 1973; Ghosh et al. 2012). These
structures point to a rapid disturbance event that
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(b) gravel units in the middle

>

Fig. 3 Photographs of gravel units within DX-2, including generalised sedimentological descriptions: (a) gravel units in the lower section

section.
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Table 2 Proposed relationships between SSDS type and earthquake intensity based on previous studies

Modified Mercalli Presence
SSDS types e in DX-2 References
Hydraulic structures >X No Obermeier (1996); Zhang et al. (2007)
. Obermeier (1996); Rodriguez-Pascua et al.

gk P S (2000); Zhang et al. (2007)

Ball-pillow >VIII Yes Rodriguez-Pascua et al. (2000)
Load structures
structures Droplets >VI Yes Alfaro et al. (1997)

Load casts >VI Yes Alfaro et al...(1997)

Injection structures >VI Yes Topal and Ozkul (2014); Deev et al. (2019)

Calvo et al. (1998); Alsop and Marco (2013);

Slumps >VII Yes Gladkov et al. (2016)
Sand volcanos SVI~VIT No ggT§§ke et al. (2007); Brandes and Winsemann
Water Dish-and-pillar >VI Yes Neuwerth et al. (2006)
escape struf{:turesd —
Strictures) || occet-andspilat iy oy Yes Neuwerth et al. (2006)

structures
Plunged sediment mixtures >VI Yes Rossetti et al. (2011)
i) Bl SVI Yes ?g?)gcg)and Agnon (1995); Rodriguez-Pascua et al.
Sedimentary dykes >VI Yes Rodriguez-Pascua et al. (2000); Kahle (2002)
Diapirs >VI Yes Rodriguez-Pascua et al. (2000)
Recumbent folds >VIss No Sims (1973)
Convolute laminations VI Yes Obermeier (1996)
Reclined folds VI, IV No Obermeier (1996); Alsop and Marco (2013)
Undulate deformations <V No Rodriguez-Pascua et al. (2000)
Loop bedding structures <V No Rodriguez-Pascua et al. (2000); Kahle (2002)
Micro-folds v Yes Alsop and Marco (2013)

Note: * Earthquake magnitude (M) given in each reference has been converted to the Modified Mercalli Intensity

(MMI = 0.92 + 1.29 M) (Gu 1983).

triggered liquefaction and fluidisation (Moretti et al.
2001), or differential loading, caused by the variation
in the lateral thickness of the overlying bed (Ghosh et
al. 2012).

Droplets. These occur in homogeneous clay or
sand layers in the upper and middle sections of DX-2.
All structures appear to be 'dripping' into the
underlying sediments. These structures exhibit
characteristics of downward extension, and the
distorted height is much larger than the width. Several
droplets appear to sink in different directions in two
forms (Fig. 4d): (1) typical drop-shapes 2—-10 mm in
length and attached to the host layer (i.e., droplet-1);
and (2) the droplet has a downward swing and tortuous
shape detached from the host layer with lengths of 2—
15 mm (i.e., droplet-2).

Droplets are formed as coherent sediment
packages sink through a liquefied bed (Owen 1996;
Ghosh et al. 2012). Depending on the specific
orientation of droplet-2 forms, the vertical, slanting,
and bending patterns indicate that the time-variable
liquefaction pressures swing or displace laterally either
randomly or systematically in one direction (Qiao and

Guo 2011).

Ball-pillow Structures. These appear in the
upper and middle sections of the core and coexist with
load structures. Some structures are physically connected
to the host sediments, while others have become detached.
The horizontal and vertical axes are 3—10 mm and 3-7
mm, respectively. In Fig. 4b, the ball-pillow structure
exhibits a concave-upward body, intruding internally
with some lateral external margin erosion.

These structures were caused by the liquefaction
of the underlying fine particles (Weaver and Jeffcoat
1978), and the reverse density loading might be an
important deformation factor (Rossetti 1999). Due to
long-term liquefaction, coarser overlayers were
repeatedly detached to form ball-pillow structures in
the fine strata (Owen 2003). Overlying sediments sink
under shear vibration and gravitational action (Qiao
and Li 2008).

Injection Structures (Dome, Flame). In DX-2,
injection structures mainly appear as pillars, cones, and
domes, with an injected height of 2-20 mm. The
underlying lighter-coloured sediments are emplaced
upward into dark, thin lamina, causing dome-like

4471



J. Mt. Sci. (2025) 22(12): 4464-4489

\ ===

Fracture
l.oad cast Fracture

Load cast

1 casts Similar sediments

0 <
Ball-pillow structure Q@

Ball-pillow structure

-

s L.
Droplet-1
Droplets-2 Droplet-1 Droplets-2 Droplet-1 lem

Injection structure
with dome shape

Injection structure

Flame structures ;s lcm

t/vl-
[.oad casts Plunged sediment
mixture

l.oad casts

Fig. 4 Load structures: (a) larger load cast with a minor fracture inside; (b) small load cast and ball-pillow structure
with a concave-upward body intruding internally with some erosion of the lateral external margins; (c) load cast with
yellow and dark-grey coarser sediments mixed in the sinking area; (d) 'droplet-1' with typical drop-shape, and 'droplet-
2" with a downward swing and tortuous shape; (e) injection structure with a dome shape, and dark laminae deformed
by upward incision; (f) flame structures with irregular features associated with load casts (lighter, coarser sediments
invade the finer sediments to form a plunged sediment mixture); (g) flame structures characterised as roll-up layers
with sharp fractures.

4472



protruding deformations (Fig. 4€). Flame structures are
typical injection structures distributed widely
throughout the core. The fine sediments invade the
coarser layers, characterised as roll-up layers with sharp
fractures (Fig. 4f). In the case of inclined bedding (~10°),
flame structures are inclined towards the slope (Fig. 4g).

Injection structures form due to the rapid increase
of pore-water pressure that exceeds the overlying
sediments' lithostatic stress and tensile strength
(Molenaar et al. 2021). As the pore-water content and
pressure increase, flame structures may result from
partial liquefaction and remobilisation (Lee and
Phillips 2008) caused by unequal loading or high
instantaneous sedimentation rates (Moretti et al. 2001;
Gladkov et al. 2016; Deev et al. 2019). The deformation
associated with inclined bedding (~10° in Fig. 4g)
infers rapid deformation before consolidation (Lowe
and Lopiccolo 1974; Rana et al. 2013), influenced by
vibration or gravity, while the overlying sand layers
slide along shear planes.

4.2.2 Water escape structures

Water escape structures, such as dish-and-pillar
and pocket-and-pillar structures (Owen 2003), are
scattered throughout the whole core.

Dish-and-Pillar Structures. These structures
have a thickness of 2—5 mm and a width of 10—15 mm.
The dish structures in Fig. 5a are lighter than the
background sediments, which are strongly concave-
upward, with discontinuous and irregular spaces. A
narrow layer has been inserted beneath the left-hand
dish structure, giving it a left-leaning shape; the middle
one has a typical dish form, strongly concave-upward
and approximately 5 mm in height; the dish structure
on the right is a flat layer. The dish structure in Fig. 5b
is a single coarser deformed layer that appears with
pocket-and-pillar structures; both ends of this
structure curve inward.

Water escape structures represent fluidisation and
liquefaction that occurred shortly or long after the
initial deposition (Obermeier 1996). These are
common in fine- to medium-grained sand layers with
high instantaneous sedimentation rates (Lowe 1975).
The coarser particles have high permeability due to the
large pore spaces but offer considerable mass
resistance to lifting and fluidisation (Lowe 1975). The
similar characteristics of the dish structures in Fig. 5a
suggest they were initially flat laminations that were
later disrupted during mass flow (Stauffer 1965, 1967).
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The disturbance may be caused by inhomogeneous
shearing, internal load deformation, or localised water
expulsion before or during consolidation (Stauffer
1965, 1967).

Pocket-and-Pillar Structures. These
structures have heights and widths of 0.3—5 mm and
10—20 mm, respectively. In Fig. 5b, multiple thin
laminae (3 cm) and four rows exhibit similar flat, broad,
regular, and gently concave-upward characteristics,
while the deformation weakens from bottom to top.
The lower pockets have the same deformed features,
while the upper pockets are right-leaning with
irregular forms and are flatter than the lower ones.
Eighteen cm-thick homogeneous dark sediment layers
overlie the pocket structures featuring a defined and
deformed boundary.

Pocket-and-pillar ~ structures resemble dish
structures with flat, broad, regular, and gently concave-
upward characteristics (Neuwerth et al. 2006). The
overlapping generations of pocket structures with flat
morphology and a small dish (Fig. 5b) are related to
rapid and high energy expenditure (Lowe and Lopiccolo
1974), high discharge rate (Lowe 1975), and uneven
loading (Rana et al. 2016). The upper pockets are
inclined due to asymmetrical rapid deposition, which
may be contemporaneous with the formation of the
lower pockets or due to a subsequently applied force.

4.2.3 Sedimentary dykes

In the middle section of DX-2, three ~10 mm long
yellow sandy dykes invade both the upper and lower
strata with upward- and downward-tapering shapes
(Fig. 5c). Well-preserved source beds provide the
sediment filling the dykes.

Fluidised sediments are quickly injected upwards
or downwards due to increased water pore pressure
(Brandes and Winsemann 2013; Zheng et al. 2015;
Ezquerro et al. 2016; Toré and Pratt 2016; Chakraborty
et al. 2019). Hydraulic fracturing and hydrodynamic
pressure within the local strata make the pattern and
orientation of dykes somewhat random (Obermeier
1996). The coarser yellow sand sediments readily
penetrate the surrounding deposits under abnormal
pressure (Zheng et al. 2015), fill the fractures, and are
ultimately preserved by dehydration and compaction
(Picard and High 1972; Tanner 1998; Montenat et al.
2007; Harazim et al. 2013). Otherwise, the sudden
loading of sediments can also cause downward dykes
to form (To6r6 and Pratt 2015).
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4.2.4 Diapirs

Diapirs mainly occur within silt-rich clay or sandy
layers in the upper section of the core. They appear
arch-shaped, mushroom-shaped (Fig. 5d, 5e), and
cone-shaped (Fig.5f), with the entire diapir height
ranging from 16 to 50 mm and a width between 20 and
50 mm. The mushroom-like diapirs consist of two
parts: the 'pillar' and the 'cap' (Fig. 5d,5e). The
background fine-grained sediments moved from both
sides toward the middle, making the clayey cap appear
isolated and suspended. However, the inner laminae of
the cap detached from the host sediments and moved
downward, which resembles a collapsing phenomenon,
while the underlayer is extruded into the background
sediments toward the cap (Fig. 5d). The sandy pillar
clearly intrudes into the overlying sediments, which
formed as a cap that is influenced by the pressure from
the upper and lower sediments. The cone-shaped
diapir has upward-curved laminae coexisting with the
slump structure (Fig. 5f).

Fluidisation can cause the source sediments to
move upward, forming a cap and a pillar shape (Berra
and Felletti 2011; Ezquerro et al. 2016). The collapse
beneath the cap (Fig. 5d) may be triggered by
dewatering-generated sediment movement towards
the upper laminae (Rodriguez-Pascua et al. 2010). The
presence of sand intrusions above is evidence of shear
(Fig. 5e), indicating that the structure is caused by
injection under pressure and squeezing upward
(McLaughlin and Brett 2004). Arched-shaped and
cone-shaped diapirs may be caused by shaking and
increased pore pressure of background sediments
(Zheng et al. 2015; Chakraborty et al. 2019).

4.2.5 Breccias

Breccias are distributed sporadically throughout
the DX-2 core; we observed three types. In the upper
section, Type 1 breccias develop as independent
structures, while in the middle and lower sections of
the core, they coexist with other structures. Type 1
breccias have been fractured with minor dislocations,
yet the original morphology is still evident (Fig. 6a).
The thickness ranges from 25 to 350 mm. Type 2
breccia has a diameter of about 35 mm and is observed
in situ; two breccias overlap and are tilted slightly to
the left (Fig. 6b). Type 3 breccia is developed in an 80-
mm-thick layer of dark sediments, with a diameter of
7—-43 mm (Fig. 6¢).

Type 1 breccias have a thicker original structure,
inferring a sudden increase in pore-water pressure to
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the static confining pressure triggered by continuous
cyclic shearing, which led to liquefaction (Obermeier
1996; Zhang et al. 2007). The overlapping two breccias
(Type 2) were caused by the pressure of pore water
being released upward and the fluidisation of the top
sediments (Agnon et al. 2006), which may be triggered
by shaking or water escape from the underlying
uncompacted sediments (Fig. 6b). The disordered
dispersion of breccias (Type 3) may be triggered by
strong shaking (Fig. 6¢) (Agnon et al. 2006).

4.2.6 Plunged sediment mixtures

Plunged sediment mixtures are present
throughout the core. These sediments intrude into two
different sedimentary units, both vertically and
horizontally, finally appearing as columnar and wedge-
shaped intrusions. In Fig. 6d, the dark sandy
sediments are the host sediments, and some of them
have fragmented during descent and formed as clumps
that float within the dark clay layer. Some dark sandy
sediments not only intrude vertically into the
underlying clayey layer but also spread laterally and
interlayer with the lighter underlying layer, finally
appearing as wedge-shaped intrusions (Fig. 6e). Some
of the underlying clay beds in this SSDS float within the
friable overlying sands (Fig. 6f). The vertical depth
ranges from 7 to 83 mm.

The underlying sediments are invaded and filled
by the overlying sandy layer, indicating a time lag
between sediment deformation and consolidation
(Rossetti et al. 2011). Sediment intrusion and mixing
are related to liquefaction and sediment collapse
triggered by external forces, such as lower-energy
vibrations (He et al. 2011).

4.2.7 Convolute laminations

Convolute laminations are distributed throughout
the core. The deformation thickness fluctuates from 40
to 170 mm. Convolute lamination lacks uniform axial
planes and mainly exhibits inclination angles of about
20°-30° (Fig. 7a). Multiple layers with different
particle sizes and irregular features are faintly visible
at the base, while the upper section mixes with the
background sediments. A special convolute lamination
developed in the lower part of DX-2, with a diameter of
250 mm, is associated with load casts and flame
structures (Fig. 7b). The inner core is made up of
tortuous clayey layers that gradually coarsen outward,
while a clay layer wraps around the outer perimeter.

Convolute laminations occur when pore pressure
exceeds hydrostatic pressure under rapid deposition

4475



J. Mt. Sci. (2025) 22(12): 4464-4489

Brecciash

Load cast

Slump

\ Breccias
«—— _ Coring

\

Plunged
- sediment ¥
mixtures

Micro-faults

Plunged /
sediment mixXture

Plunged sediment
mixture

Breccias

4

\
4
\ \L/

disturbance

e
o

Brececias

5

lem

Fig. 6 Breccias and plunged sediment mixtures: (a) type 1 breccias in situ with slight dislocation; (b) type 2 breccias
overlapping with a load cast; (c) type 3 breccias suspended in dark sediments with sub-angular to angular morphology
(note some disturbance during coring); (d) vertically-plunged sediment mixtures showing coarser sandy particles
intruding the neighbouring sediments and mixing with underlying clayey layers; (e) wedge-shaped plunged sediment
mixture, with dark coarser sediments intruding downward and mixing with the lateral clayey sediments; (f) basal coarse
particles shown invading downwards to form a plunged sediment mixture, overlain by two graded bedding micro-faults

and an irregular/inhomogeneous slump.

conditions, resulting in partial liquefaction during or
following deposition (Allen 19777; Middleton et al. 2003;
Gladstone et al. 2018). The inclined deformations are
subject to the combined effects of vibration and gravity,
with stratal inclination controlled by the evolution of
the lake basin sedimentary infill or subaqueous slope
failure (Zhong et al. 2017). The convolute lamination is
inclined ~20° to the left, indicating that the external
force acts from left to right (Fig. 7b). The large, round,
and inner tortuous laminae indicate post-depositional
hydroplastic deformation with a lower limit of
foundering and deformation (Wallace and Eyles 2015).
It may be formed by the flow and shear of fine-grained
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layers within the convolute laminations (Gladkov et al.
2016) or by load pressure and sliding along the slope
(Zheng et al. 2015).

4.2.8 Slumps

Slumps with thicknesses ranging from 10 to 120
mm occur within the upper and lower sections of the
core. In Fig. 6f, the slump structure consists of clayey
and silty-clay layers with irregular and inhomogeneous
characteristics. Three clayey, thin layers bend upward,
with a weak-moderate intensity and asymmetry,
exhibiting thinner long limbs and thicker short limbs
(Fig. 8a). The deformed layers of micro-folds are



characterised by irregular,
uncoordinated, and poorly oriented
layers (Fig. 8b). The slump in Fig.
8c develops in load casts, where
light clayey sediments form
superimposed hummocks. The
underlying loaded laminae have a
fissure on the right side. In Fig. 5f,
the slump develops on slopes
(about 30°—45°) with significant
irregular and crimp deformations
and is truncated by overlying
multiple laminae.

Slump structures reflect load
and overpressure caused by sudden
and rapid external forces (Sieh
1978; Holzer et al. 1989; Obermeier
et al. 1990). Slumping can also stem
from different density gradients
near the sediment-water interface
(Pandey et al. 2009). These
structures are caused by increased
pore-fluid pressure from particle
movement (Gladkov et al. 2016).
The fissure on the right side of the
load cast (Fig. 8c) indicates rapid
hydraulic drawdown when
sediments fall out of suspension
(Obermeier et al. 1990; Alsop and
Marco 2013). Especially frequent
where the slope angle steepens to
30°—45°, with multiple laminae
truncating slump features, this
SSDS may be caused Dby
hydroplastic deformation or rapid
water flow at the sediment-water
interface (Fig. 5f) (Ko¢ Tasgin 2011;
Alsop and Marco 2013).

4.2.9 (Stepped) Micro-faults

Micro-faults are distributed
throughout the core. These may
dislocate a single lamina or disrupt
SSDS (Fig. 9a) with a 3—60 mm
displacement distance. In Fig. 6f,
two micro-faults occur on the right
side of two coarser layers. Each
layer is characterised by graded
bedding, and the left part of these
two layers exhibits the same
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Fig. 7 Convolute lamination: (a) convolution laminations lacking uniform axial
planes and with different particle sizes and irregular features, while the upper
section mixes with background sediments; (b) inner core of convolute
lamination made up of tortuous clayey layers that gradually coarsen outward,
while a clay layer wraps the outer perimeter.
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Fig. 8 Slumps: (a) Slump has thinner long limbs and thicker short limbs. The
dark, coarser sediments mix with lighter background sediments on the left side
and fill beneath the slump; (b) slump within layers of different granularity, the
layers characteristically are irregular, uncoordinated, and poorly oriented; (c)
The underlying loading lamina has overlapping features on both sides, with a
fissure on the right side. In addition, there is a micro-fault in the overlying layer.
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deformation. In Fig. 9a, the original light layer
contains one dark lamina surrounded by dark, coarser
sediments. This layer breaks into four fragments with
clearly defined displacements. These pieces overlap
from left to right. The middle two have prominent 'S'-
shaped deformation features.

Stepped micro-faults occur in the middle section
of the core. The vertical dislocation distance is 1—4 mm,
and the entire thickness ranges from 30 to 50 mm. The
faults cut through multiple layers with 5°-10°
inclinations arranged in disorder (Fig. 9b).

In general, micro-faults occur due to the
compression of the sediment body by water at depth
(Seilacher 1969) and reflect specific properties of the
sediment, such as graded bedding (Fig. 6f) or
laminations (Fig. 9b). A disharmonic micro-fault
indicates a higher pore-water content and pressure
during folding, pore water is reduced after folding, and
then brittle displacement. The overlapped feature
results from the liquefaction and remobilisation of
coarser particles (Fig. 9b) (Lee and Phillips 2008).
There are two types of micro-faults that external forces
may induce: (1) brittle deformations caused by sudden
pressure or uneven stress, where the layer cuts off
without any other deformation and deforms in situ,

Load cast

Load cast Load cast

Micro-fault

Micro-fault

and (2) ductile and brittle deformations with the
morphologies of truncated and dislocated movement,
reflecting brittleness and shear. This transition from
ductile to brittle deformation records the decline in
water content due to progressive compaction
(Rodriguez-Pascua et al. 2000; Lee and Phillips 2008).

4.3 Geochronology results

Our efforts to apply optically stimulated
luminescence (OSL) and radiocarbon (%4C) dating to
the DX-2 were largely unsuccessful (see
Supplementary  Information). The  measured
depositional ages range from ~173 to 17 ka, and there
is no convincing relationship between age and
stratigraphic depth in the core (Appendix 3). In the
case of the OSL and possible sediment reworking, it
appears the sediments were inadequately bleached by
sunlight before deposition. Our samples for
radiocarbon dating were limited to the organic fraction
extracted from bulk sediment in the core. The
radiocarbon in such samples typically derives from
allochthonous and autochthonous sources that
integrate different timescales, leading to erroneous
depositional ages (Strunk et al. 2020).

l.oad cast

*
- Stepped
micro-fault

Stepped micro-fault

lem

Fig. 9 Micro-faults: (a) micro-fault showing four fragments with clearly defined displacements; fragments overlap from
left to right (the middle two have prominent 'S'-sharped deformation) plus a load cast in the overlying strata; (b) stepped

micro-fault cutting across inclined planar bedding.
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We can estimate the age span of the Diexi
lacustrine sequence if we accept the bottom-most
radiocarbon date (35.13 cal ka BP) from the ZK-2 drill
core (Fig. 1d) published by previous workers (Wang et
al. 2012; Wang et al. 2020). The ZK-2 core is located at
a slightly higher position in the sedimentary sequence,
but by extrapolating the mean sedimentation rate of 15
mm/yr (Wang et al. 2012) to the deeper position of the
DX-2 core, we can obtain an estimate of ~41 cal ka BP
for the initiation of the lacustrine sequence. Both cores
share a common upper limit dated to ~27 ka (Li et al.
2024) when the Minjiang River cut a new course.

5 Discussion

5.1 Representativeness of the DX-2 SSDS
record

As noted above, the geochronology did not yield
reliable results for the DX-2 core, so we cannot
precisely correlate it with the other major core
extracted from Diexi Palaeolake, ZK-2 (Wang et al.
2012). Nevertheless, SSDS are also observed in other
drill cores and sedimentary exposures from within and
surrounding the Diexi Palaeolake. Four cores drilled at
Tuanjie (Fig. 1d) and Jiaochang reveal at least ten
disturbed layers formed in the interval 33—18 cal. ka
BP (Wang et al. 2012) and several SSDS types are
observed within sedimentary sections up to 26 km
upstream of Diexi (Xu et al. 2020). For instance, at
Shawan Village (5 km upstream of Diexi), seven
deformed layers are OSL-dated to between 27-19 ka
(Wang et al. 2011); and at Luobozhai Village (11 km
upstream of Diexi), 18 SSDS-rich layers are dated (with
OSL and “C) to 18-10 ka (Zhong et al. 2023).
Moreover, lacustrine sections exposed near Tuanjie,
Shawan, Taiping and Luobozhai (Fig. 1) also display
notable perturbations. The depositional ages of SSDS
in these outcrops are somewhat younger than those in
the DX-2 core. Still, their presence further supports the
idea that SSDS are widely distributed in
unconsolidated deposits throughout the Diexi area and
that the DX-2 core is the most comprehensive record
of SSDS within the palaeolake from 41 to 29 cal ka BP.

In the following text, we review the occurrence of
the various SSDS within the DX-2 core with respect to
the likely driving forces and deformation mechanisms.
We focus on identifying the most probable trigger
mechanism that might explain repeated SSDS up the
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core throughout the lake’s duration. While some
success has been achieved in simulating seismically-
induced SSDS via physical models (Kuenen 1958;
Owen 1996; Moretti et al. 1999; Yan et al. 2007; Wei et
al. 2015), it is fair to say that many SSDS remain
enigmatic in terms of their genesis. Nevertheless, it is
still possible to outline the physical principles that are
likely to be at play to some extent, given that SSDS
formation involves three fundamental conditions: (1) a
driving force, (2) a deformation mechanism, and (3) a
trigger mechanism (Owen and Moretti 2011). The
driving force is the condition that deforms the original
sedimentary features; the deformation mechanism is
the specific agent by which the sediment is deformed;
and the trigger mechanism refers to an event,
condition or process that causes the deformation.

5.2 Driving forces

Considering the sedimentary environment of the
SSDS observed in DX-2, we suggest that the driving
forces of sediment deformation (Neuwerth et al. 2006;
Owen et al. 2011; Moretti and Van Loon 2014; Molenaar
etal. 2021) are mainly: (1) uneven loading at the irregular
sediment-water interface (Fig. 4b); (2) gravitational
inhomogeneity due to a reversed density gradient (Fig.
4%); (3) sliding or slumping caused by gravity on slopes
(Fig. 8c); (4) shear stress caused by aqueous or other
currents, such as cyclic shear (Fig. 6¢), horizontal shear
(Fig. 4g), vertical shear (Fig. 9b), compressive stress (Fig.
6f), or extrusion stress (Fig. 4d).

5.3 Deformation mechanisms

In the DX-2 core, SSDS occur in clayey and sandy
sediments, which are susceptible to vibration (Calvo et
al. 1998; Jones and Omoto 2000; Montenat et al. 2007;
Pandey et al. 2009; Owen and Moretti 2011; Zheng et
al. 2015). Water-saturated sediments with a highly
impermeable clayey cap are easily deformed
(Montenat et al. 2007). These loose sediments are
prone to liquefaction, fluidisation, hydroplasticity, and
brittle deformation under a given applied force (Jones
and Omoto 2000; Ko¢ Taggin 2011; Owen et al. 2011;
Zheng et al. 2015). The increase in pore-water pressure
leads to liquefaction or fluidisation, and the free flow
of sediments occurs during a complete loss of shear
strength (Youd 1975; Field et al. 1982). The
liquefaction and fluidisation deformations described
from the DX-2 core are interpreted as being subject to
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subsequent deformation mechanisms: vibration,
dewatering, continuous cyclic shear, etc..

Conversely, hydroplastic deformations might
occur in sediments that have not reached a sufficient
degree of liquefaction. Brittle deformation occurs
when pore water pressure exceeds the capacity of the
sediments to consolidate. This deformation
mechanism can be affected by sudden pressure or
uneven stress. Furthermore, with the progression of
lithification, purely ductile deformation transitions to
a purely brittle deformation (Rodriguez-Pascua et al.
2000).

5.4 Trigger mechanisms

Itis accepted that a wide range of mechanisms can
potentially trigger SSDS. These include mass
movements (Purvis et al. 2002; Shanmugam 2016),
groundwater dynamics (Owen 1995; Massari et al.
2001; Rana et al. 2016), glacier activity (Hart and
Boulton 1991; Lee and Phillips 2008; Jiang et al. 2016;
Miiller et al. 2021), tides (Greb and Archer 2007;
Ettensohn et al. 2011; Toré and Pratt 2016), storms
(Alfaro et al. 2002; Komatsubara et al. 2008; Chen and
Lee 2013; Uner 2018), tsunamis (Le Roux et al. 2008;
Bertran et al. 2019), overloading (Jones and Omoto
2000; Moretti and Sabato 2007; Uner et al. 2019), and
earthquakes (Sims 1973; Allen 1986; Obermeier 1996;
Rodriguez-Pascua et al. 2000; Ettensohn et al. 2011;
Rana et al. 2013; Onorato et al. 2016; Azennoud et al.
2022; Bhadran et al. 2023). Identifying the origin of
SSDS is challenging, as different triggering
mechanisms can produce similar SSDS. We begin by
surveying the range of potential triggering
mechanisms likely to apply at Diexi.

5.4.1 Mass movement

Common mass movement types include slope
failures, collapses, debris flows, plastic flows, and
turbidity currents (Mulder and Cochonat 1996; Owen
et al. 2011; Kremer et al. 2015; Shanmugam 2016).
Massive sand beds are commonly observed in the mass
movement-related SSDS, where the sands are poorly
sorted with a 5—15% matrix. Floating mudstone clasts
(angular, cm-diameter), primary basal glide planes,
steep internal shear planes, and water escape
structures represent the sedimentary characteristics of
mass movement-generated deposits (Shanmugam
2016). SSDS, such as breccias, have been interpreted
as products of mass movement (T6ré and Pratt 2016).
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However, the spatially restricted core observations and
the lack of lateral correlation archives make it difficult
to distinguish large-scale in situ disruption from
localised perturbations. Some SSDS are found in the
coarse sand layers which may be related to mass
movement (Garcia-Tortosa et al. 2011; Tor6 and Pratt
2015). However, the layers of SSDS within DX-2 are
always thin, so we believe this excludes deep-seated
mass movements on the lake floor which tend to be
associated with detachment surfaces which are absent
in the DX-2 core.

5.4.2 Groundwater dynamics

Groundwater can be responsible for liquefaction
deformation (Owen 1987, 1996; Moretti et al. 2001).
The main types of groundwater-induced SSDS are cups,
water escapes, and droplets, usually several metres
thick (Owen 1995). In contrast, the thickest SSDS
observed in DX-2 is only 480 mm; hence, the SSDS in
our core do not appear to be the product of
groundwater-induced vertical shear stresses (see
Section 5.2). In addition, extensive liquefaction was
not observed to form discrete and chaotic SSDS units,
characteristic of upwelling groundwater (Owen 1995).
Based on the above points, we rule out any significant
influence of groundwater activity in the DX-2 core.

5.4.3 Glacier activity

The advance of a glacier leaves proglacial
contractional structures and SSDS associated with
extension and shear (Hart and Boulton 1991; Miiller et
al. 2021), and seasonal meltwater can cause repeated
cycles of fracture-expansion-deposition, forming
SSDS-like clastic dykes (Le Heron and Etienne 2005).
Although there were three palaeoclimate transitions
between ~40-30 ka (Zhang et al. 2009), no glacial
sedimentary characteristics have been observed
around the Diexi Palaeolake (Li et al. 1964); hence, we
exclude the role of glaciers here.

5.4.4 Tides, storms and tsunamis

Tides, storms, and tsunamis occur along the
margins of large water bodies (Greb and Archer 2007;
Komatsubara et al. 2008; Uner 2018). They can form
deposits from cm to m in thickness and span areas of
103 km2 (Shanmugam 2016). Different triggering
mechanisms will form specific sedimentary features in
the strata near SSDS. Tide deposits are formed via
reversing (bimodal) water current or cyclic oscillations
(Miall 2000; Uner et al. 2019). Storm deposits are
typically associated with erosion surfaces, graded



bedding, parallel lamination, wavy cross-bedding,
hummocky cross-bedding, troughs and climbing
ripples, shells, biogenetic escape structures, and gutter
structures (Myrow and Southard 1996; Komatsubara
et al. 2008; Panja et al. 2018; Uner 2018). Tsunami
deposits generally consist of a return-flow unit, mud-
cap and rip-up clasts, and massive or parallel-
laminated structures (Nanayama et al. 2000; Morton
et al. 2007; Komatsubara et al. 2008).

The Diexi Palaeolake lies in a mountain gorge. Its
total area and length are 21.4 km2? and 26 km,
respectively (Dai et al. 2023). Tidal action and storm
waves are unlikely to occur (Ezquerro et al. 2016; Tord
and Pratt 2016) in such a long, narrow lake. However,
tsunamis could plausibly be triggered by rock
avalanches or rockslides that fall directly into the lake
from the surrounding steep hillslopes. For example,
the impulse wave induced by a rockslide-generated
tsunami is known to form and propagate over up to 12
km (Miller 1960; Franco et al. 2020).

Although we cannot rule out the effects of
rockslides instigating SSDS over vast areas, there are
only eight units consisting of coarse-grained, unsorted
angular clasts or poorly rounded, unsorted clasts
within muddy matrix units. Five of these units occur in
the lower section, three within the middle section and
none in the upper section of the core. All these units
are thin and thus unlikely to relate to large-scale basin-
wide tsunamis, but rather could relate more readily to
localised rockfall from bordering rock outcrops early in
the development of the lake.

5.4.5 Rapid sedimentation

Rapid sedimentation is a common triggering factor
for liquefaction in sand-on-sand and sand-in-clay
systems (Moretti et al. 2001). It can cause liquefaction
at great depths below the sediment-water interface.
Diexi Palaeolake has experienced exceptionally fast
sedimentation (~15 mm/yr) thanks to the extremely
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high sediment supply from seismically perturbed
hillslopes and rivers feeding into the lake (Wang et al.
2012). In the DX-2 core, some small-scale sand-clay
SSDS can be considered a product of rapid
sedimentation (Moretti and Sabato 2007; Azennoud et
al. 2022). However, we note that all the SSDS are of
limited thickness (0.5—800 mm) and are most likely
generated prior to becoming deeply buried in the
sediment pile.

5.4.6 Earthquakes

SSDS are widely observed in seismically active
regions. In the upper Minjiang River, including the
Diexi area, SSDS are considered the product of
earthquakes (Wang et al. 2012; Jiang et al. 2014; Xu et
al. 2015; Jiang et al. 2016; Zhong et al. 2019; Shi et al.
2022; Zhong et al. 2022). Furthermore, the irregular
recurrence of various SSDS types in the vertical
sequence of the DX-2 core (Fig. 10) are a signature of
seismicity (Hilbert-Wolf et al. 2009; Uner 2014; Ko et
al. 2017). The high frequency of seismicity in the Diexi
area has also been identified via high-resolution
geochemical profiling; for example:

Eight earthquakes are recorded between 20.2 and
12.6 ka, with only two events before 16 ka and six after
16 ka, suggesting an increased frequency over time
(Mao 2011).

During the interval 20—8 ka, 26 earthquakes may
have been recorded at Tuanjie and 23 at Taiping, while
10 possible events were recorded at Shawan between
15 and 10 ka (Zhong 2017).

Between 18.6 and 10 ka, 30 earthquakes were
recorded at Tuanjie (Zhong et al. 2024).

The Luobozhai section, which spans 18—10.2 ka,
recorded 35 earthquakes (Zhong et al. 2023).

Based on previous assessments, the minimum
earthquake magnitude required to trigger SSDSis M 5
(Table 1) (Atkinson et al. 1984; Audemard and Santis
1991; Marco and Agnon 1995; Deev et al. 2019;
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Fig. 10 Cartoon showing various SSDS of DX-2 formed during seismic shaking.
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Molenaar et al. 2024 and papers in Table 2). A
magnitude threshold of 5 (~VII-VIII in Modified
Mercalli Intensity, MMI, Gu 1983) has been
comfortably exceeded multiple times in the upper
Minjiang River since 1930. The 1933 event was M 7.5,
and 57 earthquakes have been recorded with M > 4.7,
including 18 of M > 6.0 (Chai and Liu 2002; Ma 2017).
Given this high frequency of seismic shaking and the
occurrence of numerous nearby faults (Fig. 1b) active
over the period during which the Diexi lacustrine
sequence accumulated, it would be rather odd if
earthquake signatures were not recorded within the
DX-2 core.

We note that for earthquakes of M > 7.0, soft
sediments can potentially liquefy even 100—200 km
from the epicentre (Field et al. 1982; Ambraseys 1988;
Obermeier 1996; Gibert et al. 2011; Ghosh et al. 2012;
Wallace and Eyles 2015; Deev et al. 2019). Farther
afield from Diexi (in Lixian County, 83 km away), 70
earthquakes have been reported between 19 and 6 ka,
including at least four M > 7 (Jiang et al. 2016; 2017),
in addition to the M 7.0 earthquake in Jiuzhaigou,
which is 150 km from Diexi (Fan et al. 2018). Large,
frequent earthquakes such as these over the past
century are undoubtedly sufficient to deform
unconsolidated sediments (Rodriguez-Pascua et al.
2000).

5.5 Model of earthquake-induced SSDS
formation through time

The results and discussion above show that
distinct thin layers of disrupted sediments occur at
irregular intervals throughout the DX-2 core. However,
it is important to note that these units account for only
9% of the core length, whereas the remaining 91%
represent  essentially  undisturbed lacustrine
deposition. Cross-bedding, as is commonly related to
an active fluvial current leading to aggradation, is more
common in the lower section of the core, reduces in the
mid-core and is absent in the upper section, which
contains mainly regular laminations consistent with
quiescent lacustrine conditions. This gross trend in
sedimentation is consistent with the accumulation of
sediments within a deepening lake, such that the
fluvial influence on deposition declined with time.
Concomitantly, rockfall from the confining rocky
slopes apparently also became less frequent, as
indicated by the fewer angular clasts horizons up the
core.
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Within this general pattern of sedimentation
through time, the presence of discrete layers of SSDS
may be related to the irregular timing of repetitive
events sufficient to disrupt the sediment pile. Yet, such
events remain relatively infrequent (9% of the core).
Given the distance of the core site from fluvial inputs
(2 to 26 km), it is unlikely that fluvial activity could
generate sedimentation rapidly enough to produce
relatively few but well-defined SSDS horizons. Instead,
given the record of repeated (though infrequent) high-
intensity earthquakes in the region, the simplest
explanation for the sections of the core where SSDS are
absent is that the pile accumulated for the most part
via fine-grained fluvial inputs settling from suspension,
only to be disrupted by singular high-energy events. If
this argument is acceptable, then regional earthquakes
are strongly implicated as the primary cause of the
relatively infrequent disruptions. Given this scenario,
we propose a model to explain the presence of SSDS
observed in DX-2 (Fig. 11).

As noted in our introduction, a major impediment
to interpreting SSDS genesis is that, as long as the
SSDS remain unconsolidated, they are likely to
experience multiple perturbations and overprinting of
forms (Agnon et al. 2006; Alsop and Marco 2011;
Molenaar et al. 2019, 2021). An upshot of rapid
sedimentation rates like those at Diexi is that
compaction and consolidation within the sediment pile
evolve rapidly, such that only near-surface sediments
will contain sufficient fluid to be ductile and fluidised
by an earthquake. Sediment at depth would also
experience shaking, but compacted sediment layers are
more likely to have a brittle-fracture response to
disturbance. In our conceptual model, only the surface
sediments are repeatedly disrupted, forming SSDS
each time an earthquake exceeds a certain threshold
intensity. Micro-faulting (e.g., 2 mm thick; Fig. 9a) and
the intrusion of dykes (< 9 mm in length) into
otherwise ductile SSDS may occur due to strain-
hardening during ductile flow, but can be explained
more readily as a brittle overprint on SSDS that lie
deeply buried, having attained a later stage of
consolidation. Larger-scale faulting (e.g., 60 mm thick;
Fig. 9b) and the presence of longer and thicker dykes
(< 29 mm in length; Fig. 5¢) intersecting SSDS may be
attributed to earthquakes disrupting deeply buried and
well-consolidated SSDS. Although it is reasonable to
expect recent shallowly buried SSDS to be repeatedly
disrupted by a sequence of two or more earthquakes,
we did not find clear evidence in the structure of SSDS



for repeated disruption. We cannot rule
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out this overprint scenario completely, but
assuming an average accumulation rate of
15 m per thousand years (Wang et al.
2012), SSDS will be buried by tens of
metres after just a few millennia—a rate
commensurate with the recurrence of
high-intensity earthquakes. This
conceptual model explains not only the
relatively sparse distribution of SSDS up

Consolidation

Accumulation

the core but also the presence of brittle

fracture and larger dykes at depth within
the core (Fig. 11).

We have compiled a list of 20 SSDS
(Table 2), which previous workers have
attributed to earthquakes of a given

estimated intensity. Of these 20 SSDS

types, the majority (17) are attributed to
events of MMI equal to VI or greater, and
the majority (13) are identified within the
DX-2 core. In other words, the DX-2 core
contains close to the full range of SSDS
types associated with major earthquake
events. Only four SSDS were not observed in the DX-2
core.

6 Conclusions

We report a detailed sedimentological analysis of
a ~166 m core (DX-2) extracted from the Diexi
Palaeolake, eastern Tibetan Plateau. We describe and
interpret 13 SSDS types: load structures (load casts,
droplets, ball-pillow structures, injection structures),
water escape structures (dish-and-pillar structures,
pocket-and-pillar structures), sedimentary dykes,
diapirs, breccias, plunged sediment mixtures,
convolute laminations, slumps, and (stepped) micro-
faults.

The Diexi Palaeolake is located in one of the most
seismically active regions on Earth, which, when
combined with extremely fast sedimentation rates (~15
mm/yr), makes this an outstanding site for studying
SSDS. Although mass movement, rock avalanche-
driven tsunamis, and rapid sedimentation are the
possible triggering mechanisms, several lines of
evidence support the hypothesis that earthquakes are
the primary trigger mechanism for the SSDS observed
in the DX-2 core: (1) different SSDS types are observed
repeatedly in the long vertical sequence; (2) SSDS of
similar ages are observed across the Diexi area; (3)

Time

Fig. 11 Conceptual model of the development of SSDS within the Diexi
palaeolake through time, depicting the general relationship between
ductile (wiggly black lines) and brittle behaviour (short red lines) with
progressive sediment consolidation down-core (including water column
shown in blue).

[
L

several palaeoseismic events since 30 ka are identified
in the upper Minjiang River; (4) large historical
earthquakes (MMI > X, or M > 7) are documented and
recorded in proximity to Diexi; and (5) controlled
experiments demonstrate that seismic events can
indeed trigger SSDS. We tentatively propose that the
SSDS in the Diexi area are likely the product of
earthquakes of MMI > VI.
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