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Abstract

Faculty of Engineering and Physical Sciences
School of Physics and Astronomy
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Navigating the Noise:
Exploring Black Hole Systems Using Time-Series Analysis

by Madeleine-Mai Ward

Every great wizard in history has started out as nothing more than what
we are now: students. If they can do it, why not us?
Harry Potter and the Order of the Phoenix

Understanding variability in accreting systems offers one of the most powerful tools
for probing the innermost regions of compact objects — regions otherwise inaccessible
to direct imaging. Variable signals encode information about everything from the
geometry to the dynamics of the innermost flows. Time-domain astrophysics comes
with immense potential, but it also brings many challenges. In this thesis, I aim to
show the possibilities of time domain studies in equal measure to their caveats and
pitfalls. I will demonstrate traditional techniques in the Fourier domain to brand new
machine learning routines. Then I will show how no technique in this field is obsolete;
they all build upon each other. This work focuses on publicly available survey data,
illustrating the immense potential of what we already have and preparing us for what
is to come. In a world where data is coming so fast, we might need to ask, can we keep
up?

http://www.southampton.ac.uk
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A summary of works to be discussed

This work introduces the radiative processes underpinning the observable emission
from black holes. We consider both the primary mechanisms and the complexities
introduced by relativity and geometry, building the foundation for later discussion.
We then consider the formalities of the time series analysis techniques deployed
throughout this work, including a critical comparison of two core methods: traditional
Fourier analysis and Gaussian processes.

The final introductory chapter connects these elements by extending our theoretical
framework to the mechanisms by which black holes of different masses produce
variable signals. We will then introduce the core question of scale invariance, which
forms the primary focus of this work. Finally, we provide a brief history of the
literature surrounding the variability of the highest mass black holes.

The first science chapter applies traditional Fourier methods to previously
unobservable X-ray time baselines. In this work, we expand upon well-understood
literature methods to fit the broadband noise, seeking to recover trends common to
X-ray binaries and search for low-frequency QPOs, a key signature to potential scale
invariance that has thus far remained undetected in AGN.

The presence of irregular cadence often limits Fourier studies of optical data. The next
chapter explores the use of Gaussian processes so that overlapping data in the optical
can be compared to our X-ray results. This chapter thoroughly explores potential
statistical limitations while providing a complementary perspective to Fourier
methods.

Thus far, we have considered the variable nature of accreting systems. However,
recent literature has suggested that there may be a sub-population of non-interacting
binary black hole systems, cousins to the X-ray binary, which would make up the
deficit measured in population synthesis studies. We explore the sensitivity of a
Gaussian process study to the signals of binary self-lensing, adapting methods from
exoplanet studies to a new mass regime.

We conclude with a summary of results, a reflection on the methods used, and a
discussion of the possible future work resulting from these findings.
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Chapter 1

Radiative Processes of Black Holes

1.1 Stellar Mass Black Holes

The first explicit mathematical description of a black hole was given by Karl
Schwarzschild in 1916 (Schwarzschild, 1999) as a solution to Einstein’s field equations.
Theoretically, they are simple objects, defined only by mass MBH and dimensionless
spin a⋆ (0 ≤ a⋆ ≤ 1) – with assumed negligible charge. In the case of a⋆ = 0, we refer
to the system as a Schwarzschild black hole. More generally, we refer to a Kerr system
for a spinning black hole, described by Kerr (1963). The spin is related to the black
hole’s angular momentum J following a⋆ = Jc/GM2 (Bardeen et al., 1972;
Thorne1974, 1974). Whilst their physical existence was debated for many years due to
their exotic nature, coupled with an inability to observe them directly, black holes are
now regularly studied via their effect on their surroundings. In the early 1970s, the
X-ray emission from Cygnus X-1 (Oda et al., 1971) led to the first confirmed detection
of a stellar-mass black hole (Bolton, 1972; Webster and Murdin, 1972). This emission
was a direct result of accretion, one of several radiative processes responsible for the
characteristic broadband emission from such systems.

1.2 Radiative Processes in Accreting Systems

The spectral energy distribution (SED) is the distribution of radiation across a range of
energies and is constructed from a multitude of radiative processes occurring within
an accreting system. This chapter will consider only the X-ray portion of the SED with
energies > 0.1 keV and discuss how accretion drives the emission we detect. These
processes will motivate the energy resolved analysis performed in Chapter 4, to
investigate properties described in Chapter 3.
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1.3 Accretion

Accretion is the physical process by which matter is accumulated onto a central object.
Chapters 4 and 5 discuss potential time-domain evidence for scale-invariant accretion.
However, before doing so, we must define the core principles around which we will
base such a hypothesis.

We will begin by considering the simplest case of steady spherical accretion described
in Bondi (1952). As the matter falls inward, its gravitational potential energy is
converted into thermal energy and radiation. We can define the energy released by the
accretion of a test mass m onto an object with mass M and radius R;

Eacc =
GMm

R
(1.1)

In the case of black holes with no defined surface, R is usually given by the
Schwarzschild radius Rs (although we might also choose the inner stable circular orbit
(ISCO) radius RISCO).

We can also define the total power released as;

L = ηṀc2 (1.2)

where η is the efficiency and Ṁ is the rate at which matter is accreted onto the
compact object. Accretion is the most efficient way to release energy with an η value
of approximately 20 times that of nuclear fusion of hydrogen (Frank et al., 2002).

We can define a limit to this luminosity known as the Eddington limit for spherically
symmetric accretion (Netzer, 2013);

LEdd =
4πGMmpc

σT
(1.3)

where mp is the proton mass and σT is the Thomson cross section. For luminosities
greater than LEdd, the gravitational attraction would be overcome by radiation
pressure and accretion would cease.

We emphasise that the Eddington limit is only valid for spherical accretion of pure
ionised hydrogen (Frank et al., 2002), which is not the case in many astrophysical
systems, including a typical accretion disc. Moreover, systems have been observed to
emit far higher than the Eddington limit and are referred to as Super-Eddington.
However, the ratio of measured luminosity to the Eddington limit L

LEdd
(referred to as

the Eddington ratio) is sometimes used as a crude proxy for accretion rate and,
therefore, can be of practical importance.
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1.3.1 Thin Discs

As matter falls under gravitational influence, the conservation of angular momentum
prevents direct, radial infall. Instead, the material settles into a flattened, rotating
accretion disc. Without a mechanism to transport angular momentum outward, this
material would remain trapped in orbit indefinitely. However, viscous forces allow
angular momentum to be transferred outward through the disc, allowing matter to
spiral inward toward the black hole. This ’effective viscosity’ is driven by
magnetorotational instability (MRI), where weak magnetic fields in a differentially
rotating plasma are amplified, resulting in magnetohydrodynamic (MHD) turbulence
that transports angular momentum outward (Balbus and Hawley, 1991, 1998). This
turbulent dissipation of energy inevitably heats the disc, leading to the radiation of
energy, primarily in thermal emission.

At large distances from the black hole, the structure of the accretion disc is well
described by Newtonian physics and the laws of circular motion. However, as
material moves inward, relativistic effects become increasingly important. General
relativity predicts the existence of the ISCO, the smallest radius at which a stable
circular orbit can exist. Matter reaching the ISCO rapidly plunges into the black hole.
The location of the ISCO and the radiative efficiency are highly dependent on the spin
of the black hole, a⋆.

The Shakura-Sunyaev alpha-disc model (Shakura and Sunyaev, 1973) describes an
optically thick, geometrically thin accretion disc in thermal equilibrium undergoing
steady-state accretion. Other thin disc models include the Novikov–Thorne relativistic
extension (Page and Thorne, 1974), ’slim discs’ (Abramowicz et al., 1988), applicable at
high accretion rates, and models that modify the viscosity prescription to mitigate
thermal instabilities. Shakura-Sunyaev models are also often referred as α-discs, after
their dimensionless viscosity parameter α (taking values 0 ≤ α ≤ 1), defined in terms
of the fluid viscosity;

α =
v

csh
(1.4)

where v is the kinematic viscosity, cs is the speed of sound through the gas, and h is
the scale height of the disc. Given that α ∝ v, α measures the turbulence and the
viscous torque experienced by accreting material as it moves through the disc.

In the non-relativistic case, we can define the torque acting on a single ring of
accreting material positioned at radius R in terms of the viscosity (Lynden-Bell and
Pringle, 1974);

τ(R) = 2πRvΣR2Ω′ (1.5)

where Σ is the surface density (Σ = ρh) and Ω′ is the spatial derivative of the angular
velocity Ω.
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Torque is force, not an energy source. However, the force can transfer energy from
angular momentum when relative motion exists between the connected surfaces.
Therefore, we require an implicit dependence upon R. We can define the rate at which
the viscous torque does mechanical work; Power = torque × angular velocity difference.
For an infinitesimal radial separation dR, the angular velocity difference
dΩ = Ω′(R)dR. Therefore, the incremental power transferred across the separation dR
is dP = τ(R)Ω′(R)dR. However, the geometrically thin annulus of width dR we
constructed has two emitting faces. The flux of energy dissipation per unit surface
area is therefore given by;

f (R) =
τ(R)Ω′(R)

4πR
(1.6)

Suppose we were to consider a solid disc, then Ω′ = 0, giving zero disc flux. Instead,

by considering a Keplerian disc, we can explicitly define Ω = Ωk =
√︂

GM
R3 .

Differentiating with respect to R gives; Ω′ = − 3Ωk
R . This allows us to rewrite the flux

as fk(R) = 9
8R3 vGMΣ.

Shakura and Sunyaev (1973) applies conservation of mass and angular momentum
with the boundary condition Ω′ = 0 at the inner edge of the disc to find;

vΣ =
Ṁ
3π

[︄
1 −

(︃
RISCO

R

)︃ 1
2
]︄

(1.7)

which, when substituted into the previously defined flux equation, gives;

fk(R) =
3GMṀ
8πR3

[︄
1 −

(︃
RISCO

R

)︃ 1
2
]︄

(1.8)

From this equation, we can draw two observations; the first is that the disc flux has no
dependence on the viscosity of the accreting material. Instead, the flux is proportional
to the accretion rate, mass, and radius. Secondly, the flux scaling for R > RISCO as
f (R) ∝ R−3 suggests that the inner annuli contribute a larger fraction of the observed
flux than the outer annuli.

The flux equation can be integrated to find the luminosity between two defined radii,
R1 and R2;

L(R1, R2) = 2
∫︂ R2

R1

f (R)2πRdR (1.9)

This integrated luminosity forms the basis for understanding the disc’s spectral
energy distribution (SED). Moreover, given the tight relationships between the
efficiency, determined by the ISCO, which in turn is determined by the spin, SED
fitting has been an integral method in our observational measurements of black holes’
spin (McClintock and Remillard, 2006; Reynolds, 2019). Moreover, the implication of
summation over contributions over multiple annuli (Lyubarskii, 1997; Ingram and
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Done, 2011) will form the foundation of the time-based techniques we will use
throughout this work.

1.3.2 The Disc Contribution to the SED

Accretion forms the first component of the spectrum of accreting compact objects such
as black holes. For an optically thick accretion disc, the contribution primarily is
thermal emission, approximated by a sum of blackbodies across a range of annuli
(Mitsuda et al., 1984), each of width dR. At each radius, gravitational potential energy
is converted to rotational kinetic energy and thermal energy via turbulence (i.e.
torques). For a circular orbit at radius R, we can write an estimate for the contribution
dL using the Stefan-Boltzmann law:

dL = 4πRdRσT4 (1.10)

where σ is the Stefan-Boltzmann constant and T is the peak temperature of the black
body.

By substituting our integrated luminosity relationship equation 1.9, we can express
the temperature as;

T4 =
3GMṀ
8πR3σ

(︄
1 −

√︃
RISCO

R

)︄
(1.11)

It is apparent from equation 1.11 that the T ∝ R− 3
4 relationship will result in the inner

regions being much hotter and emitting thermal radiation at shorter wavelengths. By
superimposing the black body components across values from R to Rin (the inner edge
of the accretion flow), we construct the thermal disc SED (see figure 1.1).

While the temperature is highest at the ISCO, the peak of the thermal emission does
not occur there. Instead, it can be found by differentiating the disc luminosity
expression and weighting by the emitting area of the respective annulus, 2πR. The
total luminosity contribution per annulus is given by;

dL = 2πRF(R)dR (1.12)

To find the peak, we differentiate with respect to R;

dL
dR

= 2πF(R) (1.13)

where F(R) = 2πR 3GMṀ
8πR3

(︃
1 −

√︂
RISCO

R

)︃
(Thorne1974, 1974). For smaller, stellar-mass

black holes of mass ∼ 10M⊙, this would tend to place the peak in the X-rays, ∼ 0.1keV
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FIGURE 1.1: An illustration of the thermal disc component for the black hole SED.
Dotted lines indicate the components summed to produce the solid line.

(Remillard and McClintock, 2006b). However, the peak moves into the UV for
supermassive black holes of mass > 106M⊙ (Frank et al., 2002).

The above prescription for the effective temperature assumes that all photons are
produced in the mid-plane (z = 0) of the disc. However, even in the thin disc
approximation, there is a defined scale height, implying that at least some photons
will interact before emission at the last scattering surface of the disc.

The colour temperature correction defines the colour temperature Tcol . This parameter
more accurately describes an accretion disc’s effective temperature (and emergent
spectrum) than a typical blackbody would (Done et al., 2007). Tcol is proportional to T
according to

Tcol = fcolT =

(︃
κT + κabs

κabs

)︃ 1
4

Te f f (1.14)

Where fcol is the colour temperature correction or spectral hardening factor and is
derived from the ratio of two opacities in the disc, the electron scattering κT, and
absorption κabs opacities, the effect of the temperature correction is to shift the peak of
the total thermal component to higher energies (Shimura and Takahara, 1995).
However, the accurate picture is more complex, as we have not accounted for spin or
general relativistic effects close to the compact object.
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1.3.3 Characteristic Timescales of Accretion

The behaviour of matter within an accretion disc is governed by three principal
timescales: the dynamical timescale, the thermal timescale, and the viscous timescale.
These timescales differ significantly in magnitude, with important consequences for
how perturbations propagate through the disc.

The dynamical timescale (tdyn) is the orbital timescale assuming Keplerian dynamics;

tdyn(R) =
2π

ΩK
= 2π

√︃
R3

GM
(1.15)

It is common to express accretion timescales in terms of gravitational radii Rg where
Rg = GM

c2 . Given R = rRg, we can rewrite the dynamical timescale in gravitational
units;

tdyn =
2πGMr

3
2

c3 (1.16)

(Frank et al., 2002). This reveals that tdyn ∝ M, i.e. there is a linear scaling of the
dynamical timescale with the mass of the compact object. For stellar-mass black hole
systems, the dynamical timescale is on the order of milliseconds to seconds (for radii
of 1 ∼ 100Rg, this is the fastest of the three timescales discussed here).

The thermal timescale (tth) describes how quickly the disc can respond to a heating or
cooling process. The thermal timescale is longer than the dynamical timescale.

tth(R) ≃ 1
α Ωk

=
tdyn

2πα
=

GM
αc3 r3/2. (1.17)

The viscous timescale (tvis) is the time it takes for mass to be transported radially
inward due to angular momentum transport by viscous stresses. This timescale is the
longest of the three timescales.

tvis =
R2

v
(1.18)

Usually, we write the viscous timescale in terms of the dynamical timescale;

tvis =
R2

αh2 tdyn (1.19)

From this equation, we can observe that the viscous timescale is longer in a disc with
a lower α and a smaller scale height (Pringle, 1981).

Based on the above, there is a well-defined hierarchy of timescales within a steady
accretion flow where tdyn ≲ tth ≪ tvis. Numerical solutions for stellar-mass black hole
α-discs (M ∼ 10M⊙) predict dynamical and thermal timescales on the order of
milliseconds to minutes. In contrast, the viscous timescale is on the order of days to
weeks at R ∼ 10 − 100Rg. These timescales form a natural motivation for the use of
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time domain techniques in order to better understand accretion flows; these
techniques will be introduced mathematically in 2. Literature observations of
time-variant accretion will be presented in 3, in which some of the more detailed
features of accretion-driven variability will be discussed.

1.3.4 Thick Discs

While thin discs (
(︂

h
R ≲ 0.05

)︂
(Shakura and Sunyaev, 1973) are a reasonable

approximation and help us identify key relations, discs generally will have some finite
thickness generated by pressure within the disc. Should the pressure become large
enough, the disc can expand beyond the scale height assumptions of the thin disc
model. Disc pressures are related to the scale height of the disc, opacity and accretion
rate.

In radiation-pressure-dominated discs, UV and soft X-ray photons increase the local
opacity due to bound-bound and bound-free transitions, increasing κ. For a given Ṁ,
this enhances the vertical radiation pressure and inflates the disc, pushing h/R
upward. This opacity enhancement can be significant in partially ionised gas, but is
less relevant at temperatures that fully ionise the gas. When accretion rates approach
or exceed ṀEdd, the disc enters the so-called “slim disc” regime (Abramowicz et al.,
1988), where advection of energy becomes important, and the assumption of local
radiative efficiency breaks down. The slim disc regime is defined at around
0.1ṀEdd ≤ Ṁ < 1ṀEdd where the scale height becomes non-negligible. Thick discs,
where h

R ∼ 1, can be described as having super-Eddington accretion rates (for
applications to thin disc see Begelman (2002)).

Advection can also drive an increase in disc thickness. In an advection-dominated
system, only a small fraction of the dissipated energy is radiated; the remainder is
carried inward with the flow. These advection-dominated accretion flows (ADAFs;
Narayan and Yi (1994)) appear at both extremes of the accretion rate. At low Ṁ, hot,
tenuous gas fails to cool efficiently, and thermalisation is incomplete. At high Ṁ, high
opacity can trap photons (Begelman, 1979), suppressing radiation and forcing energy
transport via bulk motion. Thick discs differ not only in their geometry but also in
their energetics, as they lack complete local thermal equilibrium.

Given that the core driving factor of thick disc structure is the accretion rate, and that
accretion has a natural time varied nature, this presents further motivation for the use
of time-domain techniques to study the more complex mechanisms behind disk
regimes, it is hypothesised that over a lifetime, the accretion disc may move through
several disc states, most stable in the thin disc regime (Remillard and McClintock,
2006b; Done et al., 2007). While the timescales (discussed further in 3) are likely too
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long to observe within the human lifetime, population techniques may offer a way
forward.

1.4 Comptonisation

The second spectral component we will consider is inverse Comptonisation. This is
the process by which lower-energy photons produced from a primary radiative
process gain energy by scattering from higher-energy electrons. In the case of black
holes, the lower-energy photons might originate from thermal emission from the
accretion disc described above. Photons that leave the disc can interact with a
separate, compact region of high-energy electrons, which we call the corona.

1.4.1 Coronal Geometry

The exact geometric configuration of the corona is a key open question within the
field. The inability to spatially resolve such small scales through imaging means that
coronal structure is inferred from a combination of spectral, timing, and polarisation
diagnostics (e.g., emissivity profiles, reverberation lags, reflection fractions, and
energy-dependent polarisation). Here, we will discuss two prominent schematics
used to model the coronal emission: point-source lamppost models and more diffuse
inner disc models (see figure 1.2).

In the lamppost scenario, the corona is approximated as a compact, point-like source
situated on the black hole spin axis at height hc above the disc plane (Martocchia and
Matt, 1996; Reynolds and Begelman, 1997; Miniutti and Fabian, 2004), producing
azimuthally symmetric emission. The lamppost geometry is thought to form the base
of a jet (Markoff et al., 2005; Merloni and Fabian, 2002; Fabian et al., 2015). One of the
most significant questions posed for this model is what confines the highly localised
distribution of electrons to a single position, particularly in the absence of a jet.
Hypotheses include magnetic confinement from accretion disc-anchored magnetic
fields (Galeev et al., 1979).

For the inner disc scenarios, spherical corona models imagine a spherical cloud of hot
electrons enveloping the inner disc (Sunyaev and Titarchuk, 1980; Fabian et al., 2017).
This structure satisfies the need for a compact corona without needing to support a
confined structure in a polar configuration. Spherical coronal models have a fixed
temperature, uniform density and opacity. Alternatively, the diffuse corona model
describes an optically thin, spatially extended plasma enshrouding the inner disc
(Done and Kubota, 2006). An extended corona is defined by radial extent Rc and
vertical scale height hc. Rotational symmetry is assumed at this stage, as is the case for
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FIGURE 1.2: An illustration of the different proposed coronal geometries with relation
to the accretion disc (orange) and black hole

the accretion disc. Consequently, there may be a co-evolution between the two regions
(see truncated disc model (Chapter 3) for further details).

A balance between these two corona models is the sandwich corona (Di Matteo et al.,
1997). In this scenario, the corona lies above the disc in diffuse sheets as opposed to a
confined region. This produces a cooler inner disc region sandwiched between sheets
of hot electrons. The sheet geometry is thought to be supported by magnetic field lines
permeating the accretion disc (Haardt and Maraschi, 1993).

These two modelling schematics are not mutually exclusive. These two groups of
models could be describing the corona in different states (as discussed further in
Chapter 3). In addition, the exact nature of the scattered primary photons is known;
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they will come from the thermal disc. Our understanding that the disc is already
variable suggests that such variability will be in some way imprinted upon signatures
from the corona. It is therefore possible to suggest that time-domain studies in the
X-ray band might be able to help untangle coronal geometry by providing geometric
relations between the corona and the inner disk. Previous studies using reverberation
techniques include Fabian et al. (2009); Uttley et al. (2014); however, Lawrence and
Papadakis (1993) is closer to our techniques used in 4. For now, we simply suggest
that the corona is positioned in such a way that this hot region can irradiate the disc,
in addition to producing its own X-ray emission via Comptonisation.

The exact nature of the scattering which takes place depends on the physical
properties of the corona, most notably, the electron temperature Te and the optical
depth τ, which is related to the number of scatterings a single photon undergoes. We
proceed to consider the fundamental physics governing the interaction between a
photon and an electron in a single scattering before considering more complex cases.

1.4.2 Single Scattering

Let us begin by considering the Compton scattering of a photon of energy ϵ (where
ϵ = hν) off a single electron at rest (Compton, 1923). By enforcing the conservation of
energy and momentum, we can evaluate the photon’s energy after scattering ϵ1

(where ϵ1 = hν1). The incoming photon has momentum (magnitude) p given by
p = ϵ

c . The electron has rest energy E = mec2 and momentum of zero. After the
interaction, the photon has energy ϵ1 and momentum (magnitude) p1

c . The electron
recoils with kinetic energy, resulting in a total post-interaction electron energy of Ee

with momentum pe. Applying conservation of energy;

ϵ + mec2 = ϵ1 + Ee (1.20)

Applying the relativistic energy-momentum equation E2 = (pc)2 + (m0c2)2 where m0

is the mass of the object at rest, we can find an equation for Ee, assuming special
relativity, as;

Ee =
√︂
(pec)2 + (mec2)2 (1.21)

By rearranging the conservation of momentum equation, p⃗ = p1⃗ + pe⃗ and applying
the cosine rule we find;

|pe⃗
2| = p2 + p2

1 − 2pp1cos(θ) (1.22)

Substituting the equations for p and p1 from our initial definition of the problem;

|pe|2 =
1
c2 (ϵ

2 + ϵ2
1 − 2ϵϵ1 cos(θ)) (1.23)
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FIGURE 1.3: A simple schematic of Compton scattering for a single electron at rest.

Combining this result with equation 1.21 gives;

E2
e = (ϵ2 + ϵ2

1 − 2ϵϵ1cos(θ)) + (mec2)2 (1.24)

Substituting this result into equation 1.20 and equating gives;

−ϵϵ1cos(θ) = ϵmec2 − ϵϵ1 − ϵ1mec2 (1.25)

Finally solving for ϵ1;
ϵ1 =

ϵ

1 + ϵ
mec2 (1 − cos(θ))

(1.26)

This scenario is called Compton down-scattering as the photon transfers energy to the
electron during the interaction, resulting in ϵ1 < ϵ.

When the photon energy is much lower than the other mass energy of the electron
(ϵ << mec2), we can assume the collision is approximately elastic and that the change
to the photon energy is minimal. This creates an energy-independent (Thomson)
scattering process.

However, electrons in the accretion disc typically have much higher temperatures
(Sunyaev and Titarchuk, 1980), implying they will have significant velocities. When
these electrons have temperatures high enough to reach relativistic velocities, energy
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(A) Relativistic Compton scattering in the
lab frame.

(B) Relativistic Compton scattering in the
rest frame of the electron.

transfer occurs from the electron to the photon, referred to as inverse Compton
scattering.

In the case of special relativity, we take the rest frame to be that of the electron and
consider the Doppler effect between the rest frame and that of the incoming photon.
Given the Lorentz factor γ = 1√

1− v
c

2 and the energy transform E′ = γ(E − vpx);

ϵ′ = ϵγ
(︂

1 − v
c

cos(θ)
)︂

(1.27)

ϵ1 = ϵ′1γ
(︂

1 − v
c

cos(θ′1)
)︂

(1.28)

where θ1 is the direction of the photon post interaction 1.27. If we enforce the
Thomson limit discussed previously, we require γϵ << mc2 and ϵ′

mc2 << 1. Following
the Lorentz transformations in equations 1.27 and 1.28, we can write the energy of the
photon after interaction in the rest frame of the electron as;

ϵ′1 ≈
[︃

1 − ϵ′

mec2 (1 − cos(Θ′)
]︃

(1.29)

In this case, Θ′ is the scattering angle between the incoming and outgoing photon
paths.

In the simplest case of an isotropic distribution of photons and electrons,
⟨cos(Θ′)⟩ ≈ 0. This dramatically simplifies the above equation such that in the
Thomson limit, the photon energy remains nearly constant in the electron rest frame;
ϵ′1 ≈ ϵ′. However, when we transform back to the lab frame, we find ϵ1 ≈ γϵ′1 ≈ γ2ϵ.
We can, therefore, infer that even a low-energy photon can obtain a considerable
increase in observed energy via this process, with the most significant boost attributed
to head-on collisions.

The above description is for a single scattering interaction, whereas, in practice, we
require a description of multiple scatterings. More specifically, we require a



16 Chapter 1. Radiative Processes of Black Holes

description of the emergent photon energies from an incident distribution of photons
that interacts numerous times with an electron population. Once we have determined
these distributions, we can then assess the overall energy change from repeated
scatterings and determine the point at which this is significant relative to the total
photon energy.

1.4.3 Thermal Comptonisation

We can define the Compton parameter y as the total energy gain from scattering,
where y ≈ energy gain per scattering × number of scatterings. However, this assumes all
scatterings have the same energy, yet previously, we showed that the change in energy
from each scattering event depends strongly on the energy of the incoming photon
and the velocity (kinetic energy) of the interacting electron.

In order to obtain a representative estimate of the energy gain per scattering, we first
assume a thermal distribution of electrons. This allows us to evaluate a given
electron’s mean energy (velocity). As before, if we define the rest frame to be that of
the electron, we can define a change in photon energy = ∆ϵ′ for a single photon as a
result of a Compton scattering. It is common to define a fractional change when
determining whether a change is significant, which we can write as ∆ϵ′

ϵ′ =
ϵ′1−ϵ′

ϵ′ .

The energy transfer is low if we are in the Thomson scattering regime. Using equation
1.26, the second term in the denominator becomes very small. Hence, we can use a
Taylor expansion to 1

1+δ to obtain 1 − δ where δ = ϵ
mc2 (1 − cos(θ)). This simplifies the

expression to ∆ϵ′
ϵ′ = − ϵ′

mc2 (1 − cos(θ′)) (Rybicki and Lightman, 1979). If we then
average over angles, 1 − cos(θ′) tends to 1 such that we are left with;

∆ϵ′

ϵ′
≈ − ϵ′

mc2 (1.30)

This equation provides the fractional energy change that a photon distribution will
undergo when interacting with a thermal distribution of electrons. However, as we
measure spectra by measuring photons, we do not measure the energy change in the
rest frame of the electron. We, therefore, transform this energy change back to the
laboratory frame. From thermodynamics, we know that, for non-relativistic electrons,
⟨v2⟩ = 3kTe

me
(Frank et al., 2002). From the averaging of Lorentz transformations, we

also know that ⟨∆ϵ
ϵ ⟩ = 4

3 ⟨ v2

c2 ⟩ (Rybicki and Lightman, 1979). It therefore follows that

⟨∆ϵ
ϵ ⟩ = 4kTe

mec2 in the non relativistic case. Or, following from before;
⟨︂

∆ϵ
ϵ

⟩︂
≈ 16

(︂
kTe

mec2

)︂2

in the relativistic case.

In order to evaluate the second term of y, the number of scatterings, we must consider
the plasma optical depth τ. The optical depth describes how many scatterings will
likely occur within the medium. If τ << 1, we define the material as optically thin. In
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this case, most photons can travel through the plasma without scattering. If instead
τ ≥ 1, we refer to the material as optically thick. In this case, photons are highly likely
to be scattered multiple times before exiting. We can define the optical depth as;

τ =
∫︂

κρds =
L
λ

(1.31)

where κ is the opacity.

Naturally, the optical depth depends on the density of the material ρ, and we integrate
along the photon path to determine the optical depth. This provides a simple
relationship between the distance L through the medium and the mean free path λ. In
the case of high photon energies, the optical depth is reduced, increasing the mean
free path and reducing the number of scatterings such that a highly energetic corona
will become effectively transparent to the highest-energy photons.

In the case of Compton scattering, we often consider the Thomson cross section σT for
non-relativistic electrons and soft photons. However, once the electrons move to the
relativistic regime γ ≫ 1 (certainly the case for ∼ keV photons), the scattering cross
section can no longer be approximated by σT. In this case, we must instead consider
the Klein-Nishina regime (Klein and Nishina, 1929) with σKN ;

σKN ∼ σT
3

8ϵ′

[︃
ln(2ϵ′) +

1
2

]︃
(1.32)

This implies that the number of scatterings within the corona is γ dependent.

Regarding the probability of a scattering, for τ << 1, the probability of one scattering
event is proportional to τ; hence, the mean number of scatterings per photon is ≈ τ.
As the optical depth increases, the number of scatterings within the medium increases.
In 3-dimensions, the number of scatterings Ns over a distance L is given by N ∝

(︁ L
λ

)︁2
.

This suggests that the mean number of scatterings for optically thick media is ≈ τ2.

For determining the second term in the Compton parameter y, we define an optical
depth term of the form τ + τ2 to incorporate both the optically thin and thick
solutions simultaneously. In the case of τ << 1, the first term will dominate, with the
second term being negligible. In the case where τ ≥ 1, the τ2 term dominates.

We can now trivially define the Compton term y in both the non-relativistic and
relativistic cases.

y =
4kTe

mc2 (τ + τ2) (1.33)

and

yR = 16
(︃

kTe

mc2

)︃2

(τ + τ2) (1.34)

This offers an order of magnitude estimate of the increase in photon energy from a
thermal electron distribution via inverse Compton scattering.
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As a result of the above, in the case of a low optical depth (optically thin) plasma, the
Compton component in the SED is weak. However, when τ ≥ 1, inverse
Compton-scattering contributes significantly. On average, an incoming photon of
energy ϵ, increases its energy by a factor of 1 + B as a result of each scattering, where B

is the mean fractional energy gain per scatter; B = 16
(︂

kTe
mec2

)︂2
from equation 1.34. Over

a series of k scatterings, we obtain a final photon energy of;

ϵk = ϵµ(1 + B)k (1.35)

where ϵµ is the mean photon energy. After k scatterings, the number of scattered
photons k times is ∝ τk. This allows us to write an equation for intensity after k
scatterings, I(ϵk);

I(ϵk) ∝ I(ϵi)τ
k (1.36)

Rearranging our expression for ϵk gives k =
ln ϵk

ϵµ

ln(1+B) . In addition we can rewrite τk as

τk = ekln(τ). By combining the two previous equations we find that τk = e
ln

ϵk
ϵµ

ln(1+B) ln(τ)

which can be manipulated to give τk = e
ln

(︄
ϵk
ϵµ

ln(τ)
ln(1+B)

)︄
and which simplifies to

τk = ϵk
ϵµ

ln(τ)
ln(1+B) .

We can define β such that;

β =
ln(τ)

ln(1 + B)
(1.37)

which gives a final intensity equation of;

I(ϵk) ∝ I(ϵµ)

(︃
ϵk

ϵi

)︃−β

(1.38)

From the above, we can loosely describe the thermal Compton component as a
power-law with index β. The photon index is given a negative sign to describe a
negative slope. β depends on the balance between how many scatterings happen,
determined by τ, and the energy boost from each scattering B.

In the optically thin limit (τ ≪ 1), very few scatterings occur, resulting in a very steep
power-law (β > 1). Small increases in τ, while remaining in the optically thin regime,
make the ln(τ) term less negative, reducing the value of β, flattening the power-law.
As τ → 1, more scatterings occur, and the spectrum approaches a flat power-law
(β = 0). If τ exceeds one, further scatterings drive the photon distribution towards a
Wien peak rather than a simple power-law. This is caused by the majority of excited
photons being observed at the electron temperature.

The thermal Compton power-law component cuts off at energies above 3kTe
mc2 due to the

exponential decay in electron energy in the Maxwellian tail, leaving insufficient
electrons with energies above to continue the power-law. Monte-Carlo simulations
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FIGURE 1.5: Thermal Compton spectra. Original from Zdziarski et al. (2020)

performed by Zdziarski et al. (2020) illustrate the effect of Comptonisation on the
thermal SED (see figure 1.5).

The key takeaways from this process are that the corona’s physical properties—its
electron temperature Te and optical depth τ—are directly imprinted on the observable
X-ray spectrum; these parameters are the fundamental quantities which can be
measured using spectral fitting. Furthermore, the variability of these parameters is a
key diagnostic of the changing accretion state, which is central to Chapter 3.
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1.4.4 Non-Thermal Comptonisation

We can also explore the case where the distribution of electrons is not purely thermal,
as there are many mechanisms by which electrons can be accelerated. Such
non-thermal populations are characteristic of regions where shock fronts or magnetic
reconnection events dominate the acceleration mechanism (Bell, 1978; Sironi and
Spitkovsky, 2014). In these environments, electrons are accelerated to high energies
without sufficient time or density to thermalise fully, leading to a persistent
population of high-energy electrons. We define an electron population that follows a
power-law distribution in Lorentz factor γ where there are fewer electrons with larger
values of γ;

N(γ) ∝ γ−p (1.39)

The rate at which the electrons lose energy γ̇ defines the resulting photon energy
distribution. This allows us to write a general expression for the rate at which energy
is lost from the Comptonised region.

f (ϵ)dϵ = γ̇N(γ)dγ (1.40)

We infer that γ̇ is the maximum rate at which incident photons can gain energy via
Compton scatterings. Furthermore, we know from our derivation of the energy boost
from a single relativistic interaction that ϵ f ∼ γ2ϵi. Hence, we rewrite the above as;

f (ϵ) ∝ γ2γ−p dγ

dϵ
(1.41)

(Blumenthal and Gould, 1970) and the resultant spectrum follows a power law in ϵ as;

f (ϵ) ∝ ϵ−
p−1

2 (1.42)

1.5 The Reprocessed Spectrum

1.5.1 Reflection

A non-negligible, sometimes large fraction of the coronal emission is intercepted by
the physically larger, cooler accretion disc. Upon striking the cool disc surface,
photons can be absorbed and re-emitted as fluorescent lines or repeatedly undergo
Compton down-scatterings as they move through the accretion disc. It is the
superposition of these two processes which produces the reflection spectrum.

The gas in the accretion disc is much cooler than the corona. As a result, heavier
elements such as iron and oxygen remain neutral while lighter elements like hydrogen
are ionised. Naturally, the relative abundances of such elements and their ionisation
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will imprint on the SED. The strongest of the observed fluorescent photoelectric lines
in the X-ray portion of the SED tends to be the 6.4 keV line for neutral iron, referred to
as the Fe k-α line. This line, formed from an indistinguishable doublet at 6.404 and
6.391 keV (House, 1969), can also be used to indicate higher ionisation states where
the line is instead detected in the 6.5–6.95 keV range (Kallman et al., 2004) as a
complex containing forbidden transitions.

The above discussion assumes emission from neutral iron throughout the accretion
flow. However, increased ionisation from the coronal radiation field raises the
ionisation parameter of the gas, leading to changes in the shape and energy of the Fe
k-α complex. As the ionisation state increases, the Fe k-α line broadens and blends
with transitions from highly ionised species, and the neutral Fe k-α at 6.4 keV weakens
or disappears. At high ionisation, the emission is dominated by Fe XXV and Fe XXVI
lines around 6.7–6.97 keV, and the reflection spectrum becomes reshaped by the
growing influence of the Fe K-absorption edge near 7.1 keV

The iron line is also subject to several types of broadening, which further affect the
shape of the profile under different conditions. Thermal broadening is the effect of the
distribution of ion energies within the disc. The Maxwellian velocity distribution of
ions induces a symmetric Gaussian broadening around the rest energy, where the
width depends on the ion temperature and mass. The material in the disc orbits the
black hole at relativistic speeds. As a result, emission from the approaching side of the
disc is blue shifted, while the receding side is redshifted (assuming we are not
observing along the pole). In a purely Newtonian regime, this would lead to a
double-horned profile with the peak separation increasing with decreasing radius.
However, relativistic effects also contribute when considering emissions close to the
central object. Special relativity results in an asymmetric smoothing of the Newtonian
profile by the Doppler boosting of the blue-shifted wing. This effect is especially
pronounced for inclined discs, producing a sharp blue peak and an extended red wing
(see figure1.7).

Gravitational redshift also affects all emission features produced near the black hole.
While these photons retain the same energy in their local rest frame, an observer
detects them at a lower energy due to time dilation. This effect is powerful for photons
emitted from the innermost disc radii and contributes to the red-ward skewing of the
Fe Kα line profile. Crucially, the ISCO determines the exact shape of this extended red
wing. Given that the ISCO’s location is a direct function of the black hole spin, fitting
the detailed profile of this relativistic line provides a primary method for measuring
the spin of the black hole. Such models are used in 4 to anchor the fit, though a spin
measurement is not extracted due to substantial uncertainties.

Fluorescent photons emitted within the disc may also scatter off free or bound
electrons before escaping. These scatterings reduce the photon energy slightly,
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FIGURE 1.6: Reflection lines from an illuminated continuum, original from Reynolds
(1999)

producing a faint low-energy shoulder on the red side of the Fe Kα line—commonly
referred to as the Compton shoulder (Matt, 2002).

In addition to photoelectric lines, reflection also imprints a ‘Compton hump’ onto the
continuum, peaking at around 20–50 keV. This feature results from repeated Compton
down-scatterings within the disc as the photons propagate through the material. This
process results in a clustering of photon energies dictated by the disc parameters,
which produces a featureless hump in the SED (Ross and Fabian, 2005). For a review
on potential reflection spectrum shapes, see Ross and Fabian (2005).

Furthermore, in addition to these spectral features, the reflection process also has a
critical time-domain signature. The light-travel-time delay between the primary
coronal photons and their reprocessed ’echo’ from the disc creates reverberation lags
Fabian et al. (2009). While not the focus of this work, reverberation is a powerful,



1.5. The Reprocessed Spectrum 23

0.5 1 1.5

Line profile

Gravitational redshiftGeneral relativity

Transverse Doppler shift

Beaming

Special relativity

Newtonian

FIGURE 1.7: Distorting effects on the iron kα line. Original sourced from Fabian et al.
(2000)
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independent tool for probing the geometry of the innermost regions, built on the
foundations of time-domain techniques.

1.5.2 Absorption

In addition to reprocessing in the disc, X-ray photons may be absorbed by intervening
material along a sight-line. This absorption is typically governed by the photoelectric
effect, whereby photons are absorbed by bound electrons and is highly dependent
upon the ionisation state of any intervening gas. The degree of ionisation can be
quantified by the ionisation parameter ξ, which is proportional to the ionising
luminosity Lion. The ionising luminosity is the total amount of incident luminosity
capable of ionising the source with incident X-rays.

If we consider X-ray photons coming from a single source, we can define the
relationship between ionisation, luminosity, proton density n and the radial distance
to the source r (Tarter et al., 1969; Ballantyne et al., 2001):

ξ =
L

nr2 (1.43)

From the above, low ξ implies mostly neutral gas, while high ξ implies a large fraction
of ionised plasma. The value of ξ results in distinct changes in the absorption and
emission features observed in the SED.

The total effect is a suppression of soft X-rays, with characteristic edges imprinted
depending on the absorbing elements and their ionisation state (Turner and Miller,
2009). In relatively neutral material, this leads to absorption edges associated with
oxygen, iron, and other abundant elements. The total absorption is typically
quantified by a column density NH, expressed in cm−2, representing the integrated
hydrogen-equivalent number of particles along a particular line-of-sight (Wilms et al.,
2000).

In galactic black hole systems, absorption often arises from material in the interstellar
medium or from any remaining envelope of matter around the binary companion. In
AGN, however, absorption can be significantly more complex and dynamic, with
multiple absorbing regions (e.g. the torus, disc winds, and warm absorbers), which
will be discussed separately in Chapter 3.

This Chapter will form the core motivation for energy-resolved analysis performed in
chapter 4. Identifying and comparing trends in different energies intrinsically includes
information about the trend in geometric location. Moreover, there is also the potential
to lift degeneracies or provide additional certainty by comparing different SED
components. From this chapter, it can be concluded that the radiative processes of
black holes are tightly interlinked and built on a time variable foundation. Not only
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are there clearly defined timescales to accretion, but many of the radiative features are
tied to the time derivative nature of the accretion, Ṁ. The following Chapter (2) will
introduce the formal mathematics needed to observe this quantitatively. In contrast,
Chapter 3 will then bring the two halves together, aligning the radiative processes
discussed here with observations in the mathematical time-domain framework.
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Chapter 2

An Introduction to Time-Series
Techniques

2.1 Fourier Analysis

Astronomical time series, including light curves from accretion discs around black
holes, display complex variability arising from intrinsic and extrinsic processes.
Before we can interpret the processes by which these signals are produced, we must
first introduce the mathematical methods by which they can be analysed. To extract
meaningful information from these signals, we rely on various time-domain and
Fourier/frequency-domain tools, with Fourier analysis forming the foundation of
many approaches.

Fourier analysis is based on the principle that any periodic function can be represented
as a sum of sines and cosines (Ceschi and Gautier, 2017), an idea first introduced by
Joseph Fourier in the early 19th century. A time series x(ti) of length T, composed of
N bins of size dt, can be broken into Fourier components of angular frequency ωi.
Taking the integral over all frequencies creates the Fourier transform, which expresses
a function in terms of a continuous spectrum of frequency components weighted by a
set of coefficients (Brigham, 1988). The Fourier transform is defined as follows;

F (x(ti)) =
∫︂ ∞

−∞
x(ti)e−ωit dt (2.1)

In the application to data, the discrete Fourier transform is used, whereby the integral
is split into a discrete sum over frequency bins. Note the change from angular
frequency following the simple substitution νi =

ωi
2π ;

F (x(ti)) = X(νi) =
N

∑
i=1

x(ti)e−2πiνiti (2.2)
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X(ν) becomes the standard notation for the Fourier transform of series X(t).
Therefore, it follows that the inverse transforms back to the time-domain via;

x(ti) = F−1|X(νi)| =
N

∑
i=1

X(νi)e2πiνiti (2.3)

However, it should be noted that the inverse Fourier transform provides only an
estimate of the true time series, as all phase information is lost when the FT is
performed. Fast Fourier transform (FFT) algorithms and their inverse (IFFT) tend to
require the series to be of length 2n where n is an integer. Although the transform can
be performed for a series of any length, any ‘non-power of two samples’ must be
padded to the correct size, reducing the algorithm’s computational efficiency.

Astrophysical light curves represent the variation of a source’s brightness as a
function of time, which can arise from multiple physical processes occurring on
different timescales (some of which are related to the emission we described in the
previous chapter). By transforming a time-domain light curve into its Fourier-domain
representation, periodic signals and underlying noise profiles can be studied. This
provides an opportunity to disentangle processes by identifying trends in the noise
and dominant frequencies within the light curve. In astronomy, the Power Spectral
Density (PSD) is typically used to visualise such trends and features.

2.2 Power Spectral Density

The periodogram is a mathematical description of the variability amplitude at
different Fourier frequencies. From Parseval’s theorem, the variance of the time series
in the time domain equals the total power in the frequency domain. Hence, larger
powers indicate a greater variance within the data at a particular frequency.
Mathematically, the PSD is the modulus squared of the discrete Fourier transform of a
given time series x(t);

P(νi) ∝ |F (xi)|2 (2.4)

The measured periodogram is constructed using only the positive frequency terms, as
the negative frequency terms are a mathematical artefact of the cyclical nature of
angular frequency and have no physical interpretation. Moreover, the power
amplitude at any frequency is equal to that of the conjugate. Therefore, the
periodogram at negative frequencies mirrors the positive frequencies centred on
ν = 0. At this central frequency, |X0|2 = µ, the mean count rate. This means that no
information is lost when the modulus squared is taken by evaluating only at physical
(positive) frequencies.
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The probability density function for a periodogram is highly skewed with a large
scatter relative to the intrinsic underlying power spectrum. The distribution of powers
at a given periodogram frequency follows a chi-squared distribution with two degrees
of freedom (Vaughan, 2005) such that I(νi) = P(νi)χ

2
2/2. This probability density

function originates from the sum of the squares of the two Gaussian components Rei

and Imi, the real and imaginary parts of the Fourier transform. For k degrees of
freedom, the chi-squared probability density can be defined as;

p(x; k) =
1

2k/2Γ
(︂

k
2

)︂ x
k
2−1e−x/2 (2.5)

where x ≥ 0.

In order to reduce the scatter at each frequency, averages can be used. We explicitly
define a PSD as the average of several periodograms. Each periodogram used to create
the PSD is taken from a non-overlapping, equal-length segment of the time series
x(ti). Typically, we refer to these segments as windows, as the effect of the light curve
segmentation is to apply a rectangular window function of fixed length over the series
sequentially. Therefore, for a PSD, the number of windows is Nw > 1, as opposed to a
periodogram where Nw = 1. As the PSD is formed by averaging multiple chi-squared
distributions, the distribution of powers in the PSD tends to be Gaussian for large Nw.

P(νi) =
2∆T
⟨x⟩2N

⟨|F (xi)|2⟩ (2.6)

In the case of Nw ≳ 20, the standard error on the PSD can be a reasonable
approximation of the error at any given power:

σPNj
=

σPNj√
Nw

(2.7)

The larger the value of Nw, the better this approximation.

Should we choose instead to re-bin the PSD, grouping K adjacent frequency bins, the
total number of independent powers decreases and the uncertainty per bin reduces as:
σPi =

σPi√
KNw

.

However, if we cannot assume a Gaussian distribution of powers at a given frequency,
instead of scaling the error based on the standard deviation of the power in a single
bin σPi , we instead scale by the mean power of a given bin PNj , which is the average
power of the jth bin of Nw. In this case, the error takes the form;

σPNj
=

PNj√
Nw

(2.8)
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FIGURE 2.1: An illustration of the difference between a periodogram and PSD for
different numbers of windows for various noise models. We note the narrowing dis-

tribution of errors with the error on the Periodogram equal to the power

In the limit of the periodogram where Nw = 1, the error for a single frequency bin is
the power. Despite the larger errors, periodograms are often the only way to access
the lowest frequency data in a time series.

In the case of either the periodogram or PSD, each windowed light curve can be
considered an individual time series xi(t) with a duration T and cadence δt. The
observable frequency range for the discrete Fourier transform of a single window
ranges from the highest frequency resolution, 1

T , to the Nyquist frequency, νnyq =
1

2δt

(Vaughan, 2005). The latter results from the Nyquist-Shannon sampling theorem
(Shannon, 1949), which states that a continuous signal must be sampled at least twice
the highest frequency present in the signal to be accurately reconstructed.
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Figure 2.1 illustrates the key distinction between the periodogram and PSD. While the
overall shape appears consistent between the periodogram and PSD, the periodogram
is visibly noisier, with larger, skewed errors that hinder robust fitting. The PSD, by
contrast, sits more centrally on the model and presents a smoother profile with
reduced scatter. However, the frequency range is slightly lower, as it is limited by the
shorter duration of the individual windows used in the PSD computation.

2.2.1 Normalisations for the PSD

In subsequent chapters, we will work almost exclusively in RMS units using the
Arms =

2∆T
⟨x⟩2 N normalisation (Vaughan, 2005). This provides the PSD in units of

(rms/µ)2 Hz−1, such that the integral of the PSD is
(︂

σ
µ

)︂2
, known as the fractional

variance. This choice of normalisation permits us to utilise multiple instruments
together.

Many time-series-based modelling approaches (discussed later), including Celerite
(Foreman-Mackey et al., 2017), work by default in rms-squared units. In this case, we
remove the mean term from the denominator entirely such that Aavar =

2∆T
N . In this

case, the subscript avar denotes absolute variance. This normalisation means that the
integral over frequency space will be σ2 (Vaughan et al., 2003b) and the powers will be
given in σ2Hz−1. In both the absolute variance and RMS normalisations, it is common
to plot power spectra in νP(ν) vs ν space as opposed to P(ν) vs ν. This presents the
PSD such that the power peaks at real frequencies.

The final normalisation commonly used in literature is the Leahy Normalisation
(Leahy et al., 1983). This normalisation is implemented in several simulation and PSD
fitting modules, taking the form ALeahy = 2∆T

⟨x⟩N . This normalisation is defined such that
the expectation value for the Poisson noise level (see below) equals 2.

2.3 Features of the PSD

Whilst in principle the PSD could take any form, we will focus on a few key shapes
and follow the nomenclature given in standard literature. This is not an exhaustive
list, but it will allow us to describe most PSD shapes adequately.

2.3.1 White Noise

A Poisson noise process features discrete events occurring at random about a mean
rate of occurrence λ. Formally, the Poisson distribution for k occurrences takes the
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FIGURE 2.2: A series of PSD shapes discussed throughout this work. PSDs are plotted
in P(ν) space on a log-log scale.

form;

P(k; λ) =
λke−λ

k!
(2.9)

In the case of a stationary Poisson process, two events are statistically independent.
For example, the time a photon reaches the detector can be assumed to be
independent of the one before. The stationary Poisson process forms the simplest
shape that a PSD can take, P ∝ ν0 = const, which we will refer to as white noise. In
P(ν) space, white noise appears as a flat horizontal line, a fixed constant power in
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frequency space. It is conventional to remove this constant term when plotting the
PSD, especially when comparing multiple instruments.

The Poisson noise level, in fractional rms units, is given by P = 2
µ , where µ is the mean

count rate of the time series. The above formula assumes weak stationarity, indicated
by the use of a single mean value. The concept of weak stationarity and its limitations
will be discussed later in this chapter. Figure 2.2 illustrates the white noise shape in
addition to several other PSD shapes we will now discuss.

2.3.2 Red Noise

Many PSDs can be described over some limited frequency range as a power law of the
form;

P(ν) = Aν−β (2.10)

Unlike white noise, this equation indicates correlated noise, whereby values in the
PSD at a given frequency are not statistically independent of the ones at lower or
higher frequencies. In this case, A is a normalisation constant and β is the power law
index. This structured noise is referred to as red noise.

The exact power law index can vary anywhere from zero (being white) to an arbitrary
value. Some other indices have been given names over time; power laws with β = 1
or (P ∝ 1

ν ) are often referred to as pink or flicker noise, while those with β = 2 as
brown (Brownian) noise. In some cases, β = 2 has been referred to as red noise,
implying pink is somewhere between red and white. In addition, PSDs following
P ∝ ν−2 are often described as random walks. From now on, we will loosely use the
terms red noise and stochastic noise interchangeably to refer to anything with β > 0,
preferring to refer to the noise by its PSD shape and respective index (indices).

Sometimes, a PSD can feature a combination of two or more power laws. This results
in a sharp break or a bend at one or more frequencies in the PSD where the index
changes. The bend or break frequency(s) will be of significant importance in the
following chapters as it can be related to parameters of accretion flows (see McHardy
et al. (2006) for more details). The sharply broken power law takes the following form;

P(ν) =

⎧⎪⎨⎪⎩A
(︂

ν
νbreak

)︂−β1
, if ν < νbreak

A
(︂

ν
νbreak

)︂−β2
, if ν ≥ νbreak

(2.11)

Where β1 and β2 are the low and high frequency indices, respectively. νbreak denotes
the break frequency, the point at which the two power laws intersect.
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The bending power law follows the same nomenclature where νbend denotes the
frequency at which the transition occurs between the two power laws;

P(ν) = A
(︃

ν

νbend

)︃−β1
[︄

1 +
(︃

ν

νbend

)︃β2−β1
]︄−1

(2.12)

In both cases, the negative sign has been included by default such that β is defined as
a positive value.

Figure 2.2 illustrates six noise models. The top panels show pure white and red noise
with varying indices. The centre two panels show a bending power law and the
specific case of a damped random walk (Ornstein–Uhlenbeck process (Uhlenbeck and
Ornstein, 1930; Kelly et al., 2009) defined by ν0 → ν2 (a transition from white to red
noise). The lower panels show a sharply broken and twice broken power law,
illustrating the great variety of PSD shapes we can create starting from a simple red
noise model.

2.3.3 Periodic Features

A perfect sinusoid in the time domain will appear as a Dirac delta function in Fourier
space. In the discrete case, any feature will always have a minimum width of at least
1
T . When modelling periodic features in the PSD, we use a Lorentzian where we
recover the Dirac delta solution if we take the zero-width limit.

P( f ) =
r2 f0

πQ
· 1

( f − f0)2 +
(︂

f0
2Q

)︂2 (2.13)

Where f0 is the central frequency of the QPO, Q is the quality factor defined as F0
2∆

(where ∆ is the full width at half maximum). Finally, r is the fractional rms amplitude
of the QPO.

Such a component is much more representative of what we will observe when
considering the complex mechanisms behind the emission from astrophysical sources,
instrumental noise, and observational strategy. Figure 2.3 illustrates adding a periodic
feature to a simple power law PSD.

2.3.4 ‘Real’ Power Spectra

In practice, power spectra tend not to be described by a single example of the shapes
above but are formed from a combination of several components due to the
underlying driving processes. In addition, there are many effects we must account for
when considering real data, including, but not exclusively, instrumental noise,
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FIGURE 2.3: Top left panel illustrates a pure Lorentzian. The following panels illus-
trate the combination of the Lorentzian QPO model with several of the PSD noise

models already discussed.

observational strategy (instrumental features), statistical flukes (spurious features)
and mathematical artefacts (aliasing). There is much more complexity to working with
the PSD than the simple definitions above and we will expand on these in the
following section.

2.4 Spurious, Numerical and Observational Artefacts

2.4.1 Red Noise Leak

Red noise leakage is an observational effect in the PSD. When an observation is taken,
it only covers a finite window. Thus, the effect mathematically would be to apply a
rectangular window function over an infinitely long time series. As such, in
producing the PSD, we are not taking the Fourier transform of the entire series.
Instead, we are evaluating the Fourier transform of the rectangular window function



36 Chapter 2. An Introduction to Time-Series Techniques

convolved with the time series. The Fourier transform of a rectangular window or
box-car function is a sinc function, as shown below;

• Defining the top-hat function with width b, centred on the y axis, Π(x/b)

• Taking the Fourier transform F(k) = F[Π( x
b )] =

∫︁ ∞
−∞ Π( x

b )e
ikx dx

• Since the function is zero outside of the width b; F(k) =
∫︁ b

2

− b
2

eikx dx

• Integrating,
∫︁ b

2

− b
2

eikx dx = 1
ik [e

ikb
2 − e

−ikb
2 ]

• The result can be re-written as a sine function 2sin( kb
2 )

k =
bsin( kb

2 )
kb
2

• Which is a sinc function such that F(k) = bsinc( kb
2 )

When accounting for the modulus squared in producing the PSD, the convolution
becomes a sinc2 function. By examining the shape of the function, shown in figure 2.4,
it can be seen that the contribution of power is not uniform across frequency space. In
addition, there is a contribution from frequencies far lower than those we have
measured due to the side lobes of the sinc2 function. Adding power at lower
frequencies causes the power law to steepen and is called red noise leakage, as the
power ‘leaks’ from lower frequencies than those observed (Deeter and Boynton, 1982).

Max-Moerbeck et al. (2014) indicates that the effect of red noise leakage is not linear,
but there is a trend with the power law index. It can be shown through simulations
that steeper power laws are susceptible to greater leakage than shallower ones. The
steepening trend with increasing power law index continues until β = −2.5. At this
stage, the leakage reaches a saturation point, beyond which further steepening has
little additional effect.

Other window functions, such as a Hanning window (Gaussian-like function), remain
intact during the Fourier transform process. However, the natural observation method
results in a rectangular window function, and we are currently unable to observe in a
way that replicates a Hanning window. Instead, we must find ways to account for the
mathematical artefact and understand how our observational strategy affects what we
see.

2.4.2 Instrumental Features

Photon noise and thermal leakage within detectors are, in themselves, stochastic
processes. Generalising to detector noise creates an underlying time-dependent
response in the instrument. Instrumental modelling can help build an understanding
of this, but accounting for such effects can be challenging in practice.
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FIGURE 2.4: The Fourier transformation of a top-hat function limited to the Nyquist
frequency νnyq for a given sampling.

While not explicitly an instrumental artefact, features caused by the observational
strategy are difficult to avoid but simpler to account for (we include them here since
they can be removed during the instrumental reduction pipeline). Those caused by a
regular sampling structure within the data share all the same features as intrinsic
signals. They can have width, produce harmonics, and occur naturally within the
observable frequency range. Sources of such periods can include regular intervals
between observations, periodic changes in detector noise due to the environment, or
even periodic movement of the instrument itself. One such example, shown in
Chapter 4, was attributed to the orbital precession of the space-based instrument
about the Earth. When carrying out any time domain study, it is important to
understand the effects of the observing and data-taking strategy. The simplest way to
account for these features is to discount them from any statistical test; however, in
some cases, it is possible to apply filtering techniques to remove them.
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2.4.3 Aliasing

Aliasing occurs when a signal is sampled at a rate too low to capture its intrinsic
variability, causing high-frequency components to be misrepresented as
lower-frequency signals (Priestley, 1981). On one hand, this is intuitive; if the cadence
is δt, it would be unreasonable to assume we would know anything about frequencies
higher than this.

Frequencies higher than νnyq are indeed ‘folded’ back into the observed frequency
range, producing artificial features that may be mistaken for real variability. Contrary
to red noise leakage, in this case, power from frequencies higher than νnyq contribute
to power at lower frequencies. This is particularly problematic when analysing light
curves with sharp features or rapid variability, as these can contain substantial power
above the Nyquist frequency.

Aliasing can also arise due to uneven sampling or gaps in the data, where the effective
Nyquist frequency is not well-defined. In such cases, techniques such as interpolation
can create an even cadence by creating data within small gaps. However, each type of
interpolation comes with its own assumptions. In our work (see Chapter 4), we will
only ever interpolate using linear methods where needed, as our data is close to being
evenly sampled. More complex interpolation techniques should be used with care as
it becomes much more difficult to trace how the shape of the power spectrum might
be affected (see Deeming (1975), Press and Rybicki (1989) and Lepot et al. (2017) for
further discussion). For truly unevenly sampled data, Lomb-Scargle periodograms
(VanderPlas, 2018) can be used to evaluate a PSD. However, this also comes with
limits. Working with unevenly sampled data will be discussed further in Chapter 5.

2.4.4 Spurious Features

Spurious features are a natural statistical property of correlated noise, whereby there
is a non-zero chance that the periodogram may contain an outlier (Baluev, 2008). Such
spurious features are separate from instrumental artefacts and intrinsic to the time
series. As such, they cannot be identified and filtered out systematically. In the early
days of time-domain studies in astronomy, these were often mistaken for genuine
features. However, they did not stand up to significance testing (Vaughan et al., 2016).

Accounting for sources of contamination is a vital part of any time-domain study.
First, a good understanding of the instrument used is vital. Secondly, a method that
accounts for the observing strategy should be used. Finally, the false alarm probability
for any potential feature should be calculated to ensure spurious periods in the data
are not reported. In our work, we will always default to the null hypothesis that any
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signal is a spurious effect of red noise for testing its significance (Vaughan et al., 2016;
Vaughan, 2005).

2.5 Incorporating Multiple Time Series

One way to highlight and remove contaminating features is to use multiple time
series, as it is improbable that a spurious feature would appear the same across all of
them. In astronomy, the data from a single instrument or observation often does not
have the signal-to-noise we might require to detect potential periodic signals.
Thankfully, Fourier techniques are not restricted to a single time series. Fainter and
more complex relationships can be distinguished from noise by studying the
coherence between series (light curves). We will discuss the mathematical formalism
here and illustrate some astrophysical applications in Chapter 4.

2.5.1 Cross Spectrum

The cross-spectrum is the mathematical representation of the frequency domain
correlation of one time series (x(t)) to another (y(t)). It therefore describes the
relationship between the frequency components of the signals. The mathematical
description is as follows: the first element of the cross-spectrum is the cross-covariance
function Rxy, the correlation between two signals with different offsets, which are
referred to as time lags (τ). It is used to quantify the time domain correlation between
the two time series.

Rxy(τ) = ⟨x(t)y(t + τ)⟩ (2.14)

A large value of Rxy indicates a strong correlation for a given time lag τ, while a low
value of Rxy indicates a low to zero correlation between the two signals for a given τ.
This implies that for all τ, Rxy ≥ 0.

By taking the Fourier transform of the above, we obtain the cross-spectrum. Since we
are working with time series with discrete steps, we will again work in the discrete
domain. This gives the discrete cross-spectrum, which describes the strength of the
correlation between two time series as a function of frequency.

Cxy(νk) = X∗(νk)Y(νk) (2.15)

The magnitude of the cross-spectrum quantifies how much of the linear correlation
between x(t) and y(t) exists at a given frequency ν (i.e. a large magnitude indicates a
strong relationship at a given frequency). The phase of the cross-spectrum reveals the
phase shift between the two signals at a given frequency, which can then be converted
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back to a time lag via; τ(ν) = ϕ(ν)
2πν where τ(ν) is the time lag and ϕ(ν) = arg

[︁
Cxy(ν)

]︁
is the phase lag.

The auto-covariance function is a specific case of the cross-covariance function where
a single time series is compared with itself instead of comparing two unique time
series. This describes the self-similarity within a light curve and can be used to
identify features that repeat in a single time series. As with the cross-covariance, the
discrete Fourier transform can also be used to visualise the auto-covariance in the
frequency domain.

2.5.2 Coherence

The coherence is a mathematical description of the linear correlation of two time
series. However, contrary to the cross- and auto-correlation functions, this is
calculated only in the frequency domain. The coherence is defined as the normalised
magnitude of the cross-spectrum relative to the individual PSDs of the two time series.

γ2(ν) =
|⟨Cxy(ν)⟩|2

⟨|X(ν)|2⟩ ⟨|Y(ν)|2⟩ (2.16)

The coherence describes the correlation between two signals at a given frequency and
ranges between 0 and 1, where a value of 1 indicates a perfect correlation between the
signals at that frequency. A low to zero coherence suggests little to no relationship
between the series at that frequency.

2.6 A Note on the Lomb-Scargle Periodogram

The Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) is one potential solution
for working with irregularly sampled data in the frequency domain. The mathematics
is described in detail in VanderPlas (2018). At each angular frequency ω, a model of
the form Acos(ω[t − τ]) + Bsin(ω − [t − τ]) is fitted to the series. The result for
minimising the sum of all such functions in ω (often in χ2) is reduced to a normalised
power that mimics the discrete Fourier transform. More formally, we can define the
Lomb-Scargle periodogram as;

P(ν) =
A2

2

(︄
∑
n

gncos(2πν[tn − τ]

)︄2

+
B2

2

(︄
∑
n

gnsin(2πν[tn − τ]

)︄2

(2.17)

where as defined in VanderPlas (2018), A and B are functions of ν and observing times
ti. For a unique set of these parameters, the periodogram distribution is analytically
computable (see Scargle (1982) for details) and can reproduce the discrete Fourier
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transform periodogram as previously discussed for the case of even sampling. The
unique aspect of the Lomb-Scargle method is the presence of the phase offset
parameter τ. The nature of τ is to remove the bias from large data gaps, removing the
need to interpolate or resample, thereby preserving noise properties and avoiding
aliasing artefacts introduced by binning. However, one of the major drawbacks of
such a method is the observable frequency range. Specifically, whilst the lower limit
remains the same as that for the Fourier case (νmin = 1

T ), the Nyquist frequency is not
well understood for an irregularly sampled time series. Instead, a pseudo-nyquist
limit can be found using the shortest time spacing within the light curve. However,
this is no longer an appropriate estimate for highly unevenly sampled light curves
with a large distribution of time spacings and large gaps. VanderPlas (2018)
determined a relationship between the time resolution of the light curve and the
highest observable frequency. This led to introducing an effective Nyquist frequency
defined by the median or typical sampling timescale, providing a more robust and
conservative upper bound in the Lomb-Scargle framework.

The Lomb-Scargle periodogram is a key element to estimating the False alarm
probability for any features when modelling uneven time series in Chapter 5. The
peak frequency (dominant period) is also used to identify periodic behaviour in
survey light-curves explored in Chapter6. For a comparison to alternative methods,
see Rehfeld et al. (2011).

2.7 Fourier Techniques Applied in Accretion Physics

Variable sources in astronomy have been studied for decades, and Fourier techniques
have been thoroughly developed and tested to decode the processes driving the
fluctuating flux.

2.7.1 The Timmer-Koenig Method

The Timmer-Koenig (Timmer and König, 1995) method forms the foundation for
simulating representative astrophysical time series and is built from the Fourier
mapping between the PSD and time series domains described above. This method
offers a way to rapidly create a time series sample from any noise profile, which can
be scaled and resampled to represent data from any instrument/survey
(Emmanoulopoulos et al., 2013). This method will form the basis of all simulation tests
in this thesis. We will, therefore, outline the process in detail here for later reference.

1. First, a noise model is defined in the frequency domain, e.g. P(ν) = ν−β



42 Chapter 2. An Introduction to Time-Series Techniques

2. Next, the distribution of powers at each frequency is replicated using two
Gaussian random numbers, one for the real part and one for the imaginary part
of our Fourier transform (noting that the squared sum of two Gaussians
reproduces the chi-squared with two degrees of freedom for a periodogram).

3. These random numbers are multiplied by the noise model and the modulus
squared is taken. This is our simulated Fourier transform, which creates the
simulated PSD.

4. To produce the light curve, we take the real part of the inverse Fourier transform
using any Fast Fourier algorithm. In the NumPy algorithm used in this thesis, it
is important to add the mean term manually.

5. Finally, this light curve can be scaled and resampled as needed to replicate the
desired instrument or observational strategy.

Figure 2.5 illustrates some examples of simulated light curves from the PSD models to
their left. When care is taken, it can be almost impossible to distinguish a simulated
light curve from a real one, a property we will exploit within this work. Simulating
light curves offers the ability to reproduce effects and gauge uncertainties. For
example, we can replicate the effects of red noise leakage and recover the results
mentioned in Max-Moerbeck et al. (2014). The following section illustrates a prime
example of the power of the Timmer Koenig method, exploring one of the limiting
assumptions made in studying astrophysical time series.

The ability to simulate time series forms the backbone of our PSD modelling
performed in Chapter 4, where we exploit its ability to replicate features of the data,
such as an observational strategy, to obtain accurate model fits. The Timmer-Koenig
method is the foundation of all our false alarm simulations, providing a simple and
efficient method to produce statistically accurate time series.

2.7.2 The Limits of Stationarity in Astrophysical Light Curves

One of the key assumptions of PSD analysis is that the power spectrum is built from a
weakly stationary time series. Weak stationarity refers to a series in which the mean
and variance remain constant. The exact timescale over which a light curve is weakly
stationary depends not only on the underlying physical process driving the variability
but also on its underlying power spectrum, observing cadence and observation
window. We can use the Timmer-Koenig algorithm to simulate time series with
different combinations of these variables to find the limits on stationarity we might
encounter when handling real data.
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FIGURE 2.5: Examples of Timmer-Koenig simulations for different PSD shapes. From
the top: simple power-law, broken power-law, bending power-law, damped random

walk.

We will begin with even sampling for different power spectral shapes. This will allow
us to account for how the specific correlated noise structure affects the limits of
stationarity for a given cadence. We define the limit of stationarity as the point at
which the mean and variance are consistent to 0.3% of their known actual value. We
simulate a 1000-time-step light curve and evaluate the mean and variance across time.
We repeat this over a sample of 1000 light curves and evaluate the time step at which
the distribution about these values reaches our 0.3% (3σ) criteria. Note here that we
assume that our means and variances follow a Gaussian distribution centred on the
actual value.
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FIGURE 2.6: An illustration of the limit of stationarity for even cadence light curves
simulated from a simple power law. Power law index on the x-axis causes an upward
trend in the time taken to reach the required standard deviation (lower right) while the
mean is reached almost instantly (upper right). Realisations for a single β = 0.5 are
shown to the left with the running mean indicated in dark blue and the distribution

shaded around it.

The time required for a light curve to reach weak stationarity is naturally highly
dependent on the parameters of the underlying noise profile. We can see that larger
amounts of correlated noise, produced by steeper power law indices, require more
data to reach the point of stationarity. We repeat this experiment for different cadences
while maintaining even sampling.

For the early stages of the research presented in this thesis, we will be working with
even to quasi-even sampling. In this regime, linear interpolation often provides a
sufficient estimate for the value at any missing time step, such that the measured
shape of the PSD remains unchanged. However, there are cases where irregular
observations are used as complementary data; we therefore explore the limits of
stationarity in such uneven sampling here.

Again, we generate 1000 light curves for each noise model, but remove a percentage of
data points randomly. This creates clusters of points, replicating the effect of taking
observations by instruments with an irregular survey strategy. We place no
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FIGURE 2.7: An illustration of the limit of stationarity for unevenly sampled series.
The time taken to reach a stable mean and standard deviation is indicated for each

fraction of missing data

constraints on the number of points per segment, allowing lengthy clusters followed
by isolated points.

We can also consider the effect of regular gaps within the series as an intermediate
comparison. As previously discussed, such gaps can produce artefacts that distort the
PSD. However, it is important to understand the point at which even excluding such
frequencies is inadequate. To produce even gaps, we drop a percentage of data points
to spread the missing points evenly across the series.

We follow the same method as in the evenly sampled case, measuring the mean and
variance as a function of integrated time and extracting the corresponding stationarity
limit. However, in this case, we calculate the steps in terms of the fraction of the light
curve to ensure that steps in x (time) are comparable. In this case, the standard
deviation appears more stable than the mean; however, the fraction of the light curve
needed to reach stationarity is much higher, see figure 2.7.

While most of the above results may seem intuitive, having quantitative limits offers a
clear understanding of the limitations of our time series techniques moving forward.
The natural next stage is to take this intuition to a more mathematical approach,
formally defining time series as stochastic processes.

2.7.3 Stochastic Processes and Stationarity

Let us consider a variable x, which has a deterministic time dependence and some
level of random scatter. A stochastic process refers to the set of possible realisations of
x as a function of time. For a fixed moment in time, we can define the probability
density function p(x, t), which describes the likelihood of observing a particular value
of x at that time. This function enables us to compute expectation values, such as the
mean or variance of the process at any given time.
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A stationary process is one in which p(x, t) has no time dependence. This allows us to
recover our weak stationarity assumption from before: the mean and variance remain
constant. To illustrate a stationary process, let us consider a shot noise (Poisson)
process, where discrete events occur randomly but with a fixed average rate λ. From
the known properties of the Poisson distribution, we also know that the variance is
equal to the mean, i.e. σ2 = var(x) = λ. Assuming that a Poisson process is stationary,
each time interval is statistically independent and identically distributed. Since there
are no correlations between time steps, the auto-covariance function is zero
everywhere, equivalent to a delta function in the time domain. Taking the Fourier
transform of a delta function gives a flat power spectrum. We, therefore, recover the
white noise spectrum of Poisson noise in the frequency domain.

The previous mathematics cannot be reproduced trivially in the case of correlated
noise. Instead, we apply the weak stationarity assumption discussed previously.
Expanding this slightly, we might suggest that all observations of a single object can
be considered realisations of the same stationary process. However, it should be noted
that this assumption is not valid on timescales where the trends in correlated noise are
dominant or on timescales over which the physical process driving the variability has
changed.

From this foundation, we can now define Gaussian processes (which we deploy in
Chapters 5 and 6) as a generalisation in which the fluctuations are not only random
but distributed according to a multivariate Gaussian distribution. This allows us to
build time-domain models that incorporate a known correlation structure directly
through the covariance function.

2.8 Gaussian Processes

Thus far, we have considered time series to indicate only how a variable of interest, in
our case, photon count rate, varies as a function of time. Choosing to use only Fourier
techniques could restrict us exclusively to evenly sampled time series or the use of the
Lomb-Scargle method. Instead, we can generalise our light curves as stationary
stochastic processes and employ Gaussian processes, which incorporate the statistical
properties of the noise in the time domain.

2.8.1 Defining a Gaussian Process

”A Gaussian process is a collection of random variables, any finite subset of which
follows a multivariate Gaussian distribution” (Rasmussen and Williams, 2006). Given
any finite set of points in the input space, the corresponding function values follow a
joint Gaussian distribution.



2.8. Gaussian Processes 47

Consider a Gaussian distribution with two components: a mean and a standard
deviation. This would be a Gaussian process about a single point. Generalising to a
series x(t) with n sampled points with no restriction of sampling, we have a mean
vector and a covariance matrix.

The mean vector or function defines the expected value of the process at any input
point and is used to model deterministic behaviour within a time series. Each element
of the mean vector represents the value of the mean function at a given time step.
Whilst it is a convention to set the mean function to be zero, if a series has an
underlying trend, a non-zero mean vector can be used to model this. For example, in
the case of a linear trend, the mean vector would follow a simple y = mx + c.

While there are times that this may be used, more commonly in Astronomy, our
deterministic models are much more complex. Hence, this vector will almost always
require some prior information or, at the very least, physical motivation. In this way,
we can retrieve tangible information about the physical state of the system as opposed
to information about the distribution and trends of the data. The way in which the
points are scattered about the mean is described by the covariance matrix.

The covariance matrix for a light curve containing n data points of any sampling has
dimensions (n × n). The covariance matrix quantifies the relationship between
function values at different input points and provides a measure of correlation. In the
simplest case of uncorrelated noise, the covariance matrix will contain only the
leading diagonal, which will hold information about the uncertainty of a given value;
this suggests that each point is statistically independent. In practice, this is highly
unlikely to occur, and more generally, each matrix element contains information about
how each point correlates to every other. Defined by functions called kernels, this
matrix parametrises the relationships between points. The purpose of a kernel is to
describe the features of the noise, for example, rapid or slow variations. By combining
these components, we create a probability distribution of functions, the width of
which collapses around areas where we have data and expands around areas where
we do not. The first kernels parametrised auto-regressive moving average (ARMA)
models. Over time, more complex relationships have been added such that the current
combination of kernels in GP packages, such as Celerite (Foreman-Mackey et al.,
2017), can reconstruct highly complex time series.

2.8.2 Modelling Noise with a Gaussian Process

The first stage of modelling using a Gaussian process is to build the kernel. Here, we
will emphasise the most common kernels used and those used in the following
chapters. However, it should be noted that this is not an exhaustive list.
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FIGURE 2.8: An illustration of kernels discussed in this chapter for fixed hyperparam-
eters

Let us begin with a familiar case: a perfect sine wave. This is a Dirac delta function in
the Fourier regime and indicates highly correlated noise. If the period changes slightly
or experiences any damping, we can progress to using a Lorentzian in frequency
space. A Lorentzian in the frequency domain can be produced using a damped
harmonic oscillator kernel. In addition, broadband noise structure in the PSD can be
modelled using this kernel. By adjusting the parameters of this kernel, we can
reproduce many of the core PSD shapes previously discussed in this chapter. Kelly
et al. (2014) demonstrates that an SHO process can model the damped random walk
(generalised to a bending power law).

k(τ) = σ2 exp
(︃
−ωτ

2Q

)︃⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + ωτ), for Q = 1

2

cosh( f ωτ/2Q) + sinh( f ωτ/2Q)/ f , for Q < 1
2

cos(gωτ/2Q) + sin(gωτ/2Q)/g, for Q > 1
2

(2.18)

where τ = |xi − xj|, f =
√︁

1 − 4Q2, and g =
√︁

4Q2 − 1. The simple harmonic
oscillator (SHO) kernel is parametrised by a characteristic frequency ω, a quality
factor Q, and a scaling factor σ for amplitude scaling. By default, σ is normally set to 1
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unless weighting over multiple summed components.

To model periodic features in the light curve that are not strictly sinusoidal, one might
choose the sine-squared exponential kernel, which can model smooth periodic
variations and determine where the correlation between points decays over time.
However, unlike all other kernels mentioned in this work, this matrix does not fall
into the quasi-separable matrix type. Quasi-separable matrices are a unique type of
positive-definite matrix that allows for faster inversion using the Cholesky
decomposition (Golub and Loan, 2013; Foreman-Mackey et al., 2017). This reduces the
computation time necessary to evaluate a Gaussian process, making this kernel type
preferable for minimisation problems.

Conversely, a cosine kernel may be best for purely sinusoidal components as it
enforces exact periodicity with fixed amplitude and frequency following.

k(τ) = σ2cos
(︃
−2πτ

l

)︃
(2.19)

As defined in Rasmussen and Williams (2006), the cosine kernel is parametrised by a
length scale l, and a scaling factor σ that controls the amplitude. See figure 2.8 for an
illustration of all kernels used in this chapter.

We can model aperiodic, correlated noise using the Matern series of kernels. Such a
kernel is commonly used where we do not have a physical motivation for the shape
but can observe the presence of correlated noise on some timescale. The Matern
kernels are hyper-parametrised by a length scale l and a scaling factor σ which
controls the amplitude. The Matern 3/2 is given by;

k(τ) = σ2 (1 + f τ) e− f τ (2.20)

where f =
√

3
l The Matern 5/2 is given;

k(τ) = σ2
(︃

1 + f τ +
f 2τ2

3

)︃
e− f τ (2.21)

where f =
√

5
l as defined in Rasmussen and Williams (2006).

The final kernel we will introduce here is the Celerite kernel, which is formed from 4
coefficients.

k(τ) = e−cτ [acos(dτ) + bsin(dτ)] (2.22)

In each case discussed above, the functions are modelled by hyper-parameters. When
performing any minimisation, we retrieve the posteriors on the hyperparameters,
which define the function about which we believe our data to be distributed. Unlike
traditional minimisation, at this stage of this description, there is no direct physical
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interpretation for these hyperparameters. However, this does not mean that kernels
cannot be physically motivated. For the majority of cases in this work, there is a direct
mapping from kernel hyperparameters to parameters in the physical space. We
emphasise that this is not a necessary property of the Gaussian process.

2.8.3 An Illustration of Gaussian Processes

Now that we have introduced the idea of a Gaussian process, we can begin to explore
its power in action (the application to astrophysical time series will be demonstrated
in chapters 5 and 6). Here, we compare with the Fourier method and illustrate
self-consistency.

For this example, we will consider the damped random walk, chosen for its
convenient mapping between Fourier and time domain hyperparameters. We aim to
recover the characteristic frequency ω across the two independent methods. In the
case of the damped random walk, we fix the quality factor in equation 2.18 for an SHO
to Q = 1√

2
, leaving only two free parameters. Here, we include the normalisation that

scales to the same power as our Timmer-Koenig simulation. The light curve is
simulated using the Timmer-Koenig method to test whether the GP is consistent with
a simple minimisation using a Fourier power spectrum. This light curve can then be
fitted using the damped harmonic oscillator kernel. The lower left panel of figure 2.9
illustrates the fit in the time domain; unlike in the Fourier domain, it is difficult to
identify a good fit visually. However, when maximum likelihood estimation was
performed using a simple Markov Chain Monte Carlo (MCMC) routine, the posterior
recovers the value of ω with 1σ errors. We conclude that the Gaussian kernel can
recover a time series’s noise parameters, consistent with a minimisation over a
deterministic damped random walk model.

We note that, in the above example, we had prior knowledge of the kernel we should
use. However, this is generally not the case and is potentially a major pitfall in using
Gaussian processes. For example, although we know it was the damped harmonic
oscillator kernel that was used in the previous case, a fit to the data can also be
obtained for both a Matern 5/2 and 3/2, which appears visually just as plausible 2.8.
Kernel selection is often non-trivial and can significantly bias results if poorly chosen.
Without physical motivation or prior modelling, trial-and-error kernel fitting risks
over-fitting due to using models with too many fit parameters. While there is no
definitive prescription for goodness of fit in GPs, likelihood comparisons that penalise
for model complexity (e.g. AICc) or consider the distribution of residuals can prevent
poor fits. In this case, the centre left panel of figure 2.9, we can see that the residuals
from our fit are consistent with a Gaussian, suggesting not only that our model is
likely but also that our data obeys the necessary assumptions to be modelled with a
GP.
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FIGURE 2.9: An example Gaussian process fit to a damped random walk light curve
created using the TK algorithm. Top left:LC, top right:PSD shape, centre left: stan-
dardised residuals, lower left: fitted light curve with confidence intervals, lower right:

residuals

2.8.4 A Comparison of Gaussian Processes to Traditional Fourier Methods

Gaussian Process kernels offer a flexible way to encode different forms of variability
directly in the time domain. Hyperparameters can reflect physical processes or
provide practical inferences regarding general time series characteristics. In practice,
kernel selection depends on the scientific goal, for example, recovering broadband
PSD shapes, identifying quasi-periodic signals, or modelling irregular stochastic
behaviour. For this reason, a careful comparison between GP and Fourier methods is
important.

Both Fourier techniques and Gaussian processes aim to model and analyse signals,
particularly in the context of making inferences about their underlying structure.
Fourier methods provide insight into how much power a signal has at different
frequencies throughout the PSD, which can be used to quantify uncertainty through
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the distribution of powers at given frequencies. Fourier methods are non-parametric
in that they do not assume a specific form for the signal in advance; instead, they
break the signal into its frequency components, which can be fitted with a parametric
function.

Similarly, Gaussian processes are non-parametric in the sense that they do not assume
a fixed form for the function they model. The GP defines a distribution over functions,
allowing for flexibility in capturing complex patterns. However, they do require
hyper-parameter minimisation to make inferences about the noise structure. Gaussian
processes can also estimate uncertainty through the variance of the posterior function.
However, estimating a goodness of fit for Gaussian processes can be more complex, as
the question becomes more about whether the data will likely come from the model
than whether the model is a good fit to the data. This important nuance in the fit
statistics suggests we can identify only the preferred model from those tested. In
contrast, when fitting a parametric model to the PSD, we use statistical techniques to
determine whether the model best fits the data.

The two methods (Fourier and GP) also access different data spaces. Fourier analysis
requires that the data be evenly sampled. If the data is unevenly sampled, Fourier
techniques can introduce aliasing or fail to represent the signal accurately due to
interpolation techniques whose effects can be challenging to quantify. GPs are much
more flexible when it comes to unevenly sampled data. Since they model the signal as
a distribution over functions, they can interpolate between irregularly spaced data
points without needing periodicity or uniform sampling. GPs are, therefore, powerful
where data is unevenly sampled. However, care must be taken when searching for
periodic features, as the Nyquist frequency is not well defined in the case of uneven
cadence.

Fourier techniques decompose the signal into a sum of sinusoids, perfect for
modelling periodic signals or signals that can be represented in terms of periodic
components. GPs, by contrast, do not impose any particular periodic structure on the
data unless enforced in the kernel. GPs can model non-linear and non-periodic
signals. Additionally, they can adapt to a wide range of functions using different
kernels to capture different time series features. This makes the Gaussian process
arguably more flexible. In addition, Fourier transforms (whether continuous or
discrete) offer global frequency information but lack localisation in time. This means
that while it is possible to identify frequencies at which periods are present, one
cannot directly tell when those periods occur in the signal. GPs, on the other hand,
model in the time domain and provide local information about the signal, predicting
the signal at any point. GPs are, therefore, better at capturing localised features in
time, including non-stationary behaviour.
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While Gaussian Processes may be more flexible, this comes at a price, as they have
very high computational complexity. Evaluating a Gaussian process requires inverting
a n × n matrix, which results in a O(n3) time complexity. In contrast, the Fourier
transform has many rapid algorithms and has a O(nlog(n)) complexity, making it
much faster to evaluate. This makes Fourier transforms much more efficient when
analysing larger datasets where Gaussian processes become unusable due to
computational cost.

The performance of a Gaussian process is also highly dependent on the choice of
kernel, as it defines every property of the process. A poor choice can lead to poor
fitting, but more dangerously, over-fitting. Selecting a kernel requires prior knowledge
or trial-and-error, which can be costly due to the high computational demand. PSDs
are often simpler in overall shape, so a good choice of model can be made by
inspection. Fitting is also generally less computationally intensive so that more
models can be tested. Without physical motivation, this is almost impossible in the
case of Gaussian Process modelling. Conversely, Fourier analysis is subject to other
problems, such as windowing effects, which can impact the selected model in a way
that is not motivated by the intrinsic data features.

Overall, while Gaussian processes offer a way to analyse unevenly sampled data that
cannot be accessed via Fourier methods, they are far from replacing traditional
techniques. Chapter 4 references the limits to which interpolation is sufficient to allow
the use of Fourier techniques when there are data gaps; Gaussian processes offer a
feasible way to use data which do not meet these strict criteria. However, a GP’s
susceptibility to over-fitting and immense computational complexity means great care
should be taken when choosing kernels. With that said, GPs are a highly valuable tool,
the practical use of which we will explore in the following chapters.
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Chapter 3

Black Holes Systems as Variable
Sources

Having discussed the radiative mechanisms responsible for the emission from
accreting systems and defined the mathematical foundation we will use to detect the
time variable components, we now turn to specific families of objects where these
processes are observed directly and discuss some of their variability properties which
relate to Chapters 4 and 5

3.1 X-ray Binaries

Experiments suggest that around 50% of stars existed as binary systems at some stage
within their evolution (Raghavan et al., 2010; Duchêne and Kraus, 2013; Moe and
Di Stefano, 2017). However, all the stars within a binary are unlikely to follow the
same evolutionary path. Ultimately, one star, the most massive, will die first,
producing a compact object (either a white dwarf, neutron star or black hole). The
semi-major axis of the orbit will shrink (via various mechanisms) over 108 − 109 years
(Postnov and Yungelson, 2014). Once the orbital separation decreases sufficiently such
that the companion fills its Roche lobe (i.e., R∗ ∼ RRoche), accretion can commence,
and the system can appear (for some time) as an X-ray binary (XRB). Besides the orbit
shrinking, it is also possible for the companion to leave the main sequence, filling the
Roche Lobe naturally. Depending on the nature of the secondary, this can take
between 108 − 1010 years.

Two main classes of XRB are distinguished by the mass of the donor star (White,
2002). Low-mass X-ray binaries (LMXBs) have low-mass companions, typically in the
region of 1M⊙, and accrete via Roche lobe overflow (RLO) (Frank et al., 2002). The
accreting material moves through the inner Lagrange point L1, initially forming a
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stream. Whether the transferred material forms a disc (LMXBs) or escapes to form a
wind (HMXBs) depends on the angular momentum and thermal-viscous instabilities
within the stream (Warner, 1995). The disc forms only once sufficient material has
accumulated, is circularised and – in the case of LMXBs – the disc instability model
(DIM) is triggered (Lasota, 2001). The newly formed accretion disc emits X-rays from
the inner regions through the radiative mechanisms described in chapter 1. For
extended periods, Roche lobe overflow provides a steady stream of accreting material,
or a ∼ constant Ṁ. The value of Ṁ depends heavily on the evolutionary stage of the
companion (donor) star and orbital separation, as well as other feedback effects such
as disc instabilities (Tauris and van den Heuvel, 2006), which will be discussed in the
following sections.

In the case of high-mass X-ray binaries (HMXBs), the compact object is paired with a
massive O- or B-type star and accretes matter primarily from that star’s powerful
stellar wind (Tauris and van den Heuvel, 2006). The accretion rate is often highly
variable, modulated by the clumpy nature of the stellar wind and the binary’s orbital
phase (Walter et al., 2015)). Therefore, the SED can vary significantly in response to
changes in this accretion rate. However, the X-ray production is still derived from the
same radiative processes as for LMXBs (Frank et al., 2002).

XRBs provide ideal laboratories for studying accretion physics in strong gravity,
including Comptonisation and rapid variability. Their dynamical and viscous
timescales (Section 1) are short enough to be observed directly within human lifetimes
(Remillard and McClintock, 2006b). This makes them an important anchor for
comparison to more massive systems such as AGN, where equivalent processes occur
on much longer timescales (which will be the topic of Chapters 4 and 5).

3.2 The Variable Nature of XRBs

XRBs are highly variable systems with significant changes in emission (or frequencies)
occurring from milliseconds to days (Lewin and van der Klis, 2006). Moreover, this
variability is energy-dependent, reflecting the underlying physical processes
occurring within the accretion flow (Belloni et al., 2011). The analysis of variability,
through techniques such as PSD modelling and hardness-intensity diagrams
(Remillard and McClintock, 2006a; Done et al., 2007), offers vital insights into the
structure, dynamics, and evolution of the accretion flow.

3.2.1 The Disc Revisited

In Chapter 1, we considered an idealised thin disc in the absence of full general
relativity (GR) effects (which would lead to GRAD flows: Thorne1974 (1974), Zhang
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et al. (1997), Frank et al. (2002)). However, there will be non-negligible complexities.
Our most significant assumption is that the accretion rate is steady and symmetric. In
reality, accretion in both LMXBs and HMXBs can deviate from this. In addition to the
local variability (e.g. due to turbulence), LMXBs exhibit large-scale disc instabilities,
while HMXBs experience strongly variable wind accretion. In both cases, the
steady-state assumption breaks down due to intrinsic variability in the accretion flow.
Therefore, we will begin by considering variability due to instability within the disc.

3.2.1.1 Hydrogen Ionisation Instability

There are many ways in which an accretion disc can become unstable. In the case of
thermal instability, a slight temperature rise can cause a runaway heating effect
(Lasota, 2001; Done et al., 2007). As the temperature increases, the disc emits more
energetic photons following the black body description from Chapter 1. If sufficient
temperatures are reached, the emitted photons have enough energy to ionise
hydrogen (104 − 105K). The ionisation of hydrogen increases the number of free
electrons, which in turn raises the opacity (Lasota and Hameury, 1998; Frank et al.,
2002). As a result, photons generated by viscous heating are trapped rather than
radiated away, causing local temperatures to rise further and initiate a thermal
runaway. In this case, the disc shifts from a cool neutral state to a hot ionised one. As
previously discussed, temperature changes within the disc propagate on the thermal
timescale tth (Cannizzo, 1993). Given that this timescale is relatively short, the heating
phase is rapid.

The alpha-disc model assumes that viscosity is tied to local pressure (Shakura and
Sunyaev, 1973). This means an increase in temperature results in an increase in
pressure and, consequently, a higher viscosity and accretion rate. An increase in Ṁ
releases more energy, which further raises the temperature. If the outer regions cannot
supply material quickly enough to match this increased accretion rate, the local
density drops, leading to a runaway increase in Ṁ (Lightman and Eardley, 1974). This
process is known as viscous instability, and it operates on the viscous timescale, which
is related to the thermal timescale and the disc scale height via equation 1.3.3.

Since viscous heating is proportional to surface density, it becomes less efficient as the
disc becomes depleted. Once heating can no longer offset radiative losses, cooling
becomes dominant (Frank et al., 2002). As temperature decreases, ionisation decreases;
hence, the temperature continues to decrease until the hydrogen recombines and the
disc returns to a neutral, low accretion rate state (Lasota and Hameury, 1998).

The above is a simplified description of the disc instability model (Lasota, 2001),
which results in cyclical outbursts triggered by hydrogen ionisation. In such an
idealised outburst, a sharp rise is caused by the rapid thermal runaway on the thermal
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timescale, while the decay is caused by the disc changing on the longer viscous
timescale (Cannizzo, 1993). This localised instability can affect the rest of the disc if the
changes in the surface density between successive annuli are large enough.

While the limit-cycle is a good approximation for outbursts from cataclysmic variables
(Cannizzo, 1993; Frank et al., 2002), there are additional effects for XRB systems as
these have X-ray irradiated outer discs, which are too hot for recombination of
hydrogen, prolonging the outburst (Dubus et al., 2001; Hameury et al., 1987).

3.2.2 Time Dependent Spectral Evolution

In the previous chapter, we constructed the SED for an accreting compact object and
explored the key timescales on which variability occurs in the disc. In the current
chapter, we have introduced a key process mediating large-scale changes to the inflow
structure in XRBs, which demands a time-dependent nature of the SED (in at least
these systems).

As a consequence of changes in accretion rate, driven by the disc instability described
above (albeit in a simplified fashion), LMXBs evolve through a well-defined set of
spectral states during an outburst, each reflecting the underlying physical conditions
and structure of the accretion flow (Remillard and McClintock, 2006a). These states
are classified by the relative contributions of thermal emission from the accretion disc
and inverse Compton scattering from a hot corona Done et al. (2007). In addition to
spectral changes, each state exhibits characteristic temporal variability properties,
which will be discussed in the following section and are key for the research presented
in Chapter 4.

Figure 3.1 shows a hardness-intensity diagram (HID), a helpful way of identifying
spectral state evolution in XRBs as they progress through an outburst (Fender et al.,
2004; Belloni, 2010). This diagram plots the hardness ratio (typically defined as the
ratio of hard to soft X-ray fluxes) against integrated X-ray flux. While the exact
energies used to define the hardness ratio can vary between instruments, they must be
chosen carefully to accurately sample both the disc and power-law components to
trace spectral state evolution (Dunn et al., 2010).

The HID is often referred to as the Q-diagram due to the shape that XRBs trace,
moving clockwise through the diagram with time. More specifically, the characteristic
hysteresis shape defines the relationship between different spectral states and the
pathways between them, revealing information about the physical processes at play
during each stage. When combined with variability information, we retrieve global
information from the HID and an indication of the geometric location of the changes
driving the state.
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FIGURE 3.1: An illustration of the hardness intensity (Q) diagram. Original credit to
Belloni et al. (2011)

Regarding the spectrum, the HID is often interpreted in terms of two primary
classifications: the hard state (large HR) and the soft state (low HR). Sources with a
hard spectrum occupy the right-hand side of the diagram, while those in the soft state
will be located more towards the left. Hard/soft labels physically refer to the
dominant emission mechanism shaping the SED. In the hard state, Comptonised
emission from a hot, optically thin inner flow (or corona) dominates, producing a
power-law-like spectrum with a high-energy tail (Done et al., 2007). In the soft state,
thermal emission from the optically thick, geometrically thin accretion disc is the
dominant contributor, producing a quasi-blackbody spectral shape that peaks in the
soft X-rays. Combinations of these components with intermediate strengths then
define the so-called ‘intermediate states’. A typical evolutionary track around this
HID is as follows:

1. The first of the canonical states shown in the HID is the low-hard state (which is
a misnomer as the hard state can be bright), situated in the lower right of the
Q-diagram. In this state, the integrated X-ray luminosity is low compared to
peak outburst levels, but the spectral shape remains hard (Remillard and
McClintock, 2006a; Done et al., 2007). In other words, the higher energy
Compton emission (with a power law index < 2) from the corona dominates the
SED. An example of such a spectrum can be seen in the annotated panel on the
lower right. Here, the disc component is almost undetectable. In this stage of the
HID, the system shows a rising luminosity with little spectral change.
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2. Dunn et al. (2010) illustrates the relationship between mass accretion rate and
luminosity. Therefore, vertical movement on the right-hand side of the diagram
demands an increase in accretion rate with constant hardness.

3. Position 2 is known as the hard-intermediate state. We see some spectral
softening in this state as the disc component becomes more prominent despite a
strong Compton contribution (Fender et al., 2004; Done et al., 2007).

4. A leftward horizontal movement across the Q-diagram demands further spectral
softening. This movement indicates a greater contribution from the disc to the
SED, now dominating over that of the corona. Position 3 is the soft-intermediate
state (Fender et al., 2004).

5. As we move towards position 4, the high-soft state, the spectrum is almost
entirely dominated by the thermal disc component (Done et al., 2007; Remillard
and McClintock, 2006a) with a steep (index > 2) power law tail.

6. The final path is referred to as the decay phase. In this phase, the source fades
downwards in luminosity but does not appear to retrace its steps. When it
returns to the low-hard state, it has a lower luminosity than before, (Fender
et al., 2004; Belloni, 2010) completing the hysteresis loop.

3.2.2.1 The Truncated Disc Model

While we have discussed the path of the SED over an XRB outburst, we have yet to
discuss the physical mechanism behind it. We will now combine the previous
discussion on disc instability with our observations of the spectral state evolution of
XRBs to build the truncated disc model (first proposed by Esin et al. (1997) and later
by Done et al. (2007)). This model explains the tracing of sources on the Q-diagram
through the corona and disc geometry.

The truncated disc model explains how a corona, in the form of a hot inner flow
starting within some radius in a thin disc, can produce all the observed spectral states
under different conditions. In this model, the inner edge of the geometrically thin,
optically thick accretion disc does not always extend to the innermost stable circular
orbit (ISCO). Instead, it is truncated at a larger radius in certain spectral states. The
region inside this truncation is filled by a geometrically thick, optically thin electron
plasma, which produces the Comptonised emission. Figure 3.2, illustrates the disc
configuration for each canonical spectral state. We can now revisit our prior
observations and consider how the disc’s geometry and inner flow produce such
SEDs.

1. In the low-hard state, the accretion disc is truncated and the inner region is filled
with hot, optically thin gas, which results in the strong Compton component.
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FIGURE 3.2: An illustration of the disc instability model in relation to the canonical
spectral states of x-ray binaries. Original:Done et al. (2007)
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The disc is too cool and distant to contribute significant X-ray emission, leading
to a very hard spectrum.

2. The transition through the intermediate states is triggered by the disc’s inner
edge moving inwards and increasing luminosity. As a result of the increased soft
photon flux from the hotter, brighter disc, the corona undergoes enhanced
Compton cooling, which may suppress its contribution to the SED.

3. As the flow transitions through the soft-intermediate state, the disc’s inner edge
is approaching the ISCO. The corona has shrunk such that the disc now
dominates the SED.

4. By position 4 in the HID, the disc inner edge has reached the ISCO. The entire
SED is disc-dominated, possibly entering the ultra-soft regime if the corona is
sufficiently suppressed.

5. As the accretion rate drops, the disc begins to recede again. The inner flow
becomes increasingly hot and optically thin, weakening the disc contribution
and hardening the spectrum.

Assuming the underlying accretion physics, the driving force behind the variability, is
scale-invariant, we can use the temporal evolution observed within XRBs as a
template. This allows us to interpret snapshots of the diverse AGN population,
placing different AGN onto equivalent evolutionary tracks to test whether they follow
the same path as a group. Understanding this connection across the mass scale is a
key theme of this thesis and motivates the comparative studies in Chapters 4 and 5.

3.2.3 The PSD

Time series are also used as a key diagnostic of the state of an XRB. For simplicity, let
us begin by considering the shape of the PSD (see section 2 for more detail on how this
is extracted and modelled) for a black hole x-ray binary (BHXRB). This can be
approximated by a twice-broken power law with ν0 at the lowest frequencies → ν−1 at
frequencies above the first break νl → finally breaking again to ν−2 for ν ≥ νh.
Observations by Nowak (2000) and Belloni et al. (2002) suggest that such PSDs are
best modelled by combining Lorentzians with a free width, centre and amplitude.
This method of modelling captures both quasi-periodic humps and broad features
that depart from pure power-law-like behaviour (Ingram et al., 2009).

The PSD’s characteristic shape results from propagating mass accretion rate
fluctuations. Each radial zone in the hot inner flow (the geometrically thick, optically
thin region close to the black hole) experiences local fluctuations in mass accretion rate
(Lyubarskii, 1997). These fluctuations are stochastic in nature and arise from the
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MRI-generated turbulence within the accretion flow itself (Balbus and Hawley, 1991;
Kotov et al., 2001). Each annulus contributes variability set by the local viscous
timescale (see equation 1.3.3). Outer regions contribute variability on longer
timescales (lower frequencies) due to their longer viscous timescales, while inner
regions contribute higher-frequency variability. The exact nature of the variability at
each annulus will depend upon local properties such as the local accretion rate and
density, as well as the thermal timescale, which dictates how fast energy is dissipated.
Therefore, variability at a given frequency is directly related to the processes at a given
location within the accretion flow (Arévalo and Uttley, 2006).

A fluctuation in the mass accretion rate (Ṁ) at a radius R travels inward through the
accretion flow, modulating accretion at smaller radii (Lyubarskii, 1997). This
modulation is multiplicative and inner radii contributions are scaled by those from
outer radii (Arévalo and Uttley, 2006; Ingram et al., 2009; Churazov et al., 2001).
Mathematically, Ṁ(ri, t), the accretion rate at any given radius, can be written as;

Ṁ(ri, t) = Ṁl(r, t)
i

∏
j=0

[︁
1 + ṁ(rj, t)

]︁
(3.1)

where Ṁl(r, t), is the local accretion rate and ṁ(rj, t) denotes any local fluctuations at
radius rj. Frequencies higher than the local viscous timescale will be damped by
viscous and differential rotation. The Fourier transform of such a damped process is a
zero-centred Lorentzian (Nowak, 2000).

Without this modulation, the PSD would be flat with a cut-off (Uttley et al., 2005).
However, instead, the power is redistributed across the frequency range.
Low-frequency power (from outer regions) dominates low PSD frequencies. The
power declines more steeply at higher frequencies because the amplitude of
fluctuations generated at small radii is reduced. The modulation from slower outer
fluctuations suppresses high-frequency variability (Ingram and Klis, 2013).

From the above, we can consider the broadband noise in the PSD as being composed
of a sum of Lorentzians generated at each annulus within the accretion flow (Nowak,
2000). This results in the observed twice broken power law shape. The low-frequency
break νl traces the viscous timescale at the outer edge of the hot inner flow (outermost
radius of the corona) (Ingram et al., 2009; Kotov et al., 2001). Meanwhile, the
high-frequency break νh is associated with the material at smaller radii situated at the
inner edge of the inner flow (possibly close to the ISCO). This implies a natural cut-off
in the PSD due to the fastest processes within the accretion flow.

While additive variability would give a Gaussian flux distribution, the multiplicative
process produces a log-normal flux distribution (Uttley et al., 2005). Indeed, XRB light
curves generically show flux distributions that are skewed and log-normal, consistent
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with this description of propagating fluctuations (Arévalo and Uttley, 2006; Heil et al.,
2012; Pottschmidt et al., 2003).

3.2.3.1 Low-Frequency QPOs

Introduced in section 2, Quasi-periodic oscillations (QPOs) appear as narrow peaks
superimposed on the broadband PSD. There are three low-frequency QPOs (LFQPOs)
types in XRBs: Type A, B and C, each created by a specific mechanism and found over
a given frequency range.

Type C QPOs (∼ 0.01 − 6 Hz) are almost ubiquitous in BHXRBs and always found in
the low-hard state (Ingram et al., 2009; Motta et al., 2011). Their ubiquity has made
them the prime targets for correlating their characteristics with other PSD properties,
such as the break frequency and physical parameters of the system, in an attempt to
reveal their origin. The most favoured mechanism for producing a Type C QPO is
through Lense-Thirring precession (Stella and Vietri, 1998). This is a frame-dragging
effect caused by the intense gravitational field close to a compact object. However,
other popular suggestions include accretion instabilities caused by magnetic stress
(Tagger and Pellat, 1999). This could create a hot spot, creating a periodic signal as it is
repetitively compressed. While this does predict the harmonics sometimes observed,
the ability for a hot spot to survive and not be ripped apart within the disc seems
unlikely. Hence, this work will favour Lense-Thirring as the primary mechanism for
Type C QPO production. This process naturally explains the LFQPOs as a geometric
modulation of emission. Furthermore, observational studies have shown strong
correlations between QPO frequency and spectral parameters such as inner disc
radius, power-law index, and hardness ratio, all of which support the Lense-Thirring
interpretation (Ingram and Done, 2011; Motta et al., 2011; Ingram and Motta, 2019).

Type B QPOs appear over a much smaller frequency range: 5 − 6 Hz (Casella et al.,
2005). They appear in soft-intermediate states (Motta et al., 2011), but unlike Type C
QPOs that persist over long durations within a given spectral state, Type Bs are
transient in nature. They can appear during the transition between hard and soft
states (Motta et al., 2015). This indicates their presence indicates rapid geometric
transitions in the accretion flow. A reduction of broadband noise usually accompanies
Type B QPOs. It is sometimes linked to flux increases and flare-like behaviour in the
light curve, possibly related to jet ejection events due to their appearance
simultaneously as radio flares (Fender et al., 2004).

Type A QPOs are visible only in the soft-intermediate state (if at all) and appear at
similar frequencies to the Type B QPOs. Unlike Type B and C, Type A QPOs are
weaker and broader in frequency with lower coherence (Casella et al., 2005). No
detectable harmonic structure is present, unlike the Type C QPOs. Their broad and



3.2. The Variable Nature of XRBs 65

low-coherence structure makes their production mechanism difficult to identify. One
possible explanation is that they represent residual variability from earlier precession
or instabilities that become washed out as the accretion flow becomes fully
disc-dominated and stable. (Ingram and Motta, 2019) Alternatively, they might be due
to disc oscillations or small fluctuations in the corona (Belloni and Stella, 2014). For
very soft spectra, Type A QPOs do not appear at all.

3.2.4 High-Frequency QPOs

High-frequency QPOs (HFQPOs) occur at frequencies hundreds of times higher than
the LFQPOs, making them a distinct group. Despite being generally weaker in
amplitude and coherence, they can appear in a harmonic ratio of 3 : 2 (Remillard et al.,
2002). Despite being rarer than LFQPOs, HFQPOs appear both with and without their
low-frequency counterparts (Belloni et al., 2005). Furthermore, when these features
appear together, the HFQPO coherence correlates with the type of low-frequency QPO
present. HFQPOs are never detected in the low-hard state, which suggests they only
occur when the disc inner edge reaches small radii (Belloni and Stella, 2014); hence
HFQPOs do not appear in the presence of Type C QPOs. However, they are often
found in the presence of Type A and B LFQPOs (with a higher coherence when
coincident with Type A) (Casella et al., 2005). HFQPOs are thought to result from the
Keplerian motion of material in the inner disc or oscillations in the disc itself
(Wagoner, 2001). Frequencies are thought to scale inversely with black hole mass,
offering a possible mass diagnostic and, in the relativistic precession model, can be
expanded to obtain an estimate for the spin (Motta et al., 2014; Ingram and Motta,
2019).

3.2.5 PSD Evolution with Spectral State

The truncated disc model allows us to explain the PSD features we observe and how
they change with the XRB’s spectral state. νl can, therefore, be used as a tracer for the
truncation radius (Ingram et al., 2009; Ingram and Done, 2011). Figure 3.4 shows the
evolution of the PSD with spectral state.

1. Starting at position 1 in the low-hard state, we have a flat-top PSD. The
low-frequency break (νl) corresponds to the viscous timescale at the truncation
radius, which is large at this stage, so the characteristic frequency remains low.
Type C QPOs are present and often strong, attributed to the Lense-Thirring
precession of the hot inner flow (Stella and Vietri, 1998).

2. As the mass accretion rate increases, the disc moves inward, and the truncation
radius decreases. This inward migration reduces the viscous timescale at the
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FIGURE 3.3: An illustration of the different types of high frequency QPOs. Original:
Remillard et al. (2002)
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FIGURE 3.4: An illustration of the PSD evolution with spectral state from the hard
(top) to soft state for Cygnus X-1. Original: Axelsson et al. (2005)



68 Chapter 3. Black Holes Systems as Variable Sources

inner edge of the disc, shifting νh, νl , and the QPO frequencies to higher values.
As the hot flow contracts, the variability arises from a more confined region,
resulting in increased coherence and sharper QPO features (Done et al., 2007;
Ingram et al., 2009; Motta et al., 2011).

3. The optically thick disc now reaches close to the ISCO, squeezing out the hot
inner flow. As a result, the region capable of generating inward-propagating
fluctuations is lost, resulting in a significant reduction in variability amplitude
(Ingram and Done, 2011; Motta et al., 2011). The Type C QPOs disappear and are
replaced by Type B QPOs (Casella et al., 2005; Motta et al., 2015), which are
narrower and occur over a smaller frequency range ( 5–6 Hz). The suppression
of variability is due to the diminished size of the hot inner flow, which no longer
sustains significant viscous fluctuations capable of generating broadband
variability.

4. In the high-soft state, the disc dominates the emission and extends to the ISCO.
There is a minimal contribution from the hot inner flow. As a result, the
broadband variability is strongly suppressed. The PSD becomes steep and
featureless, though weak low-amplitude variability may still be present.
Occasionally, a broad Type A QPO may appear (defined by a quality factor
Q = ν/∆ν ≥ 3), but most QPOs vanish entirely (Motta et al., 2015; Casella et al.,
2005).

3.3 Supermassive Black Holes and AGN

Thus far, we have considered accretion in very general terms. However, much of the
research chapters of this thesis deal with accretion onto supermassive black holes.
These black holes occupy a 105 − 1010M⊙ range and reside at the centre of the vast
majority of galaxies.

A subclass of supermassive black holes are known as active galactic nuclei (AGN).
These sources are so highly luminous that they tend to outshine the entire stellar
population of their host galaxy. They also emit strongly in X-rays, which is generally
attributed to accretion. We will consider the anatomy of AGN in the following
sections.

3.4 AGN Anatomy

While the nature of accretion as an energy source remains unchanged regardless of the
nature or size of the black hole, the observational effect can vary significantly. From
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prior discussions, we can conclude a strong relationship between the accretion
properties and the mass of the central object (McHardy et al., 2006; González-Martı́n
and Vaughan, 2012). Therefore, we can scale our XRB description to a supermassive
(black hole) scale, which places the peak of the disc emission in the UV (Kubota and

Done, 2018; Vasudevan and Fabian, 2009) T ∝ M− 1
4

BH (Prieto et al., 2021). Moreover,
unlike our XRB comparison, there is no limit to the disc size imposed by the presence
of a companion; instead, the disc can expand to the self-gravity radius of the disc
(Lobban and King, 2022).

3.4.1 LINERs

LINERS or Low-ionisation nuclear emission-line region AGN reside in massive
elliptical or lenticular galaxies (Ho, 2008). They have SEDs dominated by optical
emission lines from low-ionisation species such as O I, N II and S II (Heckman, 1980).
There is debate whether these objects should be classified as AGN, as their lines
indicate a much lower ionisation state than we would expect for AGN generally (Maoz
et al., 2005). If they were to be classed as AGN, they would be a lower luminosity
group, indicating lower accretion rates, certainly sub-Eddington. However, starburst
activity is an alternate explanation for LINERs’ luminosities and SED features.

3.4.2 Quasars

Quasars, QSOs or quasi-stellar objects lie on the opposite end of the luminosity scale.
Often located in highly massive interacting or merger systems, these extremely
luminous AGN are observed at huge distances away from us (Hopkins et al., 2006).
Quasars reach bolometric luminosities as high as 1045 − 1048erg s−1, making them the
brightest AGN group. Initially, they were mistaken for very bright stars, hence their
name. However, it was later discovered that they were, in fact, distant galactic
components at high redshift (Schmidt, 1963). Accretion is the main driving factor for
the luminosity of AGN, and as such, we can infer that Quasars must have very high
Eddington ratios (Marconi et al., 2004). Their SEDs display a bright UV and x-ray
continuum, suggesting thermal disc emission and a higher energy Compton
component (Richards et al., 2006). They also show powerful broad emission lines at
Ly α, C IV and Mg II, which can be used to infer the mass of the central object
(Peterson, 1997).

3.4.3 Blazars and BL Lacs

Blazars possess jets aligned almost directly with the observer’s line of sight and are
characterised by strong relativistic beaming effects (Urry and Padovani, 1995). Further
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to the beaming effects, the optical and radio emission is highly polarised, indicating a
synchrotron process in addition to the inverse Compton hump (Zhang et al., 2024),
which we have already discussed. This synchrotron hump peaks in lower energies,
optical to UV, as opposed to a very high energy Compton hump in hard x-ray. The
distinction from BL Lacs (BL Lacertae objects) is based upon their accretion state,
where BL Lacs have a considerably lower Eddington ratio compared to Quasars and
relatively featureless SEDs due to a lack of emission lines (Böttcher, 2019). This could
be related to their environment given that BL Lacs are most often situated in dust-poor
environments, in contrast to the gas-rich environments where Blazars are found.

3.4.4 Seyfert I and II

The majority of this work focuses on the Seyfert family of AGN. These are arguably
the most ‘well-behaved’ type and are split into two groups by a distinct grouping of
SED emission lines in the optical bandpass (Osterbrock, 1981). While both Seyfert I
and II types exhibit a strong X-ray emission from the nuclear region, they also exhibit
emission lines. However, Seyfert I AGN have strong, broad emission lines. At the
same time, Seyfert II AGN SEDs feature narrow permitted and forbidden transitions,
making them much more similar to Quasars (Antonucci, 1993; Ho, 2008). Should we
wish, we can further subdivide the Seyfert I class to separate narrow-line Seyfert I
AGN (NLS1s), which are characterised by unusually narrow broad-line components,
relatively low black hole masses but high Eddington ratios compared to classical
Seyfert I (Mathur, 2000).

In contrast to the AGN subgroups we have discussed previously, Seyferts are typically
hosted in spiral galaxies (Ho et al., 1997). Unlike the distant but active Quasar
sub-group, Seyfert AGN are also much more local. This allows us to study them in
greater detail.

3.4.5 The Unified Model

While each of the descriptions of AGN morphology above could be considered a
unique subgroup due to their distinct characteristics, instead, the unified model
suggests they are all, in fact, the same astrophysical construction, but with observed
differences originating from orientation effects and obscuration (Antonucci, 1993; Urry
and Padovani, 1995). The nuclear object comprises four main components: the SMBH,
a broad line region, a narrow line region and a dusty torus. This is in addition to the
accretion disc and the X-ray corona, which are often considered along with the SMBH
as the ‘central engine’ (Netzer, 2013). If present, the unified model also allows for jets
aligned perpendicular to the torus. Figure 3.5 illustrates the unified model of an AGN.
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FIGURE 3.5: An illustration of the unified model of AGN. Labelled arrows indicate
specific types studied in this work.

Looking directly perpendicular to the torus reproduces the highly collimated
synchrotron emission in the presence of a jet (Blandford and Königl, 1979).
Conversely, if the observer’s line of sight is parallel to the plane of the torus, the
central engine, along with the broad line region, is obscured. In this case, we see only
emission lines from the narrow line region and significant reprocessed emission from
the torus, which peaks in the infrared (Pier and Krolik, 1992; Elitzur and Shlosman,
2006). In this instance, we can replicate the SED of a Seyfert II. To replicate the SED of
a Seyfert I, we must view the system inclined in such a way that we see the broad and
narrow line regions in addition to the central engine through the space between the
torus and the polar axis (where a jet would be launched if present) (Goodrich, 1989).
From this perspective, reflection features from the torus can explain the polarised
emission exhibited in some of these systems (Miller and Goodrich, 1990).

3.4.5.1 Broad Line Region

The broad line region (BLR) is a compact zone of dense, photo-ionised gas clouds in
close proximity to the central engine (Peterson, 1997). In the case of the AGN, we
assume that the ionising radiation would be the X-ray emission from the central
engine. Spectroscopic analysis in the optical and ultraviolet reveals broad emission
lines with widths dictated by the velocity dispersion from within the gas clouds
themselves (Osterbrock, 1981). Such velocities will not be uniform with distance from
the ionising central source. The model suggests that when summed, the contribution
from each cloud would reproduce the spectrum. Computationally intensive radiative
transfer codes are used to model the movement of radiation through such cloudy
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structures, mapping the movements of individual photon paths through a pre-defined
structure (Gaskell, 2009).

However, the small physical sizes inferred for these clouds (∼ 1012 − 1013cm) present a
significant confinement problem. Given their environment, they are prone to rapid
evaporation, so a mechanism is required to maintain a cloudy structure. Suggested
solutions include magnetic confinement (Rees, 1987), radiative shielding, or
continuous inflow/outflow geometries. Alternative models simplify the BLR to a
continuous, stratified flow, such as an accretion disc wind. In such models, the line
emission arises from a structured, ionised outflow launched from the disc at specific
radii, where the gas achieves the appropriate density and ionisation state for line
production (Murray et al., 1995). These models can naturally resolve the confinement
problem and link the BLR kinematics to global accretion physics. Furthermore, it is
difficult to untangle the torus’s covering effect on the BLR’s natural emission line
production.

Despite extensive study, no single model has yet explained all observed characteristics
of the BLR. Properties such as the radius-luminosity relationship, line profile
asymmetries, variability, and apparent absence in some AGN (e.g. true Type 2 AGN or
LINERs) remain active areas of research (Netzer, 2015). Nonetheless, the BLR remains
a critical probe of the innermost parsec-scale environment of active galaxies.

3.4.5.2 Torus

The torus is named such due to its toroidal structure. This dusty region is both
geometrically and optically thick (Antonucci, 1993). Also, it is opaque to everything
from IR to x-ray radiation. In this way, the torus obscures information about the
high-energy physics of the central engine. The torus is densest perpendicular to the
polar axis. In fact, its existence was proposed to provide the potential for partial
obscuration of the broad line region in Seyfert I types and complete obscuration of the
region for Seyfert IIs. However, its inclusion in the unified model is supported by IR
data where a significant fraction of Seyfert galaxies have a thermal hump (Pier and
Krolik, 1992). The natural explanation for such a hump would be the presence of dust,
reinforcing the idea of the torus.

However, the torus is not the only solution to what appears to be a signature of dust
obscuration in the AGN SED at infrared wavelengths (Netzer, 2013). Oftentimes, we
must disentangle the galaxy emission from that of the AGN (Mullaney et al., 2011). In
the IR band, this becomes exceedingly difficult as dust within the galaxy and starburst
signatures often appear to be very similar. Some instruments can disentangle this
through the presence of specific spectral lines. The most notable distinction is the
presence of S II for AGN, which is observable even in the case of LINERs.
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Furthermore, observations suggest the torus is not likely to be a uniform structure
following decreasing density with vertical extent. Instead, the complexities of discrete
cloud components extend to the modelling of the torus (Hönig and Beckert, 2007;
Nenkova et al., 2008).

3.4.5.3 Narrow Line Region

The narrow line region (NLR) consists of ionised gas clouds at relatively low densities
and modest velocities compared to those in the broad line region (Netzer, 2015;
Osterbrock, 1981). The cloud-like structure has been confirmed observationally, where
imaging and spectroscopic data have revealed clumpy emission in the form of
compact filaments. Due to their lower densities and larger distances from the nucleus,
NLR clouds are not subject to the same extreme velocity broadening as the BLR. This
allows for the characteristic narrow line production with broadening of ∼ hundreds of
km s−1 (Peterson, 1997). The low-density environment also permits the appearance of
forbidden transitions that are suppressed in denser regions, giving the NLR a distinct
spectral signature.

Spatially, the NLR extends out to several hundred parsecs from the central engine
(Bennert et al., 2006; Groves et al., 2004). This distance is sufficient for the gas to
remain under the influence of ionising radiation from the active nucleus while being
far enough from the core to be resolved in high-resolution observations. Such optical
observations have disclosed a variety of NLR shapes, likely influenced by both
intrinsic properties of the system and projection/obscuration effects. Despite this,
variation trends emerge when comparing Seyfert types. In Seyfert 1 galaxies, the NLR
appears more compact and centrally concentrated. In Seyfert 2s, where the dusty torus
obscures the inner regions, the NLR is typically seen at larger scales, often with
triangular or conical extensions aligned with the torus opening (Mullaney et al., 2011;
Crenshaw et al., 2003).

3.4.5.4 Caveats of the Unified Model

The unified model is now widely accepted. Observations generally provide support
for this schematic. There is significant appeal to the unified model with its ability to
explain the distinct differences between Seyfert I and II types under a single anatomy.
However, despite this, it cannot explain all the different kinds of AGN we see. The
unified model (Ho, 2008; Elitzur and Shlosman, 2006) cannot retrieve LINER
characteristics. The lack of BLR features in low-luminosity AGN are also unexplained
using this description. This generally suggests that orientation alone is insufficient to
explain all the possible AGN configurations we observe. Instead, there must be some
level of intrinsic difference based on the system’s physical parameters.
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This is further reinforced by what we see regarding AGN’s luminosity and accretion
rate evolution. Orientation alone would predict a somewhat static system, implying
all Seyfert Is will look very much alike (Netzer, 2015; Padovani et al., 2017). However,
while Seyfert I and quasar spectra look similar, quasars are much more luminous. This
difference cannot be explained via orientation alone. Instead, these differences imply a
difference in the Eddington ratio, in addition to potential obscuration effects.

Exotic types of AGN, such as ‘changing look AGN’ (LaMassa et al., 2015; MacLeod
et al., 2010), appear to change their morphology on a timescale within the human
lifetime, such that we have already observed several of these systems. Considering the
stationarity assumption from before, this would be impossible given the typical
timescales of AGN. This undermines the idea of fixed orientation-based classification
and points to dynamic processes like variable accretion or transient obscuration, some
of which we have already discussed.

Computational expense in modelling elements of the unified model, such as the torus
(Nenkova et al., 2008), is also a key caveat to the unified model. Further to the
time-intensive simulations, this makes obscuration a probabilistic rather than a
deterministic function of viewing angle, blurring the neat classifications. In addition
to the complex modelling of the gas within the AGN, the unified model fails to
include the effects of star formation, galactic mergers, and the large-scale environment
that also influences AGN properties. These factors shape the availability of fuel,
obscuration geometry, and feedback.

While the unified model provides a robust framework for understanding the broad
distinctions between AGN types, particularly the Seyfert classes, it is now clear that a
more nuanced model is required to fully capture the diversity observed in AGN
behaviour on finer scales. A deeper understanding of AGN will require
orientation-dependent schemes and physical considerations such as accretion rate,
black hole mass, host galaxy environment, and time variability.

3.5 Radiative Properties of AGN

BHXRBs have a thermal disc structure with a Compton tail to high energies. As
previously discussed, the exact spectral shape will depend upon the spectral state.
However, given the mass of AGN, their thermalised disc component peaks in the UV
(Frank et al., 2002). Therefore, the vast majority of the AGN x-ray spectra are
consistently Compton-dominated. The overall trend of spectral softening with higher
accretion rates is also shown in AGN spectra. Based on population studies, as
opposed to tracing a single source, there is increased spectral softening from LINERs
to Seyferts (Chaudhury et al., 2018). This indicates that the spectral state may
influence the morphology classifications.
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FIGURE 3.6: An illustration of the radiative components of the AGN SED. Origi-
nal:Fabian (2006)

Further to the standard radiative properties introduced in the previous chapter, AGN
also exhibit some additional unique processes; their SED is illustrated in figure 3.6. In
order to understand the complexities in AGN SEDs, we must first consider the
physical processes from which they originate.

3.5.1 Absorption

In contrast to BHXRBs, AGN environments are cool enough that the material can
imprint several atomic features in the spectrum. These include soft X-ray excitation
lines from a range of elements, from carbon (C) to nickel (Ni). When the absorbing
column density is moderate ( typically NH ∼ 1022, cm−2), the material is considered
Compton-thin, and X-rays are absorbed primarily via the photoelectric effect rather
than Compton scattering (Turner et al., 1997; Blustin et al., 2005; Nandra et al., 1997).
At low energies, the observed X-ray spectrum shows a sharp drop-off, referred to as
the low-energy cut-off. This feature is not intrinsic to the emission. However, it arises
due to photoelectric absorption by intervening material—both in the local AGN
environment and along the line of sight through the interstellar medium. Because the
photoelectric cross-section increases strongly toward lower photon energies, even
modest column densities can suppress soft X-rays below ∼ 1–2 keV (Reynolds and
Begelman, 1997; George et al., 1998).

Photoionisation models are used to interpret absorption features. However, they
assume thermal equilibrium and require modelling of complex geometries of gas
around the AGN. If we suggest that AGN follow the same spectral state evolution of
BHXRBs, then the thermal equilibrium assumption may only hold during certain
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accretion states. Since evolutionary timescales for AGN are much longer, modelling
should be reliable for a given geometry in cases where the thermal equilibrium holds.

Around 50% of Seyfert I AGN SEDs also feature a warm absorber. The most
prominent feature of a warm absorber is narrow oxygen lines, O VII and O VIII, with
H and He ion lines also present (Reynolds and Begelman, 1997; Blustin et al., 2005).
This indicates that the line of sight intersects partially ionised material. The spectra
reveal the material’s ionisation state and elemental composition, but studies have also
revealed that the material is outflowing. With velocities exceeding 100 km s−1, the
base of the outflow is believed to be in the torus (Blustin et al., 2005).

Some objects also show evidence for columns of higher ionisation further from the
central object. One explanation for such high-ionisation absorbers (e.g. Fe Kα) may
arise from accretion disc winds (Tombesi et al., 2010; Reeves et al., 2009). Unlike
BHXRBs, AGN discs are much cooler, peaking in the UV, and hence, we would expect
a significant amount of outflow-driven emission (Proga et al., 2000). Hydrodynamic
simulations of AGN show significant evidence of line-driven winds for sources
accreting below the Eddington limit.

However, in practice, the winds would require X-ray shielding to prevent the
ionisation state of the out-flowing gas from exceeding what we observe. Failed disc
winds are one way to invoke such shielding, whereby the inner out-flowing region
becomes over-ionised and collapses, shielding the outer wind (Proga and Kallman,
2004). Magnetically driven outflows are also possible, though a complex hypothesis to
test at this stage due to the unknown fine magnetic structure of the disc (Fukumura
et al., 2010).

3.5.2 Reflection

In AGN, the reflection spectrum arises when the hard coronal X-ray emission
irradiates the surrounding material. A significant portion of this emission is
reprocessed, producing both fluorescent line emission and a broadband Compton
reflection continuum (George and Fabian, 1991; Matt et al., 1991). While the same
basic physical processes apply as in the previous discussion of reflection spectra, the
larger scale, ionisation structure, and geometry of AGN introduce additional features
and dependencies.

One key difference in AGN is the sensitivity of the reflection spectrum to the
ionisation state of the reflecting medium (Ross and Fabian, 2005). If the disc surface is
neutral, the prominent fluorescent line is the Fe Kα line at 6.4 keV. However, as the
ionisation state increases, the energy of this line increases due to the removal of
electrons from iron’s inner shells (typically 6.5–6.95 keV). The line may disappear
entirely at extreme ionisations, replaced by an absorption edge or a broad feature.
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(Garcı́a and Kallman, 2010) In addition, AGN often show narrow, unresolved Fe lines.
These are attributed to reflection from distant, cold material and appear as sharp lines.
Since these distant regions are not subject to strong relativistic effects, the narrow
component remains at or near 6.4 keV (Nandra et al., 2007).

The overall shape and strength of the reflected spectrum also depend on the slope and
high-energy cut-off of the illuminating power-law continuum (Zdziarski et al., 1996).
A harder incident spectrum increases the production of high-energy photons capable
of penetrating deeper into the disc and producing stronger Compton scattering. This
results in a more pronounced Compton hump. Conversely, a steep (soft) power-law
results in weaker reflection signatures and less ionisation.

3.5.2.1 The Soft Excess

Finally, reflection in AGN contributes significantly to the soft X-ray excess. An excess
of emission below ∼2 keV is commonly seen in Seyferts and quasars, which cannot be
explained with a purely thermal disc model (Gierliński and Done, 2004; Done et al.,
2012). Given that no XRB counterpart exists, this feature is exciting in the literature.
The reflection-centred mechanism follows reflection off a moderately ionised disc,
where blurred line emission and bremsstrahlung from hot surface layers blend (Ross
and Fabian, 2007). This suggests that the soft-excess component is naturally tied to the
disc-corona geometry and the disc’s ionisation state.

Alternatively, it may arise from a separate warm, optically thick Comptonising region
distinct from the hot corona (Done et al., 2012). This region is an intermediary
between the cool disc and the hot corona, scattering low-energy photons without
producing a hard tail. Disentangling these components requires detailed broadband
spectral fitting and often high-resolution spectroscopy. Much like the discussion on
coronal geometry, it is likely that the true configuration is a combination of the prior
hypotheses (Petrucci et al., 2016).

3.6 A Brief History of AGN as Variable Sources

Variability in the X-rays is observed in a significant fraction of AGN across a vast
variety of timescales. As discussed in the context of XRBs, such variability offers a
powerful diagnostic of the conditions and structure of the accretion disc and corona,
providing insights unavailable through spectroscopy alone. Crucially, the study of
AGN variability allows us to test the fundamental assumption of scale-invariant
accretion, the hypothesis that the same physical processes govern accretion onto black
holes of all masses, with characteristic timescales simply scaling linearly with MBH In
this section, we will explore the current picture of AGN variability, highlighting the
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parallels and potential differences compared to XRBs. This will set the stage for the
scientific work to follow.

3.6.1 PSD Analysis

Early studies revealed that AGN PSDs, like those of XRBs in the hard state, typically
exhibit ’red-noise’ characteristics. McHardy et al. (2007) demonstrate that the PSDs for
AGN appear remarkably similar in shape to those of their X-ray binary counterparts.
Key anchor-points are detected at lower frequencies, shifted by a factor consistent
with the ratio of the mass of the central object. This implies that the structure in the
PSD produced by modulation of accretion rates applies to AGN systems, as do any
geometric constraints previously used.

More specifically, many AGN PSDs are described by a twice broken power law model.
This would be mapped to the hard state in the XRB model. This power law transitions
from a white noise index (0), to ∼ −1, breaking a second time to ∼ −2 with increasing
frequency. McHardy et al. (2007) extracted two clear breaks by fitting a long-term PSD
with a series of Lorentzian components. However, unlike the large volumes of data
available for XRBs, due to the very large timescales, detecting both breaks for Ark 564
involved a complex analysis, combining three instruments and over a decade of
observing time.

Most population-style analysis for AGN has been limited to the high-frequency part of
the PSD, such that we observe only the high characteristic break. This break frequency,
νb, was observed to anti-correlate strongly with black hole mass while correlating with
luminosity (a proxy for accretion rate - see Chapter 1). This matched the behaviour of
the high-frequency break (νh) in XRBs (McHardy et al., 2006; González-Martı́n and
Vaughan, 2012). This illustrates the power of PSD analysis through the potential of a
black hole mass estimation, a notoriously difficult quantity to measure, directly from
X-ray timing.

Furthermore, the overall integrated fractional variability (rms) was found to
anti-correlate with luminosity and mass (Nandra et al., 1997; Turner et al., 1999),
consistent with the picture where higher mass (often higher accretion rate) systems
have their characteristic variability shifted to longer timescales.

Evidence this far validates using XRB models, such as the propagating fluctuation
model (Lyubarskii, 1997; Kotov et al., 2001), to interpret AGN variability. In this
context, the observed break is associated with a characteristic timescale at a specific
radius in the accretion flow. In the high-frequency break cases previously discussed,
this would relate to the faster dynamic or thermal timescale, geometrically placing the
inner edge of the fluctuating region. However, if a low frequency break could be
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observed, we might be able to explore the outer edge of the X-ray emitting corona or
truncation radius (Ingram and Klis, 2013).

Moreover, while there is some compelling evidence for high-frequency scale-invariant
accretion models, we note that we have only discussed the continuum noise so far. It
should also be noted that some AGN studies show Seyfert I sources with variability
reminiscent of XRB soft-states (Done et al., 2007). In addition, there is still significant
scatter in the break frequency measurements, sufficient to doubt trend-based claims.
This work can reach the low-frequency break for a large enough number of AGN to
tentatively test this theory from a second perspective: Does the high-frequency
correlation hold, or is the relationship more complex than a simple mass scaling?

3.6.2 Quasi-periodic oscillations

While the general structure of the aperiodic variability in AGN and XRBs shows
evidence of being comparable, quasi-periodic oscillations are more contentious. While
QPOs are ubiquitous in XRB systems, this does not appear true in AGN. However,
this could be due to observational limitations. As previously discussed in McHardy
et al. (2006), there is an inverse scaling of timescales in the disc with black hole mass,
so characteristic frequencies in AGN will be orders of magnitude lower than those of
their XRB counterparts.

QPOs, particularly the prominent Type-C LFQPOs, provide precise frequencies
potentially linked to fundamental timescales (orbital, epicyclic, precession) near the
black hole. Shifting the observed type C QPO frequencies down by the mass ratio
would place the predicted range in AGN at 10−5 − 10−7 Hz (days to years) (Vaughan,
2005). The detection of a QPO requires several cycles to be observed, not only to
confirm the period but also to provide sufficient statistical power across multiple
cycles to pass false alarm probability tests (discussed further in chapter 4) (Vaughan
et al., 2016). Few instruments have been observing for the decades required to observe
such frequencies in the X-rays. Until more recently, we have been limited to shorter
observations probing higher frequencies; therefore, our prospects have been limited
almost exclusively to locating analogues of the HFQPOs.

Despite these challenges, several candidate QPOs have been reported in AGN X-ray
light curves, summarised in Table 3.1 with their respective significances. The most
robust and persistent detection is in RE J1034+396, an NLS1 galaxy, exhibiting a strong
QPO with a period of ∼ 2.7 × 10−4 Hz initially discovered by Gierlinski et al. (2008)
and has been subsequently redetected. Several other significant QPO candidates are
classified as High-frequency, considering an XRB mass scaling.

In contrast, while the low-frequency QPOs are far more commonly observed in XRBs,
they appear almost entirely absent from our observational picture of AGN. Detections
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in AGN remain transient and less statistically secure than their high-frequency
counterparts. This raises the question of whether the distinct lack of low-frequency
AGN QPOs is truly an observational bias or a distinct difference between XRBs and
AGN. If so, this would imply a breaking or complication in the assumed scale
invariance of accretion.

Source Frequency (Hz) Significance Author
RE J1034+396 ∼ 2.7 × 10−4 3.4 σ Gierlinski et al. (2008)
2XMM J123103.2+110648 ∼ 7.3 × 10−5 (3.8 h) 3.1–6.7 σ Lin et al. (2013)
1H 0707−495 ∼ 2.6 × 10−4 > 99.99% Pan et al. (2016)
Mrk 766 ∼ 1.6 × 10−4 5 σ Zhang et al. (2018)
1H 0707−495 ∼ 1.2 × 10−4 3.7 σ fei Zhang et al. (2018)∗

1H 0707−495 ∼ 2.6 × 10−4 4.2 σ fei Zhang et al. (2018)∗

XMMU J134736.6+173403 ∼ 1.167 × 10−5 (23.82 h) 99.9% Carpano and Jin (2018)∗

3C 120 7.1 × 10−4 3 σ Agarwal et al. (2021)
RE J1034+396 2.34 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
RE J1034+396 2.73 × 10−6 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 7.81 × 10−5 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 2.83 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 4.69 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 9.77 × 10−5 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 1.66 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
IRAS 13224−3809 1.02 × 10−3 ≥ 3 σ Ashton and Middleton (2021)
1H 0707−495 1.95 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
1H 0707−495 1.27 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
PG 1244+026 2.15 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
NGC 4051 3.52 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
NGC 4051 1.56 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
Ark 564 1.88 × 10−3 ≥ 3 σ Ashton and Middleton (2021)
Ark 564 8.59 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
Ark 564 2.73 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
Ark 564 2.54 × 10−4 ≥ 3 σ Ashton and Middleton (2021)
Mrk 766 4.69 × 10−4 ≥ 3 σ Ashton and Middleton (2021)

TABLE 3.1: Prior QPO detections in AGN presented in order of publication date (∗

marked transient). Where ranges are given, different independent methods yielded
different results. Only 3 σ detections and above are listed. Where the original publica-

tion gave periods in hours, this has been quoted in parentheses.

3.7 Variability as a Bridge of the Mass Scale

Despite all the contentions discussed, we can be certain that the study of variability,
using the techniques outlined in Chapter 2 applied to the physical context described in
Chapter 1, provides a unique and powerful tool for probing accretion physics across
the vast range of black hole masses, from stellar remnants to the supermassive giants
powering AGN.

Assuming the underlying accretion physics driving this evolution is fundamentally
scale-invariant, the timescales over which we hope to observe state changes in AGN,
analogous to those in XRBs, are far beyond the human lifetime, let alone the length of
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observations. However, now that we have all-sky monitors across multiple bands, we
can begin to use population-level studies (Körding et al., 2006b). Instead of populating
space with several epochs for a single source, we populate it with different systems in
different stages of their evolution, on equivalent evolutionary tracks to those derived
from XRBs. This allows us to test any deviation from potential scale-invariance and
search for patterns within the population that might explain this.

XRBs also form a geometric anchor for AGN variability studies. We can estimate the
equivalent radii in AGN by leveraging the geometric relations between the PSD break
frequency and disc radius in XRBs. This is particularly advantageous since these
sources cannot be resolved and measured using direct imaging. Time-domain studies
are our only source of information regarding the complex innermost geometry of
Active Galactic Nuclei. We suggest that variability may be the key to unlocking
information on previously unresolvable scales.

In the following chapters, we apply this technique to the long timescale variability of
AGN across multiple energy bands to test the hypothesis that AGN behave as
scaled-up XRBs with the target of searching for the presence of scale-invariant
accretion.
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Chapter 4

Long-Timescale X-ray Variability in
AGN

4.1 Introduction

Variability is a ubiquitous feature of accreting systems, arising as a direct consequence
of the accretion process (Lyubarskii, 1997). As discussed in Chapter 3, the long
timescales associated with AGN have historically limited our ability to probe their
PSD at low frequencies (below ∼ 10−5 Hz) (McHardy et al., 2006). This observational
gap has left key questions unresolved concerning the nature of AGN variability on
long timescales. In this work, we will attempt to answer the following three key
questions:

• Is the origin of the apparent absence of low-frequency quasi-periodic oscillations
(QPOs) in AGN due to observational bias, a genuine absence of such features in
AGN PSDs, or a breakdown in the expected inverse mass-scaling relationship?

• Do AGN PSDs at low frequencies exhibit energy-dependent structures? What
can this reveal about the geometry and coupling between the accretion disk and
corona, and is it possible to construct an evolutionary framework analogous to
the hardness–intensity diagrams used for XRBs?

• To what extent do the statistical techniques employed introduce bias in our
inference of variability properties?

4.2 MAXI

The Monitor of All-sky X-ray Image (MAXI) (Masaru et al., 2009) is an X-ray monitoring
instrument on board the International Space Station (ISS). Launched in 2009 and
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FIGURE 4.1: The source positions of the MAXI sample using the Mollweide projection.

operating continually since, MAXI aims to produce ∼ continuous, wide-field
observations of the X-ray sky. Given the orbit of the ISS, MAXI scans the entire sky
over a 92-minute orbit, making it an ideal instrument for time series studies.

MAXI consists of two instruments that, when combined, provide coverage from
0.7–30 keV, with a well-calibrated range from 0.7–20 keV. The Gas Slit Camera (GSC)
covers 2–30 keV with a large effective area of 535cm2 at 5 keV and high sensitivity
provided by proportional counters. The Solid-state Slit Camera (SSC) is optimised for
soft X-rays (0.7–7 keV). Despite having a smaller effective area of 100cm2, the SSC has
much better energy resolution at the lower energy range (Tomida et al., 2011).

To date, MAXI has been used to detect X-ray flares, monitor outbursts from X-ray
binaries and identify transient sources (Kawamuro et al., 2018). However, in this
work, the appeal is the long-term monitoring capabilities. Unlike all other X-ray
surveys, the long baseline and regular cadence make it an ideal instrument for
studying variability patterns of accreting systems.

4.3 Data

The MAXI all-sky survey contains 101 AGN with redshifts below 0.3. Each source has
over a decade of regular cadence observations across the X-ray bandpass from 0.7 to
20 keV (see above). The sample consists of 44 Seyfert I, 16 Seyfert II and 32 BL Lac
objects (of the remaining 8, there are two quasars, one radio galaxy and 5 in a
pair/cluster system). Figure 4.1 shows their distribution across the sky.

While ∼ 100 systems is not a large sample statistically, it is comparable in size to the
sample from González-Martı́n and Vaughan (2012) and is the most significant
long-timescale quasi-even cadence X-ray sample of AGN currently available.
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FIGURE 4.2: Illustration of the annular background region used in data extraction for
CenA.

4.3.1 MAXI Data Extraction

We have extracted data from the MAXIONDEMAND pipeline
(http://maxi.riken.jp/mxondem/ ) using one-day bins from 55075 to 59950 MJD.
MAXI follows a 92-minute orbit, providing an almost perfect, evenly sampled cadence
over 1-day binning. MAXIONDEMAND permits using custom regions for photometry,
although the default annular background subtraction method raises the possibility of
source flux contamination within the background region. We defined a source region
of 1.5 deg radii for each AGN, with an annulus background region set at 2.0–3.0 deg
(see figure 4.2). However, this can still result in a substantial number of negative count
rate bins for low signal-to-noise ratio sources.

In order to perform Fourier analysis, the background count rates cannot simply be
ignored, as this would lead to uneven cadence. Ashton and Middleton (2021) shows
that a significant fraction of negative count rates (≥ 10%) biases the error on the
power spectral index in the PSD. This bias is also present when all negatives are
replaced with zeros, suppressing low-frequency power.

http://maxi.riken.jp/mxondem/
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FIGURE 4.3: An illustration of the 2-5keV PSDs for Ark 564 in the GSC (left) and SSC
(right).

The background was retained within the light curve to avoid negative count rates
altogether. In doing this, we assume that we have a constant white noise background
contribution, which can be included in the PSD modelling by adding a constant to the
white noise component. We do not fit for this, as the mean µ = µsource + µbackground, but
the components cannot be disentangled. The 2

µ white noise component inherently
contains the background contribution.

4.3.2 MAXI Band Selection

The GSC and SSC extracted light curves from overlapping energy bands to assess
instrument consistency. Bands were chosen to isolate different areas of the AGN SED
(see Chapter 3) to help disentangle potential mechanisms behind variability
properties. The bands used are 2.0–20.0 keV to cover the full SED available to MAXI
and probe the low frequency PSD, and 2.0-10.0 keV to allow the inclusion of higher
frequency XMM-Newton data. Narrow energy bands are also used: 0.7–2.0, 2.0–5.0,
5.0–8.0, 8.0–12.0, and 12.0–20.0 keV. The 2.0–5.0 keV band isolates the region between
the Fe line and soft excess, allowing the SSC and GSC to be directly compared. The
5.0–8.0 keV band is chosen to isolate the contribution from the iron line, accounting for
some level of broadening (Fabian et al., 2000). Finally, the higher energy bands allow
for comparisons between hard and soft data mimicking those performed for XRBs
(Belloni et al., 2005; Wijnands and van der Klis, 1999; Körding et al., 2006b; Done et al.,
2007).

Figure 4.3 illustrates the Fourier domain products, where the PSDs show marked
discrepancies between the SSC and GSC in the 2.0–5.0 keV range. These discrepancies
are attributed to thermal leakage in the SSC post-2015, which has introduced spurious
flaring in soft bands. The unpredictable nature of the flaring created background
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subtraction and data-flagging issues. This work requires reliable long-term baselines,
and given the GSC’s more stable response, we limit our analysis to GSC data. This
restricts usable energies to E ≳ 2 keV.

The strongest feature visible in the PSDs is a ∼ 72 day period, which appears in all the
MAXI periodograms and all energy bands, indicating that this is an aliased period.
Indeed, the 72-day period corresponds to the ∼5°/day retrograde motion of the ISS
(Masaru et al., 2009; Roithmayr et al., 2012), which introduces spurious features at this
period and its harmonics in uncorrected data. This was confirmed by the almost
complete disappearance of the feature after barycentric correction. This precession
period illustrates the importance of understanding instrumental artefacts before
reporting any results, as it falls perfectly within the frequency range we might expect
for an AGN analogue of an XRB low-frequency QPO.

Archived Two-Line Element (TLE) data for the International Space Station (ISS) were
retrieved (Kelso, 2025), providing daily orbital position and velocity estimates over
the MAXI monitoring period in Earth-centred coordinates. Using the astropy.time

module, each MAXI observation time was matched to the closest available TLE to
determine the satellite’s position. The SG4 database (Rhodes, 2023) was then used to
correct for the respective orbital parameters, completing the barycentric correction.

However, there were also other persistent peaks within the measured .flc
periodograms, which were not removed during the barycentric correction. In order to
extract and estimate the intrinsic PSD, it is vital to identify and, if possible, remove
such features (Vaughan et al., 2003b). In order to identify whether these periods were
intrinsic variability to the source or unfiltered instrumental artefacts, we produce the
cross-spectrum. Mathematically defined in Chapter 2, the cross-spectrum highlights
coherent features within two series. While it is commonly used to increase the
signal-to-noise of potential periodic features, in this case, we use it to cross-check the
presence of instrumental frequencies.

We follow the hypothesis that purely instrumental peaks will appear in all light curves
regardless of their position on the sky. Therefore, to identify instrumental features, we
take the cross-spectrum of a source light curve for a selected source and the
background of another. If we took the background of the same source, some counts
could leak into the background region. This could mean that intrinsic variability from
the source is imprinted upon the background light curve. Therefore, when the
cross-spectrum is taken, this could also produce peaks at non-instrumental
frequencies. We can mitigate this effect by using the background light curve of a
different source. Moreover, by choosing a source in a different position in the sky, any
variable background sources are inconsistent and do not produce significant peaks in
the cross-spectrum. One such cross-spectrum can be found in figure 4.4.
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FIGURE 4.4: The cross-spectrum for Ark 564 and the background of NGC 4151.
Aliased periods are indicated by grey bands highlighting the frequencies we subse-
quently excluded. (Cross spectrum produced using Stingray (Huppenkothen et al.,

2019; Huppenkothen, 2019)

Our analysis showed that additional instrumental features were present in the
cross-spectrum, which were not removed by applying the barycentric correction.
Peaks at these frequencies appeared in the cross-spectrum but not in the fully
processed light curves provided by MAXIONDEMAND. This implies that further
filtering was carried out on the .flc data in the MAXI pipeline whereby these features
were removed. While the negative count rates in the MAXIONDEMAND light curves
can cause distortion, the lack of these profound peaks further proves that they are
instrumental features.

Given that the presence of negative count rates distorts the overall shape of the PSD,
we decided to continue with the .flc (raw) data but to locate and discount these alias
frequency bins from any likelihood estimation. Localised distortion from these periods
is possible, but the effect on the overall broadband noise fit should be minimal. Given
that the features have some width, we discount a tiny band around each frequency to
encompass neighbouring distorted bins too (annotated in grey in figure 4.4). This
isolates only around ∼ 20 frequency bins per periodogram with ∼ 2500 bins but
provides a much more robust estimate of the intrinsic source variability.

4.3.3 Interpolation and Rebinning

Typical Fourier methods demand even sampling; where small gaps (up to 3 days) are
present, we apply simple linear interpolation. Spectral distortions from linear
interpolation methods result in a predictable smoothing of high-frequency variability,
which is simple to replicate in simulated datasets. More complex interpolators could
inject hard-to-trace, correlated noise artefacts into the PSD. We decided to apply the
simplest form of interpolation due to the small gap size and ability to replicate the
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effect during simulation easily. While more complex interpolations, such as a spline,
may offer patterns that contain correlated noise, they also risk injecting aliasing
features that are more complex to trace.

The other potential resolution for missing data points is to re-bin the data to a lower
cadence. As shown in the raw PSDs in 4.3 (left), we are white noise dominated well
below the Nyquist frequency. In this case, it is reasonable to re-bin our light curves to
2–4 days to reduce the amount of interpolation required, which also benefits from an
increased count-rate, hence smaller errors per bin. The downside of re-binning is
introducing a larger gap between the highest frequencies accessible by MAXI and the
high-frequency PSD using data from XMM-Newton.

All subsequent MAXI PSD analyses use GSC light curves with 1-day binning, with
background included, are barycentre corrected, and gaps are interpolated linearly.

4.3.4 The XMM-Newton Sample

Where available, we source XMM-Newton data (Jansen et al., 2001) for our AGN
sample to model the high-frequency end of the PSD. In each case, we use the longest
archival observation to access the widest possible frequency range. In cases where
high-frequency work has been performed in González-Martı́n and Vaughan (2012), we
extract the same set of observations (in addition to the longest observation where the
two samples do not overlap).

The raw Observation Data Files (ODFs) were retrieved from the XMM-Newton
Science Archive https://nxsa.esac.esa.int/nxsa-web/ and processed using the
Science Analysis System (SAS) version 1.3 (Gabriel, 2017), employing the standard
XMMCLEAN pipeline to generate a pre-filtered event list. The EPIC-pn (Strüder et al.,
2001) data were filtered to include only single and double-pixel (PATTERN ≤ 4)
events. We extract the high-energy, full-frame background and isolate periods of soft
proton flaring to obtain the single longest contiguous data segment. Source photons
were extracted from circular regions with radii in arcseconds, centred on the known
MAXI AGN positions. Background events were selected from adjacent, source-free
regions of similar size to ensure robust background subtraction.

To ensure precise timing analysis, we applied barycentric corrections to all event times
using the BARYCEN tool (Nasa High Energy Astrophysics Science Archive Research
Center (Heasarc), 2014), which corrects photon arrival times. Source coordinates (RA
and Dec) were matched to their MAXI counterparts to guarantee consistency across
datasets. The corrected light curves were binned into 100s intervals and did not
require further interpolation.

https://nxsa.esac.esa.int/nxsa-web/
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FIGURE 4.5: Illustrations of the broadband noise models fitted in this Chapter. See
Chapter 3 for physical motivation.

4.3.5 Broad-Band Noise Models

We fit three parametric models to the PSD: a simple power law, a sharply broken
power law, and a smoothly broken (bending) power law. Full derivations and physical
motivations are provided in Sections 2 and 1. We make one change to the sharply
broken and bending power laws to better encompass previous observations. In AGN,
we expect increasing steepness of the power law index above each frequency break (as
observed in McHardy et al. (2004)). We therefore re-parameterise the model by
defining β2 = β1 + δβ, and fit for δβ instead. The slight alteration in parameter
definition enforces the physically motivated prior of increasing steepness without
requiring constraints in the minimisation routine, in addition to improving posterior
convergence.

Due to the strong anti-correlation between the normalisation A and the power law
index β, we remove A from the fit. Using fractional RMS normalisation (Vaughan
et al., 2003a), the integral of the PSD yields the fractional variance, σ

µ
2. Exploiting this,

we normalise each light curve to σ
µ

2. This way, we ensure we fit PSDs with power
identical to the data. Removing the highly correlated normalisation parameter allows
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Simple power law (spl)
Normalisation −10.0 < logA < 10.0

Index 0 < B < 2.5
Sharply broken power law (bknpl)

Normalisation −10.0 < log(A) < 10.0
Lower frequency index 0 < β < 2.5

Change in index 0 < ∆β < 1.5
Break frequency −8.0 < νbreak < −5.0 (MAXI)

−5.0 < νbreak < −3.0 (XMM)
Smoothly broken (bending) power law (bndpl)

Normalisation −10.0 < log(A) < 10.0
Lower frequency index 0 < β < 2.5

Change in index 0 < ∆β < 1.5
Bend frequency −8.0 < log(νbend) < −5.0 (MAXI)

−5.0 < log(νbreak) < −3.0 (XMM)
Damped random walk (DRW)

Normalisation −10.0 < log(A) < 10.0
Characteristic frequency −8.0 < log(νchr) < −5.0 (MAXI)

−5.0 < log(νchr) < −3.0 (XMM)
Background (MAXI only) −10.0 < log(Bkg) < 10.0

TABLE 4.1: The bounds used to fit the continuum noise models following the mcP-
SRESP routine. A background parameter is added only for MAXI light curves and

removed from the model for the XMM-Newton data.

for better estimates of power-law indices and, hence, better constrained posteriors
with faster convergence times. Since the MAXI light curves include both source and
background counts, the intrinsic normalisation is not directly measurable; hence, no
information was lost due to the use of this scaling method. Final priors can be found
in table 4.1

4.3.6 mcPSRESP

Our method is based on the PSRESP (power spectrum response) algorithm described
in Uttley et al. (2002). PSRESP is a statistical model designed to evaluate the
compatibility of PSDs with theoretical noise models such as broken power-laws. The
algorithm accounts for some of the common issues faced in Fourier analysis, such as
sampling effects, red-noise leakage, and aliased statistical features through the use of
Timmer-Koenig (Timmer and König, 1995) simulations (see Chapter 2). The method’s
core replicates observational effects in a sample of simulations to replicate potential
distortion and retrieve the underlying PSD shape. In contrast to the original PSRESP
algorithm, we replace the grid-based fitting with an MCMC minimisation
(Foreman-Mackey et al., 2013). This allows posteriors to be retrieved and scales much
better to higher dimensions due to optimised algorithms, which can be parallelised for
further efficiency. However, the principles of the process remain unchanged.
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The distribution of powers for any given frequency in a periodogram follows a
chi-squared distribution with two degrees of freedom (Priestley, 1981)(further
information about the statistical properties of PSDs and periodograms can be found in
2). We adopt the Whittle likelihood (Whittle, 1953; Frieden, 1972), which follows the
same statistical distribution;

LW(θ) = −1
2 ∑

ν

[︃
log Mθ(ν) +

Pν

Mθ(ν)

]︃
(4.1)

The evaluation compares model Mθ , evaluated for parameter set θ, against the
measured periodogram Pν. In the case of fitting to PSDs, one would instead choose a
Gaussian likelihood (providing the Gaussian assumption holds for the specific
number of averages used); this is not used in this Chapter but will be revisited in
Chapter 5. Since we work with an algorithm that minimises the negative
log-likelihood, we add a negative sign during the evaluation at each step. It should
also be noted that we apply logarithmic binning to both the data and the simulated
model periodograms when calculating the log-likelihood to increase the acceptance
fraction in the MCMC (Papadakis and Binas-Valavanis, 2024). Without this step,
weighting is placed on the high frequency end of the periodogram due to the larger
data points in that region of the PSD (Alston et al., 2019). Logarithmic binning
mitigates this effect and improves the mixing of MCMC walkers. Importantly, binning
is applied only during likelihood evaluation and not during simulation to preserve the
true distribution of power across frequencies.

After a 2500-step burn-in period, we test the autocorrelation time every 200 steps; this
provides walkers time to move between checks. In order to ensure well-mixed chains,
we run for a minimum of 50 times the autocorrelation time. As a test of convergence,
we apply the Gelman-Rubin (GR) statistic (Gelman and Rubin, 1992). This statistic
compares the variance within each chain to the variance across all chains. In the case
of a well-converged fit, these will be approximately equal, giving a statistical value of
1. Values above 1.1 indicate the chains have not yet converged. We continue the
MCMC process in 200-step intervals until a value of GR < 1.1 is reached, allowing
sufficient chain mixing. Comparing the auto-correlation time and variance within
chains ensures posteriors are drawn from converged chains, which have had sufficient
time to explore all parameter space (Goodman and Weare, 2010). We also set a ceiling
to iterations at 25,000, flagging any sources which had not converged within this time,
indicating an incompatible model.

We perform two statistical tests once convergence is reached for a given model. The
first test is a test of model preference known as the Akaike information criterion (AIC).

AIC = 2k − 2ln(L) (4.2)
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The AIC penalises the log-likelihood L of a best-fitting model for the number of free
parameters k (Liddle, 2007). A ∆AIC ≥ 2 indicates a preference for one model
compared to another (Burnham and Anderson, 2002), while the value of the AIC itself
does not hold any significance. This prevents over-fitting and ensures the preferred
model is the most likely of the set, given its complexity. The second test is a measure
of goodness-of-fit. Given the nature of the uncertainties on a periodogram, a
conventional chi-squared test will not yield reliable estimates, as this relies on a
Gaussian distribution of errors. Instead, we follow the approach described in Vaughan
(2005), where we instead check that the residuals of the fit are consistent with a given
distribution. For periodograms, the expected distribution is χ2 with two degrees of
freedom. The best-fitting model will have residuals following the same probability
distribution as the intrinsic periodogram. In this way, we can infer that the data
observed is a single realisation of the distribution of powers about the preferred
model.

We can be confident in characterising the underlying noise properties in the light
curves by checking that we have a well-converged, preferred model with known
posterior errors and a quantified goodness-of-fit.

4.3.6.1 A Summary of the Fitting Method

The mcPSRESP method is summarised as follows:

1. Interpolate the light curve to ensure even sampling. Re-binning can be applied
at this stage if necessary.

2. Produce a mean-subtracted periodogram for the observed light curve using the
method described in Vaughan (2005). Periodograms observe the longest
frequencies and place the tightest constraints on power law indices and break
frequencies.

3. A noise model is selected with appropriate bounds from 4.1.

4. A least squares fit is performed for the given noise model to provide a starting
position for the MCMC walkers.

5. Walkers are distributed about the best fit following Gaussian priors for
constrained parameters and flat priors for the parameters the least squares fit
could not constrain.

6. At each walker position for N averages:

• Perform a Timmer-Koenig light curve simulation for the same noise model,
ten times longer than that of the data.
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• Select a random section of the light curve, the same length as the data, to
replicate the effect of the window function (observing window).

• Resample the simulated light curve such that it replicates that of the
observed light curve, ensuring that any effect of the observation strategy
(i.e. gaps) is accounted for.

• Interpolate the resampled simulation to include any effects caused by linear
interpolation. Re-bin if required.

• Extract a mean-subtracted periodogram Psim(ν)

7. Standard errors are obtained for the simulated powers at each frequency (in this
work, 30 averages were taken to be approximately Gaussian).

8. The averaged, simulated periodogram is then compared to the observed
periodogram. An MCMC routine is performed using emcee (Foreman-Mackey
et al., 2013) to obtain the optimum model parameters by minimising the
negative log-likelihood.

9. We evaluate the Gelman-Rubin convergence diagnostic every 200 steps to
confirm the fit has fully converged. We set a requirement of 1 ≤ GRstat < 1.1.
Before ceasing the MCMC, we also check whether the chains have mixed
sufficiently by enforcing the total number of steps to exceed 50 times the
autocorrelation time.

10. Different continuum noise models are compared by looking for a change in AIC,
with ∆AIC > 2 indicating a preferred model.

4.3.7 Testing Interpolation with Simulations

Linear interpolation is required to produce an evenly sampled time series for Fourier
analysis. However, it would be naive to assume that this does not affect the intrinsic
shape of the periodogram. In order to test the limits for using such a technique in this
work, we exploit our TK simulations.

We generate a population of N-simulated light curves using the TK method. We drop
a fraction of the data points in each case, f. We then proceed to fit the PSD for each
light curve sequentially and save the distribution of retrieved parameters. We can
then compare this to the actual value used in the simulation. Figure 4.6 illustrates the
upward trend in the power law index with increasing drop-fraction. This implies that
the more linear interpolation is used, the more artificial power is added to the PSD
(Deeter and Boynton, 1982), particularly affecting the longer timescales
(Max-Moerbeck et al., 2014). Increasing the power law index also contributes to the
limit at which linear interpolation can be used. For lower indices or those close to
white noise, linear interpolation can be used confidently until ∼ 10% of data points
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FIGURE 4.6: The effect of linear interpolation on the measured power law index.

are missing. However, a steepening index means a higher level of structure within the
noise, so it only takes a minimal amount of interpolation to distort the PSD.

There are other potential options for cases where we cannot use linear interpolation,
including more complex interpolation techniques, such as spline or polynomial.
However, the effect these may have on the shape of the PSD is much harder to
quantify, so we discourage their use. Instead, where Fourier methods cannot be used,
we can resort to Gaussian Processes, which are designed to model the structure of
correlated noise in the time domain and are optimised for uneven series. Gúrpide and
Middleton (2025) discusses their application to PSDs in detail.

4.3.8 A Proof-of-Concept

As a proof-of-concept, we apply our method above to simulated data drawn from
each of the four noise models tested in this work: the simple power law (spl), bending
power law (bndpl), sharply broken power law (bknpl), and damped random walk
(drw).

The input model is shown in black in figure 4.7. The shaded regions representing the
16th and 84th percentiles of the simulated power distribution reflect the skewed χ2

2

variability expected about the model. If the posterior range lies within the expected
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FIGURE 4.7: A proof of concept for the simple power law (left) and damped random
walk (right). Best fitting model with confidence intervals (blue) is overlayed over 16-

84th percentiles of 1000 realisations of the PSD (grey)

distribution of realisations from the input model, we conclude that the fit is
statistically consistent with the underlying process.

4.3.9 Outliers

Significant outliers in the PSD may indicate the presence of a QPO. As discussed in
Vaughan and Uttley (2005), assuming mass scaling, AGN QPOs analogous to type-C
QPOs in XRBs are expected at frequencies between 10−7 and 10−5 Hz; this is precisely
the region we can probe using MAXI.

The detection process proceeds in two stages. The first, which we refer to as the
largest outlier false alarm probability (FAP) test, assesses the statistical significance of
the strongest deviation from the best-fitting broadband noise model. The method is as
follows;

1. Using the best-fitting continuum model, we identify the most prominent outlier.
Following Vaughan (2005), we define S as the observed periodogram power at
frequency νi, and P as the model PSD value at that same frequency. The ratio
2S/P measures the feature’s statistical significance under the assumption of a χ2

2

distribution of powers.
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2. We generate 10,000 simulated light curves using the best-fitting continuum
model, replicating the data sampling and interpolation procedure to preserve
aliasing effects.

3. We identify the largest outlier and find its 2S
P value in each simulation.

4. We determine how often a simulated light curve produces a value of 2S
P greater

than or equal to that observed, treating each frequency νi as an independent trial.

In this way, we determine the significance of the largest outlier. A threshold of 2σ is
used to progress to stage two, recognising that the FAP method is conservative as it
does not account for the power being distributed over multiple adjacent frequency
bins, i.e. the periodic feature may reside in more than one frequency bin. Including
this effect would increase the significance of any candidate features, as it is improbable
that adjacent frequency bins would contain a strong outlier by chance.

In step two, we initialise walkers for the broadband noise component of the fit around
the best-fitting continuum noise model, with errors defined from the fit posteriors. We
initialise a Lorentzian component with its central frequency centred on the detected
outlier while allowing the width and coherence to vary freely. We re-run the mcPSRESP

fit, allowing the broadband noise parameters to vary within their posterior ranges to
account for correlations between QPO frequency and continuum features such as the
break frequency. We then evaluate the ∆AIC between the broadband noise-only
model and the model by adding the Lorentzian component. A significant preference
for the more complex model is an independent confirmation of the presence of a
significant feature.

In this work, we will indicate significant features as those with;

• ≥ 3σ significance in the stage one, largest outlier FAP test

• ∆AIC > 2 in favour of the model including a Lorentzian

We flag (although not necessarily accept) likely candidates as those with a > 2σ

significance in the FAP test, with a statistically significant preference for a QPO model.
Finally, we classify potential QPO candidates as those with > 3σ significance in the
FAP test, but either non-converged or statistically insignificant improvements in
∆AIC. Given that the AIC suggests a model preference, not a goodness-of-fit, there
may be evidence of a potential feature, but the Lorentzian may be a poor model for
describing the data.

While we do not systematically fit for harmonics, the mcPSRESP framework allows the
addition of multiple Lorentzian components. Harmonics can be included by fixing
their central frequencies to integer multiples of the fundamental QPO. The presence of
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a harmonic would imply a strong primary signal which would be retrieved during the
largest outlier test. A harmonic also requires a preference for the single QPO model
over continuum noise, though this may improve further with additional periodic
components.

4.3.9.1 False Positives and Detection Rates

Before applying any feature detection method to real data, evaluating its performance
through controlled simulations is essential. To this end, we use Timmer–Koenig
simulations to generate light curves with known periodic features and test whether
our detection method can accurately recover them. This allows us to characterise the
regions of parameter space where detection becomes challenging, resulting in false
negatives and identifying our false positive rate.

We generate a series of 10,000 light-curves for various simple, power laws, sampling
from 0 ≤ βi ≤ 2 and −7.2 ≤ νb ≤ −5.5. In each case, 2% of the data points are
randomly removed to simulate the quasi-regular cadence of MAXI and allow linear
interpolation under realistic conditions (as discussed in Vaughan (2005)). In 50% of the
simulations, a periodic feature is injected using parameters drawn from the prior
space defined in table 4.1.

For each simulation, we fit the broadband noise using mcPSRESP and apply the outlier
detection procedure described in the previous section. Simulations with injected
signals that fail the FAP threshold are classified as false negatives. We then test that
we can reproduce the Lorentzian parameters accurately. We also test whether
including a Lorentzian component introduces measurable distortion in the recovered
broadband noise parameters, particularly in cases of strong or broad periodic features.

The false positive rate was 63%, while the false negative rate was 32%. Figure 4.8
shows the periodic parameter space (e.g. index vs. coherence). Detected QPOs are
marked with blue circles, missed detections in grey, and false positives in red. As
expected, most false negatives occur at low coherence, where the QPO is too broad
and causes significant deviation to the continuum at lower indices, where the
structure in the noise itself is weaker (5%).

4.4 Results

4.4.1 Ark 564

To test our method, we compare our results to previous work by McHardy et al. (2007)
on Ark 564. At the time, this was the only AGN with a sufficient baseline of X-ray
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FIGURE 4.8: An illustration of the detectable parameter space for QPOs in terms of
coherence Q and simple power law index for a MAXI-like standard deviation σ and

mean µ

observations for such an analysis, and required the use of data from three different
instruments to observe two breaks in the PSD. Our work will look for the
high-frequency break within the XMM-Newton data and the low-frequency break in
the MAXI data. While the high frequency break may fall within the MAXI range, we
are unfortunately white noise dominated where it would occur.

mcPSRESP modelling of the data from Ark 564 in the 2-8keV band indicates a
preference for a broken power law with a break frequency of log(νbreak) = −6.75+0.2

−0.3.
The bending power-law converges at log(νbend) = −6.87+0.6

−0.4, suggesting agreement
about the location of the break. The damped random walk model predicts a higher
characteristic frequency of log(νbend) = −6.45+0.1

−0.1. While the damped random walk
has the narrowest posterior distribution, the ∆AIC strongly prefers a broken power
law with a much higher likelihood despite the additional free parameters. Our break
frequency measurement sits slightly lower than the doubly bending power law and
multiple Lorenztian model in McHardy et al. (2007) but is still consistent within errors.

We find an estimate for the high-frequency break from XMM-Newton. Ark 564 shows
preference for a broken power law model with log(νbreak) = −4.11+0.6

−0.6. We are again
finding a slightly lower frequency break than obtained McHardy et al. (2007) but still
consistent within our errors.

We therefore confirm that our method is yielding consistent results with prior
literature and can be used in a broader sample.
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4.4.2 Best fitting noise models for the AGN sample

We fit all 101 AGN PSDs for all six energy bands. Illustrative plots for all sources can
be found in the Appendix. A selection for demonstration purposes can be found in
figure 4.9. Appendix A includes fits for all models with uncertainties. According to
the AIC, the best-fitting model has been indicated in the preference column with
optimal parameters to the right.

The vast majority 61 − 75 sources preferred a broken power law. Of what remained
∼ 20 showed preference for damped random walks and bending power laws, with a
slight majority for bending power laws. The remaining showed a preference for a
simple power law shape. There is no discernible split between the Seyfert I and II
types in their model preference; both seem to follow the same approximate preference
split.

We repeat this for XMM-Newton, where most prefer simple power laws. This is due to
the limited frequency range available due to our method of taking the longest
window. This is further reinforced by the significantly larger errors on the break
frequency estimates. Example fits for XMM-Newton are shown in figure 4.10

4.4.3 Energy Dependence of Parametric Fit Parameters

We take the median of each energy band and plot each break frequency (see figure
4.11). We then perform bootstrapping to test for a trend with energy. The result is
highly consistent with zero correlation, suggesting that the break frequency is energy
independent. This is consistent whether or not we choose to include the broad bands
indicated in grey.

We recover the same trend when we repeat the search for a correlation with energy
(figure 4.12). There does not appear to be an inclination-dependent correlation with
energy. We also notice an approximately equal proportion of Seyfert I and II types
reporting statistically significant breaks, reinforcing the absence of an
inclination-based trend.

4.4.4 Exploring Correlations with Mass and Accretion Rate

We retrieve estimates for the SMBH masses and bolometric luminosities (or accretion
rates, Ṁ) from the literature. We can compile mass estimates for 65 AGN, with
multiple estimates through different methods for the most well-known sources.
(Appendix A denotes which catalogue was used for each estimate. Measurements
were taken from; Wu and Liu (2004); Bao et al. (2008); Bianchi et al. (2009); Du et al.
(2016); Koss et al. (2022); Kozłowski (2017); McKernan et al. (2010); van den Bosch
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(A) NGC 6300

(B) Mrk 335

FIGURE 4.9: Example mcPSRESP fits for the MAXI 2-10keV band. The observed Pe-
riodogram is shown in grey, the best fitting model in blue, and its 1σ confidence in-
tervals are shaded accordingly. NGC 6300 favours a simple power law while the Mrk
335 prefers a broken power law with a break frequency of −6.85 ± 0.06. All Powers

are given in rms2 Hz−1 units
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(A) Mrk 348

(B) ESO 141-55 503750101

FIGURE 4.10: Example mcPSRESP fits for the XMM 2-10keV band. The observed Pe-
riodogram is shown in grey, the best fitting model in blue, and its 1σ confidence inter-
vals are shaded accordingly. ESO 141-55 503750101 favours a simple power law while
the Mrk 348 prefers a broken power law with a break frequency of −3.19 ± 0.17. All

Powers are given in rms2 Hz−1 units
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FIGURE 4.11: Break, bend and characteristic frequency plotted against the median
energy for each band. Wide bands are shown in grey and narrow bands in blue.

(2016); Weedman et al. (2012); Woo and Urry (2002); González-Martı́n and Vaughan
(2012) and Vasudevan and Fabian (2009)) Whilst in some cases these estimates agreed
fairly well, in other cases they were substantially different. In such cases, we follow a
prioritised selection based on the mass measurement method. We indicate a
preference for masses in the following order: reverberation mapping, virial estimates,
and spectral measurements. If there are multiple estimates from one method, we take
the one with the smallest reported error. In cases where errors could not be found, an
error of 0.3 dex was assumed. Figure 4.13 illustrates the distribution of break
frequency with mass, where markers indicate AGN type.

We proceed to consider the role of accretion rate, as it has been shown that the position
of PSD breaks scales with both mass and accretion rate (both in the high-frequency
case: McHardy et al. (2006) and the evolution of the low frequency break as seen in
XRBs - Belloni et al. (2005)). However, only a few bolometric luminosity estimates are
available; we therefore perform fits to the X-ray spectra obtained from the Swift data
archive (UKSSDC - https://www.swift.ac.uk/) in order to access the X-ray luminosity,
and then scale by a bolometric correction Vasudevan and Fabian (2007).

The fitting was performed in XSPEC - 12.13.0 (Arnaud, 1996; Gordon and Arnaud,
2021) using either a simple model: TBABS*CFLUX*POW or one with reflection included
TBABS*CFLUX*(POW*RELXILL) (Garcı́a et al., 2014). Minimisation over fit parameters
was performed using PyXspec with nH values sourced from HEASARC for the RA
and Dec values of the AGN. Including CFLUX allowed us to obtain the flux in the 2-10
keV bandpass and access the bolometric luminosity through correction.

We apply the bolometric corrections from Vasudevan and Fabian (2007) to convert
Lx(2−10keV) to Lbol . This provides us with 61 estimates for the bolometric luminosity,
which results in 63 possible estimates for accretion rates when combined with those
obtained from the literature. We prioritised the literature measurements over the
spectral fitting estimates in cases where both could be obtained. Figure 4.15 illustrates
the distribution of low-frequency break frequencies with the Eddington scaled
accretion rates (using the values for the SMBH mass).
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FIGURE 4.12: Break, bend and characteristic frequency plotted against the median en-
ergy for each band. Wide bands are shown in grey and narrow bands in blue. Seyfert

I sources can be found on the left, and Seyfert II on the right
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FIGURE 4.13: The energy dependence of characteristic timescale with mass for dif-
ferent noise models. Circles represent Seyfert I AGN and squares represent Seyfert II
AGN. Blue points indicate a statistical preference for the broken, bending and damped
random walk. Red points converged on a solution, but a simple power law solution
was preferred statistically. The legend in the top right indicates the Pearson correla-

tion coefficient as an indicator of a correlation
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(A) 1ES 1011+496 (B) 3C 111

(C) NGC 1365 (D) On 231

FIGURE 4.14: Example spectral fits for four sources selected randomly from those with
a converged fit.

While all of the correlation scores are generally low, the Pearson correlation coefficient
measurements for the Ṁ show, on average, a higher coefficient than that for M alone.
We measure the strongest correlation coefficients in the wider bands for Ṁ. The 2-10
and 2-20 keV bands in the broken and bending power law case show potential
evidence for a slightly positive correlation with Ṁ. We then combine the two
parameters into a fundamental plane, plotting the break frequencies against M + Ṁ
(see figure 4.16). We find our correlation coefficients in the wide band, bending power
law case, to decrease slightly, suggesting the driving force of any putative correlation
is with Ṁ.

Bootstrapping was performed to evaluate the statistical significance of any correlation.
Draws from the x and y errors assumed a Gaussian distribution about the measured
points. In all cases, the p-value is insufficient to reject the null hypothesis of an
uncorrelated result. Moreover, the trends with break frequency are not consistent
between the different models, suggesting a potential bias caused by model selection.

Burke (2023) suggested a correlation of break frequency with mass, but the break’s
nature was not specified. We extract breaks from our XMM-data and repeat the
analysis for correlation with mass, accretion rate and a fundamental plane. Instead of
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FIGURE 4.15: The energy dependence of the characteristic timescale with accretion
rate for different noise models. Circles represent Seyfert I AGN and squares represent
Seyfert II AGN. Blue points indicate a statistical preference for the broken, bending
and damped random walk. Red points converged on a solution, but a simple power
law solution was preferred statistically. The legend in the top right indicates the Pear-

son correlation coefficient as an indicator of a correlation
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FIGURE 4.16: The energy dependence of characteristic timescale with log(M) +
log(Ṁ) for different noise models. Circles represent Seyfert I AGN and squares repre-
sent Seyfert II AGN. Blue points indicate a statistical preference for the broken, bend-
ing and damped random walk. Red points converged on a solution, but a simple
power law solution was statistically preferred. The legend in the top right indicates

the Pearson correlation coefficient as an indicator of a correlation
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r = 0.62+0.12
−0.14

p = 0.159

FIGURE 4.17: The correlation with XMM characteristic frequency with mass, accretion
rate and the fundamental plane (log(M) + log(Ṁ). Pearson scores and significances

are indicated in the top right.

considering the models individually, this time we explore all the break frequency
measurements together, given the small sample.

Despite the very small number of points, Figure 4.17 provides a strong indication of a
negative correlation with mass, with a Pearson score of -0.74 and a significance of
0.028, suggesting there is only a 3% chance that this data was in fact drawn from a set
with zero correlation. We see a positive trend with Ṁ, a Pearson value of 0.71 and a
significance of 0.069. A fundamental plane showed signs of a positive correlation with
a Pearson value of 0.61; however, the significance of 0.16 is less convincing than the
prior two. We therefore suggest that there is tentative evidence for a positive
correlation with Ṁ and a negative correlation with mass for the high frequency break.
More data, particularly in the region of 0.1 Eddington, will help to confirm or disprove
this result.

We also find cases where the index at the highest frequency in the MAXI data and the
index at the lowest frequency in the XMM data differ by ≥ 3σ significance, given the
slope errors. This is strong evidence for a high-frequency break in the gap between the
frequency coverage. Due to the inclusion of the background term in the MAXI data,
we cannot analytically retrieve estimated break values with any reasonable errors.
However, the trend in indices in all cases is ∼ 1 → ∼ 2, further suggesting the
presence of a high frequency break. Sources for which this is relevant are shown in the
table below.

Source MAXI Index MAXI σ XMM Index XMM σ

Fairall 9 0.78 0.04 2.46 0.40
NGC 931 0.97 0.05 2.41 0.44
NGC 3783 0.78 0.07 2.54 0.28
Mrk 509 0.93 0.06 2.45 0.43
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4.4.5 Model Dependent Frequency Bias

It is often seen as conventional to model AGN variability with a damped random walk
(also known as an Ornstein-Uhlenbeck process) (MacLeod et al., 2010; Zu et al., 2013).
This model follows a bending power law structure with a fixed low frequency index of
0 and a fixed high frequency index of 2. However, there is limited physical motivation
for the damped random walk (Kasliwal et al., 2015; Caplar et al., 2017), with broad
band PSD modelling suggesting two breaks with indices breaking from 0 → 1 → 2
with increasing frequency (McHardy et al., 2006). It is therefore possible that by fitting
a damped random walk, one biases the characteristic frequency estimate.

In order to test this supposition, we fit our long timescale MAXI data using mcPSRESP
with a damped random walk and compare the results for the characteristic frequency
νchr with the νbend from our bending (smoothly broken) power law fits. By plotting νchr

against νbend, we can test for a deviation from a pure y = x null hypothesis.

As we can see from 4.18, it is indeed the case that there is a significant bias in the
frequency estimate when using a damped random walk, with a linear frequency
dependence. Bootstrapping indicates a highly significant positive correlation with a
significance of 2.6 × 10−5 on a Pearson score of 0.68. This suggests that the broken
power law typically converges on lower values for νbreak than the damped random
walk for νchr.

Compared to a bending power law, a model which can replicate the damped random
walk model exactly, there is a much smaller upward trend in the bias with frequency.
In most cases, the offset is systematic with the damped random walk again predicting
higher νchr for a given νbend. However, the difference is less stark overall than when
comparing the drw to the broken power law, which is expected given their similar
shapes.

The broken power law and bending power law results deviate more at higher
frequencies. This places key emphasis on the choice of a sharp break compared to a
steady bend. We note that the error bars for the bending power law are larger on
average than for the broken power law, but the bootstrapping accounts for this.

All three panels in figure 4.18 indicate that the model choice will affect the measured
index.

4.4.6 AGN as XRB analogues - The Hardness Ratio and Low frequency
QPOs

When comparing X-ray binaries it is useful to consider the hardness ratio. To calculate
the hardness ratio, we extract Swift light curves for each of our sources in bands which
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FIGURE 4.18: An indication of the offset between characteristic frequency measure-
ments for the different models tested here. The top panel shows a broken power law
against a damped random walk. The centre panel shows a bending power law against
a damped random walk, and the final panel compares broken and bending power

laws.
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sample different parts of the SED. The two bands selected for Swift are 0.6 - 1.0 and 1.0
- 10.0 keV. We plot the hardness ratios against the break frequency and test for the
presence of a correlation (see figure (4.19) but do not find any evidence for one
regardless of the chosen noise model.

Conversely, Kubota et al. (2024) find a strong correlation between the hardness ratio
and the Type-C QPO frequency in Galactic black hole binaries, consistent with a
systematic evolution of spectral and timing properties across accretion states. The
XRBs follow a well-defined track in hardness versus characteristic frequency, where
increasing QPO frequency corresponds to spectral softening as the source transitions
from the low/hard to high/soft state.

The absence of such a correlation in our AGN sample may reflect the differing
timescale regimes probed by current AGN data. It is also possible that intrinsic
differences in the accretion geometry between AGN and XRBs dilute this relation, or
that the hardness ratio used here (based on limited Swift coverage) is not a sufficient
proxy for state transitions on AGN timescales. Given our results from 2, we may not
be in the realm of weak stationarity in some of our measures, which will distort the
results. Additionally, while the QPO frequency in XRBs can evolve over an order of
magnitude during a single outburst, AGN are observed at single snapshots along their
much longer evolutionary paths. While we cannot plot the track for each source, we
would expect instead to see our sources populate along the same trend, representing
their present spectral state. Our low signal to noise may be potentially obscuring any
underlying correlation.

We also make a key assumption here: we have assumed that our break frequencies
correlate with what would be the type C QPO frequency. However, despite a
thorough search, we find no evidence of QPOs in our MAXI light-curves. All peaks
observed in the raw PSDs are aligned with those discovered to be instrumental
through our previous cross-spectrum analysis. None of our most prominent outliers
( 2S

P ) values exceeded a 2σ significance, suggesting that the broadband noise model
was able to encompass the shape of the PSD accurately. When an attempt was made to
add a Lorentzian component, the parameters could not find a minima suggesting that
likelihood space over the QPO model parameters was flat. The ∆AIC always strongly
preferred the simpler model with fewer degrees of freedom.

4.5 Discussion

Having established the best-fitting PSD models across our AGN sample and
quantified their characteristic timescales, we now discuss what these findings reveal
about the underlying physical processes and how they compare to previous work.
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FIGURE 4.19: The energy-dependence of characteristic timescales with Swift hardness
ratio of 1-10 keV to 0.6-1.0 keV for different noise models. Circles represent Seyfert
I AGN and squares represent Seyfert II AGN. Blue points indicate a statistical pref-
erence for the broken, bending and damped random walk. The Pearson correlation

coefficient is displayed in the top right
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Most of our AGN preferred a break, bend or characteristic frequency model. The
breaks lie within the mass-scaled predicted range of ∼ 1 × 10−8Hz for very large
black holes to ∼ 1 × 10−5Hz for smaller AGN. Most notably, we have reproduced the
broken power law shape indicated in McHardy et al. (2007) with an estimate of the
low frequency break of log(νbreak) = −6.75+0.2

−0.3 and a high frequency break of
log(νbreak) = −4.11+0.6

−0.6, indicating a reproduction of the mass scaled twice broken
power law scaled from XRBs (McHardy et al., 2006). We find that five of our sources
suggest a double-break structure similar to that seen in X-ray binaries (XRBs) in the
low/hard and intermediate states (e.g., Belloni et al. (2005); Ingram and Done (2011).
Furthermore, it is possible that in those cases where a simple power law is preferred,
the break frequency is outside of our measurable range. This is reinforced by
significant evidence for a break in multiple objects between the highest observable
frequency with MAXI and the lowest for the XMM observation used in this work.

One of the more nuanced results of this Chapter is the preference for some sources for
a bending power-law over a broken power-law model and vice-versa. While in some
cases, such as that for Ark 564, these models agree within errors, there are many cases
where a preference is dictated with a clear distinction between the model break
frequencies in addition to the AIC. Given that there is some tentative evidence for a
mass scaling of the PSD structure compared to X-ray binaries, we might expand this to
suggest a distinction in the inner accretion physics between those favouring sharp
breaks and those favouring smoother bends.

We did not find any significant indication of a mass scaling when correlating the
low-frequency breaks with mass. We also failed to identify a correlation with accretion
rate or a fundamental plane constructed as M + Ṁ. While Merloni et al. (2003) and
Körding et al. (2006a) indicate that there may be a trend in the fundamental plane,
however, we are unable to recover it using the method in Plotkin et al. (2012). It
should be noted that while we started with 101 sources, 29 - 57 preferred a model with
a bend or break frequency with converged posteriors, highly dependent upon the
x-ray band used. Moreover, we retrieved 65 mass estimates and 57 accretion rate
estimates for the whole sample. Therefore, from an original sample of ∼ 100, only a
maximum of 52 points appear on the fundamental plane diagram when accounting
for model preference. Mass and accretion rate measurements form one of the
significant limitations to this work as we cannot plot all of our potential frequency
points due to a lack of mass estimates. Furthermore, estimations of both mass and
therefore the Eddington proxy for accretion rate carry large errors which naturally
lower any potential significance when following a bootstrapping method. When
considering the hardness ratio, we did not obtain any correlation that suggests AGN
follow the same movement through canonical spectral states as X-ray binaries.

Overall, our PSD fitting results also agree well with the findings of González-Martı́n
and Vaughan (2012), who analysed a sample of nearby AGN and identified breaks in



4.5. Discussion 115

many of their X-ray PSDs, typically favouring bending or broken power-law models
over simple power laws. While we do not identify all of the same break frequencies,
we can recover some additional measurements for new sources. However, we note
that our errors are larger and our break frequencies tend to be measured
systematically lower than those for González-Martı́n and Vaughan (2012). In
agreement with this study, we observe that a significant fraction of AGN require at
least one characteristic timescale to describe their variability. This suggests that such
breaks are a common, if not ubiquitous, feature in AGN PSDs.

However, we have also highlighted some clear distinctions from prior literature, most
notably the work by Burke (2023) whereby we illustrate that fixing the power law
indices within the damped random walk model has a significant effect on the break
frequencies measured when compared to both the bending and broken power law
shapes. Moreover, our measures in the x-ray, even when considering the damped
random walk model, do not appear to reproduce the correlation with black hole mass
discussed in Burke (2023). We suggest that the damped random walk is not an
appropriate assumption when considering X-ray PSDs due to the apparent bias it
introduces into the PSD fits; however, that does not imply that there is no process
occurring in the optical bandpass that is well described by this noise process. We will
revisit this suggestion in Chapter 5.

In general agreement with prior literature, we have not discovered any low-frequency
QPOs in the x-ray band despite a long term baseline and even coverage allowing
several potential cycles to be observed. Through extensive simulation tests, we
showed that the mcPSRESP pipeline accurately recovers model parameters under
realistic MAXI sampling and noise conditions, including those of QPOs. We found
that linear interpolation introduces minimal bias below 5% data dropout, and our
false-positive tests confirm that spurious detections are rare under the adopted model
selection criteria. These results increase confidence in the robustness of the PSD fits
across the sample. We therefore conclude that there were no detectable QPO
signatures within the MAXI data.

However, we preface this result, understanding that our signal-to-noise was very low.
In addition, including the background component and the presence of instrumental
periods indicate that our data may not have been sufficient to detect the periods
despite a long baseline. Moreover, the use of the periodogram over the PSD may, in
fact, have hidden low coherence features within the distribution of powers at any
frequency. While the choice was made to prioritise convergence of posterior break
frequencies, this decision may have inhibited our ability to detect QPO signals.

However, there is a continuous selection bias in all of the above discussion points.
MAXI is a survey instrument and does not have the sensitivity of pointed instruments
such as XMM-Newton. What we trade for a long baseline is a preference to
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oversample the brighter objects. This is likely why we have a much larger fraction of
Seyfert I morphologies than Seyfert IIs. Therefore, our statistical analysis is only
inclusive of the brightest, which is likely the most active of the AGN in the X-ray sky.
In addition, our sample is also likely biased towards more massive systems. This
means, unlike the sample in Burke (2023), we cannot reach masses below ∼ 10−6M⊙.
This therefore raises the question; is the correlation observed in such literature
anchored solely on the lower masses, joining clusters of potentially uncorrelated
points, or is our mass range too small to see the overall trend. Given the presence of a
trend, but a lack of statistical significance, it is possible our mass range is dominated
by the scatter of the relation and we would have reached a higher significance with a
greater range of AGN properties. This is also consistent with the large errors obtained
for the mass and accretion rate measures.

This work has highlighted several limitations of the hypothesis of scale invariance.
There is evidence of similar global trends, such as the evidence of breaks in the
majority of the AGN PSDs in the mass-scaled frequency range; we do not see any
evidence of QPO signatures. Given the ubiquity of these features in XRBs, their
complete absence from our X-ray results suggests the mechanism that produces the
QPOs, particularly the type C type, in X-ray binaries is not the dominant source of
variability in AGNs’ respective mass-scale frequency range.
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Chapter 5

A Gaussian Process View of
Energy-Dependent Variability

5.1 Introduction

In the previous chapter, we applied Fourier-based techniques (Section 2) to investigate
the variability processes introduced in Section 3. However, this approach revealed a
key limitation for long-timescale studies, namely the reliance on evenly sampled data,
which this Chapter aims to overcome.

While the MAXI data we employed was quasi-evenly sampled, this is rare for
astrophysical data. Observational strategies, spacecraft orbits, and instrumental effects
often produce light curves with significant gaps, rendering them unsuitable for
standard Fourier analysis. In the previous Chapter, we were limited to using only the
longest window for the XMM-Newton light curves, as gaps from removing the soft
proton flares would have been too large to assume a linear interpolation. Choosing to
leave gaps in the data then demands the use of a method which can model stochastic
variability across irregular sampling while preserving the underlying broadband
noise structure.

Gaussian Processes (GPs) offer a flexible, time-domain alternative to Fourier methods
that naturally handle irregular cadence and noise, making them an ideal solution in
this context (see Chapter 2). Whereas MAXI was previously the only way to obtain
suitable long-timescale X-ray datasets due to its quasi-even sampling and long
baseline, GP modelling allows us to more completely incorporate additional data such
as pointings by XMM-Newton and Swift.

The previous chapter also investigated PSD features’ energy dependence, such as the
break frequency. As discussed in Section 1, different energy bands are dominated by
distinct emission components and processes within the AGN. In addition, any
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relationships between bands tell us something about how those regions interact with
one another, further motivating an expansion of our analysis across a broader energy
range. In this work, we expand our studies to include the long baseline optical survey
ZTF, as its baseline overlaps with MAXI. At the same time, its sampling is only
accessible to GP (or other uneven cadence) methods.

This chapter addresses the following research questions:

• Can Gaussian Processes be used to model X-ray light curves, and are the results
consistent with those obtained from Fourier-based methods?

• Do Gaussian Process models reveal subtle periodic features that were not
detected via Fourier analysis, particularly in unevenly sampled light curves?

• Are there long-timescale correlations between X-ray and optical variability, and
what might these reveal about the physical connection between emitting
regions?

To investigate these questions, we apply the Mind the Gaps Gaussian Process
framework to both X-ray (MAXI) and optical (ZTF) light curves of the same AGN
sample, enabling a direct comparison of variability properties across methods and
wavebands.

5.2 Data

We begin by incorporating the MAXI data from the previous chapter following the
same reduction methods. This will serve as a test of the method and allow a direct
comparison to the optical data.

The Zwicky Transient Facility (ZTF) is a wide-field optical time-domain survey whose
primary science goal is to detect transiting and variable features
(https://www.ztf.caltech.edu/, Bellm et al. (2019), Masci et al. (2019)). ZTF
operates in three optical bands, g, r, and i with a typical exposure of 30 seconds. The
instrument scans the entire northern hemisphere every two nights using a large CCD
camera and the entire 47 square degrees of the P48 telescope at the Palomar
Observatory. The flexible timing strategy gives ZTF a unique ability to balance the
monitoring of long-term trends, which is the focus of this work, with a highly
successful alert stream for rapid transients. ZTF began scientific observations in 2018
with a significant overlap with MAXI, with the long baseline allowing us to observe
the ∼ 10−6 Hz break frequency we observed in the MAXI light curves. This makes
ZTF an ideal optical counterpart to our X-ray analysis.

https://www.ztf.caltech.edu/
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Given the observing strategy of ZTF and its fixed position, we are restricted to sources
in the northern hemisphere. Fifty-five of our MAXI sample had ZTF data which we
extracted in the g-band. The AGN are listed in table 5.2 with source positions for
reference.

TABLE 5.1: ZTF Sources with Matched Coordinates (Underscores removed, RA/Dec
rounded)

Source Name RA (deg) Dec (deg)

NGC4151 182.64 39.41
NGC2617 128.91 -4.09
ON231 185.38 28.23
3C454.3 343.49 16.15
1ES0502+675 76.98 67.62
Mrk421 166.11 38.21
3C129 72.29 45.01
Mrk110 141.30 52.29
RXJ1053.7+4929 163.43 49.50
CygA 299.87 40.73
NGC931 37.06 31.31
3C111 64.59 38.03
4C4.42 185.59 4.22
1ES0120+340 20.79 34.35
PG1553+113 238.93 11.19
1H1934-063 294.39 -6.22
Mrk926 346.18 -8.69
ESO548-81 55.52 -21.24
NGC2992 146.42 -14.33
3C279 194.05 -5.79
IRAS05078+1626 77.69 16.50
1ES1426+428 217.14 42.67
3C382 278.76 32.70
NGC3516 166.70 72.57
Mrk335 1.58 20.20
MCG-01-24-012 140.19 -8.06
MCG-02-12-050 69.56 -10.80
2MASXJ11454045-1827149 176.42 -18.45
NGC3227 155.88 19.87
3C390.3 280.54 79.77
MCG-01-13-025 72.92 -3.81

Continued on next page
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TABLE 5.1: ZTF Sources with Matched Coordinates (Underscores removed, RA/Dec
rounded)

Source Name RA (deg) Dec (deg)

Mrk509 311.04 -10.72
4C09.57 267.89 9.65
NGC5995 237.10 -13.76
PKS1510-08 228.21 -9.10
4C+18.51 265.53 18.46
3C66A 35.67 43.04
1ES1218+304 185.34 30.18
APLib 229.42 -24.37
OJ287 133.70 20.11
NGC5506 213.31 -3.21
Mrk1148 12.98 17.43
3C120 68.30 5.35
RGBJ1117+202 169.28 20.24
MCG+08-11-011 88.72 46.44
LEDA138501 32.41 52.44
NGC2110 88.05 -7.46
2MASXJ21383340+3205060 324.64 32.08
MCG-02-08-038 45.02 -10.82
M87 187.71 12.39
Mrk348 12.20 31.96
2FGLJ1931.1+0938 292.79 9.62
3C273 187.28 2.05
1ES1011+496 153.77 49.43
4C+74.26 310.66 75.13

5.3 Methods

In our analysis of the X-ray data, we assumed that the quasi-even sampling allowed
the use of linear interpolation. However, several possible issues make this method not
ideal for time series analysis in general. Primarily, a linear interpolation is the wrong
noise model (VanderPlas, 2018), it assumes the system behaves deterministically and
smoothly between observations. AGN variability is stochastic; it evolves randomly
with correlations over time. Once interpolated, the data appear evenly sampled;
however, it violates the stationarity assumption as the interpolated noise does not
follow the same stochastic noise process as the data. Imposing a linear model between
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gaps masks real variability and injects fake structure. Interpolating over gaps can
suppress power at high frequencies, which alters the slope of the PSD, while
interpolating over regular sampling gaps can introduce false features. Moreover,
linear interpolation underestimates the variance between observed points, giving a
false sense of precision in fitted parameters.

However, using a GP algorithm removes the need for assumptions related to
interpolation entirely. Mind the Gaps (Gúrpide and Middleton, 2025), is a Gaussian
process code designed for modelling PSDs and detecting periodic signals in
irregularly sampled, stochastically varying astronomical light-curves. Its primary
purpose is to model the PSD structure and detect periodic signals directly from the
time series. ”Mind the Gaps” works by fitting parametric models to the covariance
kernel in the time domain. By optimizing these kernel parameters to match the
observed light curve, the code effectively infers the properties of the variability
process represented in the frequency domain.

The code is built on the Celerite (Foreman-Mackey et al., 2017) algorithms. Celerite
implements highly efficient (O(N)) algorithms specifically for a class of GP kernels
that can be expressed as mixtures of damped simple harmonic oscillators or
exponential functions. Fortunately, these are the types of relationships commonly seen
in astrophysical accretion systems. Most importantly, this allows for robust PSD
inference and signal detection without resorting to interpolation.

5.3.1 Reproducing X-ray Results

Before using the method to analyse new data, we revisit our X-ray results from the
prior chapter to ensure consistency between the two methods. Unlike in the chapter 4,
models in the time domain are visually unintuitive. However, Celerite, the GP
software on which Mind the Gaps is built, does include PSD visualisation of the
kernels. In order to identify the best model configurations to try, we combined our
knowledge from the previous chapter with a sub-population of fits.

Our previous work suggested a significant fraction of the population contained a
break or bend within their PSD. GPs are not designed to reproduce sharp breaks in the
PSD, but smoother bends can be created using a combination of Lorentzian-like
kernels. Therefore, all reported characteristic frequencies will be fitted in the GP
regime using a smooth model such as a bending power law or damped random walk.
We note here that several more potential hyperparameters are needed to fit a bending
power law shape in the time domain (GP) compared to the 3 (4, including a
normalisation) required when using a deterministic model fit in the frequency domain.

Furthermore, our decision to use a series of Lorentzian kernels is physically motivated
by the modulation of accretion rates within the disc. Described in Chapter 3, each
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annulus produces its own Lorenztian component, which is then summed to create the
classic twice-broken PSD shape. As previously discussed, analysis of our MAXI data
identified several low-frequency breaks, while the XMM-Newton data contained the
high-frequency break. ZTF uses 30-second exposures, allowing it to cover a much
broader power spectral range than either MAXI or XMM-Newton individually, and
we therefore ensured to include kernels with a twice-broken structure.

Our MAXI analysis indicated that some of our X-ray PSDs were preferably fitted by a
simple power law, suggesting that the physically motivated break sat outside of the
observable frequency range. In order to model these shapes, we choose a Matern
kernel which replicates correlated noise but does not explicitly have a bend in its PSD.
The alternative is to allow the fitting of an SHO component with the bend frequency
placed outside the observed frequency range.

As with our analysis in the Fourier domain, we will need to test various models.
These models are made from different permutations of the core kernel functions we
have discussed. Model configurations with their free parameters and bounds can be
found in table 5.2, and example PSD and light-curves shapes can be found in figures
5.1 and 5.2.

As in chapter 4, it is vital to bound parameters to prevent unphysical solutions; this is
highly important when considering the larger numbers of degrees of freedom used in
some of our Gaussian process models. The bounds used in this work are provided in
5.2.

The method used to determine model preference is almost identical to that used in the
previous chapter. A model selection script has already been implemented in the Mind
the Gaps (Gúrpide and Middleton, 2025) framework, allowing the comparison of any
user-defined kernels. Models are compared using the ∆AIC and the ”best” model is
returned. An MCMC routine is used to evaluate the likelihoods using the Whittle
statistic. In this case, we cannot write a custom likelihood, so instead, we penalise the
AIC for any bend, break, or central Lorentzian frequencies placed within the
instrumental aliased bands discussed before. This strongly discourages the model
from choosing these locations.

As discussed in Chapter 3, the core assumption of the Gaussian process is that the
data points can be considered to be drawn from a Gaussian distribution (The data
points have Gaussian errors). However, the count rates in our previous work are very
low, suggesting we may be in the Poisson regime. We therefore check the distribution
of count rates in addition to the distribution of residuals.

Again, we use Ark 564 as our test source as it has the most well-modelled long
timescale X-ray PSD to which we can compare. We run the maximum likelihood
fitting and extract the best-fitting model; the fitting report plots are shown in Figure
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(A) Real term

(B) Real term + Real term

(C) Real term + Matern 3/2

FIGURE 5.1: A series of kernels used as models for the fitting, consisting of kernels
introduced in chapter 2

5.3. Upon inspection, it was clear that our standardised residuals (the top right panel)
are indeed non-Gaussian, suggesting that this light curve does not obey the required
condition of a Gaussian distribution over points.

5.3.1.1 Re-binning

Due to the Poisson nature of our MAXI X-ray light curves, we re-bin to increase the
number of counts per bin, tending to the Gaussian requirement. This means we are
unable to reach the highest frequencies observed. However, as discussed in Chapter 4,
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(A) Lorentzian

(B) Real term + Lorentzian

FIGURE 5.2: A second series of kernels used as models for the fitting, consisting of
kernels introduced in chapter 2

FIGURE 5.3: A Gaussian process fit report for Ark 564. The top left panel indicates the
standardised residuals, while the bottom left shows the light curve in instrumental
flux units. Right-hand panels indicate the residuals: standardised (upper right) and

raw units (lower right).
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TABLE 5.2: Gaussian Process model components and associated free parameters. All
parameters are sampled in log-space. Bounds are based on physically motivated pri-

ors, including the duration and cadence of the light curve.

Model Component(s) Free Parameters and Bounds

Model 1 RealTerm log(var), log( fbend)
Variance bounded between 1/10 and 10× the empirical
variance.
Bend frequency bounded between the data’s inverse du-
ration and Nyquist frequency.

Model 2 RealTerm + RealTerm log(var1), log( fbend,1), log(var2), log( fbend,2)
Same bounds as above, applied separately to each com-
ponent.

Model 3 RealTerm + Matern32 log(var), log( fbend) (RealTerm),
log(σ), log(τ) (Matern32)
σ bounded by square root of variance;
τ bounded between exposure time and total duration.

Model 4 Matern32 + Matern32 log(σ1), log(τ1), log(σ2), log(τ2)
Same bounds as above, applied to both components.

Model 5 Lorentzian log(var), log(Q), log(ω0)
Quality factor Q bounded between 1.5 and 1000. Central
frequency ω0 bounded within the observable range.

Model 6 Lorentzian + Lorentzian As above, doubled for two Lorentzian terms.
Model 7 Lorentzian + RealTerm Combines Lorentzian and RealTerm:

log(var), log(Q), log(ω0) (Lorentzian),
log(var), log( fbend) (RealTerm)

Model 8 Lorentzian + RealTerm + RealTerm Adds a second RealTerm with the same bounds as
above.

Model 9 Lorentzian + RealTerm + Matern32 Combines all three types: Lorentzian, RealTerm, and
Matern32; seven parameters total with bounds as pre-
viously described.

Model 10 SHOTerm (Unconstrained Q) log(S0), log(Q), log(ω0)
S0 (power spectral normalization) bounded between
values computed from variance and bend frequency, to
reflect the expected white-noise-normalised structure.

we are highly white noise dominated in this region; hence, the amount of information
lost is minimal.

We tested a range of 1-day to 6-day binned light curves to see at which point the
standard residuals appeared to follow a Gaussian distribution. We cannot suggest that
the data can be modelled with a Gaussian process. In order to evaluate whether the
standard residuals are Gaussian, we calculate the p-value for the KS test between our
standard residuals and a Gaussian distribution following the null hypothesis that the
two distributions are the same.

Figure 5.3.1.1 illustrates the re-binned standard residuals for 2, 4 and 6 day re-binning.
The re-binning did not indicate that the light curve can be modelled as a Gaussian
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(A) 2 day bins

(B) 4 day bins

(C) 6 day bins

FIGURE 5.4: Residual plots with best fitting model for 2, 4 and 6 day binning. The
lower left illustrates the light curve in flux units with the best-fitting model and confi-

dence intervals overlaid. Standardised residuals are indicated in the top left panel.
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process; for all binned points, the p-value remained well below 0.01, which would
indicate even some potential for the distribution to be Gaussian. Instead, we find
strong evidence for a Poisson distribution of data.

Given that the standardised residuals are non-Gaussian, we conclude that our X-ray
count-rates do not fulfil the Gaussian requirement and, as such, cannot be reliably
modelled with a Gaussian process. While the minimisation will converge on a fit, the
fit will not represent the data. We therefore decide to use the results from our Fourier
domain (chapter 4) moving forward. We note that this does not imply that all X-ray
instruments provide unsuitable data for Gaussian process modelling, and other
instruments, such as XMM-Newton, with its higher throughput, would undoubtedly
be able to provide more compatible data.

5.3.2 ZTF data

Now that we have developed a list of potential models, only the prior space needs to
be adjusted to move to an optical band. Unlike the MAXI data, the ZTF data is highly
irregular in sampling and, as such, was inaccessible to the Fourier methods used in
the previous chapter. However, the count rates in the optical bands are certainly large
enough that their errors will likely be Gaussian.

Damped random walk models have been widely used for long timescale optical PSDs
(Kelly et al., 2009; MacLeod et al., 2010; Burke, 2023). However, given the
demonstration of potential frequency biases, when using this model we include a
wider range of potential kernels such that we do not introduce a model selection bias
to our fitting routine. The same minimisation routine is applied to the optical as to the
X-rays. The bounds have been slightly adjusted, most notably the jitter term has been
increased to account for the higher count rates.

5.4 Results

We attempt to fit all 55 ZTF light curves with the Mind the Gaps model selection
routine. We began by converting our ZTF magnitude values into instrumental fluxes
using the zero point given for the g band. Of the 55 recorded sources, 41 produced
converged fits which could be carried forward. However, as shown in figure 5.4, we
note some non-Gaussian flux distributions for standard residuals. While not the
Poisson regime of the X-rays, this does suggest an incompatibility with a Gaussian
process.

While Gaussian processes are traditionally performed in flux space, AGN are known
for obeying a log-normal flux distribution (see Chapter 3). Therefore, we also repeat
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(A) 1ES 0120+340

(B) NGC 3516

FIGURE 5.5: Example fits in flux space using a Gaussian process. Both sources pre-
ferred a complex Real term + Lorentz + Matern kernel. The light curve on the lower
right is plotted with confidence intervals. Fit seems well converged; however, the stan-

dardised residuals for NGC 3516 differ considerably from a standard Gaussian.

the same analysis in g-band magnitudes to test whether this yields better standardised
residuals. Regardless, we expect to find the same value for any break frequencies,
whether modelling in fluxes or magnitudes. Therefore, this test acts as a confirmation
of the measurements from the flux space.

When comparing the light curves, the 1ES 0120+340 (upper) curve shows much less
stark and rapid variability than NGC 3516. This indicates that it is not a problem with
the method directly, but a limitation of its application. Gaussian process kernels
predict each point using it’s covariance to the others, they cannot model very sharp
variations well. Therefore, as opposed to a true Poisson distribution in the x-ray,
non-Gaussian standardised residuals in the optical likely reflect an underlying
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(A) 1ES 0120+340

(B) NGC 3516

FIGURE 5.6: Example fits in magnitude space using a Gaussian process. Both sources
preferred a complex Real term + Lorentz + Matern kernel. The light curve on the lower
right is plotted with confidence intervals. Fit seems well converged; however, the stan-
dardised residuals for NGC 3516 still differ considerably from a standard Gaussian.

variability process that is non-stationary or exhibits non-linear behaviour. Such
behaviour may be linked to transient phenomena, flares, or other mechanisms poorly
approximated by standard covariance kernels (Rasmussen and Williams, 2006;
Roberts et al., 2013).

Figure 5.7 shows an example PSD for the preferred model. While a Lorentzian
component is present, we observe that it is not taking a sharp, narrow shape but
making a much broader contribution to the noise. We do not find any evidence for
sharply peaked Lorentzians in our modelling, confirming the apparent lack of QPO
detections as in Chapter 4. It appears that the Matern is being used to lower the
secondary index of the damped random walk. This suggests that, with some better
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kernel choices, we may be able to retrieve convergence on fewer free parameters.
Additionally, the shape is indicative of one break at the high frequency end with a flat
trend at frequencies below the break, somewhat analogous to the DRW.

FIGURE 5.7: An example of the Real term + Broad Lorentz + Matern 3/2 kernel in
frequency space.

5.5 Exploring Potential Correlations

We repeat the correlations tests performed in chapter 4, exploring how the optical
break correlates with mass and accretion rate. Figure 5.8 shows the flux
measurements’ results. While the Pearson’s correlation coefficient suggests a tentative
weak positive correlation with SMBH mass, r=0.25, the p value indicates that the data
does not provide significant evidence to reject the null hypothesis of zero correlation,
p=0.3. There is no indication of a correlation with accretion rate.

The p-values were evaluated using a bootstrapping method. Therefore, the large error
bars on the measures for the break frequency, particularly in the low frequency region,
could be responsible for the consistency with an uncorrelated result. Despite this, we
do not appear to reproduce the relationship reported by Burke (2023).

We repeat the correlation tests with the break frequencies acquired from the fits in
magnitude space (see figure 5.9). We note the same general trends, with a weakening
of the suggested upward trend with black hole mass and a consistent lack of
correlation with the Eddington ratio.

We also attempt to explore correlations between the X-ray PSD breaks and the optical
PSD breaks (see figure 5.10). We first compare the MAXI 2-10 keV band to the ZTF
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FIGURE 5.8: MAXI 2-10keV break frequencies plotted against break frequencies taken
from the g-band flux Gaussian process fits. The Pearson value and corresponding p

value is displayed in the legend
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−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g
(ν
br

)
(Z

T
F

)

ZTF
r = 0.06, p = 0.551

FIGURE 5.9: MAXI 2-10keV break frequencies plotted against break frequencies taken
from the g-band magnitude Gaussian process fits. Pearson value with corresponding

p value is displayed in the legend
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g-band flux, followed by the g-band magnitude. We find no correlation; however, the
frequency range of the ZTF breaks suggests we are observing the high-frequency
break. Unfortunately, there are no overlapping observations to repeat this analysis
with XMM-Newton data.

FIGURE 5.10: An illustration of the relationship between the break frequency in MAX)
obtained from the previous chapter and the optical breaks obtained from our Gaussian

process fits.

5.6 Discussion

In the previous chapter, we discussed the potential bias introduced by using a
damped random walk model, often used to model AGN variability in the optical.
None of our converged fits showed a preference for a damped random walk; overall,
the preferred model was a real-term + Lorentzian + Matern. The Lorentzian component
was not narrow (like a QPO) but instead provided a more complex hump-like
structure, with the Matern adding additional noise. Given that the AIC penalises
model complexity, the more complex model must have had a consistently higher
likelihood over the DRW in all cases, suggesting that the underlying PSD shape is
more complex. However, we also note that the standardised residuals in several fits
indicate that a Gaussian process could not properly capture the flux and magnitude
data. This can lead to over-fitting with a complex kernel to encompass more rapid
variations (?). Moreover, when looking at the shape of the preferred PSD, it appears
that it could have been modelled with far fewer degrees of freedom, suggesting a
more customised kernel is required.

While sources with Gaussian residuals support this complex PSD structure, we also
note substantial errors suggesting that another, simpler custom kernel, could achieve
better results. This is one of the major pitfalls of using Gaussian processes, and
without physical motivation, choosing the kernel heavily weighs the results. In the
following chapter, we will address methods that can be used to incorporate a
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deterministic flare-like behaviour. Moreover, the distinct presence of non-Gaussian
residuals and the differing results when fitted in flux and magnitude space indicate
that the ZTF data should not be modelled with a Gaussian process.

While no statistically significant correlation between, mass and accretion rate could be
identified, this does yield some interesting discussion points. The results in this work
would indicate that the low frequency X-ray break is entirely independent of the
optical break, which, given the frequency range we observe, is almost certainly the
high frequency break (Uttley et al., 2005; Arévalo et al., 2009).

In our previous X-ray study, our most convincing correlation of the low frequency
break was with accretion rate. At the same time, the optical shows a stronger
relationship to mass (although, we stress again, neither trend is statistically
supported). While we cannot compare the XMM-Newton breaks to optical PSD
breaks, they are the only results that significantly correlate with both mass and
accretion rate. However, our tentative optical results track a positive correlation with
mass as opposed to the negative one we measured for XMM-Newton. This suggests
the potential for a much more complex interplay between the X-ray and optical
high-frequency components of the PSD.

While there is not enough data to independently claim a correlation in this work, we
note that the literature supports a trend with the optical break and mass (Burke, 2023).
However, we note that the statistically preferred model is more complex than a DRW,
fitted in this literature, despite the Gaussian process being given this as an option.
Given the poor nature of the fits, we cannot conclude anything about the correlations
from the GP fit parameters, as the parameters themselves are too likely to be subject to
over-fitting and potentially poorly estimated errors due to correlated residuals. This is
further supported by the preference for a more complex PSD shape than we report for
the high-frequency X-ray.

Our lack of narrow Lorentzian features indicating QPOs in the PSD further supports
our results from the previous Chapter. Given the frequency range around which we
are locating break frequencies, we may not have sufficient frequency resolution to
resolve such features, even with the help of a GP. This further supports our prior
conclusion that the lack of QPOs is consistent with the data quality. The MAXI data is
too noisy even with multiple periods. Even the wider features, when placed in the
context of their errors, fail to meet any significance that can be tested.

Most importantly, this chapter suggests that Gaussian processes should not be used as
a catch-all for irregular cadence data. The ZTF data here can be considered
incompatible with a GP routine. Instead their usage should be carefully tested and
considered. While many studies do not have the luxury of a second evenly sampled
data set with which to compare, this work shows that without it, much care must be
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taken to ensure all the statistics, especially the residuals are properly considered
before any conclusion can be made.
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Chapter 6

A Gaussian Process Model to Detect
Binary Self-Lensing

6.1 The Missing Black Holes

Due to the advent of high-cadence, wide-field photometric and spectroscopic datasets,
we now have an unrivalled view of the population of our galaxy. Notably, survey
missions such as Gaia (Gaia Collaboration et al., 2016), TESS (Ricker et al., 2015), and
ZTF (Bellm et al., 2019) have dramatically improved our ability to detect binaries,
variable stars, and compact object candidates through their dynamical or photometric
signatures.

Population synthesis simulates the evolution of stars within Galactic environments,
accounting for processes such as stellar winds, binary interactions, supernovae, and
common envelopes (Hurley et al., 2002; Belczynski et al., 2008). However, while such
simulations consistently estimate millions of binary black holes (Wiktorowicz et al.,
2021; Shao and Li, 2021), we have only observed ∼ 30 − 40 to date. A closer inspection
reveals that in the simulated binary population, a significant fraction of black holes are
predicted to be in non-interacting systems. Therefore, these black holes have never
undergone mass transfer and are ‘pristine’. This is largely because most massive
binaries either widen during mass loss (e.g., through winds or supernovae) or merge
during unstable mass transfer. As a result, systems that survive without significant
interaction often do so because their orbits are wide enough to prevent Roche-lobe
overflow altogether (Belczynski et al., 2008; Shao and Li, 2021). However, due to a lack
of ongoing accretion, such systems lack the bright EM signatures that standard
detection techniques rely on, rendering them invisible to conventional observational
strategies.
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There are three primary methods by which signatures of non-interacting black holes
can be detected. Suppose the black hole is in a wide orbit with a visible companion. In
that case, astrometric shifts are induced and hyper-precision missions like Gaia can
detect such motion (provided the binary is close enough and has a sufficiently wide
separation). This technique led to the proposed discovery of Gaia BH1 (El-Badry et al.,
2022) and similar candidates (El-Badry et al., 2023; El-Badry, 2024; Thompson et al.,
2019), though the nature of these systems remains debated.

The second option is to use radial velocity measurements, as the Doppler shift of the
visible star’s spectrum can reveal periodic motion indicative of a massive, unseen
companion. Spectroscopic monitoring over time can yield constraints on the dark
object’s orbital parameters and minimum mass. However, this method suffers from
mass-inclination degeneracy and typically cannot confirm a black hole without
additional constraints.

The final option is to exploit the effect of gravitational lensing. Gravitational lensing
occurs when a massive object bends the path of light from a background source.
Depending upon the alignment, mass and relative distances between the object and
lens, this bending can lead to multiple images, source distortion and magnification
(Witt and Mao, 1994; Agol, 2003). There are three types of gravitational lensing:
strong, weak, and micro-lensing. However, as we shall now discuss, the underlying
physics is the same in each case.

6.2 Gravitational Lensing

Let us first consider the simplified case of a point-like lens of mass Mlens, positioned a
distance DL from the observer. Now let us place a source S a distance DS from the
observer and define the distance between source and lens DLS (where
DLS = DS − DL). Much like optical lenses, the observed image I may be offset from
the actual source (object) position. If we take the optical axis along the line of DL, we
can define two angles: θ, the angle between the optical axis and the image and β, the
angle between the optical axis and the source position. However, this is unobservable,
so we must define a third angle ϕ, the angle between the image and the source
positions; this is the angle through which the gravitational field of the lens bends light
(see Figure 6.1).

We can relate the angles mathematically;

θDS = βDS + ϕDLS (6.1)
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(A) Gravitational lensing setup

(B) The Einstein ring

(C) Multiple images

FIGURE 6.1: A schematic illustrating the geometric parameters used in evaluating
gravitational lensing. Adapted from Mollerach and Roulet (2002)
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We can therefore define the reduced deflection angle α = ϕ DLS
DS

which allows us to
rewrite the angle relationship as;

θ = β + α (6.2)

Gravitational optics has defined ϕ for a given impact parameter b as ϕ = 4GMlens
c2b (Witt

and Mao, 1994). The impact parameter is defined as the perpendicular distance from
the light ray to the centre of mass of the lensing object. In the case of the point mass
b = θDL. We can now recast the deflection angle.

α = ϕ
DLS

DS
=

4GMlens

c2
DLS

DSDLθ
(6.3)

Substituting this into the lens equation β = θ − α, we obtain the full lens equation:

β = θ − 4GMlens

c2
DLS

DSDLθ
(6.4)

Multiplying through by θ, we can rewrite the lens equation in the form βθ = θ2 − θ2
E

where θE is the Einstein angle, which gives;

θE =

√︄
4GM

c2
DLS

DSDL
(6.5)

In the case of perfect alignment between source and lens, β = 0 and due to symmetry,
the image becomes a ring of angular radius θE. This type of image is given the fitting
name of an Einstein ring. When considering the geometric size of such images, it is
convention to refer to the Einstein radius RE, found by multiplying θE by DL.

RE =

√︄
4GM

c2
DLDLS

DS
(6.6)

This case can also be extended to cases where the lens is spherically symmetric with
the source aligned to its centre. In this case, the θE further depends on the mass within
the Einstein angle (Mollerach and Roulet, 2002; Agol, 2003).

If we now allow any source position relative to the lens, instead of a ring, we observe
two distinct images on opposite sides of the lens with angular positions determined
by;

θ± =
β

2
± θE

√︄
β2

4θ2
E

(6.7)

The angular separation ∆ can be calculated using the difference between the two lens
positions ∆ = θ+ − θ−;

∆ = 2θE

√︄
1 +

β2

4θ2
E

(6.8)
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The observed flux from a source is obtained from the product of its surface brightness
and the solid angle it subtends, Ω0. The effect of gravitational lensing is to deflect the
light such that the subtended solid angle changes. The source luminosity is therefore
amplified by Ω

Ω0
. In the case of a point-like lens, we can consider the contributions of

both images θ+ and θ−. The total magnification of the system is the sum of the
magnifications of the two images and is especially large when β ≪ θE (tending
towards an edge-on configuration).

Strong lensing occurs when the alignment between a background source and a
foreground lens is nearly perfect. It is most commonly observed on galaxy or cluster
scales, where the gravitational potential of the lens is sufficient to bend light rays into
multiple distinct paths, forming multiple images, tangential arcs, or even Einstein
rings when symmetry is high. The separation between images can be large enough to
resolve with direct imaging. In order to extract information such as the mass
distribution within the lens, complex modelling such as ray tracing codes are required
to map geodesics in the background spacetime.

Weak lensing does not produce multiple images. Instead, it manifests as a subtle
shearing or distortion in the observed shapes of background galaxies due to the
gravitational field of the lens. The distortion is typically on the order of 1% and cannot
be seen in any individual galaxy, so statistical analysis of large samples is required.
Despite its subtle signal, weak lensing is a powerful cosmological tool, allowing the
mapping of the dark matter distribution in the Universe and studying structure
growth over cosmic time. Surveys like the Dark Energy Survey (DES) and Euclid are
designed to exploit this technique at large scales. We will not consider extended
lensing in this work, but a complete mathematical analysis can be found in
Bartelmann and Maturi (2016).

Micro-lensing dominates the search for compact objects. In this configuration, the lens
and the source are unresolvable; there are no resolved images; instead, we detect the
transient light curve magnification of the background source flux. This transient
brightening can occur on timescales of up to weeks, but in this work, we will consider
shorter timescale events of ∼ hours (Agol, 2003; Witt and Mao, 1994).

6.3 Self-Lensing

Binary self-lensing is a special case of micro-lensing. In this case, we have a compact
object orbiting a companion star. The orbital separation is large enough such that the
systems are not interacting but are gravitationally bound. Each time the compact
object transits the star from the observer’s perspective, the light from the companion
star will be lensed. While the separation is not large enough to produce a resolvable
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Einstein ring, the orbit gives a predictable increase in brightness, which repeats in line
with the system’s orbital period (Agol, 2003; Wiktorowicz et al., 2021).

Adapting the prior description of gravitational lensing, in this case, defining the lens
as the compact object with mass MCO and the source as the companion star with mass
MS. For now, we do not specify the nature of the compact object but do assume that
the system is non-interacting and obeys Keplerian dynamics inclined at angle i.

In the case of self-lensing, we can simplify the gravitational lensing equations
assuming that the distance from lens to source DLS is very small relative to the
distance from observer to lens DL, such that DL

DS
≈ 1. We can also recast DLS as the

semi-major axis of the binary orbit a, adjusted for the system’s inclination. This
simplifies the Einstein radius equation.

RE =

√︃
4GMCOasin(i)

c2 (6.9)

In the case that DL ≈ DS = D the Einstein angle can be simplified to;

θE =
RE

D
(6.10)

Witt and Mao (1994) has computed the analytical solution to the lensing equation for
self-lensing systems without limb darkening, companion eclipses and elliptic orbits.
This defines the magnification factor µSL for a given lens position.

µSL =
1
π
[cFF(k) + cEE(k) + cΠΠ(n, k)] , (6.11)

where F, E, and Π are complete elliptic integrals of the first, second, and third kind,
respectively. The parameters are defined as;

cF = −b − r
r2

4 + (b2 − r2)/2√︁
4 + (b − r)2

, (6.12)

cE =
b + r

2r2
√︁

4 + (b − r)2
, (6.13)

cΠ =
2(b − r)2

r2(b + r)
1 + r2√︁

4 + (b − r)2
, (6.14)

n =
4br

(b + r)2 , (6.15)

k =

√︄
4n

4 + (b − r)2 , (6.16)

where b =
(︂

a
RE

)︂
cos i is the impact parameter, defined as the projected separation on

the image plane between the centres of the source and lens, and r = R/RE is the stellar
radius in units of the Einstein radius.
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It is common to perform calculations in Einstein units, which will be the convention
throughout this work. Including complexities such as limb-darkening requires
numerical simulation, which, while valuable, will not be featured in this work. This
work aims to identify potential candidates, leaving their exact modelling for future
work.

This analytic description also allows us to estimate the Einstein crossing time,
characterising the lensing event’s duration. It is defined as the time the source takes to
traverse a distance equal to the Einstein radius projected onto the source plane. This
will be the length of a single event for a self-lensing binary. tE = RE

v⊥
(Agol, 2003).

The mathematical prescription (and simplifying assumptions) above leaves us with an
achromatic symmetric profile that can be separated from other noise sources within a
light curve. In the following, we will explore the practicalities of locating these signals
to detect non-interacting binary black hole systems. More specifically, in this work, we
aim to answer the following questions:

• Can Gaussian processes be used to model and fit self-lensing signatures against
the background of stellar noise?

• What physical parameter space can we observe with our current survey data,
and what other instruments might we use to probe new areas of this space?

• How can we approach a search for rare signals on the survey scale using
machine learning methods?

6.4 Data

While self-lensing is achromatic (in the sense that the effect is independent of photon
energy), we will discuss and simulate only optical here, as the (main sequence)
companion star’s primary emission is in these bands. Not only is there a plethora of
all-sky optical data already available, but time domain studies for transit signals have
been the primary objective for planet-hunting missions with a high cadence and high
photometric precision. Moreover, significant work has already been done to produce
reliable models that describe stellar variability, which is essential for recovering a
planetary transit and which we can leverage to locate lensing signals.

Although rare, the first self-lensing event was discovered by Kawahara et al. (2018) in
Kepler data. However, these were white dwarf systems. The magnitude of the lensing
event increases with mass, making an auspicious start to the use of the technique. The
survey that will calibrate the testing performed in this work is the Transiting
Exoplanet Survey Satellite (TESS). TESS is a NASA space-based observatory launched
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in 2018. Often viewed as a successor to Kepler, TESS’s primary science goal was the
detection of exoplanets in the local galaxy. Sorabella et al. (2024) has already reported
some positive detections.

TESS follows a survey observing strategy situated in a highly elliptical orbit. Four
cameras are on board with a combined field of view of 96◦ × 24◦ per sector (Ricker
et al., 2019). The mission operates with a broad red visible bandpass. Each sector is
observed consistently for 27 days, offering light curves with 20 s to 2-minute cadences
(TESS Team, 2018). However, due to the uneven coverage of the orbital position, some
sources appear in multiple sectors, and some sectors have been revisited several times
throughout the duration of the mission.

To date, TESS has produced millions of light curves. While its design focused on
exoplanet detection, its cadence, sky coverage, and photometric precision make it an
ideal dataset for searching for rare and subtle signals such as self-lensing. Indeed,
Wiktorowicz et al. (2021) predicted that TESS could detect a handful to dozens of
self-lensing binary systems, depending on the underlying population model and
detection sensitivity. This raises the exciting possibility that TESS may already contain
evidence of a hidden population of compact objects.

6.5 Methods

This work’s Gaussian process used to model all light curves was TINYGP
(Foreman-Mackey and Ambikasaran, 2022). This library includes the same kernel
information as CELERITE and many more kernels to describe more complex aperiodic
noise. The option to design custom kernels and mean functions provides flexibility,
which is vital to a newly evolving field. In addition, there is significant GPU
development in the packages that will provide further speed improvements in the
future, which is vital for the study of extensive survey datasets.

TINYGP simultaneously fits the noise and a candidate feature (in this case, a
self-lensing signal) in the time domain. While the PSD is not produced as a byproduct,
keeping the fitting in the time domain rapidly increases the speed of obtaining a fit.
However, this does not mean we discard the frequency domain information entirely.
The Lomb-Scargle periodogram has a significant role in our feature analysis in the
later stages of the work.

It should be mentioned that in order to use TINYGP effectively, all stages must be
compatible with JAX (Bradbury et al., 2018). JAX is a Python library that accelerates
code (and TINYGP) for faster numerical analysis and, in our case, linear algebra
through just-in-time (JIT) compilation. In order to make the most of this acceleration,



6.6. Building the Gaussian Process 143

we limit ourselves to the kernel set built on quasi-separable matrices, the forms of
which we will discuss below.

6.6 Building the Gaussian Process

Gaussian processes are designed to model smoothly varying correlated noise
(Rasmussen and Williams, 2006). Several models have already been tried and tested in
the exoplanet community and have been highly successful in modelling stellar noise,
allowing exoplanet signals to be disentangled. We will implement several kernels
used in these studies for our stellar models.

6.6.1 Granulation

Granulation is a form of aperiodic correlated noise due to convection cells at the
stellar surface. In these cells, hot plasma rises, starts to cool as it radiates energy, and
then sinks back down. This creates a sequence of localised brightening and dimming
driven by the random superposition and turnover of the convective cells. The cells
themselves are on the order of hundreds to thousands of kilometres across and evolve
on timescales of minutes to hours or days, with smaller and younger stars typically
showing faster granulation cycles than larger or older stars (Mathur, 2000; Kjeldsen
and Bedding, 1995).

To the observer, granulation appears as low-amplitude correlated noise; aperiodic in
nature, it prefers certain timescales dictated by the size and age of the star. As derived
in Foreman-Mackey et al. (2021), we consider this preferred frequency a characteristic
timescale of a damped stochastic process. We model such a process using a damped
harmonic oscillator kernel with a fixed quality factor (Q = 1√

2
) parameter to create a

damped random walk (DRW). This creates frequency-dependent broadband noise
with a characteristic timescale but no dominant frequencies. The characteristic
timescale in the model τ then reflects the average lifetime of a single convective cell,
while the amplitude scales with the number of granules contributing to the observable
flux and the surface gravity of the star (Foreman-Mackey et al., 2021; Pereira et al.,
2019; Kjeldsen and Bedding, 1995). The granulation timescale goes as;

τgran ∝
1
g

∝
(︃

R2

M

)︃
(6.17)

This model captures the gradual loss of coherence in the light curve over time,
appropriate for granulation, where surface features evolve on a finite timescale and
exhibit only short-range temporal correlations. This model has also been tested and
applied in previous GP transit studies such as (Brewer and Stello, 2009; Nicholson and
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FIGURE 6.2: An illustration of the scaling relations used throughout this work with
Ms, the mass of the companion star

Aigrain, 2022). Overall, the DRW kernel effectively models granulation noise without
requiring high model complexity or prior knowledge of the star’s convective
dynamics.

6.6.2 Asteroseismic Modes and Periodic Noise

Light curves of main-sequence stars also contain variable components not due to
granulation. Asteroseismic oscillations are the most prominent, caused by the
propagation of sound waves through the stellar surface (Kjeldsen and Bedding, 1995;
Chaplin and Miglio, 2013). These occur on the timescales of minutes to tens of hours,
placing them directly into the observing window of light curves from instruments
such as TESS. Again, we choose a damped harmonic oscillator kernel, but this time
with a free quality factor to allow for the presence of a periodic component (Brewer
and Stello, 2009; Foreman-Mackey et al., 2021). The frequency of the primary mode,
given by the w hyper-parameter, is proportional to the star’s surface gravity and, as
such, depends on a subset of the lensing parameter set.

ωgran ∝
g√
Teff

∝
M

R2
√

Teff
, (6.18)

Such proportionality illustrates the importance of modelling the noise and signal
simultaneously, as the hyper-parameters of the kernel are directly related to the
deterministic parameters of the mean function. Fitting the two together removes
degeneracies while preventing unphysical solutions (see figure 6.2 to illustrate how
each hyperparameter depends on Ms).
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FIGURE 6.3: An illustration of the symmetric lensing shape against the asymmetric
flare

Both asteroseismic modes and granulation are familiar sources of variability in main
sequence stars and will be present in all our covariance matrices moving forward. The
variability caused by magnetic effects has also been included in prior studies
(Haywood et al., 2014; Luger et al., 2022; Foreman-Mackey et al., 2021). The movement
of sunspots about the rotational axis of a star is a further periodic feature; however,
such variations are often overpowered by more global variations, such as
asteroseismic modes for distant stars, where surface structure cannot be resolved. The
GP can also account for additional small uncorrelated fluctuations through its jitter
term, specifically those unaccounted for in instrument noise. For a helpful review on
modelling stellar variability through GPs, see Aigrain and Foreman-Mackey (2023).

6.6.3 Stellar Flares

The most substantial contaminant in our data are stellar flares. Flaring stars have been
studied for decades, and many physical mechanisms drive them. However, the vast
majority of flare models feature a rapid rise and much slower decay (Benz and Güdel,
2010; Hawley et al., 2014), which is distinctly different from the symmetrical shape of a
lensing profile (see figure 6.3).

In order to model such flaring systems, we use a CELERITE kernel to produce
quasi-periodic functions of varying amplitudes. The alternative choice would be to
use an exponential sine-squared kernel. This latter kernel is designed to model
periodic but not strictly sinusoidal behaviour, making it a good starting point for
modelling stellar flares. However, it does not fit within the quasi-separable matrix set.
Given the large amounts of data needed to be analysed to locate self-lensing, we
choose to limit ourselves to the quasi-separable CELERITE kernel to reduce
computational load and note that, in this work, we are not seeking to fit for stellar
flares but creating a system that can filter them out.
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FIGURE 6.4: All kernels in this work plotted in the time domain. This illustrates what
relationship each single point has with those around it

6.6.4 Ellipsoidal Modulation

The final component of the covariance matrix is ellipsoidal modulation, the periodic
changes in the observed flux as a result of the companion star’s distortion due to the
gravitational force of the binary object (Morris and Naftilan, 1993; Wilson and Sofia,
1976). Due to this being a gravitational effect, it can be ignored in the case of low mass
or wide binaries. Since ellipsoidal modulation is a purely periodic function, we can
use a cosine kernel to model it. Much like the asteroseismic kernel, there is a direct
relationship between the system’s mass and period, and the parameters entering the
kernel (Mazeh and Faigler, 2010; Loeb and Gaudi, 2003).

A = αellip

(︃
MCO

M∗

)︃(︃
R∗
a

)︃3

sin2 i (6.19)

Where Mco is the mass of the compact object, M∗ is the companion mass, R∗ is the
radius of the companion, a is the semi-major axis, and i is the inclination.

Figure 6.4 illustrates the kernels in the time domain, showing the time frame over
which they act and how they affect surrounding points. These kernels are non-linear,
so solving them would be highly challenging analytically. All of these kernels fall in
the quasi-separable set, making the inversion of the covariance matrix much faster.
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FIGURE 6.5: An illustration of the emulator against the true mathematical solution.

6.6.5 Defining the Mean Function

As previously mentioned in 2, the mean function is used to describe the deterministic
behaviour of the system, in this case, the lensing signature. Witt and Mao (1994)
determined the exact theoretical solution shown in equation 6.3.

6.6.5.1 Simulating Lensing Events

Evaluating several elliptical integrals in equation 6.3 for each point within the light
curve results in a very long code completion time. Fitting a single profile takes hours
without the inclusion of any structured underlying noise. When considering one
source, this is usable, but searching a population becomes a computational bottleneck.
We, therefore, began by defining a PYTORCH (Paszke et al., 2019) emulator to
interpolate over a grid of lensing profiles, which returns a fast but approximated
magnification for a given lens position for any given time. As shown in 6.5, this
emulator generally works well for longer-duration profiles but does not approximate
the sharper features with shorter crossing times. This motivated us to find another
way to evaluate these profiles.

Due to the requirement to use JAX, the lensing simulation was coded into RUST, a
language built for speed and compatibility. This reduced the code completion time by
a factor of 30, enabling accurate evaluation of sharp lensing features in a comparable
time to the emulator but without the approximate nature. We, therefore, continue with
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FIGURE 6.6: An illustration of possible lensing profiles for ∼ edge-on systems over a
single TESS light curve baseline

RUSTLENS as our lensing simulator moving forward for all events regardless of their
crossing times. This builds consistency within the method and removes the need to
retrain an emulator should any changes to the lensing model be required. Some
example RUSTLENS mean lensing profiles used within our work can be found in figure
6.6. We note that even in this tiny sample, the majority of events are short and sharp in
nature, suggesting the choice to model analytically was correct.

6.6.6 Incorporating the Mean Function

TINYGP is designed to work with an additive mean function. However, self-lensing
is, by definition, a multiplicative effect (see 6.3). By transforming the kernel to
magnitude space, we can use the self-lensing magnification equation in Wiktorowicz
et al. (2021) and transform our mean function to be additive. The alternative is to
compute everything in flux space and then fit using a vectorised mean function
containing the magnifications. Tests with both approaches were performed to see
where the lensing events could be retrieved most efficiently.

While the conversion to magnitudes was physically more correct, this prevented the
light curve from being JIT-compatible, resulting in a massive increase in compute
time. Furthermore, the conversion meant that the mean function and covariance
matrix were no longer simultaneously fitted. However, the trade-off for computing in
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flux space was that the mean function had to be multiplied by the mean flux to be
additive. This implies that we are fitting flux = GP + (magnification × mean magnitude)
as opposed to flux = magnification (GP + mean). However, this ran ∼ 20 times faster.
Therefore, we decided to work in flux space, understanding that we may have
underestimated our lensing effect on the light curve. This makes us more susceptible
to missing events in noisier light curves, but makes the process scalable to the speeds
we need to perform the analysis on a larger scale.

By fitting a series of simulated events, we can understand the limits of our method
and identify the properties of light curves that produce false negatives in this way. In
practice, we can fit light curves with similar properties using the time-consuming
magnitude conversion technique.

6.7 Filtering for Larger Data Sets

When working with a vast quantity of survey data, its quantity is as much a
complexity as it is an advantage. Wiktorowicz et al. (2021) has taken a population
synthesis code and provided estimates for the number of lensing events we might
expect to detect (although not looking at the significance of detection, as that depends
on the approach) for different instruments. The number of these systems predicted
compared to the number of observations taken is very small: hundreds of millions of
time series. The primary pitfall of using Gaussian Processes is their poor time
complexity scaling with data quantity; they are slow and computationally expensive.

Since we cannot inspect each light curve manually to identify the best candidates, it is
vital that the filtering can be performed robustly using algorithmic processes. We will
use a mixture of classifier methods described in D. In this chapter, we present
illustrations for TESS; however, ZTF, Kepler and other instruments may be included
similarly.

6.7.1 Creating The Training Data

We can use our calibrated Gaussian process to create large amounts of training data
calibrated to the telescopes we intend to use. We first sample the lensing parameter
space, given that several hyperparameters we intend to use contain relationships to
these values. We begin by drawing 80%

In order to do this, we construct our lensing parameter priors using a kernel density
estimate (KDE) derived from the population synthesis sample (the sample was
generated from the setup in Wiktorowicz et al. (2021), including the probability
weights). A KDE is a non-parametric method of estimating a dataset’s probability
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FIGURE 6.7: Histograms composed of one million KDE samples (blue) plotted over
the original population synthesis samples (grey) weighted by the probability of occur-
rence in the galaxy. Masses are given in solar units, while periods are given on a loga-
rithmic scale to manage scale better when sampling from the combined 3-dimensions

created by these distributions.

density function (PDF). Instead of assuming a fixed analytic form (e.g., Gaussian or
log-normal), KDEs place a smooth kernel over each data point and sum them to
produce a continuous, data-driven density curve Rosenblatt (1956)). Here, we note the
conceptual similarity between this method and our Gaussian process approach. We
use the Gaussian kernel implementation provided by SCIKIT-LEARN(Pedregosa et al.,
2011). The population synthesis sample and, by extension, the KDE, contain only
systems that survive stellar and binary evolution over cosmic time. This ensures that
we draw priors from a physically realistic region of parameter space. The KDE allows
us to construct a joint probability distribution for M∗, MCO, and log P.

We choose KDEs over theoretical parametric priors because the empirical distributions
(shown in figure 6.7) are sharply peaked, even with large sample sizes. This suggests
physical preferences for specific values, e.g. an intense concentration around the white
dwarf mass for MCO. Analytic distributions tend to smooth over these features or miss
them entirely. We, therefore, conclude that drawing directly from the KDE is the most
accurate way to retain physically meaningful structure in the parameter space.

For the remaining 20% of training samples, we use Latin-hypercube sampling to
ensure linear vector distance between our simulated points. This prevents
oversampling in one region of parameter space, which may bias the results of any
training while keeping the ‘grid’ size low. Population synthesis codes are not perfect,
so we draw a small subset from the grid as a whole to ensure any filtering method
shows a diverse range of training data. At the same time, weight is still placed upon
those with physical motivation. For each training sample, a mean magnitude is
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FIGURE 6.8: A set of simulated light curves using the four kernels. The top two panels
both contain asteroseismic models and granulation. However, the lower panel has a
greater oscillation amplitude. The third panel contains ellipsoidal modulation, and

the final features flaring behaviour.

calculated by assuming a black body SED (Flower, 1996) and mass-radius (Demircan
and Kahraman, 1991) scaling relations. For each parameter drawn from such physical
relations, we draw from a Gaussian distribution centred on the calculated value with a
standard deviation of 0.3 dex for logarithmic values. A standard measure of
instrumental error for the diagonal of the covariance matrix can be calculated using
this magnitude and the TESS sensitivity curve.

Each curve then needed to be assigned hyperparameters aligned with the companion
parameters drawn from the respective physical relations. Hyperparameters for
granulation and asteroseismic modes are drawn for all training samples and added to
their parameter set. We then split our data into three segments: one-third of the data
was assigned stellar-flare hyperparameters. In contrast, only one-third was assigned
ellipsoidal modulation if the Eggleton equation suggested the system was
non-interacting. The final third was left with only granulation and asteroseismic
signatures.

We then inject a lensing signal according to the training sample parameters into half of
the training light curves. We decided to create more lensing examples than we expect
to observe, as eventually, we seek to incorporate active learning by leveraging citizen
science, such that, in time, the project will show a larger portion of potential lensing
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FIGURE 6.9: An illustration of the injection of a lensing profile into a noise light curve
featuring strong asteroseismic models

events than might be present in a purely theoretical sample. This method also permits
the code to see many different lensing shapes.

We generated 20,000 training light curves in this way, which were split into a training
set of 16,000 curves and a test set of 4,000. A validation set containing 5,000 curves was
produced and saved for later evaluation. Labels were then assigned to each light curve
to assess the ML filter performance. Label 0 is assigned to flat or ‘uninteresting data’.
Label 1 indicates sources for which a lensing profile has been injected. We refer to this
as our ‘target data’ group. Label 2 will be assigned to ‘contaminant data’ that does not
contain a lensing signature but could be misclassified due to its variable nature. This
will include data featuring stellar flares and more complex noise, which cannot be
modelled easily by our kernels as Gaussian processes are designed to model smoothly
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FIGURE 6.10: An illustration of the TESS sensitivity curve (Oelkers and Stassun, 2018)
used to model instrumental noise. A systematic noise floor of 60 ppm is illustrated in

grey

varying noise, and such flares can strongly skew the fitting parameters. We would be
much less likely to locate lensing within such curves, so we set them aside for now.

Before passing any data into a machine learning method, we must define our
instrumental signal-to-noise cuts. This is the parameter space where our best-fitting
method is not sensitive. By combining the limiting magnitude of TESS, 18.4, with the
sensitivity curve (see figure 6.10) and the distribution of peak magnifications from the
population synthesis studies, we can predict an expected magnification for any given
system. This allows us, with some straightforward calculations, to determine whether
we can detect a periodic lensing signal in a potential time series given the TESS
sensitivity. Systems which produce a magnification µmag ≤ the TESS sensitivity at that
magnitude are cut as the instrument cannot detect variations on that scale. This is
based entirely on data quality, not noise structure properties, which will further
disguise any potential lensing signal.
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6.7.2 Separation of Lensing Events

Light curve properties will undoubtedly contribute to our ability to filter lensing
signals. However, the period and symmetric nature of the lensing profile sets it apart
from the stellar variability we have discussed. This provides a potential divide which
can be made using a classifier. Several potential classifier algorithms have been
explored in this work to replicate the three groups in the training data.

6.7.3 Feature Analysis

Our feature analysis classifier is trained on a set of statistical properties of the light
curve, such as the mean, variance or peak period of the Lomb-Scargle periodogram.
These properties are referred to as features; a list of those used in this work can be
found in 6.1. As expected, the fractional variability strongly discriminates between
light curves exhibiting variable signals and the flat class. The autocorrelation function,
a measure of self-symmetry, is essential when splitting the lensing and flaring classes.
We finalise the features by taking the seven most important features and retrain the
classier accordingly.

There are several classifier architectures for statistical data that one could choose. It is
not a trivial decision, so it is often best practice to try several methods to see which is
the best. The four feature analysis architectures we explored are a Random Forest, a
Gradient-Boosted Decision Tree, a Support Vector Machine (SVM) and a Multi-Layer
Perceptron (MLP). To measure the performance of each classifier, we define a
weighted F1 metric, the harmonic mean of precision and recall.

F1 = 2
Precision · Recall

Precision + Recall
(6.20)

Or in terms of true positives (TP), false positives (FP) and false negatives (FN);

F1 = 2
TP

TP + FP + FN
(6.21)

We apply weights to our F1 score: flat with 1, lensing with 2, and interesting with 1.5.
This penalises more heavily for misses in the lensing category, reducing the number of
false negatives for a sacrifice in accuracy in the other two groups.

Table 6.2 contains the weighted F1 score for four feature classifier algorithms. The
random forest and gradient-boosted tree performed similarly, but the more complex,
layered network structures, such as the SVM, performed worst. Figure 6.11 shows the
confusion matrix and feature importance for the best-performing XGBoost - gradient
boosted decision tree model.
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TABLE 6.1: Summary of time series features used for classification. Features are com-
puted from raw flux measurements f (t), autocorrelation, or the Lomb-Scargle peri-

odogram.

Feature Symbol / Eq. Description
std flux σf Standard deviation of the flux.
mean flux µ f Mean flux across the light curve.
snr µ f /(σf + ϵ) Signal-to-noise ratio approximation.
fractional variability σf /(µ f + ϵ) Fractional variability
rms amplitude

√︁
⟨ f 2⟩ Root-mean-square amplitude

num peaks – Number of peaks detected above 1σ and
width ≥ 2.

peak prominence – Mean prominence of detected peaks.
peak width – Mean width of detected peaks.
peak snr prominence/(σf + ϵ) Mean peak SNR
ac half life – Lag at which the autocorrelation drops

below 0.5.
ac zero cross – First lag where ACF becomes non-

positive.
ac auc

∫︁ L
1 ACF(l) dl Area under the ACF curve

ac decay rate Slope of log(ACF) Exponential decay rate fitted to log(ACF)
over lags 1 to L.

max power max(P(ν)) Maximum power in the Lomb-Scargle
periodogram.

dominant freq νmax Frequency at which power is maximum.
zero crossings – Number of times the flux crosses its

mean.
peak symmetry σ(∆tpeaks)/µ(∆tpeaks) Standard deviation of peak spacing rela-

tive to its mean.
peak spacing std σ(∆tpeaks) Standard deviation of time intervals be-

tween peaks.
power ratio P1/(P2 + ϵ) Ratio of the two highest periodogram

powers.
estimated orbital period 1/(νmax + ϵ) Inverse of dominant periodogram fre-

quency.
period weighted power Pmax · νmax Proxy for strength and width of periodic

features.

6.7.4 Image Classification

The second classifier is an image classifier. This is the most similar to how a human
would look for lensing, scanning an image by eye. In this case, we tried a series of
self-constructed neural networks and four pre-trained models designed to handle
vectorised series. We grid-searched over various layer compositions for the neural
networks until optimal performance was reached. While for pre-trained models, we
repeated the same search style, exploring learning rates over 1 × 10−5 to 1 × 10−3.

Table 6.7.4 contains the F1 scores for each of the pre-trained networks explored. The
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TABLE 6.2: performance of tabular classification models

Model F1 Score
Random forest 0.53
Gradient boosted tree 0.72
SVM 0.40
MLP 0.66

TABLE 6.3: F1 metric performance for pre-trained image classifier models. The top
performing classifier was the RNN 34 with a learning rate of 1 × 10−4.

Model Learning rates

1 × 10−3 1 × 10−4 1 × 10−5

resnet 18 0.883 0.883 0.876
resnet 34 0.878 0.894 0.870
densenet 121 0.885 0.87 0.856
efficientnet 0.843 0.856 0.513

BNN (F1 ∼ 0.6) outperformed the CNN (F1 ∼ 0.5) with a preference for deeper
network structures, though neither performed as well as the pre-trained ResNet-34
model. This rapid model is pre-defined in PYTORCH, making it simple to implement
on larger data through batching. Moreover, it could accurately place ∼ 90% of light
curves. Figure 6.12 shows the respective confusion matrix.

6.7.5 Series Classification

The final component of our process was adding a classifier that looked at the whole
light curve as a vector of data, as this simulates more closely how a computer reads
the data. At the same time, humans can group statistics and look at images; this is a
source of classification accessible only to machines. In this case, we compared the use
of an RNN with that of a Transformer. While RNNs are expensive to train, they often
yield good results when finding patterns over time. In addition, the construction of
such a network is much simpler than the previous classifiers, as we fine-tune only the
number of layers and nodes as opposed to the features we measure. Again, we
provide a weight on the lensing category as this is our target group. However, the best
F1 score for any series structure was around 0.5. This suggests that the classifier is
‘guessing’ half the time. We removed the series component before moving forward
with the two prior elements of the ensemble voter.

6.7.6 Lensing Classifier Performance

We vote the two remaining classifiers in an ensemble, one with information about
statistical features and the other with information about the light curve as a whole.
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(A) Confusion matrix for the stage 1 classification,
separating flat curves (0), lensing curves (1) and flar-

ing curves (2).

(B) Feature importance in descending order for the stage 1 classification.

FIGURE 6.11: The confusion matrix and respective feature importance for all the top
features included in the classifier. Only these features will be carried forward

The range of approaches improves the overall retrieval of lensing, as each method will
perform better in different areas. The feature analysis classifier mixes lensing and
flares less but misses more lensing overall, misclassifying as flat more often. However,
the feature classifier will also filter out the most clear lensing candidates allowing us
to prioritise. Since we intend to reduce the amount of missed lensing events, we will
take anything with ≥ 1 vote for lensing as a potential candidate, where a positive vote
is classed by a certainty of ≥ 75%. If the voter cannot decide, we take the image result
since the F1 performance was the best. The confusion matrix for the Ensemble voter
can be found in figure 6.13.

We note an improvement of sim0.06 in the F1 score (0.96) for the ensemble voter over
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FIGURE 6.12: The optimised resnet-34 confusion matrix used to perform the second
stage image classification, separating flat curves (0), lensing curves (1) and flaring

curves (2)

FIGURE 6.13: Confusion matrix for the ensemble voter, separating flat curves (0), lens-
ing curves (1) and flaring curves (2

using the image classifier alone, suggesting the voter benefits from the global
statistical information. Probabilities (certainty) of the classification can then be used to
prioritise fits when working with real data. Therefore, we can move forward with this
voter to consider real data. In the future, it may be beneficial to have an active input to
provide more clarity to the model in cases that sit on the boundary.
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6.8 Targeting Prior Space

Once those with potential lensing profiles have been isolated, we must construct
priors for our Gaussian process fit. The TESS input catalogue (TIC) collates
information about observed sources from various surveys, including Gaia and Wise
(Stassun et al., 2018). This allows us to put tighter, observationally backed constraints
on key parameters such as the companion star’s mass. If no record is present, we can
also use the mean magnitude of the light curve to infer the spectral type. We then
follow the assumption of a main-sequence companion and a blackbody spectrum to
infer the mass via scaling relations.

Further exploiting the main sequence assumption, we can also deploy the same
mass-radius relationships we used to create the training data to extract the radius for
those without catalogued estimates Demircan and Kahraman (1991). Given the mass
and radius of the companion star, we can now trivially calculate the surface gravity.
This mass-radius ratio is directly related to the amplitude and frequency of the
primary mode of asteroseismic oscillations, the grannulation timescale and the
amplitude of any ellipsoidal modulations following the relations introduced
previously. Therefore, we can limit the lensing prior space by applying physically
mapped hyperparameters. This helps to reduce degeneracy and unphysical solutions.

Given the fact that we have up to four potential kernels, there are a large number of
possible permutations that can be used to model any single stellar noise time series.
We assume all stars will show granulation (G) and asteroseismic modes (S) with
varying weights. This reduces the initial number of permutations considerably. Next,
we must identify the presence of flaring (F); we know our machine learning classifier
can successfully separate non-symmetric flares from symmetric self-lensing events
when they exist independently. However, there is confusion when they exist together.
Thus far, we have consciously included such time series in our target data group so
that we increase the number of false positives but are unlikely to lose potential
candidates as false negatives.

Without the information about the system’s orbital period, we cannot use the Eggleton
equation (Eggleton, 1983) to distinguish ellipsoidal modulation E. By combining the
mapping from physical to hyperparameters with the probability distributions from
population synthesis, we can limit the kinds of compact objects present with any
given companion. This allows us to predict whether we expect ellipsoidal modulation
to be present. We can then fit 3 to 4 kernel models to each dataset;

• granulation

• granulation + asteroseismic modes

• granulation + asteroseismic modes + flaring
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• granulation + asteroseismic modes + ellipsoidal modulation

This is a much more restricted list than the list of potential GP models used in chapter
5. However, these models are physically motivated, and the computational intensity
requires using as few models as possible.

We assume we are almost edge-on; otherwise, there will not be a large enough
magnification to be observed. We use a flat prior for the periodic phase of the orbit at
the start of the observation δ between 0 − 2π. Hyperparameters that do not have a
scaling relation to the lensing parameters are drawn from a uniform prior bounded by
a literature range. (Granulation-Kallinger et al. (2014), asteroseismic modes - Huber
et al. (2011), ellipsoidal modulation - Morris (1985), flaring - Davenport et al. (2014);
Shibayama et al. (2013) These ranges cover a % of the mean flux. Such calibration
ensures the parameters are all of the same magnitude, thereby making it easier for the
MCMC to explore minima in posterior space. The full prior description is given in
table TAB.

6.9 The Large Dataset Recipe

Based on the above, we detail below a recipe by which we will sift through large
volumes of data to allow prioritisation of the most promising target candidates:

1. Cut any data which does not meet signal-to-noise and data quality thresholds.

2. Apply Primary stage classifier to detect potential lensing and reject noise or clear
flaring behaviour.

3. Apply Second stage classifier to determine the top three kernel permutations to
fit and identify clear confusion, which may require manual attention later in
sample analysis.

4. Set prior space using knowledge of the companion star from TIC and inference
of potential compact object from population synthesis distributions.

5. Fit the reduced sample using the Gaussian Process method to extract lensing
profile parameters.

6.10 Maximum Likelihood Estimator

When considering the maximum likelihood estimation, we treat all simulations the
same way we intend to treat our data. We model the light curve as a combination of a
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deterministic lensing feature (a dip in magnitude space or peak in flux) and a
stochastic Gaussian Process noise model given by one of the four previously defined
noise kernels. This setup allows the GP to capture structured stellar variability while
the parametric mean function handles the lensing signal. The observational noise, yerr,
is incorporated into the diagonal of the GP covariance matrix.

Several likelihood estimators are available for such a model. In this work, we explore
both a JAX-native implementation and a more traditional MCMC using EMCEE. We
also consider nested sampling as a possible extension. Given the assumption of
Gaussian-distributed uncertainties around each observed point, we adopt a Gaussian
likelihood throughout.

Generally, we found that sources needed in excess of 5,000 iterations to converge after
a 1,000-step burn-in period, consistent with both EMCEE and BLACKJAX (the
JAX-native MCMC). Using our work from 4, we can also set automatic stopping
conditions based on chain mixing and parameter variance through the
auto-covariance time and the GR statistic. We limit our fitting to 25,000 steps but allow
early exit through satisfying 1 ≤ GR ≤ 1.1 and steps ≥ 50τ, where τ is the
autocorrelation time. We found that convergence was reached within 4 - 8 minutes for
4,000 to 10,000 iterations, respectively, for a single core fit. The code was written this
way so that several curves can be launched in parallel, but the memory management
for JAX is simplified as it is restricted to one core. While the benchmarks show a
reasonable convergence time, we note that this is still not fast enough to study the
millions of possible light curves from TESS. This further validates our choice to
perform ML filtering before analysing the data.

6.11 The Observable Parameter Space with TESS

Starting with a population-synthesised sample of binary systems, we can produce GP
stellar noise simulations of their light curves and then use this as a prospective test
sample to determine the detectable parameter space of a given instrument. We apply
physically representative kernels and include lensing within a single sample for each
kernel. We take another N samples without lensing as a control sample. We then put
each of these light curves through the large dataset recipe described above and
evaluate the accuracy of our method and the parameter space to which it is sensitive.
Figure 6.14 shows our three core lensing parameters M∗, MCO and log(P) overlaid
with their input distributions. We are slightly biased towards larger periods since
these produce larger magnifications. We are also finding higher lens masses than we
expect, suggesting we are overfitting to this region.

We can also view the distribution of M∗, Mco and logP to determine the detectable
parameter space. Naturally, there is a dependence on distance, which will affect the
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FIGURE 6.14: The recovered distributions after passing through the large dataset
recipe in Ms, Mco and log(P)

FIGURE 6.15: Illustrations of true positive and missed space. A few GP fits with errors
are indicated on the plot to show the kinds of errors we are currently experiencing

observable apparent magnitude due to extinction. We integrate a distance dependence
into our KDE and sample from k-nearest neighbours to make this plot to ensure it is
representative of the apparent magnitudes observed. In each parameter space (figure
6.15) blue points have been correctly flagged as lensing events and red point are the
false negatives. We retrieve a True positive rate of 94.7% for our simulated sample.
The miss-rate or false negative rate is 4.3%

However, we present this result with caution. These simulated curves all came from
the four models we tested; real data will have additional noise, which we have not
accounted for. For example, there are many types of flares. We have also assumed all
the stars follow the scaling relations, not all of which will. This means the model will
struggle to converge as it relies heavily on the priors to start in a good space with a
very uneven likelihood distribution.

δ is a phase offset and holds no physical importance; it simply tells us how far through
the orbit the system was when we started the observation. We also omit inclination i
as the posterior replicates the prior distribution, suggesting nothing additional can be
learned about this parameter from the fit except in the brightest lensing events.
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6.12 Discussion

6.12.1 Caveats to the Large Dataset Recipe

While we can retrieve a good fraction of potential lensing events using the large
dataset recipe, several caveats should be discussed.

The confusion matrix (6.13) still indicates that some flares contaminate the lensing
class. While confusion with the noise-only class can be attributed to a low
signal-to-noise, our ML classifier sometimes allows lensing events to spill into the
flare class. This means that some potentially very large lensing events are missed.
While, in theory, the lensing profile is a nice smooth peak, its effect magnifies the
underlying stellar variability so that it can suffer some distortion. Active learning
incorporating human classifications from citizen science should help train the ML
model on this more fuzzy boundary. While a perfect confusion matrix would indicate
over-fitting, we would much rather sacrifice some accuracy to ensure retention of all
lensing events, as they are a small overall population.

In addition to distortion from underlying stellar variability, the lensing profile can be
altered significantly when considering effects such as limb darkening and eccentricity
of the orbit, leading to some level of asymmetry. Our trained classifier is therefore
biased as it only contains quasi-symmetric profiles, distorted only by the stellar
variability. It is possible that when considering real data, lensing events are
misclassified in the filtering due to assumed symmetry. Our collaborators are creating
a lensing model capable of including both eccentricity and limb darkening to perform
enhanced retraining. This will require more human classifications as the classifier can
no longer rely on symmetry as a visual distinction. However, this retraining is vital as
adding further complexity to the lensing model will slow down the GP convergence
due to the additional degrees of freedom required.

Retraining will also be required if the observing strategy changes significantly. ZTF
will have fewer points per event, so some features will be more complex to calculate.
Meanwhile, LSST has a much more rapid cadence but shorter segments, changing the
potential parameter space and the types of lensing profiles we might see. However,
the advantage of the selected models is that we can add training data at any time. The
GP can rapidly produce around 1000 simulations per second, making it simple to
create the vast training set required to encompass multiple missions and observing
strategies.

While the light curve simulation is rapid, the GP fitting has a high computational
demand and scales poorly with data size. The fitting method requires us to try several
models, and selection criteria such as the AIC are still based upon model preference.
While we can use the residuals as a guide, there is no guarantee that the stellar noise
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model we have selected is entirely correct. However, they are physically motivated
and have been used successfully in previous exoplanet and pure stellar studies.

Finally, we are still subject to some bias towards brighter events. Brighter events result
from higher peak magnifications, driven by more massive or more compact lenses in
tighter orbital alignments than lower-mass companions or loosely bound systems that
produce only subtle, low-amplitude modulations in the light curve.

6.12.2 Incorporation of Other Missions

Due to the diverse observing strategies of different surveys, the observable lensing
parameter space is highly mission-dependent. As mentioned in Kawahara et al.
(2018), Kepler has already discovered some self-lensing candidates. However, they are
all white dwarfs, suggesting Kepler may be more sensitive to lower-mass systems.
Conversely, ZTF has the long cadence necessary to increase the observational
probability of detecting a longer-period lensing event. However, given the larger
cadence, it is less sensitive to the systems with shorter Einstein crossing times. NGTS
is a mission with a very short cadence, allowing multiple data points to be collected
from the shorter lensing events. Like ZTF, it does not have a complete view of the sky,
and as such, care must be taken to consider the different prior distributions that might
arise from a more limited observable population.

LSST will be a massive development for self-lensing. Its rapid cadence, high
sensitivity and large field-of-view can open up a huge observable parameter space.
The increased sensitivity lets us detect the lower magnifications removed due to our
TESS signal-to-noise cuts. While the baseline necessary to detect lensing events is a
little off, future work will include preparation for this data following the same
calibration we performed for TESS.

Finally, we can take this search to other wavebands. Self-lensing is achromatic, so a
multi-dimensional covariance matrix can better constrain posteriors. In contrast,
wavebands such as the UV reveal containment chromatic effects such as flaring,
allowing us to filter better and fit the stellar noise. Overall, this project has proved the
possibility of this technique; the natural next step is to test its reach with real survey
data.
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Chapter 7

Conclusions

You sort of start thinking anything’s possible if you’ve got enough nerve.
- Ginny Weasley, Harry Potter and the Order of the Phoenix

This thesis has explored a broad range of astrophysical phenomena through time
domain studies. Leveraging extensive datasets from X-ray and optical surveys and
advanced statistical modelling techniques ranging from adapted traditional Fourier
analysis to Gaussian Process regression, we aimed to probe the structure and
dynamics of accretion flows across the black hole mass scale. The core motivation was
to test the hypothesis of scale-invariant accretion in compact object systems, while
simultaneously developing novel methods for discovering periodic trends in survey
datasets. Here we briefly summarise and discuss possible future avenues of research.

7.1 Chapter 4

Chapter 4 provided the most extensive systematic study of long-timescale (days to
years) X-ray variability in AGN, utilising over a decade of MAXI data complemented
by archival XMM-Newton observations. Such variability has been hard to probe,
having only been possible through the Swift and RXTE mission baselines, but with
poorer sampling. However, the long timescale behaviour of AGN offers an
opportunity to make comparisons to the behaviour of XRBs and search for analogous
properties such as LFQPOs and breaks in the PSD, a link in the chain of
scale-invariance.

Our method was based on well-explored concepts (PSRESP) but accelerated through
MCMC. Our results for Ark 564, detecting both low and high-frequency breaks,
agreed well with prior multi-instrument studies, validating our mcPSRESP
methodology. During modelling, the vast majority of the sample showed a preference
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for either a bending or broken power law model. The distinction between these two
models merits further investigation, with several sources showing a clear statistical
preference for one over the other, with significant deviation in break parameters.
Moreover, the observed low-frequency break appeared generally within the range
expected for a scale-invariant system (log(νb) ∼ −7 to −5). However, we note that
while this result is valid for the sample as a whole, individual sources showed
significant scatter around a standard scale-invariant relation. We conclude that these
results offer qualitative support to scale invariance for the broadband noise
continuum.

Despite a thorough and statistically sound search, we did not recover any significant
correlation between the low frequency break and fundamental parameters: mass,
accretion rate and Eddington luminosity. While tentative hints of a trend with ṁ
emerged, the large scatter and significant uncertainties in MBH and ṁ estimations,
coupled with the limited dynamic range of these parameters within our sample
(biased towards bright, massive AGN), prevented robust conclusions. Despite this,
our largest scatter was due to the mass and luminosity measurements, the vast
majority taken from prior literature, several of which have been used in previous
searches such as Burke (2023), where a correlation is not only reported, but a
fundamental relation fit. Our results align much closer with those of González-Martı́n
and Vaughan (2012), conservative regarding a trend; instead, we conclude that our
result shows a potential contention to the simple prediction of scale invariance. There
is evidence to suggest that the relation may be more complex.

In contrast, analysis of the high-frequency breaks measured from XMM-Newton data
revealed more consistent correlations, while still not statistically significant: a negative
trend with MBH and a positive trend with ṁ. This is consistent with previous findings
(McHardy et al., 2006) and strongly supports scale invariance for the variability
originating from the innermost accretion regions, likely linked to thermal or
dynamical timescales. Suppose we interpret the results from Burke (2023) as linked to
the high-frequency break. In that case, while the high-frequency break is generally
consistent, the low-frequency break deviates, suggesting additional processes may be
at larger radii in all cases. We are certainly limited in statistical sample size and
dynamic range in masses where the scatter is insufficient to give statistically
significant results, masking the nature of the correlation.

Despite possessing the necessary frequency coverage and baseline duration to detect
AGN analogues of XRB Type-C LFQPOs (expected at 10−7 − 10−5 Hz), no significant
QPO candidates were found in the MAXI data after accounting for instrumental
artefacts. FAP testing suggests that it was possible to find QPOs reliably within data of
similar quality. However, we could not simulate the effect of background inclusion.
Combined with very low count-rates, we conclude that the data, while sufficient for
continuum modelling, were insufficient for QPO detections. Interpreting the lack of
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QPOs in a physical sense poses a second problem for scale invariance. Type C QPOs
are ubiquitous in XRBs and are associated with precession of the accretion flow. We
expect such QPOs to be present in a mass-scaled system. Their consistent absence
implies that the fluid mechanics of the flow at such radii may differ between AGN and
XRB systems.

An unexpected result of our study was a highly significant trend in model fit
parameters. We report that the commonly used damped random walk, while
converged, produced highly different solutions to models with free indices. We note
that, in the case of the broken power law, this is limited to a systematic offset, but in
the case of a bending power law, capable of reproducing the damped random walk
exactly, we see a large systematic offset coupled with an increasing trend with
frequency. Moreover, the difference is most significant in cases where the bending
power law prefers a shallower index above the break ∼ 1 instead of the 0 → 2
behaviour modelled by a DRW. This serves as a warning that computationally
convenient models, such as a DRW, cannot be relied upon to produce reliable results
and, therefore, reliable trends.

In order to draw more concrete conclusions about the presence or absence of LFQPOs
in AGN, higher signal-to-noise data is needed. Whilst the sample of X-ray bright AGN
will only increase in future with instruments such as NewAthena, the future of long
timescale X-ray studies is less clear. Although the absence of a successor to MAXI is
not yet confirmed, one could leverage the various missions over the last 20+ years and
even extend the baseline; however, the cadence would be highly uneven. This uneven
cadence may be tolerable by Gaussian process methods, but that remains to be seen.

Relaxing our requirement to use the longest single segment in the XMM-Newton data
will improve the frequency baseline, hopefully revealing more breaks to populate a
correlation plot (particularly in the 0.1 Eddington range), with the potential to confirm
the correlation with mass for a larger sample size. Moreover, using GPs means we are
no longer limited to XMM-Newton data with even sampling; we can expand to
include RXTE and Swift data.

7.2 Chapter 5

Chapter 5 extended this investigation by applying Gaussian Process (GP) regression to
tackle unevenly sampled optical (ZTF) light curves, alongside a re-analysis of the
MAXI data. This chapter yielded primarily methodological insights and further
complexities.

We demonstrated that standard GP methods (assuming Gaussian likelihoods) were
inapplicable to the low-count-rate MAXI data due to their inherent Poisson statistics,
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even after re-binning. In agreement with our conclusions from the previous chapter,
an instrument with much higher sensitivity would be required to obtain the required
count rates. This highlights that while Fourier techniques have limitations, they are
still invaluable when working with low count-rate data, offering statistically backed
fits with supportive p-values.

In contrast, the ZTF g-band optical light curves in flux and magnitude space satisfied
the assumptions required for a GP analysis. The model selection routine consistently
preferred more complex kernels (Real-term + Lorentzian + Matern) over the damped
random walk, which has been commonly used by many authors, including Burke
(2023). This suggests a more complex PSD shape than the standard parametric models
when considering the optical PSD. The inferred optical PSD shapes were generally
consistent with a high-frequency break, analogous to the X-ray findings.

Despite indicating Lorentzian features, they were all low coherence, and no narrow
QPO-like features were detected. We repeated the correlation analysis; while no
statistically significant trends were found, tentative evidence emerged for a positive
correlation with mass, a trend not seen in the X-rays. We see an apparent absence of a
relationship between MAXI low-frequency and optical high-frequency breaks.

Given the nature of the modelled residuals and the key signs of over-fitting, we
conclude that GPs are not a suitable fitting method for the ZTF light curves in
magnitudes or flux units. This result is a strong example of the process that should be
taken when considering the use of a Gaussian process, its pitfalls, and most
importantly, the fact that they are not the catch-all solution for unevenly sampled time
series. They encompass far more complexity than Fourier techniques, which should be
used sparingly.

A natural extension to this work will be to obtain an energy-resolved analysis to
compare X-ray and other high-energy bands to our results from ZTF. Not only will
this increase the sample size, but by taking the ratio of high-frequency breaks at
different energies, we can test accretion flow models where the geometry and
emissivity drive the break. Moreover, this will give an anchor point to test the validity
of our ZTF results around GP-compatible data, allowing us to understand better the
method’s limitations and gaps where new techniques are needed.

7.3 Chapter 6

Shifting focus from accretion-powered variability, Chapter 6 developed a novel
pipeline combining physically motivated GP modelling of stellar noise with machine
learning classifications to search for binary self-lensing events in large data volumes.
This aimed to address the ”missing black hole problem” by targeting non-accreting
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compact objects using the time domain techniques we have built in throughout this
work.

Using several kernels, we can simulate granulation, asteroseismic oscillations,
ellipsoidal modulation and stellar flares; the main constituents of the stellar noise
present in TESS light curves. We tested multiple kernel combinations and mapped
their hyperparameters directly to physical quantities where possible, allowing us to
reduce degeneracy and ensure physically plausible fits. This also incorporated
population synthesis results to represent the Galactic population accurately. By
adopting a time-domain GP approach and simultaneously fitting both the noise and
lensing signature, we retained sensitivity to subtle, short-duration lensing signals that
may be lost to Fourier-based filtering.

Due to the inherent computational cost of GP fitting, we constructed an ensemble
machine learning (ML) classifier to filter and prioritise candidate light curves. Our
ensemble voter combined a global statistical perspective with finer image features,
allowing us to rapidly prioritise the most likely candidates. This pipeline, calibrated to
TESS, achieved a high retrieval fraction across most of the observable parameter space,
while clearly identifying regions—such as low-magnification or highly asymmetric
events where performance drops. Most importantly, this method makes the project
scalable by reducing the number of light curves processed by the expensive GP fitting.

The potential of self-lensing is immense. Models can be improved to include more
complex effects such as limb darkening and eccentric orbits. Active learning can also
be introduced, building human classifications into the loop and reducing the
confusion of the ML classifier on the boundaries. However, the code itself is also ready
to be deployed on a small exploratory test set, the results of which will be paramount
to deciding the following steps when considering an expansion to other instruments
in a broader parameter space.
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A.1 2-5 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan bknpl 0.65, 1.33, -6.82 0.14, 0.08, 0.12
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error bknpl 0.29, 1.57, -6.81 0.18, 0.08, 0.07
2MASX J00341665-7905204 53.2 0.3 8.02 0.3 -1.41 Koss2022 only measure spl 0.61 0.06
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion drw -6.34 0.04
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure bndpl 0.33, 1.82, -6.61 0.26, 0.21, 0.34
1ES 0120p340 55.16 0.3 nan nan nan nan nan bknpl 0.1, 1.43, -6.8 0.14, 0.08, 0.05
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error spl 0.58 0.06
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.42, 1.36, -6.83 0.08, 0.07, 0.04
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.09, 1.59, -6.8 0.12, 0.08, 0.04
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion drw -5.81 0.03
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.13, 1.41, -6.74 0.1, 0.11, 0.11
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure bknpl 0.18, 1.41, -6.73 0.12, 0.1, 0.1
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure bknpl 0.44, 1.16, -5.99 0.09, 0.47, 0.24
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure bknpl 0.4, 1.13, -6.35 0.13, 0.44, 0.39
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure spl 0.62 0.06
1ES 0414p009 54.74 0.3 nan nan nan nan nan drw -6.27 0.04
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure bknpl 0.23, 1.73, -6.78 0.16, 0.09, 0.08
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial bknpl 0.3, 0.91, -6.35 0.14, 0.36, 0.41
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error drw -6.29 0.04
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure bknpl 0.49, 0.77, -6.26 0.11, 0.43, 0.59
3C 129 nan nan nan nan nan nan nan bndpl 0.07, 2.25, -6.73 0.1, 0.1, 0.07
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure bknpl 0.44, 1.02, -6.59 0.07, 0.17, 0.47
1ES 0502p675 55.37 0.3 nan nan nan nan nan bknpl 0.48, 1.31, -6.8 0.14, 0.06, 0.09
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan bknpl 0.21, 1.33, -6.79 0.14, 0.07, 0.06
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial bknpl 0.62, 1.25, -6.3 0.1, 0.34, 0.28
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure bknpl 0.42, 1.2, -6.2 0.1, 0.25, 0.2
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion spl 0.64 0.05
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.16, 1.71, -6.84 0.11, 0.07, 0.06
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bknpl 0.18, 1.76, -6.85 0.14, 0.07, 0.07
S5 0716p71 nan nan nan nan nan nan nan spl 0.87 0.04
NGC 2617 51.71 0.3 nan nan nan nan nan bknpl 0.61, 0.91, -6.15 0.1, 0.3, 0.44
OJ 287 54.44 0.3 nan nan nan nan nan drw -6.73 0.04
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure bknpl 0.49, 0.71, -6.04 0.09, 0.25, 0.41
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.38, 1.23, -6.85 0.1, 0.06, 0.05
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure spl 0.69 0.12
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.41, 1.24, -6.23 0.12, 0.22, 0.2
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure bknpl 0.35, 0.93, -6.41 0.16, 0.27, 0.36
1ES 1011p496 54.57 0.3 nan nan nan nan nan bknpl 0.34, 0.84, -6.96 0.18, 0.08, 0.19
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error drw -6.73 0.06
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.2, 1.57, -6.84 0.1, 0.07, 0.08
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bknpl 0.43, 1.08, -5.93 0.09, 0.44, 0.25
Mrk 421 nan nan nan nan nan nan nan bndpl 0.2, 1.55, -7.07 0.26, 0.08, 0.14
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bknpl 0.41, 1.37, -6.89 0.11, 0.07, 0.09
RGB J1117p202 53.17 0.3 nan nan nan nan nan spl 0.86 0.04
RGB J1136p676 54.32 0.3 nan nan nan nan nan bknpl 0.3, 1.61, -6.39 0.1, 0.18, 0.13
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bknpl 0.22, 1.22, -6.79 0.16, 0.08, 0.12
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure bndpl 0.03, 1.75, -5.89 1.45, 0.58, 0.61
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial bknpl 0.15, 1.77, -6.76 0.15, 0.1, 0.08
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.24, 1.35, -6.9 0.2, 0.07, 0.08
ON 231 52.44 0.3 nan nan nan nan nan bknpl 0.17, 1.43, -6.81 0.15, 0.1, 0.13
1ES 1218p304 54.95 0.3 nan nan nan nan nan bknpl 0.21, 1.35, -6.78 0.16, 0.1, 0.11
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.17, 1.74, -6.8 0.14, 0.07, 0.06
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.1, 1.43, -6.87 0.15, 0.08, 0.07
M 87 nan nan nan nan nan nan nan drw -6.69 0.05
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure bndpl 0.36, 2.58, -5.78 0.07, 0.3, 0.08
Cen A nan nan nan nan nan nan nan bknpl 0.48, 1.41, -6.22 0.34, 0.25, 0.33
MCG -06-30-15 nan nan nan nan nan nan nan bknpl 0.51, 1.23, -6.28 0.1, 0.19, 0.22
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure drw -6.62 0.04
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure bknpl 0.31, 1.44, -6.9 0.14, 0.09, 0.08
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial bknpl 0.19, 1.96, -6.69 0.12, 0.03, 0.05
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure bknpl 0.42, 0.92, -6.09 0.13, 0.4, 0.39
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure bknpl 0.36, 1.53, -6.41 0.09, 0.13, 0.12
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error bndpl 1.18, 0.82, -6.64 0.22, 0.59, 0.75
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.12, 1.63, -6.8 0.1, 0.08, 0.07
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial drw -5.95 0.05
AP Lib 52.69 0.3 nan nan nan nan nan spl 0.67 0.06
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure drw -6.43 0.04
PG 1553p113 nan nan nan nan nan nan nan bknpl 0.21, 1.37, -6.81 0.15, 0.08, 0.11
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure spl 0.55 0.06
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.17, 1.5, -6.88 0.12, 0.08, 0.07
Mrk 501 nan nan nan nan nan nan nan bndpl 0.81, 1.56, -6.46 0.56, 0.21, 0.69
NGC 6300 50.43 0.3 6.77 0.3 -1.75 Koss2022 only measure bknpl 0.27, 1.34, -6.96 0.14, 0.06, 0.09
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.27, 1.38, -6.77 0.12, 0.1, 0.1
4C 09.57 54.66 0.3 nan nan nan nan nan bndpl 0.38, 1.99, -6.16 0.21, 0.39, 0.26
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure bknpl 0.09, 1.71, -6.75 0.09, 0.08, 0.08
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure spl 0.56 0.06
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure spl 0.68 0.06
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bndpl 0.79, 1.19, -6.47 0.53, 0.32, 0.76
ESO 141-55 53.05 0.3 nan nan nan nan nan bknpl 0.53, 0.76, -5.82 0.07, 0.37, 0.26
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.2, 1.79, -6.76 0.11, 0.08, 0.05
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure drw -5.98 0.04
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.24, 1.49, -6.82 0.14, 0.09, 0.06
1ES 1959p650 54.31 0.3 nan nan nan nan nan bndpl 0.9, 1.37, -6.58 0.51, 0.25, 0.67
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion spl 0.67 0.05
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bknpl 0.58, 1.29, -6.82 0.1, 0.08, 0.12
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error bknpl 0.2, 1.42, -7.01 0.13, 0.08, 0.07
4C 50.55 nan nan nan nan nan nan nan bknpl 0.33, 1.2, -6.81 0.11, 0.08, 0.07
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure spl 0.6 0.05
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure bknpl 0.22, 1.53, -6.82 0.17, 0.08, 0.05
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.36, 1.56, -6.03 0.11, 0.25, 0.12
ESO 533-2 nan nan nan nan nan nan nan drw -5.95 0.03
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.22, 1.53, -6.83 0.15, 0.06, 0.05
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bknpl 0.17, 1.24, -6.8 0.16, 0.08, 0.08
MR 2251-178 nan nan nan nan nan nan nan drw -6.02 0.04
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error bknpl 0.15, 0.76, -6.78 0.29, 0.19, 0.78
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial drw -6.49 0.04
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure drw -6.43 0.05
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure spl 0.55 0.09
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.2, 1.62, -6.82 0.17, 0.07, 0.05
QSO B2356-309 nan nan nan nan nan nan nan bknpl 0.34, 1.57, -5.98 0.12, 0.28, 0.17



174 Chapter A. MAXI mcPSRESP fits



A.2. 5-8 keV 175

A.2 5-8 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan bknpl 0.47, 1.32, -6.8 0.13, 0.07, 0.06
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error bknpl 0.3, 1.63, -6.79 0.12, 0.08, 0.08
2MASX J00341665-7905204 53.2 0.3 8.02 0.3 -1.41 Koss2022 only measure bndpl 0.55, 1.07, -6.1 0.41, 0.49, 0.78
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.14, 1.41, -6.81 0.1, 0.08, 0.06
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure bknpl 0.26, 1.63, -6.65 0.17, 0.11, 0.11
1ES 0120p340 55.16 0.3 nan nan nan nan nan bknpl 0.1, 1.61, -6.79 0.11, 0.08, 0.05
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error spl 0.67 0.05
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.34, 1.68, -6.81 0.12, 0.07, 0.05
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.18, 1.78, -6.77 0.16, 0.08, 0.06
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion bknpl 0.18, 1.62, -6.79 0.2, 0.08, 0.07
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.15, 1.69, -6.79 0.15, 0.08, 0.04
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure drw -6.44 0.03
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure bknpl 0.53, 1.59, -5.85 0.06, 0.24, 0.13
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure bknpl 0.45, 1.25, -6.3 0.13, 0.24, 0.25
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure bknpl 0.61, 1.05, -5.9 0.08, 0.54, 0.26
1ES 0414p009 54.74 0.3 nan nan nan nan nan drw -6.67 0.12
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure drw -6.76 0.05
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial bndpl 0.4, 1.27, -5.82 0.27, 0.55, 0.32
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error bknpl 0.34, 1.39, -6.58 0.14, 0.16, 0.26
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure spl 0.82 0.06
3C 129 nan nan nan nan nan nan nan bknpl 0.11, 1.84, -6.93 0.11, 0.07, 0.08
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure bknpl 0.44, 1.17, -6.56 0.23, 0.21, 0.42
1ES 0502p675 55.37 0.3 nan nan nan nan nan bknpl 0.49, 1.56, -6.79 0.1, 0.08, 0.04
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan bknpl 0.34, 1.42, -6.7 0.13, 0.12, 0.16
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial bknpl 0.69, 1.43, -6.33 0.18, 0.18, 0.27
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure bknpl 0.43, 1.46, -6.16 0.11, 0.24, 0.16
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.45, 0.95, -6.68 0.19, 0.18, 0.64
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.3, 1.53, -6.82 0.16, 0.08, 0.08
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bknpl 0.34, 1.68, -6.56 0.13, 0.13, 0.11
S5 0716p71 nan nan nan nan nan nan nan bknpl 0.52, 1.65, -6.79 0.11, 0.1, 0.06
NGC 2617 51.71 0.3 nan nan nan nan nan bndpl 0.53, 1.43, -6.07 0.46, 0.31, 0.54
OJ 287 54.44 0.3 nan nan nan nan nan bknpl 0.28, 1.75, -6.81 0.11, 0.08, 0.04
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure bknpl 0.36, 0.94, -6.74 0.2, 0.13, 0.45
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.43, 1.49, -6.78 0.1, 0.08, 0.06
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure spl 0.8 0.06
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.38, 1.51, -6.26 0.1, 0.18, 0.11
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure spl 0.63 0.07
1ES 1011p496 54.57 0.3 nan nan nan nan nan bknpl 0.16, 1.51, -6.89 0.14, 0.07, 0.07
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error bknpl 0.27, 1.61, -6.76 0.14, 0.09, 0.11
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.14, 1.53, -6.84 0.13, 0.07, 0.06
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bknpl 0.49, 1.04, -6.02 0.1, 0.43, 0.31
Mrk 421 nan nan nan nan nan nan nan bknpl 0.09, 1.86, -6.84 0.1, 0.08, 0.05
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bndpl 0.66, 1.78, -6.66 0.65, 0.24, 0.83
RGB J1117p202 53.17 0.3 nan nan nan nan nan bknpl 0.54, 1.63, -6.8 0.1, 0.08, 0.06
RGB J1136p676 54.32 0.3 nan nan nan nan nan bknpl 0.37, 1.46, -6.72 0.11, 0.11, 0.16
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bknpl 0.52, 1.4, -6.23 0.11, 0.25, 0.16
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure bknpl 0.55, 0.86, -6.16 0.09, 0.57, 0.54
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial drw -6.65 0.03
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.27, 1.48, -6.91 0.16, 0.06, 0.08
ON 231 52.44 0.3 nan nan nan nan nan bknpl 0.32, 1.52, -6.81 0.14, 0.09, 0.06
1ES 1218p304 54.95 0.3 nan nan nan nan nan bknpl 0.32, 1.38, -6.79 0.16, 0.09, 0.11
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.13, 1.65, -6.79 0.13, 0.07, 0.06
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.21, 1.46, -6.83 0.13, 0.09, 0.05
M 87 nan nan nan nan nan nan nan bknpl 0.23, 1.59, -6.83 0.14, 0.08, 0.08
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure bndpl 0.37, 2.58, -5.79 0.09, 0.28, 0.08
Cen A nan nan nan nan nan nan nan bknpl 0.49, 1.35, -6.13 0.16, 0.29, 0.13
MCG -06-30-15 nan nan nan nan nan nan nan bknpl 0.5, 1.33, -6.29 0.09, 0.21, 0.31
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure bknpl 0.2, 1.46, -6.78 0.17, 0.11, 0.14
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure spl 0.71 0.06
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial bknpl 0.2, 1.44, -6.71 0.13, 0.08, 0.11
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure bknpl 0.47, 1.1, -6.17 0.13, 0.32, 0.3
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure drw -6.44 0.05
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error bknpl 0.26, 1.34, -6.66 0.16, 0.16, 0.16
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.28, 1.7, -6.77 0.13, 0.09, 0.07
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial bknpl 0.14, 1.33, -6.79 0.12, 0.08, 0.08
AP Lib 52.69 0.3 nan nan nan nan nan spl 0.68 0.04
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure bknpl 0.22, 1.04, -6.85 0.14, 0.1, 0.14
PG 1553p113 nan nan nan nan nan nan nan bknpl 0.42, 1.52, -6.46 0.12, 0.17, 0.17
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure bknpl 0.48, 0.7, -6.2 0.1, 0.4, 0.59
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.3, 1.6, -6.8 0.13, 0.07, 0.05
Mrk 501 nan nan nan nan nan nan nan bknpl 0.43, 1.45, -6.84 0.13, 0.07, 0.07
NGC 6300 50.43 0.3 6.77 0.3 -1.75 Koss2022 only measure bknpl 0.2, 1.34, -6.89 0.12, 0.09, 0.09
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.4, 1.5, -6.71 0.12, 0.12, 0.15
4C 09.57 54.66 0.3 nan nan nan nan nan drw -6.65 0.04
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure bknpl 0.21, 1.75, -6.76 0.12, 0.09, 0.07
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure bndpl 0.58, 0.82, -5.59 0.31, 1.2, 0.46
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure spl 0.7 0.04
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bknpl 0.63, 1.39, -6.75 0.11, 0.1, 0.12
ESO 141-55 53.05 0.3 nan nan nan nan nan bndpl 0.65, 0.7, -5.83 0.26, 0.46, 0.59
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.25, 1.59, -6.79 0.08, 0.08, 0.06
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure bknpl 0.38, 1.06, -6.74 0.26, 0.12, 0.48
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.17, 1.56, -6.83 0.13, 0.09, 0.04
1ES 1959p650 54.31 0.3 nan nan nan nan nan bknpl 0.38, 1.7, -6.81 0.1, 0.06, 0.04
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion bndpl 0.52, 1.01, -5.7 0.15, 0.48, 0.46
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bndpl 0.69, 1.72, -6.8 0.79, 0.25, 0.4
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error bknpl 0.25, 1.37, -6.93 0.15, 0.06, 0.11
4C 50.55 nan nan nan nan nan nan nan bknpl 0.34, 1.38, -6.84 0.11, 0.07, 0.05
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure bknpl 0.52, 0.83, -6.92 0.18, 0.12, 1.18
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure bknpl 0.19, 1.49, -6.78 0.14, 0.06, 0.07
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.53, 1.27, -6.44 0.19, 0.23, 0.35
ESO 533-2 nan nan nan nan nan nan nan drw -6.25 0.04
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.14, 1.94, -6.7 0.11, 0.04, 0.05
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bndpl 0.33, 1.44, -6.61 0.4, 0.23, 0.63
MR 2251-178 nan nan nan nan nan nan nan bknpl 0.24, 1.18, -7.12 0.17, 0.05, 0.12
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error bknpl 0.25, 1.41, -6.78 0.22, 0.1, 0.12
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial bknpl 0.29, 1.12, -6.82 0.17, 0.08, 0.14
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure bknpl 0.18, 1.93, -6.61 0.12, 0.05, 0.06
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.57, 1.23, -6.02 0.08, 0.32, 0.26
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.15, 1.83, -6.72 0.09, 0.08, 0.06
QSO B2356-309 nan nan nan nan nan nan nan bknpl 0.56, 1.54, -6.01 0.08, 0.28, 0.15
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A.3 8-12 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan spl 0.95 0.08
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error drw -6.5 0.04
2MASX J00341665-7905204 53.2 0.3 8.02 0.3 -1.41 Koss2022 only measure drw -6.22 0.04
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.12, 1.47, -6.79 0.16, 0.09, 0.06
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure bndpl 0.32, 1.71, -6.7 1.12, 0.18, 0.2
1ES 0120p340 55.16 0.3 nan nan nan nan nan drw -6.52 0.03
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error spl 0.66 0.06
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.32, 1.7, -6.8 0.1, 0.07, 0.04
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.15, 1.93, -6.75 0.11, 0.05, 0.06
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion bknpl 0.22, 1.6, -6.73 0.13, 0.08, 0.11
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.18, 1.86, -6.59 0.12, 0.11, 0.07
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure bknpl 0.36, 1.58, -6.51 0.13, 0.14, 0.11
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure bknpl 0.49, 1.13, -6.58 0.24, 0.19, 0.67
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure bknpl 0.31, 1.38, -6.29 0.18, 0.3, 0.28
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure bknpl 0.42, 0.98, -6.35 0.18, 0.26, 0.39
1ES 0414p009 54.74 0.3 nan nan nan nan nan bknpl 0.24, 1.68, -6.49 0.31, 0.15, 0.11
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure drw -6.47 0.04
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial spl 0.67 0.06
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error bknpl 0.17, 1.58, -6.69 0.13, 0.12, 0.09
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure bknpl 0.4, 1.14, -6.71 0.38, 0.15, 0.43
3C 129 nan nan nan nan nan nan nan bknpl 0.1, 1.75, -6.86 0.11, 0.09, 0.07
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure bknpl 0.23, 1.45, -6.51 0.2, 0.19, 0.28
1ES 0502p675 55.37 0.3 nan nan nan nan nan bknpl 0.49, 1.73, -6.8 0.1, 0.07, 0.04
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan bknpl 0.18, 1.57, -6.79 0.15, 0.09, 0.08
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial bknpl 0.36, 1.62, -6.53 0.17, 0.14, 0.13
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure bknpl 0.34, 1.42, -6.17 0.16, 0.33, 0.2
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.08, 1.06, -6.67 0.11, 0.17, 0.16
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.3, 1.58, -6.58 0.2, 0.13, 0.14
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bknpl 0.34, 1.53, -6.67 0.13, 0.1, 0.12
S5 0716p71 nan nan nan nan nan nan nan spl 0.91 0.06
NGC 2617 51.71 0.3 nan nan nan nan nan drw -6.34 0.07
OJ 287 54.44 0.3 nan nan nan nan nan bndpl 0.47, 1.65, -6.89 1.01, 0.24, 0.26
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure bknpl 0.32, 1.12, -6.5 0.3, 0.2, 0.4
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.34, 1.57, -6.81 0.11, 0.08, 0.05
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure bknpl 0.97, 1.15, -5.95 0.08, 0.29, 0.38
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.35, 1.58, -6.2 0.11, 0.18, 0.12
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure drw -5.99 0.05
1ES 1011p496 54.57 0.3 nan nan nan nan nan bknpl 0.23, 1.68, -6.82 0.13, 0.08, 0.06
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error bknpl 0.63, 1.82, -6.63 0.13, 0.09, 0.1
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.46, 1.78, -6.8 0.12, 0.06, 0.03
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bndpl 0.34, 1.42, -5.89 0.61, 0.8, 0.3
Mrk 421 nan nan nan nan nan nan nan bknpl 0.06, 1.55, -6.91 0.09, 0.08, 0.05
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bndpl 0.6, 1.89, -6.65 0.87, 0.19, 0.27
RGB J1117p202 53.17 0.3 nan nan nan nan nan bndpl 0.4, 1.69, -6.62 1.03, 0.32, 0.27
RGB J1136p676 54.32 0.3 nan nan nan nan nan bknpl 0.49, 1.76, -6.79 0.13, 0.07, 0.03
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bndpl 0.51, 1.28, -6.08 0.82, 0.59, 0.35
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure bknpl 0.46, 1.08, -6.46 0.15, 0.24, 0.46
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial drw -6.62 0.06
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.09, 1.33, -6.94 0.13, 0.07, 0.08
ON 231 52.44 0.3 nan nan nan nan nan drw -6.5 0.06
1ES 1218p304 54.95 0.3 nan nan nan nan nan bknpl 0.22, 1.39, -6.74 0.14, 0.1, 0.11
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.22, 1.89, -6.87 0.11, 0.07, 0.06
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.24, 1.53, -6.84 0.16, 0.07, 0.06
M 87 nan nan nan nan nan nan nan bndpl 0.39, 1.58, -6.51 0.95, 0.35, 0.27
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure spl 0.89 0.06
Cen A nan nan nan nan nan nan nan bknpl 0.29, 1.27, -6.34 0.19, 0.26, 0.23
MCG -06-30-15 nan nan nan nan nan nan nan bndpl 0.24, 1.62, -6.32 1.04, 0.42, 0.27
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure bknpl 0.18, 1.76, -6.69 0.11, 0.1, 0.08
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure bndpl 0.65, 0.87, -5.87 0.22, 0.86, 0.72
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial spl 0.63 0.08
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure bndpl 0.39, 1.45, -5.96 0.83, 0.71, 0.34
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure bknpl 0.16, 1.66, -6.45 0.11, 0.16, 0.12
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error bknpl 0.32, 1.52, -6.72 0.17, 0.08, 0.23
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.21, 1.66, -6.77 0.13, 0.09, 0.09
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial bknpl 0.18, 1.37, -6.75 0.12, 0.09, 0.09
AP Lib 52.69 0.3 nan nan nan nan nan bknpl 0.11, 1.6, -6.76 0.12, 0.07, 0.07
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure bknpl 0.23, 1.18, -6.73 0.14, 0.11, 0.16
PG 1553p113 nan nan nan nan nan nan nan drw -6.8 0.03
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure spl 0.64 0.07
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.2, 1.49, -6.81 0.13, 0.09, 0.07
Mrk 501 nan nan nan nan nan nan nan bknpl 0.16, 1.32, -7.05 0.17, 0.08, 0.11
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.18, 1.54, -6.66 0.16, 0.13, 0.1
4C 09.57 54.66 0.3 nan nan nan nan nan bknpl 0.65, 1.66, -6.8 0.12, 0.09, 0.05
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure bknpl 0.21, 1.56, -6.77 0.14, 0.09, 0.07
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure spl 0.76 0.08
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure bknpl 0.57, 0.92, -6.55 0.19, 0.22, 0.85
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bknpl 0.65, 1.44, -6.78 0.1, 0.12, 0.12
ESO 141-55 53.05 0.3 nan nan nan nan nan bknpl 0.3, 0.84, -6.78 0.22, 0.1, 0.67
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.27, 1.49, -6.79 0.14, 0.08, 0.07
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure drw -6.38 0.07
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.19, 1.41, -6.91 0.14, 0.08, 0.09
1ES 1959p650 54.31 0.3 nan nan nan nan nan bknpl 0.34, 1.77, -6.78 0.1, 0.08, 0.05
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.34, 0.96, -6.7 0.3, 0.13, 0.62
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bknpl 0.7, 1.67, -6.8 0.07, 0.1, 0.06
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error bknpl 0.13, 1.45, -6.82 0.13, 0.08, 0.05
4C 50.55 nan nan nan nan nan nan nan bknpl 0.34, 1.3, -6.87 0.18, 0.07, 0.09
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure bknpl 0.27, 1, -6.73 0.13, 0.13, 0.23
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure bknpl 0.09, 1.58, -6.72 0.09, 0.11, 0.11
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 1.01, 1.17, -5.96 0.05, 0.23, 0.34
ESO 533-2 nan nan nan nan nan nan nan bknpl 0.13, 1.52, -6.34 0.11, 0.22, 0.12
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.1, 1.6, -6.75 0.12, 0.07, 0.05
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bknpl 0.23, 1.51, -6.51 0.15, 0.12, 0.07
MR 2251-178 nan nan nan nan nan nan nan bknpl 0.26, 1.26, -7.04 0.18, 0.07, 0.08
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error bknpl 0.14, 1.4, -6.8 0.17, 0.1, 0.08
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial bknpl 0.21, 1.31, -6.78 0.18, 0.09, 0.09
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure bknpl 0.2, 1.79, -6.7 0.13, 0.1, 0.09
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure bndpl 0.37, 1.23, -5.83 0.7, 0.89, 0.37
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.17, 1.82, -6.72 0.17, 0.09, 0.09
QSO B2356-309 nan nan nan nan nan nan nan bknpl 0.27, 0.95, -6.33 0.16, 0.24, 0.19
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A.4 12-20 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan bknpl 0.91, 1.59, -6.78 0.14, 0.17, 0.28
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error drw -6.55 0.05
2MASX J00341665-7905204 53.2 0.3 8.02 0.3 -1.41 Koss2022 only measure drw -6.23 0.06
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.12, 1.66, -6.77 0.13, 0.09, 0.05
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure drw -6.53 0.05
1ES 0120p340 55.16 0.3 nan nan nan nan nan bknpl 0.16, 1.51, -6.77 0.13, 0.1, 0.1
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error spl 0.74 0.06
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.41, 1.68, -6.79 0.15, 0.07, 0.05
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.19, 1.88, -6.7 0.13, 0.06, 0.07
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion bknpl 0.2, 1.63, -6.74 0.13, 0.1, 0.09
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.3, 1.85, -6.62 0.15, 0.09, 0.09
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure bknpl 0.29, 1.85, -6.6 0.21, 0.09, 0.1
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure drw -6.34 0.06
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure drw -6.13 0.06
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure bknpl 0.21, 1.1, -6.34 0.17, 0.26, 0.27
1ES 0414p009 54.74 0.3 nan nan nan nan nan bknpl 0.12, 1.92, -6.56 0.13, 0.06, 0.06
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure bndpl 0.29, 1.9, -6.57 0.18, 0.21, 0.21
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial spl 0.79 0.07
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error bknpl 0.1, 1.69, -6.66 0.13, 0.1, 0.11
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure drw -6.3 0.05
3C 129 nan nan nan nan nan nan nan bknpl 0.14, 1.89, -6.84 0.11, 0.07, 0.05
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure bknpl 0.08, 1.69, -6.5 0.11, 0.18, 0.07
1ES 0502p675 55.37 0.3 nan nan nan nan nan bndpl 0.67, 2.04, -6.61 0.74, 0.13, 0.36
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan drw -6.46 0.05
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial drw -6.56 0.06
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure drw -6.11 0.05
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.08, 1.64, -6.48 0.12, 0.15, 0.09
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.19, 1.75, -6.62 0.16, 0.11, 0.11
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bknpl 0.21, 1.87, -6.52 0.12, 0.08, 0.06
S5 0716p71 nan nan nan nan nan nan nan bknpl 0.59, 1.75, -6.77 0.13, 0.08, 0.08
NGC 2617 51.71 0.3 nan nan nan nan nan drw -6.3 0.06
OJ 287 54.44 0.3 nan nan nan nan nan drw -6.71 0.04
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure bknpl 0.1, 1.61, -6.52 0.33, 0.16, 0.11
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.4, 1.72, -6.81 0.11, 0.08, 0.03
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure bknpl 0.33, 1.12, -6.5 0.26, 0.3, 0.22
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.22, 1.69, -6.23 0.07, 0.17, 0.1
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure bknpl 0.23, 0.99, -6.24 0.14, 0.27, 0.25
1ES 1011p496 54.57 0.3 nan nan nan nan nan drw -6.87 0.05
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error bknpl 0.63, 1.9, -6.62 0.11, 0.06, 0.09
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.5, 1.86, -6.79 0.12, 0.07, 0.05
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bknpl 0.05, 1.63, -6.13 0.07, 0.25, 0.1
Mrk 421 nan nan nan nan nan nan nan bknpl 0.09, 1.46, -6.93 0.12, 0.07, 0.09
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bndpl 0.84, 1.95, -6.49 0.61, 0.24, 0.35
RGB J1117p202 53.17 0.3 nan nan nan nan nan drw -6.58 0.05
RGB J1136p676 54.32 0.3 nan nan nan nan nan bknpl 0.5, 1.88, -6.78 0.11, 0.06, 0.06
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bknpl 0.25, 1.54, -6.14 0.12, 0.29, 0.18
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure drw -6.15 0.05
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial bknpl 0.25, 1.82, -6.73 0.15, 0.1, 0.1
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.15, 1.43, -6.86 0.15, 0.08, 0.07
ON 231 52.44 0.3 nan nan nan nan nan drw -6.57 0.06
1ES 1218p304 54.95 0.3 nan nan nan nan nan drw -6.51 0.04
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.21, 1.94, -6.8 0.14, 0.05, 0.04
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.34, 1.8, -6.81 0.15, 0.08, 0.05
M 87 nan nan nan nan nan nan nan drw -6.42 0.04
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure bknpl 0.15, 1.91, -6.8 0.12, 0.06, 0.05
Cen A nan nan nan nan nan nan nan bknpl 0.23, 1.2, -6.16 0.1, 0.45, 0.28
MCG -06-30-15 nan nan nan nan nan nan nan drw -6.12 0.07
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure bndpl 0.11, 2.26, -6.56 0.12, 0.11, 0.07
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure bknpl 0.63, 0.93, -6.54 0.13, 0.16, 0.65
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial bknpl 0.15, 1.57, -6.22 0.12, 0.24, 0.13
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure bknpl 0.17, 1.29, -6.05 0.12, 0.46, 0.2
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure bknpl 0.23, 1.87, -6.57 0.16, 0.08, 0.08
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error drw -6.52 0.04
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.33, 1.84, -6.73 0.12, 0.06, 0.07
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial bknpl 0.28, 1.66, -6.82 0.15, 0.09, 0.05
AP Lib 52.69 0.3 nan nan nan nan nan bknpl 0.13, 1.48, -6.76 0.11, 0.11, 0.08
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure drw -6.47 0.04
PG 1553p113 nan nan nan nan nan nan nan drw -6.54 0.06
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure spl 0.63 0.05
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.16, 1.83, -6.79 0.1, 0.06, 0.05
Mrk 501 nan nan nan nan nan nan nan bknpl 0.22, 1.48, -6.88 0.19, 0.08, 0.09
NGC 6300 50.43 0.3 6.77 0.3 -1.75 Koss2022 only measure bknpl 0.37, 1.09, -6.71 0.21, 0.11, 0.23
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.17, 1.86, -6.6 0.12, 0.08, 0.07
4C 09.57 54.66 0.3 nan nan nan nan nan bknpl 0.66, 1.75, -6.79 0.07, 0.07, 0.05
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure bknpl 0.22, 1.63, -6.74 0.1, 0.09, 0.09
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure spl 0.73 0.07
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure bknpl 0.24, 1.07, -6.69 0.17, 0.15, 0.2
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bndpl 0.84, 1.83, -6.6 0.61, 0.31, 0.45
ESO 141-55 53.05 0.3 nan nan nan nan nan bknpl 0.25, 1.02, -6.77 0.18, 0.12, 0.15
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.2, 1.55, -6.78 0.14, 0.09, 0.09
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure drw -6.43 0.1
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.22, 1.39, -6.87 0.16, 0.09, 0.08
1ES 1959p650 54.31 0.3 nan nan nan nan nan bknpl 0.38, 1.87, -6.8 0.11, 0.07, 0.03
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.24, 1.09, -6.64 0.15, 0.11, 0.22
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bknpl 0.68, 1.72, -6.78 0.13, 0.07, 0.07
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error drw -6.44 0.05
4C 50.55 nan nan nan nan nan nan nan bknpl 0.23, 1.54, -6.82 0.13, 0.07, 0.05
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure bknpl 0.16, 1.19, -6.61 0.17, 0.17, 0.15
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure bknpl 0.15, 1.64, -6.66 0.13, 0.12, 0.1
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.33, 1.45, -6.29 0.18, 0.23, 0.18
ESO 533-2 nan nan nan nan nan nan nan bknpl 0.09, 1.74, -6.31 0.09, 0.16, 0.08
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.13, 1.5, -6.73 0.18, 0.09, 0.08
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bknpl 0.11, 1.61, -6.49 0.1, 0.11, 0.06
MR 2251-178 nan nan nan nan nan nan nan bknpl 0.17, 1.31, -6.99 0.23, 0.09, 0.18
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error drw -6.55 0.05
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial bknpl 0.13, 1.63, -6.8 0.14, 0.08, 0.05
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure bndpl 0.09, 2.4, -6.51 0.1, 0.13, 0.08
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.13, 1.37, -6.17 0.1, 0.31, 0.16
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.34, 1.94, -6.75 0.27, 0.04, 0.09
QSO B2356-309 nan nan nan nan nan nan nan bknpl 0.17, 1.45, -6.23 0.13, 0.25, 0.14
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A.5 2-10 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan bknpl 0.55, 1.41, -6.84 0.1, 0.05, 0.06
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error bndpl 0.63, 1.57, -6.85 0.84, 0.31, 0.55
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.17, 1.71, -6.81 0.11, 0.07, 0.04
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure bknpl 0.19, 1.5, -6.81 0.13, 0.07, 0.06
1ES 0120p340 55.16 0.3 nan nan nan nan nan bknpl 0.16, 1.61, -6.87 0.16, 0.07, 0.06
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error spl 0.78 0.04
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.43, 1.41, -6.84 0.08, 0.08, 0.06
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.15, 1.54, -7 0.16, 0.1, 0.12
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion bknpl 0.34, 1.27, -6.86 0.19, 0.08, 0.08
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.19, 1.55, -6.89 0.16, 0.07, 0.08
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure bknpl 0.31, 1.47, -6.75 0.14, 0.1, 0.12
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure spl 0.92 0.04
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure bknpl 0.61, 1, -6.79 0.2, 0.16, 0.74
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure spl 0.79 0.05
1ES 0414p009 54.74 0.3 nan nan nan nan nan bknpl 0.52, 1.42, -6.64 0.22, 0.12, 0.28
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure drw -6.86 0.05
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial spl 0.81 0.04
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error bknpl 0.27, 1.49, -6.77 0.16, 0.08, 0.13
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure bndpl 0.87, 1.04, -6.25 0.32, 0.32, 0.77
3C 129 nan nan nan nan nan nan nan bknpl 0.41, 1.4, -6.84 0.11, 0.08, 0.06
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure bknpl 0.44, 1.3, -6.71 0.19, 0.12, 0.28
1ES 0502p675 55.37 0.3 nan nan nan nan nan bknpl 0.48, 1.66, -6.8 0.09, 0.05, 0.03
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan bndpl 0.53, 1.44, -6.66 0.83, 0.23, 0.46
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial bknpl 0.34, 1.3, -6.76 0.16, 0.1, 0.11
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure bknpl 0.61, 1.01, -6.57 0.16, 0.21, 0.52
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion bndpl 0.95, 1.42, -6.32 0.39, 0.4, 0.86
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.37, 1.52, -6.83 0.15, 0.07, 0.06
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bndpl 0.65, 1.52, -6.85 0.79, 0.13, 0.41
S5 0716p71 nan nan nan nan nan nan nan bndpl 0.75, 1.86, -6.54 0.72, 0.22, 0.36
NGC 2617 51.71 0.3 nan nan nan nan nan spl 0.96 0.05
OJ 287 54.44 0.3 nan nan nan nan nan bknpl 0.35, 1.42, -6.78 0.14, 0.08, 0.12
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure spl 0.9 0.05
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.51, 1.32, -6.8 0.14, 0.09, 0.06
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure spl 0.87 0.03
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.78, 1.28, -6.25 0.1, 0.34, 0.43
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure bknpl 0.68, 1.07, -6.5 0.12, 0.19, 0.52
1ES 1011p496 54.57 0.3 nan nan nan nan nan bknpl 0.44, 1.35, -6.8 0.13, 0.09, 0.06
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error bknpl 0.27, 1.62, -6.83 0.12, 0.08, 0.07
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.4, 1.31, -6.82 0.12, 0.08, 0.06
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bknpl 0.58, 0.95, -6.87 0.18, 0.18, 1.06
Mrk 421 nan nan nan nan nan nan nan bndpl 0.45, 1.66, -7.05 1.04, 0.14, 0.21
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bknpl 0.2, 1.86, -6.79 0.14, 0.08, 0.05
RGB J1117p202 53.17 0.3 nan nan nan nan nan bknpl 0.38, 1.75, -6.79 0.14, 0.08, 0.1
RGB J1136p676 54.32 0.3 nan nan nan nan nan bndpl 0.84, 1.65, -6.63 0.63, 0.33, 0.86
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bknpl 0.53, 0.99, -6.62 0.17, 0.14, 0.54
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure bknpl 1.45, 1.85, -6.92 0.04, 0.08, 1.32
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial bknpl 0.22, 1.86, -6.79 0.15, 0.07, 0.07
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.35, 1.77, -6.85 0.13, 0.07, 0.04
ON 231 52.44 0.3 nan nan nan nan nan bknpl 0.17, 1.61, -6.83 0.15, 0.08, 0.05
1ES 1218p304 54.95 0.3 nan nan nan nan nan bndpl 0.61, 1.51, -6.89 0.86, 0.16, 0.59
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.27, 1.5, -6.79 0.17, 0.1, 0.07
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.31, 1.52, -6.82 0.13, 0.07, 0.06
M 87 nan nan nan nan nan nan nan bknpl 0.39, 1.53, -6.8 0.14, 0.08, 0.06
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure bknpl 0.33, 1.32, -6.86 0.2, 0.09, 0.08
Cen A nan nan nan nan nan nan nan bndpl 0.82, 1.09, -6.19 0.46, 0.3, 0.8
MCG -06-30-15 nan nan nan nan nan nan nan spl 0.82 0.05
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure bknpl 0.24, 1.46, -6.81 0.17, 0.08, 0.09
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure bknpl 0.22, 1.74, -6.62 0.1, 0.08, 0.08
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial bknpl 0.21, 1.39, -6.73 0.14, 0.07, 0.1
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure spl 0.76 0.07
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure bknpl 0.39, 1.56, -6.74 0.16, 0.09, 0.12
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error bknpl 0.4, 1.47, -6.82 0.16, 0.07, 0.06
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.22, 1.52, -6.89 0.16, 0.08, 0.08
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial bknpl 0.4, 1.29, -5.86 0.08, 0.48, 0.15
AP Lib 52.69 0.3 nan nan nan nan nan bknpl 0.22, 1.82, -6.54 0.1, 0.1, 0.07
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure bknpl 0.35, 1.11, -6.92 0.29, 0.07, 0.18
PG 1553p113 nan nan nan nan nan nan nan bknpl 0.39, 1.34, -6.83 0.14, 0.08, 0.09
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure spl 0.8 0.04
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.16, 1.6, -6.93 0.15, 0.06, 0.1
Mrk 501 nan nan nan nan nan nan nan bknpl 0.53, 1.62, -6.85 0.15, 0.08, 0.06
NGC 6300 50.43 0.3 6.77 0.3 -1.75 Koss2022 only measure spl 0.85 0.04
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.39, 1.47, -6.84 0.18, 0.08, 0.1
4C 09.57 54.66 0.3 nan nan nan nan nan bknpl 0.42, 1.65, -6.2 0.1, 0.21, 0.12
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure bknpl 0.2, 1.55, -6.91 0.18, 0.08, 0.11
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure spl 0.81 0.05
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure spl 0.81 0.05
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bndpl 0.74, 1.45, -6.56 0.68, 0.2, 0.52
ESO 141-55 53.05 0.3 nan nan nan nan nan spl 0.74 0.05
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.23, 1.47, -6.81 0.11, 0.07, 0.06
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure drw -6.04 0.04
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.36, 1.72, -6.84 0.15, 0.09, 0.05
1ES 1959p650 54.31 0.3 nan nan nan nan nan bknpl 0.66, 1.78, -6.81 0.1, 0.07, 0.04
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion spl 0.81 0.04
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bknpl 0.66, 1.5, -6.8 0.15, 0.06, 0.06
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error spl 0.93 0.06
4C 50.55 nan nan nan nan nan nan nan bknpl 0.42, 1.4, -6.78 0.16, 0.07, 0.08
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure bndpl 0.76, 1, -6.36 0.36, 0.31, 1.05
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure bknpl 0.26, 1.6, -6.86 0.13, 0.08, 0.06
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.4, 1.27, -6.76 0.19, 0.13, 0.26
ESO 533-2 nan nan nan nan nan nan nan drw -5.85 0.05
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.61, 1.42, -6.84 0.15, 0.08, 0.09
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bknpl 0.37, 1.24, -6.83 0.17, 0.11, 0.19
MR 2251-178 nan nan nan nan nan nan nan bknpl 0.41, 1.17, -5.82 0.1, 0.35, 0.17
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error bknpl 0.4, 1.35, -6.81 0.14, 0.09, 0.07
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial bknpl 0.15, 1.54, -6.76 0.12, 0.08, 0.08
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure bknpl 0.26, 1.6, -6.78 0.15, 0.08, 0.06
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.62, 1, -6.12 0.09, 0.24, 0.37
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.5, 1.55, -6.8 0.11, 0.07, 0.05
QSO B2356-309 nan nan nan nan nan nan nan bknpl 0.76, 1.09, -6.3 0.09, 0.32, 0.57
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A.6 2-20 keV

Source IDs logLbol logLbol err pref logM pref logM err pref logMdot pref catalog selection Preference Params Param Err

1ES 0033p595 54.68 0.3 nan nan nan nan nan bknpl 0.56, 1.71, -6.79 0.13, 0.07, 0.07
Mrk 335 nan nan 6.87 0.14 1.17 Du2016 lowest error bknpl 0.21, 1.78, -6.71 0.18, 0.09, 0.11
Mrk 348 52.27 0.3 6.8 0.3 -0.25 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.1, 1.78, -6.79 0.11, 0.08, 0.04
Mrk 1148 53.39 0.3 7.75 0.3 -0.63 Koss2022 only measure drw -6.62 0.05
1ES 0120p340 55.16 0.3 nan nan nan nan nan bknpl 0.13, 1.74, -6.83 0.13, 0.07, 0.04
Fairall 9 nan nan 8.09 0.12 -0.71 Du2016 lowest error bknpl 0.24, 1.04, -6.97 0.21, 0.1, 0.18
LEDA 138501 53.14 0.3 8.01 0.3 -0.86 Koss2022 only measure bknpl 0.46, 1.54, -6.8 0.09, 0.08, 0.04
3C 66A 46.13 0.3 nan nan nan nan nan bknpl 0.18, 1.45, -7.09 0.21, 0.07, 0.11
NGC 931 52.25 0.3 7.64 0.3 -1.21 WooUrry2002 preferred measurement - Stellar Dispersion bknpl 0.08, 1.64, -6.82 0.12, 0.08, 0.05
NGC 973 nan nan 8.48 0.3 -2.58 Koss2022 only measure bknpl 0.12, 1.71, -6.86 0.13, 0.09, 0.06
NGC 1068 nan nan 7.23 0.3 -0.35 WooUrry2002 only measure bknpl 0.28, 1.74, -6.58 0.18, 0.13, 0.1
MCG -02-08-038 52.95 0.3 7.97 0.3 -1.66 Koss2022 only measure bndpl 1.06, 0.99, -6.16 0.39, 0.66, 0.62
NGC 1365 50.92 0.3 7.6 0.3 -1.9 GonzalezVaughan2012 only measure bknpl 0.39, 1.15, -6.66 0.26, 0.28, 0.46
ESO 548-81 nan nan 7.96 0.3 -1.97 Koss2022 only measure bknpl 0.38, 1.02, -6.9 0.25, 0.08, 0.37
1ES 0414p009 54.74 0.3 nan nan nan nan nan drw -6.6 0.06
3C 111 53.8 0.3 8.45 0.3 -0.94 Koss2022 only measure drw -6.81 0.05
1H 0419-577 nan nan 8.34 0.3 -0.84 Koss2022 preferred measurement - Virial bknpl 0.18, 1.09, -7.03 0.2, 0.08, 0.14
3C 120 53.38 0.3 7.61 0.22 0.03 Du2016 lowest error bknpl 0.22, 1.67, -6.74 0.14, 0.11, 0.1
MCG -02-12-050 nan nan 8.23 0.3 -1.83 Koss2022 only measure bndpl 0.83, 1.49, -6.58 0.59, 0.35, 0.63
3C 129 nan nan nan nan nan nan nan bknpl 0.34, 1.38, -6.94 0.18, 0.09, 0.13
MCG -01-13-025 51.4 0.3 7.2 0.3 -1.33 Koss2022 only measure drw -6.54 0.06
1ES 0502p675 55.37 0.3 nan nan nan nan nan bknpl 0.55, 1.85, -6.78 0.12, 0.08, 0.05
IRAS 05078p1626 52.32 0.3 nan nan nan nan nan bndpl 0.59, 1.49, -6.64 0.78, 0.34, 0.52
Ark 120 53.02 0.3 8.2 0.3 -1.4 GonzalezVaughan2012 preferred measurement - Virial drw -6.62 0.06
PKS 0521-365 53.34 0.3 7.22 0.3 -0.12 Koss2022 only measure bknpl 0.65, 1.1, -6.23 0.12, 0.32, 0.44
NGC 2110 52.04 0.3 8.78 0.3 -2.46 Koss2022 preferred measurement - Stellar Dispersion bndpl 1, 1.73, -6.43 0.47, 0.36, 0.64
MCG p08-11-011 nan nan nan nan nan nan nan bknpl 0.35, 1.5, -6.87 0.15, 0.08, 0.1
1ES 0647p25.0 54.93 0.3 nan nan nan nan nan bndpl 0.75, 1.52, -6.77 0.7, 0.21, 0.44
S5 0716p71 nan nan nan nan nan nan nan bknpl 0.53, 1.91, -6.79 0.11, 0.06, 0.04
NGC 2617 51.71 0.3 nan nan nan nan nan drw -6.49 0.09
OJ 287 54.44 0.3 nan nan nan nan nan bndpl 0.61, 1.57, -6.65 0.81, 0.37, 0.48
MCG -01-24-012 52.13 0.3 7.66 0.3 -1.44 Koss2022 only measure drw -6.5 0.12
Mrk 110 nan nan 7.05 0.18 0.81 Du2016 lowest error bknpl 0.58, 1.37, -6.77 0.11, 0.09, 0.1
NGC 2992 51.65 0.3 7.72 0.3 -1.9 WooUrry2002 only measure spl 0.96 0.03
MCG -05-23-016 52.1 0.3 7.65 0.3 -1.49 Koss2022 only measure bknpl 0.72, 1.36, -6.15 0.11, 0.26, 0.25
2MASX J09594263-3112581 52.43 0.3 7.25 0.3 -0.84 Koss2022 only measure bknpl 0.67, 1.27, -6.15 0.17, 0.31, 0.3
1ES 1011p496 54.57 0.3 nan nan nan nan nan bknpl 0.4, 1.45, -6.81 0.14, 0.08, 0.07
NGC 3227 50.8 0.3 7.09 0.12 -1.34 Du2016 lowest error bknpl 0.31, 1.62, -6.81 0.13, 0.09, 0.08
RX J1053.7p4929 nan nan nan nan nan nan nan bknpl 0.36, 1.49, -6.78 0.16, 0.1, 0.11
1ES 1101-23.2 55.11 0.3 nan nan nan nan nan bknpl 0.58, 1.07, -6.39 0.13, 0.25, 0.41
Mrk 421 nan nan nan nan nan nan nan drw -6.78 0.05
NGC 3516 nan nan 7.82 0.08 -1.97 Du2016 lowest error bknpl 0.22, 1.84, -6.75 0.16, 0.09, 0.07
RGB J1117p202 53.17 0.3 nan nan nan nan nan bndpl 0.29, 2.23, -6.59 0.16, 0.19, 0.17
RGB J1136p676 54.32 0.3 nan nan nan nan nan bknpl 0.56, 1.85, -6.79 0.1, 0.09, 0.04
NGC 3783 nan nan 7.45 0.11 -1.58 Du2016 lowest error bknpl 0.54, 1.1, -6.27 0.14, 0.28, 0.39
2MASX J11454045-1827149 52.8 0.3 7.39 0.3 -0.62 Koss2022 only measure bknpl 1.47, 1.69, -6.56 0.03, 0.06, 0.81
NGC 4051 nan nan 6.28 0.3 -1.79 VasudevanFabian2009 preferred measurement - Virial bknpl 0.2, 1.84, -6.76 0.16, 0.09, 0.07
NGC 4151 nan nan 7.72 0.06 -2.81 Du2016 lowest error bknpl 0.28, 1.63, -6.86 0.2, 0.09, 0.06
ON 231 52.44 0.3 nan nan nan nan nan bknpl 0.07, 1.77, -6.79 0.11, 0.08, 0.05
1ES 1218p304 54.95 0.3 nan nan nan nan nan bknpl 0.43, 1.58, -6.81 0.21, 0.09, 0.12
4C 4.42 55.57 0.3 8.87 0.3 0.99 Koss2022 preferred measurement - Virial bknpl 0.25, 1.7, -6.77 0.14, 0.1, 0.08
3C 273 55.52 0.3 8.87 0.15 0.7 Du2016 lowest error bknpl 0.22, 1.76, -6.79 0.18, 0.1, 0.07
M 87 nan nan nan nan nan nan nan bknpl 0.41, 1.41, -6.79 0.18, 0.1, 0.13
3C 279 55.67 0.3 8.44 0.3 0.46 Bao2008 only measure bknpl 0.2, 1.64, -6.8 0.24, 0.09, 0.04
Cen A nan nan nan nan nan nan nan bknpl 0.72, 1.21, -5.81 0.08, 0.47, 0.22
MCG -06-30-15 nan nan nan nan nan nan nan bknpl 0.62, 1.22, -6.15 0.1, 0.28, 0.26
NGC 5252 52.62 0.3 8.04 0.3 -0.75 WooUrry2002 only measure bknpl 0.26, 1.69, -6.78 0.17, 0.09, 0.06
4U 1344-60 52.25 0.3 9.09 0.3 -2.85 Koss2022 only measure bknpl 0.2, 1.38, -6.73 0.13, 0.09, 0.11
IC 4329A 52.99 0.3 7.65 0.3 -0.77 Koss2022 preferred measurement - Virial bknpl 0.15, 1.38, -6.76 0.11, 0.07, 0.09
2MASX J14104482-4228325 nan nan 7.33 0.3 -1.19 Koss2022 only measure bknpl 0.57, 0.85, -5.98 0.11, 0.43, 0.37
NGC 5506 nan nan 7.24 0.3 -1.28 Koss2022 only measure bknpl 0.29, 1.76, -6.72 0.23, 0.11, 0.15
NGC 5548 nan nan 7.92 0.04 -1.62 Du2016 lowest error bknpl 0.31, 1.66, -6.8 0.16, 0.09, 0.08
1ES 1426p428 54.62 0.3 nan nan nan nan nan bknpl 0.22, 1.46, -6.87 0.17, 0.07, 0.09
PKS 1510-08 55.09 0.3 8.18 0.3 0.95 Koss2022 preferred measurement - Virial drw -6.34 0.04
AP Lib 52.69 0.3 nan nan nan nan nan bknpl 0.3, 1.62, -6.55 0.11, 0.11, 0.1
NGC 5995 52.47 0.3 7.77 0.3 -1.33 Koss2022 only measure bknpl 0.24, 1.33, -6.86 0.15, 0.08, 0.07
PG 1553p113 nan nan nan nan nan nan nan bknpl 0.47, 1.35, -6.77 0.17, 0.12, 0.23
2MASX J16115141-6037549 51.48 0.3 6.95 0.3 -1.03 Koss2022 only measure spl 0.8 0.06
4C 38.41 56.42 0.3 9.41 0.3 -0.27 Kozlowski2017 only measure bknpl 0.21, 1.64, -6.83 0.2, 0.08, 0.05
Mrk 501 nan nan nan nan nan nan nan bknpl 0.41, 1.57, -6.85 0.15, 0.07, 0.07
NGC 6300 50.43 0.3 6.77 0.3 -1.75 Koss2022 only measure bknpl 0.25, 1.14, -6.82 0.26, 0.11, 0.15
4C p18.51 53.92 0.3 9.23 0.3 -1.49 Koss2022 preferred measurement - Virial bknpl 0.36, 1.43, -6.85 0.15, 0.09, 0.1
4C 09.57 54.66 0.3 nan nan nan nan nan bknpl 0.23, 1.48, -6.76 0.17, 0.12, 0.14
3C 382 53.87 0.3 8.97 0.3 -2.09 Wu2004 2 only measure drw -6.68 0.05
Fairall 49 52.47 0.3 7.76 0.3 -1.95 Koss2022 only measure bknpl 0.18, 1.12, -6.9 0.21, 0.11, 0.13
ESO 103-035 nan nan 7.37 0.3 -1.01 Koss2022 only measure bknpl 0.12, 1.11, -6.81 0.15, 0.1, 0.12
3C 390.3 53.92 0.3 8.87 0.15 -3.35 Du2016 lowest error bndpl 0.75, 1.89, -6.42 0.71, 0.26, 0.34
ESO 141-55 53.05 0.3 nan nan nan nan nan bknpl 0.2, 1.04, -6.81 0.34, 0.1, 0.46
2FGL J1931.1p0938 nan nan nan nan nan nan nan bknpl 0.14, 1.47, -6.8 0.11, 0.09, 0.07
1H 1934-063 51.73 0.3 6.61 0.3 -1.18 Koss2022 only measure drw -6.34 0.05
Cyg A 54.53 0.3 nan nan nan nan nan bknpl 0.22, 1.68, -6.87 0.13, 0.08, 0.07
1ES 1959p650 54.31 0.3 nan nan nan nan nan bknpl 0.59, 1.9, -6.82 0.16, 0.07, 0.04
NGC 6860 51.89 0.3 7.71 0.3 -1.65 Koss2022 preferred measurement - Stellar Dispersion bknpl 0.31, 1.03, -6.81 0.27, 0.17, 0.43
4C p74.26 nan nan 9.83 0.3 -2 Koss2022 preferred measurement - Virial bknpl 0.65, 1.71, -6.8 0.12, 0.1, 0.06
Mrk 509 53.29 0.3 8.15 0.03 -0.52 Du2016 lowest error bknpl 0.18, 1.48, -6.8 0.16, 0.09, 0.05
4C 50.55 nan nan nan nan nan nan nan bknpl 0.32, 1.37, -6.8 0.13, 0.07, 0.06
1RXS J213623.1-622400 53.11 0.3 7.35 0.3 -0.3 Koss2022 only measure bknpl 0.2, 1.24, -6.81 0.21, 0.11, 0.15
2MASX J21383340p3205060 nan nan 7.44 0.3 -1.41 Koss2022 only measure drw -6.71 0.06
NGC 7172 nan nan 8.2 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.37, 1.28, -6.77 0.25, 0.16, 0.25
ESO 533-2 nan nan nan nan nan nan nan bknpl 0.35, 1.76, -5.74 0.06, 0.18, 0.07
Ark 564 52.26 0.3 6.9 0.3 -0.1 GonzalezVaughan2012 only measure bknpl 0.23, 1.58, -6.84 0.18, 0.09, 0.06
3C 454.3 nan nan 9.17 0.3 1.27 Bao2008 only measure bknpl 0.42, 1.37, -6.61 0.17, 0.16, 0.18
MR 2251-178 nan nan nan nan nan nan nan bknpl 0.46, 0.89, -6.87 0.22, 0.45, 1.13
NGC 7469 nan nan 7.6 0.06 0.9 Du2016 lowest error bknpl 0.24, 1.49, -6.78 0.17, 0.11, 0.11
Mrk 926 nan nan 7.98 0.3 -0.54 Koss2022 preferred measurement - Virial bknpl 0.12, 1.61, -6.77 0.17, 0.09, 0.08
NGC 7603 nan nan 8.08 0.3 -1.52 WooUrry2002 only measure bknpl 0.13, 1.84, -6.76 0.16, 0.1, 0.07
NGC 7582 nan nan 7.7 0.3 -2.5 GonzalezVaughan2012 only measure bknpl 0.47, 0.88, -6.02 0.09, 0.58, 0.39
1ES 2321p419 nan nan nan nan nan nan nan bknpl 0.37, 1.53, -6.83 0.11, 0.08, 0.05
QSO B2356-309 nan nan nan nan nan nan nan drw -6.31 0.05
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Source IDs Preference Params Param Err

Mrk 335 spl 2.15 0.6
Mrk 348 drw -3.19 0.17
Mrk 1148 bndpl 0.66, 1.18, -4.03 0.49, 1.01, 0.7
Fairall 9 spl 2.46 0.4
3C 66A bndpl 0.71, 1.36, -4.01 0.51, 1.02, 0.7
NGC 931 bndpl 1.04, 2.52, -4.59 0.46, 0.39, 0.38
NGC 1068 spl 0.25 0.24
NGC 1365 bndpl 0.89, 2.13, -3.88 0.38, 0.59, 0.52
ESO 548-81 bknpl 0.61, 1.35, -3.97 0.55, 0.59, 0.66
1ES 0414+009 spl 0.35 0.45
3C 111 spl 0.25 0.24
1H 0419-577 spl 0.27 0.19
3C 120 spl 0.98 0.68
IRAS 05078+1626 drw -4.73 0.22
MCG +08-11-011 spl 0.99 1.02
S5 0716+71 drw -4.57 0.34
NGC 2617 spl 0.59 0.47
OJ 287 spl 0.94 0.82
Mrk 110 spl 2.03 0.68
NGC 2992 bndpl 0.74, 1.16, -3.87 0.48, 0.93, 0.69
MCG -05-23-016 bndpl 0.75, 2.34, -4.08 0.44, 0.43, 0.39
NGC 3516 bknpl 0.88, 1.61, -4.24 0.45, 0.3, 0.6
NGC 3783 bndpl 0.68, 2.84, -4.82 0.52, 0.17, 0.13
2MASX J11454045-1827149 bknpl 0.79, 1.58, -4.32 0.45, 0.35, 0.62
NGC 4051 bndpl 0.88, 1.66, -3.9 0.5, 0.8, 0.65
NGC 4151 spl 1.69 0.74
ON 231 spl 0.47 0.48
1ES 1218+304 bndpl 0.67, 1.27, -3.96 0.5, 1.03, 0.67
3C 273 spl 0.43 0.26
M 87 spl 0.16 0.15
3C 279 spl 0.38 0.36
Cen A spl 2.28 0.53
MCG -06-30-15 drw -4.6 0.14
NGC 5252 spl 1.57 1.02
NGC 5506 spl 2.13 0.62
NGC 5548 spl 2.42 0.43
1ES 1426+428 spl 0.55 0.66
PG 1553+113 bndpl 0.91, 2.72, -4.75 0.5, 0.25, 0.22
3C 382 spl 0.31 0.4
Fairall 49 bndpl 1.14, 2.2, -4.36 0.42, 0.37, 0.57
ESO 103-035 bndpl 0.7, 1.28, -3.98 0.5, 0.98, 0.68
ESO 141-55 bknpl 0.95, 1.59, -4.48 0.46, 0.28, 0.63
1H 1934-063 bknpl 1.01, 1.57, -4.33 0.45, 0.18, 0.64
1ES 1959+650 spl 2.26 0.55
NGC 6860 spl 1.93 0.71
4C +74.26 spl 0.86 0.89
Mrk 509 spl 2.45 0.43
PKS 2155-304 bndpl 0.88, 2.65, -4.66 0.5, 0.32, 0.31
NGC 7172 bndpl 0.79, 1.38, -4.03 0.52, 1.04, 0.67
Ark 564 bknpl 0.9, 1.5, -4.1 0.41, 0.26, 0.66
3C 454.3 spl 1.21 1.02
MR 2251-178 bndpl 0.56, 0.59, -4.03 0.33, 0.44, 0.71
NGC 7469 spl 2.39 0.44
NGC 7603 spl 0.45 0.51
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ZTF GP fits

Source Model (L = Lorentz, RT = RealTerm, M = Matern) Break Freq (Hz) Err Low Err High

NGC4151 (L(21.24, 3.93, -5.75) + RT(22.38, -5.48) + Matern32.00Term(10.06, 4.12,
eps=0.01))

-3.3 1.43 -0.07

ON231 (L(17.67, 5.27, -7.30) + RT(18.14, -5.18) + Matern32.00Term(7.40, 0.81, eps=0.01)) -3.97 0.9 0.56
3C454.3 (L(13.10, 4.37, -5.62) + RT(14.40, -5.51) + Matern32.00Term(6.26, 1.73, eps=0.01)) -3.24 1.67 -0.15
1ES0502+675 (L(12.82, 4.89, -6.61) + RT(13.36, -6.73) + Matern32.00Term(5.87, 4.73, eps=0.01)) -3.67 1.14 0.4
3C129 (L(7.49, 1.82, -7.99) + RT(6.90, -9.71) + Matern32.00Term(4.09, -7.28, eps=0.01)) -4.27 0.62 1.05
Mrk110 (L(15.90, 1.36, -10.04) + RT(17.93, -6.54) + Matern32.00Term(7.87, 3.49,

eps=0.01))
-5.16 -0.32 1.66

RXJ1053.7+4929 (Matern32.00Term(4.74, -0.69, eps=0.01) + Matern32.00Term(5.78, 3.08,
eps=0.01))

– – –

CygA (L(9.20, 2.36, -9.52) + RT(10.22, -5.00) + Matern32.00Term(4.98, 0.26, eps=0.01)) -4.93 -0.0 1.43
NGC931 (L(13.36, 5.45, -4.47) + RT(12.43, -8.44) + Matern32.00Term(6.93, 0.28, eps=0.01)) -2.74 1.97 -0.08
3C111 (L(6.94, 0.46, -6.61) + RT(7.28, -6.13) + Matern32.00Term(3.89, 4.24, eps=0.01)) -3.67 1.25 0.15
4C4.42 (Matern32.00Term(4.67, 0.52, eps=0.01) + Matern32.00Term(5.03, 3.25,

eps=0.01))
– – –

1ES0120+340 (L(9.37, 5.28, -5.92) + RT(9.32, -5.48) + Matern32.00Term(4.35, 2.87, eps=0.01)) -3.37 1.35 0.01
PG1553+113 (L(17.37, 5.12, -8.57) + RT(19.84, -5.35) + Matern32.00Term(7.82, 1.90, eps=0.01)) -4.52 0.38 1.11
Mrk926 (L(16.80, 2.71, -6.52) + RT(15.92, -7.39) + Matern32.00Term(7.98, 7.10, eps=0.01)) -3.63 0.77 0.13
ESO548-81 (L(16.79, 3.20, -5.80) + RT(17.49, -4.99) + Matern32.00Term(8.23, -3.60, eps=0.01)) -3.31 1.41 0.08
1ES1426+428 (L(10.34, 2.80, -8.17) + RT(12.46, -5.54) + Matern32.00Term(4.33, 0.72, eps=0.01)) -4.34 0.56 0.87
3C382 (Matern32.00Term(7.68, 5.43, eps=0.01) + Matern32.00Term(6.00, 0.21,

eps=0.01))
– – –

NGC3516 (L(16.95, 2.00, -6.38) + RT(18.83, -5.51) + Matern32.00Term(8.59, -3.24, eps=0.01)) -3.57 1.33 0.05
Mrk335 (L(15.32, 2.93, -5.63) + RT(16.68, -5.70) + Matern32.00Term(7.60, 3.24, eps=0.01)) -3.24 1.56 -0.12
MCG-02-12-050 (L(12.58, 3.08, -6.72) + RT(14.23, -5.45) + Matern32.00Term(6.36, -2.81, eps=0.01)) -3.72 1.2 0.21
2MASXJ11454045-1827149 (L(15.41, 0.44, -5.57) + RT(14.93, -8.34) + Matern32.00Term(8.06, 3.19, eps=0.01)) -3.22 1.67 -0.19
3C390.3 (L(15.74, 3.03, -5.58) + RT(15.21, -6.68) + Matern32.00Term(7.70, 4.44, eps=0.01)) -3.22 1.35 -0.05
Mrk509 (L(19.24, 5.55, -5.73) + RT(18.73, -5.77) + Matern32.00Term(8.22, 3.56, eps=0.01)) -3.29 1.5 -0.02
4C09.57 (Matern32.00Term(6.73, 0.34, eps=0.01) + Matern32.00Term(7.95, 3.79,

eps=0.01))
– – –

4C+18.51 (L(12.76, 5.64, -5.81) + RT(11.65, -7.02) + Matern32.00Term(6.32, 4.01, eps=0.01)) -3.32 1.43 -0.05
3C66A (L(16.84, 4.14, -5.53) + RT(16.41, -4.76) + Matern32.00Term(7.77, 1.90, eps=0.01)) -3.2 1.52 0.03
1ES1218+304 (L(14.44, 5.67, -5.80) + RT(16.40, -5.49) + Matern32.00Term(7.27, 7.10, eps=0.01)) -3.32 1.63 -0.21
APLib (L(16.89, 5.26, -5.98) + RT(19.30, -5.57) + Matern32.00Term(8.31, -1.92, eps=0.01)) -3.39 1.5 -0.01
NGC5506 (L(12.10, 3.85, -10.05) + RT(12.08, -9.05) + Matern32.00Term(6.68, -0.20,

eps=0.01))
-5.16 -0.14 1.25

Mrk1148 (L(15.03, 3.75, -5.12) + RT(14.79, -7.89) + Matern32.00Term(7.53, 3.35, eps=0.01)) -3.02 1.61 -0.04
3C120 (L(14.37, 2.87, -7.26) + RT(16.73, -4.42) + Matern32.00Term(6.68, -4.24, eps=0.01)) -3.95 0.89 0.87
RGBJ1117+202 (L(11.97, 4.45, -5.76) + RT(13.97, -5.52) + Matern32.00Term(5.07, -3.91, eps=0.01)) -3.3 1.64 -0.23
MCG+08-11-011 (L(17.49, 5.16, -5.52) + RT(16.87, -4.60) + Matern32.00Term(8.65, 3.86, eps=0.01)) -3.2 1.48 0.01
2MASXJ21383340+3205060 (L(13.51, 4.69, -6.76) + RT(15.99, -5.55) + Matern32.00Term(6.01, -4.35, eps=0.01)) -3.73 1.16 0.23
MCG-02-08-038 (L(16.67, 0.75, -5.56) + RT(14.76, -6.74) + RT(14.77, -8.20)) -3.31 1.43 -0.04
M87 (Matern32.00Term(8.92, -0.01, eps=0.01) + Matern32.00Term(8.26, -3.11,

eps=0.01))
– – –

Mrk348 (Matern32.00Term(6.39, -1.51, eps=0.01) + Matern32.00Term(5.95, 3.11,
eps=0.01))

– – –

2FGLJ1931.1+0938 (L(6.83, 4.75, -6.49) + RT(6.81, -6.36) + Matern32.00Term(2.67, 3.50, eps=0.01)) -3.61 1.26 -0.03
3C273 (L(17.57, 4.45, -5.53) + RT(17.82, -5.56) + Matern32.00Term(8.35, 5.85, eps=0.01)) -3.2 1.58 -0.1
1ES1011+496 (L(15.77, 5.25, -5.59) + RT(14.97, -5.66) + Matern32.00Term(7.08, 2.01, eps=0.01)) -3.23 1.36 0.0
4C+74.26 (L(16.11, 2.74, -5.67) + RT(14.81, -10.06) + Matern32.00Term(7.60, 4.67,

eps=0.01))
-3.26 1.23 0.05

TABLE C.1: Break frequencies and associated model fits for ZTF sources in flux space.
Kernels abbreviated for compact formatting.
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Source Model (L = Lorentz, RT = RealTerm, M = Matern) Break Freq (Hz) Err Low Err High

3C454.3 (L(-4.560801248420914, 5.627653659418096, -5.595680608047791)
+ RT(-3.3999844802980284, -5.509369994385392) + M(-
2.9065476273198634, 1.5888369451169344, eps=0.01))

-3.23 1.71 -0.2

1ES0502+675 (L(-4.748825509883784, 0.5823621977466029, -6.4028149439367)
+ RT(-2.8376379536155083, -6.248918561240349) + M(-
2.179733807014947, 4.183871176382308, eps=0.01))

-3.58 1.11 0.45

3C129 (L(-4.446678249324142, 3.603908083009876, -9.427518156033234)
+ RT(-4.425565864149762, -7.599938140649054) + M(-
1.5174035545150253, -7.273064849853127, eps=0.01))

-4.89 0.07 1.61

Mrk110 (L(-3.73636095634817, 3.6940758948941417, -5.727990958476342)
+ RT(-2.641196211672274, -5.803571059703765) + M(-
2.092084962047405, 3.780735321545748, eps=0.01))

-3.29 1.59 -0.19

RXJ1053.7+4929 (L(-5.09432705546501, 0.8941870036733972, -7.388030397411188)
+ RT(-3.0528157849347743, -5.5089523017542845) + M(-
3.1209485137775848, -0.8624618148228702, eps=0.01))

-4.01 0.92 0.45

CygA (L(-5.495183271740946, 1.1585380867173782, -6.708382457067228)
+ RT(-4.648628166283901, -4.9863635986002866) + M(-
2.4635693526162257, 0.35385532176509615, eps=0.01))

-3.71 1.22 0.26

NGC931 (L(-6.254415576181854, 2.3829608845229315, -
7.6496440963933345) + RT(-5.745275138348691, -
5.148499626859403) + M(-3.1051183790151575,
0.3824755586538071, eps=0.01))

-4.12 0.66 1.29

3C111 (L(-4.168543674706046, 3.5162277861800746, -5.57820170418864)
+ RT(-4.183129652456993, -5.692394778609583) + M(-
1.727641330007898, 4.133046412862819, eps=0.01))

-3.22 1.71 -0.32

4C4.42 (M(-2.8452338905368784, 0.39369663249161446, eps=0.01) + M(-
2.3799979573960357, 3.329386719389399, eps=0.01))

nan nan nan

1ES0120+340 (L(-4.667205394107618, 4.961573996298925, -5.835991089871866)
+ RT(-5.042896452464405, -5.962299458008144) + M(-
2.7896880461632705, 2.751048714298003, eps=0.01))

-3.33 1.38 -0.05

PG1553+113 (L(-4.8442653599706045, 3.487088697201935, -6.415965768836951)
+ RT(-2.3778476776681976, -5.353620393861297) + M(-
3.1634118632227373, 1.693194301488198, eps=0.01))

-3.58 1.32 0.13

Mrk926 (L(-2.793113477316699, 4.85164409757293, -6.7175748566579525)
+ RT(-4.021609666000846, -6.6442838168460225) + M(-
2.0843969035021095, 6.9286012939859445, eps=0.01))

-3.72 0.62 0.21

ESO548-81 (L(-4.320571668938835, 2.057961082757215, -6.0579129996326735)
+ RT(-3.657194719608856, -4.9500469024287685) + M(-
2.427200191979849, -3.8623680238619915, eps=0.01))

-3.43 1.36 0.17

NGC2992 (L(-4.700218704181195, 3.460494678661187, -8.49397588182937)
+ RT(-5.072903969006804, -10.04347082582346) + M(-
1.9573635453550877, -1.4118539926038618, eps=0.01))

-4.49 0.53 0.71

1ES1426+428 (L(-5.660774417361185, 3.548471453120457, -6.452594336739)
+ RT(-3.9763858871428446, -5.608511059217066) + M(-
3.8553404176768757, 0.7564148734424665, eps=0.01))

-3.6 1.29 0.11

3C382 (M(-2.180168638196906, 7.344506975363011, eps=0.01) + M(-
3.573078340503641, 0.10215474025524585, eps=0.01))

nan nan nan

NGC3516 (L(-4.571394557638605, 2.9700393933802696, -6.638559505866859)
+ RT(-3.245242793298918, -5.502122683121572) + M(-
2.563524902424552, -2.8850942633071655, eps=0.01))

-3.68 1.2 0.13

Mrk335 (L(-3.736432416267909, 0.6347446889043957, -6.17019174289136)
+ RT(-3.908333906564966, -5.969006302252853) + M(-
2.9305644035810547, 3.2193810561321317, eps=0.01))

-3.48 1.21 0.14

MCG-02-12-050 (L(-5.397065721400197, 3.710736483636462, -7.148012754474861)
+ RT(-4.18461085406271, -5.478930989093288) + M(-
2.8312546742685525, -3.1595128405210535, eps=0.01))

-3.9 0.99 0.43

2MASXJ11454045-1827149 (L(-4.78517886535984, 0.6151563419547617, -5.542143867996657)
+ RT(-5.4459801869886295, -8.68547952379806) + M(-
2.2679591933032865, 3.024177246586307, eps=0.01))

-3.21 1.66 -0.21

TABLE C.2: Break frequencies and model fits for ZTF sources in magnitudes (part 1).
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Source Model (L = Lorentz, RT = RealTerm, M = Matern) Break Freq (Hz) Err Low Err High

3C390.3 (L(-3.569690089810417, 3.13217023257451, -5.587520255167415)
+ RT(-4.2304699104206716, -6.500078794280832) + M(-
2.0109783452252046, 4.433093909399504, eps=0.01))

-3.22 1.26 -0.03

Mrk509 (L(-4.389649252466137, 4.440644630670271, -5.6828825327490025)
+ RT(-4.088233384704288, -5.86789801380769) + M(-
3.115517538427167, 3.7208938007027554, eps=0.01))

-3.27 1.54 -0.05

4C09.57 (L(-1.8933858396315693, 1.2470150263506803, -9.40106347346591)
+ RT(0.057191031480159416, -4.796534929305469) + M(-
1.7404774164364185, 0.5872115088104253, eps=0.01))

-4.88 0.02 1.49

NGC5995 (L(-5.369283177159116, 4.038005795517881, -7.386918420920269)
+ RT(-3.700313591791231, -5.603069423626282) + M(-
2.606195938383368, 0.4593081897491249, eps=0.01))

-4.01 0.96 0.36

PKS1510-08 (L(-3.4554319162430716, 2.7452610491698692, -
7.420472181693697) + RT(-1.2121849759876298, -
5.560523354322351) + M(-1.8979250506226577,
1.0644929117572124, eps=0.01))

-4.02 0.95 0.47

4C+18.51 (L(-5.157000472662274, 3.640836199491224, -5.948556061735501)
+ RT(-5.556885144103061, -6.945877679688972) + M(-
2.2926689491236596, 4.058075942977429, eps=0.01))

-3.38 1.39 -0.0

3C66A (L(-2.5691205649118336, 2.90907503332995, -5.47447913040647)
+ RT(-3.153016914497138, -4.698493326016866) + M(-
2.543233123828081, 1.6848226207033479, eps=0.01))

-3.18 1.58 -0.04

1ES1218+304 (L(-4.253890632360146, 0.5083511504843283, -7.997592877174104)
+ RT(-1.8929833556047277, -5.546179162299904) + M(-
2.1136885138845285, 7.285664860923186, eps=0.01))

-4.27 0.66 0.78

APLib (L(-3.888547802207751, 3.464622744338869, -9.56299449480959)
+ RT(-1.4610336902647452, -5.537207259924824) + M(-
2.197952094225542, -1.6176790024716812, eps=0.01))

-4.95 -0.02 1.53

Mrk1148 (L(-4.614412390956321, 2.4751385307946343, -5.145778014629731)
+ RT(-4.59818534725985, -7.651004003561344) + M(-
2.2774412564766795, 3.3839624284138647, eps=0.01))

-3.03 1.55 -0.02

3C120 (L(-6.238996091617677, 1.9286809413274655, -9.168728163066223)
+ RT(-4.168387544956361, -4.410985550495028) + M(-
3.768272598328689, -4.109724801921535, eps=0.01))

-4.78 0.08 1.64

RGBJ1117+202 (L(-4.195106240605236, 1.5169576458744234, -8.277833516710478)
+ RT(-2.319542859982824, -5.68542575699651) + M(-
3.008264205410964, 0.0068584182068383015, eps=0.01))

-4.39 0.54 0.89

MCG+08-11-011 (L(-2.5458791146620636, 4.426385072131142, -5.538872175093742)
+ RT(-3.9304487567577517, -6.266879662833982) + M(-
1.7587359591978298, 3.2975689791125253, eps=0.01))

-3.2 1.26 0.02

LEDA138501 (L(-2.0458585278259434, 4.914290179498481, -
7.0445238282093525) + RT(-3.939146895918221, -
8.509335893688112) + M(-1.631869871760137,
3.6037072387942044, eps=0.01))

-3.86 0.5 0.32

2MASXJ21383340+3205060 (L(-5.992025680156247, 0.6998005958187364, -8.221252543078228)
+ RT(-3.4216823990953302, -5.551158319573977) + M(-
3.807678546728761, -4.492570872858734, eps=0.01))

-4.37 0.56 0.86

MCG-02-08-038 (L(-2.6460797900744977, 4.153408577182713, -6.582937436738398)
+ RT(-2.8530142803671072, -5.564916789278903) + M(-
2.1645847234438236, 6.895614279814242, eps=0.01))

-3.66 1.06 0.25

Mrk348 (M(-3.1251144667151287, -1.058517309614214, eps=0.01) + M(-
3.5323998227259623, 2.863511022474305, eps=0.01))

nan nan nan

2FGLJ1931.1+0938 (L(-6.8226071271526845, 5.225027139077569, -7.91313252565652)
+ RT(-6.764331482820106, -8.838045139684786) + RT(-
6.811533354971623, -7.836978257086398))

-4.21 0.8 0.34

3C273 (L(-6.645749969469339, 3.6746781681365324, -5.635795047501183)
+ RT(-6.038407164449689, -5.565521702618279) + M(-
3.9452245588319617, 5.756440820278621, eps=0.01))

-3.25 1.63 -0.09

1ES1011+496 (L(-3.9098407070112877, 5.224237322919999, -5.534148620004089)
+ RT(-4.274450894266852, -5.644950464684268) + M(-
2.6546882688721354, 1.9446003602945614, eps=0.01))

-3.2 1.59 -0.04

4C+74.26 (L(-4.564152474341698, 4.894810344933428, -5.770982394953597)
+ RT(-6.093571302961322, -7.942581928792354) + M(-
2.688114093427811, 4.82830351500706, eps=0.01))

-3.3 1.35 0.08

TABLE C.3: Break frequencies and model fits for ZTF sources in magnitudes (part 2).
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Appendix D

A brief introduction to supervised
machine learning

D.1 Defining Machine Learning

Machine learning defines algorithms which learn patterns from given data without
being programmed with explicit physical information. In our application, we seek to
differentiate a periodic symmetric signal from noise without describing the physical
source of the variability. In this work, we only focus on supervised workflows, in
which an algorithm is presented with labels for each data subject during training
(Murphy, 2012). In this way, we specify what patterns we want the machine to learn,
but give no restriction on how the algorithm may go about doing so. In the alternative
unsupervised case, the algorithm is given unlabelled data from which it learns
patterns, and then we inspect the output results. In this thesis, all machine learning
will follow the open-source Scikit-learn framework (Pedregosa et al., 2011).

D.2 Supervised Learning Workflows

D.2.1 Training Data

Establishing a training set is the first stage of any machine learning workflow. In the
supervised regime, this is a set for which the ”true” label is known. This is often done
through simulations using physical information, as we have done in Chapter 6;
however, people can also add accurate labels. Simulations are much easier to make in
bulk, while human labelling often results in a smaller training dataset and is likely to
require some additional pre-processing. While often time-consuming, the training set
is the foundation for a machine learning model. Any results can only be considered
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representative of the training set. More formally, we define the training set X and
labels y, such that each training sample comprises a single piece of training data and
an assigned label (Xi, yi). It is the values of y, that the machine learning is trying to
predict.

When creating the training set, care should be taken to ensure physically accurate or
targeted representation of particular objects. The model can only ever learn properties
in the training set; over- or under-represented cases can bias or add blind spots to the
model. Our choice to over-weight the lensing class (see Chapter 6) by showing a larger
fraction of lensing events than expected in a physical sample introduced deliberate
bias into that class, as our primary goal was to identify these properties. Accurate and
consistent labelling of the training set is paramount, often carrying more weight than
the quality of the training data itself, as these labels underpin the training stage.

There is no ”correct” number of training samples. The sample size required will
depend highly on the quality (and information density) of training data available and
the complexity of the desired output. For example, a simple binary classification will
likely require fewer training samples than a five-category classification. Moreover,
detecting a faint signal (especially one with varying shapes) in a noisy light curve will
likely require more samples than detecting point sources in a field. More complex
algorithms also require different amounts of training data, with simpler decision tree
models typically requiring significantly less than deep neural network structures. One
usually wants to use as much training data as possible without exceeding a
”reasonable” length of training or over-fitting the network. It is a careful balancing act
of showing enough data to learn patterns and trends without showing almost every
possible scenario, such that the machine rote-learns the training set. Most structures
will need ∼ 1000s of samples to produce a well-trained output. While Gaussian
processes make this feasibility achievable in our use case, data availability and ethics
often dictate the training sample size.

Once labelled, the training set is split into three groups: a training dataset, a
validation dataset, or a testing dataset. Typically, the data split roughly follows a
70:10:20 ratio; however, standards vary considerably depending upon the number of
samples in a training set and the model’s application. It is vital that the split happens
before any model training and that no replicas of the same object appear across the
datasets; otherwise, data leakage will occur and the model will report higher
performance than its actual ability. The training dataset is the collection of samples
that the model actively looks at and updates its model parameters (weights) to
fit/classify the data more accurately. The validation dataset is used after the training
dataset and objectively evaluates how well the trained model performs. This dataset
then guides and updates the model’s hyperparameters that describe its structure
(number/width of layers, learning rate and so on). Finally, after several iterations, the
completely isolated test dataset is used, and the model structure/weights are frozen to
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evaluate the overall performance of the best model. When creating a machine learning
model, one should test several randomly ordered splits in the training set to ensure
robustness. Cross-validation is a well-known method typically used to test this
robustness for small datasets. For larger datasets, another method could be using
different random seeds when drawing data into its respective classes. For our
exploration of self-lensing (Chapter 6), we follow a 64:16:20 split and draw with
different random seeds to ensure robustness (although results are presented with a
fixed seed for reproducibility).

D.2.2 Pre-Processing

It is often the case that training data requires some level of pre-processing before
entering the algorithm. Firstly, any Nan or in f values must be removed as there is
nothing the algorithm can retrieve from this. Additionally, all samples must be on the
same scale. We choose flux units in our case, but for example, a mixture of fluxes and
magnitudes could not be used. In addition to ensuring the same units across samples,
time-series, spectra, and other data vectors are often normalised or scaled. It is
common to scale time-series to a mean of zero and a standard deviation of 1, while
image data is often scaled using a min-max scaling, such that the weighting of pixel
values can be inferred. Scaling also ensures numerical stability within the algorithm,
which can suffer with data that varies over several orders of magnitude. Other ML
routines, such as logistic regression routines, use distance metrics which can become
poorly calibrated for large numerical ranges, ignoring small values in favour of larger
ones. Further to maintaining stability and fairness, scaling also helps to speed up
algorithms such as gradient descent optimisers.

If images or data vectors such as time-series are to be used, the pre-processing can
cease here. However, feature engineering is the next step in choosing any statistical or
table-based method. Feature engineering transforms a raw data sample (an image,
vector or time-series lightcurve) into more relevant and important features. A feature
here typically means a measurable property or characteristic that acts as an input to
the machine learning model. This could include simple statistics such as the mean and
variance, or more complex characteristics such as the peak of the auto-covariance
function. Much like the number of training samples, there is no fixed prescription for
the number of features one might choose. Instead, the process of choosing features is
referred to as feature engineering, as it often requires several iterations to choose the
features of the data that achieve optimal results when trained. At this stage,
dimensionality reduction can also be used through PCA (principal component
analysis), UMAP (Uniform Manifold Approximation and Projection), or other
techniques; however, we do not apply such techniques to our application.
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The final stage of the pre-processing is data augmentation, a method by which a
sample size can be artificially enlarged, improving the performance and robustness of
the model. For example, machine learning could take an image and rotate it by 90°,
180° and 270°, quadrupling the dataset size. In our case, we add a small amount of
Gaussian or Poisson noise to a pre-existing sample with a label for time-series data.
This method is often used if there is limited data for a particular class. Our GP
allowed us to generate many training samples, which is not required in our case.
However, we do apply class weights. Weighting can penalise certain misses more
heavily by adding a penalty to the loss function, which the algorithm attempts to
minimise, often with a compromise in accuracy elsewhere. In our application, we
choose to weight the lensing category, making a conscious choice to accept more false
positives. An alternative to class weighting is to undersample majority classes to
ensure equal representation within the set. However, this is not always possible with
limited training samples.

Once pre-processing is complete, the training samples are shuffled and batched to be
placed into the algorithm. Batching passes through fractions of the dataset at any
given time, which aims to reduce the computational demand, help scalability or
improve model generalisation. It is conventional at this stage to fix any random seed
used for data augmentation and save the value alongside the results to ensure
reproducibility.

Once training data has been established, the ML algorithm can be chosen. The choice
of architecture depends heavily on the science goal, the available training data and the
computational resources at hand. It is not always intuitive which architecture is best,
so often it is prudent to try a few models to see which yields the best results before
tuning the best model to its optimal state. In the context of this work, the science goal
was to separate lensing events within a large data sample; therefore, a classifier was
the obvious choice.

There are multiple types of classifier architectures. Given the plethora of training data
we could simulate in our examples, we were not limited to shallow networks. We
could also extract statistical information from the simulated time series before
converting it into an image, providing several possible algorithms to explore.

D.3 Table-Based Classifiers

Statistical data stored in tables can be a highly informative way to separate data into
groups. For example, from a table containing ages of people, a classifier could easily
make a group of children as they would all share the characteristic of age < 18. Height
may also be informative, as children are statistically smaller than adults until their late
teenage years. Eye colour, though measurable, may prove to be entirely uninformative
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in this case. The characteristics that form the table’s column data are known as
features. As previously discussed, feature engineering chooses features that give the
best results.

In our application to lensing, we began with an extensive list of ∼ 20 features for
which we then calculated the importance. This measures how often the feature
becomes a defining factor within the classification. Features with low importance can
then be discarded, and the model retrained on a smaller set. This makes the feature
extraction process more efficient when considering the application to large volumes of
real data. This method is known as choosing ”k-best”. The values of k can be
user-defined, or a cut-off can be placed on the importance measure. Our application
defines our k-best as all those with importance ≥ 0.05.

Once features have been established, the model itself can be defined.

D.3.1 Tree-based Classifiers

Tree-based classifiers are the most intuitive of the architectures; their interpretability
makes them an ideal starting point for a scientific goal such as ours. At each leaf node,
the data is split into two piles. For example, a node might look at a feature which
contains information about the number of sides of a 2D shape. If the feature value was
three (a triangle), the tree node might split the data as either a triangle or not a
triangle. The remaining (not a triangle) data is carried to the next node, where this
node might classify a quadrilateral. Eventually, each class has built its own (mostly)
unique branch through the tree. Tree classifiers are helpful as they do not require
scaling or other pre-processing. They capture rules in a readable way (see figure D.1
for a simple illustration of a tree decision process). For example, in our work, ”If peak
and peak symmetric → lensing”. However, they are memory-intensive.

The tree classifiers have several flavours (Breiman, 2001): the single tree, random
forest and gradient boosted decision tree. Single trees are faster, but random forests fit
several trees and average their results, making them more robust. Gradient-Boosted
Trees build trees sequentially, each one correcting the mistakes of the last; usually, the
most accurate of the three (Theodoridis, 2020). Indeed, the best feature classifier we
found was a gradient boosted tree.

D.3.2 Linear and Kernel Models

Several architectures are within this category, including logistic regression, which we
will not discuss. We will instead focus our intention on only those applied in
Chapter 6. The support vector machine (SVM) is a kernel model that finds the largest
margin hyper-plane that separates the classes. It places all feature values into an
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FIGURE D.1: An illustration of a tree-based classifier process

TABLE D.1: Key hyper-parameters for tree-based ensembles

Hyper-parameter Meaning / effect

n estimators Number of trees in the forest. More trees → lower variance
but longer runtime.

max depth Maximum depth of each tree controls the model complexity,
i.e. maximum number of sequential splits.

min samples leaf Minimum number of samples required to form a leaf node;
prevents very specific “rules of one”.

max features Fraction of features considered at each split. Lower values
de-correlate trees, improving generalisation.

subsample Fraction of training rows used to grow each boosted tree;
adds stochastic regularisation.

n-dimensional space and extracts 2D projections. In those projections, it then attempts
to draw single lines which distinguish clusters of points of the same class. Kernel
functions define these lines. The simplest is a linear kernel, which gives straight lines,
but one can choose polynomial and other functional kernels too.

The SVM is much less intuitive than the tree classifier, but still visually interpretable;
planes can be plotted along the lines along which classes were defined (Cortes and
Vapnik, 1995). Since only the support vectors are stored, they are generally more
lightweight in memory than most other classifiers. However, their training cost is
high, and the SVM requires scaling to prevent vastly different scales in the vector
plane, adding a processing stage. While feature importance can still be evaluated,
performance is highly dependent on the hyper-parameters, especially the kernel
function. Therefore, plotting a few feature planes directly from the tabular data can
help one know where to begin when considering which kernel to choose. SVMs do
not work well without clear separation in feature space.
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The hyperparameters for the SVM are heavily kernel-dependent. However, there are
two which are present for all kernels. We explored both a linear kernel and a
polynomial kernel of degree 3 (cubic).

TABLE D.2: Key hyper-parameters for the Support-Vector Machine (SVM) classifier

Hyper-parameter Meaning / effect

kernel Mapping function that defines the decision boundary
C Soft-margin penalty. Larger values force the model to clas-

sify every training point correctly (risking over-fit)

D.4 Neural Networks

Neural networks are designed to mimic how the human brain makes decisions. While
the configurations may vary, every network is built on the same base components
(Hastie et al., 2009; LeCun et al., 2015).

A single unit within the network is called a neuron. Every neuron takes in information
from one or more connected pathways. Each input is then multiplied by a weight. The
weights of each input channel are then added along with a bias to give a single value.
The sum of weights and bias is then passed through an activation function. Many
activation functions can be selected; their purpose is to ensure a bounded output for a
given weight and bias sum. This process refers explicitly to a forward-fed network.

As the name suggests, a neural network comprises many connected neurons.
Networks are connected in layers. The first layer is the input layer, where data vectors,
such as our tabular feature data, are fed into the network. Hidden layers can then be
added and connected to the layers before and after. The structure of these hidden
layers act as hyper-parameters which can be tuned to yield optimal results via back
propagation and gradient descent. The final layer is the output layer, where
predictions are given. The weight and bias values are optimised for each neuron when
the network is trained. A simple schematic is shown in Figure D.2.

Unlike the previous two examples, neural networks are impossible to interpret. The
weights and biases do not hold any physical interpretations and merely
mathematically predict an output for a given input. As a result, higher weighting
must ensure the network is adequately trained and evaluated before being applied to
a science goal. Training is a computationally expensive process which requires scaled
data to ensure well-behaved gradients. Neural networks also need a much larger
training sample than tree classifiers and SVMs. Despite this, neural networks can
automatically predict complex nonlinear relationships between parameters, so there is
no need to choose appropriate kernel functions to describe such boundaries.
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FIGURE D.2: An illustration of a fully-connected forward-fed neural network

We implement several examples of neural networks in Chapter 6, some built from
scratch while others formed from pre-defined structures.

Networks built from scratch can include:

Neural Network Emulators – To approximate the lensing profile, a neural network
emulator was created. The magnification value was extracted for a single unit-less
offset (lens position in the source plane). The neural network was trained on a grid of
pre-calculated profiles, which created a network capable of manually interpolating
between the grid points we had evaluated. However, it was noted that this did not
work well for very sharp profiles because the neural network could not retain such
fine structure.

Shallow Networks – Multi-layer perceptions (MLPs) have a mostly fixed structure.
They are a shallow neural network composed of one to three hidden layers. The
output layer returns class probabilities. MLPs are more lightweight than most
networks we might build due to their relatively small size.

CNNs – Unlike the MLP, convolutional neural networks (CNNs) are designed to work
with matrix/image data. The neural networks we have described thus far have been
fully connected, where each neuron in the input layer is connected to each neuron in
the hidden layer. This creates a large volume of weights and biases which trace an
input to an output. However, in a CNN, we consider only a small patch at a time. A
smaller network is run on each patch, which returns n outputs and a small set of
learnable weights. By sliding this patch across the image and running the smaller
network over each patch, reusing those same weights everywhere, a feature map is
created (note this is not the same as the features in the previous feature analysis, but
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follows standard nomenclature). We recover the standard fully connected network
structure for a patch the same size as the image. We refer to the patch as a kernel. We
can summarise the process for a numerical example as follows;

• Pre-scale the matrix data. CNNs can take a greyscale image with x, y for location
and z pixel brightness, a colour image with 3 layers in the z dimensions for R, G
and B values or a 1D vector for a time-series.

• Choose a small kernel window, e.g. 4x4 weights. This will give 16 learnable
values.

• Place the kernel over a 4×4 image patch and compute a dot product plus bias to
obtain one activation value.

• Slide the window along one stride length. One pixel would be a stride of 1.
Repeat the previous step on the new patch. Patches can overlap. Repeat until the
whole image has been covered. Reuse the same 16 weights every time to create a
feature map matrix, and create the first convolution layer.

• Pass each convolution layer through an activation function for numerical
stability, as before.

• Repeat with different initial kernels and stack the feature maps together.

• Flatten to one long vector and feed into the standard fully connected layers to
output the final class probabilities.

The advantage of CNNs is that they have fewer weights and can detect any mapped
feature anywhere in the image. This is particularly useful for our science goal; we do
not know where a lensing signal might appear in a light curve, though we know they
will always take a similar shape. The CNN can build a feature for the lensing shape
and then detect that shape anywhere. A deeper network can learn the variation of
shapes we intend to classify together. One feature map might produce a boxcar
function, while another a sharper peak, but they both fall into the same class.

Pooling layers can be added between the convolution and flattening layers to reduce
the memory consumption by keeping only the strongest signals. This makes the
network more robust to minor changes. We choose not to do this in our science case
since some of our lensing signals are weak.

However, it can prove just as beneficial to use pre-defined network structures.

• ResNet 18 / 34 are convolutional Neural Networks that add skips every two
layers. The skips let gradients flow straight through, so deeper nets train
reliably. The 18 and 34 refer to the number of layers, making it much deeper
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TABLE D.3: Key hyper-parameters for a Convolutional Neural Network (CNN)

Hyper-parameter Meaning / effect

kernel size Spatial size of each convolutional filter. Larger kernels cap-
ture wider context but increase parameter count.

filters Number of kernels learned in a layer. More filters →
richer feature representation but higher memory/computa-
tion cost.

stride Step size when sliding the kernel. Stride= 1 preserves res-
olution; stride≥ 2 downsamples and reduces feature-map
size.

padding How borders are handled. same keeps spatial dimensions;
valid crops edges, shrinking the output.

pool size Larger pools add translation invariance but lose fine detail.
learning rate Step size for the optimiser. Too high → diverging loss; too

low → slow convergence.
batch size Number of samples processed before a weight update. Big-

ger batches give more stable gradients but need more mem-
ory.

than the MLP. While a ResNet model may find more nonlinear patterns, training
will take much longer and require a large amount of training data.

• EfficientNet is another CNN network designed to keep size small but prioritise
accuracy. The way in which the network has been structured allows scaling from
small to medium-sized models without a huge increase in training time

• DenseNet is connected so that each new layer reuses all the earlier feature maps.
This allows the network to quickly learn the most important features and focus
more computing power on the more complex patterns. The DenseNet is easier to
fine-tune but requires a lot of memory.

BNNs – As the name suggests, Bayesian neural networks (BNNs) are treated as
probability distributions instead of treating each weight and bias as a single point
value. During training, the goal is no longer “find the best weight” but to learn the
posterior distribution of each weight, given the data. The most significant advantage
of using a BNN over a CNN is that uncertainties in classifications come as a
by-product. By sampling the weight posteriors, uncertain classifications can be
flagged. However, they are much more expensive to train. BNNs also use a slightly
different loss function, which helps to hold learned posteriors in the region of any
chosen priors.

Another, cheaper way to get uncertainties is to apply dropout layers. In this case, we
drop a fraction of the activation values at each layer. The dropout mask is resampled
for each iteration so that slightly different sub-networks are trained each time. This
identifies the strongest weights as they survive only by retaining their values over
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multiple sub-networks. This adds a final hyperparameter, the dropout rate, which
takes values typically between 0.1 and 0.5. Selecting which layers to apply dropout to
in a self-built network is possible.

RNNs and Transformers – Recurrent neural networks (RNNs) are targeted towards
ordered data, such as time series, where context matters and the next step depends on
the previous. The key difference between RNNs and other NNs we have discussed is
that standard NNs pass information in a single direction, but RNNs pass information
back into the network. A neuron in an RNN looks slightly different from a standard
neuron; it holds a hidden state that contains information about previous inputs. This
hidden state is combined with the weights and biases during the training. The
weights are updated using back propagation over time to minimise the loss. There are
many RNN flavours named after the way in which the neurons are connected, such as
one-to-one and many-to-one. In our use case, we also tried a long-short term memory
configuration, whereby the network forgets some information after a period of time.

RNNs are very training-intensive, especially for long time-series data. Due to their
back propagation method, they are also highly gradient sensitive. They share the
uninterpretable nature of NNs with a further level of complexity due to the addition
of its time-series memory. However, they are the only network structure capable of
using context, making them a desirable tool for time-series analysis. While they did
not serve well for our classification problem, if trained on only lensing events, they
may be valuable in predicting future events for follow-up where the period is poorly
constrained.

TABLE D.4: Key hyper-parameters for Recurrent Neural Networks (RNNs)

Hyper-parameter Meaning / effect

hidden size Dimensionality of the hidden state; larger values can model
more complex temporal patterns

num layers Number of stacked RNN layers
sequence length Number of time-steps per Back-propagation Through Time

segment; longer lengths capture longer dependencies but
use more memory.

learning rate Step size for the optimizer
batch size Number of sequences per weight update; larger batches

yield stabler gradients but need more memory.
clip norm Maximum norm for gradient clipping to prevent exploding

gradients; scales down gradients exceeding this threshold.

Transformers are a subset of RNNs which replace the recurrence aspect with
self-attention. Instead of looking at the time series sequentially, it looks at the time
series vector as a whole. This means it retains information about the positions of each
element.
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D.5 Ensemble Voters

Sometimes, different networks perform well for different parameter spaces within the
training set. Ensemble voters combine the output of several ML models to make a
decision. Ensemble voters allow the combination of multiple architecture types. Our
examples combined a feature analysis decision tree with a pre-structured ResNet 34
CNN. There are several types of voters; hard voters take the majority class, soft voters
take the average of the class probabilities, and stacking creates another small decision
tree. Not all base models of the voter need to be added equally; weights can be added
if there is a preference for one architecture. We use a hard voter with a slight
adjustment to retain results with at least one positive vote for the lensing class.

D.6 Evaluation Metrics

It is vital to evaluate the performance of any architecture before applying it to any
scientific goal. There are several evaluation metrics to choose from with different
emphasis on the true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN);

• Accuracy - overall fraction predicted correctly;
TP+TN

TP+FP+FN+TN

The accuracy is best applied to balanced classes.

• Precision - the fraction of true positives in the positive predictions;
TP

TP+FP

This is best applied when attempting to minimise false alarms. For our science
goal, we actively choose to weight towards false positives rather than false
negatives, so this is not an appropriate choice.

• Recall - fraction of real positives detected;
TP

TP+FN

This is best applied when you do not want to miss any detections, making it a
strong metric choice for our science goal.

• F1 score - a balance of precision and recall;
2 precision×recall

precision+recall

The F1 can be weighted to penalise misses in certain classes. Since it also
incorporates the recall information, it is an ideal metric for our science goal.

• Log-loss or cross entropy - penalises overconfident wrong predictions;
− 1

N ∑i

[︂
yi log pi + (1 − yi) log(1 − pi)

]︂
Can be used in conjunction with optimisers.
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D.6.1 Hyper-Parameter Tuning

We have previously discussed the idea of hyper-parameters in the context of Gaussian
Processes. Hyper-parameters in the machine learning case are external settings chosen
before or around that learning process; they define the model’s architecture and the
optimiser’s behaviour. Unlike hyperparameters in the GP case, they are not
minimised through the loss function. The loss function minimisation returns models
weights, the information learned from the network. Instead, hyperparameters are
tuned by performing a grid search and evaluating model performance for each setup.
Different machine learning models have different hyperparameters, which control
everything from the learning rates to the model capacity. Before finalising any
machine learning process, performing such a grid search over the hyperparameter
space is paramount to yield optimal performance. While grid-search methods are the
most intuitive, random searches can also be used, while packages such as OPTUNA

provide Bayesian optimisation of hyperparameters.

Regardless of the search method used, the overall method remains the same. The first
stage is to define the hyper-parameter space to be explored. When choosing the space,
it is often best to run a coarse space first to find a rough minimum and then perform a
narrower search in that region. This prevents wasted computing time as training is
both time-consuming and computationally expensive. When evaluating the
performance of each set of hyperparameters, it is vital to use the same performance
metric as that which will be used for the project goal, as different metrics may be
optimised in different areas of hyperparameter space. For example, in our case, we
applied the weighted F1 score in both the hyper-parameter optimisation and the final
network’s evaluation. As previously discussed, the metric will depend heavily on the
science goal.

Tuning of hyper-parameters can also reduce computing time later. Early stopping
conditions can be applied to stop additional training once an evaluation metric has
stabilised. We measure training stages in epochs. This is analogous to our early
stopping for convergence during our MCMC analysis. Not only does this make the
system more efficient overall, but it also allows control over the desired metric
precision. If the maximum number of epochs is used, this flags that the model may
not have reached its optimal state and may require further training. Indeed, when
running our image network, we found that 10 training epochs led to an F1 of only
∼ 0.6, but an upward trend in the metric indicated that this could be improved with
further training epochs. The final models used 18 training epochs to reach the values
of ∼ 0.8, after which the metric did not improve significantly with further training.

Class weights are a separate set of hyper-parameters that can be tuned. By default,
each class (label) is given equal weight. However, sometimes a science goal, such as
detecting transiting events, may require a weighting on the transit class. This
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penalises misses in this group more heavily, forcing the algorithm to pay more
attention to such training samples. Overweighting one class results in a loss of
accuracy across other labels, creating more false positives about the weighted
class(es). The class weightings can be tuned like the other hyperparameters, which is
usually done after the original tuning.

The tuning of hyperparameters may take longer than choosing a single configuration,
but it does yield the best results for a given structure. The compute time can be
managed by batching or parallelising across multiple cores. However, if doing so,
fixing the random seed to ensure logged results are reproducible is vital. Once tuning
has been completed, the final stage is to evaluate the performance of the optimised
algorithm on the validation set, a clean set of data not used in training.

We can now write the entire supervised learning process:

• Create/source and label training data.

• Split the data into training, test and validation sets.

• Pre-process data to ensure numerical stability.
If using feature analysis, select and extract the tabular data for training.

• Perform data augmentation as required.

• Select the machine learning architecture best suited for the data type.

• Tune the hyper-parameters for the selected architecture to find the optimal
structure using the training data.

• Evaluate the performance for each set of hyper-parameters using an evaluation
metric and a validation dataset.

• Evaluate the performance of the overall machine learning method using the test
dataset.

D.7 Active Learning

Active learning lets the model ask for more training data in areas where it is unsure
(Settles, 2012). First, a network is trained. A series of unlabeled samples is then
shown. The classifications the network gives unlabelled samples are recorded in order
of the network’s certainty (probability, highest entropy, disagreement within the
ensemble). Samples with lower certainty are given the actual label and added to the
training set, allowing the network to adjust for the new labelled information. This can
be repeated multiple times to slowly build an increasingly more informed network.
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Active learning does increase the overall compute budget due to consistent retraining.
It does rely on a good starting sample to ensure it does not become overweighted by
querying very specific samples. It is also essential to ensure the validation/test
datasets are consistently held to monitor performance, or else data leakage can occur.
Active learning forms a natural next stage for our science goal, as we have access to a
citizen science program to help label the uncertain samples. However, such methods
can also be applied to cases where human labelling is required to limit the number of
training samples that must be labelled to yield a given performance.
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Markus Böttcher. Progress in Multi-Wavelength and Multi-Messenger Observations of
Blazars and Theoretical Challenges. Galaxies, 7(1):20, January 2019. .

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, Skyler Wanderman-Milne, and Qiao Zhang. Jax: Autograd and
xla. http://github.com/google/jax, 2018.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

B. J. Brewer and D. Stello. Gaussian process modelling of asteroseismic data. MNRAS,
395(4):2226–2233, June 2009. .

E. O. Brigham. The Fast Fourier Transform and Its Applications. Prentice Hall, 1988.

Colin Burke. A characteristic optical variability timescale in accretion disks. In
American Astronomical Society Meeting Abstracts, volume 241 of American
Astronomical Society Meeting Abstracts, page 336.05D, January 2023.

Kenneth P. Burnham and David R. Anderson. Model Selection and Multimodel Inference:
A Practical Information-Theoretic Approach. Springer, New York, 2nd edition, 2002.
ISBN 978-0-387-95364-9. . URL
https://link.springer.com/book/10.1007/b97636.

John K. Cannizzo. The Accretion Disk Limit Cycle Model: Toward an Understanding
of the Long-Term Behavior of SS Cygni. ApJ, 419:318, December 1993. .

Neven Caplar, Simon J. Lilly, and Benny Trakhtenbrot. Optical Variability of AGNs in
the PTF/iPTF Survey. ApJ, 834(2):111, January 2017. .

S Carpano and C Jin. Discovery of a 23.8h qpo in the swift light curve of
xmmu+j134736.6+173403. Monthly notices of the Royal Astronomical Society, 477(3):
3178–3184, 2018. .

http://github.com/google/jax
https://link.springer.com/book/10.1007/b97636


REFERENCES 211

P. Casella, T. Belloni, and L. Stella. The ABC of Low-Frequency Quasi-periodic
Oscillations in Black Hole Candidates: Analogies with Z Sources. ApJ, 629(1):
403–407, August 2005. .

Roger Ceschi and Jean-Luc Gautier. Fourier Analysis. Digital Signal and Image
Processing. ISTE Ltd & John Wiley & Sons, Inc., London, UK; Hoboken, NJ, USA,
1st edition, February 2017. ISBN 978-1786301093, 1786301091.

William J. Chaplin and Andrea Miglio. Asteroseismology of Solar-Type and Red-Giant
Stars. ARA&A, 51(1):353–392, August 2013. .

K Chaudhury, V R Chitnis, A R Rao, K P Singh, Sudip Bhattacharyya, G C Dewangan,
S Chakraborty, S Chandra, G C Stewart, K Mukerjee, and R K Dey. Long-term x-ray
variability characteristics of the narrow-line seyfert 1 galaxy re j1034+396. Monthly
Notices of the Royal Astronomical Society, 478(4):4830–4836, May 2018. ISSN 1365-2966.
. URL http://dx.doi.org/10.1093/mnras/sty1366.

E. Churazov, M. Gilfanov, and M. Revnivtsev. Soft state of Cygnus X-1: stable disc
and unstable corona. MNRAS, 321(4):759–766, March 2001. .

Arthur H. Compton. A quantum theory of the scattering of x-rays by light elements.
Phys. Rev., 21:483–502, May 1923. . URL
https://link.aps.org/doi/10.1103/PhysRev.21.483.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, 1995.

D. M. Crenshaw, S. B. Kraemer, and J. R. Gabel. The Host Galaxies of Narrow-Line
Seyfert 1 Galaxies: Evidence for Bar-Driven Fueling. AJ, 126(4):1690–1698, October
2003. .

James R. A. Davenport, Suzanne L. Hawley, Leslie Hebb, John P. Wisniewski, Adam F.
Kowalski, Emily C. Johnson, Michael Malatesta, Jesus Peraza, Marcus Keil,
Steven M. Silverberg, Tiffany C. Jansen, Matthew S. Scheffler, Jodi R. Berdis,
Daniel M. Larsen, and Eric J. Hilton. Kepler Flares. II. The Temporal Morphology of
White-light Flares on GJ 1243. ApJ, 797(2):122, December 2014. .

T. J. Deeming. Fourier Analysis with Unequally-Spaced Data. Ap&SS, 36(1):137–158,
August 1975. .

J. E. Deeter and P. E. Boynton. Techniques for analyzing the power spectra of variable
sources. ApJ, 261:337–350, 1982.

Osman Demircan and Goksel Kahraman. Stellar Mass / Luminosity and Mass /
Radius Relations. Ap&SS, 181(2):313–322, July 1991. .

T. Di Matteo, E. G. Blackman, and A. C. Fabian. Two-temperature coronae in active
galactic nuclei. MNRAS, 291(1):L23–L27, October 1997. .

http://dx.doi.org/10.1093/mnras/sty1366
https://link.aps.org/doi/10.1103/PhysRev.21.483


212 REFERENCES

Chris Done and Aya Kubota. Disc-corona energetics in the very high state of Galactic
black holes. MNRAS, 371(3):1216–1230, September 2006. .

Chris Done, Marek Gierliński, and Aya Kubota. Modelling the behaviour of accretion
flows in X-ray binaries. Everything you always wanted to know about accretion but
were afraid to ask. A&ARv, 15(1):1–66, December 2007. .

Chris Done, S. W. Davis, C. Jin, O. Blaes, and M. Ward. Intrinsic disc emission and the
soft X-ray excess in active galactic nuclei. MNRAS, 420(3):1848–1860, March 2012. .

Pu Du, Jian-Min Wang, Chen Hu, Luis C. Ho, Yan-Rong Li, and Jin-Ming Bai. The
Fundamental Plane of the Broad-line Region in Active Galactic Nuclei. ApJL, 818(1):
L14, February 2016. .

G. Dubus, J. M. Hameury, and J. P. Lasota. The disc instability model for X-ray
transients: Evidence for truncation and irradiation. A&A, 373:251–271, July 2001. .
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K. Nienartowicz, D. Ordóñez-Blanco, P. Panuzzo, J. Portell, P. J. Richards, M. Riello,
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Richards, V. Smolčić, E. Hatziminaoglou, V. Mainieri, and M. Salvato. Active
galactic nuclei: what’s in a name? A&ARv, 25(1):2, August 2017. .

Don N. Page and Kip S. Thorne. Disk-Accretion onto a Black Hole. Time-Averaged
Structure of Accretion Disk. ApJ, 191:499–506, July 1974. .

https://doi.org/10.1017/CBO9781139109291


REFERENCES 225

Hai-Wu Pan, Weimin Yuan, Su Yao, Xin-Lin Zhou, Bifang Liu, Hongyan Zhou, and
Shuang-Nan Zhang. Detection of a possible x-ray quasi-periodic oscillation in the
active galactic nucleus 1h0707-495. The Astrophysical Journal letters, 819(2), 2016. .

I. E. Papadakis and V. Binas-Valavanis. The X-ray variability of active galactic nuclei:
Power spectrum and variance analysis of the Swift/BAT light curves. A&A, 685:
A50, May 2024. .

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances in
Neural Information Processing Systems, 32, 2019. URL https://papers.nips.cc/

paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
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