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Abstract—Wi-Fi sensing has emerged as a promising paradigm
for indoor intrusion detection, as it offers a robust and high-
accuracy solution without the need for extra hardware deploy-
ment. However, existing schemes often compromise the inherent
structure of channel state information (CSI) during feature
extraction through lossy preprocessing, causing high false alarm
rates and poor generalization. As a remedy, we propose a
novel tensor-based framework for indoor intrusion detection,
which enables reliable perception of fine-grained human activities
through structured feature extraction, even in motion-ambiguous
scenarios. Our approach integrates tensor-based feature extrac-
tion, multi-dimensional feature consolidation, and a modified
deep learning (DL) network for accurate intrusion recognition. To
validate our framework, we collected a comprehensive through-
wall CSI dataset under the IEEE 802.11n standard, encompassing
five common human activities in realistic scenarios. Extensive
experimental results demonstrate the superior performance of
our method compared to existing state-of-the-art schemes.

Index Terms—Wi-Fi sensing, channel state information (CSI),
indoor intrusion detection, tensor decomposition.

I. INTRODUCTION

THE proliferation of ubiquitous sensing technologies
presents a significant opportunity to reimagine indoor

safety and security, particularly through the development of
more intelligent and nuanced intrusion detection systems.
Despite this potential, the existing intrusion detection field has
been slow to move beyond conventional approaches, which
primarily rely on devices such as cameras and passive infrared
(PIR) sensors and exhibit significant drawbacks [1]. Vision-
based systems [2], for instance, are limited to line-of-sight
(LoS) scenarios, constrained by variable lighting conditions,
and raise substantial privacy concerns. Similarly, sensor-based
networks are expensive to deploy and scale, particularly in
complex indoor layouts [3]. These limitations highlight the
urgent need for a robust and cost-effective alternative.

Recent advancements in Wi-Fi sensing offer a promising
solution to these challenges. This approach can utilize existing
Wi-Fi infrastructure, eliminating the need to deploy dedicated
devices or for individuals to carry specific devices. By an-
alyzing the subtle perturbations in channel state information
(CSI) induced by human movement, Wi-Fi based systems can
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achieve device-free human activity recognition (HAR). This
capability facilitates passive, real-time monitoring in both LoS
and non-line-of-sight (NLoS) scenarios, thus offering a robust
method for modern indoor intrusion detection systems [4].

The development of Wi-Fi based intrusion detection shows
a clear trajectory from employing simple statistical metrics to
utilizing multifaceted features extracted and optimized by deep
learning (DL) models. Unlike general Wi-Fi sensing tasks,
intrusion detection requires extracting fine-grained features
from subtle CSI variations, and mapping them to specific
anomalous human activities. Early approaches primarily lever-
aged statistical features extracted from CSI, such as the mean
and variance, to train classical machine learning (ML) classi-
fiers. For instance, the authors of [5] employed these metrics
with support vector machines (SVMs) to distinguish between
static and dynamic states, while others first employed principal
component analysis (PCA) to reduce CSI dimensionality [5].
However, these handcrafted features are inherently sensitive
to environmental variations, and lack the capability to isolate
subtle motion-induced changes from ambient interference.

As a remedy, research has shifted towards DL-based Wi-Fi
sensing approaches, which can automatically learn hierarchical
and more discriminative features directly from CSI. Early
schemes primarily focused on learning temporal features from
raw one-dimensional (1D) CSI sequences using recurrent
neural networks (RNNs), such as long short-term memory
(LSTM) [5], gated recurrent unit (GRU) [6] and attention-
based bidirectional LSTM (ABLSTM) [7]. To further enhance
feature richness, subsequent works employed convolutional
neural network (CNN)-based methods to convert CSI into
two-dimensional (2D) image representations to achieve HAR
by extracting spatio-temporal features [8]. However, these
methods inherently cause feature information loss by com-
promising the native multi-dimensional structure of CSI. Such
loss significantly weakens their ability to capture subtle motion
patterns, which are crucial for reliable intrusion detection.

Motivated by limitations of existing solutions and practical
challenges, we propose a novel tensor-based framework for
indoor intrusion detection. The framework first constructs a
third-order tensor from the phase differences between adjacent
antennas. Then, tensor decomposition is employed to extract
the underlying low-rank feature components. These feature
components are then processed by a multi-dimensional feature
consolidation module to yield a set of compact features, which
are inputted to a modified ABLSTM network for accurate
classification. The main contributions are recapped as follows:
• We propose a novel tensor-based framework that enables

accurate recognition of subtle human activities through
structured feature extraction.
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Fig. 1. System model of Wi-Fi based indoor intrusion detection.

• We collected a comprehensive through-wall CSI dataset
under the IEEE 802.11n standard, which encompasses
five common human activities in realistic scenarios.

• Extensive experimental results demonstrate the superior
performance of our proposed scheme over existing state-
of-the-art schemes.

II. SYSTEM MODEL CHARACTERIZATION

We consider a Wi-Fi based passive intrusion detection sys-
tem employing multiple-input multiple-output (MIMO) and or-
thogonal frequency-division multiplexing (OFDM) techniques.
As illustrated in Fig. 1, a single-antenna transmitter partic-
ipates in the wireless communication with the NR-antenna
receiver equipped with a uniform linear array (ULA). The
presence of a human intruder is detected by monitoring the
resultant variations in the wireless channel. To enable intrusion
detection through the analysis of Wi-Fi channel variations, we
develop a multi-class recognition framework that maps multi-
dimensional CSI features to human activity labels.

A. Wi-Fi Based Channel Model

For the gth OFDM symbol, the received signal Ym(fn, g) ∈
C on the nth subcarrier at the mth antenna is modeled as:

Ym(fn, g) = Hm(fn, g)X(fn, g) +Nm(fn, g) (1)

where X(fn, g) ∈ C represents the transmitted data symbol
modulated on the nth subcarrier for the gth OFDM sym-
bol, and Nm(fn, g) ∼ CN (0, σ2) denotes the additive white
Gaussian noise (AWGN). The time-varying channel response,
Hm(fn, g) ∈ C, captures both quasi-static effects from the
environment and dynamic variations from human movement,
and can be decomposed as [6]:

Hm(fn, g) = Hstatic
m +Hdynamic

m (fn, g) + ∆Hnoise
m (fn, g) (2)

where Hstatic
m ∈ C represents the quasi-static environmental

components, Hdynamic
m (fn, g)∈C captures the human-induced

dynamic variations, and ∆Hnoise
m (fn, g) ∈ C denotes the

residual channel estimation error, respectively.

B. Phase Difference Feature Construction

Through the pilot-assisted channel estimation method, we
obtain CSI measurements and then extract features from
them for accurate intrusion detection. The phase component

derived from CSI is leveraged as the core feature due to
its high sensitivity to subtle human motion [4]–[6]. While
the amplitude component is more robust to noise, it is less
sensitive to the slight channel variations caused by human
movement. In contrast, the phase component better captures
small-scale multipath effects, making it a superior feature for
human motion detection [5].1

However, the raw phase measurements are corrupted by a
combination of deterministic and stochastic distortions. These
originate from key imperfections: sampling frequency offset
(SFO), carrier frequency offset (CFO), and phase-locked loop
(PLL). Formally, the measured phase on the nth subcarrier
at the mth antenna for the gth OFDM symbol, denoted as
φ̃m(fn, g), can be expressed as:

φ̃m(fn, g) = φm(fn, g) + nsn+ ncg + φPLL + φnoise (3)

where m∈{1,· · ·, NR}, n ∈ {0, 1,· · ·, Nc−1} with Nc denoting
the number of subcarriers, φm(fn, g) ∈ R denotes the true
phase, φPLL ∈ R is the initial phase offset caused by the PLL,
and φnoise ∈ R represents environmental noise. The terms nsn
and ncg denote deterministic phase shifts introduced by SFO
and CFO, respectively [5]. Since the phase error components
nsn and ncn are common across all receiving antennas, we
can eliminate them by taking the phase difference between
adjacent antennas, which is defined as:

∆φm′(fn, g)= φ̃m′+1(fn, g)− φ̃m′(fn, g)

=∆φm′(fn, g)+∆φPLL+∆φnoise+εm′(fn, g) (4)

where m′ ∈ {1,· · ·, NR−1}, ∆φm′(fn, g) = φm′+1(fn, g)−
φm′(fn, g) is the true phase difference, ∆φPLL is the constant
offset induced by the PLL, ∆φnoise is the noise difference, and
εm′(fn, g)∼N (0, σ2

0) represents phase noise.
To jointly model multi-dimensional dependencies and en-

hance structured signal patterns, we first convert each time
series into a 2D Hankel matrix to preserve the time-shift
patterns and reveal the low-rank structure of repetitive human
motions. Specifically, for the nth subcarrier, the Hankel ma-
trix constructed from the phase difference sequence between
the m′th and (m′+1)th antennas over all OFDM symbols,
Hn,m′∈RI×J , where I ∈Z+ and J ∈Z+ denote the window
length and embedding dimension, respectively, is given as:

Hn,m′ =


∆φm′(fn, 0) · · · ∆φm′

(
fn,

G−1
2

)
∆φm′(fn, 1) · · · ∆φm′

(
fn,

G+1
2

)
...

...
...

∆φm′
(
fn,

G−1
2

)
· · · ∆φm′(fn, G− 1)

 (5)

Here g ∈ {0, · · · , G − 1}, and we set I = J = (G+1)/2 to
balance the temporal and delay dimensions in Hankel matrices.

To capture joint features across multiple dimensions and
separate low-rank structures, we construct a third-order tensor
Y ∈ RI×J×K by stacking all Hankel matrices {Hn,m′}NR−1

m′=1

across subcarriers and antenna pairs, where K = Nc× (NR−
1) [9]. This formulation enables comprehensive modeling of

1Other motion-related features, such as Doppler and direction of arrival, are
not considered in this paper, as their extraction typically requires specialized
hardware or large antenna arrays, limiting their practicality in lightweight
sensing systems.
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Fig. 2. The proposed tensor-based indoor intrusion detection framework. After collecting CSI measurements, we construct phase differences between adjacent
antennas into third-order tensors. In Step I, CP decomposition is applied to extract mode-separated and low-rank features. In Step II, autocorrelation analysis
and dynamic time warping (DTW) based similarity matching are used to consolidate redundant components into motion-representative features. In Step III,
the selected features are fed into a modified ABLSTM network for fine-grained activity classification.

global temporal evolution (I) and local delay structures (J),
and subcarrier-domain variations induced by human motion
(via K), thereby providing a structured input for subsequent
low-rank decomposition.

III. TENSOR-BASED INTRUSION DETECTION FRAMEWORK

The proposed tensor-based framework is shown in Fig. 2.
To enable fine-grained human motion detection, we extract
human-induced and noise-robust features from Y , which are
then fed into a DL network for classification. Specifically,
tensor decomposition is employed to extract mode-separated
and low-rank features from Y . Then, we refine component-
wise features and merge structurally similar components to
reduce redundancy. Finally, the extracted features are passed
into a modified ABLSTM network for detection.

A. Step I: Tensor-based Feature Decomposition
Directly operating on the high-dimensional tensor Y to

extract features is computationally expensive and may include
noise. Thus, to extract compact and mode-separated features,
we decompose Y into a set of low-rank latent components
using CANDECOMP-PARAFAC (CP) decomposition. Via CP
decomposition, Y can be factorized into a sum of rank-one ten-
sors, each representing an underlying factor. The uniqueness
of this decomposition is guaranteed under mild conditions.

The decomposition rank R must be selected prior to de-
composition, as it directly determines the number of resolvable
targets. For a signal comprising L dominant propagation paths,
its representation via the stacked Hankel matrices in (5) results
in an effective rank of approximately 2L [10]. Accordingly, to
capture these motion-related components, we set the rank to
R = 2L. Then, the decomposition problem is formulated as
the minimization of the following reconstruction error [11]:

P1: min
X,Y,Z

∥∥∥∥Y −∑2L

l=1
xl ◦ yl ◦ zl

∥∥∥∥2
F

(6)

where ‖ · ‖F denotes the Frobenius norm. The terms X =
[x1, · · · ,x2L]∈RI×2L, Y=[y1, · · · ,y2L]∈RJ×2L, and Z=
[z1,· · ·, z2L]∈RK×2L denote the factor matrices correspond-
ing to temporal dynamics, delay embeddings, and subcarrier-
domain variations, respectively. The operator ◦ denotes the
vector outer product.

To solve P1 efficiently, we employ the alternating least
squares (ALS) algorithm [12]. ALS is initialized with factor
matrices obtained via higher-order singular value decomposi-
tion (HOSVD), and it then updates each matrix, X, Y and
Z, in turn repeatedly until the solution converges. We use the
update for factor matrix X as an illustrative example. Y is first
unfolded into its mode-1 matricization, Y(1):

Y(1) ∈ RI×(JK) = X(Z�Y)T (7)

where � denotes the Khatri-Rao product. This transforms P1
into the following least-squares problem with respect to X:

P2: min
X

∥∥Y(1) −X(Z�Y)T
∥∥2

F (8)

The closed-form solution is given by X̂=Y(1)(Z�Y)(ZTZ∗
YTY)†∈RI×2L, where † denotes the Moore-Penrose pseudo-
inverse and ∗ denotes the Hadamard (element-wise) product.
The factor matrices Ŷ∈RJ×2L and Ẑ∈RK×2L are updated
analogously using the mode-2 and mode-3 matricizations of
the tensor, namely, Y(2) and Y(3), respectively.

By exploiting the structure of the Khatri-Rao product, the
pseudo-inverse calculation is simplified from a large-scale
JK × 2L matrix to a 2L × 2L matrix. This reduces the
complexity per iteration from O(JK(2L)2) to O(L3), given
that L� min{JK, IK, IJ}.

B. Step II: Multi-Dimensional Feature Consolidation

The factor matrices X̂, Ŷ, and Ẑ each contain 2L com-
ponents, yet only about L of them capture truly informative
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motion patterns. The remaining components are often redun-
dant or noisy, and directly using them introduces unnecessary
complexity. To address this, we propose to identify and consol-
idate similar components into L representative ones for each
mode, while preserving the overall multi-dimensional feature
consolidation structure.

Let u ∈ {1, 2, 3} denote the mode index corresponding to
factor matrices X̂, Ŷ, Ẑ, where each mode u contains a set of
2L components {f̂ (u)l }2Ll=1, with f̂

(u)
l ∈Rdu and du∈{I, J,K}

denoting the component length in mode u. To enhance period-
icity and stabilize motion pattern representation2, we compute
the full autocorrelation sequence of each component, denoted
by â

(u)
l ∈R2du−1:

â
(u)
l [τ ] =

∑du−1−|τ |

n=0
f̂
(u)
l [n] · f̂ (u)l [n+ |τ |] (9)

where τ ∈ {1−du, · · · , du−1} is the lag index.
Then, our goal is to identify and consolidate redundant

components characterized by shape similarity. To effectively
capture similarity despite temporal misalignment, we adopt
dynamic time warping (DTW) [12], which robustly aligns
periodic sequences and accurately measures their structural
similarity. The DTW-based dissimilarity between components
i and j is computed as:

Dij = min
W

∑
(p,q)∈W

|âi[p]− âj [q]| (10)

whereW = {(pk, qk)}Kk=1 denotes a valid warping path of K-
length, ensuring valid alignment. For each sample, based on
{Dij}2Li,j=1, we perform stable matching to iteratively merge
each pair into a single representative sequence, resulting in L
components per mode.

Due to differing sequence lengths among modes, we trun-
cate the feature matrices to a common length T = min

u
(2du−

1) to simplify further processing. The resulting matrices are
then stacked along a new axis to form the final input three-
dimensional (3D) feature F ∈ R3×L×T , which is used as input
to the downstream DL network.

C. Step III: DL-based Multi-class Activity Recognition

The high inter-class similarity and subtle differences in
human motion patterns make it challenging to conduct the
multi-class classification task. To fully leverage the structured
3D feature obtained in the previous steps, we design a modified
ABLSTM network that effectively models features across all
modes. Specifically, to preserve temporal continuity and enable
early-stage fusion across modes and components, the input
feature F is reshaped into a time-distributed format. Subse-
quently, we apply time-distributed 2D convolutional layers to
the 3D input features, extracting local spatial patterns across
mode and component dimensions at each time step.

Then, we stack multiple bidirectional LSTM (Bi-LSTM)
layers to model temporal evolution in both directions, captur-
ing contextual information from both past and future. To better
distinguish activities with subtle differences despite similar

2Human motion-induced variations typically exhibit pseudo-periodic fluc-
tuations. Autocorrelation is effective in capturing these patterns and offers
more stable features than conventional transforms.

overall dynamics, residual connections are employed between
Bi-LSTM layers to facilitate deeper temporal feature learning.
The output of the lth Bi-LSTM layer at time step t is:

h
(l)
t = Bi-LSTM(l)(h

(l−1)
t ), h

(l)
t ∈ Rdh (11)

where dh ∈ Z+ denotes the hidden size.
To enhance the capability to discriminate subtle differences

among activities, we apply a multi-head attention mechanism
to adaptively emphasize multiple motion-sensitive segments
within the temporal sequence. Finally, global average pooling
aggregates the weighted temporal features, followed by a fully
connected classification layer that outputs activity predictions,
enabling robust and effective multi-class activity recognition.

IV. EXPERIMENTS

This section details the experimental setup and results to
validate the effectiveness of the proposed scheme for indoor
intrusion detection. Existing public datasets for indoor intru-
sion detection rarely address fine-grained scenarios and often
overlook critical pre-intrusion activities that are essential for
early detection. To bridge this gap, we conducted experiments
on a CSI dataset collected from a real-world indoor envi-
ronment, which captures the progressive stages of intrusion3.
Specifically, the dataset comprises five representative human
activities and can be structured into three categories: 1) no-
intrusion, where no activity is present in the monitored area;
2) pre-intrusion, where a person approaches the area but does
not enter; and 3) intrusion, where a person remains inside and
performs actions such as standing, walking, or running.

To comprehensively evaluate the performance, the proposed
scheme was benchmarked against several state-of-the-art meth-
ods, including WiHGR [6], which employs a modified GRU
model, and WiDSAR [8], which is based on a CNN-LSTM
architecture; as well as classic DL models, LSTM [5] and
ABLSTM [7]. We set L to 3 and the evaluation was performed
using a comprehensive suite of metrics, including detection
accuracy ↑, precision ↑, recall ↑, F1 score ↑, false positive rate
(FPR) ↓, false negative rate (FNR) ↓, and area under the curve
(AUC) ↑, where ‘↓’ indicates ‘the smaller the better’, while
‘↑’ indicates ‘the larger the better’.

Firstly, we evaluate the overall intrusion detection perfor-
mance under the binary classification scenario in Table I.
The proposed scheme surpasses all the baseline methods
by achieving the highest detection accuracy and F1 score,
indicating balanced and reliable classification. Notably, it also
achieves the highest precision, AUC and the lowest FPR,
reflecting the ability to detect intrusions while suppressing
false alarms.

Then, we evaluate the capability of all the methods to
discriminate between different types of intrusion-related hu-
man activities. As illustrated in Fig. 3, the proposed scheme
achieves the highest classification accuracy in the majority of
five predefined scenarios. This demonstrates its ability to ef-
fectively capture the critical boundary between non-intrusion,

3For brevity, detailed information regarding the experimental setup and the
CSI acquisition methodology, along with the full dataset, can be found at:
https://github.com/ddduan0817/WiFi-CSI-indoor-intrusion-detection-dataset.
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TABLE I
BINARY CLASSIFICATION PERFORMANCE COMPARISON (INTRUSION: STANDING, WALKING, RUNNING VS NON-INTRUSION: NO ACTIVITY, APPROACHING)

Model Detection Accuracy ↑ (%) Precision ↑ Recall ↑ F1 Score ↑ FPR ↓ FNR ↓ AUC ↑
LSTM Model [5] 88.61 0.8829 0.9506 0.9155 0.2331 0.0494 0.9535

ABLSTM Model [7] 89.90 0.8861 0.9671 0.9248 0.2297 0.0329 0.9676
WiHGR Scheme [6] 88.61 0.8631 0.9799 0.9178 0.2872 0.0201 0.9672

WiSDAR Scheme [8] 91.81 0.8970 0.9872 0.9399 0.2095 0.0128 0.9783
Proposed Scheme 95.26 0.9884 0.9378 0.9625 0.0203 0.0622 0.9863
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Fig. 3. Accuracy comparison across five intrusion scenarios.

pre-intrusion, and intrusion states. This fine-grained sensitivity
to subtle changes highlights the clear boundary discrimination
capability of our scheme. These results validate the effec-
tiveness of our design in preserving structured features and
leveraging the modified DL model for fine-grained behavior
discrimination.

Finally, we evaluate the model robustness against signal
disturbances by adding Gaussian phase noise (σ2

0 ∈ [0, 1]) to
the phase difference data in (4). As depicted in Fig. 4, the
accuracy decreases for all the methods as noise variance in-
creases. Notably, the proposed scheme consistently maintains
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Fig. 4. Detection accuracy versus different phase noise intensity σ2
0 ∈ [0, 1].

the highest accuracy across the entire noise range. In contrast,
other methods not only start with lower accuracy but also
suffer greater degradation as the noise increases. This robust-
ness of our proposed scheme stems from the joint effect of its
feature extraction and modified DL network, which effectively
suppresses noise while preserving informative patterns.

V. CONCLUSION

To achieve high-precision and robust Wi-Fi based intrusion
detection, we have proposed a tensor-based framework, which
can capture subtle motion-induced features by transforming
CSI into multi-dimensional tensors. Our approach integrates
tensor-based feature extraction, multi-dimensional feature con-
solidation, and a modified DL network. Extensive experiments
on a comprehensive through-wall CSI dataset have validated
the superior performance and generalization of our proposed
framework compared to existing state-of-the-art methods.
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