State dependent pseudoresonances and excess noise
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We show that strong response to non-resonant modulations and excess noise are state dependent
in generic nonlinear systems, i.e. they affect some output states, but are absent from others. This
is demonstrated in complex Swift-Hohenberg models relevant to optics, where it is caused by the
non-normality of the linearized stability operators around selected output states, even though the
cavity modes are orthogonal. In particular, we find the effective parameters that control excess
noise and the response to modulations and show cases where these phenomena are enhanced by an

order of magnitude.
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Excess noise [1] is a term used in optical device physics
to highlight the fact that the sum of the energy in the in-
dividual modes is greater than the total energy available.
This phenomenon was first predicted by Petermann in [2]
and its paradoxical result was explained in [3]: the modes
of excess noise systems are correlated (non-orthogonal).
Therefore, the total energy cannot be written as the sum
of the energies of the individual modes since one must
include the mode-mode correlation terms too. Usually,
the “modes” referred to in the explanation of this phe-
nomenon have been interpreted as modes of the optical
cavity, either open [4] or unstable [5] or with misaligned
elements [6]. However, the “modes” in question are far
more general: they are the modes of the dynamics of the
system [7]. In this respect excess noise is just one aspect
of the enhanced response to modulation and transient
growth typical of non-normal operators, i.e. operators
that do not commute with their adjoint [8, 9]. The main
feature of non-normal operators is that their eigenvectors
are not orthogonal. This can have dramatic consequences
in terms of the dynamics of the system: perturbations of
stable states can be substantially amplified before they
eventually decay (transient growth) [8]; the response to
an external modulation can be very large even far from
resonance (pseudo-resonance) [10]. An essential point
often overlooked is that when the system under inves-
tigation is nonlinear, then the operator responsible for
these effects is the linear stability operator and this is
state, not just model, dependent. This is particularly
important when studying systems that are both time-
and space-dependent and have a rich bifurcation struc-
ture. Enhanced response to external modulations crit-
ically affects, for example, the implementation of chaos
synchronization in secure laser communications [11].

In this letter we analyze three aspects of generic non-
linear systems. First of all primary bifurcation of a given
state may be normal, while its secondary bifurcations, in
general, are not. Secondly, the effects of non-normality
on the nonlinear dynamics and response can vary from
state to state and need to be quantified. Thirdly, the

system response depends on the spatial and temporal fre-
quency of the modulation. This opens the possibility of
fine tuning the output of the system by carefully choos-
ing the modulation wave number(s) and frequency (ies).
We illustrate these aspects here using a Swift-Hohenberg
model of lasers [12-14]. By fitting the model parame-
ters to experimental curves, the model can be used to
provide qualitatively accurate predictions of the dynam-
ics of a wide variety of lasers near the lasing threshold.
Our analysis aims to determine the parameters that have
the largest effects on non-normality and, consequently,
on modulational response. Swift-Hohenberg equations
are a paradigm of weakly nonlinear analysis. Therefore,
state dependent excess noise and enhanced modulation
response discussed here are not limited to lasers or op-
tics, but apply to any nonlinear system near transitions
from stationary states to traveling waves.

The dynamical consequences of non-normality can be
understood in terms of simple systems of linear differen-
tial equations [10, 15]. For example, the solution u(t) =
exp(tA)u(0) of w = Awu, with A a non-normal matrix
with eigenvalues that have strictly negative real-part, can
show transient growth: in other words, ||exp(tA)u(0)]]
may not be a monotonic decreasing function of time, even
though R(\) < 0 for all the eigenvalues A of A. From
here on ||u|| = @ - w is the norm induced by the scalar
product and the overbar ~ symbol indicates complex con-
jugate. As a second example we note that the ampli-
tude of the asymptotic solution of & = Au + v exp(iwpt)
is not determined by the distance between wg and the
eigenvalues (spectrum) of A, but is proportional to the
norm of the resolvent of A evaluated at the point in
the complex plane z = iw, ||R(A,iw)|| = |(iw — A)~.
For any operator, the norm we use here is defined as
the largest singular value of the operator. If A is non-
normal, this norm may be large, even though the fre-
quency may not be near any of the natural frequen-
cies of the system (pseudo-resonance) [10]. These re-
sults can be extended to systems of partial differential
equations and have had numerous applications in math-



ematics and physics [16] from hydrodynamics [10] and
geophysics [8, 9] to lasers[4, 7).

To illustrate the state-dependence of non-normality, we
consider a generic system of nonlinear partial differential
equations

O — Loule, 1) + N, 1), (1)
with A/ a nonlinear operator such that A'(0) = 0. The
linear stability operator of a time-independent solution
uo(z) of Eq. (1) is Ly, = Lo+ 0Ny, , with 0N, being the
linearization of N" around wug and 6Ny, = 0 for uy = 0.
The presence of the term d N, means that the normality
of Ly does not imply that of L, for ug(z) # 0. Physi-
cally, this means that effects such as transient growth and
enhanced response to external forcing can be present near
states with ug # 0 even if they are absent near ug = 0.

We consider now the Swift-Hohenberg model of wide
aperture lasers with plane mirrors [13, 14]

o = (1+0) YHo(p—in) +iaV? —

ﬁ(" +av?)? —o(1+ia)nld,  (2)
on = (=b+cVn+ [P, (3)

with n the population inversion and 1; the field appro-
priately rescaled. Note that the cavity modes are trans-
verse traveling waves that are mutually orthogonal. The
strength of pumping is represented by the parameter p,
while 7 is a scaled atom-cavity detuning. The parame-
ters a, b, c and o are all related to geometrical or material
properties of the laser, b is the ratio of the decay times of
population inversion and of polarization. The parameter
« is the line-enhancement factor: it is proportional to
the ratio of the derivatives of the refractive index and of
the gain with respect to the population and is different
from zero if the gain line is asymmetric. The « factor is
positive in bulk semiconductor lasers and quantum well
lasers; it can be negative in quantum dot lasers [17, 18]
and in Raman lasers [19]. Here we consider for illustra-
tion purposes the values a = 0.01, b = 0.8, ¢ = 0 and
o = 0.1 that are used in [12]. The results are valid for
generic parameter values such as, for example, b >> 1
and ¢ negligible where a single complex Swift-Hohenberg
equation used in the description of pattern formation in
a wide variety of scientific disciplines [20] is recovered.

Equations (2) have a trivial solution (¢,n) = (0,0).
As the pump parameter p is increased, this solution loses
its stability to a time- and space-varying solution,

1; _ Aei(kgm—wot)’ n = no, (4)
with kg, wp and ng functions of the laser parameters and
A = b[p—(n—akd)?/(1+0)?] [14, 19]. The linear stability
operator of the trivial solution is normal for all value of .
We focus here on the instability of the lasing solution (4)

which, instead, is non-normal. The first step in this anal-
ysis consists in changing to a moving reference frame by
introducing a new field ¢ = 1 exp —i(kox — wot). The
stability of 1[) is determined by a non-autonomous sys-
tem; that of ¢ by an autonomous system to which we
can apply the theory summarized earlier.

The linearization of (2) in the traveling reference frame
of 1) gives rise to a system of linear coupled partial differ-
ential equations, ¥ = Lv in v = (¢, ¢, ), where ¢ and v
are the modulations of 1) and n respectively. These equa-
tions are block diagonal in Fourier space: each block is
a set of three coupled linear equations ¥, = Ly, with
vy, = (én, ¢_,.,dyr) the k-th Fourier components of ¢ and

o/(1+o)v. Ly is given by

Ly 0 —(1+ia)Ls
Lk = 0 L_ —(]. - ia)Lg (5)
Lz Ls Ly
with
a4 o

Ly =

140 (1+0)3 (FAnaKy +a*K2),

Ly=+/o/(1+0)A, Ls=—-b—ck?.

Here An = (n — ak?) and K4 = 2kok + k2.

The equations for v and their block-diagonal represen-
tation (5) for vy, are of the general form described above.
It is straightforward to verify that the matrices Lj and,
hence, the operator £, are non-normal when Lg # 0.
Since L3 affects all off-diagonal terms of Eq. (5) and de-
pends linearly on the amplitude A of the lasing state, the
effect of non-normality on the dynamics increases with A
(i.e. with b) and with a. Therefore, phenomena such as
transient growth, excess noise and enhanced response to
forcing, which are due to non-normality of £, can appear
when the field amplitude of the laser state is non null,
even though all cavity modes are orthogonal.

As a first illustration of these phenomena we consider
the linear response of the lasing solution to external mod-
ulations. This is given by

%0 = Lugvlat) + Fa)e™ ©
where f(z)exp(zt), with z € C, is a time dependent forc-
ing term. Eq. (6) in Fourier space provides the response
for each Fourier component vy via the block-diagonal
representation of £ given in (5):

vi(t) = el* ' (0) + R(z, k) f e, (7)

where R(z,k) is the resolvent of Ly, vi(0) and f, are
the k-th component of the initial perturbation and of
the modulation, respectively. Physically, the latter cor-
respond to injection of field and carrier density with spa-
tial wave number k into the laser. Solutions in real space
can be found by summing over all k’s. When the lasing
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FIG. 1: Response of (2-3) to a monochromatic modulation
expli(ksz + wst)] of the field ¥ as a function of wy at kf =
4. The lines are: maximum response of the linear system
based on the norm of the resolvent (thick solid blue line) or
on the distance from the eigenvalues (thick dashed red line).
The other lines represent the expected response of ¢ (solid,
magenta), ¢_j (dashed, cyan) and of v, (dot-dashed, green).
The crosses, pluses and circles are the response measured from
direct integration of (2-3) with added forcing term. Parameter
values: a = 0.2, p=1.5, n = —0.09, k; = 4.

solution is stable, the exponential term vanishes after a
transient and the maximal response is given by the norm
of the resolvent. In particular, for a periodic forcing with
z =y, wy € R, the maximum response amplitude is
given by [[vx(t)]| < | R(iwy, k)I|f4]

This has two important consequences. First, for a nor-
mal operator Lj the optimal response is given by the
distance of the forcing frequency w to the closest eigen-
values of Li. This is very different when Lj; is non-
normal: quantitatively the maximal response could be
much larger than the maximal response of a normal sys-
tem; qualitatively non-normality can drastically change
the frequency ranges corresponding to signal amplifica-
tion or damping. An example of this behavior is shown in
Figure 1, where using the singular value decomposition
of the resolvent [8] we show that the maximal response
(thick blue solid line) is an order of magnitude larger that
the maximal response for a normal systems with the same
resonances as the one considered (thick red dashed line).

However, the maximal response is, in general, gener-
ated by vectors with components corresponding to dif-
ferent physical quantities, such as the field amplitude
and population inversion in the laser case. In practice,
one may by more interested in finding the response to
monochromatic forcing of either the field or the popula-
tion inversion, which are more common in experiments.
The resolvent provides also the response to these type of
forcing. We have added a field forcing term proportional
to expli(kfx + wyt)] to (2). We have measured the am-
plitude of the modulation of the (stable) traveling wave
solution either by direct integration of equations (2-3)
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FIG. 2: Response off (2-3) to a modulation cos(ksx + wyt) of
the population inversion n as a function of wy at ky = 4. The
lines are as in Figure 1. Parameter values: o« = 0.2, p = 1.5,
n=—0.09, ky = 4.

with added forcing term, or using equation (7). In the
particular case of the traveling wave solution (4), the
temporal and spatial frequency of the wave and of the
modulation are mixed in the laboratory frame. There-
fore, the response of the system is determined not just
by R(iwy, ky), but also by R[£iws + wo, £(ks — ko)].

Figure 1 shows also the amplitude of the components
of vy, as a function of the forcing frequency wy in the case
of single-wavelength forcing at ky = 4 of the field. The
amplitude of the modulation of ¢ is larger than what
would have been expected by the distance of wy from the
eigenvalues of L. Figure 2, instead, shows the response
to a monochromatic modulation on the population inver-
sion. In this case a term proportional to cos(kfx + wyt)
was added to (3). In this example, the field modulation
is more effective than that of the population inversion:
as can be seen in Figure 1, the modulation of the electric
field at frequencies wy < 0 gives rise to a response that is
close to the maximum. In this case, the component ¢, of
the field is dominant and much larger than all the other.
Similar behavior can be observed for a < 0.

We now consider another aspect of non-normality,
namely the transient response to a small initial pertur-
bation of a stable lasing state in the absence of external
forcing. Transient growth can occur if all the eigenvalues
Ai of Ly have R(A\;) < 0 and at least one eigenvalue of
Ly + LL is positive. We recall that the lasing solution
becomes unstable and undergoes filamentation when at
least one A, such that $(A;) > 0. From this simple
condition we can easily find a physically very significant
difference between positive and negative . The eigen-
values of L + L£ are invariant under change of sign of a,
and therefore, the value of the pump parameter p where
the largest eigenvalue of Lj + LL becomes positive is the
same for +a. The situation is different for the eigenval-
ues A\ of Lg. The threshold value of p for which there
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FIG. 3: Example of transient growth: plot of || exp(Lyt)|| for
k = 4. Parameter values: a = 2, 7 = 0.09, p = 0.6. The insert
shows the pseudo-spectrum of Lj for —20 < k < 20. The
contour lines correspond to e = 10{%=1=2-3} from outside
inward.

exists one eigenvalue A, with R(A;) > 0 is smaller for «
positive than for a negative. This is consistent with the
experimental observation that the filamentation thresh-
old is higher in quantum dots than in bulk semiconductor
lasers [18]. As a consequence, the range of control param-
eters where non-normal effects can be observed is larger
for a < 0 than for o > 0.

A quantitative estimate of transient growth is given
by (7) with f(z) = 0: for each wave number k of the
perturbation, the maximum possible transient growth of
the k-th Fourier component vy, is the norm ||etF*|. In
order to estimate the maximum transient growth, it is
very useful to introduce the e-pseudospectrum of L. This
is defined as [15] A(L) = {z € C: ||R(z,L)|| > e '}. For
€ = 0 this is just the standard spectrum; for € > 0 the e-
pseudospectra of Ly are a family of strictly nested closed
sets, which grow to fill the whole complex plane as ¢ —
00. The lower bound on maximal transient growth [10],

sup R(2)[|(z — L) ~H|| < sup [ "+, (8)
R(2)>0 t>0

can be interpreted geometrically in terms of the pseudo-
spectrum: maximal transient growth occurs for wave
numbers where the pseudo-spectrum extends as far as
possible in the $(z) > 0 half-plane for a given e. This
is illustrated in Figure 3: the solution (4) is stable but
the pseudo-spectrum extends sufficiently in the ®(z) > 0
half-plane for transient growth to take place. Note that
this phenomenon is different from convective instabilities
because the state considered here is stable and the group
velocity of the perturbation may be null [21].

In conclusion, we have examined the effects of non-
normality in the context of a Swift-Hohenberg equation,
a general model for spatio-temporal nonlinear processes.
In general the linear stability operator of the solutions
of this equation is non-normal. Therefore, we can expect
that the main effects of non-normality, namely state de-
pendent enhanced modulation response, excess noise and

transient growth, can be seen in a variety of dynamical
systems across many scientific disciplines. In the case
used here as an example, a laser with asymmetric gain,
the effects of non-normality are present even though the
cavity modes are orthogonal. Moreover, the theory pre-
sented here provides tools to analyze and quantify the ef-
fects of non-normality: the resolvent allows to determine
the effectiveness of enhanced modulation and transient
growth, while the pseudo-spectrum provides a geometri-
cal interpretation of these phenomena. For example, in
lasers with asymmetric gain, they show that non-normal
effects are more evident in lasers with negative a factor.
Finally, this theory can be extended to determine the
response to modulations of states with a complex time
dependence [9]. This may be applied in synchroniza-
tion experiments for secure optical communications [11],
where modulations of solid-state lasers have been used to
achieve controllable chaotic dynamics.
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