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After psychological trauma, why do some only some parts of the traumatic event return as intrusive
memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-
traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using
multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-
traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened).
To provide a methodological basis for understanding the context of the current results, we first show how
functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film)
via a prospective event-related designwas able to capture an individual's later intrusivememories. Results
showed widespread increases in brain activation at encoding when viewing a scene in the scanner that
would later return as an intrusivememory in the real world. These fMRI results were replicated in a second
study. While traditional mass univariate regression analysis highlighted an association between brain
processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning
classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and
within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that
would later return as an intrusive memory. We also report here brain networks key in intrusive memory
prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive
events with relevance to understanding and predicting mental health symptoms.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
Introduction

The focus of the current paper is on using neuroimaging to
understand the development of intrusive memories of trauma, that
is “recurrent, involuntary and intrusive distressing memories of the
traumatic event” (The Diagnostic and Statistical Manual of Mental
Disorders, 5th ed.; DSM-5; American Psychiatric Association, 2013).
Intrusive memories are a hallmark symptom from the re-
experiencing cluster of Post-Traumatic Stress Disorder (PTSD).
(E.A. Holmes).
Neuroimaging, Institute of
e, London WC1N 3BG, United

r Ltd. This is an open access article
They have previously been defined as involuntary mental images
that occur in a waking state (Frankel, 1994; Jones et al., 2003). Thus,
key features of intrusive memories are that they are involuntary
rather than deliberately retrieved, i.e. apparently spontaneous
(Kvavilashvili, 2014); include perceptual aspects of the traumatic
event, i.e. involve mental imagery rather than only verbal thought
(Holmes, Grey, & Young, 2005); are in line with episodic and
memory recall more broadly (Conway, 2001), and have distressing,
i.e. emotional content (Hackmann, Ehlers, Speckens,& Clark, 2004).
For example, after a motor vehicle accident, seeing scaffolding
smashing through the car windscreen (see Grey & Holmes, 2008;
Holmes et al., 2005 for further examples). In their most extreme
form, re-experiencing symptoms can present as so-called disso-
ciative ‘flashbacks’ where patients relive past events as if they are
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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happening in the present (American Psychiatric Association, 2013).
In contrast, during the experience of an intrusive memory the past
events are spontaneously remembered while awareness of the
present is maintained.

Due to the nature of this special issue, “How neuroscience informs
behavioural treatment” within Behaviour Research and Therapy, we
appreciate that many readers may not have a detailed under-
standing of neuroimaging terms and techniques. We therefore
present a slightly longer than normal introduction to guide the
reader through the steps taken before performing the main pre-
dictive analysis presented here. We first describe our initial study
using traditional neuroimaging analysis techniques (Bourne,
Mackay, & Holmes, 2013) and its subsequent replication (Clark,
Holmes, Woolrich, & Mackay, submitted for publication). We then
introduce the ideas of multivariate pattern analysis (MVPA) and
machine learning, before next describing how we utilised these
techniques in the current experiment. The aim of this is to provide a
methodological basis for understanding the context of the current
results and show that these findings are both replicable and reli-
able. We believe that by using neuroimaging techniques in addition
to behavioural, cognitive and psychophysiological experiments we
may be able to identify those neural and cognitive functions that
are critical for intrusive memory formation. Understanding how
intrusive memories are formed from multiple perspectives may
allow future work to improve the ability to refine treatments which
target the underlying mechanisms of intrusive memory (i.e.
symptom) development. Indeed, by gaining the most comprehen-
sive understanding of differences at an individual level, we may be
able to open future possibilities of early screening for risk of PTSD,
as well as the development of preventative approaches in the im-
mediate aftermath of trauma and for targeted early interventions.

We also note that many different approaches to machine
learning and MVPA are evolving, including (but not limited to)
Random Forest Theory (Breiman, 2001), Graph theory (Power et al.,
2011; Sporns, 2014) and Representational Similarity Analysis
(Kriegeskorte, Mur, & Bandettini, 2008), in addition to that used
here, a Support Vector Machine classifier (Pereira, Mitchell, &
Botvinick, 2009). The current work represents only first steps in
applying neuroimaging techniques to understand the neural
impact of witnessing trauma and to inform behavioural treatment.
We finish by exploring how such techniques might have implica-
tions for future cognitive behavioural therapy.

Intrusive memories and PTSD

Most peoplewill experience a traumatic event during the course
of their lifetime and a significant minority will go on to develop
PTSD (Breslau et al., 1998; Kessler, Sonnega, Bromet, Hughes, &
Nelson, 1995). We have successful treatments for the full blown
disorder, those recommended by clinical guidelines (e.g. National
Institute for Health and Clinical Excellence, 2005) are Cognitive
Behavioural Therapy (CBT; e.g. Ehlers & Clark, 2000; Foa &
Rothbaum, 1998) and Eye Movement Desensitisation and Reproc-
essing (EMDR; Shapiro, 1995). However, satisfactory preventative
treatments against PTSD development are lacking (Roberts,
Kitchiner, Kenardy, & Bisson, 2009). A greater understanding of
the brain mechanisms that lead to the development of intrusive
memories may help guide effective preventative interventions for
the early aftermath of trauma.

We know little, in particular in terms of neuroscience, about
why only certain events within a trauma return as intrusive
memories when others do not. Processing at the time of trauma
(peri-traumatic) is implicated in PTSD development (e.g. Brewin,
2014; Ehlers & Clark, 2000; Ozer, Best, Lipsey, & Weiss, 2003).
Additionally, experimental findings implicate heightened
emotional processing at the time of the event in intrusive memory
development (Clark, Mackay, & Holmes, 2013, 2014). Interestingly,
dissociation, defined within the DSM 5 as “a disruption of and/or
discontinuity in the normal integration of consciousness, memory,
identity, emotion …” (American Psychiatric Association, 2013, p.
291), can be a reaction to extreme emotion, and peri-traumatic
dissociation has also been associated with intrusive memory for-
mation (e.g. Daniels et al., 2012; Holmes, Brewin, & Hennessy,
2004). Seminal work on ‘flashbulb’ memories, defined as ‘mem-
ories for the circumstances in which one first learned of a very
surprising and consequential (or emotionally arousing) event’
(Brown& Kulik, 1977) may also illuminate some of the mechanisms
involved in intrusive memory formation. While flashbulb mem-
ories are a distinct phenomenon (and not exclusive to trauma, but
part of autobiographical memorymore generally), theymay lie on a
continuum with intrusive memories. Research suggests that
memories that end up as flashbulb memories are psychophysio-
logically arousing, personally salient and unexpected and sudden
(Brown & Kulik, 1977). Indeed, psychophysiology has been associ-
ated with intrusive memory development; at the time of viewing a
specific film scene that is later recalled as an intrusive memory,
heart rate has been shown to drop in comparison to the rest of film
viewing (Chou, Marca, Steptoe, & Brewin, 2014; Holmes et al.,
2004). Understanding the neural processes involved in intrusive
memory formation adds another level of comprehension of this
complex phenomenon.

Neuroimaging and established PTSD

The majority of studies using neuroimaging to investigate PTSD
have done so once symptoms are already established in patients
(Francati, Vermetten, & Bremner, 2007; Hughes & Shin, 2011;
Pitman et al., 2012). Neurocircuitry models suggest that PTSD is
characterised by reduced activity in the ventromedial prefrontal
cortex, which is associated with decision making and emotional
response inhibition, and increased activation in the amygdala and
other limbic areas, which are associated with emotional processing
(e.g. Rauch, Shin, & Phelps, 2006; Rauch, Shin, Whalen, & Pitman,
1998). A further recent model suggests that abnormalities in the
amygdala and dorsal anterior cingulate cortex are pre-disposing,
while abnormal interactions between the hippocampus and
ventromedial prefrontal cortex arise after developing PTSD
(Admon, Milad, & Hendler, 2013). While informative for under-
standing PTSD as a whole, these studies cannot tell us specifically
about intrusive memories, that is, those events we need to target
within a CBT treatment (e.g. Ehlers & Clark, 2000; Foa, Hembree, &
Rothbaum, 2007). Further, studying symptoms once they are
already established tells us little about the neural processes
involved in intrusive memory formation (aetiology).

The trauma film paradigm: an experimental psychopathology
approach

Electronicmedia offers away to use neuroimaging to investigate
the brain responses to experimental analogue trauma exposure and
intrusive memory formation. Recent work has examined the effects
of electronic media, for example television news film footage, on
the development of PTSD symptoms. Individuals exposed for pro-
longed hours to media footage of terrorist attacks have been shown
to present higher scores on stress and trauma related symptom
scales both amonth after the attack (Holman, Garfin,& Silver, 2014)
and 2e3 years after the attack (Silver et al., 2013). Additionally, the
DSM 5 (American Psychiatric Association, 2013) now includes
exposure to trauma through electronic media in the definition of a
traumatic event, with the caveat that the exposure is work related.



I.A. Clark et al. / Behaviour Research and Therapy 62 (2014) 37e46 39
Together, this suggests that traumatic events transmitted through
electronic media footage have the potential to induce PTSD-like
symptomatology.

The trauma film paradigm is widely used as an experimental
analogue of psychological trauma (see Holmes & Bourne, 2008;
Lazarus, 1964) and involves healthy participants viewing trau-
matic footage in line with DSM 5 criteria for a traumatic event (e.g.
real life footage depicting actual or threatened death and serious
injury; American Psychiatric Association, 2013). The paradigm has
been most commonly used in behavioural experiments. Examples
include the investigation of cognitive tasks to reduce intrusive
memory frequency (e.g. Tetris; Holmes, James, Coode-Bate, &
Deeprose, 2009) or vulnerability factors for intrusive memory
development (Laposa & Alden, 2008; Wessel, Overwijk, Verwoerd,
& de Vrieze, 2008).

Recently, we conducted the first study, to our knowledge, to
combine the trauma film paradigm with functional Magnetic
Resonance Imaging (fMRI) (Bourne et al., 2013; n ¼ 22). This pro-
vided a prospective measure of the brain activation at the moment
of viewing a film scene that would later return as an intrusive
memory during the following week. We then replicated this
experiment, finding a near identical pattern of results (Clark et al.,
submitted for publication; n ¼ 35). The importance of such repli-
cation studies has been particularly noted recently within the field
of fMRI (e.g. Carp, 2013; Fletcher & Grafton, 2013).

In these studies, unlike most fMRI designs, we could not specify
our neuroimaging ‘events’ of interest in advance (i.e. the specific
time within stimuli presentation when brain activation is selected
to be compared to the rest of stimuli presentation). This is due to
intrusive memories being highly idiosyncratic; thus we did not
know which scenes in the film would return involuntarily for each
individual (just as after a real trauma we do not know which mo-
ments will be the hotspots and intrude). The film was created to
include 20 scenes that had previously been found to induce
intrusivememories. Participants recorded their intrusive memories
(defined as mental images of the film content that involuntarily
come to mind) for one week in daily life using a pen-and-paper
diary. From written descriptions in the intrusive memory diary,
intrusions were matched to specific scenes within the film (e.g. the
car rolling over the hedge hitting the boy playing football in his
garden). Film scenes were then classified on an individual partici-
pant basis as either ‘Flashback scenes’ e emotional scenes that
returned as an intrusive memory for that individual, or ‘Potential
scenes’ e emotional scenes that did not return as an intrusive
memory for that individual, but did in other participants (see Fig.1).
Fig. 1. Procedure diagram. Participants viewed traumatic footage while undergoing fMRI.
previously caused intrusive memories in other studies). As intrusive memories are idiosyn
individual. Scene type was determined for each participant retrospectively from the 1 wee
On average, 3 of the possible 20 scenes became intrusive memories
for each participant; a similar frequency to the number of different
events experienced as intrusions after real life trauma (Grey &
Holmes, 2008; Holmes et al., 2005).

Using a standard statistical mass univariate regression analysis
approach (i.e. the analysis currently most used for fMRI data) we
found that Flashback scenes, in comparison to Potential scenes,
were characterised by widespread increases in brain activity
including the anterior cingulate cortex, thalamus, putamen, insula,
amygdala, ventral occipital cortex, left inferior frontal gyrus and
bilateral middle temporal gyrus. In brief, brain regions that have
previously been associated with emotional processing, visual/
mental imagery and memory (see Bourne et al., 2013 for discus-
sion). These results provided, to our knowledge, the first evidence
of a ‘neural signature’ at the time of intrusive memory formation.

Predicting from fMRI; multivariate pattern analysis (MVPA) and
machine learning

However, traditional univariate fMRI analysis only highlights an
association of peri-traumatic brain responses with later intrusive
memories across a group of individuals (see for details Jezzard,
Matthews, & Smith, 2001; Smith et al., 2004). Additionally, tradi-
tional fMRI analysis relies on the self-report diary to identify the
scene type. It would be useful to know the extent to which brain
responses during exposure to analogue trauma can actually predict
a specificmoment of the traumatic footage that would later become
an intrusive memory, for example, to inform preventative in-
terventions against intrusive memory formation.

Machine learning and multivariate pattern analysis (MVPA) are
neuroimaging analysis techniques that can be used to measure
prediction accuracy. MVPA makes use of multivariate, spatially
extensive patterns of activation across the brain. The patterns of
activation across these larger regions can be “learned” through
approaches from the field of machine learning. Supervisedmachine
learning techniques optimise input “features” to best separate or
describe the two labelled classes of data (i.e. Flashback scene or
Potential scene). These “features” are simply summary measures of
some aspects of the data. It is through these optimisation steps that
machine learning approaches “learn” the patterns that best
describe each class of data. Once the patterns have been identified,
they can be used to predict the behaviour of new, previously unseen
participants. Such approaches can provide greater discriminative
ability than spatially localised mass-univariate regression analyses
(see for further details, Haxby, 2012; Haynes & Rees, 2006;
Specific scenes in the film were determined to be ‘Possible’ scenes (scenes that had
cratic, Possible scenes became either ‘Flashback’ scenes or ‘Potential’ scenes for each
k intrusive memory diaries.
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McIntosh & Mi�si�c, 2013; Mur, Bandettini, & Kriegeskorte, 2009;
Norman, Polyn, Detre, & Haxby, 2006). Machine learning can
then be used to learn these patterns of activity to accurately predict
the occurrence of a new, unseen example of the same event (Lemm,
Blankertz, Dickhaus, & Müller, 2011; Pereira et al., 2009).

To highlight just a few examples of MVPA techniques applied to
fMRI, neural patterns identified by MVPA while participants were
exposed to a shock during the presentation of picture stimuli have
predicted the later behavioural expression of fear memory (pupil
dilation response) between 2 and 6 weeks after encoding (Visser,
Scholte, Beemsterboer, & Kindt, 2013). Additionally, MVPA tech-
niques have identified patterns of activation at encoding that can
predict later deliberate memory recall (see Rissman & Wagner,
2012).

Wehypothesised thatmachine learningmaybe able to predict an
intrusive memory from just the peri-traumatic brain activation. We
aimed first, to investigate whether specific scenes in the film could
be identified as later becoming intrusivememories solely frombrain
activation at the time of viewing traumatic footage by applying
machine learning with MVPA. Second, we explore which brain
networks are key in MVPA-based prediction of intrusive memory
formation, and when the activation of these brain networks in
relation to the timing of the intrusive memory scene is important.

Methods

Overview

To investigate whether differences in brain activation during the
encoding of the trauma film stimuli could predict later intrusive
memories of the film, we first trained a machine learning classifier
(a support vector machine, SVM) to identify the specific brain
activation pattern associated with viewing a film scene that was
later involuntarily recalled as an intrusive memory. To do this, the
classifier was provided with the timings of the intrusions (from
scenes within the original film footage) from the diary data (i.e.
from the intrusion content description once we knew which sec-
tion(s) of the film became an intrusive memory for a given partic-
ipant). We used a SVM since this approach has been shown to be
reliable across multiple studies (see Mour~ao-Miranda, Bokde, Born,
Hampel, & Stetter, 2005; Pereira et al., 2009). We tested a number
of pre-processing and feature generation methods, as these choices
have been shown to impact prediction accuracy more consistently
than the choice of classifier (Duff et al., 2012; Ku, Gretton, Macke, &
Logothetis, 2008).

Following training, the SVM was used to examine novel data e

i.e. brain activation data from a new participant viewing traumatic
footage e to pick out the scenes(s) in the footage which would be
later experienced as an intrusive memory. Accuracy of prediction
was evaluated by the classifiers predictions to those events re-
ported in the participant's diary. Analysis was performed on our
previously collected fMRI data (Bourne et al., 2013; Clark et al.,
submitted for publication).

What is key here is the prediction of which scenes in the film
will later return as an intrusive memory in a new participant
(something even the participant themselves cannot know at this
point in time since they have not yet lived the week in which they
will experience an intrusive memory). For details of the engineer-
ing aspects of the machine learning classifier development we refer
the reader to Niehaus et al. (2014).

Participants

Participants were recruited from the local community sepa-
rately for the two studies. Twenty-two participants took part in
Bourne et al. (2013;mean age¼ 22 years, SD¼ 3.08; 17 female), and
35 in Clark et al. (submitted for publication; mean age ¼ 22.43
years, SD ¼ 7.58; 29 female). Inclusion criteria were: participants
were aged over 18, had no metal implants, had not taken part in a
similar study involving viewing traumatic footage and declared no
previous or current psychiatric illness. In the Clark et al. (submitted
for publication) study, data could not be analysed for additionally
recruited participants where 0 intrusive memories were reported
in the diary (n ¼ 2) or insufficient performance on a visual recog-
nition memory test (n ¼ 1). For 3 further participants the full data
was not acquired due to one participant stopping the scan during
film viewing, one failing to return to follow up and for one technical
issues stopped the scan before film completion. Recruitment ma-
terial contained information about the potentially distressing
content of the film material. Ethical approval was received from
NHS Oxfordshire Research Ethics Committee ‘B’ (Bourne et al.,
2013) and the University of Oxford Central University Research
Ethics Committee (Clark et al., submitted for publication). All par-
ticipants provided written informed consent and were reimbursed
£25 (US $40).

Data acquisition

fMRI imaging data were acquired on a 3-T Siemens TIM
Trio System with a 12-channel head coil [voxel
resolution ¼ 3 � 3 � 3 mm3; repetition time (TR) ¼ 3 s, echo time
(TE) ¼ 30 ms]. T1-weighted structural images were acquired for
subject registration using a magnetisation prepared rapid gradient
echo (MPRAGE) sequence (voxel resolution ¼ 1 � 1 � 1 mm3;
TR¼ 2040ms; TE¼ 4.7ms]. Fieldmapswere obtained for Clark et al.
(submitted for publication) with .49 ms echo spacing and 22 ms TE.

Pre-processing

Data was pre-processed using FEAT (part of FSL e FMRIB's
Software Library) version 6.0 (www.fmrib.ox.ac.uk/fsl). Brain
extraction was performed using BET (Smith, 2002). High pass
filtering was applied with a 100-s cut-off and spatial smoothing
with a 5 mm full width half maximum Gaussian kernel. Motion
correction was applied with MCFLIRT (Jenkinson, Bannister, Brady,
& Smith, 2002). Field map based unwarping was applied to the data
from Clark et al. (submitted for publication). Independent
Component Analysis (ICA) was performed on all data using
MELODIC. Components likely due to noisewere removed by the FSL
tool FIX. Images were registered to Montreal Neurological Institute
(MNI) standard space.

The machine learning classifier

Classifier input features
The raw data from an fMRI study consists of activation levels for

each voxel in the brain at every time-point during the study (here,
images were captured every 3 s). In order to examine patterns
across wider spatial regions, a group level Independent Component
Analysis (ICA) was conducted. ICA is a statistical technique that
separates the brain signals into independent spatial maps, clus-
tering areas characterised by concurrent activation. This produces
independent networks of brain regions that may be activated
differentially during different tasks. The group ICA performed here
is different to the ICA MELODIC analysis conducted during pre-
processing as it identifies regions of concurrent activity across all
participants rather than for individual participants (Beckmann &
Smith, 2004). Following ICA decomposition, the spatial indepen-
dent components (ICs) were projected back onto each participant
to obtain participant-specific activation levels throughout the

http://www.fmrib.ox.ac.uk/fsl


I.A. Clark et al. / Behaviour Research and Therapy 62 (2014) 37e46 41
spatial region of each IC. The number of ICs was varied to determine
the optimal number for predicting flashbacks (detailed in Niehaus
et al., 2014). These steps produced a set of activation time-
courses for each IC for each participant.

In order to further summarise this data across time, the average
level of activationwas calculated for three different time periods for
each scene type (i.e., for all Flashback and all Potential scenes): the
first 6 s of each scene, the remaining duration of the scene, and the
12 s following the conclusion of the scene. In other words, this
produced a set of (number of ICs)*(3) values, for each participant,
which were used as input features into the machine learning
classifiers.

Classifier optimisation
The support vector machine (SVM) classifier was first optimised

on the larger of the 2 data sets (Clark et al., submitted for
publication; 35 participants). A labelled sequence of Flashback
and Potential scene time points in the film was created from the
diaries for each individual participant (as each person may have
different intrusions). The input features detailed above, reflecting
activation across the brain, were extracted from the fMRI data
during these Flashback and Potential time points (see Niehaus et al.,
2014 for details). The SVMwas then trained on this data to learn the
patterns for both scene types, using a leave-one-out methodology
to provide a test case: for 1 participant brain activation was not
included in the training. Based upon the learned patterns of activity
from all other participants, the classifier then attempted to identify
the film scenes that later induced intrusive memories for the left-
out participant. Identification based on brain activation patterns
Fig. 2. Illustration of the prediction aspect of the machine learning analysis. a. Shows the
information concerning the timing of the Flashback scenes (emotional scenes that returned
did not return as a intrusive memory for that individual, but did in other participants) fr
performed on all but 1 participant. b. Shows the predictive element of the machine learning
goes through the brain activation data and attempts to identify the Flashback and Potentia
was the checked against the participant's diary entries (see Fig. 2).
This leave-one-out ‘cross-validation loop’ was conducted 35 times,
each one with a different participant left out of the training set.
Results were averaged over the performance of the SVM on the left-
out participant.

Various parameters were examined in order to optimise the
predictive ability of the classifier. We compared both linear
discriminant analysis and support vector machines as classifiers.
Other supervised learning classifiers, such as random forests, could
also have been employed, but here we limited our focus for this
initial study. Due to the large number of Potential scenes in com-
parison to the number of Flashback scenes (approximately 5:1), we
also compared various balancing techniques. Discussion of classi-
fier optimisation is detailed in Niehaus et al. (2014).

As accuracy alone is not a good indicator of performance within
imbalanced data sets (the classifier could achieve high accuracy by
always classifying scenes as Potentials) we also assessed sensitivity.
We define sensitivity here as the number of true Flashback scenes
identified by the classifier out of the total number of Flashback
scenes for that participant.

We then tested our ability to predict intrusive memories on our
other data set (Bourne et al., 2013; 22 participants). Given our small
number of participants, this step was important to test whether
prediction performance would generalise to a separate data set.

Finally, we investigated the ability of machine learning to pre-
dict intrusive memory formation within a single participant. This
within-participant analysis used only those participants within
Clark et al. (submitted for publication) that experienced 4 or more
different intrusive memories (n¼ 16; mean age 23 years, SD¼ 7.16;
training element of the machine learning approach. The classifier was provided with
as a intrusive memory for that individual) and Potential scenes (emotional scenes that
om which to learn the patterns of brain activation for each scene type. Training was
approach. For the 1 participant not included in training the machine learning classifier
l scenes.
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13 female) leaving one Flashback scene and one Potential scene out
for each participant. For within participant analysis, activation
levels within individual voxels were used as input features. Voxels
were selected with a t-test, and brain activity levels were averaged
across the entire duration of each scene.

Identification of brain network functions

Possible functions of the networks identified in the input fea-
tures (i.e. the ICA components at specific time points), and the
names used to describe the cognitive functions of these networks
were identified from Smith et al. (2009). Smith et al. (2009) utilised
an online repository of published neuroimaging results containing
around 30,000 participants from over 1600 published articles (the
BrainMap database; Fox & Lancaster, 2002; Laird, Lancaster, & Fox,
2005) to map behavioural tasks (and their proposed corresponding
cognitive functions) onto brain regions and networks.

Results

Prediction accuracy

In the original training data set the average accuracy of classi-
fication within each left-out participant (averaged across the
training loops) was 70.1% (SE ¼ 1.8%) with a sensitivity of 60.0%
(SE ¼ 5.9%). During replication in the second data set (Bourne et al.,
2013); the classifier had a leave-one-out average performance ac-
curacy of 68.0% (SE ¼ 2.4%) and sensitivity of 58.7% (SE ¼ 7.0%).
Within a given participant the average accuracy was 97.3%
(SE ¼ .93%) and sensitivity of 90.3% (SE ¼ 3.07%).

The best performance for predicting the scenes that would later
become intrusivememories was found by using a linear discriminate
analysis classifier with 39 independent components. It was found
that predictive accuracy significantly decreased when the number of
ICs was reduced to below 10 or increased to greater than 70. The best
approach for managing the unbalanced class sizes was to apply an
increased cost weighting for misclassifying Flashback scenes.

The best performance for predicting which scenes would
become intrusive memories within participants was with a support
vector machine classifier using 1000 voxels as input features.

Network identification

A total of 117 input features (i.e. averaged activation across the
39 ICA brain networks during the 3 defined time points of the
scenes; the initial 6 s of the scene, the remaining duration of the
scene after the initial 6 s, and the 12 s post scene) contributed to
intrusive memory scene prediction. Below we describe the top
weighted input features of the classifier for predicting Flashback
versus Potential events (i.e. the features contributing most strongly
towards prediction in terms of their weighting within the classi-
fier). We also note their possible cognitive function. While these
networks are those top weighted by the classifier, this is not a
statistical measure and can only provide a guide towards their
predictive contribution. There are 2 components of each feature;
the location in the brain (i.e. the ICA component) and the timing of
activation. The top weighted input features comprise 8 ICA com-
ponents, 3 of which were important for intrusive memory predic-
tion at 2 time points (see Fig. 3; ICA components (aeh) are
displayed according to their weighting, activation time points are
displayed in brackets).

The number of ICA brain networks included in the classifier was
restricted so that maximum predictive ability was obtained
(increasing from 39 to 70 independent components decreased
sensitivity to 47.3%, SE ¼ 7.27). This resulted in relatively
widespread brain networks rather than specific brain areas, for
which it is harder to attribute a specific function.

The highest weighted input feature (Fig. 3(a)), included the
lingual gyrus, left hippocampus, middle temporal cortex, inferior
frontal gyrus, supramarginal gyrus, left thalamus, precuneus,
middle frontal cortex, left superior frontal cortex and posterior
cingulate cortex. Networks within this feature (identified using
Smith et al., 2009) have been previously associated with Cogni-
tioneLanguageeSemantics, CognitioneLanguageePhonology and
CognitioneMemoryeExplicit. Activation of this input feature was
important for prediction during the remaining duration of the
scene (after the initial 6 s) and the 12 s post scene.

The next weighted feature (Fig. 3(b)) included the frontal orbital
cortex, insula, frontal, central and parietal operculum, putamen,
inferior frontal gyrus, anterior cingulate cortex, thalamus, supra-
marginal gyrus, middle frontal cortex, pre central cortex and the
lateral occipital cortex. Networks within the feature have been
associatedwith a number of functions termed ‘Executive Control’ in
addition to Emotion, PerceptioneSomesthesisePain and
ActioneInhibition (Fig. 3(b)). Activation of the feature was impor-
tant for prediction during the initial 6 s of the scene.

The third weighted feature (Fig. 3(c)), involved the thalamus,
insula, central and parietal operculum, putamen, inferior frontal
gyrus and the anterior and posterior cingulate cortex. Networks in
these areas have been associated with Emotion and Percep-
tioneSomesthesisePain. The feature was predictive in the 12 s post
scene.

The fourth weighted feature (Fig. 3(d)) involved the lateral oc-
cipital cortex, occipital fusiform, amygdala, right putamen, right
inferior frontal gyrus, right insula, right thalamus and occipital
pole. Networks in the feature have been associated with Percep-
tioneVisioneShape and Emotion. Activation levels were important
for prediction during the remaining duration of the scene (after the
initial 6 s) and the 12 s post scene.

The fifth feature (Fig. 3(e)) predominantly involved occipital
fusiform gyrus, temporal occipital fusiform gyrus, lateral occipital
cortex, occipital pole and intracalcarine cortex. This network has
been associated with PerceptioneVisioneShape. Activation of the
feature was important for prediction in the 12 s post scene.

The sixth weighted feature (Fig. 3(f)) involved a wide range of
regions including the parahippocampal gyrus, middle temporal
cortex, right hippocampus, insula, thalamus, lingual gyrus, occipital
pole, putamen, precuneus, frontal operculum, middle frontal cor-
tex, left inferior frontal gyrus, angular gyrus, lateral occipital cortex,
supramarginal gyrus and the anterior and posterior
cingulate. Networks involved have been associated with
CognitioneLanguageeSemantics, CognitioneLanguageePhonol-
ogy, CognitioneMemoryeExplicit, Emotion, and the Default Mode
Network. Activation of the feature was important for prediction
during the remaining duration of the scene (after the initial 6 s).

The seventh weighted feature (Fig. 3(g)) involved the insula, left
parahippocampus, left hippocampus left middle temporal cortex,
planum polare (part of Wernicke's area), thalamus, posterior
cingulate cortex and lateral occipital cortex. Networks have been
associated with Emotion and CognitioneMemoryeExplicit. Acti-
vation was important during the initial 6 s of the scene and the
remaining duration of the scene (after the initial 6 s).

The final feature shown here (Fig. 3(h)) involved the lateral oc-
cipital cortex, amygdala, thalamus, accumbens, putamen, frontal
operculum, inferior frontal gyrus, supramarginal gyrus, superior and
middle frontal cortices, and the precuneus. Networks have been
associated with CognitioneLanguageeSemantics, Cogni-
tioneLanguageePhonology, CognitioneMemoryeExplicit and Per-
ceptioneSomesthesisePain. Activation of the featurewas important
for prediction in the 12 s post scene.



Fig. 3. The top weighted input features compromising 8 ICA components (aeh) and their corresponding time points (in brackets) involved in the prediction of a Flashback scene at
the time of viewing traumatic footage. The ICA components are presented in the weighted order of the features used in the classifier. Features could be involved at 1 or all of 3 time
points; i) the initial 6 s of the Flashback scene, ii) the remainder of the Flashback scene or iii) the 12 s post Flashback scene. Proposed functions of networks within the feature are
included to provide a guide to their potential role in intrusive memory formation with names taken from Smith et al. (2009). 6 images are taken for each ICA component and are
shown in the axial plane with their corresponding z coordinate. The underlying image is the Montreal Neurological Institute (MNI) 152 template, z-statistic images are thresholded
at z > 2.3. z-Statistic range is represented by the change in colour.
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Discussion

Intrusive memories are a target in CBT for Post-Traumatic Stress
Disorder. This paper has presented an experimental psychopa-
thology approach to understanding the underlying neural mecha-
nisms of intrusive memories using recent advances in brain
imaging analysis techniques. Here we show that intrusive memory
formation (that is, which moments within an analogue traumawill
be spontaneously recalled in the week after viewing the trauma)
can be predicted solely from brain activation at the time of viewing
the traumatic film footage. Intrusive memories are highly idio-
syncratic; on average 3 of a possible 20 scenes within the trauma
film returned as an intrusivememory, but which 3 varied according
to each individual. The machine learning (Support Vector Machine)
classifier, using MVPA for the input variables, was able to predict
the later occurrence of a specific intrusive memory in an unseen
participant from the data set with 70.1% accuracy and 60% sensi-
tivity. This generalised to a novel data set of new participants with
68% accuracy and 58.7% sensitivity showing good replication.
Further, we could predict intrusive memory development within a
given participant with 97% accuracy and 90.3% sensitivity (i.e. if we
know someone's brain reaction associated with intrusive memory
development within the trauma trained on all their intrusions
except one, we could then accurately predict a new example of
intrusive memory formation e the missing intrusion).

These results provide support for a hypothesised ‘intrusive
memory signature’ within brain activation at the time of the orig-
inal analogue trauma encoding (Bourne et al., 2013; Clark et al.,
submitted for publication). Our results suggest that not only is
brain activation at encoding associated with the occurrence of
intrusive memories, but we can measure the accuracy with which
brain activity can be used to predict specific scenes that will become
intrusive memories. That is, a specific pattern of brain response
during trauma exposure contributes to determining if a certain
moment during the trauma will be later re-experienced as an
intrusive memory or not. A related effect has previously been noted
in the non-clinical memory literature, called the subsequent
memory effect (Dobbins & Wagner, 2005; Paller & Wagner, 2002;
Rissman&Wagner, 2012) albeit for non-intrusive types of memory.

Our data indicate a number of brain networks where analogue
peri-traumatic activation appears crucial for intrusive memory
prediction. The networks used by the machine learning classifier
for intrusive memory prediction are in line with neurocircuitry
models of PTSD patients (Admon et al., 2013; Rauch et al., 2006):
hyper-responsivity in the amygdala and associated limbic regions
involved in emotional processing and the dorsal anterior cingulate
cortex have been found in PTSD samples. These regions are also
active in the networks implicated in the current machine learning
analysis. In particular, increased activation in emotional processing
regions was involved in 5 of our 8 top weighted networks used to
predict intrusive memory formation after analogue trauma. Find-
ings are in line with fMRI results for pre-disposing factors for later
clinical PTSD symptom development (see Admon et al., 2013).

Interestingly, both our univariate and multivariate analyses
highlight the involvement of possible language related networks in
intrusive memory formation. This is interesting clinically since
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early Positron Emission Tomography (PET) studies on Vietnam
veterans revealed decreased activation in Broca's area (Shin et al.,
1997, 1999). As cognitive behavioural therapies are language
based, further understanding of the involvement of language in
intrusive sensory memory development may be relevant to opti-
mising therapeutic interventions. Additionally, it may help us to
experimentally explore why some early aftermath counselling in-
terventions, such as critical incident stress debriefing, have been
found to be harmful (Roberts et al., 2009; Rose, Bisson, Churchill, &
Wessely, 2002).

Overall, our results suggest that we were able to so-called ‘mind
read’ (Norman et al., 2006), or in more literal terms decode the brain
activity during film viewing to identify which scenes of the film
would later intrude. This new approach of using machine learning
and MVPA strengthens our understanding of neural mechanisms
underpinning intrusive memory formation with clinical relevance.
At a general process level we can derive information from the spe-
cific brain networks predictive of intrusive memories, suggesting
which cognitive functions may be most relevant for intrusive
memory formation, and present possible mechanistic targets for
preventative interventions. Additionally, differences at an individual
level may open future possibilities of early screening for risk of PTSD
development in the immediate aftermath of trauma for targeted
early intervention. A trauma film paradigmwith fMRI might even be
developed for use prior to real trauma exposure for identifying those
who may be more vulnerable to trauma generally (e.g. within army
recruits or emergency personnel).

Future work applying machine learning and fMRI to clinical
psychology more broadly

How else may we be able to use advanced neuroimaging tech-
niques within clinical psychology? MVPA predictive techniques
may be able to use neuroimaging data to predict (among others)
likelihood of illness occurrence in at-risk groups. For example, in
depression, meta-analysis of fMRI studies indicates abnormal ac-
tivity across various brain regions (e.g. amygdala, dorsal anterior
cingulate cortex, insula) in depressed patients compared to healthy
controls in response to negative stimuli (Hamilton et al., 2012).
Machine learning classifiers have been able to utilise these differ-
ences to predict whether participants are grouped as patients or
healthy controls solely from differences in brain activity at the time
of viewing sad faces (Fu et al., 2008). Extending this to at-risk
groups may help target resources and treatments, and possibly in
the future could even aid diagnosis. Above, for example, we have
suggested how our line of enquiry could be developed to aid
identification those of at risk for PTSD, e.g. in emergency personnel.

Cognitive Bias Modification (CBM) is a procedure which aims to
retune dysfunctional attentional and emotional biases (e.g.
Browning, Holmes, & Harmer, 2010; Mathews & MacLeod, 2005;
Niles, Mesri, Burklund, Lieberman, & Craske, 2013; Waters,
Pittaway, Mogg, Bradley, & Pine, 2013). However, we lack objec-
tive methods to test whether an individual has altered their
cognitive bias. If machine learning were able to classify cognitive
biases it may be possible for the therapist to objectively observe
whether a patient is able tomodulate and reduce a cognitive bias by
observing alterations in the underpinning brain response. Future
studies could readily apply work to this area given the ease of
studying cognitive bias modification during fMRI (Browning,
Holmes, Murphy, Goodwin, & Harmer, 2010).

Further work using MVPA and machine learning may be able to
identify brain activity at an individual participant level. Under-
standing the presentation of symptoms at an individual level may
help assess the effects of a treatment for that patient by performing
neuroimaging before and after treatments (e.g. exposure based
therapy; Foa et al., 2007). MVPA techniques could compare brain
response to trauma related stimuli, hypothesising that successful
treatment would be signalled by a change in brain activation pat-
terns compared to pre-treatment in those specific networks that
were predictive of intrusive memory formation (e.g. as in
Kriegeskorte, 2009, 2011). This may also be applicable to fear
extinction and return of fear; while initial fear extinction is rela-
tively easy to induce, ensuring that the extinction remains per-
manent is more difficult (Vervliet, Craske,& Hermans, 2013). MVPA
utilising the brain activations involved in extinction (e.g. recruit-
ment of the ventromedial prefrontal cortex and hippocampus;
Milad et al., 2007) may be able to suggest whether a fear memory
has undergone permanent extinction.

Advanced neuroimaging techniques may provide an avenue to
overcome the occasional limitations of subjective reports of
symptomatology, such as in patients who are mute, or difficulties
that some patients have with verbally describing their precise
symptoms. For example, work outside of clinical psychology has
demonstrated the potential of MVPA to identify a specific image
seen by a participant undergoing fMRI (Kay, Naselaris, Prenger, &
Gallant, 2008). After examining the brain activity associated with
viewing neutral images (picture stills), of which the content was
known to the computermodel, themodel was able to pick out, from
a large set of new picture stimuli, which specific image was seen by
the participant. More recently, this technique was extended to film
stimuli, following the same procedure but using dynamic neutral
movies (Nishimoto et al., 2011). Further, by comparing brain ac-
tivity identified to specific visual content and the brain activity
during sleep, it has been possible to describe the content of a par-
ticipant's dream (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013).

Methodological and conceptual limitations

Viewing traumatic film footage is not the same as experiencing
an actual trauma and findings need to be extended to clinical
samples. However, we note that intrusive memories experienced
after traumatic events and intrusive memories in everyday life
(such as those in our experimental procedure) can be considered on
a continuum (Kvavilashvili, 2014). Additionally, PTSD symptoms
have been reported following exposure to traumatic media footage
(Holman et al., 2014; Silver et al., 2013). Changes to DSM 5
(American Psychiatric Association, 2013) now include exposure to
traumatic content via electronic media (e.g. films) as sufficient for a
diagnosis when the exposure is work related which suggests, at
least at times, film footage can create real PTSD symptoms.

Additionally, we note that our study has other limitations. The
number of participants was limited, reducing the extent it was
possible to test different machine learning strategies. The unusual
scarce-event study design meant that it was nevertheless crucial to
test and optimise pre-processing and feature generation ap-
proaches on the first study participants, and then test the optimised
approach on the independent sample.

Links between brain activations and cognitive function have
been made here with what is termed in the fMRI literature as
‘reverse inference’, i.e. a brain region is identified as being predic-
tive of a later event (e.g. an intrusive memory); in other studies that
region was active when participants were performing a task
engaging a particular cognitive process; it is therefore likely that
this cognitive process is involved in intrusive memory formation
(see Poldrack, 2006, 2011). However, the problem arises as to the
specificity of the identified region in that specific cognitive process
e it is unlikely that a brain region has just one cognitive function.
On the other hand, we note that the predictive capabilities of the
machine learning are not in question, only potential interpretations
of the brain regions involved.
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Finally, the DSM-5 distinguishes between intrusive memories
and dissociative ‘flashbacks’. Dissociation has been studied previ-
ously in behavioural experiments using the trauma film paradigm
(e.g. Hagenaars & Krans, 2010; Hagenaars, van Minnen, Holmes,
Brewin, & Hoogduin, 2008; Holmes et al., 2004). However, no
measure of dissociationwas taken in the current study and thus we
could not examine any possible effects of dissociation to the current
work. A continuum has been proposed ranging from involuntary
autobiographical memories in everyday life to recurrent intrusive
memories and in the most extreme (and rarest) form dissociative
flashbacks (Kvavilashvili, 2014). Investigating dissociation in com-
bination with fMRI is therefore an important step for future work
(e.g. Daniels et al., 2012).

Conclusions

Using machine learning and MVPA on fMRI data of trauma film
encoding, we have demonstrated that peri-traumatic brain activa-
tion is able to predict moments that would later return as an
intrusivememorywith 68% accuracy across participants andwithin
a given participant with 97% accuracy. Here, wemake an attempt to
import ideas from basic neuroscience to contribute to an area of
mental health e intrusive trauma memories. We suggest certain
advance neuroimaging techniques may even be developed for use
in studying relatively infrequently occurring and idiosyncratic
events in mental health symptomatology (such as intrusive mem-
ories) and be used to predict individual's future symptom response.
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