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Towards fibre-like loss for photonic 
integration from violet to near-infrared

Hao-Jing Chen1,5 ✉, Kellan Colburn1,5 ✉, Peng Liu1, Hongrui Yan1, Hanfei Hou1, Jinhao Ge1, 
Jin-Yu Liu1, Phineas Lehan1, Qing-Xin Ji1, Zhiquan Yuan1, Dirk Bouwmeester2,3, 
Christopher Holmes4, James Gates4, Henry Blauvelt1 & Kerry Vahala1 ✉

Over the past decades, remarkable progress has been made in reducing the loss of 
photonic integrated circuits (PICs) within the telecom band1–4, facilitating on-chip 
applications spanning low-noise optical5 and microwave synthesis6, to lidar7 and 
photonic artificial intelligence engines8. However, several obstacles arise from the 
marked increase in material absorption and scattering losses at shorter wavelengths9,10, 
which prominently elevate power requirements and limit performance in the visible 
and near-visible spectrum. Here we present an ultralow-loss PIC platform based on 
germano-silicate—the material underlying the extraordinary performance of optical 
fibre—but realized by a fully CMOS-foundry-compatible process. These PICs achieve 
resonator Q factors surpassing 180 million from violet to telecom wavelengths.  
They also attain a 10-dB higher quality factor without thermal treatment in the 
telecom band, expanding opportunities for heterogeneous integration with active 
components11. Other features of this platform include readily engineered waveguide 
dispersion, acoustic mode confinement and large-mode-area-induced thermal 
stability—each demonstrated by soliton microcomb generation, stimulated Brillouin 
lasing and low-frequency-noise self-injection locking, respectively. The success of 
these germano-silicate PICs can ultimately enable fibre-like loss onto a chip, leading  
to an additional 20-dB improvement in waveguide loss over the current highest 
performance photonic platforms. Moreover, the performance abilities demonstrated 
here bridge ultralow-loss PIC technology to optical clocks12, precision navigation 
systems13 and quantum sensors14.

At shorter wavelengths (400–1,100 nm), waveguide losses surge 
because of two fundamental limitations9,10. First, scattering losses 
increase as the optical wavelength approaches the scale of surface 
roughness (surface Rayleigh scattering). Second, absorption losses 
increase as photon energy enters the Urbach tail of amorphous or crys-
talline dielectrics. However, many important photonic applications 
operate in these wavelengths14,15, such as optical clocks, quantum com-
puting and networks, bioimaging, astronomical observation, under-
water and data centre communications, compact lidar, and atomic 
physics studies in general (Fig. 1a). Silica (SiO2) and germanium-doped 
silica (germano-silicate or Ge-silica) have been widely adopted in optical 
fibres for short-wavelength operation because of their exceptionally 
low material absorption16. Nevertheless, because of the need for sus-
pended geometries in the case of silica17,18, or the lack of well-developed 
fabrication processes for germano-silicate19, the promise of fibre-like 
loss in a photonic integrated circuit (PIC) platform remains untapped.

In this work, we present the first step towards using the materials 
of fibre optics in achieving planar integrated photonic circuits with 
fibre-like loss. As in fibre optics, GeO2 doping elevates the refractive 

index of the Ge-silica core, enabling optical confinement within a silica 
cladding. A deep-ultraviolet (DUV) stepper lithography-based manufac-
turing process is developed to fabricate planar integrated waveguide 
circuits on silicon wafers. Leveraging the famously low material loss of 
Ge-silica16 and the unique low-viscosity reflow properties20 at standard 
furnace temperatures, we achieve sub-dB m−1 waveguide losses span-
ning the violet to telecom bands (Fig. 1b). Notably, the waveguide loss 
in the violet band is 13 dB lower than any current integrated platforms, 
whereas the lowest loss of 0.08 dB m−1 at 1,064 nm reaches a loss level 
close to the first low-loss optical fibre produced by Corning in 1970 
(0.02 dB m−1) (ref. 21). Crucially, ultralow losses without post-processing 
thermal annealing can be achieved, which is an important enabler for 
monolithic/heterogeneous integration with temperature-sensitive 
materials11.

Beyond its record-low loss performance, several material and 
practical advantages of this platform are demonstrated. First, the 
DUV-stepper-defined waveguides are readily dispersion-engineered 
as required for soliton microcomb generation (demonstrated by soliton 
microcomb). Second, GeO2 doping reduces the acoustic velocity 
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relative to silica, enabling simultaneous confinement of an optical and 
acoustic mode within the waveguide core (demonstrated by Brillouin 
lasing). Finally, it can support thicknesses over 4 μm, enabling low 
thermorefractive noise (TRN) by the generation of a large mode area 
(LMA) circuit (demonstrated by low-frequency-noise self-injection lock-
ing (SIL)). Overall, this platform incorporates essential ingredients of 
high-performance multi-functionalized visible PICs, including ultralow 
loss, multi-material integration ability and high noise suppression, 
thereby paving the way for high-complexity system-level applications 
such as on-chip atom and ion control22 (Fig. 1c).

Broadband ultrahigh-Q microresonators
To evaluate performance across the broadband spectrum, microring 
resonators are fabricated. For this work, air-cladded microring resona-
tors with a 3-mm diameter (corresponding to a 21.2 GHz free spectral 
range) are used mostly for convenience in coupling and measurement, 
while also completely eliminating substrate leakage and bending losses 
(for details, see Supplementary Figs. 1 and 2). The microscopy image 
of a typical microring resonator is shown in Fig. 1d. The ring and pulley 

coupler are colorized in green, with ridge waveguides fabricated by 
etching trenches around the ridges to increase etch efficiency. Unlike 
Si3N4 photonic circuits, these PICs do not require stress release patterns 
even at 4 μm of thickness. The inherent low viscosity of Ge-silica can be 
accessed at standard furnace annealing temperatures, thereby allowing 
for surface-tension-induced smoothing. By choosing the appropriate 
temperature, the resonators can achieve atomic-scale smoothness 
without deformation of the waveguide shape (Fig. 1e). This smoothness 
overcomes the typical scattering limitations at short wavelengths in 
integrated microresonators.

U-shape tapered-fibre couplers23 are used to measure Q factors from 
458 nm to 1,550 nm. Intrinsic Q factors were determined from transmis-
sion spectra scans in the undercoupled regime (for some stronger 
coupled modes in the visible band, see Supplementary Fig. 5), in which 
resonant transmitted power and linewidth were used to infer loaded, 
coupled and intrinsic optical Q factors. A series of tunable external 
cavity lasers, each calibrated by a separate interferometer, were used 
to measure Q at each wavelength. Seven resonator transmission spec-
tra at different wavelengths are shown in Fig. 1f, demonstrating intrin-
sic Q factors exceeding 180 million across a broad wavelength range 
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Fig. 1 | Ultrahigh-Q germano-silicate device from violet to near IR. a, Spectrum 
coverage of photonics application in the visible and short-NIR regions14.  
QD, quantum dot; YDFA, Yb-doped fibre amplifier. b, Waveguide propagation 
loss across broadband spectrum of state-of-the-art integrated platforms 
compared with the present work. Annealed Ge-silica waveguide losses are 
0.49 dB m−1 at 458 nm, 0.32 dB m−1 at 532 nm, 0.32 dB m−1 at 685 nm, 0.19 dB m−1 
at 780 nm, 0.14 dB m−1 at 965 nm and 0.08 dB m−1 at 1,064 nm, 0.09 dB m−1 
at 1,550 nm. Unannealed Ge-silica waveguide losses are 1.76 dB m−1 at 458 nm, 
1.02 dB m−1 at 532 nm, 0.56 dB m−1 at 685 nm, 0.29 dB m−1 at 780 nm, 0.21 dB m−1 
at 965 nm, and 0.19 dB m−1 at 1,064 nm, 0.15 dB m−1 at 1,550 nm. Data from 
refs. 9,36–38 for ULL Si3N4; refs. 10,15,39,40 for Si3N4; refs. 41–43 for LiNbO3; 
ref. 16 for the material limit of Ge-silica (standard modern fibre with a GeO2 

content around 3.5 mol%). c, Schematic of high-performance visible PICs with 
multi-material integration for on-chip atom/ion control, consisting of blocks  
of III–V lasers, Ge-silica microresonators, LiNbO3 electro-optic modulators and 
vertical grating couplers. d, Microscopy image of a Ge-silica microring device. 
e, SEM image of annealed waveguide. f, Transmission spectra and corresponding 
intrinsic Q factors (Q0) of Ge-silica microring resonators at seven wavelengths 
spanning from violet to NIR. The observed double-dip features at 780 nm  
and 1,064 nm arise from mode splitting induced by backscattering in the 
microcavity, whereas the Fano lineshape at 458 nm originates from multimode 
interference (see detailed analysis in the Supplementary Information).  
Scale bars, 500 μm (d); 2 μm (e).
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from 458 nm to 1,550 nm, with the highest Q of 463 million at 1,064 nm, 
corresponding to a waveguide loss of 0.08 dB m−1. The waveguide loss 
α is calculated from resonators Q0 by α(dB m ) = 10 × log (e) ×

n
Q λ

−1
10

2π eff

0
. 

Here, neff is the effective index of optical modes and λ is the wavelength. 
The atomic-scale smoothness, along with the broad ultralow-material-
loss window of Ge-silica, enables it to break the short-wavelength 
limitation and achieve the lowest waveguide propagation losses among 
all integrated platforms within the visible and short-NIR ranges (Fig. 1b). 
Notably, the loss at 458 nm is 0.49 dB m−1, which is a 13-dB improvement 
over previous records.

CMOS-compatible fabrication
The fabrication process for this work is shown in Fig. 2a. In the devices 
studied, a 4-μm-thickness germano-silica layer (25 mol% GeO2, cor-
responding to an approximately 2% refractive index difference) is 
deposited around 270 °C (setting the anneal-free thermal budget for 
the fabrication flow) by plasma-enhanced chemical vapour deposition 
(PECVD) on a thick (15 μm) layer of thermal oxide on silicon wafer. The 
Ge-silica layer is then processed into ridge waveguides through ruthe-
nium (Ru) and silica hard masking24, deep-ultraviolet (DUV) lithography 

and inductively coupled plasma etching. The Ru mask provides high 
selectivity in fluorine-based etches enabling high-fidelity deep etching 
of Ge:silica. To reduce the roughness-induced scattering loss limitation 
and achieve ultrahigh Q across the broadband spectrum, the entire 
wafer is subjected to furnace annealing at 1,000 °C for 12–18 h. As 
shown in Fig. 2b (bottom left), the sidewalls of the Ge-silica waveguides 
undergo reflow, removing the etch-induced roughness, whereas the 
thermally grown oxide (THOX) substrate remains unaffected.

From here, an optional upper silica cladding layer can be depos-
ited. Two cladding deposition methods are investigated in this work 
and applied to different devices. First, a 14-μm thick slightly P-doped 
(1.5 mol% P2O5) silica cladding is used for full acoustic confinement 
(Fig. 2b, bottom right). Second, a higher-quality inductively coupled 
plasma PECVD (ICP-PECVD) is used to protect the devices from con-
tamination and degradation due to long-term atmospheric exposure. 
With the addition of this ICP-PECVD >6 μm cladding (Extended Data 
Fig. 2a), the Ge-silica PICs have been confirmed to maintain ultralow 
loss (optical Q factors >108, as shown in Extended Data Fig. 2b), when 
exposed to the atmosphere for over several months.

Owing to the high quality of the PECVD Ge-silica layer, high preci-
sion of DUV lithography and the well-developed etching process24,  
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engineered quartz substrates and Ge-on-silicon photodetectors. Scale bars, 
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the Ge-silica microresonators can achieve ultrahigh Q even before 
annealing. Air-clad resonators without the reflow smoothing anneal 
are measured and attain ultrahigh Q of nearly 200 million and maintain 
ultrahigh Q across a similarly broad spectrum (Extended Data Fig. 1). 
This corresponds to a lowest waveguide loss of 0.15 dB m−1 at 1,550 nm. 
Figure 2c compares anneal-free waveguide loss (C band) of state-of-the- 
art integrated platforms with the present work, which exhibits a more 
than 10-fold reduction over the previous record. This anneal-free 
improvement in waveguide loss will enhance the performance of appli-
cations requiring co-integration with temperature-sensitive material 
such as III–V devices, organic electronics/photonics, thin-film lithium 
niobate, thermal-engineered quartz and Ge-on-silicon photodetectors 
(Fig. 2d).

Advantages and demonstrations
Beyond the ultralow loss across a broadband spectrum, the Ge-silica 
PICs have three more key advantages in dispersion engineering, acous-
tic confinement and thermal noise mitigation. To demonstrate them, 
soliton microcombs, stimulated Brillouin lasing (SBL) and SIL laser 
experiments are performed using the new platform. As these appli-
cations do not require monolithic or heterogeneous integration with 
other materials, annealed Ge:silica devices are used.

Single-ring soliton generation
Soliton microcombs represent the main new application area of micro-
cavities and enable transfer of large-scale frequency comb technol-
ogy to an integrated photonic chip. The Q factor of the microcavity 
determines the microcomb pumping power required as well as its 
coherence. However, at this time, the only ultrahigh-Q integrated  
platform—thin Si3N4—has a limited dispersion-engineering ability 
because of its thin waveguide thickness. This platform exhibits only 

normal dispersion and requires coupled-ring structures to generate 
soliton microcombs25. Here, an integrated Ge-silica resonator is used 
to demonstrate a new ability for an integrated design: soliton genera-
tion in a single ultrahigh-Q microring with anomalous dispersion. The 
microring resonator was designed to have anomalous dispersion and 
single-mode transmission as required for soliton generation (Supple-
mentary Figs. 3 and 4). And the soliton mode family dispersion is charac-
terized by measuring the frequency of all modes between 1,520 nm and 
1,630 nm using an external cavity laser calibrated by a Mach–Zehnder 
interferometer (Fig. 3a). There is no observable mode-crossing-induced 
distortion of the mode family, therefore making the mode family well 
suited for soliton formation.

Soliton triggering and stabilization are performed using the fre-
quency kick and capture-lock26 technique. A measured soliton spec-
trum generated using a 3-mm-diameter ring is shown in Fig. 3b (for  
Q characterization, see Supplementary Fig. 6). The spectral envelope 
exhibits a well-defined sech2 envelope. To confirm a stable repetition 
rate, the soliton pulse stream was detected and analysed using an 
electrical spectrum analyser. The electrical spectrum in Fig. 3b (right) 
gives a repetition rate near 21.2 GHz, and the resolution bandwidth of  
1 kHz confirms pulse stream stability.

Acoustic confinement and Brillouin lasing
Apart from soliton microcombs, the stimulated Brillouin laser (SBL) is 
another device that has attracted considerable interest27,28. A key chal-
lenge for SBL operation is achieving simultaneous optical and acoustic 
waveguiding so as to enhance photon–phonon interactions—a feat 
hindered in conventional platforms by the low acoustic impedance 
of the silica cladding. Ge-silica PICs overcome this barrier through 
GeO2 doping, which reduces the longitudinal acoustic velocity of the 
waveguide core relative to the silica cladding, thereby enabling a fully 
transverse confined acoustic mode.
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In the experiment, an approximately 25-mm-long waveguide is used 
to characterize the stimulated Brillouin scattering (SBS) gain spectrum 
and verify acoustical confinement by comparison to simulation. The 
waveguide core is 4 μm × 6 μm Ge-silica, with 15-μm thermal silicon 
oxide bottom cladding and 14-μm P2O5-doped silica upper cladding 
(the same cladding as shown in Fig. 2b, bottom right). Simulations of 
the normalized electric field and mechanical displacement distribu-
tions, shown in Fig. 3c, demonstrate simultaneous optical and acoustic 
wave confinement. Applying a pump–probe method (Methods), the 
SBS gain spectrum is obtained and agrees well with the simulation. The 
gain peak at 9.55 GHz has a full width at half maximum of 44.7 MHz, 
corresponding to a mechanical quality factor of  about 210.

As a device demonstration, integrated Ge-silica resonators are 
used to generate a high-coherence Brillouin laser. To achieve phase 
matching for the Brillouin process near 1,550 nm, air-clad devices with 
diameters of approximately 20 mm were fabricated (for Q characteri-
zation, see Supplementary Fig. 7). Figure 3d (left) shows the optical 
spectrum of the lasing Stokes wave. The weaker pump signal peak in 
the spectrum arises from the need to collect the lasing Stokes wave 
in the propagation direction opposite to the pumping direction. Its 
strength is determined by residual reflection and backscattering in the 
measurement. The Brillouin lasing frequency shift is 9.68 GHz, which 
is lower than the typical 10.9 GHz shift observed in silica resonators18. 
Figure 3d (right) shows the microwave beatnote between the pump 
and Stokes waves, revealing its high coherence, as indicated by the high 
signal-to-noise ratio. This synergy of ultralow optical loss and engi-
neered acoustic confinement unlocks low-noise Brillouin lasers for high- 
performance on-chip gyroscopes13, integrated microwave photonics 
and temperature/strain sensors.

LMA-enhanced hybrid-integrated low-noise laser
Narrow-linewidth lasers are pivotal for applications ranging from pre-
cision metrology to coherent optical communications. The recent 

integration of ultrahigh-Q microresonators with semiconductor diode 
lasers has markedly reduced the frequency noise of on-chip lasers 
and soliton microcombs by SIL4. The operational principle is shown in 
Fig. 4a. A resonant mode of the ultrahigh-Q microresonator acts as a 
frequency reference for stabilization, whereas backscattered light from 
the resonator provides optical feedback to narrow the linewidth of the 
diode laser. White frequency noise suppression scales quadratically 
with the quality factor (Q2) of the microresonator, whereas TRN scales 
inversely with the cavity mode volume. Here, TRN in the resonator 
mode is simulated using the commercial finite element analysis soft-
ware COMSOL Multiphysics (Methods). The results, plotted in Fig. 4b, 
compare Ge-silica with low- and high-confinement Si3N4 resonators of 
identical diameters. Calculated mode areas are 28.06 μm2 (Ge-silica), 
7.71 μm2 (thin Si3N4) and 1.33 μm2 (thick Si3N4). Owing to its substantially 
larger mode area, the Ge-silica platform has a greatly reduced TRN 
among the three integrated photonic systems.

As a demonstration of this hybrid-integrated low-noise laser based 
on our platform, a commercial C-band DFB laser is endfire-coupled to 
the bus waveguide of a Ge-silica resonator chip with Q factor exceed-
ing 100 million (Fig. 4c, inset, in which the microring resonator and 
bus waveguide are indicated in false colour). The laser chip, which is 
mounted on a thermoelectric cooler to avoid long-term drift, is able 
to deliver power of >100 mW at 1,548 nm. Optical feedback is provided 
to the laser by backward Rayleigh scattering in the microresonator, 
which spontaneously aligns the laser frequency to the nearest resona-
tor mode. In experiments, as the phase accumulated in the feedback is 
critical to determining the stability of injection locking, the feedback 
phase is controlled by adjusting the air gap between the chips. At a 
specific phase detuning, a soliton crystal comb29 is generated (Sup-
plementary Fig. 8a). The pump line of the comb output is filtered and 
directed to a self-heterodyne setup for frequency-noise characteriza-
tion. The SIL operation boosts the laser coherence, with the frequency 
noise spectrum shown in Fig. 4c and achieves a Hz-level fundamental 
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Fig. 4 | Hybrid integration of diode laser and germano-silicate device.  
a, Schematic of SIL of the diode laser using external ultrahigh-Q microring.  
b, Simulated TRN spectra. Mode areas are 28.06 μm2, 7.71 μm2 and 1.33 μm2 for 
Ge-silica, thin Si3N4 and thick Si3N4, respectively. c, Single sideband frequency 
noise of SIL laser, indicating a Hz-level fundamental linewidth (FL). Inset, the 
image of a 1,550-nm DFB laser and integrated Ge-silica microring (indicated in 

false colour). d, Narrow-linewidth lasers at red, green and violet wavelengths, 
realized by SIL of Fabry–Pérot (FP) diode lasers to microrings. The fundamental 
linewidths are 15 Hz at 632 nm, 12 Hz at 512 nm and 90 Hz at 444 nm. e, Comparison 
of the fundamental linewidths of integrated lasers with state-of-the-art Si3N4 
platforms30,31.
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linewidth resulting from a 46-dB noise reduction compared with the 
free-running DFB laser. In the data, the increasing frequency noise at 
high-offset frequency is an artefact of spontaneous noise from the DFB 
laser and can be eliminated by out-coupling from a drop waveguide4.

The narrow-linewidth lasers are further extended into the visible 
spectrum by SIL of commercially available multimode Fabry–Pérot 
diode lasers to high-Q microrings. Under SIL, the devices become single 
mode with high side-mode-suppression ratios (Supplementary Fig. 8b). 
Also, fundamental linewidths of 15 Hz at 632 nm, 12 Hz at 512 nm and 
90 Hz at 444 nm are achieved (Fig. 4d). Compared with state-of-the-art 
integrated lasers30,31, the Ge:silica platform provides more than 20 dB 
improvement in fundamental linewidth across the visible spectrum 
(Fig. 4e), holding the potential to redefine performance benchmarks 
in integrated visible photonics14.

Discussion
In summary, we have developed a Ge-silica ultralow-loss platform that 
markedly advances integrated photonics (see detailed comparison 
between Ge-silica and the state-of-the-art low-loss Si3N4 in Supplemen-
tary Table 1). This new platform has achieved a  >10 dB improvement 
in both the violet wavelength range and anneal-free Q. The unique 
material and geometric properties of these waveguides enable dis-
persion engineering for soliton microcomb generation, simultane-
ous confinement of acoustic and optical modes, and suppression of 
thermal refractive noise. They also maintain ultrahigh Q factors in both 
polarizations, and enhance power-handling abilities for high-power 
mode-locked lasers. Moreover, the photosensitivity of Ge-silica32 allows 
UV-written optical gratings for applications forming the basis of fibre 
Bragg gratings in photonic systems. By contrast, the small index con-
trast of Ge:silica on silica leads to larger bending losses, which limit 
integration density. These can be mitigated by using 3D integration, 
increasing Ge doping or operating at shorter wavelengths. On account 
of the quadratic33 and cubic dependence34 of nonlinearity on optical 
Q factor, the low nonlinearity of silica can be readily compensated by 
exploiting ultrahigh-Q devices. Moreover, electro-optic tuning can 
be enabled through heterogeneous integration with lithium niobate 
or lithium tantalate.

The surface-tension-induced smoothness of the waveguides 
bypasses Rayleigh scattering loss limitations, greatly extending inte-
grated photonics at shorter operational wavelengths. Specifically, by 
integrating visible diode lasers with ultralow-loss Ge-silica resonators, 
Hz-level, narrow-linewidth lasers31 and microcombs35 are possible in 
the visible band. With further development in deposition and fabri-
cation techniques, the Ge-silica PICs hold the potential to reach their 
material-limited waveguide loss of 0.2 dB km−1 (corresponding to a 
microresonator Q factor of >100 billion). This fibre-like optical loss 
for PICs would revolutionize certain fibre-based technologies by mov-
ing their manufacture to CMOS foundries, including solid-state gyro-
scopes, advanced frequency comb technology for precision portable 
clocks, large-scale low-loss circuits for quantum computing, high-power  
amplifiers and mode-locked lasers.
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Methods

High-quality upper silica cladding deposition
The upper cladding of these germano-silicate resonators was depos-
ited by ICP-PECVD (Unaxis VLR) at 250 °C using a deuterated silane 
based precursor and oxygen plasma. To reduce the losses due to the 
stress optic effect of the cladding, while also repairing the solarization 
of the germano-silicate due to direct plasma exposure, the devices 
studied underwent a 20-min 1,000 °C rapid thermal anneal between 
each deposition of 500 nm of cladding. As a test, we deposited a 6-μm 
thickness upper cladding (Extended Data Fig. 2a), observing complete 
filling of the coupling gap. This encapsulation effectively protects the 
device from environmental contamination, enabling the maintenance 
of ultrahigh Q up to 160 million (Extended Data Fig. 2b) over several 
months. It is noted that the original Q factor before cladding deposition 
was measured at approximately 250 million. This decrease in Q factor 
with upper cladding, partial Q recovery through thermal treatment, yet 
never fully recovering the original Q values, is consistent with what was 
previously observed in ULL silicon nitride in ref. 51, in which the same 
ICP-PECVD system was used. The possible solutions to this would be to 
switch to a deposition type that avoids exposure to a plasma or using 
better precursors, such as low-pressure chemical vapour deposition 
or tetraethoxysilane PECVD52.

Brillouin gain spectrum measurements and simulations
To achieve high sensitivity, we use a dual-intensity-modulation 
pump–probe technique53. The test device has a 14-μm-thick 1.5 mol% 
P2O5-doped silica upper cladding, designed to fully confine both opti-
cal and acoustic fields. This slightly phosphorus-doped silica layer was 
deposited by PECVD, chosen for its ability to rapidly produce thick, 
stress-free films. Post-cladding characterization shows waveguide 
propagation loss below 0.5 dB m−1 and edge coupling loss of 1.4 dB 
per facet. The SBS gain characterization uses counterpropagating 
pump and probe lasers injected through facet couplers, with both 
lasers operating near 1,560 nm. The pump laser is intensity-modulated 
at a frequency of 10 MHz and the probe laser is intensity-modulated at 
a frequency of 10.075 MHz. The transmission signal of the probe laser 
is routed to a lock-in amplifier for gain measurement, using a 75-kHz 
reference beatnote of the two modulation frequencies. The SBS gain 
spectrum is obtained by frequency-scanning the probe laser over a 
20 GHz range from red- to blue-detuning relative to the fixed pump 
frequency. Both optical and acoustic fields are calculated using the 
finite element method based on the model described in ref. 54. The 
material properties used in the simulation are as follows: refractive 
index of 1.478, 1.451 and 1.449; density of 2,750, 2231 and 2,200 kg m−3; 
Poisson’s ratio of 0.180, 0.166 and 0.170; Young’s modulus of 64.8, 72.6 
and 73.0 GPa; Brillouin linewidth of 59 MHz, 28 MHz and 17 MHz; and 
photoelastic coefficient p12 of 0.2373, 0.2264 and 0.2260, for Ge-silica 
(core), P-silica (upper cladding) and thermally grown silica (bottom 
cladding), respectively.

TRN simulations
The TRN in Fig. 4b of Ge-silica, thin SiN and thick SiN are numerically sim-
ulated in a finite element solver (COMSOL Multiphysics) using a model 
based on the fluctuation-dissipation theorem55. For each of the three 
materials, the simulation is based on a ring microresonator with a dia
meter of 3 mm. The rectangular waveguide dimensions of the Ge-silica, 

thin SiN and thick SiN microresonators are 12 μm × 4 μm, 8 μm × 0.1 μm  
and 2 μm × 0.8 μm, respectively (width × height). These dimensions of 
thin SiN and thick SiN are taken from refs. 4,56. The Ge-silica waveguide 
is air-cladded, whereas the thin and thick SiN waveguides have silica 
cladding. Material parameters used in the simulation are as follows: for 
Ge-silica, the thermo-optic coefficient 1.27 × 10−5 K−1, heat conductiv-
ity 1.38 W m−1 K−1, heat capacity 740 J kg−1 K−1, density 2.2 × 103 kg m−3; 
for SiN, the thermo-optic coefficient 2.45 × 10−5 K−1, heat conductivity 
30 W m−1 K−1, heat capacity 800 J kg−1 K−1, density 3.29 × 103 kg m−3; for 
the silica cladding of the SiN waveguide, the thermo-optic coefficient 
1.2 × 10−5 K−1, heat conductivity 1.38 W m−1 K−1, heat capacity 740 J kg−1 K−1, 
density 2.2 × 103 kg m−3. The ambient temperature is set at 300 K.

Data availability
The data presented in the main text are available from Zenodo57. All 
other data are available from the corresponding authors upon request.

Code availability
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Extended Data Fig. 1 | Anneal-free microresonator characterization. 
Resonator transmission spectra and corresponding intrinsic Q factors (Q0)  
of anneal-free Ge-silica microring resonators at 7 wavelengths, which are 50M 
at 458 nm, 74M at 532 nm, 104M at 685 nm, 178M at 780 nm, 195M at 980 nm, 

194M at 1064 nm, and 173M at 1550 nm, respectively. Corresponding waveguide 
loss of 1.76 dB/m at 458 nm, 1.02 dB/m at 532 nm, 0.56 dB/m at 685 nm, 0.29 dB/m 
at 780 nm, 0.21 dB/m at 980 nm, 0.19 dB/m at 1064 nm, 0.15 dB/m at 1550 nm.



Extended Data Fig. 2 | Cladded germano-silicate PIC. a, SEM image of a cladded device deposited by 6 μm thickness ICP-PECVD silica. b, Transmission spectrum 
of a fully cladded resonator, indicating an intrinsic Q factor (Q0) of 160M at 1550 nm.
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