The University of Southampton
University of Southampton Institutional Repository

Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy

Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy
Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy
Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.
gravitational waves, methods: data analysis, methods: statistical, stars: black holes, stars: neutron
0067-0049
Ashton, Gregory
a8cec4b1-3c98-4b28-af2a-1e37cb3b9f2a
Hübner, Moritz
75c90ba3-d22f-4aa4-9e83-a6ccfe4c4e3c
Lasky, Paul D.
21c4d51d-89db-4dc1-b5f9-cd9835d54fad
Talbot, Colm
cc506291-608c-4a95-8e84-78a67954d79c
Ackley, Kendall
3837d24d-f70c-45a8-89eb-63f8f816dd64
Biscoveanu, Sylvia
5ea3b359-b63e-453b-8249-097d1ddc1b9b
Chu, Qi
f4d1072a-5a68-4ebb-aeea-4ac87e29ae39
Divakarla, Atul
40161616-2d92-460e-85b9-346ad3598e14
Easter, Paul J.
76e4eb3c-3698-464c-a5b7-f7894de32833
Goncharov, Boris
a4677485-babc-4c7c-aed4-b9fa9356ba30
Vivanco, Francisco Hernandez
a7e1148f-e8e8-4b5c-922a-bb81fc1c8f89
Harms, Jan
f8ee00ab-9f18-44a2-a33c-3cf13d103934
Lower, Marcus E.
e2e60c43-2746-4333-bfe9-c5605bef19cd
Meadors, Grant D.
be80cec8-0e6d-47c0-a89e-9625796f2fc2
Melchor, Denyz
bb4392c8-c680-4102-919b-c36772136180
Payne, Ethan
7bb3aedf-838b-438b-be61-1d6560abd467
Pitkin, Matthew D.
34b0889e-8514-49b0-bfe8-69f724a8f95d
Powell, Jade
5051234d-e25f-4c8e-8e6a-cf6d942820ad
Sarin, Nikhil
bfde4e6e-0c6d-4f0f-898e-7ec34b4602ef
Smith, Rory J.E.
2a8b78f9-6abf-4306-8a9d-10158e5b49a4
Thrane, Eric
2bafe758-0f64-458f-9f9a-fede9abc343c
Ashton, Gregory
a8cec4b1-3c98-4b28-af2a-1e37cb3b9f2a
Hübner, Moritz
75c90ba3-d22f-4aa4-9e83-a6ccfe4c4e3c
Lasky, Paul D.
21c4d51d-89db-4dc1-b5f9-cd9835d54fad
Talbot, Colm
cc506291-608c-4a95-8e84-78a67954d79c
Ackley, Kendall
3837d24d-f70c-45a8-89eb-63f8f816dd64
Biscoveanu, Sylvia
5ea3b359-b63e-453b-8249-097d1ddc1b9b
Chu, Qi
f4d1072a-5a68-4ebb-aeea-4ac87e29ae39
Divakarla, Atul
40161616-2d92-460e-85b9-346ad3598e14
Easter, Paul J.
76e4eb3c-3698-464c-a5b7-f7894de32833
Goncharov, Boris
a4677485-babc-4c7c-aed4-b9fa9356ba30
Vivanco, Francisco Hernandez
a7e1148f-e8e8-4b5c-922a-bb81fc1c8f89
Harms, Jan
f8ee00ab-9f18-44a2-a33c-3cf13d103934
Lower, Marcus E.
e2e60c43-2746-4333-bfe9-c5605bef19cd
Meadors, Grant D.
be80cec8-0e6d-47c0-a89e-9625796f2fc2
Melchor, Denyz
bb4392c8-c680-4102-919b-c36772136180
Payne, Ethan
7bb3aedf-838b-438b-be61-1d6560abd467
Pitkin, Matthew D.
34b0889e-8514-49b0-bfe8-69f724a8f95d
Powell, Jade
5051234d-e25f-4c8e-8e6a-cf6d942820ad
Sarin, Nikhil
bfde4e6e-0c6d-4f0f-898e-7ec34b4602ef
Smith, Rory J.E.
2a8b78f9-6abf-4306-8a9d-10158e5b49a4
Thrane, Eric
2bafe758-0f64-458f-9f9a-fede9abc343c

Ashton, Gregory, Hübner, Moritz, Lasky, Paul D., Talbot, Colm, Ackley, Kendall, Biscoveanu, Sylvia, Chu, Qi, Divakarla, Atul, Easter, Paul J., Goncharov, Boris, Vivanco, Francisco Hernandez, Harms, Jan, Lower, Marcus E., Meadors, Grant D., Melchor, Denyz, Payne, Ethan, Pitkin, Matthew D., Powell, Jade, Sarin, Nikhil, Smith, Rory J.E. and Thrane, Eric (2019) Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy. Astrophysical Journal, Supplement Series, 241 (2). (doi:10.3847/1538-4365/ab06fc).

Record type: Article

Abstract

Bayesian parameter estimation is fast becoming the language of gravitational-wave astronomy. It is the method by which gravitational-wave data is used to infer the sources' astrophysical properties. We introduce a user-friendly Bayesian inference library for gravitational-wave astronomy, Bilby. This Python code provides expert-level parameter estimation infrastructure with straightforward syntax and tools that facilitate use by beginners. It allows users to perform accurate and reliable gravitational-wave parameter estimation on both real, freely available data from LIGO/Virgo and simulated data. We provide a suite of examples for the analysis of compact binary mergers and other types of signal models, including supernovae and the remnants of binary neutron star mergers. These examples illustrate how to change the signal model, implement new likelihood functions, and add new detectors. Bilby has additional functionality to do population studies using hierarchical Bayesian modeling. We provide an example in which we infer the shape of the black hole mass distribution from an ensemble of observations of binary black hole mergers.

This record has no associated files available for download.

More information

Published date: April 2019
Additional Information: Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.. M1 - 27
Keywords: gravitational waves, methods: data analysis, methods: statistical, stars: black holes, stars: neutron

Identifiers

Local EPrints ID: 507991
URI: http://eprints.soton.ac.uk/id/eprint/507991
ISSN: 0067-0049
PURE UUID: 95b6785a-08be-496c-81d7-bd891c3fc520
ORCID for Gregory Ashton: ORCID iD orcid.org/0000-0001-7288-2231

Catalogue record

Date deposited: 09 Jan 2026 17:38
Last modified: 10 Jan 2026 05:27

Export record

Altmetrics

Contributors

Author: Gregory Ashton ORCID iD
Author: Moritz Hübner
Author: Paul D. Lasky
Author: Colm Talbot
Author: Kendall Ackley
Author: Sylvia Biscoveanu
Author: Qi Chu
Author: Atul Divakarla
Author: Paul J. Easter
Author: Boris Goncharov
Author: Francisco Hernandez Vivanco
Author: Jan Harms
Author: Marcus E. Lower
Author: Grant D. Meadors
Author: Denyz Melchor
Author: Ethan Payne
Author: Matthew D. Pitkin
Author: Jade Powell
Author: Nikhil Sarin
Author: Rory J.E. Smith
Author: Eric Thrane

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×