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 a b s t r a c t

We study optimal monetary policy in a model with incomplete markets, in the form of uninsurable 
unemployment risk, and an occasionally binding zero lower bound (ZLB) constraint. The optimal 
policy consists of keeping the nominal rate at zero longer than implied by current macroeconomic 
conditions. Such policy improves expected labour market conditions, substantially mitigating the 
rise in unemployment risk and precautionary savings. As a result, we find that market incom-
pleteness does not significantly amplify contractions in output and inflation at the ZLB. However, 
when the central bank follows more realistic policy rules instead of the optimal policy, incomplete 
markets exacerbate the fall in demand, emphasising the importance of unemployment insurance 
for output stabilisation.

1.  Introduction

The Great Recession in 2008–2009 caused a significant and persistent increase in the unemployment rate across major advanced 
economies. The deterioration in labour market conditions increased uncertainty about job prospects, which potentially gave rise to 
precautionary savings, which further dampened economic activity and inflation (see, e.g., Den Haan et al., 2018; Challe, 2020). In 
response to the sharp drop in demand, central banks swiftly cut short-term nominal interest rates, which quickly approached the 
zero lower bound (ZLB). This combination of elevated unemployment risk and constrained monetary policy created a challenging 
macroeconomic environment. Understanding how unemployment risk affects the monetary policy transmission at the ZLB is therefore 
crucial. This is true both in a liquidity trap and more generally, as forward guidance remains an active part of central banks’ toolkits.

Previous research (see, e.g., Challe, 2020) has shown that, in normal times, central banks can fully neutralise deflationary pressures 
from uninsurable unemployment risk. However, this result may not hold when monetary policy is constrained by the ZLB. This raises 
the question: How effective is monetary policy at responding to a contraction in demand and an increase in uninsurable unemployment 
risk when the nominal rate is at the ZLB?

We address the research question above by studying optimal monetary policy in a Heterogeneous Agents New Keynesian (HANK) 
model with nominal price rigidities, labour search frictions, imperfect unemployment insurance, and an occasionally binding ZLB 
constraint. In particular, similarly as Ravn and Sterk (2017), the model features two types of households: workers and firm own-
ers. Workers face the risk of becoming unemployed and earning a lower income. The presence of idiosyncratic unemployment 
risk leads employed workers to save for precautionary reasons. Additionally, we assume that workers feature bounded rationality
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$i$


$ii$


$iii$


$\delta \in [0,1]$


\begin {equation}c_{u,t} = \delta c_{e,t}. \label {Xeqn1-1}\end {equation}


\begin {equation}{c_{e,t}}^{-1} = \beta E^{BR}_{t}\left [\left (1-s_{t+1}\right ){c_{e,t+1}}^{-1} + s_{t+1}{c_{u,t+1}}^{-1}\right ]\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}}, \label {eulerccstylised}\end {equation}


$E^{BR}_{t}$


$\beta $


$s_{t+1}$


$z_t$


$i_t$


$\pi _t$


$s_{t+1}$


\begin {equation}\frac {s_{t}}{s} = \left (\frac {y_{t}}{y}\right )^{-\alpha }, \label {Xeqn3-3}\end {equation}


$\alpha >0$


\begin {equation}y_{t} = \left (1-\omega _u\right )c_{e,t} + \omega _u c_{u,t}. \label {Xeqn4-4}\end {equation}


$\omega _u \in (0,1)$


\begin {equation}1 =\beta E_{t} \frac {\left ( \left (1-s_{t+1}\right ){c_{e,t+1}}^{-1} + s_{t+1}{c_{u,t+1}}^{-1}\right )^{\zeta }}{\left ( \left (1-s\right ){c_e^{-1} + s{c_u}^{-1}}\right )^{\zeta -1}{w_{t}}^{-1}}\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}}. \label {eq:eulerccbehaviouralccstylised}\end {equation}


$\zeta \in [0,1]$


$\zeta =1$


\begin {align}\label {analyticccis} \hat {y}_{t} = \eta E_{t}\hat {y}_{t+1} -\hat {i}_{t} + E_{t}\hat {\pi }_{t+1} - \hat {z}_{t},\end {align}


\begin {align}\label {analyticccnkpc} \hat {\pi }_{t} = \beta E_{t} \hat {\pi }_{t+1} + \varphi \hat {y}_{t}.\end {align}


$\eta $


\begin {equation}\eta \equiv \zeta \left (1 + \frac {\alpha s \left (\delta ^{-1}-1\right )}{s \left (\delta ^{-1}-1\right )+1} \right ), \label {Xeqn8-8}\end {equation}


$\varphi $


$\alpha $


$\eta $


\begin {equation}\frac {d\eta }{d\alpha }=\frac {\zeta s \left (\delta ^{-1}-1\right )}{s \left (\delta ^{-1}-1\right )+1}>0. \label {Xeqn9-9}\end {equation}


$\hat {y}_{t+1}$


$s_{t+1}$


$\hat {y}_t$


$\hat {i}_{t+1}<0$


$\hat {y}_{t+1}$


$s_{t+1}$


$\hat {y}_t$


$\delta $


$\eta $


\begin {equation}\frac {d\eta }{d\delta } = - \frac {\zeta \alpha s }{\left ( s + \left (1- s\right )\delta \right )^{2}}<0. \label {Xeqn10-10}\end {equation}


$\delta $


$s_{t+1}{c_{u,t+1}}^{-1}$


$c_{e,t}$


$s_{t+1}$


$\hat {y}_{t}$


$\hat {y}_{t+1}$


$\zeta $


$\eta $


\begin {equation}\frac {d\eta }{d\zeta } = 1 + \frac {\alpha s \left (\delta ^{-1}-1\right )}{s \left (\delta ^{-1}-1\right )+1} >0. \label {Xeqn11-11}\end {equation}


$\hat {y}_{t+1}$


$s_{t+1}$


$\hat {y}_t$


$i$


$\hat {z}_{0} = \hat {z} > \frac {i}{1+i}$


$\hat {z}_{1} = 0$


$\hat {i}_{0}= -\frac {i}{1+i}$


$-\frac {i}{1+i}< \hat {i}_{1}< 0$


$ii$


$E_{t}\hat {x}_{t+1} = \hat {x}_{t+1}$


$\forall t$


\begin {equation}\hat {\pi }_{t} = 0, \quad \text {s.t.} \quad \hat {i}_{t} \geq -\frac {i}{1+i}. \label {Xeqn12-12}\end {equation}


\begin {equation}\hat {y}_{0} = -\left (\hat {z} - \frac {i}{1+i}\right ) < 0,\quad \hat {\pi }_{0} = -\varphi \left (\hat {z} - \frac {i}{1+i}\right ) < 0,\quad \hat {i}_1 = \hat {y}_1 = \hat {\pi }_1 = 0. \label {eq:sit_results_analytical}\end {equation}


$\hat {i}_1=0$


$\hat {i}_1$


$\hat {\pi }_0$


$\hat {y}_0$


$\hat {y}_{1}=\hat {\pi }_{1}=0$


$\hat {y}_{0}$


$\hat {\pi }_{0}$


$\eta $


$\delta $


$\zeta $


$\eta $


\begin {equation}\frac {1}{2}\left (\hat {\pi }_{0}^{2}+\vartheta \hat {y}_{0}^{2}+\beta \left (\hat {\pi }_{1}^{2}+\vartheta \hat {y}_{1}^{2}\right )\right ), \label {Xeqn14-14}\end {equation}


\begin {align}\hat {i}_{1}=\frac {\eta }{\beta }\hat {y}_{0}+\frac {\varphi }{\vartheta }\left (\frac {\eta +\beta }{\beta }\right )\hat {\pi }_{0}, \label {eq:OMPcci1cchistoryccdep}\end {align}


\begin {align}\hat {y}_{0}<0, \quad \hat {\pi }_{0}<0, \quad \hat {y}_{1}>0, \quad \hat {\pi }_{1}>0, \label {eq:OMPccstylisedcc2}\end {align}


\begin {align}\frac {d\hat {y}_{0}}{d\eta }>0,\quad \frac {d\hat {\pi }_{0}}{d\eta }>0. \label {eq:OMPccstylisedcc3}\end {align}


$\hat {i}_1$


$\hat {y}_{0}$


$\hat {\pi }_{0}$


$\hat {y}_{0}$


$\hat {\pi }_{0}$


$\hat {i}_{1}$


$\eta $


$\delta $


$\zeta $


$\eta $


$t=1$


$t=0$


$\eta $


$\alpha $


$\delta $


$\zeta $


$\hat {z}$


$\hat {i}_1<0$


$\hat {y}_0<0$


$\hat {\pi }_0<0$


$\hat {y}_1>0$


$\pi _1>0$


$y_0$


$\pi _0$


$\eta $


\begin {equation}\hat {p}_{t} = 0 \quad \text {s.t.} \quad \hat {i}_{t} \geq -\frac {i}{1+i}, \quad \text {with} \quad \frac {p_{t}}{p_{t-1}} = \pi _{t} + 1. \label {Xeqn18-18}\end {equation}


\begin {align}\hat {i}_{t}=\max \left (\hat {i}_{t}^{\star },-\frac {i}{1+i}\right ), \label {Xeqn19-19}\end {align}


\begin {align}\hat {i}_{t}^{\star }=\rho _{i}\hat {i}_{t-1}^{\star }+\left (1-\rho _{i}\right )\phi _{\pi }\hat {\pi }_{t}. \label {Xeqn20-20}\end {align}


$i_{t}$


$i_t^\star $


$\rho _{i}$


\begin {equation}\hat {\pi }_{t}^{avg} = 0 \quad \text {s.t.} \quad \hat {i}_{t} > -\frac {i}{1+i}, \quad \text {with} \quad \hat {\pi }_{t}^{avg} = \omega \hat {\pi }_{t} + (1 - \omega ) \hat {\pi }_{t-1}^{avg}, \quad \omega \in (0,1). \label {Xeqn21-21}\end {equation}


$\omega \in (0,1)$


$\hat {\pi }^{avg}_t$


$\omega = 0$


$\omega = 1$


\begin {align}\hat {i}_{1}=\Gamma \hat {\pi }_{0}, \label {Xeqn22-22}\end {align}


\begin {align}\hat {y}_{0}<0, \quad \hat {\pi }_{0}<0, \quad \hat {y}_{1}>0, \quad \hat {\pi }_{1}>0, \label {Xeqn23-23}\end {align}


\begin {align}\frac {d\hat {y}_{0}}{d\eta }>0, \quad \frac {d\hat {\pi }_{0}}{d\eta }>0. \label {Xeqn24-24}\end {align}


$\hat {i}_{1}=\Gamma \hat {\pi }_{0}$


$\Gamma =\frac {1}{\varphi }$


$\Gamma =\frac {\rho _{i}\left (1-\rho _{i}\right )\phi _{\pi }}{1+\left (1-\rho _{i}\right )\phi _{\pi }\varphi }$


$\phi _{\pi }\rightarrow +\infty $


$\Gamma =\frac {\rho _i}{\varphi }$


$\rho _i=1$


$\Gamma =\left (\frac {1-\omega }{\varphi }\right )\hat {\pi }_{0}$


$z$


$\Gamma $


$\eta $


$\eta $


$\delta $


$\zeta $


$i \in [0,1]$


\begin {equation}\label {eq:utilityccworkers} \underset {c_{i,t},a_{i,t}}{\max } E_{0}^{BR}\sum _{t=0}^{\infty }\beta ^{t}\log c_{i,t},\end {equation}


\begin {align}\label {eq:budgetccworkers} \frac {a_{i,t}}{z_{t}}+c_{i,t}= e_{i,t}w_{t}+\left (1-e_{i,t}\right )\delta _{t}+\frac {1+i_{t-1}}{1+\pi _t}a_{i,t-1},\end {align}


\begin {align}\label {eq:debtcclimitccworkers} a_{i,t}\geq 0,\end {align}


\begin {align}\log z_{t}= \rho _z \log z_{t-1}+ \sigma _{z}\varepsilon ^{z}_{t}, \quad \epsilon ^z_t\sim \mathcal {N}\left (0,1\right ), \label {Xeqn28-28}\end {align}


$E_{0}^{BR}$


$\beta $


$c_{i,t}$


$e_{i,t}$


$e_{i,t}=1$


$w_t>0$


$e_{i,t}=0$


$\delta _{t} \in \left (0,w_{t}\right )$


$a_{i,t}$


$z_{t}$


$\rho _z\in \left [0,1\right )$


$\sigma _{z}$


$z_{t}$


$i_{t}$


$\pi _{t}$


$a_{-1}=0$


$c_{t}^{F}$


\begin {equation}\label {eq:utilitycccapitalists} \underset {c^F_t,a^F_t}{\max } E_{0}\sum _{t=0}^{\infty }\beta ^{t}\log c_{t}^{F},\end {equation}


\begin {align}\label {eq:budgetcccapitalists} \frac {a_{t}^{F}}{z_{t}}+c_{t}^{F}= \Pi ^W_{t}+\Pi ^I_{t}+\varpi +\tau _{t}+\frac {1+i_{t-1}}{1+\pi _t}a_{t-1}^{F},\end {align}


\begin {align}\label {eq:debtclimitccapitalists} a_{t}^{F}\geq 0,\end {align}


$E_{0}$


$a^F_{t}$


$i_t$


$\Pi ^W_{t}$


$\Pi ^I_{t}$


$\varpi \geq 0$


$\tau _t$


$a_{-1}=0$


$y_{t}$


$y_{t}(h)$


\begin {equation}y_{t} = \left (\int _{0}^{1}{y_{t}(h)}^\frac {\theta -1}{\theta }d h\right )^{\frac {\theta }{\theta -1}}, \label {Xeqn32-32}\end {equation}


$\theta $


$h$


\begin {equation}y_{t}(h) = \left (\frac {p_{t}(h)}{p_{t}}\right )^{-\theta }y_{t}, \label {Xeqn33-33}\end {equation}


$p_{t}(h)$


\begin {equation}p_{t} = \left (\int _{0}^{1}{p_{t}(h)}^{1-\theta }{d} h\right )^{\frac {1}{1-\theta }}. \label {Xeqn34-34}\end {equation}


$h\in \left [0,1\right ]$


$h$


\begin {equation}y_{t}\left (h\right )=x_{t}\left (h\right ), \label {Xeqn35-35}\end {equation}


$x_t\left (h\right )$


$h$


$q_{t}$


$y_{t}\left (h\right )$


$h$


$p_{t}(h)$


$\Pi ^{W}_{t+j}(i)$


${M}^{F}_{t,t+j}$


\begin {align}\label {profitsccstream} \underset {p_{t}(h)}{\max } E_{t}\sum _{j=0}^{\infty }M^{F}_{t,t+j}\Pi _{t+j}^W(h),\end {align}


\begin {align}\label {periodccprofits} \Pi ^W_{t}(h) = \left (\frac {p_{t}(h)}{p_{t}}\right )^{1-\theta }y_{t} - \left (1-\tau ^W\right )\varphi _t \left (\frac {p_{t}(h)}{p_{t}}\right )^{-\theta }y_{t} - \frac {\psi }{2}\left (\frac {p_{t}(h)}{ p_{t-1}(h)}-1 \right )^{2}y_{t},\end {align}


$\varphi _t$


$\tau ^W$


\begin {equation}\psi \left (1+\pi _{t}\right )\pi _{t}=\psi E_{t}M_{t+1}^{F}\left (1+\pi _{t+1}\right )\pi _{t+1}\frac {y_{t+1}}{y_{t}} + 1-\theta +\theta \left (1-\tau ^{W}\right )q_{t}. \label {Xeqn38-38}\end {equation}


\begin {equation}\Pi ^W_{t}= \left (1 - \left (1-\tau ^W\right )\varphi _t - \frac {\psi }{2}\pi _t^{2}\right )y_t. \label {eq:wholesaleccprofits}\end {equation}


$t$


$v_t$


$u_t$


\begin {equation}m_{t}=\mu u_{t}^{\gamma }v_{t}^{1-\gamma }, \label {Xeqn40-40}\end {equation}


$m_t$


$\gamma \in \left (0,1\right )$


$\mu >0$


\begin {equation}\lambda _{t}=\frac {m_{t}}{v_{t}}. \label {Xeqn41-41}\end {equation}


\begin {equation}f_{t}=\frac {m_{t}}{u_{t}}. \label {Xeqn42-42}\end {equation}


$n_{t-1}$


$\rho $


$\left (1-\rho \right ) n_{t-1}$


$m_t$


\begin {equation}n_{t}=\left (1-\rho \right )n_{t-1}+m_{t}, \label {Xeqn43-43}\end {equation}


\begin {equation}u_{t}=1-\left (1-\rho \right )n_{t-1}. \label {Xeqn44-44}\end {equation}


$x_{t}=1$


$1-\rho $


$\rho $


$\kappa $


$J_{t}^{v}$


$J_{t}^{F}$


\begin {equation}J_{t}^{F}=\left (1-\tau ^{I}\right )\left (q_{t}-w_{t}+T\right )+E_{t}M_{t,t+1}^{F}\left (\left (1-\rho \right )J_{t+1}^{F}+\rho J_{t+1}^{v}\right ), \label {Xeqn45-45}\end {equation}


$\tau ^I\in \left [0,1\right ]$


$T$


$t$


$\kappa $


$\lambda _t$


$J_{t+1}$


\begin {equation}J_{t}^{v}=-\kappa +\lambda _{t}J_{t}^{F}+\left (1-\lambda _{t}\right )E_{t}M_{t,t+1}^{F}J_{t+1}^{v}. \label {Xeqn46-46}\end {equation}


$J_{t}^{v}=0$


\begin {equation}\frac {\kappa }{\lambda _{t}}=J_{t}^{F}. \label {Xeqn47-47}\end {equation}


$J^F_t$


$\kappa $


$1/\lambda _t$


\begin {equation}\Pi ^I_t=n_t\left (1-\tau ^{I}\right )\left (q_{t}-w_{t}+T\right )-\kappa v_t. \label {eq:intermediateccprofits}\end {equation}


$w_t$


$t+1$


$\rho $


$f_{t+1}$


$t+1$


$s_{t+1}=\rho \left (1-f_{t+1}\right )$


$1-s_{t+1}$


$V_{t}^{e}$


\begin {equation}V_{t}^{e}=\log w_{t} + \beta E_{t}^{BR}\left (\left (1-s_{t+1}\right )V_{t+1}^{e}+s_{t+1}V_{t+1}^{u}\right ), \label {eq_value_employed}\end {equation}


$V_{t}^{u}$


$\delta _t$


$t+1$


$f_{t+1}$


\begin {equation}V_{t}^{u}=\log \delta _{t} + \beta E_{t}^{BR}\left (f_{t+1}V_{t+1}^{e}+\left (1-f_{t+1}\right )V_{t+1}^{u}\right ). \label {eq_value_unemployed}\end {equation}


$S^W_t\equiv V_{t}^{e}-V_{t}^{u}$


\begin {equation}w_t^N=\underset {w_t}{\text {argmax}}\left (S^W_t\right )^{1-\alpha }\left (J_{t}^{F}\right )^{\alpha }, \label {Xeqn51-51}\end {equation}


$\alpha \in \left (0,1\right )$


\begin {equation}\left (1-\alpha \right )J_{t}^{F}= \alpha \left (1-\tau ^{I}\right )S^{W}_{t} w_{t}^{N}. \label {Xeqn52-52}\end {equation}


$w_t^N$


$w$


\begin {equation}w_{t}={w}^{\phi } {w_{t}^{N}}^{1-\phi }, \label {Xeqn53-53}\end {equation}


$\phi \in (0,1)$


$i_t\geq 0$


\begin {equation}\label {eq:Welfare} \mathbb {W} = E_{0}\sum _{t=0}^{\infty } \beta ^{t} U_t,\end {equation}


$U_t$


$\mathbb {W}$


$U_t$


\begin {equation}\pi _t=0 \quad \text {s.t.} \quad i_{t} \geq 0. \label {Xeqn55-55}\end {equation}


$\tau ^w$


$\tau ^I$


$T$


\begin {equation}\label {eq:rebatescccapitalists} \tau _{t}=\tau ^{I} n_{t} \left (q_{t} - w_{t}\right )- \tau ^{W} q_{t} y_{t} - n_{t} \left (1-\tau ^{I}\right )T.\end {equation}


\begin {align}\label {eq:bonds_clearing} \int _{[0,1]} a_{i,t}{d}i + a_{t}^{F} = 0,\end {align}


\begin {align}\label {eq:finalccgoodccclearing} \int _{[0,1]} c_{i,t}{d}i + c_t^F + \kappa v_{t} = y_{t} +\left (1-n_{t}\right )\delta _{t} - \frac {\psi }{2}{\pi _{t}}^{2}y_{t} + \varpi ,\end {align}


\begin {align}\label {eq:intermediateccgoodsccclearing} y_{t}=n_{t}.\end {align}


$c_{e,t}=w_t$


\begin {equation}\label {eq_euler} E_{t}^{BR} M_{t,t+1}^{e}\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}} =1,\end {equation}


\begin {equation}\label {eq_sdf} M_{t,t+1}^{e}=\beta \frac {\left (1-s_{t+1}\right )u^{\prime }\left (w_{t+1}\right )+s_{t+1}u^{\prime }\left (\delta _{t+1}\right )}{u^{\prime }\left (w_{t}\right )}.\end {equation}


$w_t$


$s_t$


$c_{u,t}=\delta _{t}$


$\delta _{t}<w_{t}$


$t$


$t+1$


\begin {equation}E_{t}^{BR} M_{t,t+1}^{u}\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}} <1, \label {Xeqn62-62}\end {equation}


\begin {equation}M_{t,t+1}^{u}=\beta \frac {\left (1-f_{t+1}\right )u^{\prime }\left (\delta _{t+1}\right )+f_{t+1}u^{\prime }\left (w_{t+1}\right )}{u^{\prime }\left (\delta _{t}\right )}. \label {Xeqn63-63}\end {equation}


\begin {equation}E_{t} M_{t,t+1}^{F}\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}} <1, \label {Xeqn64-64}\end {equation}


\begin {equation}M_{t,t+1}^{F}=\beta \frac {u^{\prime }\left (c^F_{t+1}\right )}{u^{\prime }\left (c^F_{t}\right )}. \label {Xeqn65-65}\end {equation}


\begin {equation}c_{t}^{F}=y_{t} - w_{t}n_{t}-\frac {\psi }{2}\pi _{t}^{2}y_{t}-\kappa v_{t}+\varpi . \label {Xeqn66-66}\end {equation}


\begin {equation}\label {eqccwelfarecc2} \mathbb {W} = E_{0}\sum _{t=0}^{\infty }\beta ^{t}U_{t},\end {equation}


$U_{t}$


\begin {align}& U_{t}=n_{t}\log c_{e,t} + \left (1-n_{t}\right )\log c_{u,t} + \Lambda \log c^F_{t} \nonumber \\ &= n_{t}\log w_t + \left (1-n_{t}\right )\log \delta _t + \Lambda \log \left (y_{t} - w_{t}n_{t}-\frac {\psi }{2}\pi _{t}^{2}y_{t}-\kappa v_{t}+\varpi \right ),\end {align}


$\Lambda \geq 0$


$\pi $


$\tau ^{W}$


$\tau ^{I}$


$T$


\begin {equation}\pi =0, \quad \tau ^{W}=\frac {1}{\theta }, \quad T=\frac {u\left (w^{\ast }\right )-u\left (\delta ^{\ast }\right )}{u^{\prime }\left (w^{\ast }\right )}, \quad \tau ^{I}=1-\frac {\left (1-\gamma \right )\left (1-\beta \left (1-\rho \right )\right )}{1-\beta \left (1-\rho \right )\left (1-\gamma f^{\ast }\right )}, \label {Xeqn68-69}\end {equation}


$f^{\ast }$


\begin {equation}f^{\ast }=\left ( \frac {\left (1-\tau ^{I}\right )\mu ^{\frac {1}{1-\gamma }}}{\kappa \left (1-\beta \left (1-\rho \right )\right )}\left (1-w^{\ast }+\frac {u\left (w^{\ast }\right )-u\left (\delta ^{\ast }\right )}{u^{\prime }\left (w^{\ast }\right )}\right )\right )^{\frac {1-\gamma }{\gamma }}. \label {Xeqn69-70}\end {equation}


$w^{\ast }$


\begin {equation}u^{\prime }\left (w^{\ast }\right )=\Lambda u^{\prime }\left (y-w^{\ast }n-\kappa v + \varpi \right ), \label {Xeqn70-71}\end {equation}


$c^e=w^{\ast }$


$c^F=y-w^{\ast }n-\kappa v + \varpi $


$c^e$


$c^F$


$y$


$n$


$v$


$\tau ^W$


$1$


$T$


$\tau ^{I}$


\begin {equation}\alpha = \left ( 1 + \frac {\left (1-\tau ^{I}\right )S^{W}w^{*}}{J^{F}}\right )^{-1}. \label {Xeqn71-72}\end {equation}


\begin {equation}1 =\beta E_{t} \frac {\left ( \left (1-s_{t+1}\right ){w_{t+1}}^{-1} + s_{t+1}{\delta _{t+1}}^{-1}\right )^{\zeta }}{\left ( \left (1-s\right ){w^{-1} + s{\delta }^{-1}}\right )^{\zeta -1}{w_{t}}^{-1}}\frac {\left (1+i_{t}\right )z_{t}}{1+\pi _{t+1}}. \label {Xeqn72-73}\end {equation}


\begin {equation}S_{t}^{W} = \log {w_{t}}- \log {\delta _{t}} + \beta E_{t} \frac {\left (\left ( 1- s_{t+1} - f_{t+1}\right )S_{t+1}^{W}\right )^{\zeta }}{\left (\left ( 1- s - f\right )S^{W}\right )^{\zeta -1}}. \label {Xeqn73-74}\end {equation}
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(Gabaix, 2020), which mitigates the excessive power of forward guidance under rational expectations (Del Negro et al., 2015).1 Firm 
owners do not face any idiosyncratic risk. Both household types face a zero-debt constraint and consume their full income, allowing us 
to abstract from distributional effects and focus on the interaction between monetary policy and countercyclical unemployment risk. 
On the production side of the economy, wholesale firms operate in a monopolistically competitive market and face adjustment costs 
when adjusting prices. These nominal rigidities allow monetary policy to affect real economic activity. The central bank responds to 
aggregate demand shocks by setting the nominal policy rate, subject to a ZLB constraint.

In such a context, we study the impact of monetary policy in response to a negative demand shock that leads the economy 
into a liquidity trap. We first consider a benchmark case where the central bank follows strict inflation targeting and compare 
outcomes under complete and incomplete markets. Under incomplete markets, a negative demand shock reduces job creation, raises 
unemployment risk, and induces more precautionary savings, deepening the downturn. Inflation and expectations fall more sharply. 
Since the nominal rate is stuck at zero, the real rate rises, exacerbating the fall in consumption and output. Thus, incomplete markets 
amplify the adverse effects of demand shocks at the ZLB, creating a deflationary spiral.

Given this benchmark, we then study how the economy responds when the central bank follows the Ramsey optimal monetary 
policy. Unlike the strict inflation targeting case, under optimal policy, the central bank commits to keeping interest rates at zero 
longer than implied by current conditions. This commitment boosts inflation expectations and lowers the real rate. The anticipation 
of improved labour market conditions reduces precautionary savings, helping stabilise real activity. Notably, with such policy, incom-
plete markets no longer amplify the shock. In other words, the contraction in real activity is similar under complete and incomplete 
markets. Hence, even if constrained by the ZLB, optimal monetary policy can still neutralise the deflationary spiral induced by market 
incompleteness.

Next, we study how our results vary with the degree of bounded rationality. Greater cognitive myopia weakens the power of 
forward guidance and reduces the efficacy of optimal policy. However, it also makes households less sensitive to future unemployment 
risk, diminishing the precautionary savings motive. As a result, even with muted forward guidance, incomplete markets do not 
substantially amplify the fall in demand when monetary policy is conducted optimally.

Finally, we examine the effectiveness of simple history-dependent policy rules in mitigating the effects of demand shocks under 
market incompleteness. We consider: (𝑖) price-level targeting, (𝑖𝑖) a Taylor rule augmented with the lagged shadow rate (i.e., the 
theoretical policy rate that would prevail in the absence of a ZLB constraint), and (𝑖𝑖𝑖) average inflation targeting. These rules, by 
keeping nominal rates at zero for longer, raise inflation expectations and reduce real rates, thereby mirroring the mechanism of 
optimal policy. However, we find that these rules imply a weaker commitment than the Ramsey policy. The reason is that, unlike 
the Ramsey policy, these rules do not take into account market incompleteness or the degree of bounded rationality. As such, they 
only partially offset the deflationary spiral. For this reason, we conclude that, in practice, unemployment insurance policies aimed at 
reducing market incompleteness are desirable tools, alongside monetary policy, to stabilise output at the ZLB.

Related literature This paper builds primarily on two strands of the literature. First and foremost, by analysing the optimal 
monetary policy conduct in a model with uninsurable unemployment risk and labour market frictions, our paper is particularly 
related to the literature on HANK models with incomplete markets. By studying the interaction between incomplete markets and the 
ZLB, our work is also strictly related to the literature on monetary policy in a liquidity trap. To the best of our knowledge, we are the 
first to study optimal monetary policy at the ZLB in a model with uninsured unemployment risk arising endogenously from labour 
market frictions and agents featuring boundedly rational expectations.

This work builds on the growing literature on unemployment risk in models with incomplete markets. McKay and Reis (2016) 
document that a reduction in unemployment benefits, increasing precautionary savings against uninsured unemployment risk, may 
raise investment and the capital stock, thereby reducing consumption volatility. Challe et al. (2017) estimate a medium-scale DSGE 
model with imperfect unemployment insurance and show that an adverse feedback loop between precautionary savings and aggre-
gate demand contributes to explain the severity of the Great Recession. Ravn and Sterk (2017) build a model where households face 
uninsured unemployment risk, sticky prices, and search-and-matching frictions. In such a framework, a higher risk of job loss and 
worse job-finding prospects induce a precautionary savings motive that causes a decline in the demand for goods. Lower demand, 
in turn, reduces job vacancies and the job-finding rate, producing an amplification mechanism due to endogenous countercycli-
cal income risk. Den Haan et al. (2018) show that incomplete markets together with sticky nominal wages increase business cycle 
volatility. Acharya et al. (2023) study optimal monetary policy in a HANK framework, where the planner’s objective function in-
cludes reducing consumption inequality, in addition to stabilising output and inflation. When income risk is countercyclical, they 
find that policy curtails the fall in output in recessions to alleviate the increase in inequality. Ravn and Sterk (2021) show that in a 
heterogeneous agents model with labour market frictions, the precautionary-savings motive may lead the economy to get stuck in a 
high-unemployment steady-state. Challe (2020) analyses optimal monetary policy in a similar framework. By increasing unemploy-
ment risk, contractionary cost-push or productivity shocks lead to a rise in precautionary savings and a fall in inflation, which calls for 
an accommodative monetary policy.2 Our work extends the analysis in Challe (2020) to the liquidity trap case, where the deflationary 

1 Werning (2015) highlights that incomplete markets exacerbate the forward guidance puzzle. If we did not account for this result, we would 
overestimate the ability of optimal monetary policy to counteract the fall in demand in the presence of incomplete markets. For this reason, our 
baseline analysis assumes workers to be boundedly rational, making the power of forward guidance more realistic. Moreover, we analyse how 
the results change for different degrees of bounded rationality (discussed in Section 4.3) and show that our main conclusions remain substantially 
unaltered when we mitigate the power of forward guidance.
2 Other papers dealing with monetary policy in heterogeneous agents models with incomplete markets and sticky prices are Heathcote et al. 

(2010), Braun and Nakajima (2012), Heathcote and Perri (2018), Kekre (2019), Oh and Rogantini Picco (2025), Cui and Sterk (2021).
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spiral induced by countercyclical unemployment risk is particularly severe. Unlike McKay et al. (2016), and in line with Werning 
(2015), Acharya and Dogra (2020), our results imply that incomplete markets do not attenuate the effects of forward guidance if 
idiosyncratic income risk is countercyclical. These two papers examine the sensitivity of aggregate demand to future monetary policy 
shocks using models where the cyclicality of idiosyncratic income risk can be time-varying but parameterised. Our work, instead, 
studies optimal policy at the ZLB in a model where labour market frictions endogenously give rise to countercyclical income risk. Cho 
(2023) estimates a one-asset HANK model to study the role of unemployment risk. Moreover, within a HANK model incorporating 
both liquid and illiquid assets, Graves (2022) finds that unemployment risk triggers a flight-to-liquidity mechanism, serving as a 
significant automatic stabiliser, especially at ZLB. In our paper, we focus on the case when short-term rates are at the ZLB and show 
that the type of monetary policy is crucial to determining the importance of uninsured unemployment risk. In a representative-agent 
NK model, Leduc and Liu (2016) highlight how search-and-matching frictions in the labour market amplify the negative effects of 
aggregate uncertainty shocks via an option-value channel.

This paper is also related to the strand of the macroeconomic literature studying the optimal conduct of monetary policy when 
nominal short-term rates are at the ZLB. Eggertsson and Woodford (2003) examines the implications of the ZLB on the ability of 
a central bank to contrast deflation. A credible commitment to the right sort of history-dependent policy can largely mitigate the 
distortions created by the ZLB. Jung et al. (2005) shows that at the ZLB, the optimal monetary policy response implies policy inertia, 
i.e., a zero interest rate policy should be continued for a while even after the natural rate returns to a positive level.3 Adam and Billi 
(2007) study optimal monetary policy in a model where the ZLB on the nominal interest rate is an occasionally binding constraint. 
Rational agents anticipate the possibility of reaching the lower bound in the future, and this amplifies the effects of adverse shocks 
well before the bound is reached, which calls for a more aggressive response by the central bank. Bilbiie (2019) studies how long a 
central bank should keep interest rates low after a liquidity trap ends. The paper argues that the optimal duration is approximately 
half the time the economy spends in a liquidity trap. Nakata et al. (2019) show that in a framework where the stimulating ability of 
forward guidance is relatively muted, and the economy is in a liquidity trap, the monetary policy authority should commit to keeping 
the policy rate at zero for a significantly long time.4

The assumption of bounded rationality in our model follows Gabaix (2020) and is one of several approaches proposed to mitigate 
the excessive effectiveness of forward guidance under rational expectations (Del Negro et al., 2015; Werning, 2015). A large litera-
ture has explored alternative mechanisms that dampen the sensitivity of current output and inflation to distant policy commitments. 
Del Negro et al. (2015) solve the forward guidance puzzle by incorporating a perpetual-youth structure into an otherwise standard 
medium-scale NK model.McKay et al. (2016) show that incomplete markets and limited consumption smoothing can naturally at-
tenuate forward guidance even under rational expectations. However, Ravn and Sterk (2021) highlight that this result arises only 
when idiosyncratic income risk is procyclical. When income risk is countercyclical, as in our model, the puzzle becomes more severe. 
Angeletos and Lian (2018) show how information frictions and dispersed beliefs can help resolve the forward guidance puzzle and 
offer a rationale for the front-loading of fiscal stimuli. Andrade et al. (2019), Campbell et al. (2019) propose an explanation based 
on imperfect policy credibility and communication. Dong et al. (2024) demonstrate that heterogeneous beliefs regarding inflation 
targets can weaken the efficacy of both forward guidance and conventional interest rate policies. Our approach based on bounded 
rationality offers a complementary and parsimonious way to capture this empirically relevant attenuation within a model that already 
features endogenous unemployment risk. By modelling cognitive myopia directly at the household level, we can study how imperfect 
foresight interacts with precautionary savings and labour-market frictions.

The remainder of the paper is structured as follows. In Section 2, we derive a stylised version of the model to provide analytical 
insights on how incomplete markets and bounded rationality affect the monetary policy transmission mechanism. In Section 3, we 
describe the fully-fledged model. Section 4 sets out our numerical analysis. In Section 5, we acknowledge potential limitations of our 
analysis. Finally, Section 6 provides some concluding remarks.

2.  Analytical insights

Before presenting the full model and our numerical results, we first highlight key analytical insights using a simplified framework. 
This stylised analysis clarifies how uninsurable unemployment risk and bounded rationality shape the response to demand changes 
under different monetary policies.

2.1.  Stylised model

In this setting, workers are either employed or unemployed. Unemployed workers consume a fraction 𝛿 ∈ [0, 1] of employed 
workers’ consumption:

𝑐𝑢,𝑡 = 𝛿𝑐𝑒,𝑡. (1)

3 Hills and Nakata (2018), Bonciani and Oh (2023a) show that monetary policy inertia reduces the size of government spending multipliers and 
removes the “Paradox of flexibility” when the economy is in a liquidity trap.
4 A non-exhaustive list of papers dealing with monetary policy at the ZLB is Nakov (2008), Christiano et al. (2011), Nakata (2017), Nakata and 

Schmidt (2019), Masolo and Winant (2019), Bonciani and Oh (2023b).
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Employed workers choose consumption/savings according to the Euler equation:

𝑐𝑒,𝑡
−1 = 𝛽𝐸𝐵𝑅𝑡

[(

1 − 𝑠𝑡+1
)

𝑐𝑒,𝑡+1
−1 + 𝑠𝑡+1𝑐𝑢,𝑡+1−1

]

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

, (2)

where 𝐸𝐵𝑅𝑡  denotes boundedly rational expectations, 𝛽 the employed workers’ discount factor, 𝑠𝑡+1 is the probability of becoming 
unemployed, 𝑧𝑡 a demand shock, 𝑖𝑡 the nominal interest rate, and 𝜋𝑡 inflation. Following Bilbiie et al. (2023), we assume that 𝑠𝑡+1
depends on the state of the economy (output deviations from steady state):5

𝑠𝑡
𝑠

=
(

𝑦𝑡
𝑦

)−𝛼
, (3)

implying countercyclical unemployment risk for 𝛼 > 0. The resource constraint is:
𝑦𝑡 =

(

1 − 𝜔𝑢
)

𝑐𝑒,𝑡 + 𝜔𝑢𝑐𝑢,𝑡. (4)

assuming a constant unemployment share 𝜔𝑢 ∈ (0, 1), as in Bilbiie et al. (2023).6

2.1.1.  Bounded rationality
Standard rational expectations models are afflicted by the forward guidance puzzle (Del Negro et al., 2015): agents tend to 

overreact to distant events, such as future interest rate changes. To solve this issue, we follow Gabaix (2020) and assume cognitive 
myopia. Then the Euler Eq. (2) becomes:

1 = 𝛽𝐸𝑡

((

1 − 𝑠𝑡+1
)

𝑐𝑒,𝑡+1−1 + 𝑠𝑡+1𝑐𝑢,𝑡+1−1
)𝜁

(

(1 − 𝑠)𝑐−1𝑒 + 𝑠𝑐𝑢−1
)𝜁−1𝑤𝑡−1

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

. (5)

where 𝜁 ∈ [0, 1] captures the degree of bounded rationality, such that 𝜁 = 1 implies full rationality. Details are in Appendix A.

2.1.2.  Log-linear three equation NK model
The log-linear model can be written as: 

𝑦̂𝑡 = 𝜂𝐸𝑡𝑦̂𝑡+1 − 𝑖𝑡 + 𝐸𝑡𝜋̂𝑡+1 − 𝑧̂𝑡, (6)

𝜋̂𝑡 = 𝛽𝐸𝑡𝜋̂𝑡+1 + 𝜑𝑦̂𝑡. (7)

Eq. (6) is the IS equation, obtained by log-linearising Eq. (5) around the deterministic steady-state. The second Eq. (7) is the canonical 
New Keynesian Phillips curve (NKPC). The coefficient 𝜂 is given by:

𝜂 ≡ 𝜁

(

1 +
𝛼𝑠

(

𝛿−1 − 1
)

𝑠
(

𝛿−1 − 1
)

+ 1

)

, (8)

whereas 𝜑 is the slope of NKPC, as in McKay et al. (2017) and Bilbiie (2021). Hatted variables denote log-deviations from steady 
state. With this model, we can derive a set of analytical results.

Result 1 More countercyclical unemployment risk (i.e., a larger 𝛼) amplifies precautionary savings and increases the coefficient 
𝜂:

𝑑𝜂
𝑑𝛼

=
𝜁𝑠
(

𝛿−1 − 1
)

𝑠
(

𝛿−1 − 1
)

+ 1
> 0. (9)

An expected decline in 𝑦̂𝑡+1 increases more significantly the expected job-loss probability (𝑠𝑡+1), which amplifies the fall in 𝑦̂𝑡. 
Similarly, an expected future interest rate cut (𝑖𝑡+1 < 0), boosting 𝑦̂𝑡+1, reduces 𝑠𝑡+1 and has more expansionary effects on 𝑦̂𝑡.

Result 2 Lower consumption loss due to unemployment (i.e., a larger 𝛿) reduces 𝜂, mitigating the precautionary savings motive:
𝑑𝜂
𝑑𝛿

= −
𝜁𝛼𝑠

(𝑠 + (1 − 𝑠)𝛿)2
< 0. (10)

A higher 𝛿 lowers the risk associated with being unemployed 𝑠𝑡+1𝑐𝑢,𝑡+1−1. Hence, employed workers will adjust today’s consumption 
𝑐𝑒,𝑡 less to expected changes in 𝑠𝑡+1. Therefore, 𝑦̂𝑡 will fall (increase) less in response to an expected fall (increase) in 𝑦̂𝑡+1.

Result 3 An increase in the cognitive discounting parameter 𝜁 increases 𝜂, strengthening forward-looking effects:
𝑑𝜂
𝑑𝜁

= 1 +
𝛼𝑠

(

𝛿−1 − 1
)

𝑠
(

𝛿−1 − 1
)

+ 1
> 0. (11)

As a result, if 𝑦̂𝑡+1 is expected to fall and 𝑠𝑡+1 to rise, more rational workers will increase their precautionary savings more significantly, 
leading to a larger fall in 𝑦̂𝑡.

5 In the baseline model, Section 3, this is micro-founded with a search-and-matching mechanism.
6 In line with Bilbiie et al. (2023), in this stylised model, we assume that the probability of switching from unemployed to employed is such that 

the shares of employed and unemployed households remain constant.
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2.2.  Two-period analysis

To illustrate the impact of uninsurable unemployment risk and bounded rationality on the monetary policy transmission at the 
ZLB. Following Eggertsson and Garga (2019), we make the following simplifying assumptions: (𝑖) Shock: 𝑧̂0 = 𝑧̂ > 𝑖

1+𝑖  and 𝑧̂1 = 0 such 
that ̂𝑖0 = − 𝑖

1+𝑖  and −
𝑖

1+𝑖 < 𝑖1 < 0 and (𝑖𝑖) Perfect foresight: 𝐸𝑡𝑥̂𝑡+1 = 𝑥̂𝑡+1, ∀𝑡.

2.2.1.  Strict inflation targeting
Under strict inflation targeting, the central bank sets the nominal policy rate according to:

𝜋̂𝑡 = 0, s.t. 𝑖𝑡 ≥ − 𝑖
1 + 𝑖

. (12)

The outcomes on output and inflation (detailed derivations are in Appendix D.1) are:

𝑦̂0 = −
(

𝑧̂ − 𝑖
1 + 𝑖

)

< 0, 𝜋̂0 = −𝜑
(

𝑧̂ − 𝑖
1 + 𝑖

)

< 0, 𝑖1 = 𝑦̂1 = 𝜋̂1 = 0. (13)

First of all, since ̂𝑖1 = 0, ̂𝑖1 does not depend on 𝜋̂0 and 𝑦̂0 (i.e., the policy rate is not history dependent). Second, since 𝑦̂1 = 𝜋̂1 = 0, we 
have that 𝑦̂0 and 𝜋̂0 are independent of 𝜂 (hence, independent of 𝛿 and 𝜁). It bears noting that this result relies on the ZLB constraint 
binding for only one quarter. With a longer binding ZLB, smaller 𝜂 would mitigate the initial drop in output and inflation (as shown 
numerically in Section 4).

2.2.2.  Optimal monetary policy
Under the optimal policy with commitment, the central bank minimises the following loss function:7

1
2
(

𝜋̂20 + 𝜗𝑦̂
2
0 + 𝛽

(

𝜋̂21 + 𝜗𝑦̂
2
1
))

, (14)

subject to Eqs.  (6) and (7). Thus, under the optimal policy with commitment, we obtain the following results (detailed derivations 
are in Appendix D.2): 

𝑖1 =
𝜂
𝛽
𝑦̂0 +

𝜑
𝜗

(

𝜂 + 𝛽
𝛽

)

𝜋̂0, (15)

𝑦̂0 < 0, 𝜋̂0 < 0, 𝑦̂1 > 0, 𝜋̂1 > 0, (16)

𝑑𝑦̂0
𝑑𝜂

> 0,
𝑑𝜋̂0
𝑑𝜂

> 0. (17)

Eq. (15) shows that ̂𝑖1 is a function 𝑦̂0 and 𝜋̂0 (history dependence). Moreover, given the same fall in 𝑦̂0 and 𝜋̂0, the optimal reaction 
of 𝑖1 becomes stronger when 𝜂 is large (equivalently, small 𝛿 or large 𝜁). In other words, a large 𝜂 strengthens the commitment to 
keeping the interest rate lower at time 𝑡 = 1 following a macroeconomic contraction at time 𝑡 = 0.

Eq. (17) says that output and inflation decline less when 𝜂 is larger (equivalently, larger 𝛼, smaller 𝛿 or larger 𝜁). The reason 
is that, when monetary policy is conducted optimally, the central bank commits to keeping the nominal interest rate in period 1 
relatively low in response to the adverse demand shock (𝑧̂) in period 0. From Eq. (15), it easy to see that 𝑖1 < 0, given 𝑦̂0 < 0 and 
𝜋̂0 < 0. It follows that 𝑦̂1 > 0 and 𝜋1 > 0, which has a positive impact on 𝑦0 and 𝜋0, as mentioned in Eq. (16). The larger 𝜂, the stronger 
the impact of future output on current output.

2.2.3.  Alternative policy rules
Next, we consider three implementable policy rules that, like the optimal policy, imply history dependence in the policy rate.
Strict price level targeting Under strict price level targeting, the central bank stabilises the price level when the ZLB is not 

binding:

𝑝̂𝑡 = 0 s.t. 𝑖𝑡 ≥ − 𝑖
1 + 𝑖

, with
𝑝𝑡
𝑝𝑡−1

= 𝜋𝑡 + 1. (18)

Shadow rate smoothing The second policy is the following inertial policy rule (see e.g., Hills and Nakata, 2018 and Bonciani 
and Oh, 2023c): 

𝑖𝑡 = max
(

𝑖⋆𝑡 ,−
𝑖

1 + 𝑖

)

, (19)

𝑖⋆𝑡 = 𝜌𝑖𝑖
⋆
𝑡−1 +

(

1 − 𝜌𝑖
)

𝜙𝜋 𝜋̂𝑡. (20)

While the actual nominal rate, 𝑖𝑡, is bounded from below, the shadow (or notional) rate 𝑖⋆𝑡  is not. The shadow rate represents the 
theoretical rate that would prevail in the absence of a ZLB constraint. The central bank sets its shadow rate according to a Taylor-type 
rule with an autoregressive component. The parameter 𝜌𝑖 controls the degree of policy inertia.

7 The welfare loss function can be written as the canonical quadratic function of inflation and output if we focus on shocks that do not drive a 
wedge between inequality and output (see e.g., Bilbiie, 2021).

Journal of Economic Dynamics and Control xxx (xxxx) xxx 

5 



D. Bonciani and J. Oh

Average inflation targeting Finally, under average inflation targeting (see e.g., Budianto et al., 2020), the policy rate stabilises 
an exponentially weighted average inflation rate:

𝜋̂𝑎𝑣𝑔𝑡 = 0 s.t. 𝑖𝑡 > − 𝑖
1 + 𝑖

, with 𝜋̂𝑎𝑣𝑔𝑡 = 𝜔𝜋̂𝑡 + (1 − 𝜔)𝜋̂𝑎𝑣𝑔𝑡−1 , 𝜔 ∈ (0, 1). (21)

with 𝜔 ∈ (0, 1). In other words, the central bank aims to stabilise an exponential moving average inflation rate 𝜋̂𝑎𝑣𝑔𝑡 . When 𝜔 = 0, this 
reduces to strict inflation targeting; when 𝜔 = 1, it matches price level targeting.

Results under the three policy rules Under all three alternative policies, we obtain the following results: 
𝑖1 = Γ𝜋̂0, (22)

𝑦̂0 < 0, 𝜋̂0 < 0, 𝑦̂1 > 0, 𝜋̂1 > 0, (23)

𝑑𝑦̂0
𝑑𝜂

> 0,
𝑑𝜋̂0
𝑑𝜂

> 0. (24)

First of all, under all three policies, the future rate can be written as ̂𝑖1 = Γ𝜋̂0, where Γ = 1
𝜑  under price level targeting, Γ = 𝜌𝑖

(

1−𝜌𝑖
)

𝜙𝜋
1+

(

1−𝜌𝑖
)

𝜙𝜋𝜑

under the inertial rule8, and Γ =
(

1−𝜔
𝜑

)

𝜋̂0 under average inflation targeting. Hence, these policies are history-dependent, like the 
optimal policy. This results in output and inflation responses to the demand shock 𝑧, which are qualitative in line with the optimal 
policy (i.e. future output and inflation increase, which mitigates the fall in current output and inflation).

However, it is important to note that, unlike the optimal policy, Γ does not depend on 𝜂. Therefore, the optimal policy delivers 
stronger commitment when unemployment insurance is imperfect or when agents are less myopic. Last, a larger 𝜂 (i.e., smaller 𝛿 or 
larger 𝜁) mitigates the fall in output and inflation, because agents internalise more strongly the future boost to demand implied by 
the policy rule.

3.  The fully-fledged model

Given our interest in studying the implications of uninsurable unemployment risk on optimal monetary policy at the ZLB, we 
consider a relatively stylised framework that mostly abstracts from distributional issues and focuses instead on the optimal stabilisation 
of aggregate demand. More specifically, following Ravn and Sterk (2017) and Challe (2020), the economy consists of two types of 
households, workers and firm owners. Workers can be either employed or unemployed, and their wages result from a Nash bargaining 
process. Unlike the original model, workers exhibit bounded rationality, thus reacting myopically to distant events, such as anticipated 
changes in monetary policy. On the production side, the economy includes three types of firms, producing intermediate, wholesale, 
and final goods. In particular, intermediate-goods firms hire workers in a frictional labour market to produce their output. These firms 
sell the intermediate goods to wholesale firms, which operate in a monopolistically competitive market and face price adjustment 
costs. Last, final-goods firms produce their output using wholesale goods as input.

3.1.  Working households

Working household 𝑖 ∈ [0, 1] can be employed or unemployed, and maximises its lifetime utility (25) subject to a budget constraint
(26) and a zero-debt-limit constraint (27). The optimisation problem of a working household is as follows:

max
𝑐𝑖,𝑡 ,𝑎𝑖,𝑡

𝐸𝐵𝑅0

∞
∑

𝑡=0
𝛽𝑡 log 𝑐𝑖,𝑡, (25)

subject to 
𝑎𝑖,𝑡
𝑧𝑡

+ 𝑐𝑖,𝑡 = 𝑒𝑖,𝑡𝑤𝑡 +
(

1 − 𝑒𝑖,𝑡
)

𝛿𝑡 +
1 + 𝑖𝑡−1
1 + 𝜋𝑡

𝑎𝑖,𝑡−1, (26)

𝑎𝑖,𝑡 ≥ 0, (27)

log 𝑧𝑡 = 𝜌𝑧 log 𝑧𝑡−1 + 𝜎𝑧𝜀𝑧𝑡 , 𝜖𝑧𝑡 ∼  (0, 1), (28)

where 𝐸𝐵𝑅0  is the boundedly-rational expectation operator. The parameter 𝛽 is the subjective discount factor. The household derives 
utility from its consumption 𝑐𝑖,𝑡. The dummy variable 𝑒𝑖,𝑡 defines the employment status of the household. If 𝑒𝑖,𝑡 = 1, the household is 
employed, works full-time without any associated disutility, and earns a wage income 𝑤𝑡 > 0. If 𝑒𝑖,𝑡 = 0, the household is unemployed 
and only gets an exogenous home-production income 𝛿𝑡 ∈

(

0, 𝑤𝑡
)

. The employment status of the workers is random and the associated 
income risk is uninsured, i.e., there is no compensation for the income loss. 𝑎𝑖,𝑡 represents risk-free bonds issued by the workers. 𝑧𝑡 is 
an aggregate demand shock with persistence 𝜌𝑧 ∈ [0, 1) and volatility 𝜎𝑧. Shock 𝑧𝑡 is also commonly defined as a risk-premium shock 
(Smets and Wouters, 2007), which affects the intertemporal margin.9 The net nominal interest rate is represented by 𝑖𝑡, whereas 𝜋𝑡
is the inflation rate. At the beginning of time, workers are assumed to hold no assets 𝑎−1 = 0.

8 When 𝜙𝜋 → +∞, the coefficient can be written as Γ = 𝜌𝑖
𝜑
. When 𝜌𝑖 = 1, this is equivalent to the coefficient under price level targeting.

9 Fisher (2015) provides a structural interpretation of the risk-premium shock as a disturbance to the demand for safe and liquid assets.
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3.2.  Firm owners

There is a unit mass of households, who own the various firms in the economy. These households choose consumption 𝑐𝐹𝑡  to 
maximise their lifetime utility (29) subject to their budget constraint (30) and a zero-debt-limit constraint (31). Unlike workers, firm 
owners do not face any idiosyncratic income risk and have fully rational expectations.10 Their optimisation problem looks as follows:

max
𝑐𝐹𝑡 ,𝑎

𝐹
𝑡

𝐸0

∞
∑

𝑡=0
𝛽𝑡 log 𝑐𝐹𝑡 , (29)

subject to 
𝑎𝐹𝑡
𝑧𝑡

+ 𝑐𝐹𝑡 = Π𝑊𝑡 + Π𝐼𝑡 +𝜛 + 𝜏𝑡 +
1 + 𝑖𝑡−1
1 + 𝜋𝑡

𝑎𝐹𝑡−1, (30)

𝑎𝐹𝑡 ≥ 0, (31)

where 𝐸0 is the rational expectation operator. 𝑎𝐹𝑡  represents the bonds issued by the firm owners that pay the risk-free nominal interest 
rate 𝑖𝑡. Π𝑊𝑡  and Π𝐼𝑡  are the dividends the firm owners receive from the ownership of wholesale and intermediate-goods firms, whereas 
𝜛 ≥ 0 and 𝜏𝑡 are respectively a home-production income and a lump-sum fiscal transfer. Just like for the workers, firm owners hold 
no assets at the beginning of time 𝑎−1 = 0.

3.3.  Final goods firms

The final good 𝑦𝑡 is produced by aggregating wholesale inputs 𝑦𝑡(ℎ) with a constant elasticity of substitution technology:

𝑦𝑡 =

(

∫

1

0
𝑦𝑡(ℎ)

𝜃−1
𝜃 𝑑ℎ

)
𝜃
𝜃−1

, (32)

where 𝜃 is the elasticity of substitution of wholesale goods. The cost-minimisation problem for the final good firm implies that the 
demand for the wholesale good ℎ is given by:

𝑦𝑡(ℎ) =
(

𝑝𝑡(ℎ)
𝑝𝑡

)−𝜃
𝑦𝑡, (33)

where 𝑝𝑡(ℎ) is the price of the wholesale good. Finally, the zero-profit condition implies that the price index is expressed as:

𝑝𝑡 =

(

∫

1

0
𝑝𝑡(ℎ)

1−𝜃𝑑ℎ

)
1

1−𝜃

. (34)

3.4.  Wholesale firms

There is a continuum of wholesale firms, indexed by ℎ ∈ [0, 1], that produce a differentiated product using a homogeneous inter-
mediate good as input. The production function of a wholesale good ℎ is given by:

𝑦𝑡(ℎ) = 𝑥𝑡(ℎ), (35)

where 𝑥𝑡(ℎ) is the input of intermediate goods demanded by the wholesale firm ℎ, purchased at price 𝑞𝑡. 𝑦𝑡(ℎ) represents the output 
of firm ℎ. These wholesale firms act in a monopolistically competitive market and set their price 𝑝𝑡(ℎ) facing quadratic adjustment 
costs à la Rotemberg (1982). Since these firms are owned by the firm owners, the stream of profits Π𝑊𝑡+𝑗 (𝑖) is discounted by pricing 
kernel 𝑀𝐹

𝑡,𝑡+𝑗 . The optimisation problem of these firms is given by: 

max
𝑝𝑡(ℎ)

𝐸𝑡
∞
∑

𝑗=0
𝑀𝐹

𝑡,𝑡+𝑗Π
𝑊
𝑡+𝑗 (ℎ), (36)

Π𝑊𝑡 (ℎ) =
(

𝑝𝑡(ℎ)
𝑝𝑡

)1−𝜃
𝑦𝑡 −

(

1 − 𝜏𝑊
)

𝜑𝑡

(

𝑝𝑡(ℎ)
𝑝𝑡

)−𝜃
𝑦𝑡 −

𝜓
2

(

𝑝𝑡(ℎ)
𝑝𝑡−1(ℎ)

− 1
)2
𝑦𝑡, (37)

where Eqs. (36) and (37) represent the stream of lifetime profits, 𝜑𝑡 is the price of intermediate goods relative to the final good’s 
price, and 𝜏𝑊  is a production subsidy. In a symmetric equilibrium, the maximisation problem delivers the following New Keynesian 
Phillips curve (NKPC):

𝜓
(

1 + 𝜋𝑡
)

𝜋𝑡 = 𝜓𝐸𝑡𝑀
𝐹
𝑡+1

(

1 + 𝜋𝑡+1
)

𝜋𝑡+1
𝑦𝑡+1
𝑦𝑡

+ 1 − 𝜃 + 𝜃
(

1 − 𝜏𝑊
)

𝑞𝑡. (38)

The profits of the wholesale firm, which are returned to the firm owners in the form of dividends, are given by:
Π𝑊𝑡 =

(

1 −
(

1 − 𝜏𝑊
)

𝜑𝑡 −
𝜓
2
𝜋2𝑡

)

𝑦𝑡. (39)

10 In Section 3.11, we explain that firm owners have a binding debt limit and their Euler equation, therefore, only holds with a strict inequality. 
As a result, assuming that firm owners feature boundedly rational expectations would not help attenuate the forward guidance puzzle.
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3.5.  The labour market

At the beginning of each period 𝑡, firms post 𝑣𝑡 vacancies and 𝑢𝑡 unemployed workers look for a job. The matching technology 
takes the form of a Cobb-Douglas function:

𝑚𝑡 = 𝜇𝑢𝛾𝑡 𝑣
1−𝛾
𝑡 , (40)

where 𝑚𝑡 represents the number of successful matches, 𝛾 ∈ (0, 1) and 𝜇 > 0 scales the matching efficiency. The job-filling rate, i.e., 
the probability that a vacancy is matched with a worker searching for a job, is defined as:

𝜆𝑡 =
𝑚𝑡
𝑣𝑡
. (41)

The job-finding rate, i.e., the probability that an unemployed searching for a job is matched with an open vacancy, is given by:
𝑓𝑡 =

𝑚𝑡
𝑢𝑡
. (42)

At the beginning of each period, there are 𝑛𝑡−1 workers, with a fraction 𝜌 being laid off. Thus, the number of workers who keep their 
jobs is (1 − 𝜌)𝑛𝑡−1. At the same time, 𝑚𝑡 new matches are formed. Assuming that new hires start working immediately when they are 
hired, aggregate employment evolves according to the following law of motion:

𝑛𝑡 = (1 − 𝜌)𝑛𝑡−1 + 𝑚𝑡, (43)

while the number of unemployed workers seeking a job is given by:
𝑢𝑡 = 1 − (1 − 𝜌)𝑛𝑡−1. (44)

3.6.  Intermediate goods firms

If an intermediate-good firm successfully hires a worker, it produces one unit (𝑥𝑡 = 1) of its good with its only employee. If a firm 
finds a match, it obtains a flow profit in the current period after paying the worker. In the next period, if the match survives (with 
probability 1 − 𝜌), the firm continues its operations. If the match breaks down (with probability 𝜌), the firm posts a new job vacancy 
at a fixed cost 𝜅 with the value 𝐽 𝑣𝑡 . The value of a firm with a match (denoted by 𝐽𝐹𝑡 ) is therefore given by the Bellman equation:

𝐽𝐹𝑡 =
(

1 − 𝜏𝐼
)(

𝑞𝑡 −𝑤𝑡 + 𝑇
)

+ 𝐸𝑡𝑀𝐹
𝑡,𝑡+1

(

(1 − 𝜌)𝐽𝐹𝑡+1 + 𝜌𝐽
𝑣
𝑡+1

)

, (45)

where 𝜏𝐼 ∈ [0, 1] is a corporate tax rate and 𝑇  a wage subsidy. If the firm posts a new vacancy in period 𝑡, it costs 𝜅 units of final 
goods. The vacancy can be filled with probability 𝜆𝑡, in which case the firm obtains the value of the match. Otherwise, the vacancy 
remains unfilled and the firm goes into the next period with the value 𝐽𝑡+1. Thus, the value of an open vacancy is given by:

𝐽 𝑣𝑡 = −𝜅 + 𝜆𝑡𝐽𝐹𝑡 +
(

1 − 𝜆𝑡
)

𝐸𝑡𝑀
𝐹
𝑡,𝑡+1𝐽

𝑣
𝑡+1. (46)

Free entry implies that 𝐽 𝑣𝑡 = 0, so that:
𝜅
𝜆𝑡

= 𝐽𝐹𝑡 . (47)

This relation describes the optimal job creation decisions. The benefit of creating a new job is the match value 𝐽𝐹𝑡 . The expected cost 
of creating a new job is the flow cost of posting a vacancy 𝜅 multiplied by the expected duration of an unfilled vacancy 1∕𝜆𝑡. Finally, 
the aggregate period profits of intermediate-goods firms are given by:

Π𝐼𝑡 = 𝑛𝑡
(

1 − 𝜏𝐼
)(

𝑞𝑡 −𝑤𝑡 + 𝑇
)

− 𝜅𝑣𝑡. (48)

3.7.  Workers’ Value function

If a worker is employed, he obtains wage income 𝑤𝑡. At time 𝑡 + 1, the worker is laid off with probability 𝜌 and may find a new 
job with probability 𝑓𝑡+1. A separated worker may fail to find a new match in period 𝑡 + 1, thereby entering the unemployment pool, 
with probability 𝑠𝑡+1 = 𝜌

(

1 − 𝑓𝑡+1
)

. The worker continues to be employed with probability 1 − 𝑠𝑡+1. The value of an employed worker, 
𝑉 𝑒
𝑡 , can be written as follows:

𝑉 𝑒
𝑡 = log𝑤𝑡 + 𝛽𝐸𝐵𝑅𝑡

((

1 − 𝑠𝑡+1
)

𝑉 𝑒
𝑡+1 + 𝑠𝑡+1𝑉

𝑢
𝑡+1

)

, (49)

where 𝑉 𝑢
𝑡  denotes the value of an unemployed worker. They obtain the home-production income 𝛿𝑡 and have the chance, in period 

𝑡 + 1, of finding a new job with probability 𝑓𝑡+1. Thus, the value of an unemployed worker satisfies the Bellman equation:
𝑉 𝑢
𝑡 = log 𝛿𝑡 + 𝛽𝐸𝐵𝑅𝑡

(

𝑓𝑡+1𝑉
𝑒
𝑡+1 +

(

1 − 𝑓𝑡+1
)

𝑉 𝑢
𝑡+1

)

. (50)

3.8.  The nash bargaining wage

Firms and workers bargain over wages. If we define 𝑆𝑊𝑡 ≡ 𝑉 𝑒
𝑡 − 𝑉 𝑢

𝑡 , the Nash bargaining problem is given by:
𝑤𝑁𝑡 = argmax

𝑤𝑡

(

𝑆𝑊𝑡
)1−𝛼(𝐽𝐹𝑡

)𝛼 , (51)

where 𝛼 ∈ (0, 1). The first-order condition is then given by:
(1 − 𝛼)𝐽𝐹𝑡 = 𝛼

(

1 − 𝜏𝐼
)

𝑆𝑊𝑡 𝑤𝑁𝑡 . (52)
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3.9.  Wage rigidity

In practice, however, the equilibrium real wage may differ significantly from the Nash bargaining solution. To achieve empirically 
reasonable levels of volatility in both vacancies and unemployment, the literature often assumes some form of real wage rigidity (Hall, 
2005). We assume, therefore, that the actual wage is obtained by weighing the Nash wage 𝑤𝑁𝑡  against the (constrained-efficient) 
steady-state value 𝑤:

𝑤𝑡 = 𝑤𝜙𝑤𝑁𝑡
1−𝜙, (53)

where the parameter 𝜙 ∈ (0, 1) represents the degree of wage inertia.

3.10.  Government

Monetary policy In our baseline specification, we assume that the monetary policy authority optimally sets the nominal interest 
rate in response to aggregate shocks. In other words, it maximises the following social welfare function subject to all equilibrium 
conditions and the ZLB constraint (i.e., 𝑖𝑡 ≥ 0):

𝕎 = 𝐸0

∞
∑

𝑡=0
𝛽𝑡𝑈𝑡, (54)

where 𝑈𝑡 is the sum of instantaneous utilities of all households: employed, unemployed, and firm owners. In Section 3.12, we explicitly 
define 𝕎 and 𝑈𝑡, while we set up the problem and derive the first-order conditions in Appendix C. To highlight the benefits of the 
optimal policy, we also consider the implications of a simple strict inflation-targeting rule:11

𝜋𝑡 = 0 s.t. 𝑖𝑡 ≥ 0. (55)

Fiscal policy To achieve a constrained-efficient allocation in steady state, we assume that the fiscal authority sets constant taxes 
and subsidies 𝜏𝑤, 𝜏𝐼 , and 𝑇 , which are rebated lump-sum to firm owners:

𝜏𝑡 = 𝜏𝐼𝑛𝑡
(

𝑞𝑡 −𝑤𝑡
)

− 𝜏𝑊 𝑞𝑡𝑦𝑡 − 𝑛𝑡
(

1 − 𝜏𝐼
)

𝑇 . (56)

The first term of the expression represents a corporate tax, the second is a production subsidy, and the last is a wage subsidy. In 
Section 3.13, we report the values of taxes and subsidies associated with the constrained-efficient allocation.

3.11.  Market clearing and equilibrium

The model is closed by the following market-clearing conditions for bonds, final goods, and wholesale goods: 

∫[0,1]
𝑎𝑖,𝑡𝑑𝑖 + 𝑎𝐹𝑡 = 0, (57)

∫[0,1]
𝑐𝑖,𝑡𝑑𝑖 + 𝑐𝐹𝑡 + 𝜅𝑣𝑡 = 𝑦𝑡 +

(

1 − 𝑛𝑡
)

𝛿𝑡 −
𝜓
2
𝜋𝑡

2𝑦𝑡 +𝜛, (58)

𝑦𝑡 = 𝑛𝑡. (59)

We report the full set of equilibrium conditions in Appendix B. It bears noting that, as in Ravn and Sterk (2017, 2021), Challe (2020), 
the model does not give rise to a distribution of wealth across workers. The reason for this is that with a zero debt limit (Eqs. (27) 
and (31)), no one is issuing the assets that the precautionary savers would be willing to purchase for self-insurance. In other words, 
the precautionary-savings motive of employed workers puts downward pressure on the real interest rate. Given the low level of the 
real rate, unemployed workers and firm owners would prefer to borrow and face, therefore, a binding debt limit. For this reason, the 
equilibrium supply of assets ends up being zero, and all households consume their whole current income.12 Thus, employed workers 
consume their wage, 𝑐𝑒,𝑡 = 𝑤𝑡, and their Euler equation holds with equality:

𝐸𝐵𝑅𝑡 𝑀𝑒
𝑡,𝑡+1

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

= 1, (60)

where their stochastic discount factor is given by:

𝑀𝑒
𝑡,𝑡+1 = 𝛽

(

1 − 𝑠𝑡+1
)

𝑢′
(

𝑤𝑡+1
)

+ 𝑠𝑡+1𝑢′
(

𝛿𝑡+1
)

𝑢′
(

𝑤𝑡
) . (61)

The two conditions above determine the saving/consumption choice of the employed households. In particular, two forces drive this 
decision: (i) changes in 𝑤𝑡 make agents want to save more when wages are temporarily high (aversion to intertemporal substitutions); 

11 In the model, the allocation under the simple strict inflation-targeting rule is the same to that under the optimal discretionary policy.
12 Because of the zero-debt limit, the risk-premium shock does not appear in the resource constraint. This would not be the case in a more general 
setting.
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(ii) in times of high unemployment risk, i.e., high job-loss probability 𝑠𝑡, employed households wish to self-insure against the possibility 
of becoming unemployed (precautionary savings).

Unemployed households consume their home-production income, 𝑐𝑢,𝑡 = 𝛿𝑡. Since 𝛿𝑡 < 𝑤𝑡, they are relatively poor at time 𝑡 and 
would like to borrow in expectation of a higher income at time 𝑡 + 1. As a result, they face a binding debt limit, and their Euler 
equation holds with strict inequality:

𝐸𝐵𝑅𝑡 𝑀𝑢
𝑡,𝑡+1

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

< 1, (62)

where the stochastic discount factor is given by:

𝑀𝑢
𝑡,𝑡+1 = 𝛽

(

1 − 𝑓𝑡+1
)

𝑢′
(

𝛿𝑡+1
)

+ 𝑓𝑡+1𝑢′
(

𝑤𝑡+1
)

𝑢′
(

𝛿𝑡
) . (63)

Firm owners do not have any precautionary-savings motive, as they do not face any unemployment risk. For this reason, they face a 
binding debt limit and their Euler equation holds with strict inequality:

𝐸𝑡𝑀
𝐹
𝑡,𝑡+1

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

< 1, (64)

where the firm owners’ stochastic discount factor is given by:

𝑀𝐹
𝑡,𝑡+1 = 𝛽

𝑢′
(

𝑐𝐹𝑡+1
)

𝑢′
(

𝑐𝐹𝑡
) . (65)

The consumption of a firm owner can be derived by combining Eqs. (30), (39), (48), (56), and (58):
𝑐𝐹𝑡 = 𝑦𝑡 −𝑤𝑡𝑛𝑡 −

𝜓
2
𝜋2𝑡 𝑦𝑡 − 𝜅𝑣𝑡 +𝜛. (66)

3.12.  Social welfare

Under the optimal policy, the central bank’s objective is to maximise social welfare, given by the sum of value functions of all 
households. In particular, assuming the same welfare weight across working households, we have that:

𝕎 = 𝐸0

∞
∑

𝑡=0
𝛽𝑡𝑈𝑡, (67)

where 𝑈𝑡 in Eq. (67) is the sum of instantaneous utilities:
𝑈𝑡 = 𝑛𝑡 log 𝑐𝑒,𝑡 +

(

1 − 𝑛𝑡
)

log 𝑐𝑢,𝑡 + Λ log 𝑐𝐹𝑡

= 𝑛𝑡 log𝑤𝑡 +
(

1 − 𝑛𝑡
)

log 𝛿𝑡 + Λ log
(

𝑦𝑡 −𝑤𝑡𝑛𝑡 −
𝜓
2
𝜋2𝑡 𝑦𝑡 − 𝜅𝑣𝑡 +𝜛

)

, (68)

where Λ ≥ 0 is the relative welfare weight on firm owners.

3.13.  Constrained-efficient steady state

The economy features three distortions: monopolistic competition in the wholesale sector, congestion externalities in the labour 
market, and imperfect insurance against unemployment risk. To simplify the optimal policy analysis, we assume a constrained-efficient 
steady state. To this end, we consider the appropriate values of steady-state inflation (𝜋) and the tax instruments (𝜏𝑊 , 𝜏𝐼 , 𝑇 ) that 
eliminate the various distortions in steady state:13

𝜋 = 0, 𝜏𝑊 = 1
𝜃
, 𝑇 =

𝑢(𝑤∗) − 𝑢(𝛿∗)
𝑢′(𝑤∗)

, 𝜏𝐼 = 1 −
(1 − 𝛾)(1 − 𝛽(1 − 𝜌))
1 − 𝛽(1 − 𝜌)(1 − 𝛾𝑓 ∗)

, (69)

where 𝑓 ∗ is given by:

𝑓 ∗ =
⎛

⎜

⎜

⎝

(

1 − 𝜏𝐼
)

𝜇
1

1−𝛾

𝜅(1 − 𝛽(1 − 𝜌))

(

1 −𝑤∗ +
𝑢(𝑤∗) − 𝑢(𝛿∗)

𝑢′(𝑤∗)

)

⎞

⎟

⎟

⎠

1−𝛾
𝛾

. (70)

where 𝑤∗, the constrained-efficient wage in steady state, satisfies:
𝑢′
(

𝑤∗) = Λ𝑢′
(

𝑦 −𝑤∗𝑛 − 𝜅𝑣 +𝜛
)

, (71)

recalling that 𝑐𝑒 = 𝑤∗ and 𝑐𝐹 = 𝑦 −𝑤∗𝑛 − 𝜅𝑣 +𝜛, where 𝑐𝑒 and 𝑐𝐹  are the steady-state consumption levels of employed workers 
and firm owners, 𝑦 the steady-state level of final output, 𝑛 the steady-state level of employment and 𝑣 steady-state vacancies. The 

13 For a detailed derivation and discussion of the constrained-efficient allocation, please refer to Section 3 in Challe (2020).
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Table 1 
Calibration.

 Parameters  II  PI  Targets/Sources  II  PI
 Sym.  Description  Value  Value  Sym.  Description  Value  Value
𝛽  Discount factor 0.989 0.995 4𝑖  Annual interest rate  2%  -
𝜁  Cognitive discounting 0.750  -  - Gabaix (2020)  -  -
𝜃  Monopoly power 6.000  - 1

𝜃−1
 Markup rate  20%  -

𝜓  Price stickiness 1088.6 1119.2  -  Calvo stickiness 0.84  -
𝛾  Elasticity of matching 2∕3  -  - Shimer (2005)  -  -
𝜅  Vacancy cost 0.044 0.040 𝜅∕𝑤  % of wage  4.5%  -
𝑤  Real wage 0.979 0.888 𝑓  Job-finding rate  80%  -
𝜇  Matching efficiency 0.765  - 𝜆  Vacancy-filling rate  70%  -
𝜌  Job-destruction rate 0.250  - 𝑠  Job-loss rate  5%  -
𝛿  Workers’ home prod. 0.882 0.888 1 − 𝛿

𝑤
 Cons. loss upon unemp.  10%  0%

𝜛  Firm owners’ home prod. 0.484 0.351 𝑤𝑛
𝑐𝐹 +𝑤𝑛

 Labour share  65%  -
𝜙  Wage inertia 0.948  -  - Challe (2020)  -  -
𝜌𝑧  RP shock persistence 0.920  -  PI & SIT: ZLB for around 16 quarters
𝜎𝑧  RP shock volatility 0.0187  -  PI & SIT: 10% output drop & 1.8%p infl. drop

Note: The tables presents the calibrated value of our baseline model with imperfect insurance (II) and a 
version of the model with perfect insurance (PI). SIT stands for strict inflation targeting.

production subsidy 𝜏𝑊  ensures that the price markup is 1 in steady state, thereby eliminating monopolistic competition. The hiring 
subsidy 𝑇  corrects the lack of unemployment insurance, whereas the corporate tax 𝜏𝐼  corrects the congestion externalities in the 
labour market. Finally, to ensure the decentralised wage is constrained-efficient in the steady state, we also need to assume:

𝛼 =

(

1 +

(

1 − 𝜏𝐼
)

𝑆𝑊𝑤∗

𝐽𝐹

)−1

. (72)

3.14.  Bounded rationality in the baseline model

Similarly as in Section 2.1.1 This type of expectation affects two equilibrium conditions in our model. First, the worker’s Euler 
equation becomes:

1 = 𝛽𝐸𝑡

((

1 − 𝑠𝑡+1
)

𝑤𝑡+1−1 + 𝑠𝑡+1𝛿𝑡+1−1
)𝜁

(

(1 − 𝑠)𝑤−1 + 𝑠𝛿−1
)𝜁−1𝑤𝑡−1

(

1 + 𝑖𝑡
)

𝑧𝑡
1 + 𝜋𝑡+1

. (73)

Second, the value of being employed is given by:

𝑆𝑊𝑡 = log𝑤𝑡 − log 𝛿𝑡 + 𝛽𝐸𝑡

(

(

1 − 𝑠𝑡+1 − 𝑓𝑡+1
)

𝑆𝑊𝑡+1
)𝜁

(

(1 − 𝑠 − 𝑓 )𝑆𝑊
)𝜁−1

. (74)

4.  Numerical exercises

4.1.  Solution and calibration

For the numerical analysis in Section 4.2, the fully-fledged model discussed in Section 3 is solved via a piecewise linear approx-
imation using the approach suggested by Guerrieri and Iacoviello (2015), to consider the effects of the occasionally binding ZLB. In 
our numerical exercises, we compare the baseline model with imperfect unemployment insurance (II), i.e., 𝑤𝑡 > 𝛿𝑡, to a version of 
the model with perfect insurance (PI), i.e., 𝑤𝑡 = 𝛿𝑡. It is important to note that, in the II model, we assume that the home-production 
income 𝛿𝑡 varies such that 𝛿𝑡∕𝑤𝑡 is constant. This assumption implies that the income risk, faced by employed workers, depends on 
variations in the job-loss rate 𝑠𝑡+1 and not on changes in 𝛿𝑡∕𝑤𝑡.

Table 1 lists the model parameters and the empirical moments we aim to target. It is important to note that the calibration of 
some parameters differs between the II and PI models to match the steady-state target values. The discount factor 𝛽 is set to 0.989
(II) or 0.995 (PI), targeting an average annualised nominal interest rate of 2%. We calibrate our cognitive discounting parameter to 
0.75, which is consistent with the empirical evidence presented in Pfäuti and Seyrich (2022). They provide evidence from household 
survey expectations, specifically drawing from the Survey of Consumers from the University of Michigan. By analysing forecast errors 
and revisions, they estimate the cognitive discounting parameter for different income groups across various economic variables (e.g., 
unemployment expectations, inflation expectations). Their findings suggest that these estimated parameters generally fall within the 
range of approximately 0.6 to 0.85, supporting our chosen value of 0.75.14 The elasticity of substitution between intermediate goods 

14 Other empirical evidence is provided in Angeletos et al. (2021), who use consensus expectations rather than consumer expectations. Based on 
their estimates, the cognitive discounting parameter would lie between 0.73 and 0.92 for inflation and 0.82 to 0.83 for unemployment.
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Fig. 1. Strict inflation targeting in the infinite-Horizon model. Note: The figure displays the responses to an adverse risk-premium shock that leads 
the ZLB constraint to bind for 16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing.

𝜃 is set to 6, which is standard in the literature and implies an average markup rate of 20%. We set the Rotemberg price stickiness 
parameter to 1088.58 (1119.18), which, in a Calvo setting, would imply firms do not readjust their price with a probability of 0.84, 
consistent with Nakata et al. (2019). Regarding the labour market parameters, we set the matching function parameter 𝛾 = 2∕3, in 
line with Shimer (2005). Following Challe (2020), the flow cost of a vacancy 𝜅 is set to 0.044 (0.04) to match an average vacancy cost-
to-wage ratio of 4.5%. The steady-state real wage is 0.979 (0.888) to match an average job-finding rate of 80%. The average matching 
efficiency 𝜇 is 0.765, targeting a vacancy-filling rate of 70%. The job-separation rate 𝜌 is set to 0.25, implying a 5% job-loss rate. The 
average home-production income 𝛿 is set to 0.882 (0.888), such that the average proportional consumption loss upon unemployment 
1 − 𝛿

𝑤 = 0.1. In the three-period model, we consider two additional counterfactual scenarios where 1 − 𝛿
𝑤  is set equal to 0.2 or 0.3. 

The steady-state level of the firm owners’ home-production income is set to 0.484 (0.351) to match a 65% labour share. The real wage 
rigidity parameter is set to 𝜙 = 0.948 as in Challe (2020).

Finally, we calibrate the exogenous risk-premium shock process to 𝜌𝑧 = 0.925 and 𝜎𝑧 = 0.0167. This calibration induces a 10 per 
cent drop in output, a 1.8 percentage-point fall in inflation, and the ZLB constraint to bind for 16 quarters when the central bank 
conducts a strict inflation-targeting rule in the PI version of the model.

4.2.  Infinite-horizon model

In this section, we analyse the impact of an adverse risk-premium shock that causes the ZLB constraint to bind for 16 quarters when 
the central bank follows a strict inflation-targeting rule. In line with the previous section, the shock causes a decline in output, wages 
and inflation. As displayed in Fig. 1, under a strict inflation-targeting rule, the central bank cannot react to the fall in demand, which 
causes a significant decline in inflation expectations and an increase in the real interest rate. The latter further amplifies the initial 
drop in real activity and inflation. In the II case (red-dashed line), a worsening in labour market conditions (rise in the job-loss rate) 
induces employed workers to increase their savings for precautionary reasons, which causes inflation to fall even more substantially 
on impact. Because of the binding ZLB constraint on the policy rate, inflation expectations decline more severely under imperfect 
insurance, causing a larger increase in the real rate. Consequently, the fall in output is about 7 percentage points larger than under 
PI.
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Fig. 2. Optimal monetary policy in the infinite-horizon model. Note: The figure displays the responses to an adverse risk-premium shock that leads 
the ZLB constraint to bind for 16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing.

When the central bank commits to an optimal interest rate path, as shown in Fig. 2, the effects of an adverse risk-premium shock 
are significantly milder than with a strict inflation targeting policy rule. By keeping the interest rate at zero for 7 quarters longer, 
the central bank boosts inflation expectations, reduces the real rate and substantially mitigates the drop in output. In the presence of 
imperfect insurance, the optimal path of the policy rate is nearly the same as in the PI case.15 Because the nominal rate is kept low for 
an extended period, households expect labour market conditions to improve, which attenuates the employed workers’ precautionary 
savings motive. Inflation declines less and overshoots more than in the PI case. As a result, the decline in real activity and real wages, 
as well as the rise in the job-loss rate, is nearly the same under PI and II. In other words, under the optimal policy, the central bank 
can almost fully neutralise the deflationary spiral caused by the precautionary-savings behaviour and the ZLB. In terms of output 
stabilisation, the benefits from reducing market incompleteness (e.g., via unemployment insurance policies) are significantly smaller 
under the optimal monetary policy than under strict inflation targeting. It bears noting, however, that although the optimal policy 
can significantly mitigate the initial demand contraction under II, the overall responses of output and inflation are more volatile than 
under PI.

4.3.  The power of forward guidance

In this section, we study how the power of forward guidance affects the optimal monetary policy by varying the workers’ cognitive 
discounting parameter. First, we consider how changing the cognitive parameter affects the economy’s response to a negative demand 
shock when monetary policy follows a strict inflation-targeting policy (i.e., the absence of forward guidance). Fig. 3 displays the results 
for some key variables under 𝜁 = 1 (rational expectations, above the range of empirically plausible values discussed in Section 4.1), 
𝜁 = 0.75 (the benchmark value of myopia), and 𝜁 = 0.5 (below the range of empirically plausible values). The shock is calibrated such 
that output and inflation fall respectively by 10 per cent and 1.8 percentage points, and the ZLB constraint binds for 16 quarters.16 

15 For lower 𝛿𝑡∕𝑤𝑡, the central bank tends to lift off the interest rate earlier.
16 The approach of keeping the severity of the recession constant as one varies the model’s parameter values is adopted by Boneva et al. (2016), 
Hills and Nakata (2018), Nakata et al. (2019).
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Fig. 3. Strict inflation targeting and cognitive discounting. Note: The figure displays the responses to an adverse risk-premium shock that leads the 
ZLB constraint to bind for 16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing.

In Appendix F, we consider the alternative exercise of varying the degree of bounded rationality while hitting the economy with the 
same-sized shock (i.e. without recalibrating the shock conditional on 𝜁).

When working households are more myopic, the costs of a liquidity trap under II become significantly less severe. The reason is 
that workers do not internalise as much that the future interest rate will be stuck at the ZLB, which leads to a smaller fall in inflation 
expectations and a more muted rise in the real rate. Furthermore, agents do not fully anticipate that future labour market conditions 
are going to worsen, which significantly mitigates the precautionary savings motive under II. Hence, the difference between II and 
PI is reduced and for 𝜁 = 0.5, the II drop in output is only 2 percentage points larger than under PI, compared to 20 percentage 
points under fully rational expectations. The II fall in inflation is about 0.8 percentage points larger than under PI, compared to a 3 
percentage points difference in the presence of fully rational agents.

Second, we analyse how the model economy responds under the optimal policy under commitment (Fig. 4). The shock process 
is calibrated using the same values as for the strict inflation-targeting case. Under rational expectations, forward guidance is very 
effective, as workers fully anticipate that the central bank is keeping the interest rate lower for longer. This leads to a much smaller 
fall in output and inflation compared to the case with strict inflation targeting, both under PI and II. Furthermore, as workers expect 
labour market improvements, the precautionary savings motive under II is strongly muted, and, as a result, inflation expectations 
rise more substantially and output declines even less than under PI. When we reduce the cognitive discounting parameter, forward 
guidance becomes less effective, which is reflected in a stronger decline in output and inflation both under PI and II. The reduction 
in the power of forward guidance implies a stronger precautionary motive than the 𝜁 = 1 case. As a result, when 𝜁 = 0.75 or 𝜁 = 0.5, 
output tends to fall more under II than under PI. However, the gap between PI and II does not widen substantially when we go from 
𝜁 = 0.75 to 0.5, as the reduction in the power of forward guidance is partially offset by the fact that agents internalise less future 
labour market developments, which eases the precautionary savings behaviour.

4.4.  Alternative policy rules

In this section, we perform numerical simulations assuming the central bank follows the alternative policy rules discussed in 
Section 2.2.3. In particular, we consider a strict price-level-targeting rule, an inertial Taylor-type rule, and an average inflation-
targeting rule. As discussed above, these rules attenuate the negative impact of demand shocks, both under perfect and imperfect 
unemployment insurance, and can deliver results closer to those found under the optimal policy. Unlike the optimal policy case, 
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Fig. 4. Optimal monetary policy and cognitive discounting. Note: The figure displays the responses to an adverse risk-premium shock that leads 
the ZLB constraint to bind for 16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing.

under these simple monetary policy rules, market incompleteness amplifies output contractions in response to negative demand 
shocks. Therefore, at the ZLB, unemployment insurance policies remain useful tools to stabilise output.

4.4.1.  Price level targeting
Fig. 5 displays the results under this policy specification. Since price-level targeting implies history dependence in the policy rate, 

the nominal policy rate is kept at zero for longer than implied by contemporaneous macroeconomic variables. As a result, inflation 
and output overshoot after the initial decline. Also in this case, the gap between the economies with PI and II narrows. However, the 
initial fall in output and inflation remains significantly larger under II.

We notice that price-level targeting is less effective than the optimal policy at closing the gap between PI and II. The reason is that, 
as we showed in Section 2.2, the optimal monetary policy implies a stronger commitment when markets are incomplete or agents 
are less cognitively myopic. On the other hand, simple policy rules, by definition, apply the same level of commitment irrespective 
of market incompleteness or cognitive myopia.

4.4.2.  Shadow rate smoothing
The second alternative policy is the Taylor-type rule with shadow-rate smoothing. Fig. 6 displays the responses of our model 

variables under this policy. First, comparing these results with those in Fig. 1, one can see how the inertial policy significantly 
mitigates the drop in output, wages, inflation, and the rise in the job-loss rate. Second, the inertial policy is more effective at reducing 
the decline in real activity under imperfect insurance. Specifically, in the PI case, output falls by 9 percent under an inertial policy, 
compared to a 10 percent drop in the absence of inertia. When there is II and employed workers feature a precautionary savings 
motive, the decline in output is about three percentage points smaller under the inertial policy compared to strict inflation targeting.

Intuitively, in the absence of inertia, a decrease in the shadow rate does not have any implications for the future path of the actual 
policy rate. Consequently, as displayed in Fig. 1, the policy rate lifts off after 16 quarters, as soon as the ZLB constraint is not binding 
anymore. With the inertial policy instead, a reduction in the shadow rate implies that the actual policy rate will remain lower for 
longer. Indeed, as shown in Fig. 6, the nominal interest rate is kept at zero for 22 quarters under PI (21 under II), as long as the 
shadow rate is negative. By keeping the nominal rate lower for longer, the central bank boosts expectations about future inflation, 
output, and employment. The rise in inflation expectations leads to a smaller initial increase in the real rate, which undershoots after 
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Fig. 5. Price level targeting. Note: The figure displays the responses to an adverse risk-premium shock that leads the ZLB constraint to bind for 16
quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing.

a few quarters. As a result, the declines in output and real wages are significantly more muted. However, the inertial monetary policy 
is not as effective as the optimal policy at offsetting the deflationary spiral caused by market incompleteness.

4.4.3.  Average inflation targeting
The last policy specification is an average inflation-targeting rule with averaging parameter 𝜔 = 0.2 as in Budianto et al. (2020). 

As mentioned in the analytical section, this policy rule is equivalent to strict inflation targeting when 𝜔 = 1 and equal to strict price 
level targeting when 𝜔 = 0.

Fig. 7 displays the results under the average inflation-targeting policy. Following a negative demand shock, the nominal policy 
rate is kept at zero for longer than implied by contemporaneous macroeconomic variables. Since the policy represents an average 
between the strict price-level-targeting and strict inflation-targeting policies, the rate is kept at zero for a shorter duration compared 
to price-level targeting. As a result, the policy results in larger impact declines in inflation and output relative to strict price-level 
targeting. Additionally, similar to previous cases, the gap between the economies with PI and II is narrower than under strict inflation 
targeting.

To sum up, all three alternative (and more realistic) policy specifications can ease the deflationary spiral caused by market 
incompleteness. However, they are less effective than the optimal policy at offsetting this spiral. Therefore, in practice, unemployment 
insurance policies remain important to stabilise output at the ZLB.

5.  Model limitations

Our analysis provides insights into the interaction between unemployment risk, the zero lower bound (ZLB), and optimal monetary 
policy. However, it is important to acknowledge a few limitations of our model, which could be addressed in future research.

The zero-liquidity assumption A key simplifying assumption in our model, following Ravn and Sterk (2017), Challe (2020), is 
the “zero-liquidity” setup. This implies that households face a zero-debt limit, leading to a situation where all households consume 
their entire current income. As a result, the equilibrium supply of assets is zero, and the model abstracts from any potential effects 
of monetary policy on the wealth distribution. Furthermore, a significant stylisation of our model is the assumption of a fixed zero 
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Fig. 6. Inertial policy rule. Note: The figure displays the responses to an adverse risk-premium shock that leads the ZLB constraint to bind for 
16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing. The inertial policy rule assumes 
𝜌𝑖 = 0.9.

debt limit. This fixed limit rules out the possibility of debt-deflation cycles, which can significantly exacerbate economic downturns 
in a ZLB environment (see e.g., Neri and Notarpietro, 2019). If the central bank credibly commits to the optimal zero-rate policy 
for longer, this will raise inflation expectations and lower the real interest rate. In a model with an endogenous debt limit, such 
as a collateral constraint as in Iacoviello (2005), Gerali et al. (2010), a higher expected inflation raises the expected value of the 
collateral (e.g. physical capital or housing), increasing households’ borrowing capacity, thereby further strengthening the expan-
sionary effects of the optimal monetary policy. Consequently, in such a framework, the central bank might not need to commit 
to the zero-rate policy for as long a period as would be required in a case with a fixed debt limit, as the endogenous increase in 
borrowing capacity provides additional stimulus. However, it is important to highlight that there is theoretical support for the zero-
liquidity assumption, which can be interpreted as a case of constrained debt issuance. In particular, Bassetto and Cui (2024) show 
that when distortionary tax revenues are insufficient to sustain the desired level of safe asset issuance, the optimal equilibrium fea-
tures a limited supply of government debt, positive capital taxation, a positive liquidity premium, and a lower natural interest rate. 
This result provides direct support for studying the effects of monetary policy in a low-interest-rate environment under a zero-debt
limit.

Absence of explicit fiscal policy analysis Our paper primarily focuses on the role of monetary policy, particularly optimal 
monetary policy, in mitigating the effects of unemployment risk at the ZLB. For this reason, our model abstracts from a detailed 
analysis of fiscal policy tools, such as government spending or tax adjustments, as active stabilisation instruments at the ZLB. However, 
a growing body of literature has shown that fiscal policy can be a particularly potent tool when monetary policy is constrained by 
the ZLB. Indeed, some studies (e.g., Christiano et al., 2011; Eggertsson, 2011; Woodford, 2011) suggest that fiscal policy can be a 
perfect substitute for monetary policy in such environments, with government spending multipliers potentially being much larger 
than in normal times. Correia et al. (2013) highlights that at the ZLB, the appropriate taxation mix can provide the necessary stimulus, 
without the need to use wasteful government spending or commitment to keeping policy rates lower for longer. In the presence of a 
more realistic fiscal policy, the central bank may need to keep the rate at zero for a shorter period than implied by our analysis. Our 
results should be seen as a benchmark of what an optimal commitment monetary policy at the ZLB can achieve, absent an endogenous 
debt limit and fiscal policy measures.
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Fig. 7. Average inflation targeting. Note: The figure displays the responses to an adverse risk-premium shock that leads the ZLB constraint to 
bind for 16 quarters under strict inflation targeting. Each line represents a different degree of unemployment risk sharing. The averaging window 
parameter is set to 𝜔 = 0.2.

All the simplifications mentioned above are necessary to derive a tractable HANK model as in Ravn and Sterk (2021). Nevertheless, 
understanding how the inclusion of different fiscal policy instruments and an endogenous debt limit would affect our results is 
important from both a theoretical and policy perspective and should be addressed in future research.

6.  Conclusion

In this paper, we study optimal monetary policy in response to adverse demand shocks when the short-term rate is at the ZLB 
and there is countercyclical uninsurable unemployment risk. Imperfect insurance gives rise to a precautionary-savings motive, which 
may significantly amplify the drop in inflation and inflation expectations, depending on the monetary policy response. Under a strict 
inflation-targeting policy rule, the central bank cannot respond to the fall in inflation, and, for this reason, the real rate rises. As a 
result, the decline in real activity is substantially larger than in the perfect-unemployment-insurance case.

The central bank’s optimal response is to commit to keeping the interest rate at zero for an extended period after exiting the 
liquidity trap. The policy increases inflation expectations and reduces the real rate, sustaining current economic conditions both under 
complete and incomplete markets. The policy also has the additional benefit of improving the future economic outlook and expected 
labour market conditions, attenuating the precautionary-savings motive of households under imperfect unemployment insurance. As 
a result, we find that, in response to a negative demand shock, the contraction in real activity is almost the same under incomplete 
markets and under perfect risk sharing.

Assuming that (working) households are relatively myopic (i.e., boundedly rational) does not significantly affect the main con-
clusions above. On the one hand, making workers more myopic mitigates the power of forward guidance and hence the effectiveness 
of optimal monetary policy at the ZLB. On the other hand, bounded rationality has the additional effect of making agents less re-
sponsive to future developments in the labour market, which significantly attenuates the importance of the precautionary savings 
behaviour under incomplete markets. Therefore, even when agents are myopic and the power of forward guidance is relatively muted, 
incomplete markets do not substantially amplify the fall in demand when monetary policy is conducted optimally.

Finally, we consider the impact of alternative policy rules that introduce history dependence in the policy rate and could, therefore, 
operationalise the optimal policy prescriptions. In particular, we consider a price-level-targeting rule, an inertial rule, including the 
lagged shadow policy rate, and an average inflation-targeting rule. We find that these simple (and more realistic) policies ease but 

Journal of Economic Dynamics and Control xxx (xxxx) xxx 

18 



D. Bonciani and J. Oh

do not fully neutralise the deflationary spiral caused by the ZLB and the precautionary-savings behaviour. Therefore, we conclude 
that, in practice, unemployment insurance policies are desirable tools, alongside monetary policy, to stabilise output at the ZLB.

We acknowledge some caveats of our analysis. To concentrate on the role of countercyclical unemployment risk, the model relies 
on a zero-liquidity assumption, therefore abstracting from any potential effects of monetary policy on the wealth distribution, which 
is an important transmission channel in standard HANK models. Our model also abstracts from a detailed analysis of fiscal policy 
tools. Understanding the optimal mix of monetary and fiscal policies at the ZLB in a HANK model remains an open question for future 
research.
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